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ABSTRACT

This Dissertation covers three aspects of General Relativity: inequivalent Einstein metrics

on Lie Group Manifolds, proving the Hoop Conjecture for Black Rings, and investigating

ergoregions in magnetised black hole spacetimes. A number of analytical and numerical

techniques are employed to that end.

It is known that every compact simple Lie Group admits a bi-invariant homogeneous Ein-

stein metric. We use two ansätze to probe the existence of additional inequivalent Einstein

metrics on the Lie Group SU(n). We provide an explicit construction of 2k + 1 and 2k

inequivalent Einstein metrics on SU(2k) and SU(2k + 1) respectively.

We prove the Hoop Conjecture for neutral and charged, singly and doubly rotating black

rings. This allows one to determine whether a rotating mass distribution has an event

horizon, that it is in fact a black ring.

We investigate ergoregions in magnetised black hole spacetimes. We show that, in general,

rotating charged black holes (Kerr-Newman) immersed in an external magnetic field have

ergoregions that extend to infinity near the central axis unless we restrict the charge to

q = amB and keep B below a maximal value. Additionally, we show that as B is increased

from zero the ergoregion adjacent to the event horizon shrinks, vanishing altogether at a

critical value, before reappearing and growing until it is no longer bounded as B becomes

greater than the maximal value.
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1. INTRODUCTION

The General Theory of Relativity has been a cornerstone of Physics since the theory was

put forward in 1916. Over the years the theory has been extensively studied and tested.

However, the mathematical formulation of the theory in terms of coupled non-linear dif-

ferential equations makes the search for analytical solutions extremely difficult. It is re-

markable, therefore, how many closed form solutions have been discovered. Most of these

have been based on symmetry arguments, intuitive ansätze and analytical extensions of

previous solutions.

Even with all this success analytically, the field has relied heavily on numerical analysis

whenever analytical attempts have failed; which has been often. The sub-field of Numerical

Relativity is entirely dedicated to the use of high-speed computers and optimized algorithms

to study General Relativity.

The General Theory of Relativity has been further enriched by its extension to more exotic

environments such as higher dimensions, additional scalar and vector fields and quantum

mechanics. Consequently, a vast amount of seemingly disparate work has been conducted

under the umbrella of General Relativity.

This Dissertation is one such work; an investigation of three particular aspects of the ever

evolving, increasingly complex General Theory of Relativity.

1.1. Einstein Metrics on Lie Algebras

An Einstein metric is a metric which obeys the equation

Rµν = λ gµν . (1.1)

Einstein metrics are of particular interest to Physicists, in part because they are particular

vacuum solutions to Einstein’s Field Equations (with cosmological constant), that is they

correspond to source-free spacetimes for particular cosmological constants.

Lie Algebras are the underlying structure of Lie Groups. They embody the essence of

continuous symmetries. Each member of a Lie Group is a symmetry operation and can be

classified as a particular point on the (smooth) Lie Algebra Manifold.
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Since very smooth manifold is a candidate spacetime one can add additional structure to

a Lie Algebra manifold by embodying it with a metric. The construction of a metric on

a Lie Algebra manifold is a partially constrained process. The metric has to obey the

underlying group structure of the manifold but is still left with enough freedom that a

variety of metrics can be constructed.

The question then arises, is it possible to construct Einstein metrics on Lie Algebra mani-

folds? The question has been answered for a number of Lie Algebras [1][2][3][4][5][6][7][8].

This Dissertation answers it, in the affirmative, for SU(n) manifolds.

1.2. Hoop Conjecture for Black Rings

It has been shown that the only allowed topology for event horizons in 3 + 1-dimensional

spacetimes is spherical. Additionally it has been shown that, again in 3 + 1-dimensional

spacetime, the parameters M , Q, and J (mass, electrical charge and angular momentum)

uniquely specify black holes.

However in higher dimensions this is no longer the case. (4 + 1)-dimensional spacetime

admits solutions to the Einstein’s Field Equations which have event horizons with 2-torus

(S1 × S2) topology. These solutions have consequently been dubbed “Black Rings.” Not

only is this the first example of a non-spherical event horizon topology but black rings

also violate the uniqueness theorem by allowing more than one, unique, solution of the

Einstein’s Field Equations to have the same parameters M , Q, and J .

Since their discovery black rings have garnered a great deal of attention. Some of it has

been focused on proving the well-known results for black holes for the case of black rings.

One such result is the Hoop Conjecture.

The hoop conjecture was first presented by Kip Thorne for astrophysical black holes [9].

It states

Horizons form when and only when a mass M gets compacted into a region

whose circumference in every direction is C ≤ 4πM .

The conjecture has since been modified allowing it to be applied to black holes in higher-

dimensional spacetimes. This Dissertation formulates and proves the conjecture for neutral

and charged, singly and doubly rotating Black Rings in 4+1-dimensional spacetime.
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1.3. Ergoregions in Magnetised Black Hole Spacetimes

Ergoregions have been a prominent feature of General Relativity ever since the discovery

of the Kerr solution to Einstein’s Field Equations, which corresponds to a neutral rotating

black hole. The Kerr solution features a region adjacent and outside of the (spherical) event

horizon where the g00 component of the metric becomes positive, known as the ergoregion.

This results in non-stationary geodesics which means no object can possibly stay at rest in

the ergoregion, but is forced to move along with the rotating black hole. This constitutes

“frame-dragging”.

The Kerr metric is an example of a compact ergoregion, one that is geographically bounded

(does not extend to spatial infinity). This is not guaranteed when one studies more exotic

spacetimes. The magnetised black hole spacetimes, in particular, suffer from ergoregions

that extend to infinity; where the “magnetised black hole spacetime” consists of an electri-

cally charged rotating black hole (Kerr-Newman) immersed in an external magnetic field

of strength B.
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2. EINSTEIN METRICS ON SU(n)

2.1. Introduction

An Einstein Metric, by definition, obeys the Einstein equationRµν = λ gµν which constrains

the Ricci and through it the Riemann Curvature Tensor. In general, in d dimensions the

Ricci Tensor, like the (symmetric) Metric Tensor, has 1
2d(d+ 1) algebraically independent

components while the Riemann Curvature Tensor has 1
12d

2(d2 − 1) algebraically indepen-

dent components [10]. It therefore follows that the Einstein equation places less constraints

on the curvature of a metric as the dimension increases. In fact for d ≥ 4 the number of

independent components of the Ricci tensor is less than that of the Riemann tensor and

the gap widens as d increases.

These considerations leads one to expect that as the number of dimensions d increases the

number of (inequivalent) Einstein Metrics should also increase [3]. In this Dissertation we

search for these increasing number of Einstein Metrics on SU(n) group manifolds.

The number of independent components of an n×n unitary matrix with unit-determinant

are n2− 1. This means the Lie Group SU(n) and its associated manifold, which comprises

of the set of all unit-determinant unitary n × n matrices, has dimension d = n2 − 1 for

a given value of n. Consequently, the number of possible Einstein metrics on the SU(n)

group manifold increases rapidly with increasing n.

2.1.1. Construction of Metrics

It is easier, when calculating the Riemann Curvature tensor, to work with the vielbiens σa

(1-forms) coupled with a flat metric (a symmetric metric with constant components that

do not vary with the parameters of the Lie-Algebra) as compared to a general metric [11].

Given a Lie Group G with generators Ta if g ∈ G (g is a group element of G) then the

left-invariant 1-forms σa are given by

g−1dg = σa Ta . (2.1)

The material presented in this section formed the basis of the paper ”Homogeneous Einstein metrics
on SU(n)” by A. H. Mujtaba in J. Geom. Phys., Volume 62, Issue 5, 2012 (arXiv:1110.1978). The material
has been used with permission from Elsevier.
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The motivation behind this construction is given in Appendix A.1.

With the 1-forms (vielbiens) in hand we can construct a general metric on the group

manifold using a constant symmetric rank-2 tensor (the flat metric) [11], namely

ds2 = gab σ
a σb. (2.2)

Note that this construction leaves us free to choose any flat metric gab (as long as it is sym-

metric; and needs to have positive eigenvalues if the metric is required to be Riemannian)

while the 1-forms (vielbiens) σa are fixed. In fact the 1-forms are derived from the group

elements themselves and therefore inherit information pertaining to the structure of the

group manifold and how it affects the curvature of the metric space we are constructing

on top of it.

Therefore, our task is to find, given the 1-forms σa, flat metrics gab such that the metric

ds2 (as defined in (2.2)) is Einstein.

2.1.2. Additional Einstein Metrics

Every simply compact Lie group admits a bi-invariant metric of the form tr(g−1dg)2 which

in a suitable choice of basis for the generators Ta can be expressed as

ds2 = c σaσa, (2.3)

where c is a constant [3]. This corresponds to the flat metric gab = c δab.

D’Atri and Ziller [1] have shown that every simple compact Lie group, with the exception

of SU(2) and SO(3), admits at least one additional homogeneous Einstein metric. These

additional Einstein metrics, though not bi-invariant, are still invariant under the transitive

G action (left or right as chosen by convention; we have chosen, by virtue of the construction

in (2.1) and Appendix A.1, to preserve the full GL) [3].

In particular cases homogeneous Einstein metrics have been known to exist in addition to

the bi-invariant and D’Atri and Ziller cases. For example six inequivalent homogeneous

Einstein metrics have been found, explicitly, on the exceptional group G2 [2]; and (3k− 4)

and (3k−3) inequivalent Einstein metrics on SO(2k) and SO(2k+1) respectively [3]. These

successes motivate the search for additional inequivalent Einstein metrics on SU(n).

5



2.1.3. Inequivalence of Einstein Metrics

A recurring issue when searching for new Einstein metrics is determining whether a newly

found Einstein metric is truly new or whether it is equivalent to an already known metric,

possibly by a change of basis. A very useful tool for evaluating this possibility is to calculate

some dimensionless invariant quantity (see Appendix A.2) which is constructed from the

metric and its curvature. Two examples of these dimensionless invariants are [3][2]

I1 = λd/2 V , (2.4)

and

I2 = RabcdR
abcd λ−2 = |Riem|2 λ−2 , (2.5)

where Rab = λ gab, V =
√

(det g)σ1 ∧ σ2 ∧ ... ∧ σd is the volume of the space and d is the

dimension of the Lie group.

For any two Einstein metrics one calculates the value of one of the invariants. If the

calculated values are unequal the two Einstein metrics are clearly inequivalent. If the

calculated values of the invariant are the same then it is not certain that they are equivalent

but the likelihood is that they are. Thus it is easy to establish the inequivalence of Einstein

metrics; while establishing equivalence is a more ambiguous proposition [2]. For practical

reasons we choose to use the latter dimensionless invariant quantity (I2) to establish the

inequivalence of the Einstein metrics we discover on SU(n).

2.1.4. Calculating the Ricci Tensor

The mechanism for calculating the Ricci Tensor follows [11]. If the metric is given in terms

of the 1-forms and the flat metric by (2.2) then the following sequence of calculations will

6



give the Ricci Tensor.

dσa ≡ −1

2
cbc

a σb σc

cabc = gcd cab
d

ωab ≡
1

2
(cabc + cacb + ccba)σ

c

ωab = gac ωcb

θab ≡ dωab + ωac ∧ ωcb
θab ≡ Rabcd σc ∧ σd

Rab ≡ Rcacb

(2.6)

Having calculated the Ricci Tensor, Rab, one can establish that a metric is Einstein by

checking whether it is proportional to the Ricci Tensor (1.1).

2.2. Metrics on SU(n)

The construction and manipulation of metrics on SU(n) is considerably simplified if one

uses the left-invariant 1-forms LA
B where 1 ≤ A ≤ n. These have the property LA

B† =

LB
A and obey the algebra [2]

dLA
B = i LA

C ∧ LCB. (2.7)

For details see Appendix A.3.

The 1-forms LA
B are n2 in number while the Lie Algebra su(n) of the Lie Group SU(n)

has n2−1 generators which are by definition hermitian and traceless. Each “construction”

of the hermitian traceless 1-forms from the LA
B constitutes a scheme and becomes one

part of a particular construction of a metric as defined by (2.2).

The total number of possible metrics is large given the freedom to construct the 1-forms

σa as well as the symmetric flat metric gab. In our search for Einstein Metrics on SU(n)

we choose to study certain ansätze in the hope of simplifying our task. These ansätze take

the form of schemes for the construction of hermitian traceless 1-forms from the LA
B as

well as particular choices of the flat metric.

7



2.2.1. Scheme 1

The Generators The scheme consists of the construction of n2 − 1 traceless Hermitian

1-forms Ki from the LA
B (Appendix A.3). Let m ≡ n(n− 1)/2. We begin by creating m

“traceless Hermitian” 1-forms of the form

Ki = LA
B + LB

A , (2.8)

where A 6= B, for example K1 = L1
2 + L2

1. The next m 1-forms are of the form

Km+i = i (LA
B − LBA) , (2.9)

where A 6= B. This leaves us with the 1-forms created using the diagonal 1-forms LA
B

where A = B. It is necessary that the 1-forms we create from the diagonal LA
B be

“traceless”.

Since the 1-forms Ki are created by taking linear combinations of the LA
B one can describe

the construction using matrices. Let ~l be the vector with entries li = Li
i (for instance

l2 = L2
2) and let ~k be the vector with entries ki = K2m+i for 1 ≤ i ≤ n, then the

construction of the ki from the li is given by

~k = P Q~l , (2.10)

where

P =



( 2
n−1 − 1) 2

n−1
2

n−1 · · · 2
n−1 0

2
n−1 ( 2

n−1 − 1) 2
n−1 · · · 2

n−1 0
...

...
. . .

... 0
2

n−1
2

n−1 · · · 2
n−1 ( 2

n−1 − 1) 0

0 0 0 · · · 0 1


,

and

Q =



1√
2

−1√
2

0 0 · · · 0
1√
6

1√
6

−2√
6

0 · · · 0
...

...
. . .

. . . · · ·
...

1√
n(n−1)

1√
n(n−1)

· · · · · · 1√
n(n−1)

−(n−1)√
n(n−1)

1√
n

1√
n

· · · · · · · · · 1√
n


.

(2.11)

For details see Appendices A.3.4 and A.3.5.
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For example in the case of n = 4 we have

P =


−1

3
2
3

2
3 0

2
3 −1

3
2
3 0

2
3

2
3 −1

3 0

0 0 0 1

 and Q =


1√
2

−1√
2

0 0
1√
6

1√
6

−2√
6

0
1√
12

1√
12

1√
12

−3√
12

1
2

1
2

1
2

1
2

 . (2.12)

Note that the last Ki so defined is Kn2 which is not a 1-form of SU(n) and has non-zero

trace to boot (it corresponds to the unit matrix, that is the generator of u(1)). We include

its construction for the sake of completeness so that the transformation is invertible, a

property needed by the algorithm we will implement.

This construction, in particular the form of the matrix P was chosen to keep the K2m+i

on a symmetric footing with respect to the Li
i. The need for symmetry arises from the

consideration of the number of metric constants in our calculations. If we are able to

place multiple 1-forms on a symmetric footing we can bundle them together and assign

the same metric constant to them. This will reduce the number of metric constants in our

calculations reducing the computational complexity of the problem.

The Metric Given the specific construction of the generators (previous section) with

the particular emphasis on symmetry between the generators (with regards to the LA
B)

it is possible to choose as our ansatz an extremely simply flat metric, one which will

greatly reduce the computational complexity of the calculations necessary for identifying

an Einstein metric.

If we define m = n(n−1)
2 and use the definitions of Ki in (2.8) through (2.11) the metric

that constitutes the ansatz for scheme 1 is given by

ds2 = x1

m∑
i=1

K2
i + x2

2m∑
i=m+1

K2
i + x3

n2−1∑
i=2m+1

K2
i . (2.13)

With this construction the task of finding an Einstein metric is reduced to finding the

values of the (just) three variables xi that make the metric defined above Einstein. In

addition note how the metric is diagonal, which adds to the computational simplicity of

the algorithm.
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As an example consider the case n = 3 where the metric for scheme 1 is given by

ds2 = x1 (K2
1 +K2

2 +K2
3 ) + x2 (K2

4 +K2
5 +K2

6 ) + x3 (K2
7 +K2

8 ) . (2.14)

Solutions Using the metric (2.13) we use the sequence of calculations described in (2.6)

to calculate the corresponding Ricci Tensor in terms of the so-called “metric constants”

x1, x2 and x3. Applying the Einstein equation Rab = λ gab gives us a system of equations

which can be solved for the unknowns xi. These solutions correspond to Einstein metrics

on SU(n). The metrics can be reconstructed from the xi using (2.13).

We implemented the calculation algorithm as a computer program and analyzed the results

to motivate an analytical solution. The Einstein equation led to a system of three unique

simultaneous equations in 4 variables, the 3 equations corresponding to the three classes

of generators and metric constants. These equations are valid for n ≥ 2.

n

4
− n− 2

8

x2

x1
+

1

4

x2
1

x2x3
− 1

4

x3

x2
− 1

4

x2

x3
= λx1

n+ 6

16
+
n− 2

16

x2
2

x2
1

+
1

4

x2
2

x1x3
− 1

4

x3

x1
− 1

4

x1

x3
= λx2

n

8
(2− x2

x1
− x1

x2
+

x2
3

x1x2
) = λx3

(2.15)

We choose to normalize the metric constants by setting x2 = 1 (since if gab is an Einstein

metric then so is any multiple of gab). With this choice of normalization we have the

following solutions.

The homogeneous bi-invariant metric (for n ≥ 2):

x1 = x2 = x3 = 1 λ =
n

8
|Riem2|
λ2

= n2 − 1 (2.16)

and the left-invariant metric (for n ≥ 3):

x1 = x3 =
3n+ 2

n− 2
x2 = 1 λ =

n(n− 2)(5n+ 6)

8(3n+ 2)2
(2.17)

with
|Riem2|
λ2

=
(2n2 + 3n+ 2)(n− 1)(3n+ 4)

n(5n+ 6)
.
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Thus we have discovered two inequivalent homogeneous Einstein metrics for each value of

n ≥ 3 using the ansatz outlined in Scheme 1.

2.2.2. Scheme 2

The ansatz in scheme 2 is based on the decomposition method from [2] and [3]. For n ≥ 2

and any 0 ≤ p ≤ n we define q ≡ n− p. We study the decomposition

SU(p)× SU(q) ⊂ SU(p+ q) . (2.18)

The Generators Once again our task is to construct 1-forms corresponding to traceless

Hermitian Generators from the n2 1-forms LA
B. Using the decomposition method we split

the Generators in to four classes.

Class 1:

From the p2 La
b where a, b ∈ {1, 2, . . . , p} we construct (p2 − 1) 1-forms according to the

construction given in Scheme 1, that is we have p(p−1)
2 1-forms of the form (La

b +Lb
a) for

a 6= b, p(p−1)
2 1-forms of the form i(La

b − Lba) for a 6= b and (p − 1) 1-forms constructed

from a “symmetric” mixing of the diagonal La
a as in (2.10) and (2.11).

Class 2:

From the q2 Lα
β where α, β ∈ {p+ 1, p+ 2, · · · , n} we construct (q2−1) 1-forms according

to Scheme 1 and analogous to Class 1.

Class 3:

We construct 1-forms from the off-diagonal La
β (a ∈ {1, 2, · · · , p} and β ∈ {p + 1, p +

2, · · · , n)}) as follows

(La
β + Lβ

a) i(La
β − Lβa) (2.19)

This results in 2 p q 1-forms in this class.

Class 4:

11



So far we have constructed (p2 − 1) + (q2 − 1) + 2pq = (p + q)2 − 2 1-forms leaving one

un-constructed. Since we have only constructed (p−1)+ (q−1) = (p+ q)−2 1-forms from

the diagonal LA
A we are still left with one missing. It must be traceless and it must mix

diagonal 1-forms from both SU(p) and SU(q). The single 1-form in this class is

q

p∑
a=1

La
a − p

n∑
β=p+1

Lβ
β . (2.20)

The Metric The construction of the flat metric associated with the Scheme 2 ansatz

treats each class of generators as a unit and associates a single metric constant to it. For

classes 1 and 2 this corresponds to choosing the bi-invariant metric from Scheme 1.

The metric for scheme 2 is

ds2 = x1

∑
i1∈C1

K2
i1 + x2

∑
i2∈C2

K2
i2 + x3

∑
i3∈C3

K2
i3 + x4K

2
i4 (2.21)

An example of this construction for n = 5 and p = 2 is given in Appendix A.4.

Solutions Using the metric (2.21) we use the sequence of calculations described in (2.6)

to calculate the corresponding Ricci Tensor in terms of the metric constants x1, x2, x3

and x4. We implemented the calculation algorithm as a computer program and analyzed

the results to motivate an analytical solution. The Einstein equation Rab = λ gab led to a

system of 4 unique simultaneous equations in 5 variables, the 4 equations corresponding

to the four classes of generators and metric constants. These equations are valid for n ≥ 2

and p ≥ 0 with q ≡ n− p.

p

8
+
q

8

x2
1

x2
3

= λx1

q

8
+
p

8

x2
2

x2
3

= λx2

p+ q

4
− (p− 1)(p+ 1)

8p

x1

x3
− (q − 1)(q + 1)

8q

x2

x3
− (p+ q)2

16

x4

x3
= λx3

pq(p+ q)2

16

x2
4

x2
3

= λx4

(2.22)

12



We choose to normalize the variables by setting x3 = 1 which results in the following set

of solutions:

x1 = 1 x2 = 1 x4 =
2

pq(p+ q)
λ =

p+ q

8
=
n

8
(2.23)

This solution for every decomposition SU(p) × SU(q) ⊂ SU(n) corresponds to the bi-

invariant homogeneous Einstein Metric which we have already discovered in Scheme 1.

The other set of solutions is:

x1 =
pq(p+ q)±

√
pq(p2 − 1)(q2 − 1)

q(p2 + pq + q2 − 1)
x2 =

q

p
x1

x4 = 2
2p(p+ q) + ((1− p2) + (1− q2))

1 + pq
x1 λ =

q

16p(p+ q)2
x4

(2.24)

The solutions can be classified by the decomposition being used.

Case 1 : q = 0, p = n

This corresponds to Scheme 1 and gives two inequivalent metrics one of which is the

bi-invariant one.

Case 2 : q = 1, p = n− 1

When q = 1 the number of generators of SU(q) = SU(1) is q2 − 1 = 0 which means x2 no

longer shows up in the metric at all. The decomposition works out to be p2− 1 generators

of SU(p), 2p generators from the off-diagonal LA
B and 1 generator of class 4.

Substituting q = 1 in (2.24) gives us x1 = 1, x4 = 2
p(p+1) and λ = p+1

8 which corresponds

exactly to the first solution set, equivalent to the bi-invariant metric. Thus the case q = 1

gives us no new inequivalent metrics on SU(n).

Case 3 : q = p

Substituting q = p in (2.24) makes the solution for x1 degenerate and so we get textbfone

inequivalent metric rather than the usual two. Note that this case is only possible if n is

even.
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Case 4 : Everything Else

If the values of p and q do not correspond to any of the earlier cases we have the default

situation where (2.23) results in the homogeneous bi-invariant metric and (2.24) leads to

two additional inequivalent metrics. Thus this case generates two additional inequivalent

metrics.

2.3. Conclusion

When counting the number of inequivalent metrics generated by our ansätze we must take

in to consideration the symmetry of the solutions under p - q exchange. Since the order in

which the generators appear in the metric (2.21) is irrelevant exchanging p and q gives an

equivalent metric. Thus when counting we only need to consider the case q ≤ p.

As discussed earlier we need to distinguish between n being even and odd. In the case of

n = 2k + 1 (odd) we have two inequivalent Einstein metrics for each value of 1 < q ≤ k

(for higher values of q the metrics repeat under p and q exchange). In addition we have

the two inequivalent metrics from the case q = 0 which corresponds to Scheme 1. Thus the

count is 2k−2+2 = 2k; with the −2 coming from the case q = 1 which gives no additional

inequivalent Einstein metrics.

In the case of n = 2k (even) we have two inequivalent Einstein metrics for each value of 1 <

q < k, one inequivalent Einstein metric for q = k = p and two inequivalent Einstein metrics

for q = 0 (corresponding to Scheme 1). Thus the count is 2k − 2 + 1 + 2 = 2k + 1.

Thus using the ansätze described we have provided an explicit construction of (2k+ 1) in-

equivalent Einstein metrics on SU(2k) and 2k inequivalent Einstein metrics on SU(2k+1).

It is important to note that we have only tested two ansätze; ones with limited complexity

at that. It is unlikely that we have discovered all possible inequivalent Einstein metrics on

SU(n).
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3. HOOP CONJECTURE FOR BLACK RINGS

3.1. Introduction

The Hoop Conjecture was first presented by Kip Thorne for astrophysical black holes [9].

It states

Horizons form when and only when a mass M gets compacted into a region

whose circumference in every direction is C ≤ 4πM .

The conjecture hypothesises that a mass distribution is a black hole (has an event horizon)

only when the mass has been squeezed in to a volume of space such that a hoop of cir-

cumference C ≤ 4πM can be rotated about said volume in all directions without touching

it.

It is easily shown that the Schwarzschild metric black hole saturates the inequality. The

conjecture then implies that all other black holes, those with charge and angular momen-

tum, better obey the inequality, that is are more confined and so cannot be larger than the

Schwarzschild black hole.

3.1.1. Reformulation

This formulation is imprecise in several ways. First off, it is unclear which mass M the

conjecture is referring to since General Relativity allows for a number of formulations of

mass. Secondly, the conjecture fails to specify which horizon one should be using. Thirdly,

the concept of ”circumference” is associated with the ability to define a circle on the

horizon, a construction that becomes imprecise when the spacetime becomes complicated.

And finally, the conjecture cannot be naturally extended to higher dimensions.

All of these concerns were addressed by Gibbons [12] as follows. The mass is taken to be

the ADM Mass [13], useful since it is a global feature of the spacetime. The horizon is

taken to be the apparent horizon and instead of the circumference the author introduces

the Birkhoff’s invariant.
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3.1.2. Apparent Horizon

The apparent horizon is the outermost marginally trapped surface on the spacetime. It is

a local feature of the spacetime, which means that unlike the event horizon, which requires

knowledge of the entire history of spacetime to be accurately specified, the apparent horizon

can be specified at any given instant of time [14].

We are able to use apparent horizons for the purpose of investigating the hoop conjecture

because “if the cosmic censorship conjecture[15] holds and the null energy condition[14] is

satisfied then the presence of an apparent horizon implies the existence of an event horizon

that lies outside, or coincides with, the apparent horizon” [14]. So if we can show that the

mass distribution is bounded by “hoops” on the apparent horizon it follows automatically

that it is bounded by hoops on the event horizon (which coincides with or lies outside the

apparent horizon). So one can prove the hoop conjecture by working with the apparent

horizon.

3.1.3. Birkhoff’s Invariant

Let S be the sub-manifold corresponding to the apparent horizon in the spacetime. Let

f : S → R be a real-valued function on S with just two critical points, a maximum and

a minimum. For any c ∈ R, f−1(c) is a level curve on S. Let l(c) be the length of said

level curve, calculated using the metric that S inherits from the spacetime. Note that S

is foliated by the level curves f−1(c), that is S comprises of the union of the inherently

non-intersecting level curves [12].

For any given function f we define

β(f) = maxc l(c) . (3.1)

We now define the Birkhoff invariant β by minimising β(f) over all possible such func-

tions,

β = inf
f
β(f) . (3.2)

This construction is motivated by [16]. To visualize the foliation and how it corresponds

to the passage of a hoop over the surface of the apparent horizon read Appendix B.
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3.1.4. Hoop Conjecture in 3 + 1 Dimensions

When considering 3+1 dimensional spacetime the apparent horizon is a 2-dimensional

spatial manifold and so the level curves for a real-valued function are 1-dimensional curves.

This makes the Birkhoff’s invariant a length (rather than an area or a volume) in this case.

The hoop conjecture is then formulated as

β ≤ 4πMADM . (3.3)

[12] proved the conjecture for the Schwarzschild black hole as well as the charged and

rotating Kerr-Newman black hole. [17] extended the successful tests of the conjecture

to more general four-dimensional black holes such as those with a cosmological constant,

and a variety of rotating, possibly (multi)charged, black holes in gauged and ungauged

supergravities.

3.1.5. Hoop Conjecture in N + 1 Dimensions

Using real-valued functions f : S → R defined over the N−1 dimensional apparent horizon

S the level-“curves” f−1(c) are N − 2 dimensional sub-manifolds and so the Birkhoff’s

invariant will be defined in terms of the “volume” of these sub-manifolds. If we define A(c)

to be the volume of the N − 2 dimensional level-hypersurface f−1(c) then the Birkhoff’s

invariant is defined by

β(f) = maxcA(c) and β = inf
f
β(f) . (3.4)

The constant of proportionality between β and MADM in the hoop inequality depends

on the number of dimensions of the spacetime. It takes the form β ≤ αN MADM , where

αN ∈ R. The value of αN is calculated by testing the conjecture for the Schwarzschild

metric in N + 1 dimensional spacetime and assuming that the inequality is saturated in

this case. In 4 + 1 dimensions the 3-dimensional apparent horizon is foliated by S1 × S1

sweepouts and the hoop conjecture takes the form [17]

β ≤ 16π

3
MADM . (3.5)
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General tests of the conjecture for higher-dimensional black holes were carried out in [17].

The authors foliated the (N−2)-sphere horizon of the N -dimensional black hole spacetime

using (N − 3)-spheres. They defined the Birkhoff’s invariant as the volume of the smallest

equatorial (N − 3)-sphere amongst all possible such foliations (the equatorial (N − 3)-

sphere is the largest sphere in any given foliation, analogous to the “Great Circles” on a

2-sphere).

Foliations other than (N − 3)-spheres are possible. [17] also investigated the foliation of

S3 horizons in 5-dimensional black holes using S1 × S1 Clifford tori, with the Birkhoff’s

invariant defined as the smallest “equatorial” torus amongst all possible such foliations.

This procedure informs the one we use to foliate black ring horizons.

Our task is made much easier by realizing that since β is the smallest possible β(f),

β ≤ β(f) for any given function f . So if we can show for a judicious choice of function f

that β(f) ≤ αN MADM we can verify the hoop conjecture without having to calculate β

itself. We are saved the task of studying all possible foliations in our search for β = inf
f
β(f),

a considerable simplification of our task.

3.1.6. Black Rings

Black holes in four spacetime dimensions are constrained by a number of classical theo-

rems which state that a stationary, asymptotically flat, vacuum black hole is completely

characterized by its mass and spin, and event horizons in four dimensions are only allowed

to have spherical topologies [18].

These restrictions do not apply in higher dimensions. In [18] the authors demonstrated

the first (4 + 1)-dimensional spacetime metric whose event horizon has a non-spherical

topology, in particular an S1×S2 topology. This has led to these spacetimes being named

“black rings”.

[18] describes the first black ring metric discovered which corresponds to a single rotating

uncharged black ring. [19] and [20] describe a revised single rotating uncharged black ring

metric while [21] describes a charged version. [22] describes a doubly rotating uncharged

black ring while [23] and [24] describe a charged version.
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3.1.7. Hoop Inequality with S1 × S1 Sweepouts

[17] conjectured that the hoop inequality for a 5-dimensional black hole whose topologically

S3 horizon has been foliated with S1×S1 sweepouts is the same as that for a foliation using

S2 sweepouts, namely (3.5). The inequality is saturated by the Schwarzschild metric.

In contrast to [17], where the horizon was topologically S3, the black ring horizon is topo-

logically S1 × S2 and it is this horizon that must be foliated using S1 × S1 sweepouts. In

keeping with [17], we conjecture that the hoop inequality satisfied by (5-dimensional) black

rings (foliated by S1 × S1 sweepouts) is still (3.5).

3.2. Neutral Single Rotating Black Ring

The metric for a single rotating (electrically) uncharged metric was first described in [20].

The original metric, although ground-breaking, was remarkably complicated. The metric

was revised to a more tractable form in [19] and [20],

ds2 = −F (y)
F (x)

(
dt− CR

1+y
F (y)dψ

)2
+ R2

(x−y)2
F (x)

[
−G(y)
F (y)dψ

2 − dy2

G(y) + dx2

G(x) + G(x)
F (x)dφ

2
]
, (3.6)

where F (ζ) = 1 + λζ, G(ζ) = (1− ζ2)(1 + νζ) and C(ν, λ) =

√
λ(λ− ν)

1 + λ

1− λ
.

The apparent horizon is located at y = − 1
ν . The coordinates are restricted to the domains

−1 ≤ x ≤ 1 and y < −1. The requirement that G(ζ) have real and distinct roots implies

that the parameters obey the restriction 0 < ν ≤ λ < 1. In addition, avoiding conical

singularities at x = ±1 and y = −1 requires that the angular variables φ and ψ be periodic

with period

∆φ = ∆ψ = 2π
1 + λ

1 + ν
, (3.7)

along with the restriction that λ and ν be related by

λ =
2ν

1 + ν2
. (3.8)

For further details see Appendix C.4.

The apparent horizon, at y = − 1
ν , is spanned by the variables x, φ and ψ and has topology

S1×S2. The S1 corresponds to ψ which is the angular variable associated with the rotation

of the black ring (since dt and dψ mix in the metric, that is gtψ 6= 0). The S2 is spanned
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by x and φ, with x being the latitudinal coordinate (analogous to cos θ on S2) and φ being

the azimuthal coordinate. Thus we can foliate the S1×S2 apparent horizon using surfaces

of constant x (S1×S1 sweepouts spanned by ψ and φ). An example of such a sweepout is

given in Figure 1.

Figure 1: S1 × S1 sweepout on the S1 × S2 apparent horizon of a black ring.

The toroidal sweepout has area (volume)

A(x) =

∫
dφ

∫
dψ
√
gφφ gψψ − g2

φψ

∣∣∣∣
y=− 1

ν

= ∆φ∆ψ
√
gφφ gψψ − g2

φψ

∣∣∣
y=− 1

ν

, (3.9)

since the metric is φ and ψ invariant. A(x) is a function of x, with −1 ≤ x ≤ 1 and ν as a

parameter.

Recall from (3.4) that to prove the hoop conjecture it is sufficient to prove, for any given

foliation (described by the level curves f−1(c) with volume A(c)), that maxc{A(c)} ≤
16π
3 M (in 5-dimensional spacetime). Since we are foliating the apparent horizon using

S1 × S1 sweepouts, corresponding to surfaces of constant x, all we have to show is that

maxx{A(x)} ≤ 16π
3 M to verify the hoop conjecture. This amounts to

3maxx{A(x)}
16πM

≤ 1 ⇔
[

3maxx{A(x)}
16πM

]2

≤ 1. (3.10)
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Substituting in the components of the metric and using the simplification G(y = − 1
ν ) = 0,

we have

A(x) = 4πR2 (1− λ)

(1− ν)

[
ν
C(ν, λ)2

(λ− ν)

G(x)

(1 + νx)2

]1/2

. (3.11)

The ADM mass is given by [19, 20]

M =
3πR2

4

λ

(1− ν)
, (3.12)

and so verifying the hoop conjecture (3.5)(3.10) amounts to proving that

Z ≡ 1−
[

3A(x)

16πM

]2

= 1− ν (1− λ2)

λ

(1− x2)

(1 + νx)
≥ 0 , (3.13)

where λ is given by (3.8),

− 1 ≤ x ≤ 1 and 0 < ν ≤ 1 . (3.14)

Since ν ≤ λ, the inequality (3.13) will be established if we can show that

P (x) ≡ (1− ν2)(x2 − 1) + νx+ 1 + νx ≥ 0 . (3.15)

Writing this as

P (x) =
1

4
(3− νx)(x+ ν)2 +

1

4
(1− νx)(x− ν)2, (3.16)

and noting that (3 − νx) > 0 and (1 − νx) ≥ 0 when the conditions in (3.14) are met,

we see that P (x) ≥ 0. Therefore the uncharged single rotating black ring obeys the hoop

inequality (3.5).

We present an alternate proof here to illustrate an analogous technique we shall use when

dealing with a more complicated black ring metric later on. We take the expression for Z

in (3.13), with λ given by (3.8), and parameterise x and ν as

x = −1 +
2

1 + u
and ν =

1

1 + v
, (3.17)

where u ≥ 0 and v ≥ 0 (in order to cover the domains in (3.14)). Making the substitutions

changes Z to

Z = α(4+4u+10v+12uv+2u2v+10v2 +6uv2 +4u2v2 +5v3 +3u2v3 +v4 +u2v4) , (3.18)
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where α is the non-negative expression

α−1 = (1 + v2)(1 + vx)(1 + u)2(1 + v)4. (3.19)

Since the coefficient of every term in (3.18) is positive, and u ≥ 0 and v ≥ 0, it follows that

Z ≥ 0 and the hoop conjecture is verified (again).

3.3. Single Rotating Charged Black Ring

The solution for the single rotating charged black ring was first obtained in [21]. It is

convenient to parameterise the solution in a form that reduces to (3.6) when the charge is

set to zero. To that end we start with the solution (3.29) for the general doubly rotating

charged black ring and turn off one of the rotations. We then make the appropriate

parameter and coordinate transformations (with the exception of charge) that reduces

(3.29) to (3.6) as outlined by [24]. This is achieved by performing the transformations

ν = 0 λ→ ν k → 1√
2

R√
1 + ν2

φ→ −
√

1 + ν2 ψ ψ →
√

1 + ν2 φ (3.20)

on the metric in (3.29). This gives us the metric

ds2 = −D−2/3F (y)

F (x)

(
dt+ C

(1 + y)

F (y)
Rcdψ

)2

(3.21)

+D1/3 R2

(x− y)2
F (x)

[
−G(y)

F (y)
dψ2 +

G(x)

F (x)
dφ2 +

dx2

G(x)
− dy2

G(y)

]
,

D = 1 + s2 2ν(x− y)

(1 + ν2)F (x)
, (3.22)

where c ≡ cosh δ, s ≡ sinh δ, and δ parameterises the charge. The functions F (ζ) and G(ζ)

are the same as those defined for the neutral single rotating black ring in (3.6), and the

constant C is equal to C(ν, λ) (as defined in (3.6)) but with every instance of λ given by

(3.8).

The mass and conserved electric charge for this solution are given by

M = (3 + 2s2)
πR2 ν

2(1− ν)(1 + ν2)
= (1 +

2

3
s2)M0 , (3.23)
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and

Q = − πR2 ν

(1− ν)(1 + ν2)
cs , (3.24)

where M0 is the mass for the neutral single rotating black ring (3.12).

The apparent horizon is (again) located at y = − 1
ν . The area of the S1 × S1 sweepout of

the horizon, corresponding to a surface of constant x, is given by

A(x) =
c

D1/6
A0(x) , (3.25)

where A0(x) is the area of the sweepout in the uncharged case (δ → 0) and is therefore

given by (3.11). Thus the crucial ratio is

3A(x)

16πM
=

c

D1/6(1 + 2
3s

2)

[
3A0(x)

16πM0

]
. (3.26)

Since the hoop inequality (3.5) has already been verified for the uncharged case, we need

only show that
c

D1/6 (1 + 2
3s

2)
≤ 1 , (3.27)

for −1 ≤ x ≤ 1 and all δ, in order to verify the hoop conjecture for the charged case as

well. We note that

x ≥ −1 and y ≤ −ν−1 < −1 ⇒ (x− y) > 0 ,

and

x ≥ −1 and 0 < ν ≤ 1 ⇒ F (x) = 1 +
2νx

(1 + ν2)
≥ 0 ,

hence, from (3.22), we get D > 1. It only remains to show that c
(1+ 2

3
s2)
≤ 1, which is

evident if we re-express it as

c

1 + 2
3s

2
=

3c

1 + 2c2
= 1− (c− 1)(2c− 1)

1 + 2c2
≤ 1 , (3.28)

and note that c ≡ cosh δ ≥ 1. Thus the hoop inequality is satisfied by the single rotating

charged black ring.
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3.4. Doubly Rotating Charged Black Ring

The first doubly rotating black ring metric was described in [22]. This was generalised in

[23] to a 2-charged doubly-rotating black ring, and in [24] to the more general 3-charge

doubly rotating black ring solution in N = 2 STU supergravity theory. It was shown in

[24] that to avoid conical singularities at the poles of the x - φ S2 sub-surfaces, two of the

three charges must be set to zero. The metric is then given by

ds2 = −D−2/3H(y, x)

H(x, y)
(dt + cΩ)2 + D1/3

(
− F (x, y)

H(y, x)
dφ2 − 2

J(x, y)

H(y, x)
dφdψ

+
F (y, x)

H(y, x)
dψ2 +

2k2H(x, y)

(x − y)2(1 − ν)2

[
dx2

G(x)
− dy2

G(y)

])
, (3.29)

where

G(x) = (1− x2)(1 + λx+ νx2) ,

H(x, y) = 1 + λ2 − ν2 + 2λν(1− x2)y + 2xλ(1− y2ν2) + x2y2ν(1− λ2 − ν2) ,

J(x, y) =
2k2(1− x2)(1− y2)λ

√
ν

(x− y)(1− ν)2
[1 + λ2 − ν2 + 2(x+ y)λν − xyν(1− λ2 − ν2)] ,

F (x, y) =
2k2

(x− y)2(1− ν)2

{
G(x)(1− y2)

(
[(1− ν)2 − λ2](1 + ν) + yλ(1− λ2 + 2ν − 3ν2)

)

+G(y)

[
2λ2 + xλ[(1− ν)2 + λ2] + x2[(1− ν)2 − λ2](1 + ν)

+x3λ(1− λ2 − 3ν2 + 2ν3)− x4(1− ν)ν(−1 + λ2 + ν2)

]}
, (3.30)

and

Ω = −
2kλ

√
(1 + ν)2 − λ2

H(y, x)

[
(1− x2)y

√
νdψ +

1 + y

1− λ+ ν
[1 + λ− ν + x2yν(1− λ− ν) + 2νx(1− y)]dφ

]
,

D = 1 + s2 2λ(1− ν)(x− y)(1− νxy)

H(x, y)
, (3.31)

where −1 ≤ x ≤ 1, y ≤ −1 and φ and ψ each have period 2π. The parameters are restricted

to 0 ≤ ν < 1 and 2
√
ν ≤ λ < 1 + ν. The apparent horizon is located at

yh =
−λ+

√
λ2 − 4ν

2ν
, (3.32)
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and the ADM mass is given by

M = k2π
(3 + 2s2)λ

(1− λ+ ν)
. (3.33)

Per the standard procedure, we consider the family of S1 × S1 sweepouts of the apparent

horizon at (3.32) corresponding to surfaces of constant x. The area of the sweepout is

given by

A(x) = (2π)2
√
gφφ gψψ − g2

φψ

∣∣∣
y=− 1

ν

. (3.34)

Expressing [
3A(x)

16πM

]2

≡ D−1/3 Y , (3.35)

the verification of the hoop conjecture (3.5) comes down to showing that

D−1/3 Y ≤ 1 . (3.36)

The expression for Y is too complicated to present. The procedure that proves the hoop

inequality involves reparameterising the constants ν, λ and δ, and the latitude coordinate

x on the 2-spheres, so that each parameter ranges over 0 to ∞ (with no restrictions). We

do so by defining

ν = tanh2 β and λ = 2 tanhβ coshα . (3.37)

The parameter β should therefore lie in the range 0 ≤ β ≤ ∞, while α should range over

0 ≤ α ≤ αmax, where

eαmax = cothβ . (3.38)

The purpose of the ranges covered by β and α is to recreate the ranges that need to be

covered by the original parameters, in this case 0 ≤ ν < 1 and 2
√
ν ≤ λ < 1 + ν.

Note that the horizon is located at yh = −e−α cothβ in terms of the new parameters.

Finally, we introduce new parameters u, v, w, and z, each lying in the unrestricted range

0 to ∞. The new parameters are defined as

eβ = 1 + u , eα = 1 +
2

(1 + v)[(1 + u)2 − 1]
, x = −1 +

2

1 + w
,

eδ = 1 + z or e−δ = 1 + z . (3.39)
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This gives a complete covering of the parameter space and the x coordinate domain in terms

of mutually independent and unrestricted non-negative variables. The two alternatives for

the reparameterisation of δ correspond to positive and negative electric charge parameters

on the black ring.

The transformations result in (1− Y ) being a rational function of u, v, w and z, in which

every term in the numerator and denominator multinomials has a positive coefficient. (For

example, the numerator is a multinomial with 3350 terms, all having positive coefficients.)

This establishes that (1 − Y ) > 0 ⇒ Y < 1. Similarly the reparameterisation results in

(D−1) being a rational function with numerator and denominator multinomials such that

all terms have a positive coefficient. This proves that (D − 1) > 0 ⇒ D > 1.

Therefore, from (3.36), we see that the hoop conjecture is verified for the single-charged

doubly rotating black ring.
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4. ERGOREGIONS IN MAGNETISED BLACK HOLE SPACETIMES

4.1. Introduction

Studying the energetics of astrophysical black holes involves understanding the interaction

of black holes with charged particles and external magnetic fields. There is a large body

of work dedicated to this subject, both early work by Wald [25]; King, Kundt and Lasota

[26]; and Blandford and Znajek [27]; and recent studies by Bičák [28]; Bičák, Karas and

Ledvinka [29]; and Komissarov and McKinney [30].

In the case of rotating black holes the frame-dragging of the external magnetic field induces

electric fields which in turn affect all charged particles in the vicinity of the black hole. It

can be energetically favourable, in such cases, for an initially neutral rotating black hole

to acquire electrical charge [25] and for currents to flow [27].

For all practical astrophysical purposes the gravitational back-reaction of the magnetic

field may be neglected, and the electromagnetic field may be treated as a “test” field

on the unperturbed, asymptotically flat, electrically neutral Kerr solution. The current

flow that is responsible for lowering the energy of the black hole (by means of acquiring

charge) may come about as conduction through the ambient plasma or as a breakdown

of the vacuum through pair production. An analysis of the latter from the perspective of

black hole thermodynamics and quantum field theory was given by [31], but gravitational

back-reaction was not taken in to account.

Subsequent investigations have unveiled apparently appropriate exact solutions of the

Einstein-Maxwell equations taking in to account the gravitational back-reaction [32][33], as

well as an analysis of their properties [34][35][36][37][38]. However a full treatment of the

thermodynamics of a rotating black hole immersed in an ambient magnetic field remains

elusive.

It is anticipated [39] that a full treatment that takes in to account both the gravitational

back-reaction and the torque exerted by the black hole on the source of the external mag-

netic field might be extremely illuminating. This view is further bolstered by the discovery

that in the only case that has been studied so far, that of the Schwarzschild black hole

immersed in a background Melvin solution [40], the black hole thermodynamics (the en-

tropy and temperature of the black hole) are unaffected by the external magnetic field.

The question then is, does the same occur in the case of a rotating black hole immersed in

27



an external magnetic field.

The reason why we lack a full treatment is the complexity of the exact solutions which are

apparently appropriate in this case (charged rotating black hole in a Melvin environment).

The literature, to date, has assumed that such a metric will produce an “asymptotically

Melvin” background at infinity. If this were true it would be straight-forward to cal-

culate the total mass and angular momentum of the black hole, possibly using Komar

Integrals.

In this Dissertation we will show that in addition to the inherent complexity of the ex-

act solutions there is a more serious obstacle to calculating the conserved quantities; the

relevant solutions are in general not asymptotic to the static Melvin solution. We will

show that except when the charge parameter q of the Kerr-Newman metric is specifically

given by q = amB (where a is the rotation parameter, m is the mass parameter and B

the external magnetic field strength) the spacetime contains an ergoregion that extends to

infinity, with timelike boundary.

In other words, unless q = amB, “the dragging of the inertial frames is so strong that even

at infinity there is no Killing vector field which is everywhere timelike outside a compact

set containing the black hole Killing horizon.” – Pope1

4.2. Ergoregions

We use the metric described in (D.5) and set p = 0 (turn off the magnetic charge) to get

the metric for an electrically charged rotating black hole immersed in an external magnetic

field (charge parameter q, rotation parameter a, mass parameter m and external magnetic

field strength B). Like the Kerr and Kerr-Newman metrics we expect there to be a compact

ergoregion just outside the event horizon.

To investigate the ergoregion we study the g00 component of the metric. Points in the

spacetime with g00 > 0 are part of the ergoregion. We note that g00 is an even function of z

and is φ-invariant. Consequently we only need to look at the positive (ρ - z) quadrant cross-

section of the spacetime to glean complete information about g00 across all of space.

We begin by looking at g00 at large r while keeping the polar angle θ fixed, in which regime

1C. N. Pope, George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,
Texas A&M University, College Station, TX 77843, USA
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it takes the form

g00 = − 1

16
B4r4sin4θ +O(r3) , (4.1)

which is in asymptotic agreement with the Melvin universe.

This result is misleading because the neglected terms (O(r3)) become significant near the

polar axis. To demonstrate this we use cylindrical coordinates

ρ = r sin θ and z = r cos θ , (4.2)

and probe the region where ρ is small and z is large. The expansion of g00 in inverse powers

of z is given by

g00 =
16B6(q − amB)2ρ2

W
z2 +

4B6(q − amB)[8qm+ aB(q2 + 4m2)]ρ2

W
z +O(z0) , (4.3)

where W is the clearly positive quantity

W = 16 + 8B2ρ2 +B4(ρ2 + q2)2 + 24B2(q − 2
3amB)2 +

16

3
a2m2B2 . (4.4)

We observe that g00 becomes large and positive in this regime (small ρ large z) unless we

choose q = amB. While it is easy to see that the ergoregion extends to infinity when

q 6= amB, more analysis is required before we can assert that the ergoregion is compact

(does not extend to infinity) when q = amB.

We begin by analyzing g00 in the small ρ large z regime after setting q = amB. The

expansion of g00 in inverse powers of z is now give by

g00 = − F+F−
16(4 + a2m2B4 +B2ρ2)2

+O(z−1) , (4.5)

where

F± = (4 +B2ρ2)2 + 2a2m2B4(4 +B2ρ2) + a4m4B8 ± 2am2B4(12 + a2B2)ρ

= B4ρ4 + 2B2(4 + a2m2B4)
[
ρ± aB2m2(12 + a2B2)

2(4 + a2m2B4)

]2
+

128 + 48a2m2B4(2− 3m2B2)− a6m4B10(1− 2m2B2)

2(4 + a2m2B4)
.

(4.6)

If we can show that the last of the three terms in (4.6) is positive then by virtue of (4.5)
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g00 will be negative and there will be no ergoregion in the small ρ large z region.

The event horizon for this spacetime is given by ∆(r) = 0, the same condition as for the

Kerr-Newman metric. Therefore, the parameters must satisfy the inequality q2 + a2 ≤ m2

to avoid a naked singularity. Substituting in q = amB limits a to

a2 ≤ a2
max ≡

m2

1 +m2B2
. (4.7)

If we plug in the maximum allowed value of a, amax, in to the final term of (4.6), we find

(numerically) that it will be positive if

mB ≤ 1.26015 · · · . (4.8)

Thus if the size/mass of the black hole is sufficiently small compared to the “Melvin scale”

B−1 the ergoregions encountered at small ρ large z will be avoided as long as q = amB.

In the next section we will provide an improved bound for the mass.

4.3. Detailed Analysis of Ergoregions

We now focus exclusively on the case q = amB. In Section 4.2 we showed that the axial

ergoregions can be avoided if m is limited by (4.8). This limit can be improved because

even when the third term in (4.6) is negative it can be countered by the first two positive

terms.

We can express the rotation parameter a in terms of its maximal value, amax and a newly

defined parameter ε as

a = ε amax =
εm√

1 +m2B2
, (4.9)

where 0 ≤ ε1 and we make use of the fact that we can choose a to be positive without loss

of generality.

We know that at B = 0 the ergoregion is compact since the metric reduces to the Kerr-

Newman metric. Numerical analysis of g00 suggests that if we hold m and ε fixed and

increase B from 0 the, initially compact, ergoregion contracts until we reach a critical

value (Bcrit). At B = Bcrit the ergoregion vanishes completely. As B increases beyond

Bcrit the ergoregion reappears and expands but remains compact (geographically localised)

until B = Bmax. For B > Bmax the ergoregions extend upwards and downwards to infinity

along the rotation axis (although g00 remains negative on the rotation axis itself).
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Let us look at a concrete example. We set q = amB, m = 1 and ε = 0.9 and plot

the ergoregion for various values of B (Figures 2, 3 and 4). Bcrit ≈ 1.012131 and

Bmax ≈ 1.37394 for these values of m and ε. We go on to show how Bcrit and Bmax can

be calculated.
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Figure 2: Positive quadrant of the ergoregion for a magnetised Kerr-Newman black hole
with q = amB, a = 0.9 amax; for B = 0, 0.24 and 0.50 respectively.
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Figure 3: Positive quadrant of the ergoregion for a magnetised Kerr-Newman black hole
with q = amB, a = 0.9 amax; for B = 0.80, 1.02 and 1.10 respectively.
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Figure 4: Positive quadrant of the ergoregion for a magnetised Kerr-Newman black hole
with q = amB, a = 0.9 amax; for B = 1.20, 1.30 and 1.40 respectively.

Note that g00 will be positive at infinity if and only if F− is negative (and F+ is positive)2.

Clearly F− is positive at ρ = 0 and for (sufficiently) large ρ. F−(ρ) just manages to become

negative when the curve F−(ρ) skims the ρ-axis, which happens when

F−(ρ) = 0 and
dF−(ρ)

dρ
= 0 . (4.10)

We calculate the value of B for which this condition is met (for which F−(ρ) just manages

to becomes negative) which gives us Bmax. Solving the condition (4.10) for B requires us

to solve

64 ε6m12B12 − 3 ε2(36− 16 ε+ 3 ε2)(36 + 16 ε+ 3 ε2)m10B10 − 24 ε2(196− 5 ε2)m8B8

+ 16 (256 + 141 ε2)m6B6 + 3072 (4 + ε2)m4B4 + 12288m2B2 + 4096 = 0 .

(4.11)

Bmax is the smallest positive root of this equation, the lowest (positive) value of B for

which F−(ρ) just manages to become negative. For an extremal black hole (ε = 1) this

gives mBmax ≈ 1.33099. For non-extremal black holes mBmax will become progressively

larger as ε becomes smaller.

The ergoregion disappears at the critical value B = Bcrit. This value can be calculated

by looking at g00 in the equatorial plane (z = 0) at r = r+ = m(1 +
√

1− ε2) at which

2It is clear from (4.6) that F+ > F− for all values of B and that F−(B = 0) > 0. We focus on increasing
B from 0 and find the value of B where F− first becomes negative.
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location

g00 =
(1− ε̃)P 2

16(1 + ε̃)(1 +m2B2)3(2 + (1 + ε̃)m2B2)2
, (4.12)

where

P = (1 + ε̃)(21 + 2ε̃+ ε̃2)m6B6 + 2(1 + 6ε̃+ ε̃2)m4B4 − 4(7 + 3ε̃)m2B2 − 8 , (4.13)

and ε̃ is the “co-extremality” parameter

ε̃ =
√

1− ε2 . (4.14)

Clearly the ergoregion vanishes on the equator (z = 0, r = r+) when P = 0 ⇒ g00(z =

0, r = r+) = 0 (4.12). Thus Bcrit is the smallest positive root of P (B). For an extremal

black hole (ε = 1 ⇒ ε̃ = 0) we have mBcrit ≈ 1.11114. For non-extremal black holes

mBcrit becomes progressively smaller as ε becomes smaller.

If we calculate g00 on the horizon in general (r = r+) we have

g00 =
(1− ε̃)P 2 sin2 θ

16 (1 +m2B2)2W
, (4.15)

where W is a certain (complicated) function of θ, mB and ε̃ that is never singular. Thus

we observe that when B = Bcrit, g00 vanishes everywhere on the horizon. This corresponds

to the ergoregion vanishing completely.

It is important to note that in the case of the magnetised black hole spacetime there exists

no unique choice of asymptotically timelike Killing vector. Therefore, it may be possible,

for other choices of asymptotically timelike Killing vector (which take the form
∂

∂t
+ Ω

∂

∂φ
)

that there be no ergoregion at spatial infinity even when B is arbitrarily large.

4.4. Angular Velocity of the Horizon

Let us calculate the angular velocity of the horizon (ΩH) of the black hole. If we consider

the Killing Vector

` =
∂

∂t
− ΩH

∂

∂φ
(4.16)
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then one solves for ΩH by requiring that ` be null on the horizon. This gives us

ΩH =

√
1− ε̃2 P

16 (1 +m2B2)3/2(1 + ε̃)
, (4.17)

where P is given by (4.13).

It immediately follows that when B = Bcrit, P and consequently ΩH vanish. Since ΩH is

the angular velocity with which the event horizon of the black hole is rotating (and frame-

dragging) it means that at B = Bcrit, when the ergoregion vanishes, the frame-dragging

angular speed on the event horizon equator goes to zero as well. If B is increased beyond

Bcrit the sign of ΩH is reversed, as evidenced by Figure 5.

0.2 0.4 0.6 0.8 1 1.2 1.4
B

-1.5

-1

-0.5

ΩH

Figure 5: ΩH vs B for a magnetised Kerr-Newman black hole with q = amB, a = 0.9 amax
and m = 1 for 0 ≤ B ≤ 1.4 sampled at ∆B = 0.02.
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5. CONCLUSIONS

5.1. Einstein Metrics on SU(n)

We constructed two ansätze as candidate Einstein metrics on the SU(n) manifold. We

tested these ansätze and came up with a number of inequivalent Einstein metrics. Specif-

ically, we provided an explicit construction for (2k + 1) inequivalent Einstein metrics on

SU(2k) and 2k inequivalent Einstein metrics on SU(2k + 1). These are the constructions

from just the two ansätze. It is unlikely that we have discovered all possible inequivalent

Einstein metrics on an SU(n) manifold.

5.2. Hoop Conjecture for Black Rings

We analyzed the Black Ring metric for a number of cases: neutral and charged, singly

and doubly rotating. We foliated the S1 × S2 apparent horizons of these black rings using

S1 × S1 sweepouts. Using this foliation we were able to verify the hoop conjecture in all

the stated cases.

The proof for the single rotating black ring (neutral and charged) was analytical and

precise. The proof for the doubly rotating charged black ring was analytical but rather

involved. Nonetheless, we have demonstrated that black ring event horizons obey the hoop

conjecture.

5.3. Ergoregions in Magnetised Black Hole Spacetimes

We investigated the ergoregions in spacetimes corresponding to Kerr-Newman black holes

immersed in Melvin backgrounds. We showed that in the case q 6= amB the ergoregion

extends to infinity near the axis of rotation. The special case q = amB was investigated

and we discovered that if we increase the magnetic field strength B from zero the initially

compact ergoregion expands slightly before contracting until it vanishes at Bcrit. Past Bcrit

the ergoregion expands (remaining compact) until B = Bmax, after which the ergoregion

extends to infinity.

We also studied the response of ΩH , the angular speed of the event horizon at the equator,

to changing the magnetic field strength, B. As B increases from zero ΩH increases slightly
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before decreasing to zero at Bcrit. It then becomes negative and keeps decreasing even as

the value of B surpasses Bmax. Thus, increasing B causes ΩH to change direction. A very

interesting result.

Therefore, we have shown that magnetised black hole spacetimes have compact ergoregions

if and only if q = amB and B < Bmax.
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APPENDIX A

CONSTRUCTING METRICS ON SU(n)

A.1. Construction of 1-forms

Given a Lie Group G with generators of the Lie-Algebra Ta any group element g ∈ G can

be expressed in terms of the generators and the parameters xa. That is there exist real

numbers xa such that

g = eix
aTa (A.1)

We then construct the object g−1dg which is left-invariant, that is for any constant element

a ∈ G the transformation g → a ◦ g (that is multiplication of all group elements g ∈ G by

a from the left) clearly leaves the object g−1dg unchanged since

g−1dg → (a ◦ g)−1d(a ◦ g) = g−1 ◦ a−1 ◦ a dg = g−1dg (A.2)

since a is a constant element and so its exterior derivative da = 0.

Analyzing the object g−1dg we observe

g−1dg = (eix
aTa)−1d(eix

bTb)

= (eix
aTa)−1eix

bTbd(ixcTc)

= iTcdx
c

(A.3)

where the third line comes from recognizing that the generators Tc are fixed for a given rep-

resentation of the Lie-Algebra and that the exterior derivative acts only on the parameters

xc.

It is now clear that the object g−1dg consists of a sum over 1-forms multiplied by generators

so that in general for any given representation of the Lie-Algebra one can construct 1-forms

σa by declaring

g−1dg = σa Ta . (A.4)
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A.2. Dimensionless Invariant Quantities

By dimensionless invariant quantities we mean mathematical objects constructed from the

metric (and constructs derived from it) which have no units (dimensionless) and which

are invariant under a change of basis. The idea being that if two metrics differ only by

a change of basis and/or by certain multiplicative scalar factors in their definitions then

both will give the same results when one calculates a dimensionless invariant quantity using

them.

Two common examples are

I1 = λd/2 V and I2 = RabcdR
abcd λ−2 , (A.5)

where Rab = λ gab, V =
√

(det g)σ1 ∧ σ2 ∧ ... ∧ σd is the volume of the space and d is the

dimension of the Lie group.

We will begin by proving that both these objects are dimensionless. Since we are working

with metrics let us define the units of length to be L so that [dx] = L, where [...] denotes

the units of an object. Since σa are 1-forms the must have units [σa] = L. Then from

ds2 = gab σ
aσb and the fact that clearly [ds] = L it follows that [gab] = 1 and since gab is

the inverse of the metric, it has inverse the units, and so [gab] = 1 as well. This means that

the act of raising or lowering an index does not change the units of an object and so we

need not worry about doing so when calculating units.

Now we simply work our way through the deriviation of the various objects of interest,

calculating units along the way. It is crucial to note that taking the exterior derivative of

an object doesn’t change its units that is [dA] = [A] in general.

dσc =
1

2
ccab σ

aσb ⇒ [ccab] = [σ]−1 = L−1

ωab =
1

2
(cabc + cacb + ccba)σ

c ⇒ [ωab] = [cabc] [σc] = [cabc]× L = 1

Θa
b = dωab + ωac ∧ ωcb ⇒ [Θa

b] = [ωab]
2 = 1

Θa
b = Rabcdσ

cσd ⇒ [Rabcd] = [Θa
b] [σ]−2 = L−2

Rab = Rcacb ⇒ [Rab] = [Rabcd] = L−2

Rab = λ gab ⇒ [λ] = [Rab] [gab]
−1 = L−2

(A.6)
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Therefore

[I1] = [λ]d/2 [V ]

= (L−2)d/2 [
√

(det g)σ1 ∧ σ2 ∧ ... ∧ σd]

= L−d
√

[det g] [σ]d

= L−d ×
√

1× Ld

= 1

(A.7)

and
[I2] = [Rabcd] [Rabcd] [λ]−2

= L−2 × L−2 × (L−2)−2

= 1 ,

(A.8)

proving that both quantities are dimensionless.

We next prove that the quantities are invariant under a change of basis. Since the metrics

are based upon 1-forms (2.2), by a change of basis we mean a linear transformation of the

1-forms which we characterize by

σ′a = Λab σ
b . (A.9)

The inverse transformation is given by σa = Λb
a σ′b where ΛacΛb

c = δab . When transforming

from the un-primed coordinates to primed coordinates (that is performing a change of basis)

the Λab transform raises indices and the Λa
b transform lowers them. We are now set to

study how I1 and I2 transform under a change of basis.

R′ab = λ′ g′ab

⇒ Λa
cΛb

dRcd = λ′ Λa
cΛb

d gcd

⇒ Rcd = λ′ gcd

⇒ λ′ = λ ,

(A.10)

meaning λ is invariant under a change of basis.

In the transformed basis (primed) we have

I ′1 = λ′d/2 V ′

= λd/2
√

(det g′)σ′1 ∧ σ′2 ∧ ... ∧ σ′d .
(A.11)

Since g is the matrix corresponding to the metric gab it follows from g′ab = Λa
cΛb

d gcd that
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in matrix form we have g′ = Λ−1 g (Λ−1)T so that from (A.11)

I ′1 = λd/2
√

(det Λ−1 g (Λ−1)T )σ′1 ∧ σ′2 ∧ ... ∧ σ′d

= λd/2
√

(det Λ−1) (det g) (det(Λ−1)T ))σ′1 ∧ σ′2 ∧ ... ∧ σ′d .
(A.12)

But in general for a matrix A, detAT = detA so

I ′1 = λd/2
√

(det g)(det Λ−1)σ′1 ∧ σ′2 ∧ ... ∧ σ′d

= λd/2
√

(det g)(det Λ−1) Λ1
i1σ

i1 ∧ Λ2
i2σ

i2 ∧ ... ∧ Λdidσ
d .

(A.13)

We note that the wedge-product is an inherently anti-symmetric construct and so no σa

can be repeated in the wedge-product in the last line of (A.13). Λ1
i1σ

i1 = Λ1
1σ

1 +Λ1
2σ

2 +

... + Λ1
dσ

d and so when we take the wedge-product the only non-vanishing terms will be

permutations of σ1 ∧ σ2 ∧ ... ∧ σd. When we collect all of these terms and transform all of

the permutations to σ1 ∧σ2 ∧ ...∧σd (by multiplying by appropriate factors of −1) we will

end up with a coefficient that will consist of a sum over products of Λab with the particular

feature that every term in the sum will have each index appearing only once in the upper

indices and only once in the lower indices. In fact a little thought shows that the coefficient

will be exactly equal to

det Λ =

∣∣∣∣∣∣∣∣∣∣
Λ1

1 Λ1
2 · · · Λ1

d

Λ2
1 Λ2

2 · · · Λ2
d

...
...

. . .
...

Λd1 Λd2 · · · Λdd

∣∣∣∣∣∣∣∣∣∣
. (A.14)

The rules governing the calculation of the determinant exactly mirror the constraints im-

posed by the wedge-product, including the factors of −1 that come from permutations of

the 1-forms in the wedge-product. This then results in

⇒ I ′1 = λd/2
√

(det g) (det Λ−1)(det Λ)σ1 ∧ σ2 ∧ ... ∧ σd

= λd/2
√

(det g)σ1 ∧ σ2 ∧ ... ∧ σd

= I1 ,

thus proving that I1 is invariant under a change of basis.

The proof for I2 is much simpler since RabcdR
abcd is clearly invariant, being a scalar, that
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is a tensor of rank 0. Thus
I ′2 = λ′−2R′abcdR

′abcd

= λ−2RabcdR
abcd

= I2

(A.15)

Therefore both I1 and I2 are dimensionless invariant quantities by virtue of their construc-

tion.

A.3. Genesis of the Left-invariant 1-forms LA
B

In the defining representation the elements of SU(n) are n × n complex-valued matrices

which are unitary and have unit determinant. This in turn requires that the generators of

SU(n), that is the elements of the corresponding Lie Algebra su(n), be complex-valued,

Hermitian and traceless.

A.3.1. Construction and Properties of the TAB

While one can work out the curvature of a metric on SU(n) using a basis of Hermitian

traceless generators our calculations are considerably simplified if we instead start off using

a different basis. In the defining representation of su(n) the generators manifest as n ×
n complex-valued Hermitian traceless matrices which act upon Cn (the n-dimensional

vector space over the field of complex numbers). The generators can then be viewed as

operators (matrices) which act upon the vector space. Given this view one can define the

“generators/operators”

TAB ≡ δAB (A.16)

according to their action upon vectors in Cn [41].

This means, for example, that T 1
2 manifests in the 3-dimensional vector space for su(3)

as

T 1
2 =

0 1 0

0 0 0

0 0 0

 (A.17)

and maps the standard orthonormal unit vector ~e2 ∈ Cn to ~e1. It immediately follows from

the definition (A.16) that

TAB
†

= TBA (A.18)
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since the TAB are real-valued and so their Hermitian conjugate becomes a straight-forward

transpose.

Let vC be the (abstract) state corresponding to the unit-vector ~eC ∈ Cn then the action of

the generator/operator TAB upon the state vC is given by

TAB v
C = δCB v

A (A.19)

since TAB only maps vB to vA.

Since the states vA span the space upon which the generators TAB act we can calculate

the commutator of the generators by observing how it acts on an arbitrary state vE .[
TAB, T

C
D

]
vE = (TAB T

C
D − TCD TAB)vE

= TAB δ
E
D v

C − TCD δEB vA

= δED T
A
B v

C − δEB TCD vA

= δED δ
C
B v

A − δEB δAD vC

= δCB δ
E
D v

A − δAD δEB vC

,

at which point we use the converse of (A.16), so[
TAB, T

C
D

]
vE = δCB T

A
D v

E − δAD TCB vE

= (δCB T
A
D − δAD TCB) vE

⇒
[
TAB, T

C
D

]
= (δCB T

A
D − δAD TCB) .

(A.20)

The space of the generators Ta is spanned by the basis TAB with the caveat that the linear

combination TAA does not belong to this space since the generators of the Lie Algebra

su(n) are traceless matrices. In this fashion the n2 “generators” TAB can create the n2−1

traceless Hermitian generators Ta.

A.3.2. Construction and Properties of the LA
B

We can now construct the 1-forms LA
B associated with the “generators” TAB in the

standard way (A.4)

g−1dg = αTAB LA
B , (A.21)
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where α ∈ C is a normalization constant for the LA
B which we are free to choose since

the LA
B, so defined, span the space of 1-forms on the SU(n) manifold for any choice of

α 6= 0.

This construction results in the exterior derivative of the 1-forms LA
B taking an extremely

simple and elegant form. We begin with (A.21)

g−1dg = αTAB LA
B

⇒ d(g−1dg) = d(αTAB LA
B)

⇒ −g−2dg ∧ dg + g−1d2g = αTAB dLA
B

⇒ −g−1dg ∧ g−1dg = αTAB dLA
B

(A.22)

where to get from the 2nd to the 3rd line we used the fact that the TAB are constants and

so dTAB = 0 while the LA
B being 1-forms do have exterior derivatives. To get from the 3rd

to the 4th line we used the fact that in general taking the exterior derivative twice makes

a term vanish so d2g = 0. We continue by substituting in (A.21) so that

−(αTCDLC
D) ∧ (αTEFLE

F ) = αTAB dLA
B

⇒ −αTCD TEF LCD ∧ LEF = TAB dLA
B .

Since the wedge-product LC
D ∧ LEF is inherently anti-symmetric it samples out just the

anti-symmetric part of the term TCD T
E
F which corresponds to the anti-commutator,

so

TAB dLA
B = −1

2
α
[
TCD, T

E
F

]
LC

D ∧ LEF .

We now make use of the expression for the commutator given in (A.20) to get

TAB dLA
B = −1

2
α (δED T

C
F − δCF TED)LC

D ∧ LEF .
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We use delta functions to artificially introduce TAB on the RHS, giving us

TAB dLA
B = −1

2
α (δED δ

C
A δ

B
F T

A
B − δCF δEA δBD TAB)LC

D ∧ LEF

= −1

2
αTAB(δED δ

C
A δ

B
F − δCF δEA δBD)LC

D ∧ LEF

⇒ dLA
B = −1

2
α(δED δ

C
A δ

B
F − δCF δEA δBD)LC

D ∧ LEF

= −1

2
α (LA

D ∧ LDB − LCB ∧ LAC)

= −1

2
α (LA

C ∧ LCB − LCB ∧ LAC)

= −1

2
α (LA

C ∧ LCB + LA
C ∧ LCB)

⇒ dLA
B = −αLAC ∧ LCB .

(A.23)

Since we are free to choose, we set α = e−i
π
2 , which gives us the conventional form

dLA
B = iLA

C ∧ LCB . (A.24)

A.3.3. Construction of Traceless Hermitian Generators

The TAB we have been working with so far are not Hermitian (A.18) but we can construct

traceless Hermitian generators from them via linear sums. This construction automatically

generates the associated 1-forms. For example let us create the Hermitian (and obviously

traceless) generators

T1 = T 1
2 + T 2

1 and T2 = i (T 1
2 − T 2

1) , (A.25)

with the obvious inverse transforms

T 1
2 =

1

2
(T1 − iT2) and T 2

1 =
1

2
(T1 + iT2) . (A.26)

The generators T 1
2 and T 2

1, and the corresponding generators T1 and T2, span the same

subspace of the generators of su(n). Let us call the corresponding subspace of g−1dg, V ′,

then V ′ = α (T 1
2 L1

2 + T 2
1 L2

1). If we define L1 and L2 as the 1-forms corresponding to

T1 and T2 in the subspace V ′, we have V ′ = T1L1 + T2L2. We can easily calculate the
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relationship (transformation) between the 1-forms:

V ′ = α(T 1
2 L1

2 + T 2
1 L2

1)

=
1

2
α((T1 − iT2)L1

2 + (T1 + iT2)L2
1)

⇒ T1 L1 + T2 L2 =
1

2
α (T1 (L1

2 + L2
1) + T2 (−i L1

2 + i L2
1)) .

It is clear by comparing the two sides and by realizing that the normalization of the 1-forms

is irrelevant that the relationship (transformation) between the 1-forms, dual to (A.25),

is

L1 = L1
2 + L2

1 and L2 = −i (L1
2 − L2

1) . (A.27)

Note how the transformations for the 1-forms Li are the complex conjugate of the trans-

formations for the Ti. Thus, rather than creating linear sums of the TAB, which are

Hermitian, and then calculating the corresponding linear sums of the LA
B one can directly

create “Hermitian” sums of the LA
B which are guaranteed to correspond to Hermitian

generators.

The exterior derivative of these constructed “Hermitian” 1-forms can be calculated by

applying (A.24) to the constituent LA
B.

A.3.4. Construction of Diagonal Traceless Hermitian Generators

(A.25) gives the construction of Hermitian Generators from the off-diagonal TAB. It re-

mains to construct the traceless diagonal generators K ′i (n − 1 in number) from the n

diagonal TAA. The standard construction involves, for any 1 ≤ p < n, a diagonal matrix

with the first p diagonal entries being 1, the next entry being −p and the remaining en-

tries being 0. These matrices are traceless by construction. In addition the matrices are

orthogonal under taking the trace after multiplying the matrices together. The next step

is to (ortho-)normalize them such that

tr(K ′iK
′
j) = δij , (A.28)

which simply involves dividing each matrix by the square-root of the trace of the square

of the matrix.

For instance for n = 4 we have, by this construction, the following traceless Hermitian
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matrices:

1√
2


1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

 1√
6


1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0

 1√
12


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3

 (A.29)

If we write down these newly constructed matrices in terms of the diagonal LA
B we get

the matrix Q and its action on ~l as laid down in (2.10).

A.3.5. Symmetrization of the Diagonal Traceless Hermitian Generators

The construction we have come up with so far in Appendix A.3.4, although traceless and

hermitian as well as orthonormal, is not symmetric with respect to the diagonal LA
B; that

is the matrices (generators) we have constructed do not have symmetric contribution from

the diagonal LA
B. In particular some of the matrices have no contribution from some of

the diagonal LA
B at all.

For the sake of the algorithm we will be employing we wish to have all the diagonal gener-

ators on a roughly symmetric footing with respect to the diagonal LA
B. To achieve this we

implement a mixing scheme for the generators constructed in A.3.4. Since these generators

form an orthonormal set with respect to taking the trace over multiplication (A.28) we

come up with the mixing scheme by studying the transformation of one orthonormal basis

over Rn−1 to another.

It can be demonstrated that perfectly symmetric mixing is only possible when the number

of objects/dimensions are a power of 2. In view of this we use a different scheme, one

which mixes the generators, not perfectly, but enough to suffice. The scheme is based on

the following manipulation of orthonormal basis vectors to construct a new basis.

Let the original orthonormal basis over RN be x̂i (obeying x̂i . x̂j = δij). We define â =
1√
N

∑N
i=1 x̂i. In the x̂i basis the unit vector â takes the form â = 1√

N
(1, 1, ..., 1). By

definition â has equal contributions from each of the x̂i as demonstrated by

x̂i . â = x̂i .
1√
N

N∑
j=1

x̂j =
1√
N

N∑
j=1

x̂i . x̂j =
1√
N

N∑
j=1

δij =
1√
N
≡ A . (A.30)
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We calculate the part of x̂i perpendicular to â,

b̂i ≡ x̂i − (x̂i . â)â = x̂i −Aâ . (A.31)

We define the new basis vectors as

ŷi ≡ Aâ− b̂i = Aâ− (x̂i −Aâ) = 2Aâ− x̂i , (A.32)

which simply corresponds to taking the part of xi perpendicular to â and flipping it around.

The ŷi have the following properties

ŷi . ŷj = (2Aâ− x̂i) . (2Aâ− x̂j) = 4A2 − 2A2 − 2A2 + x̂ix̂j = δij ,

ŷi . x̂j = (2Aâ− x̂i) . x̂j = 2A2 − δij =
2

N
− δij .

(A.33)

By studying how the yi relate to the xj we can reconstruct the transformation matrix that

maps the xj basis vectors to the yi,
2
N − 1 2

N · · · 2
N

2
N

2
N − 1 · · · 2

N
...

...
. . .

...
2
N · · · 2

N
2
N − 1

 . (A.34)

Note how each ŷi has symmetric contributions from every xj where j 6= i and an asymmet-

ric contribution from xi itself. In addition the mixing becomes weak for large N . However

this implementation suffices for the algorithm we are choosing to implement. This trans-

formation matrix motivates the top-left (n−1)×(n−1) sub-matrix of the matrix P defined

in (2.11).

The transformations described in this section and the previous one are both invertible, an

invaluable property when it comes to the implementation of the algorithm.

A.4. Example of Decomposition Scheme (Scheme 2)

Let n = 5 and p = 2 (q = 3). We construct the SU(2) × SU(3) ⊂ SU(5) decomposition

scheme. The 52−1 = 24 1-forms of SU(5) divided in to the 4 classes of Scheme 2 are given

as follows.

The Class 1 generators (analogous to the generators for SU(2) and 22 − 1 = 3 in number)
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constructed from La
b where a 6= b ∈ {1, 2} are

K1 = L1
2 + L2

1

K2 = i(L1
2 − L2

1)

K3 = L1
1 − L2

2 .

(A.35)

The Class 2 generators (analogous to the generators for SU(3) and 32 − 1 = 8 in number)

constructed from Lα
β where α 6= β ∈ {3, 4, 5} are

K4 = L3
4 + L4

3

K5 = L3
5 + L5

3

K6 = L4
5 + L5

4

K7 = i(L3
4 − L4

3)

K8 = i(L3
5 − L5

3)

K9 = i(L4
5 − L5

4)

K10 = (
1√
2

+
1√
6

)L3
3 + (− 1√

2
+

1√
6

)L4
4 − 2√

6
L5

5

K11 = (
1√
2
− 1√

6
)L3

3 − (
1√
2

+
1√
6

)L4
4 +

2√
6
L5

5 .

(A.36)

The Class 3 generators (2× 2× 3 = 12 in number) correspond to the off-diagonal LA
B and

are
K12 = L1

3 + L3
1

K13 = L1
4 + L4

1

K14 = L1
5 + L5

1

K15 = L2
3 + L3

2

K16 = L2
4 + L4

2

K17 = L2
5 + L5

2

(A.37)
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K18 = i(L1
3 + L3

1)

K19 = i(L1
4 + L4

1)

K20 = i(L1
5 + L5

1)

K21 = i(L2
3 + L3

2)

K22 = i(L2
4 + L4

2)

K23 = i(L2
5 + L5

2) .

(A.38)

The Class 4 generator (one in number) which institutes the mixing of diagonal elements of

both SU(2) and SU(3) is

K24 = 3 (L1
1 + L2

2)− 2 (L3
3 + L4

4 + L5
5) . (A.39)
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APPENDIX B

VISUALISING THE BIRKHOFF’S INVARIANT

To better understand the meaning of β note that β(f) is the longest length curve in the

foliation of S using level curves of f . If we consider the level curves f−1(c) as the spatial

configurations of an elastic loop of maximal length β(f), then the function f through its

level curves describes a specific way of passing said loop across the surface S.

It is clear that one is able to cleanly pass a flexible loop of length β(f) across S without

intersecting with the enclosed region if one follows the configurations described by f . By

varying the function f we sample the various ways of passing an elastic loop across the

surface S.

So β being the smallest of the β(f), which in turn are the largest length the hoop has

during each passage defined by f , gives the smallest hoop length which can still pass over

S without intersecting the interior. Thus β quantifies how compact the region enclosed by

the apparent horizon S is.

An example should clarify. Given a 2-sphere S with radius R and using the standard

spherical polar coordinates a particular foliation of S can be given by f(θ, φ) = cos(θ) in

which case f−1(c) corresponds to circles of latitude (constant θ) on S. For this particular

foliation the maximal length level curve occurs at θ = π/2 and corresponds to the equator.

And so β(f) = 2πR, the circumference of the equator. It turns out that this is the smallest

that β(f) can be for any f and so β = 2πR; as expected the Birkhoff’s invariant for the

2-sphere is the length of the great circles on it.

Included below are a few example foliations of a 2-sphere illustrated by Figures 6, 7

and 8.
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B.1. Example Foliations of the 2-sphere

Figure 6: Level curves of f(θ, φ) = cos(θ) for a 2-sphere.
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Figure 7: Level curves of x = c, y =
√

1− c2 cos(ψ), z =
√

1− c2sin(ψ) for a 2-sphere.
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Figure 8: Level curves of z = cos(θ0)(1 + 0.2 sin(θ0) sin(5ψ)), x =
√

1− z2 cos(ψ), y =√
1− z2 sin(ψ) for a 2-sphere.
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APPENDIX C

TOPOLOGY OF BLACK RINGS

C.1. Limitations on the Black Ring Parameters and Coordinates

It can be easily shown that the metric corresponding to the neutral singly rotating black ring

(3.6)[20] is Ricci-free, that it is a valid vacuum solution of the Einstein Field Equations.

This is possible without unduly restricting the various parameters and coordinates that

form part of the metric. However, there exist mathematical and physical requirements

which significantly limit the range of these parameters and coordinates.

To begin we look at G(x) = (1−x2)(1+νx). Since gxx ∼ 1
G(X) the physical requirement that

gxx > 0, so that x be a spatial coordinate (we want t to be the only time-like coordinate),

demands that G(x) > 0 over the range of x. This limits x to −1 ≤ x ≤ 1. Additionally,

this requires that 0 < ν < 1 so that G(x) has distinct roots and remains positive for

−1 ≤ x ≤ 1. (This requires that the “third” root of G(x) be less than −1).

To ensure that C(ν, λ) =

√
λ(λ− ν)

1 + λ

1− λ
is real we require λ > 0, λ ≥ ν and λ < 1.

Therefore, the dimensionless parameters λ and ν must lie in the range [20]

0 < ν ≤ λ < 1 . (C.1)

Since −1 ≤ x ≤ 1 and 0 < λ < 1 implies that F (x) = 1 +λx > 0; the physical requirement

that gtt < 0 (so that t be a time-like coordinate) requires F (y) < 1. This restricts y to

−∞ < y < −1.

Finally, avoiding conical singularities requires that φ and ψ be periodic, with the periods

calculated in Appendix C.4.

C.2. Topology of Black Rings

We begin by noting that t is the only time-like coordinate in the metric, the rest being

space-like. The parameter R appears only in the spatial components of the metric and

so clearly scales the spatial part of the metric. λ specifies the shape and ν the rotation

velocity of the ring [20].
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φ and ψ are angular variables with periodicity given by Appendix C.4. x is a latitudinal

coordinate, analogous to cos(θ) on S2. The hypersurface Σ (the spatial portion of the

entire metric, spanned by y, x, φ and ψ) can be split in to surfaces of constant y. Each

constant-y surface is topologically S1 × S2 spanned by ψ (S1) and, x and φ (S2).

The constant-y surfaces are nested like a Matryoshka doll, with the outermost surface

corresponding to y = −1. At x = −1 we lie on the outward portion of the S1 × S2 surface

while at x = 1 we lie on the inward portion closer to the axis of rotation. Spatial infinity

lies at y = −1, x = −1 while the axis of rotation corresponds to y = −1, x = 1.

As y increases from −∞ the surfaces shrink (in a nested fashion). At y = −1/ν, G(y =

−1/ν) = 0 and so 1/gyy = 0. This corresponds to the apparent horizon. Continuing

to decrease y gives surfaces that lie inside the horizon with a coordinate singularity at

y = −∞.

C.3. Conical Singularities

To understand conical singularities we start by studying the flat (Euclidean) metric on a

2D space in polar coordinates

ds2 = dx2 + dy2 = dr2 + r2dθ2 (θ ∈ [0, 2π] i.e. periodic with period 2π) . (C.2)

Surfaces of constant r are topologically S1. As r → 0 the circles limit to a single point but

the space remains (locally) flat, so the origin is not singular. This is related to the fact that

θ has period 2π. To understand why the period is crucial consider a related metric

ds2 = dr2 + β2r2dθ2 (θ ∈ [0, 2π]) . (C.3)

When β = 1 we get the original metric and the space is flat (non-singular) at r = 0 (the

origin). Consider the coordinate transformation φ = β θ, which gives us

θ ∈ [0, 2π] ⇒ φ ∈ [0, 2π β] , (C.4)

and

ds2 = dr2 + r2dφ2 , (C.5)
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so φ has period 2π β.

If β < 1 then the period of φ = βθ is 2πβ < 2π. Per usual, we identify the end-points of

the angular domain, φ = 0 and φ = 2πβ. Since β < 1 this is equivalent to cutting a slice

out of a disc and pasting the cut edges together. The resulting space is topologically a

cone. Consequently, this creates a “conical singularity” at r = 0, the tip of the cone. The

singularity (locally non-flat region) at the tip of any conical surface is a general feature of

the cone.

Therefore, for an arbitrary metric of the form ds2 = dr2 + r2dθ2, if θ does not have period

2π the space will have a conical singularity at r = 0. Imposing the correct periodicity

on the relevant (angular) variable is a means of avoiding conical singularities at the point

where the angular component of the metric goes to zero (gθθ → 0).

C.4. Conical Singularities in Black Rings

We consider the revised metric (3.6). Let us begin by studying the φ variable. gφφ is a

function of x and y alone. Since the metric is independent of φ and φ happens to be a

spatial coordinate, intuition suggests that φ is an angular coordinate and x is a latitudinal

coordinate (analogous to cos θ on S2); the two spanning a topologically S2 subspace. This

immediately suggests the possibility of a conical singularity. We focus on the x - φ sub-

metric
R2

(x− y)2
F (x)

[
dx2

G(x)
+
G(x)

F (x)
dφ2

]
. (C.6)

The common factor of R2

(x−y)2
F (x) can be safely ignored as a scaling factor (since it is finite

for the range of x and y). G(x = −1) = 0 so we investigate the possible conical singularity

at x = −1. We ignore the scaling factor and focus on

dŝ2 =
dx2

G(x)
+
G(x)

F (x)
dφ2 . (C.7)

We define x ≡ −1 + ρ and study the sub-metric (C.7) in the limit ρ → 0+. In this

limit

G(x) = G(−1 + ρ) ≈ G(−1) + ρG′(−1) +O(ρ2) = ρG′(−1) , (C.8)

where G′(x) = d
dxG(x) and we made use of G(−1) = 0.
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Similarly

F (x) = F (−1 + ρ) ≈ F (−1) , (C.9)

since F (−1) >> ρF ′(−1) in the limit ρ→ 0+. Finally we note that x = −1 +ρ =⇒ dx =

dρ. We can now express (C.7) in terms of the coordinate ρ as

dŝ2 =
1

ρG′(−1)
dρ2 +

ρG′(−1)

F (−1)
dφ2 =

1

G′(−1)

[
1

ρ
dρ2 +

ρG′(−1)2

F (−1)
dφ2

]
. (C.10)

We make the transformation ρ = rα

1

ρ
dρ2 =

1

rα
(α rα−1dr)2 = α2rα−2 dr2 , (C.11)

and choose α = 2 so that 1
ρdρ

2 ∼ dr2. This results in

dŝ2 =
4

G′(−1)

[
dr2 +

G′(−1)2

4F (−1)
r2 dφ2

]
. (C.12)

Note that requiring 1
ρdρ

2 ∼ dr2 automatically gives us gφφ ∼ r2. This suggests that the x

- φ subspace is topologically like a pole of S2 at x = −1. We once again ignore the scaling

factor 4
G′(−1) and focus on

dŝ2 = dr2 +
G′(−1)2

4F (−1)
r2dφ2 . (C.13)

This takes the form ds2 = dr2 + r2dθ2 with

θ ≡ G′(−1)

2
√
F (−1)

φ ⇒ ∆θ =
G′(−1)

2
√
F (−1)

∆φ . (C.14)

To avoid a conical singularity at r = 0 we must explicitly impose the periodicity

G′(−1)

2
√
F (−1)

∆φ = 2π ⇒ ∆φ =
4π
√
F (−1)

G′(−1)
= 2π

√
1− λ

1− ν
. (C.15)

A similar calculation for the y - ψ sub-metric at y = −1 requires

∆ψ = ∆φ = 2π

√
1− λ

1− ν
. (C.16)
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And again, the x - φ sub-metric at x = 1 gives us

∆φ = 2π

√
1 + λ

1 + ν
. (C.17)

Reconciling (C.16) and (C.17) requires

λ =
2ν

1 + ν2
. (C.18)

So the requirement that the black ring (neutral single rotating) metric be free of conical

singularities shrinks the parameter space by requiring that λ be a function of ν.
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APPENDIX D

MAGNETISED KERR-NEWMAN METRIC

The construction of the magnetised Kerr-Newman metric, as pertains to this Dissertation,

was performed primarily by Gibbons3 and Pope4.

The magnetised Kerr-Newman metric describes the spacetime corresponding to a charged

rotating black hole suspended in an ambient magnetic field. Its construction follows.

We start with the Kerr-Newman metric describing a rotating black hole carrying an electric

charge q and magnetic charge p :

dŝ2
4 = −fdt2 +R2

(dr2

∆
+ dθ2

)
+

Σ sin2 θ

R2
(dφ− ω̄dt)2 ,

A = Φ̄0 dt+ Φ̄3 (dφ− ω̄dt) ,

(D.1)

where

R2 = r2 + a2 cos2 θ , ∆ = (r2 + a2)− 2mr + q2 + p2 ,

ω̄ =
a(2mr − q2 − p2)

Σ
, f =

R2∆

Σ
, Σ = (r2 + a2)2 − a2∆ sin2 θ ,

(D.2)

and

Φ̄0 =
2qr(r2 + a2)

Σ
+

2ap∆ cos θ

Σ
,

Φ̄3 = −2aqr sin2 θ

R2
− 2p(r2 + a2) cos θ

R2
.

(D.3)

To magnetise this solution we apply an SU(2, 1) transformation that generates magnetised

3G. W. Gibbons, DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road,
Cambridge CB3 OWA, UK

4C. N. Pope, George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,
Texas A&M University, College Station, TX 77843, USA
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solutions from non-magnetised ones

U =


1 0 0

B√
2

1 0

B2

4
B√

2
1

 . (D.4)

Applying the transformation gives us the magnetised Kerr-Newman solution

dŝ2 = H

[
−fdt2 +R2

(
dr2

∆
+ dθ2

)]
+

Σ sin2 θ

HR2
(dφ− ωdt)2 ,

A = Φ0dt+ Φ3(dφ− ωdt) ,

(D.5)

where

H = 1 +
H(1)B +H(2)B

2 +H(3)B
3 +H(4)B

4

R2
, (D.6)

with

H(1) = − 2aqr sin2 θ − 2p(r2 + a2) cos θ ,

H(2) =
1

2

[
(r2 + a2)2 − a2∆ sin2 θ

]
+

3

2
q̃2(a2 + r2 cos2 θ) ,

H(3) = − pa2∆ sin2 θ cos θ +
qa∆

r
[r2(3− cos2 θ) cos2 θ + a2(1 + cos2 θ)]−

aq(r2 + a2)2(1 + cos2 θ)

2r

− 1
2
p(r4 − a4) sin2 θ cos θ −

qq̃2a[(2r2 + a2) cos2 θ + a2]

2r
− 1

2
pq̃2(r2 + a2) cos3 θ ,

H(4) = 1
16

(r2 + a2)2R2 sin4 θ + 1
4
ma2r(r2 + a2) sin6 θ + 1

4
ma2q̃2r(cos2 θ − 5) sin2 θ cos2 θ

+ 1
4
m2a2[r2(cos2 θ − 3)2 cos2 θ + a2(1 + cos2 θ)2]

+ 1
8
q̃2(r2 + a2)(r2 + a2 + a2 cos2 θ) sin2 θ cos2 θ + 1

16
q̃4[r2 cos2 θ + a2(1 + sin2 θ)2] cos2 θ ,

(D.7)

and we have defined

q̃2 = q2 + p2 . (D.8)

Finally ω is given by

ω =
(2mr − q̃2)a+ ω(1)B + ω(2)B

2 + ω(3)B
3 + ω(4)B

4

Σ
, (D.9)
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where

ω(1) = 2qr(r2 + a2) + 2ap∆ cos θ ,

ω(2) = − 3
2
aq̃2(r2 + a2 + ∆ cos2 θ) ,

ω(3) = − 4qm2a2r + 1
2
apq̃4 cos3 θ + 1

2
qr(r2 + a2)[r2 − a2 + (r2 + 3a2) cos2 θ]

+ 1
2
ap(r2 + a2)[3r2 + a2 − (r2 − a2) cos2 θ] cos θ − 1

2
qq̃2r[(r2 + 3a2) cos2 θ − 2a2]

+ 1
2
apq̃2[3r2 + a2 + 2a2 cos2 θ] cos θ + amq̃2(2aq − pr cos3 θ)

− qm[r4 − a4 + r2(r2 + 3a2) sin2 θ]− apmr[2R2 + (r2 + a2) sin2 θ] ,

ω(4) = 1
2
a3m3r(3 + cos4 θ)− 1

16
aq̃6 cos4 θ − 1

8
aq̃4[r2(2 + sin2 θ) cos2 θ + a2(1 + cos2 θ)]

+ 1
16
aq̃2(r2 + a2)[r2(1− 6 cos2 θ + 3 cos4 θ)− a2(1 + cos4 θ)]− 1

4
a3m2q̃2(3 + cos4 θ)

+ 1
4
am2[r4(3− 6 cos2 θ + cos4 θ) + 2a2r2(3 sin2 θ − 2 cos4 θ)− a4(1 + cos4 θ)]

+ 1
8
amq̃4r cos4 θ + 1

4
amq̃2r[2r2(3− cos2 θ) cos2 θ − a2(1− 3 cos2 θ − 2 cos4 θ)]

+ 1
8
amr(r2 + a2)[r2(3 + 6 cos2 θ − cos4 θ)− a2(1− 6 cos2 θ − 3 cos4 θ)] .

(D.10)
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