Identification of changes needed in supermarket design for energy demand reduction

Frances Hill
Rodger Edwards
Geoff Levermore
School of Mechanical, Aerospace and Civil Engineering
University of Manchester

Frances Hill also teaches at the Centre for Alternative Technology, Machynlleth
Identification of changes needed in supermarket design for energy demand reduction

• Supermarket energy usage/loads
• Difference between design and predicted load
• Modelling route
• Sensitivity differences
• Implications
UK supermarkets

• Over 91,500 supermarkets in UK
• ~ 300 new stores each year
 – Many others refitted
• Use 3% of UK electricity – on site
• Account for 1% UK CO₂ emissions
Supermarkets: Reality is very different from design

Lighting demand is similar to design, cooling and heating demands are very different - Why?

Frances Hill October 2012

Components of energy use

- Heating fuel
- Electrical HVAC
- Lighting
- Services
- Catering
- Refrigeration
- Unsubmetered

SBEM: 46%
Not SBEM: 37%

Frances Hill October 2012
Design of supermarkets – heat gains and losses

Solar gain
Occupancy
Lighting
Radiant gain
Store temp 18-25C
Fabric
Ventilation
Radiant loss
Cooling
Appliances (mostly refrigeration)
Heating

To comply with SBEM

Frances Hill October 2012
re size elements to match figs from Excel R@Reg

Frances Hill, 23/03/2012
Heat transfers in a supermarket include **cold** refrigeration cabinets
FH2 needs an equipment arrow too, and resizing
Frances Hill, 23/03/2012
Model including non-SBEM (unregulated) energy use

- Spreadsheet in Excel
- Hourly weather data
- Store temperature range 18-25°C
- Profiled occupancy, 24 hours
- Include refrigeration
 - With doors,
 - opened according to occupancy
- But not catering or in-store bakery
 - Yet

Frances Hill October 2012
Building model

- Simple U value box
 - Plus (north) windows and aerogel rooflights
- Rooflight solar gains
- Radiant gains and losses to/from roof and rooflights
- Ventilation rate set values
 - Windcatchers explored
- No stratification
Lighting

• 900/400lux
• Daylight sensitive
• Light from rooflights evenly spread
• Lighting infinitely dimmable
 – No staging
 – No lower limit
• Heat from lights incorporated into thermal balance
Heating and cooling

• 2 boilers, one cooler
• Modelled as ON / OFF per iteration (15 mins)
• Hysteresis range 2°C at each end
 – 18-20°C for heating
 – 23-25°C for cooling

• Fans and pumps according to demand
Refrigeration

• Freezer cabinets with doors
• Chiller cabinets with doors
• Open chillers
• Fabric
• Ventilation
• Auxiliary power uses
Refrigeration COPs

- COPs on Carnot cycle model
 \[\frac{1}{2} \times \frac{\text{evaporation temperature}}{\text{evap-condenser temperature differential}} \]

- Condenser temperature dependent on ambient temperature, therefore

- COPs dependent on ambient temperature.
Refrigeration on SBEM

25 W/m²
Dehumidification

• Only if needed
• Humidity ratio maintained at or below 7.5 g/kg
 – Based on ambient humidity and anthropogenic water vapour
 – To maintain efficiency of evaporator coils in refrigeration cabinets
 – (may not be appropriate with mostly closed cabinets)
Optimisation - ventilation

SBEM

Refrigeration = cold

Frances Hill October 2012
Optimisation - insulation

SBEM

Refrigeration = cold
Optimisation – rooflight fraction

SBEM

125MWh/a

Refrigeration = cold

46MWh/a

Frances Hill October 2012
Optimising on insulation and ventilation

15% reduction = 280 MWh/a
Further research

• Modelling in EnergyPlus finds
 – Very similar comparison SBEM/COLD refrigeration
 – 25% potential savings from insulation, airtightness improvements suggested

• Stratification (present in case study store) may be responsible for further 10-25% heat losses
 – Which would not be an issue if cooling were needed as SBEM suggests
Conclusion

• In a supermarket, omission of refrigeration heat transfers on the retail floor is causing a major gap between operation energy use and design expectations

• Inclusion of refrigeration cabinet heat transfers at design stage could reduce energy demand by 25-40%

• Inclusion could also incentivise improvement in cabinet design, as improvements have effect on both refrigeration and heating demands