# Moving Towards Net-Zero Energy of Existing Building on Hot Climate

Dr. Ali Alajmi<sup>1</sup>, Dr. Adel Ghonaim<sup>2</sup>, and Dr. Hosny Abou-Ziyan<sup>1</sup>

<sup>1</sup>Department of Mechanical Engineering, College of Technological Studies <sup>2</sup>Department of Applied Science, College of Technological Studies

## Outline

- Background
- Introduction
- Studied Building Status and Energy Consumption
- Phase-I: Energy Conservation at Minimum Cost
- Phase-II: Energy Conservation with Investment
- Phase-III: Building Integrated Photovoltaic (BIPV)
- Concluding Remarks
- Conclusions.

## Outline

#### • Background

- Introduction
- Studied Building Status and Energy Consumption
- Phase-I: Energy Conservation at Minimum Cost
- Phase-II: Energy Conservation with Investment
- Phase-III: Building Integrated Photovoltaic (BIPV)
- Concluding Remarks
- Conclusions.

## Background

- Overview of the country consumption per capita
- Overview of the country CO<sub>2</sub> per capita
- Definition of Net-Zero Energy Building (NZEB)
- Definition of near Net-Zero Energy Building (nNZEB)
- Why NZEB of existing building?

## **Energy Consumption: Annual per capita Units: kWh per person**



## Carbon Emissions: Annual per capita Units: Metric tons of CO2 per person



## Outline

- Background
- Introduction
- Studied Building Status and Energy Consumption
- Phase-I: Energy Conservation at Minimum Cost
- Phase-II: Energy Conservation with Investment
- Phase-III: Building Integrated Photovoltaic (BIPV)
- Concluding Remarks
- Conclusions.

## Net-Zero or near Net-Zero Energy Building

> Net-Zero Energy Buildings (NZEBs) are:  $E_{Annual Renewable} = E_{Annual consumed}$ 

# ➢ It is called near Net-Zero Energy Building (nNZEB) if: $E_{Annual Renewable} ≈ E_{Annual consumed}$

European countries has issued a legislation that public buildings have to be nearly zero energy building by the end of year 2018

ASHRAE assign a target of net zero energy buildings fulfillment by 2031

Q

## Why NZEB of Existing Buildings?

## 75% to 80% of All Buildings That will Exist in 2030

**Exist Today** 

## Outline

- Background
- Introduction
- Studied Building Status and Energy Consumption
- Phase-I: Energy Conservation at Minimum Cost
- Phase-II: Energy Conservation with Investment
- Phase-III: Building Integrated Photovoltaic (BIPV)
- Concluding Remarks
- Conclusions.

## Studied Building Status and Energy Consumption

- A two-story institutional facility, that houses the Mechanical Engineering Department (MED), College of Technological Studies(CTS)
- The total floor area of 7020 square meters (offices, classrooms, laboratories, and workshops)



## **HVAC** Description

4 air-cooled centrifugal chillers with capacity of 429 kW (122 ton) each.
14 CV AHUs for offices, class rooms, and laboratories

laboratories.

> 29 FCUs for the workshops

## First and Ground Floors Layout

#### First



#### Ground



## Outline

- Background
- Introduction
- Studied Building Status and Energy Consumption
- Phase-I: Energy Conservation at Minimum Cost
- Phase-II: Energy Conservation with Investment
- Phase-III: Building Integrated Photovoltaic (BIPV)
- Concluding Remarks
- Conclusions.

## **Phase-I: Energy Conservation at Minimum Cost**

#### Level I – Walk-Through Assessment



# Level I – Walk-Through Assessment ...cont.



#### ESL-IC-12-10-45a

# Level I – Walk-Through Assessment ...cont.



Proceedings of the Twelfth International Conference for Enhanced Building Operations, Manchester, UK, October 23-26, 2012

# Level I – Walk-Through Assessment ...cont.



Proceedings of the Twelfth International Conference for Enhanced Building Operations, Manchester, UK, October 23-26, 2012

# Level I – Walk-Through Assessment ...cont.



## Measuring Data



Days of the Week

## Survey Outcomes



## Measuring Data



## **Annual Building Consumption**

#### **Building Consumptions Vs. Benchmarking**

| Actual B<br>Energy Cor<br>(kWh/m | Building<br>nsumption<br>n <sup>2</sup> .year) | Typical<br>Energy Co<br>(kWh/r | Building<br>onsumption<br>n <sup>2</sup> .year)* |
|----------------------------------|------------------------------------------------|--------------------------------|--------------------------------------------------|
| 2008                             | 2009                                           | 2008                           | 2009                                             |
| 599                              | 622                                            | 295                            | 327                                              |

\*Normalized to be similar to the actual building specification.

## **Annual Building Consumption**



## **Energy Conservation with Minimum Cost**

#### **Table 1: Energy conservation with minimum cost**

(% energy savings are based on the average building consumption of 4.44 GWh).

| No. | <b>Recommended</b> Actions  | Energy saving<br>GWh/year | % energy<br>saving |
|-----|-----------------------------|---------------------------|--------------------|
| 1   | Schedule lighting operation | 0.10                      | 2.3                |
| 2   | Schedule office equipment   | 0.01                      | 0.2                |
| 3   | Reduce infiltration         | 0.18                      | 4. 1               |
|     | Total                       | 0.29                      | 6.5                |

## **Building Energy Consumption**



## Average energy consumption during full day for the different operation scenarios



## Energy consumption during day time and night time for chilled water plant



## **Proposed water distribution system for chilled water plant**



## Additional Energy Conservation with Minimum Cost

Table 3: Summary of chiller energy saving for different proposed strategies(% energy savings are based on the chiller consumption of 1900 MWh).

| Chillers Operation                                            | Energy Saving<br>MWh/year | % Energy<br>Saving |
|---------------------------------------------------------------|---------------------------|--------------------|
| Select the best operation scenario                            | 84.5                      | 4.5                |
| Switch off chillers during non-occupied period (overnight)    | 250.1                     | 13.2               |
| Reduce chillers capacity by half during vacation              | 53.7                      | 2.8                |
| Reduce pumps capacity by half                                 | 19.8                      | 1.0                |
| Total (% energy savings with respect to chiller consumption)  | <i>408.1</i>              | 21.5               |
| Total (% energy savings with respect to building consumption) | 408.1                     | 9.2                |

## Outline

- Background
- Introduction
- Studied Building Status and Energy Consumption
- Phase-I: Energy Conservation at Minimum Cost
- Phase-II: Energy Conservation with Investment
- Phase-III: Building Integrated Photovoltaic (BIPV)
- Concluding Remarks
- Conclusions.

## **Phase-II: Energy Conservation with Investment**

## Monitoring and Analysis of the Building Performance





## **Phase-II: Energy Conservation with Investment**

#### Mini-Data loggers Locations



## **Phase-II: Energy Conservation with Investment**

#### **AHU** Variables Measurements



## Data Analysis



Proceedings of the Twelfth International Conference for Enhanced Building Operations, Manchester, UK, October 23-26, 2012

35

## Upgrade the HVAC System Control











## **Energy Conservation with Investment**

 Table 2: Energy conservation with investment.

(% energy savings are based on the average building consumption of 4.44 GWh).

| No. | <b>Recommendations</b>              | Energy saving<br>GWh/ year | % energy<br>saving |
|-----|-------------------------------------|----------------------------|--------------------|
| 1   | Control Indoor Temperature to 24 °C | 1.040                      | 23.4               |
| 2   | Set-back Temperature to 28 °C       | 0.250                      | 5.6                |
| 3   | Turn off HVAC during weekends       | 0.590                      | <i>13.3</i>        |
| 4   | Proper maintenance and operation    | 0.056                      | <i>1.3</i>         |
| 5   | Efficient lighting (T5)             | 0.100                      | 2. 3               |
| 6   | Increase roof insulation            | 0.014                      | 0.3                |
|     | Total                               | 2.050                      | 46.2               |

## **Phase I&II Energy Consumption Reduction**



## Phase I&II Cost Analysis

|                              |                                                                                                                                                             | Savings Analysis                                   |                                                         |                                     |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|-------------------------------------|
|                              |                                                                                                                                                             | Annual<br>cost<br>savings<br>(USD/yr) <sup>1</sup> | Cost of<br>energy<br>audit team<br>or retrofit<br>(USD) | Simple<br>payback<br>period<br>(yr) |
| tction<br>e-I                | Lighting schedule                                                                                                                                           | 13,408                                             |                                                         |                                     |
| red                          | Equipment schedule                                                                                                                                          | 1,190                                              | 18311                                                   | 0.5                                 |
| energy<br>in p               | Reduce infiltration (close doors)                                                                                                                           | 23,490                                             |                                                         |                                     |
| energy reduction in phase-II | Control indoor temperature                                                                                                                                  | 136,886                                            |                                                         |                                     |
|                              | Temperature setback to 28 °C                                                                                                                                | 33,660                                             | 109,869                                                 | 0.5                                 |
|                              | Turn off HVAC during weekends                                                                                                                               | 78,509                                             |                                                         |                                     |
|                              | Select the best operation scenario<br>Switch off chillers during non-<br>occupied period (overnight)<br>Reduce chillers capacity by half<br>during vacation | 4,896                                              | 5,250                                                   | 1.1                                 |
|                              | Reduce pumps capacity by half                                                                                                                               |                                                    |                                                         |                                     |
|                              | Efficient lightings (T5)                                                                                                                                    | 13,558                                             | 16,261                                                  | 1.2                                 |
|                              | Increase roof insulation by 2.5 cm                                                                                                                          | 1,680                                              | 7,325                                                   | 4.4                                 |
|                              | HVAC maintenance                                                                                                                                            | 7,336                                              | 10,071                                                  | 1.4                                 |

## Outline

- Background
- Introduction
- Studied Building Status and Energy Consumption
- Phase-I: Energy Conservation at Minimum Cost
- Phase-II: Energy Conservation with Investment
- Phase-III: Building Integrated Photovoltaic (BIPV)
- Concluding Remarks
- Conclusions.

## **Phase-III: Building Integrated Photovoltaic**

 Study the feasibility of using any of the renewable source of energy
 Analyze the building energy consumption profile
 Select the appropriate renewable type and capacity.



## Integrating PV on Existing Building

Analyze the different sections of energy consumption.

A Simulation program (DesignBuilder) has been used to predicted the hourly energy consumption.

## A Yearly Load Profile



## **PV** Annual Energy Generation



## **Building with the Integrated PV**



## Outline

- Background
- Introduction
- Studied Building Status and Energy Consumption
- Phase-I: Energy Conservation at Minimum Cost
- Phase-II: Energy Conservation with Investment
- Phase-III: Building Integrated Photovoltaic (BIPV)
- Concluding Remarks
- Conclusions.

## **Concluding Remarks**

- Implementation of phases I & II' recommendations yields reduction of annual consumption from 4.44 GWh to about 1.56 GWh in 2011 as recorded by the building meter.
- The EUI reduces from about 632 to 222 KWh/m<sup>2</sup> compared to:
  - ✓ 171 KWh/m<sup>2</sup>; EIA 2003, and
  - $\checkmark$  local practical limits (315 to 410 KWh/m<sup>2</sup>).
- Retrofitting the lighting system and operation strategies will save about 0.508 GWh which reduces the annual energy consumption to about 1.052 GWh (equivalent EUI of about 150 KWh/m<sup>2</sup>).

### Concluding Remarks ... cont.

- Replacing the existing reciprocating chillers will save more than half the current chillers consumption, i.e. 0.160 GWh.
- Improving the HVAC auxiliaries may lead to a considerable energy saving of about 0.1 GWh.
- The above items will lower the annual consumption to only 0.792 GWh.

## Concluding Remarks ... cont.

Integration of the PV modules in buildings results in annual energy generation of about 0.273 GWh.

- This left an annual energy required of about 0.519 GWh which should be supplied using conventional sources.
- The ongoing research on solar cells claims fast developing with respect to higher efficiency and lower cost. Nowadays, the laboratory scale solar cells reach efficiency up to 40% (Atwater, 2008).

### Concluding Remarks ... cont.

- Alternatively, with the current used PV efficiency, the area required to balance the power should be increased.
- In conclusion, the forgoing discussion indicates that the mid-size existing buildings can be converted into NZEBs or nNZEB and the decision may depend on the investment required for the conversion.
- Preliminary energy audit of the building results in an annual energy saving of about 290 MWh which is equivalent to 6.5% of the annual consumption.

## Outline

- Background
- Introduction
- Studied Building Status and Energy Consumption
- Phase-I: Energy Conservation at Minimum Cost
- Phase-II: Energy Conservation with Investment
- Phase-III: Building Integrated Photovoltaic (BIPV)
- Concluding Remarks
- Conclusions.

#### **Conclusion**

- Detailed energy conservation with reasonable investments yields an annual energy savings of about 2.458 GWh which is equivalent to about 55.4% of the annual building consumption
- Efficient operation strategies can reduce the energy consumption of the chillers by about 21.5% which is equivalent to 9.2% of the building energy consumption.
- Efficient energy conservation saves annual energy consumption of the building that is twelve times the energy generated by the PV modules

#### **Conclusion**

- The performance of BIPV systems is greatly influenced by the variation in both array slope and azimuth angle
- The integration of PV modules into the building produces about 27% of the building energy consumption and can cover the lighting and equipment load in the building
- The optimum BIPV can avoid CO<sub>2</sub> emission of about 160 tone/year

#### **Conclusion**

- Costs and efficiency of PV modules change dramatically and this will make BIPV systems costeffective in the near future.
- Nearly NZEB can be achieved in existing buildings
- The results of the present work should encourage governments for wide installation of solar energy systems to keep our environment healthy and clean.

