Integration of CC®, IAQ, and EM for an Optimum and Proactive Energy Performance at Alamo Colleges, San Antonio, Texas.

Norma L. Rangel, Stephen O’Neal, and Joseph T. Martinez; Energy Systems Laboratory

John W. Strybos
Alamo Colleges

12th International Conference for Enhanced Building Operations
October 24th, 2012. Manchester, UK.
Outline

- Alamo Colleges, San Antonio, TX.
- Continuous Commissioning® Measures
- Indoor Air Quality Efforts
- Energy Management
- Integration Tool: Alerts System
- Savings Analysis
- Return on Investment
San Antonio, Texas

There are 2391 operational hours used for “free cooling” in San Antonio, TX.
Integration of CC®, IAQ, and EM for an Optimum and Proactive Energy Performance at Alamo Colleges, Texas

Alamo Colleges: 4,539,334 sq.ft.

San Antonio College (SAC) 1925
1,591,739 ft².
31 Buildings
~ 20,000 students

Northeast Lakeview College (NLC) 2007
367,005 ft².
16 Buildings
~ 15,000 students

Northwest Vista College (NVC) 1995
587,996 ft².
12 Buildings
~ 6,000 students

Palo Alto College (PAC) 1985
571,342 ft².
24 Buildings
~ 8,000 students

St. Phillip’s College (SPC) 1898
MLK: 779,843 ft².
18 Buildings

SWC: 381,195 ft².
6 Buildings
Integration of CC®, IAQ, and EM for an Optimum and Proactive Energy Performance at Alamo Colleges, Texas

Outline

Alamo Colleges, San Antonio, TX.
Continuous Commissioning® Measures
Indoor Air Quality Efforts
Energy Management
Integration Tool: Alerts System
Savings Analysis
Return on Investment
Integration of CC®, IAQ, and EM for an Optimum and Proactive Energy Performance at Alamo Colleges, Texas

ESL – Alamo Colleges

Continuous Commissioning
Indoor Air Quality
Energy Management
Dashboard

AC-EM-IAQ Dashboard
Dashboard Energy Analysis Monthly Reports TDAT File Alerts
Continuous Commissioning®

- **Air Handler Optimization**
 - Occupied/unoccupied schedules
 - Supply air temperature reset schedule
 - Duct static pressure reset schedule
 - Economizer mode
 - Humidity control

- **Terminal Box Optimization**
 - Minimum flow setting
 - Air flow calibration/verification

- **Central Plant Optimization**
 - Chilled and hot water reset schedules
 - Chiller staging

Training of Facilities Personnel!
Integration of CC®, IAQ, and EM for an Optimum and Proactive Energy Performance at Alamo Colleges, Texas

ESL – Alamo Colleges

Continuous Commissioning

Indoor Air Quality

Energy Management

Dashboard

AC-EM-IAQ Dashboard

Energy Systems Laboratory

A Division of TEES: The Engineering Agency of the State of Texas

Indoor Air Quality (IAQ)

- Installation of IAQ sensors connected to the EMCS
- Monitoring of CO₂ levels, return air temperature and humidity
Integration of CC®, IAQ, and EM for an Optimum and Proactive Energy Performance at Alamo Colleges, Texas

ESL – Alamo Colleges

Continuous Commissioning

Indoor Air Quality

Energy Management

Dashboard

AC-EM-IAQ Dashboard

Energy Systems Laboratory
A Division of TEES: The Engineering Agency of the State of Texas
Energy Management

- Technical assistance
- Utility forecasting
- Sustainability and green initiatives

Call the ESL!

LEED certification,
ACUPCC reporting,
Texas Senate Bill 898
Energy Management

- Technical Assistance
- Utility forecasting
- Sustainability and Green initiatives
- Building Sub-metering
Campus Submetering

- Electric, water and gas meters are being installed in each building at every location.
- Set and monitor trend data for electric, gas and water consumption

Consumption in Palmetto Building at Northwest Vista College

Submetering Progress

- Gas
- Electric
- Thermal

NLC, NVC, SPC, SAC, PAC
Integration of CC®, IAQ, and EM for an Optimum and Proactive Energy Performance at Alamo Colleges, Texas

ESL – Alamo Colleges

Continuous Commissioning

Indoor Air Quality

Energy Management

Dashboard

AC-EM-IAQ Dashboard

Energy Systems Laboratory

A Division of TEES: The Engineering Agency of the State of Texas

Integration of CC®, IAQ, and EM for an Optimum and Proactive Energy Performance at Alamo Colleges, Texas

Dashboard

District online access: http://ac-em-iaq/

Energy Analysis
Integration of CC®, IAQ, and EM for an Optimum and Proactive Energy Performance at Alamo Colleges, Texas

Dashboard

District online access: http://ac-em-iaq/
Integration of CC®, IAQ, and EM for an Optimum and Proactive Energy Performance at Alamo Colleges, Texas

Dashboard

District online access: http://ac-em-iaq/
Integration of CC®, IAQ, and EM for an Optimum and Proactive Energy Performance at Alamo Colleges, Texas

Trend Data Analysis Tool Lite

![Trend Data Analysis Tool Lite](image)

Integration of CC®, IAQ, and EM for an Optimum and Proactive Energy Performance at Alamo Colleges, Texas

ESL – Alamo Colleges

Continuous Commissioning Indoor Air Quality Energy Management

Dashboard

AC-EM-IAQ Dashboard

Alerts
Alerts System: Air Handler Units

Read “CC keywords” at AHU Controller

- Pass: OAT < 65 °F
- Fail: Economizer mode enabled?

- Yes: Check CHWV & OAD operation
- No: Is dehumidification enabled?

Calculate ‘Reset SPStPt’ & ‘Reset DATStPt’

- Pass: Compare SP with SPStPt
- Fail: Compare DAT with DATStPt

Compare SP with SPStPt

- Greater: Check if VFD = 0 or VFD > 30
- Less: Check if VFD = 100

Compare DAT with DATStPt

- Greater: Check if CHWV = 0
- Less: Check if CHWV = 100

CC Keywords

OAT: Outside Air Temp.
DAT: Discharge Air Temp.
SP: Static Pressure
VFD: Variable Speed Drive
CHWV: Chilled Water Valve
StPt: Setpoint

alerts system: terminal units (undisclosed)

read “cc keywords” at tu controller

cc keywords:
- dmp: damper position
- space t: space temp.
- priflow: primary airflow
- h pos: reheat position

compare airflow with stpt
- if greater, check if damper is closed
 - yes → data A
 - no → data A
- if less, check if airflow is 2 cfm
 - yes → data A
 - no → check if damper is 100% open
 - yes → data A
 - no → data A

compare space t with stpt
- if greater, check if damper is 100% open
 - yes → data A
 - no → data A
- if less, check if reheat is enabled
 - yes → data A
 - no → data A
Integration of CC®, IAQ, and EM for an Optimum and Proactive Energy Performance at Alamo Colleges, Texas

Alerts

Detected Alerts in the past 48 Hours

<table>
<thead>
<tr>
<th>Campus</th>
<th>Controller</th>
<th>First Alert</th>
<th>Alert Package</th>
<th>Error</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVC</td>
<td>3112</td>
<td>10/18/2012 8:00:00 AM</td>
<td>SP > SP StPt</td>
<td>SP > SPSSPt however the fan is running above 40%. Current Fan Speed is at 100</td>
<td>44</td>
</tr>
<tr>
<td>NVC</td>
<td>3112</td>
<td>10/18/2012 8:45:00 AM</td>
<td>SP < SP StPt</td>
<td>The Fan does not appear to be on when SP < SPSSPt. Current Fan Speed is at 0</td>
<td>41</td>
</tr>
<tr>
<td>NVC</td>
<td>3112</td>
<td>10/19/2012 7:00:00 AM</td>
<td>SP > SP StPt</td>
<td>SP > SPSSPt however the fan is running above 40%. Current Fan Speed is at 100</td>
<td>5</td>
</tr>
</tbody>
</table>

Trends Falling to report in the past 48 Hours

<table>
<thead>
<tr>
<th>College</th>
<th>Trend Id</th>
<th>Name</th>
<th>Link</th>
<th>Station</th>
<th>Point Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northwest Vista</td>
<td>294</td>
<td>CT1.3 Act Speed</td>
<td>3</td>
<td>503063000 AO</td>
<td></td>
</tr>
<tr>
<td>Northwest Vista</td>
<td>2322</td>
<td>Manzanillo TU-1.4 Space T</td>
<td>3</td>
<td>503220407 AI</td>
<td></td>
</tr>
</tbody>
</table>

Trends Stuck at a Single Value

<table>
<thead>
<tr>
<th>College</th>
<th>Trend Id</th>
<th>Name</th>
<th>Link</th>
<th>Station</th>
<th>Point Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northwest Vista</td>
<td>104</td>
<td>Texas Persimm AHU-1 CHW Valve</td>
<td>3</td>
<td>503033101 AO</td>
<td></td>
</tr>
<tr>
<td>Northwest Vista</td>
<td>106</td>
<td>Texas Persimm AHU-1 DA Temp</td>
<td>3</td>
<td>503030001 AI</td>
<td></td>
</tr>
<tr>
<td>Northwest Vista</td>
<td>107</td>
<td>Texas Persimm AHU-1 OA Damper</td>
<td>3</td>
<td>503033103 AO</td>
<td></td>
</tr>
</tbody>
</table>
Future Work

- Disclosure of the terminal units engine
- Research and development of alarm systems for central plants
- Performance testing and evaluation
- Generation of work orders using dashboard and alarm systems.
- Facilities training and final delivery
Integration of CC®, IAQ, and EM for an Optimum and Proactive Energy Performance at Alamo Colleges, Texas

Outline

- Alamo Colleges, San Antonio, TX.
- Continuous Commissioning® Measures
- Indoor Air Quality Efforts
- Energy Management
- Integration Tool: Alerts System
- Savings Analysis
- Return on Investment
Alamo Colleges Energy Savings

<table>
<thead>
<tr>
<th>Items</th>
<th>Total Energy Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity Usage (MWh)</td>
<td>157,505</td>
</tr>
<tr>
<td>Electric Demand (kW)</td>
<td>243,686</td>
</tr>
<tr>
<td>Gas Use (MCF)</td>
<td>424,019</td>
</tr>
</tbody>
</table>

- Ele (MWh)
- Demand (kW)
- Gas (MCF)
Integration of CC®, IAQ, and EM for an Optimum and Proactive Energy Performance at Alamo Colleges, Texas

Annual Savings

Alamo Colleges Annual Savings

<table>
<thead>
<tr>
<th>Year</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 2003</td>
<td>$344,150</td>
</tr>
<tr>
<td>FY 2004</td>
<td>$408,621</td>
</tr>
<tr>
<td>FY 2005</td>
<td>$460,672</td>
</tr>
<tr>
<td>FY 2006</td>
<td>$987,449</td>
</tr>
<tr>
<td>FY 2007</td>
<td>$1,058,329</td>
</tr>
<tr>
<td>FY 2008</td>
<td>$999,325</td>
</tr>
<tr>
<td>FY 2009</td>
<td>$999,520</td>
</tr>
<tr>
<td>FY 2010</td>
<td>$1,239,093</td>
</tr>
<tr>
<td>FY 2011</td>
<td>$1,569,485</td>
</tr>
</tbody>
</table>

ESL-IC-12-10-24

Integration of CC®, IAQ, and EM for an Optimum and Proactive Energy Performance at Alamo Colleges, Texas

Cumulative Savings

Alamo Colleges Cumulative Savings

- Demand
- Electricity
- Gas
- Total

Millions

$9.0

$9.5

$9.0

$8.5

$8.0

$7.5

$7.0

$6.5

$6.0

$5.5

$5.0

$4.5

$4.0

$3.5

$3.0

$2.5

$2.0

$1.5

$1.0

$0.5

$0.0

May-02

Oct-02

Mar-03

Aug-03

Jan-04

Jun-04

Nov-04

Apr-05

Sep-05

Feb-06

Jul-06

Dec-06

May-07

Oct-07

Mar-08

Aug-08

Jan-09

Jun-09

Nov-09

Apr-10

Sep-10

Feb-11

Jul-11

Dec-11

May-12

Oct-12
Outline

- Alamo Colleges, San Antonio, TX.
- Continuous Commissioning® Measures
- Indoor Air Quality Efforts
- Energy Management
- Integration Tool: Alerts System
- Savings Analysis
- Return on Investment
The Return on Investment for fiscal year 2012:

\[ROI = \frac{(2012 \text{ Net Savings})}{\text{Total Project Investment}} \times 100 \]

\[ROI = \frac{2,189,485}{2,752,041} \times 100 \]

\[ROI = 80\% \]
Conclusions

The Dashboard Alerts tool is a set of algorithms based on a combination of CC® HVAC and IAQ principles that sends notifications and helps troubleshoot possible scenarios of improper performance.

Alamo Colleges are a model for educational institutions, and continue to exceed the community expectations in environmental responsibility, energy reduction, efficiency and sustainability.
Acknowledgments

Alamo Colleges

John W. Strybos
Associate Vice Chancellor of Facilities Operation and Construction Management
Facilities:
Superintendents, Facilities Foreman and HVAC Foreman

Energy Systems Laboratory

PI: Joseph Martinez, PCC.
Ian Nelson (PhD student)
Agnes Almeida (MSc student)
Ahmet Ugursal, PhD
Norma Rangel, PhD

Data Analysis:
Juan-Carlos Baltazar, PhD
Alaina Jones (PhD student)

Dashboard Admin:
Stephen O'Neal

Energy Management Control Systems

Schneider Electric
Johnson Controls
Thanks!

Questions?
Minimum Airflow

Air Flow (CFM)

Space Temperature (°F)

Before CC After CC

HHF: High Heating Flow CHF: Cooling High Flow
HLF: Heating Low Flow CLF: Cooling Low Flow

Academic FP-101 Reheat Valve Position (% Open)
Outside Air Temperature (°F)

Space Temperature Setpoints and Loads

Energy Conservation Code 503.2.4.2:
Maintain the temperature range or deadband of at least 5 °F
Resets Based on Outside Air Temperature

Supply air temperature reset schedule based on outside air temperature

Supply air static pressure reset schedule based on outside air temperature
Economizer Mode “Free Cooling”

- Economizer mode is enabled when the outside air temperature is below 65 °F
- There are 2391 operational hours used for “free cooling” San Antonio.
Humidity Control

Humidity sensors calibrated and verified
Implemented humidity control sequences

• Return air humidity is controlled by opening the chilled water valve
• Reheat may be needed to maintain space temperature
Terminal Box Optimization

- Control the space temperature with airflow and heating stages
- Series: Fan located in the same stream as the supply air
- Parallel: Fan is located parallel to the supply air stream
- CC® Measures:
 - Air flow verification/calibration
 - Minimum flow setting

Flow (CFM)

Space Temperature (°F)

- Before CC
- After CC

Symbols:
- HHF: High Heating Flow
- HLF: Low Heating Flow
- LHF: Low Heating Flow
- HCF: High Cooling Flow
- LCF: Low Cooling Flow
Central Plant Optimization

Chilled Water System

• Chilled and hot water reset schedules
• Cooling tower optimization
• Chiller Staging

Hot Water System

Condenser Water System
Alamo Colleges Energy Savings

<table>
<thead>
<tr>
<th>Items</th>
<th>Total Energy Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity Usage (MWh)</td>
<td>132,359</td>
</tr>
<tr>
<td>Electric Demand (kW)</td>
<td>173,113</td>
</tr>
<tr>
<td>Gas Use (MCF)</td>
<td>361,502</td>
</tr>
</tbody>
</table>

Alamo Colleges Annual Energy Savings

- **Ele (MWh)**
- **Demand (kW)**
- **Gas (MCF)**

The chart shows the annual energy savings from FY2003 to FY2011, indicating a significant reduction in energy consumption over the years.
FY2012 Investment and Savings

<table>
<thead>
<tr>
<th>Year</th>
<th>Project</th>
<th>Paid to TEES (cost)</th>
<th>Savings (return)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-2012</td>
<td>Work Order #10</td>
<td>$300,156.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cost for Energy Manager w/ Analysis Team</td>
<td>$</td>
<td>$200,000.00</td>
</tr>
<tr>
<td></td>
<td>Specifications for EMCS upgrade/ project management</td>
<td>$</td>
<td>$60,000.00</td>
</tr>
<tr>
<td></td>
<td>Specifications for IAQ sensor installation</td>
<td>$</td>
<td>$20,000.00</td>
</tr>
<tr>
<td></td>
<td>Utility dash board development</td>
<td>$</td>
<td>$40,000.00</td>
</tr>
<tr>
<td></td>
<td>ACUPCC liaison for 5 campuses</td>
<td>$</td>
<td>$200,000.00</td>
</tr>
<tr>
<td>2011-2012</td>
<td>Work Order #9</td>
<td>$331,159.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maintain savings from previous CC work (July 2010- June 2011)</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Savings from CC measures implemented on new construction projects (pending analysis)</td>
<td>$</td>
<td>$1,669,485.00</td>
</tr>
<tr>
<td></td>
<td>Work Order #8</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energy conservation/alternative energy study for Northwest Vista College</td>
<td>$47,995.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Work Order #3</td>
<td>$49,063.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total $728,373.00</td>
<td>$2,189,485.00</td>
</tr>
</tbody>
</table>