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ABSTRACT 
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(April 2013) 
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Research Advisor: Dr. Krishna Narayanan 

Department of 

Electrical and Computer Engineering 

 

 

 

With the growing popularity of smart phones and tablets, development of multimedia  

applications is on the rise. Speedy transmission of this massive amount information is already 

pushing the limits of the capacity of wireless networks, and in upcoming years wireless data 

traffic is projected to continue increasing dramatically. Advances in wireless network throughput 

are necessary to keep up with society’s data demands. 

 

In an uncoordinated wireless communications system, transmissions collide and interfere as 

multiple users transmit data to a central receiver. Slotted-ALOHA, the conventional method that 

schedules user transmissions, has only 37% throughput efficiency. However, theoretical results 

in recent studies suggest that scheduling transmissions over a random number of timeslots and 

employing iterative collision resolution techniques achieves optimal throughput efficiency of 

approximately 100%. This research considers how real-world conditions affect these theoretical 

results. A MATLAB model was developed to create random graphs, representing users 
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transmitting packets over such timeslots, and the packets were resolved by this method. This 

model was simulated extensively, representing networks of up to 10,000 packets over 10,000 to 

20,000 timeslots, and the number of packets resolved in each iteration was measured.  

 

These simulations have generated empirical data that backs up the theoretical claim. 

Furthermore, by implementing low-complexity matrix algebra, an even greater percentage of 

successful trials can be obtained to further increase efficiency. These results demonstrate the 

potential of this method in handling uncoordinated transmissions in communications systems, 

even in the presence of finite conditions. This suggests that this method could eventually be 

employed in actual wireless systems. 
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NOMENCLATURE 

 

         PDF defining probability that single user transmits in   timeslots 

       Probability that the left-to-right message on a randomly chosen 

edge is an erasure in iteration   

        Probability that the left-to-right message on a randomly chosen 

edge, connected to a user node of degree  , is an erasure in iteration 

  

       Probability that the right-to-left message on a randomly chosen 

edge is an erasure in iteration   

        Probability that the right-to-left message on a randomly chosen 

edge, connected to a timeslot node of degree  , is an erasure in 

iteration   

   Fraction of edges connected to user nodes of degree   

   Fraction of edges connected to timeslot nodes of degree   

  Probability of a single erasure 

     Number of users  

     Number of timeslots 

     MATLAB data structure containing data for K users 

     MATLAB data structure containing data for C timeslots 

     Empirical percentage of successes in successive trials 
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CHAPTER I 

INTRODUCTION 

 

Today’s wireless technologies are struggling to keep up with the demand for real-time, 

multimedia data transmission. As data traffic continues to increase and congest wireless 

networks, it becomes increasingly urgent to research and implement new technologies that 

increase wireless capacity. 

 

This research addressed the problem of multiple uncoordinated users attempting to transmit data 

to a central receiver in a wireless communication system. Since the users are uncoordinated, 

packets transmitted simultaneously can collide, causing interference to each other. Historically, 

communications services turn to a standard slotted ALOHA scheme, which outlines a random 

access protocol. In slotted ALOHA, each user transmits their data after waiting a random interval 

of time, with no synchronization with the other users. Because the users are not coordinated, this 

method often results in interference between users sending their packets simultaneously. When 

these collisions occur, the slotted ALOHA technique calls for the users to resend their data. This 

decreases the throughput and results in a throughput efficiency of 1/  = 0.37 [1]. Despite this low 

efficiency, slotted ALOHA is used widely in wireless network communications by mobile 

phone, satellite, and Wi-Fi [1]. Especially when considering the importance of such 

communications networks in today’s society, a more efficient protocol is desirable. 

 

In [2], Narayanan and Pfister have proposed a method detailing a protocol in which users send 

their packet a number of times, as defined by a derived probability distribution, at random time 



6 
 

intervals. A user will send a packet in   timeslots with probability       
 

      
 for   

      . 

 

This technique utilizes iterative collision resolution: instead of requiring users to resend their 

data in the case of interference, the central receiver can resolve all packets based on the 

collective information gathered over all the timeslots. Like slotted ALOHA, this algorithm does 

not require coordination between users. Despite this, use of the proposed probability distribution 

in this method can attain an efficiency very close to 1 when the number of users becomes 

asymptotically large. Even when considering the case where all users coordinate which packets 

to send during their timeslots, this is the upper-bound on the achievable efficiency. 

 

Though this result is optimal, this is an asymptotic result that requires the number of packets and 

timeslots to be infinitely large. In this thesis, we consider the practical case, where the number of 

packets and timeslots are finite. Addressing these effects is critical before the algorithm can be 

considered for real-world application.  
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CHAPTER II 

METHODS 

 

A single trial can be simulated by generating a random Tanner graph representing   users 

sending packets over   time slots, as shown in Figure 1.  In such a trial, each user is assigned a 

number of time slots, as defined by the probability distribution, and each time slot is chosen 

according to a uniform distribution.  

 

Figure 1 (Narayanan, Pfister) 

 

Recall that the derived distribution considers the domain for possible number of timeslots a user 

can transmit to is         . However, for a finite number of timeslots  , the domain 

becomes         . To satisfy probability law by ensuring all probabilities sum to 1, the 

distribution must be normalized as a PMF. Doing so requires solving for a normalization 

coefficient  , resulting in the following normalized distribution for the number of transmission 

timeslots for a single user:       
 

      
 for         .  
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The iterative collision resolution algorithm involves iterations through all timeslots, checking the 

degree at each timeslot node. If the degree is 1, the single packet sent in this timeslot is known, 

so it can be effectively “subtracted” every time it appears in other timeslots. This is done by 

removing all edges connected to this packet, which will ideally result in more timeslots having 

the degree of user packets at value 1, thus allowing further packets to be resolved in subsequent 

iterations. If every user packet can be removed from timeslot user arrays, thus resulting in a 

degree of 0 for every timeslot, the resolution of the graphs is successful, indicating that all 

packets can be resolved in the particular Tanner graph generated. 

 

By deriving density resolution for this scenario, the theoretical behavior of this model for finite 

  and   can be better understood. Based upon the density evolution for Low-Density Parity 

Check (LDPC) codes, a similar recursion can be derived for this model.  

 

Asymptotic Analysis using Density Evolution 

 

In the Tanner graph in Figure 1, let    be the fraction of edges connected to user nodes of degree 

 , and let    be the fraction of edges connected to timeslot nodes of degree  . Given      ,  , and 

 , these fractions can be determined.  

 

   can be determined directly from       since this PMF gives the distribution of user node 

degrees. The fraction of user nodes that are of degree   is simply          Since the distribution is 

identical for all   user nodes, the expected number of degree   user nodes in the graph is       , 

and with each of these nodes producing   edges, the expected number of edges in the graph that 



9 
 

are connected to a user node of degree   is           The expected number of edges produced by 

a node is         
   , so the expected number of edges in a entire graph of   users is 

          
      Therefore, the expected fraction of edges in the graph that are connected to a 

user node of degree   is     
 

     
       

 

     
   

   . 

 

Finding     requires this    and the values of   and  . If       is the PMF for the probability 

that a timeslot node has   incoming transmissions, then the expected total number of edges in the 

graph is          
   . The expression          

    derived above is also the total number of 

edges in the graph, so                    
   

 
   . This means that the average degree of a 

timeslot node is         
     

 

 
        

   . In [2], this average degree of a timeslot node is 

denoted     . Furthermore, [2] shows that the number of edges connected to a timeslot node of 

degree   is given by the distribution                 . Substituting the value for      obtained 

above results in             
 

 
        

          
       

 

 
    

 

     
   

   . Finding the 

expression for    requires expanding      into its series representation: 

      
  

 

 
    

 

     
   

      
 

 
    

 

     
    

     

 

 
    

 

     
   

   

 

  
      ]. Extracting the     values 

results in    =  
  

 

 
    

 

     
   

   

 

 
    

 

     
   

   

 

  
   

 

From here, LDPC coding theory can be used to determine the density evolution properties of this 

model [3]. Like the recursive probabilities of erasure in LDPC codes, let       be the probability 

that the left-to-right message on a randomly chosen edge is an erasure in iteration  , and let 

        be this same probability, for an edge connected to a user node of degree  . Similarly, let 
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      and         represent these probabilities for messages from right-to-left.   is the probability 

of a single erasure.  

 

We will consider a more general model where the timeslots can be erased with probability  . The 

probability of no erasure on an edge connected to a node with degree   to be:            

                   . This means that probability of erasure is              

               . By summing these probabilities, weighted by the probability of a random edge 

connected to a node of degree  , probability erasure in any node is                    . 

Similarly in the next iteration,                      and                   .  

 

By substituting these values, we find: 

                         

                                    
    

                                       
   

    

                                      
  

   

    

 

Because this is not a model for an LDPC code, we can set the probability of erasure   as 0. This 

resolved the equation above to                                  
  

   

  .  

 

By substituting the known values of    and     derived previously, the recursion can be used to 

solve for         the steady state probability of no erasure. Figure 2 shows the how the 

recursion converges over several iterations. 
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Figure 2 

 

Figure 3 shows how the steady state probability of no erasure         changes for varying 

   . This plot shows that probability of no erasure converges to 1 for        . 

  

  

Figure 3 
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This density evolution gives the theoretical basis for this problem. The MATLAB simulations 

described next give empirical data to back up theoretical claims. The optimality in the theoretical 

case comes with the stipulation that the number of users   approaches infinity. Simulations were 

necessary to determine how the algorithm will behave with a finite number of users.  

 

Simulations for Finite Lengths 

 

A simulation of a single trial can be modeled by a tanner graph. In MATLAB, this graph is 

expressed as two data structures. Data structure   contains   MATLAB structs. Each of these 

structs represents a single user, storing (a) the degree, an integer signifying the number of 

timeslots for transmission, and (b) an array of these timeslots, each timeslot an integer value, 

representing the index of this user in struct  . Similarly, data structure   contains   MATLAB 

structs. Each of these structs represents a timeslot, storing (a) the degree, and integer signifying 

the number of users transmitting in this timeslot, and (b) an array of users, each user an integer 

value representing the index of this user in struct  . 

 

Once this Tanner graph is generated, the trial must be deemed a success or failure. The graph 

undergoes the iterative interference cancellation algorithm described previously. This involves 

iterations and modifications to the   and   data structures as defined by the algorithm, deleting 

edges in the structures to indicate that a packet has been resolved. If the algorithm is successful 

in resolving all packets, the trial is deemed a success.  
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In these simulations, some of the mappings generated may be irresolvable: A trial will be 

deemed a failure if not all packets could be properly recovered. For a large number of trials with 

set value   and  , let   be the empirical fraction of successes. 

 

First, the number of packets   is set to a range of values to model the relationship   vs.  . The 

ratio     necessary for a       is expected to converge to 1 as   and   increase. Attaining 

the desired efficiency of 1 requires that      .  

 

An appropriate number for   in these trials is 10,000, with values of   ranging from 10,000 – 

20,000. The first question was how many entire graphs are resolved for these varying values of 

 . This was simulated by simulating creation and resolution of random graphs. Next the average 

number of individual packets recovered in each trial was considered. Finally, simulations 

determined the distribution of the number of packets resolved was determined, and specifically, 

the number of graphs either (1) almost entirely resolved, with only 0.01% of packets remaining, 

and (2) the number of graphs that were highly unsuccessful, with only 0.01% of packets 

resolved.   

 

For values of   with a high percentage of “Terrific” graphs, most graphs that are not completely 

resolved have less than 10 packets remaining. The remaining timeslots can be viewed as a 

manageable, binary system of equations, with the number of unknowns equal to the number of 

remaining packets. For some of these systems of equations, matrix algebra under binary 

operations allows the rest of the packets to be  resolved. If the rank of the binary matrix is greater 

than or equal to the number of remaining packets, the system can be resolved and all packets can 
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be recovered. Such a test was simulated in MATLAB for “Terrific” packets to determine if a 

higher percentage of graphs could be entirely resolved.  

 

After the results of the binary matrix resolution tests proved unsuccessful for the large graphs, 

another factor was considered. In real-world applications, there will be a gain that factors into 

each packets signal. This gain can be thought of as a complex coefficient for each packet in the 

systems of equations for each timeslot. If this gain is known, the system can be solved as before, 

except using complex matrix algebra instead of binary algebra. Added to this complex gain is 

noise in the channel. In this study, the noise is ignored, so the resulting efficiency is an optimistic 

estimate.  
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CHAPTER III 

RESULTS 

 

Running trials for   = 10,000 users yielded increasing percentages of entire graphs resolved. 

However, some of these unresolved graphs may have had only a small fraction of packets 

remaining: even with the graph unresolved as a whole, several of the users may have had 

successful packet transmissions. The plot below considers the percentage of entire packets 

resolved, denoted in blue. It also denotes the fraction of user packets, out of   = 10,000 total 

packets, resolved in each trial, marked in red.  

 

 

Figure 4 

 

These results led to a fascination of the distribution of results in Figure 4, particularly how many 

trials resolved either almost all packets or alarmingly few packets. Below, the number of trials 
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with at least 99.9% of packets resolved (“Terrific Graphs”) and the number of trials with fewer 

than 0.01% of packets resolved (“Terrible Graphs”) are displayed.  

 

 

Figure 5 

 

Results show that a significant number of trials fell into one of these two categories as 

  increases. Additionally, the number of “Terrific” graphs outweighs the number of “Terrible” 

graphs as   increases.  

 

Next, the use of Matrix resolution was evaluated. Matrix resolution in large graphs was largely 

unsuccessful. However, very small graphs were evaluated as well, and many matrices could be 

resolved with binary matrix algebra. By altering graph sizes while keeping a constant K / M 

ratio, the success of the matrix resolution is shown in Figure 6.   
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Figure 6 

 

This graph illustrates that, while increasing the graph size improves the percentage of working 

iterative collision resolution trials, the use of matrix algebra in the small graphs drastically 

improves overall performance.  

 

After considering the complex gain in the channel, the matrix resolution was performed again on 

a complex matrix rather than a binary matrix. The results of these trials are shown in Figure 7. 
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Figure 7 

 

The effectiveness of the complex matrix resolution increases the percentage of completely 

resolved trials, and since these matrix inversions are performed on matrices no greater in size 

than 10 by 10, there is also low cost in complexity. Implementing matrix resolution by 

accounting for the known gains in the system can drastically improve the efficiency of this 

method.  

 

However, the complex gain will be corrupt by some noise in the channel, and this model does 

not account for the coding schemes necessary to remove noise from the signal. This means that 

the simulation shown above is very optimistic, and implementing the channel codes necessary 

will also affect the efficiency of this model.  
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CONCLUSIONS 

 

The data above shows that, in a network of   = 10,000 users, efficiency of approximately 

10,000/14,000 = 0.71 is achieved. Recall that this achievable efficiency is much higher than the 

37% of the Slotted-ALOHA used in existing systems. Furthermore, increasing   to larger values 

is expected to further increase efficiency. In general, further research and eventual 

implementation of this method could indeed drastically increase the throughput of wireless 

networks.  

 

Additionally, the use of simple matrix algebra drastically increases the success of trials by 

approximately 30% when assuming no noise. Adding this simple mechanism to the existing 

model has drastic effects on the efficiency of the method, as these successful graphs would not 

require that any packets be resent in subsequent trials.  

 

Additionally, in future work, the number of users   can be increased to 100,000 and 1,000,000. 

The same trials can be duplicated and improvement of the algorithm based upon this increase can 

be measured. This work will assist in determining an appropriate lower-bound for   such that 

         while maintaining         

 

Considering packet resolutions over multiple, consecutive trials may offer a way to further 

increase efficiency. Unresolved packets could be resent with a modified probability distribution 

that increases the number of transmissions. This requires more theoretical investigation to derive 

a modified distribution for resent packets, while upholding the theoretical efficiency of 1 by also 
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modifying the distribution for all other users. This would increase the efficiency of the system, 

and would be a practical addition to this method in implementation.  

 

Additionally, other effects of the physical layer can be further explored. As mentioned when 

exploring the complex signal gain, the effects of a noisy channel were not considered when 

defining this optimal transmission policy. Efficient coding and decoding methods should be used 

to correct errors caused by noise in the channel. This will require a joint design of the probability 

distribution and the error correction code. The measures of performance will be the amount of 

energy used and the complexity of the error correcting codes. By considering the packets 

received over multiple timeslots jointly, the central receiver may be able to use this collective 

information to correct errors. This method may allow for error correction techniques requiring 

less redundancy and less energy, than those required when considering each timeslot 

individually.  

.  

In conclusion, additional research into the practical limitations of this method must be conducted 

to fully understand its potential impact on wireless networks. Preliminary results uphold the 

theoretical promise of this method, and further investigation could increase wireless network 

capacity and thus hold immense value to today’s society. 
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