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ABSTRACT

The International Dual-Photon X-Ray Absorptiometry (DXA) Standardization Committee (IDSC) conducted a
cross-calibration study among three models of DXA machines from three different manufacturers. In that study,
100 subjects were scanned on all three machines. A set of equations were derived to convert bone mineral density
(BMD) on each machine to a “standardized BMD” (sBMD) such that sBMD from the same subject derived from
different machines would be approximately the same. In a reanalysis of the cross-calibration data, we showed that
the conversion method used in the IDSC study did not achieve several optimal properties desirable in such
conversions. We derived new conversion equations to sBMD based on minimizing differences among sBMD from
the three machines. More important is that the new conversions have no residual bias that was present in the IDSC
conversions. The performance of the methods were compared on the cross-calibration data as well as an external
data set. We conclude that the IDSC conversions are adequate for clinical use on other machines worldwide, but
that researchers should standardize their own machines in a laboratory using the new method. (J Bone Miner Res
1997;12:1463–1470)

INTRODUCTION

BONE MINERAL DENSITY (BMD) is the primary determinant
of skeletal fragility, and, as such, plays a central role in

the diagnosis of osteoporosis. It remains, however, some-
what difficult for clinicians to use BMD measurements as
readily as would be desirable. There are a number of rea-
sons for these difficulties, but primary among them is the
systematic difference in reported BMD among the manu-
facturers of densitometers. While the reasons for the dis-
crepancies are many, the goal of this paper is not to discuss
the biological or technical contributors to the problem,(1–3)

but rather to introduce an appropriate algorithm for con-
verting measurements from different machines to a univer-
sal standard scale whereby the measurements on the same
subject on different machines are comparable.

The first attempt at universal standardization of BMD
was made on dual-photon X-ray absorptiometry (DXA)
measurements. The International DXA Standardization
Committee (IDSC) sponsored a cross-calibration study
which measured 100 women on three DXA scanners made
by three different manufacturers.(1,4) The data showed that
the measurements on the three machines were highly cor-
related and linearly related to one another; hence, simple
linear regression equations were derived for converting
BMD measurements on any one machine to another. To
avoid designating any of the machines as the “gold stan-
dard,” the IDSC study then went on to derive a universal
standardized measurement called standardized bone min-
eral density (sBMD). The aim was to convert each manu-
facturer’s BMD to sBMD using a formula such that the
sBMD would give “approximately the same value when
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scanning one patient on all machines” and to “peg” the
values to the “true” density of a reference phantom.(1)

Since no standard statistical procedure was readily available
for deriving the universal standard, the investigators devel-
oped an ad hoc method, which, unfortunately, had several
problems. In particular, systematic differences remained
between the same patient’s sBMD on different machines. In
this paper, we evaluate the extent of this bias in the original
cross-calibration data and go on to show that the problem
may be negligible for standardizing measurements made on
machines other than those used in the cross-calibration
study.

The IDSC conversion equations from spine BMD to
sBMD have now been implemented in new DXA scan-
ners.(5) The machine-generated sBMDs are intended pri-
marily for clinical use worldwide. These conversions, no
matter how good, were optimized only for the three specific
machines used in the original cross-calibration study. Al-
though we will show that clinical application of the IDSC
conversions are appropriate, researchers who wish to stan-
dardize multiple machines in their own laboratories for
research studies should derive their own conversions that
are optimized for their own machines. To this end, we
propose a new conversion algorithm that improves upon the
IDSC algorithm by minimizing the differences in sBMD on
the same subjects and removing all residual biases.

Our proposed algorithm is to be used only after standard
regression analysis has established linearity between BMD
measured on all possible pairs of machines, as was done in
the IDSC study. The major steps of the proposed algorithm
are: (1) subtract the mean BMD from the individual BMD
measured on each machine; (2) multiply the mean-adjusted
BMD by a factor specific to each machine such that the
total squared difference among machines is minimized; (3)
add a common constant to each multiple of mean-adjusted
BMD to obtain sBMD such that the mean sBMD of the
“pegging” phantom from all machines equals its theoretical
“true” density.

We will compare the performance of the different algo-
rithms by applying them to the data from the original IDSC
study and to an external data set.

MATERIALS AND METHODS

The IDSC Cross-Calibration Study

A cross-calibration study of three DXA densitometers
was conducted at University of California at San Francisco
under the auspices of the IDSC. Details of the IDSC study
have been published.(1,4) Briefly, 100 healthy, nonpregnant
women evenly distributed over the age 20–80 years were
recruited. Posteroanterio (PA) lumbar spine and hip mea-
surements were made on each subject on all three scan-
ners—a Norland XR26 Mark II (Norland Corp., Fort At-
kinson, WI, U.S.A.), a Lunar DPX-L (Lunar Corp.,
Madison, WI, U.S.A.), and a Hologic QDR 2000 (Hologic
Inc., Waltham, MA, U.S.A.). In addition, a number of
phantoms were measured multiple times on the same scan-
ners. Cross-calibration equations were derived for both
human and phantom BMD. Since the phantom data devi-

ated systematically from the human cross-calibration equa-
tions, BMD data on the 100 women were used to derive
conversion equations for sBMD, with only one phantom’s
measurements used for “pegging” the sBMD values.

An external data set

To compare the IDSC and our new conversion algo-
rithms on some machines other than those used in the
cross-calibration study, we gathered a set of data with 56
normal subjects who previously had their spine BMD mea-
sured on both a Lunar DPXL and a Hologic 1000W at
Indiana University. Other than a few healthy employees
associated with the bone studies, these were subjects who
participated in multiple study protocols that used those two
different scanners. The primary studies were observational
studies designed to investigate various factors related to
BMD at different ages; these protocols enrolled only
healthy subjects who had no metabolic bone disease and
had not taken medication that affected bone metabolism.
All subjects were white and all but one were women, with
mean age of 47 years (range 24–84). The measurements of
any subject on the two machines were no more than 1.2
years apart (50% were within 0.2 year). Although this was a
convenience sample, neither the IDSC nor the new algo-
rithm assumed any distribution of BMD in the cross-cali-
bration sample; hence, no bias could have been introduced
by any sampling scheme.

The IDSC algorithm and its problems

Only the cross-calibration of spine BMD is used for
illustration in this article. The published conversions equa-
tions for spine sBMD are:

sBMD 5 1.0755 BMD, for Hologic

sBMD 5 0.9522 BMD, for Lunar

sBMD 5 1.0761 BMD, for Norland

These were derived by first fitting six no-intercept regres-
sions through all possible pairs of spine BMD on the 100
subjects. For any given pair of scanners, they “normalized”
the regression by averaging the slope of one regression, say
y on x, and the inverse of the slope of x on y. The ratios of
these “normalized” slopes were used to solve for the con-
version parameters for sBMD, with the constraint that the
mean sBMD of the midvertebra of the European spine
phantom (ESP) was equal to its true density of 1.0 g/cm2.
This particular phantom was chosen because its BMD was
closest to the human regression lines. The major problems
of the IDSC algorithm are described in order of severity as
follows:

(1) The derivation method is not internally consistent,
i.e., applying the method to a given set of cross-calibration
data does not lead to a unique set of conversion equations
from BMD to sBMD. Let X, Y, and Z denote BMD mea-
surements of the same individuals on three machines. The
first inconsistency in the IDSC approach results from aver-
aging the regression slope b1 of Y on X and the reciprocal of
the slope b2 of X on Y to get a linear relationship between
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X and Y; the result would not be the same if one had chosen
to use the average of 1/b1 and b2. The second inconsistency
is that solutions to the conversion equations are dependent
on which two of the three linear relationships between
machines are used. This lack of internal consistency allows
one to obtain different sets of conversion equations from
analyzing the same set of data using the same general
algorithm.

(2) The IDSC algorithm makes no attempt to minimize
differences in sBMD of the same subjects measured on
different machines even though it is the primary purpose of
creating sBMD.

(3) The algorithm forces all linear relationships of sBMD
between machines through the origin even though regres-
sion analysis on BMD has shown statistically significant
intercepts in those relationships. Two types of bias may
result in the sBMD. First is that the mean sBMD of the
cross-calibration study subjects measured on different ma-
chines may not be equal. Second, the derived sBMD from
any given subject may be systematically higher or lower on
one machine than another depending on the value of the
individual’s BMD. The magnitude of the latter bias in-
creases with the size of the nonzero intercept in the regres-
sion of BMD between machines, as will be illustrated in the
results.

Derivation of the new algorithm

The method developed here retains all of the desirable
properties of the IDSC algorithm while avoiding its short-
comings. This method can be applied to any set of cross-
calibration data from two or more scanners. For simplicity,
we describe the method as applied to spine BMD measured
on three scanners in the IDSC cross-calibration study.(1)

Both the IDSC study and a subsequent study(2) found that
regression lines based on phantom data differed systemat-
ically from regression lines based on human measurements;
hence, we derived the conversions from BMD to sBMD
based on the measurements of the 100 women in the cross-
calibration study. As in the IDSC study, the midvertebra
ESP was used as the “pegging” phantom mainly because it
was near the center of the distribution of BMD in the study.

Details of the algorithm are given in the Appendix. The
proposed method is summarized in the following steps:

(1) Start with standard regression analyses to fit the
relationships between BMD on pairs of scanners. For each
pair of scanners, regress BMD of machine 1 on machine 2,
and vice versa. Add quadratic or higher order terms to the
model to test whether each relationship deviates from lin-
earity. This step provides interconversion equations from
any machine to another. Standard errors provide measures
of reliability of the coefficients of conversion equations.

(2) After step 1 has established linearity between all pairs
of machines, use the new algorithm to derive sBMD. First,
to remove the problem of nonzero intercepts, subtract the
sample mean from the individual BMD. If X, Y, and Z
denote BMD measurements on Hologic, Lunar, and Nor-
land scanners, respectively, we obtain the following vari-
ables:

x 5 X 2 #X

y 5 Y 2 #Y (1)

z 5 Z 2 #Z

(3) Multiply x, y, and z from step 2 by different factors, a,
b, and c to obtain ax, by, and cz, respectively. The multipli-
ers a, b, and c are chosen to minimize

E2 5 ~ax 2 by!2 1 ~by 2 cz!2 1 ~cz 2 ax!2 (2)

over the entire sample, subject to the constraint a2 1 b2 1
c2 5 L, a norming constant.

(4) Add a common constant K to ax, by, and cz to obtain
sBMD:

sBMDx 5 ax 1 K

sBMDy 5 by 1 K (3)

sBMDz 5 cz 1 K

for the Hologic, Lunar, and Norland scanners, respectively.
The constant K is chosen such that the mean sBMD of the
“pegging” phantom from the three machines is equal to the
phantom’s “true” density.

Several desirable properties result from this algorithm.
Step 2 ensures that the linear relationships between scan-
ners all pass through the sample means, as any unbiased
linear relation should. Step 3 ensures that, among all linear
conversions, this conversion produces sBMDs that are clos-
est between machines by the least-squares criterion. Step 4
“pegs” the sBMD to the theoretical density. The Appendix
contains an exact solution for deriving sBMD as outlined in
steps 2–4. We call it the “optimal” algorithm. Note that the
least-squares criterion is only optimal if the measurement
errors are the same across machines. Otherwise, it should
be modified to a weighted least-squares criterion, with the
more precise machines getting greater weights. Since the
exact solution requires a symbolic programming language
that may not be widely available, we also developed an
approximate method that uses more commonly available
statistical packages. Both of these numerical methods are
internally consistent, so that there is a unique solution set
for any given set of data. A bootstrap procedure is also
described briefly in the Appendix that could be used to
obtain variance estimates for the conversion parameter
estimates, but this procedure is generally too computing
intensive for its worth unless comparison between parame-
ters is necessary.

RESULTS

The universal standardization method was applied to the
spine (L2–L4) BMD of the 100 subjects measured on the
three scanners. The measurements from each pair of scan-
ners are plotted in Fig. 1. Standard regression analyses
between pairs of scanners produced the same results as
previously reported(1) so they are not repeated here. As-
suming true linear relationships of BMD between scanners,
we applied the new conversion method from BMD to
sBMD on the IDSC cross-calibration data.
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The mean spine BMDs (in g/cm2) for the sample were #X
5 0.972, #Y 5 1.100, and #Z 5 0.969 for the Hologic, Lunar,
and Norland scanners, respectively. These means were sub-
tracted from the individual measurements to remove the
intercept problem initially, i.e., Eqs. (1) became:

x 5 X 2 0.972

y 5 Y 2 1.1 (19)

z 5 Z 2 0.969

We then minimized expression (2) (pairwise squared dif-
ferences among ax, by, and cz) subject to the constraint that
a2 1 b2 1 c2 5 3 3 12. Using the numerical method
described in the Appendix, we obtained the scale parame-
ters

a 5 1.0550

b 5 0.9683

c 5 0.9743

The final calibration step was based on the midvertebra
ESP, which had BMD (in g/cm2) measured at 0.916, 1.074,
and 0.922 on the Hologic, Lunar, and Norland scanners,
respectively. Substituting the estimates of a, b, and c into
Eqs. (3) and equating the mean sBMD from the three
scanners to the true density of the phantom, 1.0 g/cm2, we
obtained K 5 1.0436. Based on these estimates, the optimal
universal standardized measurements were given by:

sBMDH(O) 5 1.0550~X 2 0.972! 1 1.0436,

sBMDL(O) 5 0.9683~Y 2 1.100! 1 1.0436,

sBMDN(O) 5 0.9743~Z 2 0.969! 1 1.0436,

for Hologic

for Lunar

for Norland
(4)

We then applied the approximate method described in
the Appendix to the same data and obtained the following
approximate results for universal standardization:

sBMDH(A) 5 1.0546~X 2 0.972! 1 1.0433,

sBMDL(A) 5 0.9686~Y 2 1.100! 1 1.0433,

sBMDN(A) 5 0.9745~Z 2 0.969! 1 1.0433,

for Hologic

for Lunar

for Norland
(5)

Note that the approximate estimates are very close to the
optimal estimates because the measurements of the 100
subjects on the three scanners were very close to a straight
line (Fig. 1).

Table 1 presents descriptive statistics for the sBMD de-
rived from the IDSC study (sBMD(I)), as well as the exact
solution for the optimal procedure (sBMD(O)) and the
approximate conversion method (sBMD(A)) described
above. We show that using either the optimal or the ap-
proximate method the mean sBMD of the 100 subjects are
identical for all three scanners, whereas this condition is
neither imposed nor achieved in the IDSC method. Fur-
thermore, the standard deviations of sBMD using either the
optimal or the approximate method are nearly identical
across the three scanners so that one unit difference in

FIG. 1. Plots of BMD on 100 subjects
between pairs of scanners.
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sBMD always means the same magnitude of difference
regardless of the original scanner. In contrast, the IDSC’s
sBMD from different machines have standard deviations
ranging from 0.183 to 0.205 g/cm2, a difference of over 10%
between scanners. All three methods guarantee that the
average sBMD on the reference phantom is equal to the
“true” density.

We compared the performance of the three sBMD algo-
rithms in several ways. First, Pearson correlation between
sBMD from each pair of scanners was calculated for each
algorithm. The three algorithms were indistinguishable by
this criterion because all of the correlations were extremely
high (.0.987). Therefore, we assessed the conversions by
the mean squared differences in sBMD on the same indi-
viduals since sBMD is meant to be approximately the same
for the same subject measured on different scanners. This is
similar to comparing the mean squared error between dif-
ferent regression models. In Table 2, the overall difference
for the IDSC method was 18% larger than for the optimal
sBMD, which by definition should have the smallest overall
mean squared difference. Indeed, the optimal method had
smaller mean squared difference for every pair of scanners.
Surprisingly, the approximate method had almost identical
performance to that of the optimal method.

Finally, we compared the conversion algorithms by ex-
amining whether there were any systematic differences in
sBMD between scanners in different ranges of measure-
ments. To look for patterns of such biases, we calculated the
mean and the difference for each subject’s sBMD on each
pair of scanners and plotted the difference against the mean
sBMD (Fig. 2). Since some linear trends were apparent, we
estimated the correlations between the differences and the
means. In Table 3, the sBMDs derived from either the
optimal or approximate method showed no correlation in
any case, but the IDSC-derived between-scanner difference
in sBMD was significantly correlated with the mean sBMD
for all three pairs of scanners. The smallest of the signifi-
cant correlations occurred between Hologic and Lunar be-

cause the regression of Hologic on Lunar BMD had an
almost zero intercept.(1) The strongest correlation was be-
tween Lunar and Norland, as can be seen in the top, middle
panel of Fig. 2; it shows that the IDSC-derived sBMD is
systematically higher for Lunar than Norland in the lower
range of sBMD, while the opposite is true in the higher
range. The systematic differences are about 6 50 mg/cm2 at
the high and low ends.

Table 4 compares the performance of the three conver-
sion methods between a Lunar DPXL and a Hologic 1000W
for a different group of 56 subjects in Indiana. The mean
difference between scanners is marginally larger by the
IDSC algorithm, but the magnitude of this overall bias of
0.6–0.7% is negligible in all cases. The root mean squared
differences are approximately the same, about 3.5%, across
the three methods. The correlation between individuals’
mean sBMD and their differences on the two scanners are
marginally stronger for the IDSC method but of no conse-
quence in any case. Thus, the performances of the three
algorithms are comparable for these two external machines.

DISCUSSION

We have shown that the sBMD derived by the IDSC from
three scanners, though highly correlated, had several meth-
odologic problems. Fortunately, even the most severe prob-
lem of residual bias became negligible when the conversion
formulas were applied to two other scanners made by Ho-
logic and Lunar. This leads us to believe that the IDSC
conversion formulas, which have already been implemented
in the recently manufactured scanners, are very satisfactory
for standardizing between Hologic and Lunar scanners.
Even though some of the Indiana subjects were not mea-
sured on both machines on the same day, the individuals’
differences in sBMD between Hologic and Lunar were of
the order of 3.5%, which would rarely affect clinical deci-
sions for individuals. To support the worldwide adoption of
the IDSC-derived sBMD for clinical use, our findings

TABLE 1. MEAN AND STANDARD DEVIATION (IN PARENTHESES)
FOR ORIGINAL SPINE BMD MEASURED ON THREE SCANNERS

AND STANDARDIZED BMD FROM THE IDSC STUDY

(SBMD(I)), THE OPTIMAL METHOD (SBMD(O)), AND THE

APPROXIMATE METHOD (SBMD(A)) FOR 100 SUBJECTS IN THE

IDSC STUDY

Bone density
measurements Hologic Lunar Norland

BMD 0.9725 1.1000 0.9692
(0.1762) (0.1919) (0.1907)

sBMD(I) 1045.9 1047.4 1043.0
(189.6) (182.7) (205.3)

sBMD(O) 1043.6 1043.6 1043.6
(185.9) (185.8) (185.9)

sBMD(A) 1043.3 1043.3 1043.3
(185.9) (185.9) (185.9)

BMD measurements are in g/cm2 and sBMD in milligram per
square centimeter.

TABLE 2. COMPARISONS OF BETWEEN-SCANNER DIFFERENCES IN

SBMD ACROSS THREE METHODS OF CONVERSION—ORIGINAL

IDSC METHOD (SBMD(I)), OPTIMAL METHOD (SBMD(O))
AND APPROXIMATE METHOD (SBMD(A))

sBMD(I) sBMD(O) sBMD(A)

Mean difference among
scanners
Hologic-Lunar 1.529 0.0 0.0
Lunar-Norland 4.464 0.0 0.0
Norland-Hologic 2.935 0.0 0.0

Root mean squared
difference among
scanners
Hologic & Lunar 30.34 29.49 29.49
Lunar & Norland 36.08 26.79 26.79
Norland & Hologic 34.75 29.12 29.12
Overall 33.81 28.49 28.49

All values are given in milligrams per square centimeter.
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should be corroborated with data from other cross-calibra-
tion studies based on different machines. In particular, the
agreement between Norland sBMD and other manufactur-
ers needs to be more broadly established since there were
some systematic differences in the original calibration
study.

In research studies, investigators always try to use the
same instruments throughout a project. Over the years,
however, bone laboratories need to update their scanners to
keep up with technological advances. To explore certain
research questions, sometimes it is expeditious to perform
analyses on data that have been acquired on different scan-
ners. Therefore, it makes sense to have conversions from
the BMD measured on all the scanners in a laboratory to a
common standard. The demand for precision and freedom
from bias is more stringent in addressing research questions
than for making clinical decisions for an individual.

FIG. 2. Plots of the difference in sBMD versus the mean sBMD of 100 individuals, by pairs of scanners and by these
conversion methods for sBMD.

TABLE 3. CORRELATIONS OF INDIVIDUAL DIFFERENCES AND

MEANS OF SBMD FOR EACH PAIR OF SCANNERS—
COMPARISONS ACROSS SBMD(I), SBMD(O),

AND SBMD(A)

sBMD
(I)

sBMD
(O)

sBMD
(A)

Pairs of scanners
Hologic-Lunar 0.23* 0.00 0.00
Lunar-Norland 20.63† 20.00 20.00
Norland-Hologic 0.45† 20.00 0.00

* p , 0.05.
† p , 0.01.

TABLE 4. DIFFERENCES IN SBMD BETWEEN HOLOGIC AND

LUNAR SCANNERS FOR 56 SUBJECTS MEASURED IN INDIANA

COMPARISONS ACROSS THREE METHODS OF DERIVING SBMD

Difference in
sBMD

sBMD
(I)

sBMD
(O)

sBMD
(A)

Mean (mg/cm2) 27.02 26.28 26.30
Root mean squared difference

(mg/cm2)
34.67 34.35 34.37

Correlation with mean sBMD 0.14 20.11 20.11
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We showed that optimal internal standardization could
attain overall between-scanner differences in sBMD of under
3% while 3.5% difference was observed with one external
application. Furthermore, a systematic bias of 50 mg/cm2 for
measurements of sBMD in the neighborhood of 600 mg/cm2

would be unacceptable in research. Therefore, research labo-
ratories should derive their own internal standardization that
is optimized for their particular machines in the laboratory.
Our proposed method should be used because it improves
upon the IDSC method while retaining all of the desirable
properties set forth by the IDSC. The improvement could be
even more marked for standardizing BMD at other skeletal
sites or between other machines if the linear relationships
between BMDs have larger nonzero intercepts. The new
method is also more flexible. For example, if one machine is
known to have larger measurement error than the others, then
the least-squares criterion can be modified to a weighted
least-squares criterion whereby those differences with larger
errors can be given smaller weights.

The proposed method is only appropriate after tradi-
tional regression analysis has first established the linear
relationships between BMD measured on the machines to
be standardized. If a simple linear relationship does not
hold, then none of the existing conversion methods is ap-
propriate. New methods will need to be developed for
nonlinear conversions. Another situation that cannot be
handled by available methods is the conversion of longitu-
dinal data. When serial measurements have been made on
an individual and a change in scanner is unavoidable, there
is a need for a conversion method that optimizes the mea-
surement of change in BMD.

One advantage of the proposed method in this paper is
that one can sample the subjects in any manner in the
cross-calibration study. For example, one can over-sample
the two extremes on big men and children to add stability to
the estimated relationships. Alternatively, one may desire
higher precision for cross-calibration in the lower range of
BMD since it is people with low BMD who are usually of
primary concern in the field of osteoporosis. If so, one can
over-sample the low end of BMD by measuring more frail
elderly subjects in the cross-calibration study. This is the
reason it was appropriate to evaluate the methods on the
Indiana subjects even though they were not properly sam-
pled. Consequently, however, a shortcoming shared by the
IDSC and our proposed methods is that variance estimates
for the conversion parameters can only be obtained by
resampling methods such as bootstrapping. If one is willing
to give up the choice of sampling schemes, and if the
cross-calibration study subjects’ BMD on different ma-
chines can be assumed to have a multivariate normal dis-
tribution, then one may choose to use the method by Lu et
al.(6) The advantage of this method is that it is based on
maximum likelihood estimation which produces asymptotic
variance estimates for the conversion parameters, so statis-
tical inference is more straightforward. Lu’s parameter es-
timates from data from the IDSC cross-calibration study
are very similar to the estimates presented in this paper.
The new conversions are likely to be adopted by the man-
ufacturers for future standardization of BMD at skeletal
sites other than the spine.

In conclusion, the conversions of spine BMD to sBMD
that are now available on DXA bone absorptiometers are
adequate for clinical use. However, researchers who want to
derive their own conversions should use the methods pro-
posed in this article or the one by Lu.(6)

APPENDIX

Derivation of optimal conversion equations

After establishing linear relationships between the BMD
from all pairs of scanners, we proceeded to derive conver-
sion equations using the new method. First, we calculated
the means of the 100 subjects’ measurements on each
scanner: #X 5 0.972, #Y 5 1.100, and #Z 5 0.969, and
subtracted the respective mean from each individual
BMD measurement to obtain:

x 5 X 2 0.972

y 5 Y 2 1.100

z 5 Z 2 0.969

To minimize E2 in expression (3) subject to the constraint
a2 1 b2 1 c2 5 L, an arbitrary constant, we first had to
choose an appropriate L. If we want differences of 1 unit in
sBMD to be similar to unit differences in BMD, then a, b,
and c need to be close to 1. A natural choice of L could be
12 1 12 1 12 5 3, which preserves the overall size of the
measurements, but other choices could be justified by other
criteria. Having chosen L, we minimized E2 with an unde-
termined Lagrange multiplier l for the constraint. That is,
we minimized

S~ax 2 by!2 1 S~by 2 cz!2 1 S~cz 2 ax!2

1 l~a2 1 b2 1 c2 2 L! (6)

with respect to a, b, c, and l. Differentiating expression (6)
with respect to a, b, c, and l and setting the differentials to
zero, we obtained:

2aSx2 2 bSxy 2 cSzx 1 la 5 0

2bSy2 2 cSyz 2 aSxy 1 lb 5 0

2cSz2 2 aSzx 2 bSyz 1 lc 5 0

a2 1 b2 1 c2 2 L 5 0

This is a set of four simultaneous equations in four un-
knowns in second order. In general, no closed-form solution
can be obtained, so we had to put in the data x, y, z, and the
constant L and solved the equations numerically using Ma-
ple, a symbolic programming language.

After we obtained the solutions for a, b, and c, constants
were added to the scaled measurements to obtain sBMD
for all scanners in the form:

sBMDH 5 1.0550x 1 K,

sBMDL 5 0.9683y 1 K,

sBMDN 5 0.9743z 1 K,

for Hologic

for Lunar

for Norland

Addition of a common K preserves the optimal criterion of
least-squares and does not introduce any systematic bias in
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any range of sBMD between scanners. Thus, the equality of
mean sBMD is also preserved across all scanners. The
estimate of K was used to calibrate the sBMD of the phan-
tom, midvertebra ESP, to its theoretical density. The phan-
tom BMD was 0.916 g/cm2 on the Hologic, 1.074 g/cm2

on the Lunar, and 0.922 g/cm2 on the Norland. Equating
the mean phantom sBMD from the three scanners to the
true density of 1.0 g/cm2, [1.0550(0.916 2 0.972) 1 K 1
0.9683(1.074 2 1.1) 1 K 1 0.9743(0.922 2 0.969) 1
K]/3 5 1.0 resulted in K 5 1.0436. Thus, the conversion
equations:

sBMDH 5 1.0550x 1 1.0436,

sBMDL 5 0.9683y 1 1.0436,

sBMDH 5 0.9743z 1 1.0436,

for Hologic

for Lunar

for Norland

are presented as the optimal conversion Eqs. (4) in the text.
No closed-form solutions exist for variance estimates for

the parameter estimates a, b, c, and K. One way to obtain
such estimates is to use a bootstrap procedure as follows:

(1) Randomly sample 100 subjects’ measurements, with
replacement, from the original sample to form a boot-
strap sample.

(2) Estimate a, b, c, and K from the bootstrap sample, and
save the estimates.

(3) Repeat steps 1 and 2 many times (usually thousands) to
obtain a stable sampling distribution of the estimates.

(4) The standard deviations of the estimates of a, b, c, and
K in the sampling distribution give the standard errors
of the estimates.

As one can tell from the steps described, it is a highly
computing-intensive way to obtain these variance estimates.
Unless one is interested in performing statistical inference,
such as comparing two conversion parameters, the gain in
information may not be worth the effort since linearity has
previously been established and optimal properties of the
sBMD conversion, such as least-squares, are guaranteed.
Thus, no such variance estimates were calculated.

Derivation of approximate conversion equations

The exact solution for the optimal conversion requires a
symbolic programming language such as Maple or Math-
ematica, which is not as widely available to researchers as
some common statistical packages. We therefore developed
the following approximate solution to Eqs. (3). The approx-
imate method started with interconversion between scan-
ners. Again, we removed the sample means from BMD
initially and converted among x, y, and z through x 5 k1y,
y 5 k2z, and z 5 k3 x, with k1k2k3 5 1. Backward conversions
through the same equations, e.g., y 5 x/k1, were also inter-
nally consistent. To estimate k1, we first obtained two no-
intercept regression lines of x on y and y on x. In the
example, least-squares regression with no intercept resulted
in:

x 5 0.90678y

y 5 1.07493x

y 5 0.99549z

z 5 0.98356y

z 5 1.06882x

x 5 0.91256z

The slope k1 was chosen to bisect the angle defined by the
two regression lines between x and y. If the two regression
lines are given by x 5 b1y and y 5 b2x, then k1 5 tan [0.5
(arctan b1 1 arctan (1/b2)]. Similarly, k2 and k3 can be
estimated and it can be shown that k1k2k3 5 1. In the
example, k1 5 1.0888, k2 5 0.9940, k3 5 0.9240. We then
estimated a, b, and c for sBMD through k1 5 a/b, k2 5 b/c,
and k3 5 c/a with a2 1 b2 1 c2 5 3. This can be done on a
calculator by first letting, say, a9 5 1 and solving any two of
the first three equations, e.g., b9 5 1/k1 5 0.9185 and c9 5
k3 5 0.9940. Then we multiply a9, b9, and c9 by a constant,
R, such that the last normalizing equation (a2 1 b2 1 c2 5
3) is satisfied. Solving R2(a92 1 b92 1 c92) 5 3, i.e., R2(12 1
0.91852 1 0.99402) 5 3, gives R2 5 1.1122 and R 5 1.0546.
Therefore, a 5 Ra9 5 1.0546, b 5 Rb9 5 0.9686, and c 5 Rc9
5 0.9745. Substituting in the phantom data, we obtained
K 5 1.0433. Again bootstrap procedures could be used for
obtaining variances for parameter estimates.
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