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ABSTRACT 
 

Evaluation of Compression Testing Methods for the Cortical Ring in the Distal Femur 
Metaphysis of Adult Male Rats. (May 2012) 

 

Ryan Spencer Bishop 
Department of Mechanical Engineering 

Texas A&M University 
 

Research Advisor: Dr. Harry Hogan 
Department of Mechanical Engineering 

 

The characterization of bone loss in astronauts continues to be a pressing health concern 

for astronauts who spend months aboard the International Space Station (ISS). Through 

the use of the hindlimb unloaded rat model, Hogan et. al. have compared the effect of 

unloading at different anatomical bone sites and compartments within the hindlimb 

bones. Because femur metaphysis bone specimens remain from a previous experiment 

that tested the cancellous compartment, the untested cortical rings remain to be 

characterized. However, due to the complex geometry and composition of the cortical 

bone, an appropriate testing method must be identified which will effectively evaluate 

the effect of hindlimb unloading on this bone tissue. This study compared the use of 

axial and diametral compression testing in evaluating the intrinsic properties, namely, 

ultimate stress and elastic modulus, of the cortical ring of the femur metaphysis. In order 

to preserve the cortical specimens from the hindlimb unloaded study, practice bones 

(taken from rats not used or removed from the study) were tested. After approximating 
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the cortical geometry of each specimen, the bones were divided into axial and diametral 

compression testing groups (n=3), and the bones were compressed to failure. 

 

Diametral testing was found to result in a much more consistent location of failure than 

the axial testing, but the standard deviations for the calculated ultimate stress and elastic 

modulus were considerably higher. Both the diametral and axial testing yielded 

properties that deviated significantly from those previously calculated for femoral 

diaphysis samples. This deviation is unsurprising, as the lack of recorded background 

and the dimensional approximations used to analyze the bones likely introduced errors 

that compromised accurate determination of absolute values. However, the results 

remain useful for comparison purposes. With more accurate measurement of cortical 

geometry and the use of the more consistently cut metaphysis samples from known 

testing conditions, both testing methods may yield properties closer to those found for 

the femoral diaphysis. Although the axial compression testing displayed more variation 

in the location of failure, this method is currently recommended because the calculated 

ultimate stress and elastic modulus values displayed significantly reduced variance. 
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NOMENCLATURE 

 

ISS    International Space Station 

RPC Reduced Platen Compression 

BL Baseline 

AC Aging Control 

HU Hindlimb Unloaded 

pQCT Peripheral Quantitative Computed Tomography 
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CHAPTER I 

INTRODUCTION 

 

Motivation 

Bone loss in astronauts who undergo skeletal unloading during extended spaceflight has 

been shown to be a significant health problem. Compared to losses of less than 1% per 

year in post-menopausal women, astronaut losses of 1-2% in the bone mineral density 

(BMD) from the femoral neck each month indicate a serious risk of bone fracture.(1, 2) 

Even more, studies conducted by Lang et al. found that ISS astronauts who had been in 

space 4.5-6 months displayed an incomplete recovery of bone mineral density and 

estimated bone strength, even one year later.(3) The safety of repeated trips to space is of 

particular importance as NASA may be forced to reduce the size of their astronaut corps 

to cut costs, thus increasing the number of astronauts making multiple missions. 

 

There are numerous advantages to conducting animal studies in place of human 

experiments. One major advantage is that they are much more affordable than additional 

trips to space and even human bed rest studies. A second advantage is that animal bones 

can be excised and mechanically tested, an option which is not available in human 

studies. Because the hindlimb unloaded rat model has been well established as a ground-

_______________ 
This thesis follows the style of the Journal of Bone and Mineral Research. 
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based analog for simulating the effects of spaceflight on the musculoskeletal system, Dr. 

Harry Hogan has been using the model to address questions related to the effects on 

mechanical properties at various bone locations, namely: the midshaft of the femur and 

tibia, the femoral neck, and the cancellous bone in the distal femur metaphysis.(4) 

Although Bloomfield et. al. have found bone loss in microgravity simulations with 

hindlimb unloaded rats to display compartment-specific changes (cancellous vs. cortical 

regions of bone), the full extent of site-specific bone change is not yet fully 

understood.(5) Thus, questions still remain as to how the microgravity simulations affect 

variation in bone properties along different longitudinal locations of the bone as well as 

within the different types of bone tissue. 

 

Previous experiments within this larger study have already conducted tests on bone 

samples obtained from hindlimb unloaded rats, and as a result there remain bone 

samples that are available for possible further testing. In particular, slices from the femur 

metaphysis remain after being subjected to RPC (reduced platen compression) testing of 

the cancellous bone.(6) This leaves the surrounding cortical ring to be analyzed. 

However, the more pressing question is how to test these remaining samples in such a 

way as to best identify the effects of hindlimb unloading on the cortical ring. 

 

Objective 

The primary purpose of this study is to evaluate the differences between axial and 

diametral compression testing on the mechanical properties of the cortical ring of the 
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distal femur metaphysis in adult male rats.  This is to be accomplished by meeting the 

following objective: 

 

To estimate mechanical properties of cortical bone (namely, the ultimate stress and the 

elastic modulus) through the use of both axial and diametral compression testing on 

cortical ring specimens, and to evaluate the two testing methods in terms of relative pros 

and cons and relevant salient features. This information will be important in evaluating 

which method is most suitable for use in testing the femur metaphysis samples 

remaining from the hindlimb unloaded rat study. The diametral testing method is 

hypothesized to yield calculated cortical properties closest to other regions of the femur 

because it loads different regions of the cortical specimens in compression and tension. 
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CHAPTER II 

BACKGROUND 

 

Bone anatomy and physiology 

Bone is dense connective tissue that makes up the skeletal system in the human body. 

Functioning both as the primary load-bearing organ and in protection of more delicate 

internal organs, bones have both high strength and stiffness relative to most other 

biological tissues. The strength of bone tissue is in part brought about by its chemical 

composition, a combination of organic and inorganic components. The inorganic matrix, 

called hydroxyapatite, is made up of crystals of calcium phosphate, calcium carbonate, 

and calcium hydroxide and forms 65% of the bone. The organic component makes up 

the rest of the bone tissue and consists of cells and an organic matrix called osteoid, a 

combination of ground substance (glycosaminoglycans and glycoproteins) and collagen 

fibers (90% of organic component).(7) In the long bones of the body, bone tissue is 

typically divided into two compartments: cortical (also called compact) and cancellous 

(also called trabecular or spongy) (Fig. 1). 
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FIG. 1.    Illustration of cortical and cancellous regions of bone.(8) 

Cortical bone makes up the majority of the body’s skeletal bone mass (80%) and bears 

the majority of the skeletal load due to its high stiffness relative to the cancellous bone. 

The basic structural unit of compact bone in humans is the osteon, a cylinder made up of 

concentric rings of bone matrix called lamellae. With collagen fibers oriented at different 

angles in each lamella and the stiff hydroxyapatite mineral, the osteon is able to resist 

both the compressive, tensile, bending, and torsional forces applied during bone use.(8) 

Cancellous bone forms a lattice of plates and rods (called trabeculae) that are aligned 

with force planes, and it provides a highly porous region for blood vessels and red 

marrow to vascularize the bone. Also called spongy or trabecular bone, cancellous bone 

is found primarily in the ends of long bones and the vertebrae. 
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The physiology of bone tissue is largely dependent on the activity of three types of bone 

cells: osteoblasts, osteoclasts and osteocytes. While osteoblasts and osteoclasts deposit 

new osteoid and resorb bone matrix, respectively, osteocytes are not completely 

understood, although they are thought to assist in the detection of microcracks and the 

triggering of osteoclast and osteoblast activity in bone remodeling.(7) While all three of 

these play an integral role during the modeling and initial growth involved in skeletal 

development, their activity applies to this study with regards to their role in the 

regulation of bone remodeling. In the context of this study, remodeling describes the 

process whereby osteoclasts and osteoblasts work simultaneously to remove and replace 

bone in order to maintain the load bearing capabilities of the bone. This dynamic and 

continuous process can have both negative and positive effects on bone strength. While 

the replacement of bone with microdamage and the adaptation of microstructure to bone 

stresses will benefit bone strength, the removal of trabeculae, the increase of cortical 

porosity, and the decrease of cortical thickness can decrease bone strength.(7) Because 

remodeling is dependent on mechanical usage, bone adapts to loading or disuse. Thus, 

bones change their mass and geometry in response to applied stresses. 

  

The femur displays a structure typical to the long bones in the body with two ends called 

epiphyses, gradually tapering regions called metaphyses, and a central cortical shaft 

called a diaphysis. The distal femur metaphysis was chosen for evaluation because of its 

composite nature, including both cortical and cancellous regions. The different 

remodeling that occurs in cancellous and cortical bone due to disuse is an important part 
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of understanding astronaut femoral neck bone loss, which also has both cancellous and 

cortical regions. 

 

Mechanical testing methods for rat distal femur metaphysis 

Numerous mechanical tests can be used to evaluate the distal femur metaphysis. While 

micro- and nano-indentation techniques are commonly used to measure the mechanical 

properties of a single osteon or lamellae (respectively) of cortical bone, the strength of 

the bone microstructure or ultrastructure does not necessarily reveal the extrinsic 

(dependent on bone geometry and size) strength of a particular bone region. Tensile tests 

can be conducted on machined samples from femoral shaft, but this approach would 

likely not be effective in testing the thin cortical ring samples already obtained from the 

metaphysis. Compression testing was selected because it has been previously 

implemented in this larger bone study to test the cancellous region of test specimens 

obtained from the metaphysis. 

 

Because the cancellous region responds more quickly than cortical to bone remodeling 

due to changes in mechanical loading (disuse or overload), it is often studied more 

extensively than cortical bone in bone studies.(7, 9) However, testing methods typically 

applied to the cancellous region can also be used to evaluate the cortical region. One 

example is the compression of a vertebra before and after removing the inner cancellous 

bone, a technique used to evaluate the vertebral cancellous region.(10) Whether the 

cancellous bone in the femur metaphysis is removed or not, axial compressive forces 
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exerted on the ring will almost entirely be loaded onto the cortical bone, as it is much 

stiffer than cancellous bone. Another method that has been more recently implemented is 

a diametral compression of cortical ring specimens obtained from the femoral neck.(11) 

The advantage of this method is that the bone is subjected to both axial and bending 

stresses, a loading that exerts tensile and compressive forces on the ring. Because crack 

propagation begins primarily due to tensile stresses, failure by compression typically 

occurs by deformation. Thus, the location of failure due to diametral compression should 

occur in the region of the cortical ring experiencing tension. This combined compressive 

and tensile loading is also informative to the astronaut study because it occurs during 

natural loading of the femoral neck (a high risk region for fracture) (Fig. 2). 

 
 

 

FIG. 2.    Illustration of a loaded femoral neck specimen. The diagram shows how both 
compression and tension can be applied to a bone during natural usage.(8) 
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Both compression methods present significant advantages and complications due to the 

non-uniform cortical thickness and the slightly conical shape of the metaphyseal 

samples. Due to the tapering of the specimens, when loaded in axial compression, the 

cortical ring has the tendency to deflect radially outward as well causing hoop stresses to 

be experienced, instead of pure axial compression (Fig. 3). Despite this, the initial 

portion of the stress data obtained should be useful in determining the modulus. When 

loaded in diametral compression, the tapering of the cortical ring can cause only the 

largest diameter of the ring to initially contact the platen, resulting in unequal loading of 

the ring. Nevertheless, the combination of compressive and tensile forces exerted during 

the ring bending provides more interesting results as to the location and cause of failure. 

Thus, this experiment acted as a pilot study examining the feasibility of both methods 

before deciding which testing method should be used. 

 
 

 

FIG. 3.    Illustration of axial and diametral testing methods. On the left, a metaphyseal 
femur specimen (shown with cancellous interior and a cortical exterior shell) is loaded in 
axial compression. The tapering of the idealized specimen can be seen in that the ring 
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cross-section changes in the direction of compression. On the right, the ring is loaded in 
diametral compression. (Portion taken from Lemmon)(7) 

Adult rat hindlimb unloading model 

The broader goal of the study being conducted by the Texas A&M Department of 

Mechanical Engineering and the Department of Kinesiology is to evaluate how hindlimb 

unloading affects rat bone quality at various locations such that microgravity-induced 

bone loss experienced by astronauts can be better predicted after repeated missions to 

space. The hindlimb unloaded rat model was selected for this broader study due to its 

established usefulness in simulating microgravity induced skeletal bone loss.(4) The 

essential mechanism of the model is the use of a harness to raise the hindlimbs of adult 

rats, significantly reducing the loading of the hindlimb bones (Fig. 4). 

 
 

 

FIG. 4.    Illustration of hindlimb unloaded rat. Subjected to disuse, a rat’s hindlimbs 
undergo bone loss in a manner analogous to astronaut bone loss due to microgravity.(6) 
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The study began by obtaining male rats 6 months of age (considered skeletally mature 

age) and placing them into three general groups: an initial sacrifice group used to 

establish baseline bone measurements (BL), an aging control group (AC), and finally, a 

group designated to undergo hindlimb unloading (HU). Rats were hindlimb unloaded for 

twenty-eight day (1 month) periods of time (equivalent to astronaut bone loss) and were 

sacrificed at different times in order to observe any changes in the hindlimb bones.(5) 

 

A parallel experiment to this discussed evaluation of metaphyseal cortical bone was 

conducted by cutting slices from the metaphysis of each rat and RPC testing the 

cancellous bone.(6) The remaining untested practice bone specimens (taken from rats 

removed or not used in the study) were tested in the current study. Although the 

condition of the practice bones was not recorded, the qualitative and quantitative results 

of compression testing can still be used to evaluate the general trends that will be 

observed in testing the cortical rings obtained from the rats. 
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CHAPTER III 
 

METHODS 

 

Specimen preparation and compression testing 

The bone specimens from the femur metaphysis were previously cut using a 3242 Well 

Diamond Wire Saw. Because the samples were practice specimens, the cut thicknesses 

of the samples were not constant. In order to obtain approximate dimensions for the 

specimens, the cut thickness as well as the major and minor axes of each specimen was 

measured using a caliper, allowing cortical areas to be approximated as elliptical rings. 

The specimens were then separated into axial and diametral testing groups (n=3) by 

ordering the specimens from largest to smallest major axis, and then, alternating between 

groups while moving down the list. An Instron 3345 was used to perform the pilot tests 

for both axial and diametral compression to evaluate each method. 

 

For both compression testing methods, two circular steel platens (with the upper platen 

having a 10 mm diameter) were attached with the bottom stationary and the top platen 

able to descend on the samples (Fig. 5). The specimens were placed such that each was 

completely underneath the upper platen. For the axial compression tests, each specimen 

was aligned with the larger diameter portion of the ring on the bottom. Because the 

samples were moistened using phosphate-buffered saline, no additional lubricant was 

needed on the platens to allow free movement. The upper platen was lowered until a pre-

load of 0.01 N was observed and then the samples were compressed to failure. Force and 
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displacement were then recorded as the samples were compressed at a rate of 0.5 

mm/min (within the limits of established compression testing) until a sharp decline in 

force was observed.(12)  

 

FIG. 5.    Photograph of axial compression test with pre-loaded cortical specimen. As 
axial compression test is being performed, the upper platen descends and compresses the 
specimen to failure. 

For the diametral compression test, again force and displacement were measured, but the 

samples were aligned with the cortical ring in the vertical plane and with the flatter end 

of the cortical ring functioning as a base (Fig. 6). 
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FIG. 6.    Photograph of diametral compression test with pre-loaded cortical specimen. 

Data reduction and analysis 

The force and displacement data were exported into Excel from the Instron testing 

machine and analyzed using the following equations. 

 

Axial compression 

The force and displacement data (extrinsic or geometry-dependent quantities) were used 

to calculate what are called intrinsic properties, those which depend only on the material 

and not the geometry or structure. The following equations were used to calculate 
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ultimate stress (Eq. 1), strain (Eq. 2) and elastic modulus (Eq. 3) for the axially 

compressed specimens. 

 

σu = 
Fmax

Acortical
 

 

ε = 
Δt
t0

 

 

E = 
σ 
ε

= 
Fmaxt0

ΔtAcortical
 =

kt0
Acortical

 

 

Where Fmaxis the maximum measured force, Acortical is the cortical cross-sectional area 

under compression, t0 is the original thickness of the specimen,  Δt is the displacement, 

and k is the stiffness (taken here as the slope of the linear portion of the load 

displacement curve). 

 

Diametral compression 

Because, prior to the test, the diametral failure mode was unknown, stress equations 

were used to calculate the stresses at the four critical points on the ring. Analyzing the 

specimens as approximately circular rings, the equations for a curved beam were used to 

find the intrinsic properties (Fig. 7). 

(1) 

(2) 

(3) 
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FIG. 7.    Illustration of circular ring under diametral compressive loading by forces 
labeled F. The ends of the horizontal and vertical lines of symmetry for the ring undergo 
the largest compressive and tensile stresses during loading (labeled as points A, B, C, 
and D). 

At points A and C, both bending and axial stresses are exerted on the ring.  The axial 

force is compressive at all points through the ring radius. But, the bending moment 

causes the inner radius to experience compression and the outer radius to undergo 

tension. In contrast, points B and D experience no axial stress, but for bending the 

stresses are opposite, with the inner radius experiencing tensile stress and the outer 

radius undergoing compression. The radius of transition from tensile to compressive 

stress within the ring, known as the neutral axis, was calculated using the equation for a 

curved beam of rectangular cross-section. The radius to the centroid was approximated 

using the average between the measured major and minor axes of each bone specimen 

and the average cortical thickness for the baseline metaphysis bone samples included in 
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the study, calculated from pQCT (peripheral quantitative computed tomography) scans. 

(Eq. 4) 

 

rn = 
h

ln �ro
ri
�

 = 
h

ln�
rc + h

2
rc - h

2
�

 

 

Where h is the average cortical thickness, ro and ri are the inner and outer radii of the 

ring, and rc is the radius to the centroid. 

  

Due to symmetry, only points A and B were analyzed. Castigliano’s theorem was used 

to derive the moment experienced at points A and B. (Eq. 5 and 9) The axial and 

bending stresses were summed to calculate the total stress. (Eq. 6, 7, 8, and 10) In 

addition, using Castigliano’s theorem to derive the deflection of the ring (Eq. 11), the 

elastic modulus was be calculated. (Eq. 12) 

 

Point A 

MA = 
FmR

2
�1 - 

2
π
� 

 

σbend(r) =
 M (r - rn)

Aer
 

 

(4) 

(5) 

(6) 
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σaxial = 
0.5Fm

A
 

 

σA(r) = σaxial + σbend(r) 

 

Where Fm is the measured force, R is the approximated internal radius of the ring,  r is 

the radius being evaluated, rn is the neutral axis for a curved beam of rectangular cross-

section, A is the cross-sectional area, and 𝑒 is the eccentricity. 

 

Point B 

MB=
FmR

π
 

 

σB= σbend(r) 

 

δB = 
δm

2
 =

 FmR3

4πEI
(π2 - 8) 

 

 

E = 
kR3(π2 - 8)

2πI
 

 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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Where δm is the measured displacement, E is the elastic modulus, I is the second area 

moment of inertia for a rectangular beam, and k is the stiffness, approximated by taking 

slope of the linear region of the force versus displacement plot. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

Observed failure modes 

During the compression of each bone specimen, the bones were observed for any 

noticeable deformation or crack formation. The diametrally-loaded specimens showed 

clear deformation at points B and D, using the ring reference points established in 

Chapter III (Fig. 7). The compressive loads at the outer radius of these points resulted in 

indentations in the ring (Fig. 8). 

 

 

FIG. 8.    A representative diametrally-loaded bone specimen after failure. Indentations 
were observed at ends of the minor axis (labeled points B and D from Chapter III). 

The axially-loaded specimens did not show a consistent location of failure around the 

ring. But, the crack propagation was much more noticeable than in the diametrally-

Points B and D 



  21 

loaded samples, as all axially loaded samples yielded cracks which passed completely 

through the cortical shell (Fig. 9). 

 

 

FIG. 9.    A representative axially-loaded bone specimen after failure. 

Extrinsic cortical properties 

Although the force and displacement data were expected to vary in magnitude between 

tests due to the different geometry of each sample and the tensile loading involved in the 

diametral compression, the trends observed for the axial and diametral tests remained 

consistent within each testing method. The diametral compression tests all displayed a 

pronounced rise in measured compressive force, followed by a gradual failure after the 

maximum force was reached (Fig. 10). 

Crack 
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FIG. 10.    A representative diametral compression force versus displacement plot. The 
stiffness value used to calculate elastic modulus was found by taking the slope of the 
linear region of the diametral compression force versus displacement curve. 

In contrast, the axially-loaded samples all displayed a period of consolidation (for 

various lengths of time) during which the initially increasing measured force leveled off. 

Once the samples had consolidated to a degree, they continued to resist the compression 

with increasing force (in the second linear region), until they rapidly failed (Fig. 11). 
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FIG. 11.    A representative axial compression force versus displacement plot. The 
discussed consolidation period is observed at a displacement of ~0.45 mm. All the 
axially-loaded samples displayed rapid failure upon reaching their maximum 
compressive force. 

Intrinsic cortical properties 

In Table 1, a comparison of the calculated intrinsic properties for the practice bones to 

those of the femur in baseline rats revealed significant deviations in ultimate stress and 

elastic modulus. 
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Table 1. Average intrinsic properties for practice bones from femur metaphysis 
compared with values obtained by three-point bending of cortical bone in femur 
diaphysis specimens from baseline rats (not hindlimb unloaded). 

 
Ultimate Stress (MPa) Elastic Modulus (MPa) 

3-pt. Bending of  
Baseline Femur Diaphysis Specimens 132.49 4170 

Diametral 45 5.1 

Axial 20 0.2 

  

This discrepancy could be contributed to several confounding factors. First, because the 

history of the tested practice bones was not recorded, the quality of the bones could be 

significantly diminished from that of the healthy baseline rats. Secondly, because 

ultimate stress and elastic modulus are dependent on the cortical area and the average 

cortical thickness, the approximation of the area as an elliptical ring and the use of the 

baseline metaphysis cortical thickness value for all of the samples tested may not have 

been close enough to the true area and thickness values. Finally, because the bones were 

not as precisely cut as later metaphysis specimens, the geometry of the practice bones 

may not have been as uniform. In particular, additional tapering of the ring through the 

ring thickness (cone-like geometry) could have caused both the diametral and the axial 

tests to load the bones in a manner which altered the failure. 

 

Direct comparison of the two evaluated compression methods revealed that the diametral 

compression method calculated much higher values for both ultimate stress and elastic 

modulus (Fig. 12). Although its values were closer to those calculated for the femoral 
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diaphysis, the diametral compression samples displayed significantly higher standard 

deviations in both the average ultimate stress and elastic modulus values. This is likely 

because the location of failure was consistently under the loads, while the strength of the 

bone cross-sections under the loads may not have remained consistent between samples. 

FIG. 12.    Average ultimate stress and elastic modulus for the diametral and axial 
compression methods. Error bars represent standard deviation for the average of each 
calculated intrinsic property. 

In contrast, the axial compression samples were not as constrained to fail at a single 

location on the ring. This likely led to the failure of the weakest link in the ring, at 

locations which may have been more comparable in strength.  
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CHAPTER V 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

In contrast to the hypothesis offered in Chapter I, neither the diametral nor the axial 

compression of the metaphysis specimens yielded intrinsic properties which were close 

to those found for the femoral diaphysis. (Table 1) However, the small number of 

specimens tested using both methods (n=3) and the simplifying assumptions that were 

taken to analyze the practice bones available likely contributed to this incongruity. 

Experimental errors and artifacts could likely be reduced by more accurately measuring 

the cortical area used to calculate axial stress and the average cortical thickness used to 

calculate bending stress.  Further, ensuring that all samples are cut to more consistent 

dimensions would improve accuracy as well. In addition, because the cortical specimens 

that remain to be tested were precisely cut to a nominal thickness of 2 mm starting at the 

intercondylar fossa of the femur, the amount of tapering in the specimens should be 

diminished and have less impact on the both compression methods. 

 

Despite these imperfections, results from the current study are still useful and 

informative for gaining insight into the relative merits and characteristics of the two test 

methods and making initial comparisons. The location of failure for the diametral 

compression was much more consistent, as expected, because the test configuration 

dictates this to occur at sections under the load points (B and D in Fig. 7). Also, the 

values are closer in magnitude to the reference values from 3-point bending, and the load 
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vs. displacement curves are characterized by only a single monotonically increasing 

initial phase followed by the load peaking and declining steadily due to the progressive 

failure processes. However, variations in results were much higher for this method 

compared to axial compression, as reflected in the standard deviation error bars in Fig. 

12. The main advantage of the axial compression test is that the results showed much 

less variability (smaller standard deviations). In closing, it should be emphasized and 

acknowledged that more definitive comparisons and well-justified recommendations will 

require larger sample sizes and more homogenous groups of specimens. 
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