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ABSTRACT 
 

Decay Heat Conditions of Current and Next Generation Reactors. (May 2012) 
 

JongSoo L. Choe 
Department of Nuclear Engineering 

Texas A&M University 
 

Research Advisor: Dr. Pavel V. Tsvetkov 
Department of Nuclear Engineering 

 

Decay heat is an important parameter in reactor design. Fission products generate heat in 

the reactor core even when the reactor has shut down. This heat has potential to melt the 

core if heat removal is not sufficient, and it is what caused the accident in Japan last year. 

Thus, decay heat must be considered in reactor design for safety. The research focused 

on decay heat conditions of current and next generation reactors. US-APWR, ABWR, 

VHTR, and ABR were modeled and simulated using the program SCALE. When the 

reactors were simulated to operate for two years and cool down for one year, the ABR 

produced the most decay heat power during operation and cooling time, and the US-

APWR, VHTR, and ABWR followed respectfully. Therefore, the ABR requires more 

coolant and cooling time than other reactors, and the ABWR requires the least. 
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CHAPTER I 

INTRODUCTION 

 

Since the Fukushima nuclear disaster in Japan, the safety of nuclear reactors has come 

into question now more than ever. When the earthquake occurred, the power plants were 

shut down immediately (SCRAM), and emergency diesel generators began to power the 

plant’s cooling and control systems. However, the earthquake was followed by a tsunami, 

inundating the generators causing them to fail, and this led to a meltdown (Fukushima 

Daiichi nuclear disaster, 2011). 

 

Decay heat 

Decay heat energy is unavoidable in nuclear reactors. Nuclear reactors generate 

electricity from fission of heavy nuclides which produce fission fragments. These fission 

fragments are highly unstable; therefore they decay releasing alpha and beta particles, 

and gamma rays. These fission products remain in the fuel and increase the temperature 

of the reactor core even after the reactor has been shut down. This decay heat caused the 

accident in Fukushima, and thus this must be understood well for safety. 

 

 

_______________ 
This thesis follows the style of Journal of Progress in Nuclear Energy. 
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Reactors 

This research analyzes decay heat conditions of current and Next Generation Reactors. 

The reactors the research focused on were the US-APWR, ABWR, VHTR and SFR. 

Each was compared with respect to decay heat conditions and coolant required. 

Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR) are currently the 

only commercialized reactors in the United States. Generation IV nuclear plants (VHTR, 

SFR, LFR, MSR, etc) will provide future nuclear energy in a few decades. The 

Advanced Pressurized Water Reactor (APWR) is a generation III nuclear reactor 

developed by Mitsubishi Heavy Industries based on the older PWR design. The US-

APWR is a modified APWR to comply with US regulations. Texas Utilities (TXU) 

decided to build the US-APWR for Comanche Peak units 3 and 4 (Comanche Peak 

Nuclear Power Plant, 2011). Similarly, the Advanced Boiling Water Reactor (ABWR) is 

a generation III nuclear reactor developed by GE Hitachi Nuclear Energy (GEH) and 

Toshiba based on the older BWR design. South Texas Project (STP) selected the ABWR 

for its units 3 and 4, but the project was recently canceled (Advanced boiling water 

reactor, 2011). Very High Temperature Reactors (VHTR) are a thermal neutron 

spectrum reactor. Its high coolant outlet temperatures enable high efficiency and 

hydrogen production. Its fuel design is inherently safe with no possibility of core melting. 

It has advantages of higher efficiency, potential for lower waste inventories, and process 

heat application. The United States Department of Energy (DOE) has determined that 

the VHTR will be the Next Generation Nuclear Plant (NGNP). The DOE expects to 

operate the VHTR by 2021 (NGNP, A Report to Congress, 2008). Advanced Burner 
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Reactors (ABR) are Sodium-Cooled Fast Reactors (SFR) which are fast neutron 

spectrum and closed fuel cycle system reactors. Its management of actinides and 

conversion of fertile uranium is efficient. It is strong in sustainability with lower waste 

(INL: SFR, 2012). 
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CHAPTER II 

METHODS 

 

Design parameters such as active fuel height, number of fuel and control rods, rod and 

assembly pitches, compositions, and component dimensions for four types of reactors 

were collected from databases hosted by the U.S. Nuclear Regulatory Commission 

(NRC), International Atomic Energy Agency (IAEA), DOE, and open internet sources. 

Then the reactor models were developed by using the SCALE program.  

 

Scale 

“The scale code system is a comprehensive modeling and simulation suite for nuclear 

safety analysis and design that is developed, maintained, tested, and managed by the 

Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory 

(ORNL).” Scale has 89 computational modules including 3 deterministic and 3 Monte 

Carlo radiation transport solvers. These modules are selected based on the user’s desired 

solution strategy. “Scale includes current nuclear data libraries and problem-dependent 

processing tools for continuous-energy and multigroup neutronics calculations, 

multigroup coupled neutron-gamma calculations, as well as activation and decay 

calculations.” Scale provides graphical user interfaces to make it easy to use, and also it 

can plot three-dimensions of the model which helps the user acquire desired results 

(ORNL, 2011). 
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Analysis 

In order to simulate the reactor models, Scale requires user inputs including averaged 

power, irradiation time, and the time after the reactor shutdown. The output file of scale 

contains change of compositions of the fuel and criticality during reactor operations. The 

compositions of the fuel in the reactors are changed due to fission, neutron capture, and 

decay. Scale provides the compositions in terms of how much power was produced. 

These powers indicate the production of the decay heat. The nuclides of interest were 

selected from decay heat study by NRC (Gauld et al., 2000). 

 

Design parameters 

The operation power of the US-APWR is 4451 MWth. Its core diameter is 3.88 m and 

has a height of 4.2 m. It has a square pitch with 17 x 17 arrays. Each assembly has 264 

fuel rods, and there are 257 assemblies in the core. It uses enriched uranium 

dioxide(UO2 ) less than 5 wt% and gadolinia-uranium dioxide(Gd,UO2). The cladding 

material is ZIRLO which is a zirconium based alloy for improved corrosion resistance 

(US-APWR, 2011). 

The operation power of the ABWR is 3926 MWth. Its core diameter is 5.16 m and has a 

height of 3.71 m. It has a square pitch with 10 x 10 arrays. Each assembly has 92 fuel 

rods, and there are 872 assemblies in the core. It uses three different levels of enriched 

uranium dioxide(UO2) which are 3.18, 2.18, and 1.23 wt%. For simplicity, only 3.18 wt% 

was used in this study. The cladding material is Zircaloy-2 which is also a zirconium 

based alloy for improved corrosion resistance (ABWR Plant General Description, 2006). 



  6 

Unlike light water reactors, the VHTR uses Helium as a coolant. Its high outlet 

temperature, 1000 oC, is favorable for the production of hydrogen. The reactor produces 

600 MWth, and its core diameter is 4.82 m and has a height of 7.93 m. It has 102 fuel 

columns and 10 blocks per column. Each column has 216 fuel holes (Very High 

temperature Gas Reactor, 2009). VHTR uses two types of TRISO fuels. Both fuels are 

spherical pellets. One contains fissile particles made of 19.9 % enriched uranium 

oxycarbide (UCO) and the other is made of fertile particles containing natural uranium 

oxycarbide (UnatCO). Only fissile fuel was used in this study for simplicity. The fuel 

kernel has UCO at the center. That core is then surrounded by a 35 μm layer of PyC. 

Then it is covered again by a 35 μm layer of SiC. Finally it is covered again with a        

40 μm layer of PyC (IAEA, 2012). 

The ABR’s operation power is 250 MWth. Sodium is used for its coolant. The core 

diameter is 2.27 m and has a height of 2.6 m. It has 210 fuel rods per assembly and there 

are 54 assemblies. Inner and outer core fuel enrichments (239Pu) are 16.5 and 20.7% 

respectively. 239Pu was used for fissile materials and 238U for fertile which becomes 

239Pu during operation. A material called HT9, 12% Cr ferritic-martensitic steel, was 

used for cladding (Cahalan et al., 2006). 

Collected reactor design parameters are summarized in Table 1. 
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Table 1 

Reactor Core design parameters. 

  US-APWR ABWR VHTR ABR 

Power (MW) 4451 3926 600 250 

Core Diameter (m) 3.88  5.16  4.82  2.27  

Core Height (m) 4.2  3.71  7.93  2.6  

Number of fuel assemblies 257 872 
 

54 

rod array 17 x 17 10 x 10 
  rods per assembly 264 92 216 210 

Number of fuel columns 
  

102 
 Number of fuel blocks per column 

  
10 

 rod pitch (cm) 1.259  1.63  1.836 0.908 

pitch  square square triangular triangular 

fuel rod diameter (cm) 0.949  1.23  1.27  0.603  

Cladding material ZIRCO Zircaloy-2 Graphite HT9 

Cladding Thickness (cm) 0.0569  0.086  0.165  0.052  

Fuel enrichment  
MAX 5 
wt% 3.18 wt % 19.9 wt% 

239Pu 16.5 wt%,  
       20.7 wt% 

Coolant  H2O H2O He Na 
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CHAPTER III 

RESULTS 

 

US-APWR core design 

The US-APWR was modeled using Table 1, and its fuel assembly is shown in Fig. 1.  

 

Fig. 1. US-APWR fuel assembly with integral fuel rods. 

 
The blue square boxes represent regular fuel rods, and the red square boxes are the 

integral fuel rods. The green and brown colors are control rods and instrumentation tubes 

respectively. This assembly was used to construct the US-APWR core as shown in Fig. 2. 
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Fig. 2. US-APWR core layout. 

 

The pink squares are fuel assembly without integral fuel rods, and the orange squares are 

fuel assembly with integral fuel rods. The yellow squares are water surrounding the core. 

 

US-APWR decay heat 

The US-APWR model was simulated assuming 730 days of operation and cooled for 

365 days. These operation and cooling dates were applied to the other reactors. Fig. 3 

shows how the decay heat power changes during operation and cooling.  
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 Fig. 3. US-APWR Opus decay heat power for 730 days operation and 365 days cooling. 

 

The total power was increased very quickly as the operation started, then it stabilized 

and remained at nearly the same decay heat power during operation. After 730 days the 

reactor was shut down and the decay heat production was decreased. After the reactor 

was shut down, it is clear that the total power decreased more compared to the other 

nuclides plotted. This phenomena can be explained with following plots using excel 

from output data. 
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 Fig. 4. US-APWR Excel decay heat power for 730 days operation and 365 days cooling. 

 

Fig. 4 shows that the decay heat from many nuclides were significantly small. The two 

dominant nuclides that produced the most decay heat were 144Pr and 106Rh. The 

maximum total decay heat power of the core was 1.99 MW, and the power after one year 

cooling was 6.879 kW.  
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ABWR core design 

The ABWR was modeled using Table 1, and its fuel assembly is shown in Fig. 5. 

   

Fig. 5. ABWR fuel assembly.  

The square boxes across vertical and horizontal centerlines are the control blades. The 

blue colored squared boxes are the fuel rods, and the yellow boxes are the water holes. 

Also, SS304 surrounded fuel rod assembly. Using this assembly, the ABWR’s core was 

constructed as shown in Fig. 6.  
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Fig. 6. ABWR core layout. 

 

The green square boxes are the fuel assemblies and the dark greens are the water. The 

remaining squares contain either half an assembly or a quarter of an assembly.  

 

ABWR decay heat 

The ABWR model was simulated also assuming 730 days of operation and 365 days of 

cooling. Fig. 7 shows how the decay heat power changes during operation and cooling.  
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Fig. 7. ABWR Opus decay heat power for 730 days operation and 365 days cooling. 

 

The result of ABWR simulation was similar to the US-APWR’s result. The total power 

of decay heat was increased quickly at beginning of operation. Then, it stabilized and 

stayed at the same power level. After shut down, the decay heat decreased. The 

individual nuclides were plotted using output data as shown in Fig. 8. 
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 Fig. 8. ABWR Excel decay heat power for 730 days operation and 365 days cooling. 

 

The major differences between the US-APWR and the ABWR were the magnitude of 

decay heat power and the contribution of 134Cs and 106Rh were decreased significantly. 

As with the US-APWR, the decay heat of almost all the nuclides was very small, and 

144Pr was the dominant nuclide. The maximum decay heat power of the core was 1.031 

MW, and the power after one year cooling was 3.294 kW. 
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VHTR core design 

The VHTR was developed by using data from Table 1 as shown in Fig. 9. 

   

Fig. 9. VHTR fuel assembly.  

The VHTR fuel has a triangular pitch, and it is assembled in a hexagonal graphite block. 

The gray colored circles are the fuel rods, and the blue colors are the coolant. The blue 

hole at the center is not the coolant channel but the assembly holder.  

  

Fig. 10. VHTR core layout. 
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In Fig. 10 the red colored hexagonals are the fuel assemblies and the blue hexagonals are 

the graphite blocks.  

 

VHTR decay heat 

The VHTR model was simulated assuming 730 days of operation and 365 days of 

cooling. Fig. 11 shows how the decay heat power changes during operation and cooling.  

 

 

Fig. 11. VHTR Opus decay heat power for 730 days operation and 365 days cooling. 

 

The total power of decay heat was increased very quickly, but again reached steady-state 

during operation. After shut down at 730 days, the power level decreased. The important 

nuclides were plotted using output data as shown in Fig. 12. 
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Fig. 12. VHTR Excel decay heat power for 730 days operation and 365 days cooling. 

 

This figure is similar to the plot created for the ABWR but with a greater magnitude of 

decay power for 144Pr. The contribution of 106Rh was less compared to that of the ABWR. 

Also, as with the other reactors, 144Pr was the dominant nuclide whereas other nuclides 
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produced small amounts of power. The maximum decay heat power of the core was 1.56 

MW, and the power after one year cooling was 4.785 kW. 

 

ABR core design 

The ABR was developed using data from Table 1 as shown in Fig. 13. 

  

Fig. 13. ABR fuel assembly. 
 

The ABR also a has triangular pitch, and it is arrayed in a hexagonal block. The small 

blue colored hexagonals are the fuel rods, and the maroon hexagonals are the sodium. 
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Fig. 14. ABR core layout. 

 

In Fig. 14 the dark green colors are inner fuel assemblies, and the brown colors in and 

out of core are coolant. Inner fuel assemblies are surrounded by outer fuel assemblies 

which are indicated by the purple color. The light green is a reflector that is surrounded 

by a shield.  

 

ABR decay heat 

The ABR model was simulated assuming 730 days of operation 365 days of cooling.  

Fig. 15 shows how the decay heat power changes during operation and cooling.  
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Fig. 15. ABR Opus decay heat power for 730 days operation and 365 days cooling. 

 

The ABR was also like other reactors. The total decay heat power was increased very 

fast and it soon stayed at constant power level. After shut down the decay heat reduced. 

The decay heat productions from each nuclide were plotted as shown in Fig. 16. 
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 Fig. 16. ABR Excel decay heat power for 730 days operation and 365 days cooling. 

 

The decay heat production of ABR was distinct from other reactors. The contribution of 

244Cm and 238Pu were increased significantly. 144Pr still had a significant contribution, 

but 106Rh was the most dominant nuclide in the ABR. The maximum decay heat power 

of the core was 2.429 MW, and the power after one year of cooling was 19.7 kW. 

 

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

7.00E+02 8.00E+02 9.00E+02 1.00E+03 1.10E+03

P
o

w
e

r 
(W

at
ts

) 

Time (days) 

am241

am243

ba137m

ce144

cm244

co60

cs134

cs137

eu154

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

7.00E+02 8.00E+02 9.00E+02 1.00E+03 1.10E+03

P
o

w
e

r 
(W

at
ts

) 

Time (days) 

pm147

pr144

pu238

pu239

pu240

pu241

rh106

sb125

sr90

y90



  23 

Comparison 

The maximum decay heat power productions and decay heat after one year were 

compared as shown in Fig. 17. The ABR produced the highest decay heat power during 

operation and after cooling. The US-APWR was the second highest decay heat producer, 

and the VHTR was ranked third. The ABWR produced the lowest decay heat among the 

reactors.  

 

Fig. 17. Decay heat power changes for all reactors.  
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Table 2    

Decay heat power reduction. 

  US-APWR ABWR VHTR ABR 

Max total (MW) 1.99 1.031 1.56 2.429 

End total (kW) 6.879 3.294 4.785 19.7 

Remained (%) 0.345678 0.319496 0.306731 0.811033 
 

At the end of all the simulations, almost all the decay heats were reduced to about 0.3 % 

of the maximum total power with exception of the ABR. The ABR’s decay heat was 

reduced to 0.811% of its maximum decay heat power. Decay heat power for each reactor 

and its power reduction during cooling as shown in Table 2. 
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

 

Four reactors, the US-APWR, ABWR, VHTR, and ABR, were simulated by using the 

program SCALE to study their decay heat conditions. During the 730 days of operation, 

the decay heat power of all the reactors increased very quickly and stayed nearly 

constant. It was found that 144Pr and 106Rh were the most dominant decay heat sources 

for all reactors. For the US-APWR, ABWR, and VHTR, 144Pr was the most dominant 

nuclide whereas 106Rh was the most dominant nuclide for the ABR. The contribution of 

106Rh was high for the US-APWR and then decreased for the ABWR and even more for 

the VHTR. However, the contribution of 106Rh was even higher than the contribution of 

144Pr for the ABR. Also, 134Cs contributed relatively more decay heat for the US-APWR 

compared to other reactors. For the ABR, decay heat power of 244Cm and 90Sr were 

significantly increased. The ABR produced the highest decay heat power, and the US-

APWR, VHTR, and ABWR followed in order. The decay heat power reduced to around 

0.3% of its maximum operation decay heat power after one year shut down for most 

reactors except the ABR which was reduced to 0.811%. Therefore, the ABR requires 

more coolant and cooling time than any other reactors where the ABWR requires least.  
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