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ABSTRACT 
 

Fractionation of Dissolved Solutes and Chromophoric Dissolved Organic Matter During 
Experimental Sea Ice Formation. (May 2012) 

 

Stephanie Denise Smith 
Department of Marine Biology 

Texas A&M University 
 

Research Advisor: Dr. Rainer Amon 
Department of Marine Science 

 

In the past decade there has been an overall decrease in Arctic Ocean sea ice cover.  

Changes to the ice cover have important consequences for organic carbon cycling, 

especially over the continental shelves. When sea ice is formed, dissolved organic 

carbon (DOC) and other tracers are fractionated in relation to the initial water.  Two 

separate “freeze-out” experiments were conducted to observe the effects of fractionation 

during ice formation.  In experiment 1, marine and freshwater end members were mixed 

together in different ratios to create four different salinities. In experiment 2, a brackish 

water sample was collected. The initial unfrozen water, ice melt, and post-freeze brine 

water  were tested for dissolved organic carbon, total nitrogen (TN), dissolved inorganic 

carbon (DIC), fluorescence and absorption (optics), water isotopes (δ
18O and δD), and 

lignin phenols. Results showed a clear fractionation effect for all parameters, where the 

ice samples contained much less of the dissolved species than the enriched brine 

samples.  This information is important to consider when using these parameters to 

determine the fate of carbon and the freshwater budget to the Arctic Ocean. 
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CHAPTER I 

INTRODUCTION 

 

The Arctic Ocean is a relatively landlocked ocean with a deep central basin that is 

surrounded by continental shelves and shallow seas. The Arctic Ocean receives 10% of 

global freshwater discharge, and terrigenous dissolved organic carbon (DOC) (Opsahl et 

al., 1999; Cooper et al., 2008).  The scale of the freshwater contribution produces strong 

vertical stratification in the Arctic marine system, separating warmer deeper Atlantic 

water from the surface where seasonal sea ice is sustained, as a result (Aagaard and 

Carmack, 1989). 

 

The surface layer of the Arctic Ocean is dominated by sea ice and lower salinity surface 

water, at relatively cold temperatures of -2⁰C.  Below the surface layer, salinity and 

density rapidly increases, creating a layer called the halocline, which can be found in the 

upper 300m (Amon, personal communication). The halocline is a layer that isolates the 

cold and relatively fresh polar surface waters from the warm and salty Atlantic layer, 

with an average temperature of 1⁰C (Aagaard et al., 1981) (Figure 1).   

 

 

_______________ 
This thesis follows the style of Marine Chemistry. 
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Figure 1. Stratification of the Arctic Ocean. (modified from Jakobsson, A., et al. 2004) 
 
 

The halocline plays a critical role in the heat budget of the Arctic, but the diverse origins 

and maintenance of halocline layers are not fully understood, particularly in the Canada 

basin (Rudels et al., 1996, 2004; Steele and Boyd, 1998; Woodgate et al., 2005).  

Freshwater flowing from the Arctic to the North Atlantic influences the patterns and 

intensity of deep water formation, and the global thermohaline circulation.  Because 

freshwater runoff plays an important role in stratification, there is a large interest in the 

fate and transport of freshwater runoff.  Also, climate change in the Arctic could 

potentially affect the halocline’s structure, as well as the global thermohaline circulation 

(Steele and Boyd, 1998; Martinson and Steele, 1999).  Observed environmental changes 

include: an increase in surface air temperatures, a rapid decline in sea ice cover, as well 

as a shift in the Arctic freshwater cycle (Schlosser et al., 2002; Richter-Menge et al., 

2006; Yamamoto-Kawai et al., 2005, 2008), resulting in a change in river discharge. 
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There are four individual freshwater sources to the Arctic Ocean including river runoff, 

sea ice melt, precipitation and low-salinity Pacific inflow.  Riverine freshwater can be 

characterized by a strong concentration of chromophoric dissolved organic matter 

(CDOM), which can be used as a tracer for water mass modification, and identification 

of freshwater components (Walker et al. 2009).  Fluorescence spectroscopy is used to 

trace sources of CDOM and if conservative they can be used as a potential tracer of 

water masses. CDOM is mainly located in the upper 300m and can come from 

terrigenous sources or from marine sources.  Lignin phenols are unique to vascular 

plants, and are used as a tracer for terrestrial organic matter. (Opsahl and Benner, 1997).  

 

Fluorescence spectroscopy is combined with parallel factor analyses (PARAFAC), a 

multi-linear regression analysis that’s used to distinguish between marine and 

terrigenous CDOM (Stedmon et al., 2003; Kowalczuk et al., 2005; Stedmon & Markager 

2005a,b; Walker et al., 2009).  During AOS 2005, an in situ fluorometer was used to 

trace CDOM across the Arctic Ocean.  The in situ map in Figure 2 shows a strong 

concentration of fluorescence in the Eurasian basin, which was closely related to the 

lignin phenol concentrations indicating the predominantly terrestrial origin of CDOM 

(Amon, personal communication).  The Canadian basin shows a low fluorescence signal 

and a weak relationship between fluorescence and lignin phenols, which would indicate 

very little river inflow into the Canada Basin surface waters.  In contrast, Jones et al., 

suggest that there was significant river runoff in the upper 50m of the Canadian Basin, 

based on alkalinity signatures during AOS 2005 (Figure 3).  This hypothesis does not 
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agree with the in situ fluorescence in Figure 2.  Sea ice formation and DOM rejection on 

shelves is the most likely process explaining the differing estimates of the riverine 

contribution to freshwater in the Canada basin surface waters (Amon, personal 

communication).  The goal of this study is to investigate if DOM and other tracers are 

fractionated during sea ice formation to justify the differences between these two studies 

which attempt to describe the freshwater distribution within Canada Basin (CB) surface 

waters.  

 

 
 

Figure 2. In situ fluorescence data collected across the Arctic Ocean during AOS 2005. 
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Figure 3. River fraction of fresh water from AOS 2005 based on alkalinity (Jones et al., 
2008) 

 

When sea ice is formed, salt and other dissolved matter, like DOC, is rejected from the 

ice matrix.  The density of this post-freezing shelf water is affected by the salinity of the 

water prior to freezing. In other words, the higher the initial salinity the denser the post 

winter shelf water (Amon 2004).  The density of this water determines how deep it can 

penetrate the Arctic basin.  Results from previous “freeze-out” experiments indicate that 

the densest brine water had the lowest concentrations of DOC, which demonstrates that 

the densest shelf water has the greatest potential to penetrate the deep basins of the 

Arctic Ocean (Amon 2004).  While some information is known about the fraction of 

DOC during ice formation, little is known about the effects on other parameters such as 

DIC, water isotopes and lignin phenols. Another aspect to consider for this study is the 

fractionation effect on DIC during sea ice formation.  Carbon-dioxide emissions are 

pushing the waters of the Arctic Ocean towards more acidic conditions.  Research 

carried out in the archipelago of Svalbard has shown in many regions around the north 

pole seawater is likely to reach corrosive levels for calcium carbonate within 10 years 

(Lombard et al., 2010).  Sea ice formation may affect the concentrations of DIC in the 
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Arctic, and should be taken into account when determining the rate of ocean 

acidification.  

 

In this study, two separate freeze-out experiments were conducted to investigate the 

before and after effects. Measurements were taken from the initial (pre-freeze) mixtures, 

the (post-freeze) ice melt, and (post-freeze) brine water.  A number of analyses were 

conducted, including the measurements of: dissolved organic carbon (DOC), total 

nitrogen (TN), dissolved inorganic carbon (DIC), fluorescence and absorption (optics),  

water isotopes (δ18O, δD), and lignin phenols.   
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CHAPTER II 

METHODS 

 

Sample collection and mixtures 

Two separate experiments were conducted during this study. In experiment 1, ocean 

water and river water were mixed together to create four solutions of varying salinities. 

Deep ocean water samples were collected from the deep Gulf of Mexico. River water 

samples were collected from the Trinity River Island Recreation Center located at 29° 

49'N, -94° 44'W.  The river water was filtered using a 25 mm sieve. Experiment 1 

samples included salinities of: 8, 15, 25, and 32ppt. In experiment 2, a large volume 

sample was collected from the same location along the Trinity River. At this time the 

dam was closed which created brackish conditions at the sampling site. The samples 

collected had a salinity of 12 ppt. From this initial volume, three replicate experiments 

were conducted to insure reproducibility. The three replicate freezes were conducted 

over a six month time frame.  

 

Freeze-out experimental design  

Before the freeze was conducted, initial water samples were collected for analysis to 

obtain a before and after comparison. Then, 4 L of each salinity mixture was placed in a 

polypropylene beaker. The beaker was placed in a styrofoam insulator that was open at 

the top to facilitate the freezing of water from the surface, and not from the sides of the 

container (Fig. 4).  Parafilm was stretched across the top of the beaker, and a teflon tube 



  8 

is inserted into the center of the parafilm.  The apparatus was then placed in a -20⁰C 

freezer.  When ~30% of the water was frozen, (approximately 24-30 hours), the beaker 

was removed from the freezer.  The teflon tubing was used to pull out the block of ice, 

which was then placed in a new pre-cleaned zip lock bag. The bag was sealed in order to 

prevent gas exchange during the melting process. The brine and ice meltwater were 

measured for salinity using a refractometer and put into containers specific to each 

analysis. All glassware and plastic collection devices were either acid washed using 0.2 

N HCl, rinsed and/or pre-combusted at 450⁰C to ensure all containers were organic 

carbon free.  

 

Figure 4. Illustration of the freeze-out apparatus used for the experiments. 
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Measurements and sample processing 

Samples for the optical analyses were kept in 40 mL glass ampules and stored in the 

freezer.  They were brought to room temperature and measured for optical properties.  

Fluorescence was measured using a Photon Technologies International Fluorometer 

(Quanta Master-4 SE).  The sample was pipetted into a 1 cm quartz cuvette using a pre-

combusted glass pipette.  Excitation was measured from 240-450 nm, and emission was 

measured from 300-600 nm.  The intensity of fluorescence was measured in Raman 

Units (R.U., nm-1), and corrected for inner filter effects and Rayleigh and Raman scatter 

effects.  Absorption was measured using a Shimadzu UV-2401PC/2501PC 

spectrophotometer, from the wavelengths 200-800 nm, collected at 0.5 nm increments.  

The sample was pipetted into a 5 cm quartz cuvette. Mili-Q water is used as a reference 

blank for corrections.  Absorption coefficients were calculated by the following equation  

a (λ) = (2.303*abs/path length of cuvette).   

 

The data collected from the fluorometer and photometer was processed using MATLAB. 

A series of Excitation Emission Matrices (EEMs) was created for each sample.  

Samples for DOC, TN, and DIC were kept in 25mL glass ampules. DOC and TN 

samples were stored in the freezer, and the DIC was stored in the refrigerator.  The DIC 

water was filled to the top of the container, to ensure that there was no gas exchange.  

Concentrations were determined using a TOC Analyzer (Shimadzu TOC-V CSH/CSN).  

Potassium hydrogen phthalate (DOC), potassium nitrate (TN), and sodium carbonate 

(IC) standards were used to create daily calibration curves.  Deep sea standards supplied 
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by D. Hansell (University of Miami) are used to assure quality control (Walker et al. 

2009).  Measured concentrations were normalized to the sample volume in order to 

calculate a mass balance (not shown). Each yield was near 100% (+/- 5%). Therefore, 

there was no substantial loss or contamination of the dissolved solutes measured.  

 

Prior to analysis, water isotope samples (exp. 2) were pipetted into 2 mL glass vials, 

filled to the top to prevent gas exchange, and refrigerated. Samples were analyzed for 

oxygen and hydrogen stable isotope ratios using a Picarro Cavity Ring Down 

Spectrometer (Water Isotope Analyzer L2120-i). Three laboratory isotope standards 

were used to create daily calibration curves throughout the analysis. From this curve, a 

linear best-fit equation (R2=0.99) was used to calculate sample concentrations. The 

laboratory standards have previously been calibrated against international isotope 

standards for SMOWV (Vienna Standard Mean Ocean Water) and GISP (Greenland Ice 

Sheet Precipitation) acquired from IAEA.  

 

In experiment 2, the remaining A and B initial and brine samples were acidified to a pH 

of 2.5 for lignin analyses. The remaining ice samples from the two freeze trials were 

acidified and mixed together to create one volume large enough for accurate detection of 

products. The acidified samples were extracted by solid phase extraction (SPE) using 

C18 cartridges (Varian) at 70mL/min. HPLC grade methanol was initially run through 

the C18 cartridge, followed by 100mL of acidified Mili-Q water (pH 2.5), sample, and 
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finally with 1 L of acidified Mili-Q. Following extraction, cartridges were frozen until 

they were ready to be analyzed.  

 

After thawing the C18 cartridges, samples were eluded using 35mL of HPLC grade 

methanol at a speed of 70mL/min. The eluded sample was collected into pre-combusted 

glass vials. The methanol and excess water was evaporated using a LabConco solvent 

concentrator. The resultant dried paste was dissolved into 2mL of pre-sparged 2N NaOH 

and sonicated. The sample was then pipetted into pre-loaded steel reaction vessels. The 

vessels contained 330mg cupric oxide (CuO), 150mg ferrous ammonium sulfate (FAS) 

and a steel ball bearing. Lignin analyses were performed using the cupric oxidation 

(CuO) method previously developed (Goni and Hedges, 1992; Louchouarn et al., 2000; 

2010).  

 

After oxidation, the reaction products must be extracted. First, 50µl of surrogate 

standard, trans-cinnamic acid (3-phenyl-2-propenoic acid), was added to each sample to 

account for losses during each step following the oxidation. Then 1N NaOH was added 

to the vessel and centrifuged. The collected supernatants were acidified to pH 1 using 

6mL of 12N HCl. The extraction was then carried out using 3mL high purity ethyl 

acetate. This process was repeated three times to maximize recovery of the reaction 

products. Following this step, the extract was dried with Na2SO4 and the solvent was 

evaporated using a LabConco solvent concentrator.  Pyridine (400μl) is used to re-

dissolve the extracts, followed by a further dilution with pyridine (50:300μl). A 75μl 
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aliquot was transferred to a 1.5 mL glass vial to which BSTFA+1% TCMS was added in 

order to silyate any exchangeable hydrogen present in the sample. The samples were 

derivatized by heating at 75⁰C for one hour in a 20-well block heater and then 

transferred to a 250μl glass auto sampler vial insert. Lignin oxidation products (LOP) 

and other biomarkers were quantified using a gas chromatography-mass spectrometry 

(GC/MS) with a Varian Ion Trap 3800/4000 to estimate the fractionation effect on lignin 

phenols during ice formation.  
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CHAPTER III 

RESULTS 

 

Salinity 

In both experiments (Fig. 5, Fig. 6) salinity was lowest in ice samples and highest in 

brine samples. 

 

Figure 5. Salinity exp. 1 concentrations (ppt) for each sample type in experiment 1.  
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Figure 6. Salinity concentrations (ppt) for the three trials in experiment 2.  
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Dissolved organic carbon 

In experiment 1 (Fig. 7), “A” had the highest concentration of DOC due to the 

dominance of riverine freshwater in the sample. Compared to the initial water, the ice 

was depleted in DOC, and the brine was enriched. This same pattern can be seen across 

the four salinity ranges (Fig. 7), and in experiment 2 (Fig.8).  

 

 

Figure 7. DOC concentrations (μM) for experiment 1.  
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Figure 8. Figure 8. DOC concentrations (μM) for experiment 2.  
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Total nitrogen 

Nitrogen is fractionated in the same way as DOC during ice formation. Figure 9 shows 

the concentrations for experiment 1. Figure 10 shows the concentrations for experiment 

2. 

 

Figure 9. Figure 8. TN concentrations (μM) for experiment 1.  
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Figure 10. TN concentrations (μM) for experiment 2.  
 
 
 

Dissolved inorganic carbon 

DIC concentrations were only collected for experiment 1 (Fig. 11) due to time 

constraints. The same trend is present with the ice having a lower concentration, and the 

brine having a higher/enriched concentration. 
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Figure 11. DIC concentrations (μM) for experiment 1.  
 
 
 

Water isotopes 

Isotopic ratios were measured for experiment 2 samples only. The trend shows that ice 

melt samples had the most positive values of δ
18

O (Fig. 12) and δD (Fig.13). Among the 

δ
18O samples, there was some notable discrepancy. In particular, sample A Brine was 

not comparable with brine samples from B and C. Additionally, sample C Initial was not 

comparable to Initial samples B and C. Possible causes of these discrepancies may be 

due to the time between freeze-out experiments and the processing of samples. Due to 

the nature of oxygen isotopes, possible interactions with atmospheric O2 may be the 
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cause of the incongruence. Despite the variation of δ
18O samples, there is consistency 

among ice samples, to which some conclusions can be drawn.   

 

 

Figure 12. δ
18O isotopic ratios for experiment 2.  

 

Among δD samples (Fig. 13), the measured isotopic ratios were consistent among all 

three trials. Ice melt samples exhibited a positive δD, and brine samples were more 

negative than the initial water. A positive  value means that the sample contains more 

of the heavy isotope, and a negative  value means that the sample contains less of the 

heavy isotope than the standard. The enrichment of heavy isotopes in ice samples may 
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be due to the loss of lighter isotopes (16O and 1H) to the atmosphere during ice 

formation.   

 

 

Figure 13. δD isotopic ratios for experiment 2.  
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Optics 

The signal shown in Fig. 14 represents the total fluorescent DOM in Raman units (nm-

1). This set of EEMs came from experiment 1A. The EEMs from all other samples are 

not shown, but they displayed the same relationship. Furthermore, Fig. 15 shows a 

positive correlation between fluorescence and absorbance for all samples in experiment 

2. The discrete locations of fluorescence intensity peaks are used to identify different 

fluorophores present within the sample. The ice shows a decrease in the fluorescence 

intensity compared to the initial and brine.  The EEMs show another view of how 

CDOM is being fractionated during ice formation. 

 

 

Figure 14. Example EEMs from the “A’’ mixture in experiment 1. 
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Figure 15. Relationship between fluorescence and absorbance for all samples in exp. 2.  

 
 

Lignin phenols 

Concentrations of total lignin phenols (Sigma6) were calculated by combining the values 

of all lignin oxidation products (LOP) (Fig.16). Percent yield of lignin (Lambda6) was 

also calculated by comparing the total lignin concentrations to DOC concentrations 

(Fig.16). Ice samples had the lowest concentrations of lignin (0.0023mg/L), and brine 

samples had the highest concentrations. Although the ice contained the lowest 

concentration of lignin, it had the highest lignin yield (8.5%). Even though a large 

portion of DOC is rejected from the ice matrix during freezing, a significant amount of 

the DOC remaining in the ice is made up of lignin phenols.  
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The relationship of lignin monomers has been used to identify major lignin sources 

(Hedges and Mann 1979), particularly the ratios of cinnamyl phenols to vanillyl phenols 

(C/V) and the ratios of syringyl phenols to vanillyl phenols (S/V). It is therefore of 

interest to see if these ratios are effected by ice formation. In our experiments the S/V 

and C/V ratios remained relatively stable throughout the samples. However, acid to 

aldehyde  ratios (Vd/Vl and Sd/Sl) are slightly affected by ice formation. Ice samples 

had lower Ad/Al ratios, meaning that the acidic lignin monomers are more effectively 

rejected than the aldehyde monomers (Fig.17).  
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Figure 16. Concentration of total lignin (Sigma6) in mg/L. Percent yield of lignin 

(Lamda6) compared to DOC concentrations. 
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Figure 17. Ratios of different lignin oxidation products for experiment 2.  
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

 

All of the dissolved solutes investigated in this study were heavily fractionated during 

freezing. Ice formation has a profound effect on tracers which are used to study physical 

as well as biological processes such as water mass distribution and mixing, primary 

production and respiration, respectively. Results from this study should be taken into 

account when determining the patterns of these processes. 

 

During the AOS2005 cruise, fluorescence and DIC data was collected across the 

Canadian Basin of the Arctic (Fig.18). Originally, it was thought that the relationship 

indicated that the fluorescence signal was actually tracing degradation of organic matter. 

However, after observing the effects of the freeze out experiments, it is possible that this 

relationship may simply indicate that these two parameters are being driven by the same 

process: fractionation during sea ice formation.    
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Figure 18. Relationship between total DIC and CDOM fluorescence in the Canadian 

Basin during the AOS2005 cruise.   
 
 

Data collected during AOS2005 (Fig. 2) shows that the upper 50m of the Canadian 

Basin are stripped of CDOM, despite estimates of large river inflow from alkalinity data 

by Jones et al. The freeze experiments demonstrate how sea ice formation physically 

removes CDOM from the surface ocean and injects it into deeper layers. The CDOM 

signal (Fig. 2) is prominent in the deeper layers of the CB. It is possible that the low 

CDOM concentration in the surface water is due to an increase in sea ice meltwater, as 

shown by (Yamamoto-Kawai et al., 2008, 2009). Export of ice sheets into the Canadian 

basin may be diluting the CDOM signal.  

 

The results from the freeze experiments suggest that the Arctic could potentially be 

drawing down CO2 from the atmosphere, which could result in an increase of ocean 

acidification in the Arctic. Yamamato-Kawai et al. (2011) also suggested that extensive 

melting of sea ice combined with increased atmospheric and surface water temperatures 

alters the calcium carbonate saturation state. Under-saturation of calcium carbonate is 
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unfavorable for the growth of calcifying organisms. If this trend continues, it could have 

many implications for organisms in this ecosystem. Future studies should focus on 

predicting how the distribution of freshwater components in the Arctic will change in 

response to future climatic shifts.   
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