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ABSTRACT 
 

Fingerprinting Soils - A Proof of Concept. 
(April 2011) 

 

Catherine Kobylinski 
Department of Plant Pathology and Microbiology 

Texas A&M University 
 

Research Advisor: Dr. Cristine Morgan 
Department of Soil and Crop Sciences 

 

Forensic soil characterization is an under-explored field in the forensic sciences. One 

aspect of forensic sciences is Locard’s Exchange Principle, which states that every 

contact leaves a trace. As soil characterization technology improves, applications of soil 

forensics can more accurately identify if a soil sample collected from a suspect 

corresponds to samples collected at a crime scene. This research focuses on the use of 

visible near and infrared, diffuse reflectance spectroscopy (VNIR DRS) to develop 

spectral “fingerprints” of soils. Our hypothesis is that VNIR spectra of soils from a crime 

scene are unique from other soils, even soils of the same soil series. If soil spectra from a 

crime scene are unique, this data can be used to accurately assess Locard’s Exchange 

Principle. Soil samples were collected within in a thirty-mile radius of a designated 

“crime scene” in the Brazos River floodplain near Texas A&M University. The crime 

scene is mapped as a Weswood silt loam (Udifluventic Haplustepts). Three other similar 

soil series were identified to test uniqueness of soil spectra within and between soil 

series. These soils included Yahola fine sandy loam (Udic Ustifluvents), Ships clay, 
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(Chromic Hapluderts) and Silawa fine sandy loam (Thermicultic Haplustalfs). Sixteen 

soil samples were collected from randomly located soil mapped Weswood, and eight soil 

samples were collected from Ships, twelve from Yahola and ten from Silawa (n=48). At 

the crime scene, an X-shaped sampling geometry was constructed. At 5 m intervals 

along the X, surface soil samples were collected and a single sample was collected at the 

center of the X (n=17). The soil samples were air dried, ground to pass through a 2 mm 

sieve, and scanned with a VNIR spectroradiometer (350-2500 nm). Principle 

components analysis was performed to deduce the uniqueness of the soil spectra 

between the four soil series from the crime scene samples. Reflectance spectra of Yahola 

and Weswood soils were very similar, while Silawa and Ships were easily differentiated. 

The first derivative of the reflectance spectra improved differentiation between 

Weswood and Yahola. Spectral properties of the crime scene soils were mostly unique 

with X other soil samples within the range of the first three principal components of the 

crime scene soils. VNIR fingerprinting of soils from a particular location is a promising 

technique for forensic soil science. 
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CHAPTER I 

INTRODUCTION 

 

 

Classical soil characterization by soil scientists are numerous and well documented; 

however, most soil analysis techniques were designed to identify agricultural suitability 

rather than for forensic application. In soil forensic applications, such as trace evidence 

collection, the goal is to identify a soil as being uniquely associated with a soil sample at 

another location, perhaps a crime scene.  Soil characterization techniques include 

physical, chemical, and biological analysis of soil components.  For example, particle 

size distribution, clay-sized mineralogy, identification of biota and quantifying anions 

and cations on exchange sites and in soil solution are typical (Dane and Topp, 2002; 

Dixon and Schulze, 2002; Sparks, 1996).  Forensic soil analyses are similar and 

commonly include color, particle size distribution, and microscopic examination of soil 

particles to determine their shape and structure, and chemical elemental analysis (Pye, 

2007).  Because all of these analyses (except color) require several grams of dried 

ground soil, require time intensive sample pre-processing and destroy the soil sample 

during analysis, these procedures are limited to quantifying soil properties in cases 

where ample soil material and financial resources are available for analysis.  In some 

forensic cases where only a small or trace amount of soil is available; for example a  

______________ 
This thesis follows the style of the Forensic Examiner. 
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scraping from clothing or a vehicle tire, current analyses methods are not applicable.  A  

method that uniquely identifies soils, uses small (< 5 g.) samples, requires little soil 

processing, and is nondestructive, could facilitate the use of soil trace evidence in  

forensics. Visible Near-Infrared (VNIR) diffuse reflectance spectroscopy is a method 

that rapidly and non-destructively measures soil reflectance continuously from 350 to 

2500 nm. VNIR spectroscopy has been used in soil science to quantify soil clay content, 

soil chemical properties, and classify soil mineralogy (Gaffey, 1986; Shepherd and 

Walsh 2002; Brown et al., 2005; Waiser et al., 2007; Morgan et al., 2009). The aim of 

this research is to explore the applicability of VNIR spectroscopy as a soil fingerprinting 

method for use in forensic soil science. 

 

 

VNIR spectroscopy has been used in soil science since the late 1990’s, but only recently 

has been used in non-research applications (e.g. soilmap.net and US soil carbon 

characterization).  This technique provides a measure of the reflectance of soil samples 

as a function of wavelength. VNIR-DRS has been utilized in soil applications because of 

the unique reflectance and emittance spectral signatures of natural surfaces, including 

soil, which are sensitive to specific chemical bonds in materials, whether solid, liquid or 

gas. This technique has the advantage of being sensitive to both crystalline and 

amorphous materials, unlike some diagnostic methods, like X-ray diffraction (Clark, 

1999). To date VNIR spectroscopy has been used in soil science as a method to 

determine the chemical makeup of a soil and measure other soil properties that can 
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differentiate a soil. These properties include clay content, clay mineralogy, inorganic 

carbon, organic carbon, and cation exchange capacity (Gaffey, 1986; Ben-Dor and Banin 

1995; Shepherd and Walsh 2002; Brown et al., 2005; Lagacherie et al, 2007; Waiser et 

al., 2007; Morgan et al., 2009).  The main advantages of VNIR spectroscopy are that it 

requires little soil preparation (drying and grinding only), is non-destructive, and 

supports rapid collection and analysis of data.  Once a soil is dried and ground actual 

collection of soil VNIR reflectance takes less than 5 seconds, and includes multiple 

scans. In four hours a trained operator can collect, process and analyze spectral data on 

approximately 50 soil samples.  The primary disadvantage of the technique is that 

methods for analyzing the data are still being explored and developed.   

 

 

In forensics, scientists analyzing soil evidence have focused on physical descriptors, 

clay-sized mineralogy, and biological analysis. Physical descriptors include color, 

particle size distribution, and microscopic examination of soil particles to determine 

their shape and structure (Pye, 2007). The color of soil is established using a Munsell 

color book, in which a scientist visually matches the color of a soil sample to a Munsell 

color chip of a specific hue, value, and chroma.  During a VNIR spectroscopy 

measurement of soil, the visible spectrum (390 to 750 nm) is precisely quantified at 1-

nm wavebands.  Hence for color analysis, VNIR spectroscopy removes error associated 

with varying interpretation of soil colors by different human eyes.   
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Particle size distribution refers to the percentages of sand-, silt-, and clay-sized particles 

present within a soil.  While quartz-based sand and silt particles are not directly 

measured by VNIR spectroscopy, absorptions by water bonds associated with clay 

content and other bonding associated with clay type provide information for reliable clay 

content prediction.  Previous research on air-dried, ground soil samples has shown VNIR 

predictions of soil clay content with root mean squared deviation (RMSD) values 

ranging from 62 to 11 g kg-1 (Ben-Dor and Banin, 1995; Janik et al., 1998, Shepherd and 

Walsh, 2002; Islam et al., 2003; Sorensen and Dalsgaard, 2005; Brown et al., 2006; 

Waiser et al., 2007).  Spectroscopy-based clay predictions on dried, and ground soil 

samples are very similar to standard laboratory measurement errors which are 50 and 20 

g kg-1 using the hydrometer and pipette methods, respectively (Gee and Or, 2002). 

 

 

Forensic soil scientists perform chemical analyses to discern the mineralogical makeup 

of a soil.  The clay sized-fraction is composed of different types of clay sized minerals, 

such as silicate clays (e.g. smectitie, kaolinite, and mica), calcite, and gypsum.  

Laboratory techniques that measure silicate clay types include X-ray diffraction and X-

ray fluorescence spectroscopy (Hiraoka, 1994).  X-ray diffraction utilizes the scattering 

of X-ray beams as they hit a substance to determine the mineralogical makeup of a soil, 

while X-ray fluorescence uses high energy X-rays to cause the test sample to emit 

secondary (fluorescent) X-rays for the same purpose.  Both methods require time 

intensive sample preparation, such as clay fractionation, saturation of exchange sites 
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with a single cation, mounting, and several grams of a soil sample. Mineralogy is semi-

quantitative where soil minerals are identified as being present and then categorized into 

relative quantity. VNIR spectroscopy can also categorize soils minerals. Brown et al. 

(2006) built a VNIR calibration for silicate clay minerals and was able to predict 

kaolinite and montmorillonite within one ordinal unit from X-ray diffraction data 96% 

and 88% of the time, respectively.   

 

 

Organic substances in soils can also be useful in forensic soil science. In forensics, Zala 

(2007) deals with indentifying the unique mix of organic substances to identify a soil by 

examining the unique mementoes plants leave behind for soil characterization. Fourier 

Transform Infrared (FTIR) Spectroscopy is also being developed to isolate the spectral 

identity of a soil’s organic compounds (Cox, 1999).  Though VNIR spectroscopy is 

likely limited to its use of specifically identifying organic compounds in soils, it is 

currently used in many applications to measure organic carbon in soils, and classify 

organic compounds in herbivore manure.  Wiedower et al., (2009) and Dittmar et al., 

(2006) use VNIR spectroscopy to identify animal forage quality by scanning feces. In 

this work specific proteins are identified, showing the potential of VNIR to be sensitive 

to various organic compound structures.  Work to use VNIR spectroscopy to quantify 

organic carbon stocks in soils, has identified the spectral specificity of the method to 

carbon source (Christy, 2007; Kusomo et al 2008; Morgan et al, 2009).  
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 Biological examination in forensic soil science has primarily focused on the presence 

and makeup of diatoms (unicellular organisms with species specific shells composed of 

silica (Goho, 2004)), opal phytoliths, and pollen.   Different species of diatoms, pollen 

and microbial populations present in the soil can be used as to match commonalities 

between two soil samples.  

 

 

Locard’s Principle of Exchange states, every contact leaves a trace (Walls, 1974). This 

principle plays an important role in soil forensics. It implies that a suspect will leave 

evidence at a crime scene and more importantly, take evidence with him/her. Soil 

forensic scientists use this principle to tie soil evidence from a suspect to a crime scene. 

This thesis will focus on using VNIR spectroscopy to construct spectral fingerprints of 

different soils to aide in tying a suspect to a crime scene. The reason I chose to evaluate 

VNIR spectroscopy is that it is cost effective, supports rapid collection and analysis of 

data and most notably, is nondestructive. The fact that VNIR spectroscopy is 

nondestructive allows for further testing on trace amounts of soil evidence.  

Hence, the overall objective of this thesis is to evaluate whether a VNIR spectral 

signature of a soil from a specific location is unique compared to the VNIR signatures of 

other soils. More specifically, we will test 1) the ability of VNIR spectral signatures to 

be differentiated between soil series and 2) characterize the variability of soil spectra 

from a specific location. 
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In chapter II of this thesis, the methodology employed to collect soil samples is 

described along with the subsequent statistical analysis of the data.  There are a number 

of basic soil science terms that are used in the chapter on methodology, which are vital 

for understanding my research goals, and are briefly introduced here. First, a soil series 

is a classification within soil taxonomy. A series consist of soils that are similar in all 

major profile characteristics including color, texture, and structure. There are twelve soil 

textures based on United States Department of Agriculture classification (Sumner, 

2000). A soil texture refers to a particle size category that includes pre-defined ranges in 

the percentages of sand, silt, and clay present within a soil (Brady, 2004); for example 

sand, loamy sand, silt loam, and clay loam to name a few.  Though a single soil series is 

narrowly defined, the surface soil of a single soil series can differ in organic carbon 

content, carbonate content, and texture, among other things. The overall aim of this 

research is exploit these differences using VNIR spectroscopy, and to use this 

information to classify a soil that might be unique to a singular location, relative to other 

soils in the same series.   

 

 

A mapping unit is a conceptual group of soils within a series that represent similar 

landscape areas delineated or identified by the same name in a soil survey (Brady, 2004). 

Like soil series, mapping units have characteristics that make them similar and different 

to other mapping units. Mapping units can be grouped based on texture, landscape 
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position, and amount of weathering. Mapping units differ, like soil series but to a lesser 

degree (conceptually), in organic carbon content, clay content, and carbonate content. 
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CHAPTER II 

METHODOLOGY 

 

 

A crime scene location was selected at a Weswood soil series (Fine-silty, mixed, 

superactive, thermic Udifluventic Haplustept) in the Brazos River floodplain. An X-

shaped design was constructed for the sample collection at the crime scene. 

A sample was collected at 5-m increments for a distance 20 m, totaling four sample 

collection sites within each arm of the grid. A surface soil sample was collected to a 

depth of 10 cm with a width of 5 cm. 

 

 

Additional soil-sampling locations were selected among four soil series, including 

Weswood.  Two of the series were chosen because of their similarity in deposition and 

parent material to Weswood. The Ships (Very-fine, mixed, active, thermic Chromic 

Hapludert) and Yahola (Coarse-loamy, mixed, superactive, calcareous, thermic Udic 

Ustifluvent) are Holocene age alluvial materials, derived from mixed sources, found on 

0-2 % slopes, and deposited by the Brazos River—like Weswood. The most important 

characteristic that unifies these three series is that all three are calcareous to the surface. 

The Yahola series is classified as an Entisol and is the most similar to the Weswood 

series. The Ships series differs in that it is a Vertisol, has a higher percentage of clay 

particles and has slickensides throughout its subsurface.  
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The fourth soil is Silawa (Fine-loamy, siliceous, semiactive, thermic Ultic Haplustalf). 

The Silawa series consists of very deep, moderately permeable well drained soils that 

formed in sandy and loamy sediments. This series is classified as an Alfisol and has a 

base saturation of less than 75 percent throughout the entire pedon. 

 

 

 Using the Soil Survey Database, provided by the National Resource Conservation 

Service (NRCS), 116 possible sampling locations were randomly selected, equally 

representing each of the four soil series.  From the 116 sites, 48 were sampled. This 

selection was primarily based on public road access.  Eight samples were collected from 

Ships, twelve from Yahola, and ten from Silawa, while sixteen samples were selected 

from Weswood.  

 

 

In addition, several of the mapping units and series had different land uses, e.g. pasture, 

native vegetation, or agriculture. Change in land use is expected to alter the organic 

carbon signature in the soil VNIR spectrum. The collection of samples from different 

land uses will be used to determine how altering land use (i.e. organic carbon signature) 

changes the ability of VNIR to link and uniquely identify a soil sample associated with a 

specific crime scene.   
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At each of the 48 sampling locations and at each location at the crime scene, a total of 

three samples were collected in triangle geometry, approx 10 cm apart.  Each sample 

was taken from the surface layer of soil (0 to 10 cm) using a tulip bulb planter (5 cm), air 

dried in an oven at 60oC, and ground to pass through a 2-mm sieve. For scanning, 20 ml 

of soil was placed into a borosilicate glass Petri dish and scanned using an Analytical 

Spectral Devices AgriSpec VNIR spectroradiometer.  This spectroradiometer has a 

spectral range of 350 to 2500 nm. Every sample was scanned twice, where the second 

scan was made after a 90 degree rotation of the Petri dish. After scanning, the collected 

spectra were processed by averaging the duplicate scans, taking the first derivative of the 

reflectance, and re-sampling the spectra at 10 nm intervals.  The reflectance spectrum 

was also re-sampled to 10 nm waveband intervals.  Processing the spectra averages to 

the first derivative of reflectance removes albedo effects and some effect of non 

homogeneity of particle size.  

 

 

Two statistical tools were used to explore the reflectance and first derivative of 

reflectance spectra, Principle Component Analysis (PCA) and Linear Discriminate 

Analysis (LDA). These techniques were be used to summarize the uniqueness of the soil 

spectra within each soil series, within each mapping unit and to see examine the 

uniqueness of the soil spectra from the crime scene.   
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Transforming multi-dimensional data, like spectra data, into principle components is a 

way to reduce the information in highly dimensional data to a manageable number of 

dimensions that can be visualized and analyzed (Webster, 2001).  Generally, PCA allows 

us to visualize the structure of spectral data especially view that structure with respect to 

other spectral data (Webster 2001).  In this application the multi-dimensional data 

analyzed are the spectral reflectance and first derivative of spectral reflectance of various 

soil samples. All PCA analysis was performed in R using the prcomp function, with 

variances scaled to a unit variance and variables shifted to be centered at zero (R 

Development Core Team, 2004).   

 

 

To categorically classify soil spectra using VNIR spectroscopy, LDA was used to 

directly classify soil spectra into soil series and finally classify the crime scene soils.  To 

initially evaluate the potential of LDA, principal component plots were created to 

visually assess the spectral distinctness between each series and between the crime scene 

and the 48 soil samples representing a larger population (Islam et al., 2005).  For LDA 

analysis the first seven PC’s, were selected because they explained 76.5 % of the 

spectral variability.  Using the lda function in R, the soil series and the crime scene were 

classified.  For LDA training, one set of training data were used.  The training set was a 

random selection of two thirds of all the soil spectra.  Once the model was trained, the 

remaining one third of the soil spectra was classified into soil series and as being part of 

the crime scene.   
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CHAPTER III 

RESULTS 

 

 

Soil reflectance data averaged by soil series and by crime scene show the overall spectral 

fingerprint of soil series (Fig. 1).  Because Silawa is a non calcareous terrace soil its 

signature is different from the floodplain soils. Additionally, it is not surprising that the 

spectral reflectance of Ships is also different from Yahola and Weswood because Ships 

surface texture is higher in clay content. The similarity between reflectance of Yahola 

and Weswood soils was also expected because Weswood and Yahola are usually found 

in near proximity to each other and could therefore be easily misclassified at the soil 

survey mapping resolution.  The soil surface of Yahola and Weswood are very similar in 

texture, fine sandy loam and silt loam respectively. Because the crime scene samples 

were mapped as Weswood, it is surprising that these reflectance values are so different, 

on average, from the Weswood reflectance values.  Of course, reflectance includes 

albedo effects and albedo is highly dependent on soil organic matter. Hence an increase 

or decrease in soil organic matter from change in land use can significantly affect albedo 

within an individual soil series.  

 

 

The spectral range, which shows the most differentiation between the soil series samples 

and the crime scene samples, is from 1500-2500 nm (Fig. 1). In this range, the Weswood 
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and Yahola samples have separated from one another more significantly, with the 

greatest separation at around 2250 nm. The separation of the Weswood and Yahola 

might be due to varying amounts of calcite or calcium carbonate in the soil. Using 

continuum removal, Lagacherie et al. (2007) used spectral reflectance at 2340 nm to 

quantify calcium carbonate of 52 soil samples. And Morgan et al. (2009) showed PLS 

predictions of calcium carbonate in soils being associated with nine wavebands, seven of 

them included 2300, 2330-2350, 2370-2380, and 2490 nm.   

 

 

The next processing step is to take the first derivative of the reflectance. In prior studies, 

the first derivative of reflectance has more predictive power for soil properites than 

reflectance because it removes extraneous spectral effect due to hetergenous aggregate 

size, variable moisture, and other albedo effects (Waiser et al., 2007; Morgan et al., 

2009).  Figure 2 shows the first derivative of reflectance averaged for each soil series 

and the crime scene. The first derivative amplifies spectral absorbences seen as dips in 

the reflectance plot, specifically at 250, 1000, 1900 and 2200. In Figure 2, we see a large 

amount of overlap between all the samples and it is difficult to differentiate series from 

one another as well as from the crime scene data.  The crime scene data appear most 

different at 500, 1000, and 2200 nm.  As in Figure 1, the wavelength range that most 

differentiates the soil series from one another and the crime scene is the 1500-2500 nm 

range. 
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 Principle components plots were used for three purposes. First, PCA was used to choose 

between reflectance data or first derivative of reflectance for subsequent analysis. 

Secondly, PCA was used to visualize whether the spectral data obtained from soil 

samples can be used to differentiate the different soil series from one another and 

primarily differentiate the crime scene soil samples from the other soil series samples.  

Lastly, we used PCA to determine how many principle components to use in the LDA 

classification.  

 

 

To decide on whether or not to transform the data (first derivative); the principle 

component (PC) decomposition was plotted for the first four PCs for both the reflectance 

and first derivative.  Visually, the level of clustering by was assessed.  Figure 3 shows 

the results of the PC analysis of the reflectance for the soil series (red, green, and blues) 

and the crime scene (black) samples. No distinct clustering or aggregation of individual 

colors (soils) is apparent.     However, the crime scene samples are tightly clustered 

together indicating some level of uniqueness and spectral similarity among each other.  

Figure 4 plots the first four PCs of the first derivative of the reflectance. Within the PC 

plot of the first derivative there appears to be more distinct clustering among each soil 

series and the crime scene compared to the PC plot of reflectance. For example, in the 

quadrat that represents PC1 vs. PC4 the aqua colored Ships soils are more closely 

grouped in Fig. 4 as well as the red colored Silawa samples. Based on this assessment, 

the first derivative of the reflectance was assumed more capable of clustering the soil 
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series and the crime scene samples. Therefore subsequent analysis was performed on the 

first derivative of the reflectance only.  

 

 

The PC plot in Fig. 5 is similar to Fig. 4 except all samples not belonging to the crime 

scene are colored pink. This plot more clearly illustrates shows the unique clustering of 

the crime scene samples from all other samples collected. However, in this PC plot there 

does appear to be some overlap of the crime scene samples and the series samples. 

Figure 6 is a plot of PC1 vs. PC2 of the first derivative of the reflectance. If a polygon 

(or convex hull) was drawn around the outer edges of the crime scene, no other samples 

would fall within the polygon. However, soil spectra that are close to the crime scene 

spectra include identification numbers 3, 6, 26, and 40, which are classified as Weswood 

or Yahola soils. The close proximity of these four samples is not unexpected because the 

crime scene is mapped as Weswood, and as stated earlier, Yahola is often mapped in 

close proximity with Weswood due to its similar geographical location.  

 

 

Lastly, Linear Discriminant Analysis (LDA) using the principle component 

decomposition was used to classify a random subset of the soil series and crime scene 

dataset.  The first seven principle components were used for classification as they 

described 76 % of the variance in the spectra.  The LDA classification trained on a 

random subset of two thirds of the samples, using the first derivative of the reflectance. 
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Table 3 shows the results of LDA classification of the validation dataset (n=13).  If LDA 

had correctly classified all of the spectra, all of the numerical values would have been in 

the highlighted diagonal line and zeros would be elsewhere.  LDA correctly classified 

eight (62 %) of the soil series spectra into the correct soil series and eight (89 %) of the 

crime scene spectra. Of the misclassified spectra, 83 % were wrongly classified as Ships. 

 

 

Overall, the PCA and LDA analysis of the first derivative of reflectance moderately 

differentiated the soil series from one another.  A couple of possibilities for 

misclassification of soil series exist.  For one, clustering of the spectral data was weak 

because some of the samples were very similar, spectrally. An example of this type of 

error is the inability of spectroscopy to differentiate between Yahola and Weswood. A 

second and potentially more likely reason for misclassification in LDA could be that the 

soils that are labeled as belonging to one series actually do not. The USDA soil survey is 

mapped at a 1:24000 scale and for any given soil mapping unit polygon in that survey 

there can be up to 10% exclusions of different soils.  We used the Soil Survey map to 

identify the presence of, and collect a soil at the cm-scale. To eliminate this source of 

error, laboratory measurement of particle size distribution is needed to verify the correct 

classification of the soil samples. Lastly, land use could also be confounding the LDA 

classification. A Yahola soil and a Ships soil with similar land use will have a similar 

organic matter signature. The next step in this work is to specifically address the 

misclassification and look at the effect of land use.  
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CHAPTER IV 

CONCLUSION 

 

 

The results of this study show that VNIR spectroscopy has some utility in identifying 

unique spectral signatures of soils for the use in forensic soil science. The first derivative 

of the reflectance proved to be more useful than the reflectance for PCA and LDA, 

agreeing with many other investigations in soil spectroscopy (Brown et al., 2005; Brown 

et al., 2006; Waiser et al., 2007; Morgan et al., 2009). Particularly LDA shows promise 

as a method for classifying the soils. Further work on laboratory analysis is needed to 

determine if the initial classification of the soil samples collected from the four series 

was correct. Additional LDA and PCA analysis might elucidate the contribution of land 

use to better or worse classification.  

 

 

For the classification of the crime scene samples, both PCA and LDA more precisely 

differentiated the crime scene spectra from the spectral data of the soil series. In 

conclusion VNIR spectroscopy with further evaluation of this data set and looking at a 

larger spectral library will be applicable in forensic situations.  
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Figure 1. Averages of reflectance for each soil series and the crime scene. 
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Figure 2. Averages of the 1st derivative of reflectance for each soil series and the crime scene 
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Figure 3. A principal component (PC) plot is shown for the first four PCs of the reflectance. Each color 
represents a soil series and black is the crime scene (mapped as Weswood). Dark blue is Weswood; aqua 
is Ships; red is Silawa; green is Yahola. 
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Figure 4. A principal component (PC) plot is shown for the first four PCs of the first derivative of 
reflectance. Each color represents a soil series and black is the crime scene (mapped as Weswood). Dark 
blue is Weswood; aqua is Ships; red is Silawa; green is Yahola. 
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Figure 5. A principal component (PC) plot is shown for the first four PCs of the first derivative of 
reflectance. The pink color represents all the soil series samples and black is the crime scene (mapped as 
Weswood). 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

PC1

-20 -10 0 10 20 -10 -5 0 5

-1
0

0
1
0

2
0

-2
0

-1
0

0
1
0

2
0

PC2

PC3

-1
0

-5
0

5
1
0

1
5

-10 0 10 20

-1
0

-5
0

5

-10 -5 0 5 10 15

PC4

Crime Scene

Series Samples



28 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. A single principal component (PC) plot of PC1 vs. PC2 the first derivative of reflectance. The 
pink color represents all the soil series samples and black is the crime scene (mapped as Weswood) 
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Table 1. Selected mapping units of the different series. 

Series Mapping unit Original Samp-
led 

  --number-- 
Weswood Weswood silt loam, 0-1% slope, rarely flooded 

Weswood silt loam, 1-5% slope, rarely flooded 
Weswood silty clay loam, 0-1% slope, rarely flooded 
Weswood silty clay loam, 1-3% slope, rarely flooded 

24 
  5 
29 
  9 

  4 
  4 
  4 
  4 

Yahola Yahola loam, occasionally flooded 
Yahola fine sandy loam, 0-2% slope, rarely flooded 

  3 
28 

  0 
12 

Ships Ships clay, 0-1% slope, rarely flooded 
Ships clay, 1-3% slope, rarely flooded 
Ships clay, 0-1% slope, frequently flooded 
Ships clay, rarely flooded 

  3 
  5 
  2 
  3 

  4 
  2 
  1 
  3 

Silawa Silawa loamy fine sand, 1-5% slope 
Silawa fine sandy loam, 2-5% slope 
Silawa fine sandy loam, 5-8% slope 
Silawa loamy fine sand, 1-3% slope 

  2 
  6 
  4 
  3 

  2 
  5 
  1 
  2 
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Table 2. Land use within each soil series. 

Series Land use Number collected 

Weswood 

Agriculture 
Pasture 
Native  
Residential 

12 
3 
1 
0 

Yahola 

Agriculture 
Pasture 
Native 
Residential 

8 
1 
3 
0 

Ships 

Agriculture 
Pasture 
Native 
Residential 

2 
3 
3 
0 

Silawa 

Agriculture 
Pasture 
Native 
Residential 

0 
2 
6 
2 
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Table 3. Classification results from Linear Discriminate Analysis of the first derivative of the reflectance 
for all soil series and the crime scene. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LDA 
Predicted 

Series 

Actual Series 

 
Yahola Silawa Ships 

Wes-
wood 

Crime 
Scene 

Yahola 2 0 0 1 0 

Silawa 0 2 0 0 0 

Ships 2 1 1 1 1 

Weswood 0 0 0 3 0 

Crime scene 0 0 0 0 8 
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