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ABSTRACT 

 

The Role of Uncoupling Protein 2 in the Development of Insulin Resistance in 3T3-L1 
Adipocytes. (April 2010) 

 

David A. Goodwin Jr. 
Artie McFerrin Department of Chemical Engineering 

Texas A&M University 
 

Research Advisor: Dr. Arul Jayaraman 
Artie McFerrin Department of Chemical Engineering 

 

Type 2 Diabetes is becoming a major health concern throughout the world. Recent 

clinical evidence points to restoring overall insulin sensitivity as the major objective in 

the management of Type 2 Diabetes. Current research indicates Uncoupling Protein 2 

(UCP2) may play a role in the development of insulin resistance and the onset of Type 2 

Diabetes. UCP2 over expression has been linked to increases in reactive oxygen species 

concentration. The presence of UCP2 has been linked to the ability of the cell to perform 

insulin-stimulated uptake of glucose. Tumor Necrosis Factor  has also been linked to 

increases in ROS concentration and the insulin sensitivity of the cell. This evidence 

suggests a link between UCP2, ROS, TNF- , and insulin resistance. The overall 

objective of our research is to establish the relationship between UCP2 and ROS in the 

context of insulin resistance in 3T3-L1 adipocytes with the specific aim of determining 

the effect of UCP2 expression on ROS concentration. To date we have succeeded in 

cloning the UCP2 gene into an inducible plasmid, pRev-TRE, inducible by the addition 
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of Doxycycline. The development of a retroviral vector, able to integrate the pRev-TRE 

UCP2 plasmid into the genome of 3T3-L1 adipocytes, is currently underway. Our future 

work will include experiments quantifying the concentration of ROS in the presence of 

various levels of UCP2 expression. 
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NOMENCLATURE 

 

Dox Doxycycline 

FFA Free Fatty Acid 

ROS Reactive Oxygen Species 

TNF-α Tumor Necrosis Factor α 

UCP2 Uncoupling Protein 2 
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CHAPTER I 

INTRODUCTION 

 

Introduction 

Type 2 Diabetes is quickly becoming one of the most prominent diseases of the 

developed world. The 171 million estimated cases in 2000 are expected to increase to at 

least 366 million by 2030. An even more negative statistic is the increasing number of 

adolescents that develop the disease, which was once only associated with adults [1].  

The disease is also becoming more prevalent in the developing world where obesity has 

increased from 2.3 to 19.6% over the last decade [2]. 

 

Type 2 Diabetes is characterized by the gradual development of the resistance to the 

action of insulin, a relative decrease in insulin secretion, and elevated plasma levels of 

free fatty acids and glucose. A number of abnormalities, collectively known as the 

metabolic syndrome, are associated with the development of Type 2 diabetes including: 

central obesity, dyslipidemia, hyperinsulinemia, elevated plasma inflammatory markers, 

diminished plasma Acrp30 levels, impaired fibrinolysis, vascular abnormalities and 

hypertension [3].  

_______________ 
This thesis follows the style of Molecular Therapy. 
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Anti-diabetic medications aimed at lowering plasma glucose levels have proven 

ineffective at restoring metabolic homeostasis and preventing the progression of Type 2 

diabetes. However new methods of treatment with insulin-sensitizing compounds, aimed 

at improving insulin sensitivity, have been shown to restore metabolic homeostasis and 

improve the abnormalities associated with metabolic syndrome. This evidence indicates 

the importance of restoring overall insulin sensitivity in the clinical management of Type 

2 diabetes [3]. 

 

Background 

 
Uncoupling protein 2 (UCP2) belongs to a family of five homologous uncoupling 

proteins, UCP1-UCP5. UCP 2 mRNA is found in a wide variety of tissues including the 

spleen, pancreatic -cells, heart, lungs, brown adipose and white adipose. However 

protein expression is not proportional to mRNA concentration and has not been detected 

in several of the tissues that contain mRNA at relatively high concentrations. Also the 

relative change in concentration of mRNA does necessarily predict changes in the 

expression of protein [4]. Though not conclusively determined, by virtue of UCP2’s 

location within the inner mitochondrial matrix it has been suggested that UCP2 may 

have a physiological function relating to the metabolism of the cell [5]. 

 

Many possible physiological functions for UCP2 are currently being investigated 

including a role for UCP2 in the defense against reactive oxygen species and prevention 

of oxidative damage. Cell metabolism utilizes the proton gradient generated when 

protons are actively pumped into the inner mitochondrial membrane to synthesize ATP. 
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However, as the potential across the membrane increases, the production of reactive 

oxygen species (ROS) also increases. A proposed mechanism suggests that UCP2 acts as 

a proton leak across the inner mitochondrial matrix, therefore reducing the mitochondrial 

membrane potential and preventing sustained production of ROS [6]. 

 

 Experimental evidence also supports this theory, as it has been shown that metformin-

induced oxidative stress in the 3T3-L1 adipocytes results in the over-expression of 

UCP2 (i.e., a feed-forward mechanism) [7]. Other experiments have demonstrated a link 

between physiological concentrations of mono-and poly-saturated dietary fatty acids and 

the level of UCP2 mRNA in 3T3-L1 pre-adipocytes. These studies also show that the 

increase in UCP2 mRNA is a result of increased transcription of the UCP2 gene rather 

than increased stability of the existing mRNA or protein [8]. 

 

UCP2 function has also been linked to insulin-stimulated glucose uptake in 3T3-L1 

adipocytes. Insulin-stimulated glucose uptake was measured in the presence of an UCP2 

inhibitor, genipin, and compared to values obtained without the inhibitor. The presence 

of genipin caused a notable decrease in glucose uptake, therefore linking UCP2 activity 

to insulin sensitivity [9]. 

 

Recent research has also linked tumor necrosis factor  to insulin resistance in adipose 

tissue. It has been shown that long-term exposure to TNF-  induces insulin resistance 

and neutralization of TNF-  increases insulin sensitivity and reduces hyperinsulinemia 

[3]. This is of particular interest to the current discussion because TNF-  also acts as a 
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signal in the apoptotic pathway and the presence of ROS is known to induce apoptosis 

by causing the mitochondrion to expel cytochrome c. 

 

Research plan 

The overall objective of the proposed research is to establish the relationship between 

UCP2 and ROS in the context of insulin resistance in 3T3-L1 adipocytes. 

 

Specific aim  

Determine the effect of UCP2 expression on ROS levels and TNF-  production in 3T3-

L1 adipocytes. 

 

Hypothesis 1  

Forced expression of UCP2 increases insulin sensitivity through decrease in oxidative 

stress 
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CHAPTER II 

METHODS 

 

Cell culture 

3T3-L1 preadipocytes (ATCC, VA) were maintained in high-glucose Dulbecco’s 

modified Eagle’s medium (DMEM) supplemented with 10% fetal calf serum and 

penicillin/streptomycin. 293-T cells for retrovirus production were grown in high-

glucose DMEM supplemented with 10% fetal bovine serum and penicillin/streptomycin. 

All cells were maintained at 37°C in a humidified atmosphere of 5% CO2 in air [10]. 

 

Production of pRevTRE-UCP 2 plasmid  

The starting plasmid for UCP2 expression, pRevTRE-XMCS, was generated by 

inserting the multiple cloning site sequence, XMCS, into a previously developed 

pRevTRE plasmid via ligation. This new plasmid, pRevTRE-XMCS, was electroporated 

into E. coli and transformants isolated. Colonies were selected and the fidelity of the 

cloned plasmid validated through multiple restriction digests and sequencing. Using a 

similar method, the UCP2 gene was then introduced into the XMCS plasmid. 

 

Production of virus containing UCP2 

The lentiviral backbone containing pRevTRE-UCP2, encoding HIV-1 gag-pol, HIV-1 

and VSV-G envelope was cotransfected into 293-T cells using the calcium phosphate 

procedure optimized for 293T cells. Fresh medium was added at 24 hours and the virus 

collected at 48 hours [10]. 
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Viral transduction 

Viral supernatant was diluted with fresh medium and supplemented with 5 µg/ml of 

Polybrene before adding to the cells. The viral supernatant solution was replaced with 

fresh medium at 48 hours and the results analyzed after 96 hours [10]. 

 

Antibiotic selection of cells transduced with UCP 2 virus 

The plasmid containing the UCP2 gene was inserted into the genome of the 3T3-L1 

adipocytes using the retroviral transduction procedure described previously and a 

dilution of 10-2. The viral supernatant was replaced with fresh medium supplemented 

with 200 µg/mL hygromycin-b. Fresh medium containing hygromycin-b was added 

every other day, and the cells monitored for antibiotic resistant colonies. 

  

Determination of viral functionality 

The functionality of the retroviral product was determined using rtPCR to amplify UCP2 

mRNA recovered from the isolation of RNA in 3T3-L1 adipocytes. 

 

Manipulation of UCP2 expression 

The plasmid containing the UCP2 gene was inserted into the genome of the 3T3-L1 

adipocytes using the retroviral transduction procedure described previously. UCP2 

expression was activated by addition of doxycyline at a concentration of 1 µg/mL. The 

UCP2 inhibitor genipin was used as a negative control as it allowed the effect of UCP2 

expression without any baseline activation [9]. 
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Manipulation of ROS concentration 

ROS was induced in 3T3-L1 adipocytes by two methods. Metformin, which causes an 

increase in ROS production by binding to complex 1 of the respiratory chain, thus 

preventing electron transfer [7], was used as one method while the exogenous addition 

of polyunsaturated fatty acids (e.g., linoleic acid) was used as it has also been shown to 

increase ROS production in 3T3-L1 adipocytes. External addition of hydrogen peroxide 

was used as a positive control.  

  

Quantifying UCP2 

The levels of UCP2 protein in 3T3-L1 adipocytes was determined by Western blots. In 

order to facilitate detection, mitochondria were isolated from 3T3-L1 cells, so as to 

reduce the complexity of the protein sample and enriching the levels of UCP2 [7].  

 

Quantifying ROS and TNF-α 

Intracellular ROS concentration was measured using the dihydroethidium (DHE) 

fluorescence/HPLC assay [11]. The expression of TNF-α was tracked using 

commercially available ELISa kits (R&D Systems, MN) [8]. 
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Quantifying insulin-stimulated uptake of glucose 

 3T3-L1 cells were starved in serum-free DMEM containing glucose for two hours, after 

which these cells were washed and placed in KRBH buffer. The cells were be incubated 

either in the presence of insulin or without insulin followed by the addition of 2-DG and 

then washed and again placed in KRBH buffer. The cells were then lysed and protein 

content measured by the BCA method [9]. 
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CHAPTER III 

RESULTS 

 

Production of the pRevTRE-UCP 2 plasmid 

The gene coding for UCP2 was successfully cloned into an inducible plasmid system 

(pRev-TRE, Clontech, CA). In this system, addition of an inducer (doxycycline) leads to 

activation of a trans-activator protein, which then binds and induces expression of the 

target gene.  

 

The starting plasmid for UCP2 expression, pRevTRE-XMCS, was generated by 

inserting a synthetically assembled multiple cloning site sequence, XMCS, into the 

previously developed pRevTRE plasmid via ligation. This new plasmid, pRevTRE-

XMCS, was electroporated into E. coli and transformants isolated. Colonies were 

selected and the fidelity of the cloned plasmid validated through multiple restriction 

digests and sequencing. Using a similar method, the UCP2 gene was then introduced 

into the XMCS plasmid. 

 

Production of virus containing the pRevTRE-UCP 2 plasmid 

Viral transduction was chosen as the means for inserting the pRevTRE-UCP 2 plasmid 

into the genome of 3T3-L1 adipocyte cells because the viral mechanism is more 

consistent (uniform number of plasmids per cell) and efficient than electroporation.  
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Three methods of multiple plasmid cell transfection were analyzed to determine which 

reagent would most efficiently transfect 293T cells. The methods tested were GenJet 

transfection optimized for Hep-G2 cells, Fugene transfection optimized for multiple 

plasmid transfection, and calcium phosphate transfection optimized for 293T 

transfection. It was determined that calcium phosphate transfection was the most 

efficient and reliable transfection method, consistently giving 90-95% transfection rates.  

 

Calcium phosphate transfection protocol was followed to introduce the pRevTRE-UCP2 

plasmid into the 293T cells. This transfection procedure involved preparing a solution of 

calcium dichloride, HBS, encoding HIV-1 gag-pol plasmid, HIV-1 and VSV-G envelope 

plasmid, and pRevTRE-UCP2 plasmid. This solution formed a precipitate, containing 

the three plasmids, that was able to diffuse across the 293T cell membrane.  Five 

minutes before adding the plasmid solution to the 293T cells, chloroquine was added. 

The cells were then exposed to the chloroquine and plasmid solution for 24 hours. The 

cells supernatant was then replaced by fresh media containing 10 mM sodium butyrate 

and incubated for eight hours, after which the supernatant was replaced with fresh 

media. The virus was collected on the third day and every 48 hours after, over the course 

of six days. A change in pH, as indicated by the color change from red to yellow, 

suggested the presence of virus in the 293T supernatant.  
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The pRevTRE-UCP 2 plasmid to be inserted by the retrovirus also provides the cell 

antibiotic resistance to hygromycin-b. By subjecting the transfected cells to media 

supplemented with hygromycin-b, the functionality of the virus can be tested and a 

preliminary viral titer obtained. Single colonies were observed in a viral transduction at a 

one to one hundred dilution of virus to media suggesting the viral titer in recovered 

media is quite low. 

 

The functionality of the virus was further tested by transducing Hela pTeton cells with 

the recovered pRevTRE-UCP 2 retroviral product and amplifying recovered RNA using 

a rtPCR reaction with UCP 2 primers. The results were confirmed using gel 

electrophoresis and are seen in the following Figures 1-3. 
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Figure 1.First DNA gel showing the products of a PCR amplification, using UCP 2 primers, of RNA 
recovered from Hela pRevTRE-pTeton cells transduced with UCP 2 virus. Wells one and two contain 
mRNA recovered from cells exposed to a one-third dilution of virus. Wells three and five contain mRNA 
recovered from cells exposed to one sixth dilution of virus. Wells six and seven contain mRNA recovered 
from cells not exposed to virus. 
 
 
The UCP 2 mRNA amplicon is approximately 180 base pairs long; therefore, if the virus 

was functioning properly, a strong band just below the 200 base pairs would be present 

in cells exposed to the virus and no band in the cells not exposed to virus. However, 

Figure 1 shows a faint band at 180 in wells 2, 3, and 7. A second experiment was 

conducted to clarify and the results are seen in Figure 3.  

1       2        3       4        5        6       7       8 
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Figure 2. Second DNA gel showing the products of a PCR amplification, using UCP 2 primers, of RNA 
recovered from Hela pRevTRE-pTeton cells transduced with UCP 2 virus. Wells one through four contain 
mRNA recovered from cells exposed to a one sixth dilution of virus. Wells six, seven, and eight contain 
mRNA recovered from cells not exposed to virus. 
 
 
The gel shown in Figure 2 also shows ambiguous results. Wells one through four were 

exposed to virus but do not show a band at 180 base pairs, where as wells six through 

eight were not exposed to virus and have a strong band at 180 base pairs. A third 

experiment was conducted to optimize annealing temperature of the PCR reaction, and a 

fourth experiment was performed using the new annealing temperature. The results are 

shown in Figure 3. 

1      2      3        4       5      6       7       8 
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Figure 3. Third DNA gel showing the products of a PCR amplification, using UCP 2 primers, of RNA 
recovered from Hela pRevTRE-pTeton cells transduced with UCP 2 virus. Wells one and two contain 
mRNA recovered from cells exposed to a one-sixth dilution of virus. Wells three and five contain mRNA 
recovered from cells exposed to one sixth dilution of virus. Wells six and seven contain mRNA recovered 
from cells not exposed to virus. 
 

Wells one, two, three, and five contain RNA extracted from cells exposed to UCP 2 

retrovirus and each shows a band at 180 base pairs. Wells six and seven contain RNA 

from cells not exposed to virus and also have a band at 180 base pairs. These results 

combined with the antibiotic selection results suggest that a functional virus was 

recovered at very low concentrations, and that UCP 2 is naturally expressed in Hela 

cells. 

 

1        2        3          4          5         6         7 
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

 

Though the results of the experiments suggest that a functional virus is being produced 

at low concentrations, the inconsistency of the data indicates the process of viral 

production needs to be optimized. Currently the virus is being collected and stored in 

one ml aliquots at -80°C. The retroviral product is produced at low concentrations and is 

inconsistent among the samples collected. This inconsistency in viral titer could explain 

why cells exposed to the same dilution of virus are not showing similar results. Steps 

should be taken to concentrate the virus using ultra-centrifugation or PEG precipitation 

so that a high titer virus preparation can be used in all experiments. 

 

Recent research has also indicated that transgenes (i.e., genes over-expressed through 

integration of a plasmid) that are over-expressed are subject to higher rates of 

degradation and removal from cells than genes expressed at low copy numbers. This 

suggests the experimental design should be modified to first optimize the concentration 

of dox used (which directly influences the level of UCP2 expression) and the resultant 

UCP2 expression.  

 

Once viral production and cell stimulation have been optimized colonies of 3T3-L1 

adipocyte pRevTRE-pTeton-UCP 2 cells can be selected and propagated. Assuming 

integration of the retroviral plasmid does not affect differentiation, the relationship 

between UCP2 and ROS in the context of insulin resistance in 3T3-L1 adipocytes can be 
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investigated using the experiments outlined in the preceding paragraph and the methods 

described in chapter 2. 

 

Future experiments 

The relationship between UCP2 and ROS in the context of insulin resistance in 3T3-L1 

adipocytes will be investigated using the four experiments described below. 

 

Experiment outline 1  

Measurements of ROS and TNF-α will be taken for 3T3-L1 cells under baseline 

physiological, blank and DOX activated UCP2 conditions. 

 

Experiment outline 2 

 Measurements of UCP2 and TNF-α will be taken for 3T3-L1 cells under baseline 

physiological and ROS induced conditions. 

 

Experiment outline 3 

 Measurements of UCP2, ROS and TNF-α will be taken for 3T3-L1 cells at varying 

concentrations of glucose and FFA in the culture medium. 

 

Experiment outline 4 

 Measurements of insulin-stimulated glucose uptake will be taken at baseline 

physiological, blank and DOX activated UCP2 levels. Also at baseline physiological and 

increased levels of ROS. 
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