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ABSTRACT

Parallel Assembly of Collagen Fibrils on Mica Surface and Steps. (April 2010)

Wee Wen Leow
Department of Biomedical Engineering

Texas A&M University

Research Advisor: Dr. Wonmuk Hwang
Department of Biomedical Engineering

Collagen is the most abundant protein in human body and the major compo-

nent of the extracellular matrix. It self-assembles into fibrillar structures that exhibit

characteristic 67-nm bands called the D-period. Despite decades of research, the

molecular mechanism by which collagens assemble into ordered fibrillar structures

is not well-understood. In this work, self-assembly of type-I collagen molecules in

vitro was monitored using atomic force microscopy at different time points under

various conditions. Control parameters include: monomer concentrations, pH, types

of electrolytes, ionic strength, and incubation temperature. Presence of potassium

and phosphate ions, and prolonged incubation were found to be essential for the for-

mation of D-periods on the fibril. When assembled on a mica surface, the growth

was fast and almost unlimited in the longitudinal direction but relatively slow in

the direction transverse to the fibril axis. This resulted in fibrils aligning in parallel

on mica surface. The spacing between collagen fibrils decreased over time. We also

observed collagen assembly near regions containing steps on mica. At narrow steps

(approximately 700 nm wide), collagen fibrils grew along the direction of the crack.

However, for a shallow step (about 15 nm height), we observed collagens covering the

crack, presumably because the thermal fluctuation of collagen was sufficient enough
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to overcome the height of the step. Further studies are necessary to elucidate the

possible assembly patterns and underlying mechanisms of collagen assembly at sur-

face boundaries, which will be useful for developing defined matrices for biomaterial

applications.
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CHAPTER I

INTRODUCTION

Collagen is the most abundant structural protein found in mammals. There are

more than 27 specialized collagens exist in mammalian tissue, which can form insolu-

ble fibrous networks to provide structural support and form the extracellular matrix

(ECM) in the body [1]. Collagen also provides scaffold which is functionalized by

other ECM protein and plays an important role in cell interactions, attachment, tis-

sue structuring, and is closely related to various human diseases [2, 3]. In addition,

collagen has received considerable interest because of its applications in tissue en-

gineering for two- and three-dimensional synthetic cell scaffolds [4, 5]. Collagen is

also frequently used to coat non-biological surfaces to enhance bio-compatibility [6]

and for functionalized surface patterning [7, 8]. In fact, collagen has been proven to

be potentially useful in microelectronics application, where silicon nanowires can be

created by utilizing the self-assembly properties of collagen molecules [9]. Collagen

has been widely studied for over 6 decades, but the mechanism of its self assembly

into ordered fibrils remains poorly understood. Some of the connective tissues from

type I collagen in human body are well ordered, specific examples include corneal

tissue [10] and tendon tissue [11]. It has been shown that scar tissue formation in the

wound site is due to the poor quality of the restored collagen network [12], which can

be related to the different assembly mechanism of the scar tissue versus normal tissue.

It is hence important to understand the underlying molecular mechanisms of collagen

assembly into fibrilar structure. Of many different techniques used in collagen study,

atomic force microscopy (AFM) is widely used due to its exceptional sub-nano reso-

The journal model is N ature.
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lution, high signal-to-noise ratio, and the superior advantage to investigate biological

systems in aqueous environment, thereby preserving their physiological configurations

and functions. AFM study on collagen fibrils was first reported by Chernoff and Cher-

noff [13] in 1992. Time-lapse imaging of collagen self-assembly on a surface has been

studied by Cisneros et al. [14] The effects of pH and electrolytes on collagen assembly

[15, 16], electrochemical and electric field guided collagen assembly [17, 18, 19] have

also been studied. The effect of substrate, particularly mica, on the alignment of

collagen fibrils was studied by Sun et al. [20] The effects of cationic and anionic sub-

strates on the collagen adsorption were also studied on Gemini surfactant monolayers

[21]. However, the alignment phenomena of these collagen fibrils on mica surface has

not been adequately addressed in the previous studies. The significance of aligned

collagen fibrils for cellular remodelling was studied by Friedrichs et al., where aligned

collagen fibrils have anisotropic mechnical properties which may provide structural

or signalling cues to cell polarization [22]. In this work, the self-assembly of type I

collagen molecules on mica was observed using AFM. Collagen fibrils were observed

to be highly aligned in a parallel manner on mica. Assembly patterns near regions

containing cracks and steps on mica were also observed. By understanding the mech-

anism behind the collagen self assembly and alignment, collagen patterning can be

achieved on a substrate to serve as a novel scaffold for biomaterial applications that

may provide directional guide to cellular behaviors and differentiation.

A. Assembly of collagen fibrils

Type I collagen can self-assemble into fibrillar structure exhibiting characteristic 67-

nm banding pattern. The self-assembly process is hierarchical, starting from collagen

monomer, to microfibril, and subsequently to larger fibrils and networks (Fig. 1).

The monomer, also known as tropocollagen, consists of three polypeptide chains (α-
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chain) wound into a triple-helical structure with about 300 nm in length and 1.5 nm

in diameter [23]. Five tropocollagen molecules form one microfibril which exhibits

repeated banding pattern of gap and overlap regions, called the D-period. The D-

period has been observed by Electron Microscopy (EM) [24], X-ray diffraction [25],

and AFM [14, 26].
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CHAPTER II

MATERIALS AND METHODS

The overview of the experimental procedures is shown in Fig. 2.

A. Collagen stock preparation

Two types of collagen stock were obtained due to the failure of the initial experiments

in producing D-periods on collagen fibrils: Powder collagen prepared from lyophilized

collagen and liquid collagen prepared from collagen solution.

1. Powder collagen

Collagen stock was prepared from lyophilized type I collagen derived from calf skin

(MP Biomedicals 150026). 1 mg of lyophilized collagen was dissolved in 0.01 M acetic

acid to 1 mg/ml. The mixture was sonicated at 4� for 1 hour (pH 3.5) and stored

at 4� to be used for the experiments for up to 1 week.

2. Liquid collagen

Collagen stock was prepared from solubilized type I collagen derived from rat tail

tendon (BD Biosciences 354236) (3.74 mg/ml) with >90% purity by SDS-PAGE.

The aliquot was prepared by diluting the stock with 0.1% acetic acid to 1.65 mg/ml

(pH 2.5) and stored at 4�, and was used for experiments for up to 3 months.

B. Collagen assembly

Various collagen assembly protocols were tested in different experiments. The ex-

periments are classified into 3 types: Collagen assembly without D-period, collagen

assembly with D-period, and collagen assembly at mica cracks or steps. Control

parameters include collagen concentration, presence of general electrolytes (potas-

sium, sodium, magnesium, and chloride, excluding acids or bases used to adjust the
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solution pH) and phophate ions, incubation temperature, substrate, and time. All

AFM experiments were performed at room temperature. Experimental conditions

are summarized in Table I.

1. Assembly without D-period

a. Low pH, no electrolyte

Powder collagen stock was diluted to 0.5 mg/ml with 0.01 M acetic acid for imaging.

The pH of the imaging solution was 4.5. A 5-µl sample was deposited on freshly

cleaved mica and incubated at room temperature for 1 minute. We used Kim wipes

to remove the remaining solution at the mica edges and then set for air dry before

imaging. This method of sample deposition on mica is termed A in Table I.

b. pH 6.5, no electrolyte

Powder collagen stock was diluted to 0.1 mg/ml by adding de-ionized (DI) water

(18MΩ) and pH was adjusted by slowly adding aqeuous NaOH and HCl to give a

final pH of 6.5. Method A was used to deposit sample on mica.

c. pH 7, with electrolyte

Collagen sample was prepared containing 0.1 mg/ml collagen from powder collagen

stock, 100 mM KCl, 10 mM MgCl2, and NaOH to adjust the pH to 7. 30-µl of the

sample was deposited on the mica disk held at 45o angle and Kim wipes were used to

remove remaining solution at the mica edges and then set for air dry before imaging.

This method of sample deposition is termed B in Table I.

d. pH 9, with electrolyte

Similar methods were employed as described in section B1c to yield collagen concen-

tration of 0.02 mg/ml, KCl concentration of 200 mM at pH 9. In this case, sample

was incubated in test tube at room temperature for 2.5 hours before imaging.
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e. pH 7, with electrolyte, with phosphate ions

Aliquot from liquid collagen was used to prepare a sample containing 0.2 mg/ml

collagen, 200 mM KCl, 20 mM of Na2HPO4, and 10 mM of KH2PO4. The pH of the

sample was 7. Sample was incubated at 37� in test tube for 10 min. It was then

diluted to 0.02 mg/ml with DI water, deposited on mica, and carefully rinsed twice

with 90 µl of DI water to remove extra salt in the buffer and left to dry. This method

of sample deposition is termed C in Table I. The incubation time on mica was 1 min.

2. Assembly with D-period

a. Collagen clumps

Sample prepared in section B1e was observed to form turbid solution after incubation

at 37� for 30 min and clumps after a long period of time (>3 hours) set at room

temperature. The clumps were carefully pipetted out from the solution and deposited

on mica for 25 min. Method C was employed to deposit sample on mica.

b. Collagen monolayer

Collagen sample was prepared using liquid collagen stock to a final concentration

of 0.05 mg/ml, containing 200 mM KCl, 30 mM Na2HPO4, and 10 mM KH2PO4.

Sample was incubated at 37� for 30 min. 15-µl of sample was then deposited on

mica and incubated at room temperature. Experiments were performed with 1 min,

10 min, and 108 min incubation time on mica. Method C was employed to deposit

sample on mica.

3. Collagen assembly near boundaries

A freshly cleaved mica will contain some cracks or steps which can be imaged for

collagen assembly behavior near the boundaries. Collagen sample was prepared as

described in section B2b above. Sample was incubated on mica for prolonged period

of time (>1 hour). Method C was employed to deposit sample on mica.
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C. Atomic force microscopy (AFM)

Interleaved muscovite mica disks (Grade V1) were purchased from Ted Pella, Inc.

Mica was fixed on a metal mounting disk and cleaved by sticky tape for each ex-

periment. The AFM (AutoProbe CP-II, di-Veeco, CA) was operated in air at room

temperature with 2 pizoelectric scanner: (i) Large Area Scanner with scan range 100

× 100 µm2 and (ii) High Resolution Scanner with scan range 5 × 5 µm2. Antimony

doped silicon probe (Veeco Probes, FESP7) with nominal force constant of 2.8 N/m

was employed in the entire experiments. Imaging was performed in Tapping Mode

(NCM) at maximized NCM frequency near the the nomical resonance frequency of

the cantilever (75 kHz). The signal to noise ratio was maintained at >10 and imaging

was performed at NCM amplitude of about 70nm. The scanning speed was 1 Hz for

small area scan (<2 µm) and decreased for larger area scan to ensure image quality.

A 20× microscope was attached to the AFM machine to capture the area of the mica

where the image was taken.

Image analysis and processing were performed in di-SPMLab. Only basic image

processing including leveling and adjustment to the contrast histogram were done.

Line analysis was performed to measure the heights and lengths of features in the

data.
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CHAPTER III

RESULTS

A. Collagen assembly without D-period

Fig. 3 compares collagen assembly without D-period under different conditions. Fig. 3(a)

shows the AFM image of collagen at pH 4.5 under the condition described in sec-

tion IIB1a. The globular structures show a height profile ranging from 2–5 nm, with

the brighter spots possibly due to the stacking of collagen on top of each other.

Fig. 3(b) shows the collagen under the condition described in section IIB1b, with the

average height of each molecule <1 nm. The clump-like structure at the upper right

of the image was possibly contamination in the sample or some undissolved collagen

fibrils from the stock. Fig. 3(c) shows the first image obtained for self-assembly of

collagen into fibrils under condition described in section IIB1c. The average height

profile was 5 nm, with some fibrils stacking on each other. The horizontal lines

present in the middle of the image was distortion due to the AFM tip disengaged

during the scanning process and immediately adjusted by changing the drive per-

centage or the set point. Fig. 3(d) shows collagen fibril at pH 9 prepared as described

in section IIB1d. The height of the fibrils ranges between 1–1.5 nm. Fig. 3(e) shows

collagen fibril formed at neutral pH, with the presence of electrolytes and phosphate

ions as described in section IIB1e. Dense collagen meshworks were observed but the

collagen fibrils had no D-periodicity. The height of the fibrils was about 2.5 nm.

B. Collagen assembly with D-period

Sample prepared as described in section IIB2a was imaged with AFM, shown in

Fig. 4(a). Image appeared blurry due to the tip interactions with the macroscopic

features of the clump. Color contrast was performed in the rectangular box in the
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image to highlight the banding on a fibril. The bottom of the image appeared shifted

due to the signal distortion by the scanner. Banding patterns was observed with

pitch-to-pitch distance approximately 54.6 nm as shown in Fig. 4(b).

Monolayer collagen assembly was achieved using methods described in section IIB2b.

The collagen solution was incubated on mica surface immediately after incubation at

37� in test tube for 30 min, before the formation of clumps. Collagen assembled

this way were observed to form parallel fibrils covering the mica surface, with very

fast and almost unlimited longitudinal growth. Fig. 5 shows images taken at different

incubation times on mica. The spacing between the fibrils were observed to decrease

over time of incubation on mica. Fig. 5(a) shows highly aligned collagen fibril with

1 min incubation. No D-periods were observed at this point. D-banding was evident

at 10 min incubation (Fig. 5(b)), with banding distance of 68.7 nm averaged over

one fibril. Subsequently, the 108 min incubation point (Fig. 5(c)) shows very ordered

collagen fibril monolayer on mica, with the spacing between fibrils significantly de-

creased compared to the 1 min incubation point. D-banding at 108 min incubation

point shows the pitch-to-pitch distance of about 62.08 nm.

C. Collagen assembly near boundary

Fig. 6(a) was taken using 20× microscope, showing the AFM cantilever tip with

laser spot and the area of the mica scanned. At a narrow crack, collagen fibrils were

observed to assemble along the crack, as shown in Fig. 6(b). Multiple steps were

observed in this image as the sharp lines presented on the scan, with the steps in the

middle of the image defined as narrow crack. The cross-section of the narrow mica

cracks (unleveled image) depicted the crack width as 713 nm and the step height

as 25.97 nm (data not shown). Collagen fibrils in the narrow crack were observed

to align parallel with each other and along the crack, whereas the collagen fibrils in
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the upper plane were aligned in a different orientation, forming tapered ends at the

boundary of the crack.

In another experiment with a shallow step as shown in Fig. 7(a), collagen fibrils

assembled continuously across the step at the boundary. Collagen fibrils on the left

and right planes were assembled and aligned in the same direction, with the fibrils

on the left plane appearred to hang over the step. The bottom of Fig. 7(a) shows

the cross section of the image, the height of the step is 14.75 nm and is defined

as a shallow step in this study. No tapered ends were observed on the fibrils near

the boundary, suggesting that the fibrils might be hanging over the shallow step, or

possibly overcoming the barrier to merge with the fibrils on the other plane forming

a continuous layer. As a comparison, another experiment was performed with greater

mica step height and collagen fibrils were observed to be non-continuous, forming

tapered ends at the step boundary, as shown in Fig. 7(b). The step height was

measured to be 20.96 nm in this sample (data not shown).

AFM images scanned near the mica boundary were mostly dirty and unclear

due to the dramatic topographic differences on the surface. Scanning was done under

tapping mode in which the cantilever tip was oscillating right above the substrate and

barely touching the surface. The tip’s next movement was predicted based on the

feedback from previous movements. Drastic changes in surface topograph will affect

the quality of the scan as the tip cannot predict the next movement correctly and

feed in wrong signal to the AFM controller program. In the case with drastic topo-

graphic changes, small features on the surface near the drastic change may possibly

be omitted, thus creating a blurry area near the boundary.
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CHAPTER IV

DISCUSSION

A. Collagen assembly without D-period

Trials and errors were performed to develop the correct protocol which yields collagen

fibril with D-periods. The effects of pH and electrolytes on collagen assembly were

previously studied [15]. Fig. 3(a) shows the collagen molecules adsorbed to mica as

globular protrusions at pH 4.5 [15]. We think that due to the uneven charge distri-

bution on collagen molecules, they were collapsed to hide the hydrophobic sidechains

due to positive charge repulsion at low pH condition, forming globular structures.

Once neutralized, individual tropocollagens can be seen, where no assembly occured

due to the absence of essential electrolytes, i.e. potassium ions (Fig. 3(b)). The mea-

sured contour length of the tropoccollagen here is about 300 nm, comparable to the

theoretical value, while the height was measured to be <1nm, which is less than the

theoretical diameter for a collagen triple helix (1.5 nm) [23]. This discrepancy may

be due to three reasons: (i) imaging was performed in dry and thus the drying force

could have caused the molecules to collapse on the mica surface, (ii) force applied

from the AFM tip during Tapping Mode imaging, (iii) the binding force between the

molecule and the mica substrate. Similar AFM images on collagen monomer were

shown in Bozec and Horton’s work [27].

Upon addition of potassium ions, self-assembly of collagen begins spontaneously

as shown in Fig. 3(c). The presence of ionic species including KCl and MgCl2 has an

electrostatic screening effect to the collagen monomer, shortening the Debey length

thus allowing self-assembly of collagen. The effects of potassium ions on collagen

assembly has been greatly studied previously [28, 15]. NaCl could have the same

screening effect as KCl but the presence of potassium is needed for the formation of D-
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period on mica [29]. Potassium ions play an important role in molecules assembly on

mica due to the presence of K+-binding pocket on mica surface [30]. Muscovite mica is

composed of negatively charged aluminosilicate layers held together by the interlayer

potassium ions. A cleaved mica surface can thus be expected to have potassium

ions distributed equally over the two cleaved layers [31]. Potassium ions present in

the collagen buffer will thus modulate the assembly of collagen fibrils by serving as

a competitive inhibitor to collagen molecules to bind to the K+-binding pocket on

the mica surface. Compared to low pH case (pH 4.5), the electrostatic repulsion of

collagen molecules was reduced to allow self-assembly at neutral pH (6.5–7). Effect of

high pH (pH 9) was shown in Fig 3(c), yielding thinner fibrils. Phosphate ions which

is thought to be essential to the collagen D-period formation was added in Fig. 3(e) at

neutral pH together with potassium ions. However, D-periodicity did not appear for

even up to 120 min (data not shown) sample incubation at 37�, possibly due to the

lack of a substrate for proper monolayer assembly of collagen fibril and insufficient

time for collagen clumps with D-period to form.

B. Collagen assembly with D-period

The formation of D-bandings was first detected in collagen clumps formed visible to

bare eye after prolonged incubation at 37� (30min) in test tube and room temper-

ature for hours. Although Fig. 4(a) shows an average banding pattern of 54.6 nm

which is less than the regular 67 nm D-periods observed in native type I collagen,

shorter D-periods has been reported in other works [16]. Shorter D-periods could be

due to the dehydration of the sample during the drying process. It could also be a

transient structure that forms during the fibrogenesis process [16], in which the fibrils

relax to a lower energy state. However, the actual D-period could be longer and more

measurements are necessarily for a more accurate estimation of D-period.
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Comparing different methods and protocols of collagen assembly, we concluded

that the critical step in obtaining monolayer collagen assembly with D-period is to

incubate the sample on a mica surface for a given amount of time depending on

the monomer concentration. At a collagen concentration of 0.05 mg/ml with 30 min

sample incubation in test tube at 37�, D-periods were not formed until at least 10 min

incubation on mica (Fig. 5(b)). At 1 min mica incubation, traces of D-periods were

inevident (Fig. 5(a)). Surface assembly is then shown to be essential for obtaining

collagen monolayer with D-periods because the sample incubated at 37� for 120 min

in the test tube alone does not give rise to D-period formation, but only shows thin

fibrils in meshworks similar to Fig. 3(e)(data not shown).

In Fig. 5(a), the 2 µm scan shows small and thin fibrils in the background.

Comparing Fig. 5(a),(b), and (c), the background small fibrils decreased and the big

collagen fibrils were more solid and packed over time. All three images were taken at

the same collagen concentration. Also, we observed the spacing between the fibrils to

decrease over time, showing that lateral growth was possible but much slower than

the longitudinal growth since the fibrils appear to be highly aligned and long at even

at 1 min incubation time on mica. To further understand how fast the longitudinal

assembly can go, we have performed another experiment with 5 times dilution (0.01

mg/ml) of collagen (maintaining ionic strength and pH) and eliminated the 30 min

incubation step at 37�. The 1 min incubation of such sample on mica was shown in

Fig. 8. We observed that collagen self-assembled into very long fibrils and well-aligned

on mica even at 1 min incubation on mica, without prior incubation in test tube at

37�.

Another interesting phenomenon we observed was the high order and alignment

of collagen fibrils on mica. As a control, we incubated the same collagen sample on

other substrates such as silicon wafer (Fig. 9) and phlogopite mica (data not shown).
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AFM topographies show random meshworks of collagen fibrils as opposed to the

highly aligned fibrils on mica. We are currently studying the underlying reasons for

the alignment. We propose two possible factors that can contribute to the alignment

phenomena: (i) Mica lattice may serve as a template for collagen alignment, (ii) long-

ranged interaction between collagen molecules might be the cause for the alignment.

The first theory was proposed by Sun et al., who claimed that the distorted hexagonal

symmetry of mica lattice could guide collagen alignment [20]. Kuwahara’s work

on mica surface structure reveals that once cleaved, dioctahedral muscovite mica

experiences surface relaxation which is caused by a large tetrahedral rotation [32].

According to Kuwahara, this rotation then results in grooves from tetrahedral tilt,

made by subsiding the basal oxygen connecting adjacent SiO4 tetrahedra across the

elongated edge in each distorted hexagonal ring [32]. In contrast, for trioctahedral

mica (phlogopite), large tetahedral rotation does not occur because of a smaller lateral

misfit and smaller interlayer cation [33]. Balzer et al. in the assembly study of organic

oligomer proposed that it was the grooves present on muscovite mica surface which

leads to the major direction for alignment of aggregates on muscovite mica [34].

However, the asymmetry of mica lattice may not the sole reason for collagen

fibrils alignment on mica for two reasons: (i) The small and thin fibrils in the back-

ground of Fig. 8 were not aligned in the same orientation with each other, but only

the bigger ones were, (ii) surface assembly must have occured while the sample is

incubated on the mica surface as the collagen molecules diffused, packed, and aligned

(lateral growth of the fibrils observed and the background small fibrils decreased),

indicating that the molecules are not immobilized once adsorbed on mica surface. It

is also unlikely that the alignment is due to drying or rinsing direction for the same

reasons mentioned above. More careful experiments and analysis have to be carried

out to better understand the assembly of parallelly aligned collagen layer.
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Freshly-cleaved mica substrate contains K+-binding pocket which is negatively

charged. Collagen molecules at neutral pH are positively charged. Hence, once de-

posited on mica, collagen molecules will compete with the K+ ions present in the

buffer to adsorb to the mica surface. The correct binding rate has to be achieved for

collagen to assemble into D-periodic structure. As a future work, we think that simi-

lar collagen assembly can be achieved on silicon substrate if one can tailor the correct

buffer condition and make the silicon substrate negatively charged by applying slight

electric potential.

C. Collagen assembly near boundary

The investigation on collagen assembly near mica boundary is limited with the reso-

lution of AFM and also the difficulty in controlling the crack/ step width and height

on mica. The mica disk was cleaved by peeling off the sticky tape on its surface to

obtain a clean mica surface for every experiment. Thus, the cracks and steps on mica

are random. Based on Fig. 6, different alignment of collagen fibrils can be achieved

by having a step-like surface. Zhu et al. had fabricated nanogroves on polystyrene

using polarized laser and showed that collagen fibrils aligned along the grooves [8].

Ability to generate aligned collagen matrix is desirable for understanding the effect

of anisotropy of extracellular matrix (ECM) on cell behaviors.

Comparing Fig. 7 (a) and (b), thermal motion may cause the fibrils to overcome

the step at the boundary when the step height is small, e.g. less than 15 nm. Tapered

ends were not observed in Fig. 7(a) but in Fig. 7(b), which has a step height of about

21 nm. Fig. 6(b) shows tapered ends on the upper plane as well and the step height

was about 26 nm.
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CHAPTER V

SUMMARY AND CONCLUSION

This work higlighted various assembly conditions of type I collagen molecules on mica

surface. We conclude that the citical conditions for monolayer collagen assembly on

mica with D-periods are: (i) potassium ions, (ii) phosphate ions, and (iii) prolonged

incubation on mica substrate. We propose that the assembly of collagen monolayer

consists of three critical steps. The initial surface adsorption of the collagen molecules

to the mica substrate, assisted by the presence of potassium ions which act as a com-

petitive inhibitor to the K+-binding pocket on the cleaved mica surface. The process

is followed by the growth of the fibrils by addition of molecules to the existing ones,

which we believe to be assisted by the presence of phosphate ions that mimics the

physiological environment. The final step is the maturation or the rearrangement

process, in which the collagen molecules rearrange themselves into energetically fa-

vorable confirmations to form a native-like microfibril, then hierarchically into fibrils

which exhibit D-periodicity. When incubated on mica substrate, collagen molecules

assemble into highly aligned fibrils with fast longitudinal growth and relatively slow

lateral growth. It appears that the alignment of the fibrils was neither due to the hy-

drodynamic flow nor drying. Two factors affecting collagen alignment on mica include

the effect of mica lattice and the long-range interactions between collagen molecules.

More studies are needed to find out whether and how these factors operate. The

structure and alignment of collagen fibrils play an important role in our body since

some diseases such as canine myxomatous mitral valve disease are directly related to

the misalignment of collagen [35]. Apart from that, information from collagen assem-

bly near mica boundary can be useful in constructing ex vivo scaffold for biomaterials

application. A more careful method has to be developed in creating defined steps on
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mica to further study collagen assembly near boundary. As a future work, we will

focus on understanding the mechanism for the long range alignment of collagen fibrils

on mica.
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APPENDIX

(a) (b)

Fig. 1. Model of the hierarchical assembly of type I collagen. (a) From top: Tropocol-

lagen about 300 nm in length. Five of them stagger laterally to form one

microfibril with repeating gap and overlap regions. One gap and overlap is

67 nm in length. Image adopted from Cisneros et al. (b) A schema showing

hierarchical nature of collagen assemblies, image from Campbell et al.
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Fig. 2. Overview of the exprimental procedure. Collagen stock was obtained and ad-

justed to a desired concentration and buffer conditions, deposition on mica, and

air dried to be imaged with AFM. Incubation of sample at 37� in test tube or

at room temperature on mica was optional and was part of the parameters in

the study.
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Table I. Summary of different experimental setups. (RT stands for room temperature in this context)

Electrolytes Phosphate ions

Section Subsections

CollagenCollagen

pH
KCl MgCl2Na2HPO4KH2PO4

37� RT Mica Mica

Stock Conc. Incub.Incub.DepositIncub.

(mg/ml) (mM) (mM) (mM) (mM) (min) (min) (min)

B1a Low pH, no electrolyte Powder 0.5 4.5 - - - - - - A -

B1b pH6.5, no electrolyte Powder 0.1 6.5 - - - - - - A -

B1c pH7, w/ electrolyte Powder 0.1 7 100 10 - - - - B -

B1d pH9, w/ electrolyte Powder 0.02 9 200 - - - - 150 B -

B1e
pH7, w/ electrolyte,

Liquid 0.02 7 200 - 20 10 10 - C 1
w/ phosphate

B2a Clumps Liquid 0.2 7 200 - 20 10 30 >3 hr C 25

B2b Monolayer

Liquid 0.05 7 200 - 30 10 30 - C 1

Liquid 0.05 7 200 - 30 10 30 - C 10

Liquid 0.05 7 200 - 30 10 30 - C 108

B3a - Liquid 0.05 7 200 - 30 10 30 - C >1 hr
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Fig. 3. AFM images of collagen assembly without D-period at different conditions (see

Table I). (a) At low pH and no electrolyte, 0.5 mg/ml collagen. (b) Neutral

pH and no electrolyte, 0.1 mg/ml collagen. (c) First collagen fibrils formation

at neutral pH and with electrolyte, 0.1 mg/ml collagen. (d) At pH 9 and

with electrolyte, 0.02 mg/ml collagen. (e) At neutral pH, with electrolyte and

phosphate buffer, 0.02 mg/ml collagen, incubated for 10 min at 37�.
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Fig. 4. AFM images of collagen assembly with D-period. (a) Collagen clumps observed

with D-periods. (b) Line analysis of the collagen fibril in the clump showing

the evidence of repeating periodicity, approximately 54.6 nm.
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Fig. 5. Layers of collagen fibrils formed after 30 min incubation in test tube at 37�

and (a) 1 min incubation on mica at RT, right: zoom-in view, approximate

height of small fibril in the background less than 1 nm, big fibril= 1–2 nm; (b)

10 min on mica. Right: line analysis of a fibril, showing banding about 68.7

nm, fibril height= 2–4 nm; (c) 108 min on mica. Left: 50 × 50 µm2 (top right

corner shows a digital zoom in). Right: zoom-in scan, fibril height= 2–3 nm,

banding about 62.08 nm.
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Fig. 6. Collagen assembly near narrow mica crack/ step. (a) Microscope image of the

mica crack area scanned with AFM, 20× magnification. (b) AFM topography

near a narrow crack (mica step boundary). Different collagen alignment was

observed at the narrow step and the upper and lower plane, collagen fibrils

were aligned along the narrow step. Crack width was measured as 713 nm and

step height was 25.97 nm.
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Fig. 7. Collagen assembly near shallow mica crack/ step. (a) Top: AFM topogra-

phy. Note that collagen alignment was the same across the boundary; bottom:

cross-sectional view of the step. (b) Collagen assembly at deeper mica step

boundary. Collagen alignment was the same observed at the upper and lower

plane of the boundary but the ends of the fibrils near the boundary were ta-

pered. The mica step height was about 20.96 nm.
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Fig. 8. Monolayer collagen assembly with no 37� incubation in test tube. Collagen

concentration was 0.01 mg/ml and incubated 1 min at room temperature on

mica. (a) 20 X 20 µm2 scan and (b)3 X 3 µm2 scan.

Fig. 9. 0.05 mg/ml collagen assembled on piranha treated silicon wafer. Sample was

incubated at room temperature for 30 min in test tube followed by 20 min on

silicon wafer prior to imaging.
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