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ABSTRACT 

 

Characterization of Aggregate Shape Properties Using a Computer Automated System. 

(December 2004) 

Taleb Mustafa Al Rousan, B.S., Jordan University of Science and Technology; 

M.S., Jordan University of Science and Technology 

Chair of Advisory Committee: Dr. Eyad Masad 

 

Shape, texture, and angularity are among the properties of aggregates that have a 

significant effect on the performance of hot-mix asphalt, hydraulic cement concrete, and 

unbound base and subbase layers.  Consequently, there is a need to develop methods that 

can quantify aggregate shape properties rapidly and accurately. In this study, an 

improved version of the Aggregate Imaging System (AIMS) was developed to measure 

the shape characteristics of both fine and coarse aggregates.  Improvements were made 

in the design of the hardware and software components of AIMS to enhance its 

operational characteristics, reduce human errors, and enhance the automation of test 

procedure.   

 AIMS was compared against other test methods that have been used for 

measuring aggregate shape characteristics. The comparison was conducted based on 

statistical analysis of the accuracy, repeatability, reproducibility, cost, and operational 

characteristics (e.g. ease of use and interpretation of the results) of these tests.  

Aggregates that represent a wide range of geographic locations, rock type, and shape 

characteristics were used in this evaluation. 

 The comparative analysis among the different test methods was conducted using 

the Analytical Hierarchy Process (AHP). AHP is a process of developing a numerical 

score to rank test methods based on how each method meets certain criteria of desirable 

characteristics. The outcomes of the AHP analysis clearly demonstrated the advantages 

of AIMS over other test methods as a unified system for measuring the shape 

characteristics of both fine and coarse aggregates. 
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 A new aggregate classification methodology based on the distribution of their 

shape characteristics was developed in this study. This methodology offers several 

advantages over current methods used in practice. It is based on the distribution of shape 

characteristics rather than average indices of these characteristics. The coarse aggregate 

form is determined based on three-dimensional analysis of particles. The fundamental 

gradient and wavelet methods are used to quantify angularity and surface texture, 

respectively. The classification methodology can be used for the development of 

aggregate shape specifications.   
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CHAPTER I 

INTRODUCTION 

 

PROBLEM STATEMENT 

The properties of coarse and fine aggregates used in hot-mix asphalt (HMA), hydraulic 

cement concrete, and unbound base and subbase layers have a significant influence on the 

engineering properties of the pavement structure in which they are used (Kandhal and 

Parker 1998; Saeed et al. 2001; Meininger 1998).  The form, angularity, and texture of 

fine and coarse aggregate particles influence their mutual interactions and interactions with 

any stabilizing agents (e.g., asphalt, cement, and lime) and are related to durability, 

workability, shear resistance, tensile strength, stiffness, fatigue response, optimum stabilizer 

content, and, ultimately, performance of the pavement layer. Therefore, fundamental 

measurements of aggregate shape characteristics are essential for good quality control of 

aggregates and for understanding the influence of these characteristics on the behavior of 

pavement structural layers.  

 There are currently no standard test methods for directly and objectively 

measuring aggregate angularity and surface texture. The current methods used in 

practice have several limitations: They are laborious, subjective in nature, and/or lack a 

direct relationship with the fundamental parameters governing performance such as 

shear strength and stiffness (Fletcher et al. 2003). In addition, some of these methods are 

limited in their ability to differentiate among aggregate characteristics (form, angularity, 

and texture). These limitations have various impacts on the quality of highway 

pavements, as they impede the development of design methodologies and construction 

practices that require accurate, repeatable, and rapid measurements of aggregate 

properties. Moreover, these limitations can lead to the development of specifications that 

in some cases overemphasize the need for superior aggregate properties or allow the use 

of marginal aggregates without a clear relationship to performance. 

________ 

This dissertation follows the style and format of the Journal of Computing in Civil 
Engineering (ASCE). 
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 Current test limitations have directed researchers toward seeking new 

technologies to accurately and rapidly measure aggregate shape. Motivated by 

advancements in digital vision and the availability of low-cost, powerful, and fast image 

processing software, new techniques for directly measuring aggregate shape properties 

have been developed. These systems operate based on different concepts such as image 

analysis techniques, laser scanning, and physical measurements of aggregate dimensions 

(Jahn 2000; Tutumluer et al. 2000; Masad 2001; Kim et al. 2001). These newly 

developed direct measurement methods have the potential to objectively quantify 

aggregate characteristics. However, some of these methods differ significantly in their 

experimental setups, analysis procedures, and the shape properties they measure. Some 

of these systems were developed to measure only one aggregate shape property, while 

some were developed to measure two shape properties. Very few were developed with 

the intention of measuring all three aggregate shape properties (form, angularity, and 

texture).  

One of the unique and most promising systems developed to characterize 

aggregate shape properties is the Aggregate Imaging System (AIMS). AIMS was 

developed to have the ability to capture images and analyze the shape of a wide range of 

aggregate sizes and types, covering those used in HMA, hydraulic cement concrete, and 

unbound aggregate layers of pavements. AIMS measures all three aggregate shape 

properties (form, angularity, and texture) for all aggregate types and for different 

aggregate sizes using a simple instrumental setup. AIMS uses one camera and two 

different lighting schemes to capture images of aggregates at different resolutions. These 

images are analyzed using image analysis techniques based on sound scientific concepts. 

AIMS represents each shape characteristic as a cumulative distribution function rather 

than an average value. Therefore, the system is able to better represent the influence of 

blending of different sources on aggregate characteristics. 

 A complete evaluation of most of these new methods, including AIMS, has not 

yet been performed. Thus, a comprehensive evaluation of these systems with respect to 

their accuracy, repeatability, reproducibility, cost, and operational characteristics is 
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necessary to discriminate between these methods. This evaluation is crucial, and without 

such information a rational recommendation for incorporating such test methods in 

aggregate specifications cannot be made. This research provides insight and much of the 

needed information to will help improve specifications for aggregates used in highway 

pavements. Also, a methodology for classification of aggregates based on their shape 

properties is developed as part of the research. 

 

OBJECTIVES 

In this research the following objectives are set to be achieved: 

1. Develop an improved version of the Aggregate Imaging System (AIMS) for 

measuring shape properties. The development of the improved system 

addresses operational characteristics, lighting scale, and automation. These 

improvements include modifications to the hardware, and both the control and 

analysis softwares.  

2. Evaluate the improved version of AIMS along with other available methods 

used to measure aggregate shape properties for repeatability, reproducibility, 

accuracy, cost, and operational characteristics. In this evaluation, different 

aggregate types from different sources were analyzed by three operators. In 

order to compare test methods based on the measured characteristics, the 

Analytical Hierarchy Process (AHP) was used.  

3. Develop a comprehensive methodology for classification of aggregates based 

on the distribution of their shape characteristics measured using the improved 

version of AIMS. The new methodology was developed using a statistical 

approach. The new methodology exhibits the features of representing the three 

characteristics of aggregate shape, unifies the methods used to measure shape 

characteristics of fine and coarse aggregates, and represents characteristics by a 

cumulative distribution function rather than an average value to better represent 

the effects of blending and crushing on aggregate shape. 
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DISSERTATION OUTLINE 

This dissertation consists of six chapters organized as follows: 

Chapter I is an introduction. The problem statement is presented, followed by the 

objectives and the outline of the dissertation. 

 Chapter II presents a literature review relevant to the influence of aggregate 

shape on performance of different types of pavements including HMA, hydraulic cement 

concrete, and unbound aggregate layers. Literature on identifying aggregate 

characteristics affecting performance is also presented in this chapter. In addition, 

Chapter II includes a list of direct and indirect test methods used for measuring 

aggregate shape characteristics along with a brief description of each test method. 

   Chapter III describes the Aggregate Imaging System (AIMS) and the 

improvements made as part of this study. The hardware and software modifications 

made to the system to improve its operational characteristics and automation 

capabilities, and the development of a lighting scale are documented in this chapter. 

(Parts of Chapter III were presented in the Transportation Research Board 83rd Annual 

Meeting, 2004).  

The experimental evaluation of the characteristics of the available methods to 

measure aggregate shape characteristics is presented in Chapter IV. This chapter 

documents the procedure followed to select the candidate tests. Repeatability, 

reproducibility, and accuracy of the selected methods were evaluated using different 

types of aggregates from different sources with various shape properties. Information 

about cost and operational characteristics of the test methods are also reported in Chapter 

IV. 

 Chapter V describes the procedure followed to rank the test methods based on 

the measured characteristics estimated in Chapter IV. This procedure is known as the 

Analytical Hierarchy Process (AHP), and provides a ranking, or a priority list of all the 

methods included in the evaluation. The main objective of this chapter is to highlight the 

flexibility and advantages of using AHP as a useful tool in this evaluation. This chapter 

includes numerical examples for using AHP to rank test methods and a description of the 
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program developed for AHP analysis. 

The third objective of this study is accomplished in Chapter VI. A new 

comprehensive methodology for classification of aggregate shape based on the distribution 

of their shape characteristics is developed. The chapter includes a description of the 

statistical approach where cluster analysis was used to set new limits for aggregate shape 

classes. (This chapter was submitted as a paper for publication through the Transportation 

Research Board 84th Annual Meeting, 2005. The authors of this paper are Taleb Al-Rousan, 

Eyad Masad, Cliff Speigelman, and Leslie Myers). 

 Chapter VII presents an overall summary and conclusions of the dissertation, 

discussion of future implementation of the newly developed computer automated 

system, and recommendations for future related studies. 
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CHAPTER II 

LITERATURE REVIEW 

  

INTRODUCTION 

Researchers have distinguished between different aspects that constitute aggregate 

geometry and have found that the particle geometry can be fully expressed in terms of three 

independent properties: form, angularity (or roundness), and surface texture (Barrett 1980).  

A schematic diagram that illustrates the differences between these properties is shown in 

Fig. 2.1. Form, the first-order property, reflects variations in the proportions of a particle.  

Angularity, the second-order property, reflects variations at the corners, that is, variations 

superimposed on shape.  Surface texture is used to describe the surface irregularity at a 

scale that is too small to affect the overall shape (Fig. 2.1).  These three properties can be 

distinguished because of their different scales with respect to particle size, and this feature 

can also be used to order them.  Any of these properties can vary widely without 

necessarily affecting the other two properties.   

Previous studies have used different terminology to refer to these aggregate 

properties (form, angularity, and texture).  In this study, the best judgment was made in 

relating the description of different properties discussed in the literature to the definitions of 

aggregate shape properties discussed above and shown in Fig. 2.1. Form will be used 

interchangeably throughout the study to refer to the relative proportions of a particle’s 

dimensions. Using a unified terminology facilitates comparing the findings of different 

studies and analyzing the results of different test methods.  

 This chapter focuses on presenting the findings of previous studies that are relevant 

to the influence of aggregate shape on performance of different types of pavements and on 

identifying aggregate characteristics affecting performance. This chapter also includes a 

brief description of the available test methods (direct and indirect) used for measuring 

aggregate shape characteristics. Image analysis techniques, that some of the imaging 

systems uses are also discussed in this chapter. 
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Form 

Angularity 

Texture

 
 
Fig. 2.1.  Components of Aggregate Shape Properties: Form, Angularity and Texture  

(after Masad 2001) 

 

 

THE INFLUENCE OF AGGREGATE CHARACTERISTICS ON PAVEMENT 

 PERFORMANCE 

This section documents the collected and reviewed information relative to the effect of 

aggregate shape properties on performance of different types of pavements. 

 
 
Hot-mix Asphalt Mixtures 

Many studies emphasized the role of aggregate shape in controlling the performance of 

asphalt mixtures, especially resistance to fatigue cracking and rutting (e.g., Kalcheff 

1968; Monismith 1970; Benson 1970; Brown et al. 1989; Barksdale et al. 1992; Yeggoni 

et al. 1996; Chowdhury et al. 2001; Park et al. 2001; Button et al. 1990; Kandhal and 

Parker 1998). These studies conducted experiments that focused on the influence of fine 

aggregate, coarse aggregate, or the combined effect of fine and coarse aggregate on 

HMA mixture’s mechanical properties and performance. 

Campen and Smith (1948) found that when crushed fine aggregates were used 

instead of natural rounded aggregates the stability of dense-graded HMA mixtures 
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increased from 30 to 190%.  The stability was measured using the bearing-index test 

(Campen and Smith 1948).  Ishai and Gellber (1982) used the packing volume concept 

developed by Tons and Goetz (1968) to quantify the geometric irregularities of a wide 

range of aggregate sizes. The HMA mixtures containing different aggregates types were 

evaluated by Ishai and Gellber (1982) for Marshall stability and flow, resilient modulus, 

and split tension strength.  The results showed that there was a significant increase in 

stability with an increase in the geometric irregularities of the aggregates. There was no 

correlation between geometric irregularities and resilient modulus or split tension 

strength of the HMA mixtures.   

Kalcheff and Tunnicliff (1982) evaluated the effect of fine aggregate shape on 

HMA properties. HMA mixtures were tested using Marshall stability test, repeated load 

triaxial compression, static indirect tensile splitting strength, and repeated load indirect 

tensile splitting resistance tests. They found that the use of manufactured sand instead of 

natural sand improved the mix behavior in terms of resistance to permanent deformation 

from repeated traffic loadings, tensile strength, and tensile fatigue resistance. Winford 

(1991) reached the same conclusion by relating mechanical properties of HMA such as 

those obtained from the static confined creep test to the type of fine aggregate in the mix.   

Herrin and Goetz (1954) reported that when the amount of crushed gravel in the 

coarse aggregate increased, the strength of the dense-graded HMA measured using the 

triaxial compression test was not significantly influenced.  However, the strength of the 

open-graded HMA mixture increased significantly when the percentage of angular 

coarse aggregates was increased.  Field (1958) found a considerable increase in HMA 

Marshall stability due to an increase in the percentage of crushed coarse particles.  The 

influence of crushed gravel coarse aggregate on the properties of dense-graded HMA 

mixtures was also investigated by Kandhal and Wenger (1973). They found that the 

Marshall stability of the dense-graded mix decreased with increased use of uncrushed 

gravel particles. However, the differences among the mixes were not significant. They 

noted also that there was no significant difference in the tensile strength of HMA 

mixtures containing crushed and uncrushed coarse aggregates.  



 

 

9

Sanders and Dukatz (1992) reported on the influence of coarse aggregate 

angularity on permanent deformation of four interstate sections of HMA pavements in 

Indiana. One of the four sections developed permanent rutting within two years of 

service. They found that HMA mixtures used in the binder course and the surface course 

of the rutted section had lower amounts of angular coarse aggregate compared to the 

other three sections.  

Kandhal and Parker (1998) pointed out that only a few studies have been 

conducted to examine the influence of flat and elongated coarse aggregate particles on 

HMA strength compared with studies that addressed coarse aggregate angularity. The 

presence of excessive flat and elongated aggregate particles is undesirable in HMA 

mixtures because such particles tend to break down (especially in open-graded mixtures) 

during production and construction, thus affecting the durability of HMA mixtures 

(Kandhal and Parker 1998).  

A study by Li and Kett (1967) found that the dimension ratio (width to thickness 

or length to width) had no effect on Marshall or Hveem stability as long as the 

dimension ratios were less than 3:1.  The permissible percentage of flat and/or elongated 

particles (dimension ratio exceeding 3:1), that did not adversely affect the mix stability 

was determined to be 30% or as much as 40%.  Stephens and Sinha (1978) reported that 

HMA mixes containing 30% or more flat particles (longest axis to shortest axis is more 

than or equal to three) maintained higher void contents compared to some other blends 

with lower percentages of flat particles. These mixes were compacted using a kneading 

compactor.   

Some studies focused on comparing the influence of fine aggregate shape on 

HMA mechanical properties to the influence of coarse aggregate shape properties.   

Lefebure (1957) utilized the Marshall test to measure the stability of HMA mixtures with 

a crushed cubical coarse aggregate or crushed aggregates with flat and long particles 

combined with natural sand or crushed sand. His study concluded that fine aggregate 

was the most critical component of the HMA mixture. Its quantity and characteristics 

control, to a large extent, the Marshall stability. Wedding and Gaynor (1961) evaluated 
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the influence crushed coarse and fine aggregate on the Marshall stability of dense-graded 

HMA mixtures. Using crushed coarse aggregates caused a significant increase in 

stability compared with uncrushed coarse aggregates. The use of crushed fine aggregates 

caused an increase in stability of mixes with uncrushed coarse aggregates. However, the 

use of crushed fine aggregates had a minimal effect on HMA stability when crushed 

coarse aggregates were included.  

 Foster (1970) measured the resistance of dense-graded HMA mixtures to traffic 

by using test sections.  He concluded that HMA mixtures with crushed coarse aggregate 

showed no better performance than that of the mix containing uncrushed aggregates.  

The study attributed this finding to the crushed fine aggregate, which controlled the 

capacity of the mix to resist stresses induced by traffic.   

  The influence of shape, size, and surface texture of aggregate on stiffness and 

fatigue response of HMA mixture was investigated and summarized by Monismith 

(1970). He indicated that aggregate characteristics affect both stiffness and fatigue 

response of HMA mixtures.  Monismith (1970) recommended utilizing rough-textured 

materials with dense gradation for thick pavements in order to increase mix stiffness and 

fatigue life, whereas it might be acceptable to utilize smooth-textured aggregates in thin 

pavements since they produce less stiff mixtures resulting in increased fatigue life.  

 Barksdale et al. (1992) evaluated the effect of aggregate on rutting and fatigue of 

HMA mixtures.  Aggregate shape was measured using image analysis techniques and the 

packing test developed by Ishai and Gellber (1982).  They found that aggregate shape 

properties obtained from the packing test were statistically related to the rutting behavior 

of selected HMA mixtures.  A comprehensive study by Kandhal et al. (1991) evaluated 

the factors that contribute to asphalt pavement performance.  They found that mixtures 

with less than 20% natural sand in the fine aggregate had better performance than 

mixtures with more than 20% natural sand. They also recommended using coarse 

aggregate having at least 85% of particles with two or more fractured faces for heavy-

duty wearing and binder courses. 
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A study conducted at the Texas Transportation Institute related an imaging index of 

aggregate texture (fractal dimension) to the creep behavior of asphalt mixes (Yeggoni et al. 

1996).  In this study, seven different aggregate blends of the same gradation but with 

varying amounts of crushed coarse aggregate particles were prepared.  An example of the 

relationship between the fractal dimension and static creep compliance is shown in Fig. 2.2.  

Fig. 2.3 shows the correlation between the texture of the coarse aggregates used 

in National Cooperative Highway Research Program (NCHRP) study 4-19 (Kandhal and 

Parker 1998) and rutting depths of HMA measured using the Georgia Loaded Wheel 

Test (GLWT) (a laboratory wheel tracing device). Texture measurements were 

conducted using the AIMS (Fletcher et al. 2002). It can be seen that an excellent 

relationship exists between the texture of coarse aggregates measured using image 

analysis techniques and the resistance to permanent deformation.   

 

Hydraulic Cement Concrete Mixtures 

Performance of Portland cement concrete pavements (PCCP) is influenced by aggregate 

properties. The properties of fine and coarse aggregates used in the mix can significantly 

increase or decrease the pavement service life. Selection of the appropriate aggregate 

type and properties is the key to enhancing pavement life; otherwise, poor selection can 

lead to premature failure in the pavement structure. 

Concrete is expected to perform well during construction and service life, so 

PCCP will have good performance and serviceability and will last longer. The properties 

of the aggregate used in the concrete are expected to affect the performance parameters 

of both fresh and hardened Portland cement concrete (PCC). Aggregate shape 

characteristics affect the proportioning of PCC mixtures, the rheological properties of 

the mixtures, the aggregate-mortar bond, and the interlocking strength of the concrete 

joint/crack. 
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Fig. 2.2.  Correlation between Coarse Aggregate Texture Measured Using Image Analysis 

and Rut Depth in the Creep Compliance of HMA (after Yeggoni et al. 1996) 

 

 

 
Fig. 2.3.  Correlation between Coarse Aggregate Texture Measured Using Image Analysis 

and HMA Rut Depth in the Georgia Loaded Wheel Test (GWLT) (after Fletcher 2002) 
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 Meininger (1998) conducted an extensive literature review and included a 

detailed discussion about the performance parameters of PCC used in various types of 

highway construction that may be affected by aggregate properties. He also presented a 

discussion about aggregate properties related to performance parameters. Meininger 

(1998) indicated that fine aggregate content and properties mostly affect the water 

content needed in the concrete mix. Thus, selecting or knowing the fine aggregate proper 

content and proper shape and texture will help in ensuring a workable, easy handling 

mix. Using an all crushed fine aggregate reduces the concrete workability significantly 

and makes it more difficult to place concrete. Workable concrete is important for proper 

consolidation, which in turn assures proper density, minimizes voids, and minimizes 

segregation at the joint areas, thus preventing spalling. An increase in the mixing water 

is associated with higher cement content, thus resulting in more drying shrinkage, which 

in turn leads to more transverse cracking. As drying shrinkage increases, the cracks and 

joints open leading to reduced aggregate interlock and increased tendency toward 

faulting and punchouts.  

  Coarse aggregate particle form and angularity are related to critical performance 

parameters such as transverse cracking, faulting of joints and cracks, punchouts, and 

spalling at joints and cracks. Using a high percentage of flat elongated particles might cause 

problems when placing the concrete, which will result in voids and incomplete 

consolidation of the mix, and thus contribute to spalling.  If poor workability exists, then 

high mortar content is expected, which will lead to high rate of drying shrinkage and 

transverse cracking. Although flat and elongated particles may grant good interlocking at 

joints or cracks, the thin particles will be easier to break, causing faulting in jointed 

concrete pavements and punchouts in continuously reinforced concrete pavements 

(Meininger 1998). 

Coarse aggregate form, angularity, and surface texture are believed to have a 

remarkable effect on the bond strength between aggregate particles and the cement paste 

(Mindness and Young 1981). Weak bonding between aggregates and mortar leads to 

distresses in concrete pavements including longitudinal and transverse cracking, joint 



 

 

14

cracks, spalling, and punchouts (Fowler et al. 1996; Meininger 1998; Folliard 1999). 

 Kosmatka et al. (2002) indicated that the bond strenght between the cement paste 

and a given coarse aggregate generally increases as particles change from smooth and 

rounded to rough and angular. The increase in bond strength is a consideration in selecting 

aggregate for concrete where flexural strength is important or where high compressive 

strength is needed.  

Kosmatka et al. (2002) indicated that aggregate properties (particle form and 

surface texture) affect freshly mixed concrete more than hardened concrete. Rough-

textured, angular, and elongated particles require more water to produce workable 

concrete than do smooth, rounded, compacted aggregates. Angular particles require 

more cement to maintain the same water to cement ratio. However, with satisfactory 

gradation, both crushed and non-crushed aggregate (of the same rock type) generally 

give essentially the same strength for the same cement factor. Angular and poorly graded 

aggregates can be difficult to pump (Kosmatka et al. 2002). 

 

Unbound Layers  

As with any other type of pavement layers, performance of unbound granular pavement 

base and subbase layers is greatly affected by the properties of the aggregate used.  Poor 

performance of unbound granular base layers will result in upper pavement layer failures 

whether asphalt or concrete. Failure in the asphalt pavement due to poor performance of an 

unbound granular base layer can result in different forms of distresses in pavement, such as 

rutting, fatigue cracking, longitudinal cracking, depressions, corrugations, and frost heave, 

while poor performance of a granular base layer will result in pumping, faulting, cracking, 

and corner breaks in concrete pavements (Saeed et al. 2001). 

A study by Barksdale and Itani (1994) showed significant correlation between 

aggregate shape properties and the resilient modulus and shear strength properties of 

unbound aggregates used in base layers. Saeed et al. (2001) showed a linkage between 

aggregate properties and unbound layer performance. Their study showed that the 

aggregate particle angularity and surface textures mostly affect shear strength and stiffness. 
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Shear strength is the most important property and has a great influence on unbound 

pavement layer performance. 

The study by Saeed et al. (2001) revealed that lack of adequate particle 

angularity and surface texture is one of the contributing factors to fatigue cracking and 

rutting in asphalt pavements, while lack of adequate particle angularity and surface 

texture is a contributing factor to cracking in concrete pavement.  

Rao et al. (2002) studied the effect of aggregate shape on strength and performance 

of pavement layers. They indicated that critical coarse aggregate physical properties are 

aspect ratio (cubical vs. flat or elongated), surface texture (smooth vs. rough surface), and 

angularity (sharp vs. smooth edges). While cubical particles have fewer breakdowns than 

flat or elongated ones, angular and rough-textured coarse aggregate particles provide higher 

shear strength than do rounded and smooth-textured aggregate. Coarse aggregate angularity 

provides a great deal of rutting resistance in asphalt pavements as a result of improved 

shear strength of unbound aggregate base and hot-mix asphalt. The interlocking of angular 

particles results in a strong aggregate skeleton under applied loads, whereas round particles 

tend to slide by or roll over each other, resulting in an unsuitable and weaker structure. 

 Rao et al. (2002) also conducted a series of experiments that demonstrated the 

influence of aggregate shape on the shear strength of several unbound materials as 

measured in triaxial tests. Fig. 2.4 shows the correlation between the shear strength of 

unbound aggregates and the angularity index (AI) measured using the University of Illinois 

imaging system (Rao 2001; Rao et al. 2002).  The trend in the data presented suggests that 

as the AI values increase, the angle of internal friction, φ, increases exponentially. The 

correlation between the failure deviator stress and the AI value is also graphed in Fig. 2.4 

for the three confining pressures. As the AI value of the unbound aggregate material 

increases, the deviator stress needed for failure also increases for each of the three 

confining pressures.   

Based on reviewing several studies, Janoo (1998) concluded that form, 

angularity, and roughness have significant effect on base performance. He stated that 
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several studies have shown that there can be as mush as 50% change in resilient modulus 

of base materials due to geometric irregularities. 
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Fig. 2.4.  Correlation between Coarse Aggregate Angularity and Shear Strength (after 

Rao 2001; Rao et al. 2002). 

 

 

IDENTIFYING AGGREGATE CHARACTERISTICS AFFECTING 

PERFORMANCE 

Most of the available information on the influence of aggregate characteristics on 

performance emphasizes that form, angularity, and texture play important roles in 

controlling performance of HMA mixtures, hydraulic cement concrete mixtures, and 

unbound layers. However, different shape properties influence the performance of these 

layers to different extents.  

Most of the test methods used in the literature did not separate the influence of 

angularity from that of texture.  Therefore, the term surface irregularity is used in this 

study to reflect the combined effect of angularity and texture. Previous research confirms 
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that aggregate geometric irregularity improves the resistance of HMA to rutting. Also, 

aggregate surface irregularity influences the resistance of asphalt mixtures to fatigue 

cracking. In general, angular aggregates that increase mix stiffness are needed for thick 

pavements, while smooth aggregates that reduce mixture stiffness are needed for thin 

pavements to provide resistance to fatigue cracking (Monismith 1970; Kandhal and 

Parker 1998). Surface irregularity also improves bonding between the aggregate surface 

and asphalt binder, and thus generally minimizes stripping problems. 

The literature review also showed that the presence of excessive flat and 

elongated aggregate particles is undesirable in HMA mixtures because such particles 

tend to break down (especially in open-graded mixtures) during production and 

construction, thus affecting the durability of HMA mixtures. However, a limited number 

of studies were conducted to examine the influence of flat and elongated aggregate 

particles on performance of HMA mixture.  

Although most available tests could not separate texture from angularity, recent 

studies using image analysis techniques have emphasized the significant influence that 

texture has on performance (Fletcher et al. 2002;  Masad 2003). 

The literature reviewed on the effect of aggregate properties on the performance 

of PCCP indicates that aggregate characteristics affect the proportioning of PCC, the 

rheological properties of the mixtures, the aggregate-mortar bond, and the interlocking 

strength of the concrete joint/crack (Meininger 1998; Kosmatka et al. 2002). 

Aggregate surface irregularities have significant influence on workability and 

bonding between mortar and aggregates.  Consequently, surface irregularities influence 

pavement distresses in concrete pavements including longitudinal and transverse 

cracking, joint cracks, spalling, and punchouts (Fowler et al. 1996; Meininger 1998; 

Folliard 1999).   

Flat and elongated particles mainly affect the workability of fresh concrete in 

such a way that they might cause problems when placing the concrete, which will result 

in voids and incomplete consolidation of the mix, and thus contribute to spalling.   

Surface characteristics of aggregates used in unbound layers of pavements is a 
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contributing factor to fatigue cracking and rutting in asphalt pavement, while lack of 

adequate particle angularity and surface texture is contributing factor to cracking in 

concrete pavement (Saeed et al. 2001; Rao et al. 2002).  

Flat and elongated particles influence the unbound layers by increasing the 

anisotropic behavior of these layers. Intuitively speaking, these flat elongated particles form 

weak shear planes in the direction of traffic on pavements. There is no experimental 

evidence that this anisotropy compromises the performance significantly. However, the 

stiffness anisotropy should be considered in the design of asphalt pavements (Tutumluer 

and Thompson 1997).  

Finally, Masad (2001) emphasized, based on a literature review of methods used to 

analyze aggregate characteristics, that most analysis methods do not differentiate between 

angularity and texture. This creates large discrepancies in relating aggregate characteristics 

to performance, as aggregates that have high texture do not necessarily exhibit high 

angularity, especially in coarse aggregates.  It is important to develop methods that are able 

to quantify each of the aggregate characteristics rather than a manifestation of their 

interaction. 

 

TEST METHODS FOR MEASURING AGGREGATE CHARACTERISTICS 

Kandhal et al. (1991), Janoo (1998), and Chowdhury et al. (2001) classified methods that 

are used to describe aggregate shape characteristics into two broad categories, namely, 

direct and indirect.  Direct methods are defined as those wherein particle characteristics 

(form, angularity, and texture) are measured, described qualitatively, and possibly 

quantified through direct measurement of individual particles.  In indirect methods, 

particle shape characteristics are lumped together as geometric irregularities and 

determined based on measurements of bulk properties.  Table 2.1 shows a summary of 

direct and indirect test methods that have been used by highway state agencies and 

research projects for measuring some aspects of aggregate shape properties.  
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Table 2.1. Summary of Methods for Measuring Aggregate Characteristics (after Masad 

2001) 

Test References for the Test 
Method 

Direct (D) or 
Indirect (I) 

Method 

Field (F) or 
Central  

(C) 
Laboratory 
Application 

Applicability 
to Fine (F) or 

Coarse (C) 
Aggregate 

Uncompacted Void Content of 
Fine Aggregates AASHTO T304 I F, C F 

Uncompacted Void Content of 
Coarse Aggregates 

AASHTO TP56, NCHRP 
Report 405, Ahlrich (1996) I F, C C 

Index for Particle Shape and 
Texture ASTM D3398 I F, C F, C 

Compacted Aggregate 
Resistance 

Report FHWA/IN/JTRP-
98/20, Mr. David Jahn 
(Martin Marietta, Inc.) 

I F, C F 

Florida Bearing Ratio 
Report FHWA/IN/JTRP-

98/20, Indiana Test Method 
No. 201-89 

I F, C F 

Rugosity Tons and Goetz (1968), 
Ishai and Tons (1977) I F, C F 

Time Index 
Quebec Ministry of 

Transportation , Janoo 
(1998) 

I F, C F 

Angle of Internal Friction 
from Direct Shear Test Chowdhury et al. (2001) I C F, C 

Percentage of Fractured 
Particles in Coarse Aggregate ASTM D5821 D F, C C 

Flat and Elongated Coarse 
Aggregates ASTM D4791 D F, C C 

Multiple Ratio Shape Analysis Mr. David Jahn (Martin 
Marietta, Inc.) D F, C C 

VDG-40 Videograder 
Emaco, Ltd. (Canada), 
Weingart and Prowell 

(1999) 
D F, C F, C 

Computer Particle Analyzer Mr. Reckart (W.S. Tyler 
Mentor Inc.), Tyler (2001) D C F, C 

Micromeritics OptiSizer 
(PSDA) 

Mr. M. Strickland 
(Micromeritics OptiSizer) D C F, C 

Video Imaging System (VIS) John B. Long Company D C F, C 

Buffalo Wire Works (PSSDA) Dr. Penumadu, University 
of Tennessee D C F, C 

Camsizer 
Jenoptik Laser Optik 
System and Research 

Technology 
D C F,C 

WipShape Maerz and Zhou (2001) D C C 
University of Illinois 

Aggregate Image Analyzer 
(UIAIA) 

Tutumluer et al. (2000), 
Rao (2001) D C C 

Aggregate Imaging System 
(AIMS) Masad (2003) D C F, C 

Laser-Based Aggregate 
Analysis System Kim et al., (2001) D C C 

Note: AASHTO = American Association of State Highway and Transportation Officials; FHWA= Federal Highway 

Administration; JTRP= Joint Transportation Research Program; ASTM= American Society of Testing and Materials. 
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Indirect Methods 

As defined earlier, indirect test methods are those methods in which particle shape 

characteristics are lumped together as geometric irregularities and determined based on 

measurements of bulk properties. In indirect methods, the form, angularity, and texture 

are usually combined together, as it is fairly difficult to separate the effect of the 

individual components. A brief discussion is provided below about the commonly used 

indirect methods.  

 

AASHTO 3304 (ASTM C1252) Uncompacted Void Content of Fine Aggregate 

This method was originally developed by the National Aggregate Association (NAA) 

and was later adopted by the American Society for Testing and Material (ASTM) as 

method C1252 and by the American Association of State Highway and Transportation 

Officials (AASHTO) as method T304. This method is often referred to as the Fine 

Aggregate Angularity (FAA) test. It measures the loose uncompacted void content of a 

sample of fine aggregate that falls from a fixed distance through a given-sized orifice. A 

decrease in the void content is associated with more rounded, spherical, smooth-surface, 

fine aggregate, or a combination of these factors. Method A of this procedure is used by 

Superpave to determine aggregate angularity to ensure that fine aggregate has adequate 

internal friction to provide rut resistance to an HMA. This method has been extensively 

evaluated in a number of studies (Chowdhury and Button 2001; Janoo 1998; Janoo and 

Korhonen 1999; Kandhal and Parker 1998; Lee et al. 1999a; Meininger 1998; Saeed et 

al. 2001). The apparatus used in this test method is shown in Fig. 2.5. 

 

AASHTO TP56 Uncompacted Void Content of Coarse Aggregate (as Influenced by 

Particle Shape, Surface Texture, and Grading)  

This method was originally developed by the NAA and was later adopted by AASHTO 

as method TP56. It measures the loose uncompacted void content of a sample of coarse 

aggregate that falls from a fixed distance through a given-sized orifice. A decrease in the 

void content is associated with more rounded, spherical, smooth-surface coarse 
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aggregate, or a combination of these factors. Method A of this procedure is used to 

determine aggregate angularity.  This method was evaluated in a number of studies 

(Ahlrich 1996; Kandhal and Parker 1998; Meininger 1998). The apparatus used in this 

method is shown in Fig. 2.6. 

 

 

 
 

Fig. 2.5. Uncompacted Void Content of Fine Aggregate Apparatus 
 

 

 
 

Fig. 2.6. Uncompacted Void Content of Coarse Aggregate Apparatus  
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ASTM D3398 Standard Test Method for Index of Aggregate Particle Shape and Texture  

This test provides an index of an aggregate sample as an overall measure of its shape and 

texture. The test is based on the concept that not only shape, angularity, and texture of 

uniformly sized aggregate affects void ratio, but also the rate at which the voids change 

when compacted in a standard mold (ASTM D3398; Fowler et al. 1996; Lee et al. 

1999b; Janoo and Korhonen 1999). 

 

Compacted Aggregate Resistance (CAR) Test 

The CAR test was developed by Mr. David Jahn for evaluating shear resistance of 

compacted fine aggregate in its as-received condition. The test works by applying a 

compressive load on the aggregate specimen using the Marshall testing machine. The 

compressive load versus displacement is plotted. The maximum compressive load that 

the specimen can carry is reported as CAR stability value. This value is assumed to be a 

function of the material shear strength and angularity. The CAR test method has many 

similarities with California Bearing Ratio test (Meininger 1998; Lee et al. 1999b; 

Chowdhury and Button 2001). Fig. 2.7 shows the CAR testing setup. 

 

 

 
 

Fig. 2.7. CAR Testing Machine 
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Florida Bearing Value of Fine Aggregate (Indiana State Highway Commission Method 

201) 

This test method is used to determine the Florida Bearing value for fine aggregates used 

in HMA.  The basic concept for this method is to determine the deformation rate of a 

fine aggregate subjected to a constant rate of loading.  This deformation rate is taken as 

an indirect measure of angularity (Indiana Department of Transportation/Material and 

testing division/ITM No. 201-01T; Lee et al. 1999b). Fig. 2.8 shows a schematic 

description of Florida Bearing ratio apparatus. 

 

 

 
 

Fig. 2.8.  Schematic Description of Florida Bearing Ratio Apparatus  
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Rugosity  

This method was first developed by Tons and Goetz (1968) for coarse and fine 

aggregates. The method is based on relating the flow rate of aggregates through a given-

sized orifice to their shape properties (Ishai and Tons 1977; Janoo 1998; Janoo and 

Korhonen 1999; Tons and Goetz 1968). Schematic description of the Pouring Device as 

presented by Janoo (1998) is shown in Fig. 2.9. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  2.9. Schematic Description of the Pouring Device Used by Rugosity Test 

 

 

Time Index 

This test method was developed in France in 1981, and Quebec Ministry of 

Transportation Aggregate Laboratory in Quebec City uses this test.  It was used for fine 

aggregates only, but it can be modified to measure the properties of coarse aggregates.  

Similar to the rugosity test, the basis for this method is that the flow rate of an aggregate 

mass through a known orifice is affected by angularity, surface texture, and bulk specific 

D = Bin Diameter 
a = Funnel Orifice Diameter 
c = Bin height 
b = Aggregate Head 
H = Pouring Height 
φ = Container Diameter 
h = Container Height 
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gravity of the aggregate (Janoo 1998; Janoo and Korhonen 1999). Time Index test 

apparatus is shown in Fig. 2.10. 

 

 

 
Fig. 2.10. Time Index Test Apparatus 

 

 

AASHTO T 236 (ASTM D3080) Direct Shear Test 

This test is normally conducted in accordance with the AASHTO T 236 or ASTM 

D3080 procedure. This test is used to measure the internal friction angle of a fine 

aggregate under different normal stress conditions. A prepared sample of the aggregate 

is consolidated in a shear mold. The sample is then placed in a shear device and sheared 

by a horizontal force while a normal stress is applied (Chowdhury and Button 2001; Lee 

et al. 1999b). Fig. 2.11 shows the direct shear testing machine. 
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Fig. 2.11. Direct Shear Testing Machine 

 

 

Direct Methods 

These methods vary in the level of sophistication used to obtain direct information on 

aggregate shape.  For example, the ASTM D5821 procedure simply relies on visual 

inspection of aggregates, and ASTM D4791 uses a mechanical device to classify 

aggregates according to the proportions of aggregate dimensions. The method developed 

by Jahn (2000) uses a digital caliper to provide the distribution of the proportions of 

aggregate dimensions, and the rest of the direct methods use imaging systems and 

analysis procedures to measure aggregate dimensions. An imaging system consists of a 

mechanism for capturing images of aggregates and methods for analyzing aggregate 

characteristics.  Table 2.1 summarizes the majority of the imaging systems available 

commercially or in research institutions. 

In addition to the systems in Table 2.1, several studies have presented 

experimental setups to facilitate capturing aggregate images (Kuo et al. 1996; Masad et 

al. 2001; Brzezicki and Kasperkiewicz 1999).  Imaging systems and analysis procedures  
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focus on quantifying form (Barksdale et al. 1991; Kuo et al. 1996; Masad et al. 1999a, 

1999b; Brzezicki and Kasperkiewicz 1999; Weingart and Prowell 1999; Maertz and 

Zhou 2001; Tutumluer et al. 2000), angularity (Li et al. 1993; Wilson and Klotz 1996; 

Yeggoni et al. 1994; Masad et al. 2000, 2001; Kuo and Freeman 2000; Rao et al. 2002), 

and texture (Hryciw and Raschke 1996; Wang and Lai 1998; Masad and Button 2000; 

Masad et al. 2001).   

 

ASTM D5821 Determining the Percentages of Fractured Particles in Coarse Aggregate 

This test method is considered to be a direct method for measuring coarse aggregate 

angularity.  The method is based on evaluating the angularity of an aggregate sample 

(mostly used for gravel) by visually examining each particle and counting the number of 

crushed faces, as illustrated in Fig. 2.12. It is also the method currently used in the 

Superpave system for evaluating the angularity of coarse aggregate used in HMA (Lee et 

al. 1999a; Meininger 1998; Saeed et al. 2001). 

 

 

 
Fig. 2.12.  Illustration of Counting Percent of Fractured Faces 
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ASTM D4791 Flat and Elongated Coarse Aggregates 

This method provides the percentage by number or weight of flat, elongated, or both flat 

and elongated particles in a given sample of coarse aggregate.  The procedure uses a 

proportional caliper device, as shown in Fig. 2.13, to measure the dimensional ratio of 

aggregates. The aggregates are classified according to the undesirable ratios of width to 

thickness or length to width, respectively. Superpave specifications characterize an 

aggregate particle by comparing its length to its thickness or the maximum dimension to 

the minimum one (Yeggoni et al. 1996; Rao and Tutumluer 2000; Saeed et al. 2001; 

Fowler et al. 1996; Meininger 1998). 

 

 

 
 

Fig. 2.13.  Flat and Elongated Coarse Aggregate Caliper 

 

 

Multiple Ratio Shape Analysis (MRA) 

This method was developed by David Jahn (2000) from Martin Marietta, Inc. The 

method is used for categorizing various particle forms found in a coarse aggregate 

sample. It is based on classifying aggregates according to their dimensional ratios into 

five different categories instead of one (<2:1, 2:1 to 3:1, 3:1 to 4:1, 4:1 to 5:1, >5:1).  

The device consists mainly of a digital caliper connected to a data acquisition system 

and a computer. A particle is placed on a press table, and the press is lowered until it 

touches the aggregate particle and stops. The device records the gap between the press 
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and the table, which is equal to the particle dimension. The particle is then rotated in 

another direction and the procedure is repeated to obtain other dimensions. These 

readings are recorded in a custom designed spreadsheet that displays the distribution of 

dimensional ratio in the aggregate sample (Jahn 2000). Fig. 2.14 shows the digital MRA 

device.  

 
 
 

 
 
Fig. 2.14. Improved Digital Multiple Ratio Analysis Device (MRA) by Martin Marietta 

 

 

VDG-40 Videograder 

This system was developed by the French public works laboratory (LCPC). The system 

consists mainly of a device to feed the aggregates that fall in front of a backlight and a 

camera to capture images. The system uses a line-scan charge-coupled device (CCD) 

camera to image and evaluate every particle in the sample as it falls in front of the 

backlight. A mathematical procedure based on assuming elliptical particles is used to 

calculate each particle’s third dimension from the two-dimensional (2-D) projection 

images captured. All analysis and data reporting are performed in a custom software 

package. This system is used in the laboratory to obtain automated aggregate gradation 

measurements and also particle flatness and elongation (Emaco Ltd Canada; Browne et 
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al. 2001). Fig. 2.15(a) and 2.15(b) show, respectively, the VGD-40 Videograder and a 

schematic of image acquisition of falling aggregates. 

 

 

 
(a)  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(b)  

 

Fig. 2.15.  VDG-40 Videograder. (a) Components of VDG-40 Videograder and (b) 

Image Acquisition of Falling Aggregates in VDG 40 Videograder 

Light  
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Light 
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Computer Particle Analyzer CPA 

The Computer Particle Analyzer (CPA) is similar to the VDG-40 Videograder, as it uses 

a line-scan CCD camera to image and evaluate every particle in the sample as it falls in 

front of the backlight.  However, it can be used in the laboratory as well as on-line 

(continuous scanning of a product stream).  The current analysis of this system focuses 

on gradation and form by assuming an idealized shape for aggregate particles to obtain 

the third dimension from images of 2-D projection.  All analysis and data reporting are 

performed in a custom software package (Terry Reckart-W.S. Tyler mentor Inc.; 

Browne et al. 2001). CPA system and a schematic description of the CPA are shown in 

Figs. 2.16(a) and 2.16(b), respectively. 

 

(a) 

 

Fig. 2.16. Computer Particle Analyzer System (CPA). (a) Components of  Computer 

Particle Analyzer System (CPA) and (b) Schematic Description of How CPA Works 
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(b)  

 

Fig. 2.16. Continued 

 

 

Micromeritics OptiSizer (PSDA) 

This device was initially developed for online applications. The system uses a line-scan 

CCD camera to image and evaluate particles in a sample as it falls in front of the 

backlight. Similar to the image analysis system discussed above, an idealized shape of 

particles is used to provide information about gradation and shape. All analysis and data 

reporting are performed in a custom software package (Strickland-Micromeritics 

OptiSizer; Browne et al. 2001). Fig. 2.17 shows the Micromeritics OptiSizer PSDA 

system.  

 

Video Imaging System (VIS) 

This system uses a line-scan CCD camera to image and evaluate particles in the sample 

as it falls in front of the backlight. Similar to the VDG-40 Videograder system, VIS 

assumes an idealized shape of a particle to provide information on gradation and form.  

Output 
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All analysis and data reporting are performed in a custom software package (John B. 

Lond Co.; Browne et al. 2001). The VIS is shown in Fig. 2.18 

 

 

 
 

Fig. 2.17. Micromeritics OptiSizer (PSDA) 

 

 

Fig. 2.18 Video Imaging System (VIS) 
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Buffalo Wire Works (PSSDA) 

This system was developed by Dr. Dayakar Penumadu, currently with the University of 

Tennessee.  The system uses a line-scan CCD camera to image and evaluate particles as 

they fall in front of the backlight.  The system, mainly developed for a laboratory 

environment, provides information about gradation and shape.  All analysis and data 

reporting are performed in a custom software package (Dr Penumadu-University of 

Tennessee; Browne et al. 2001). There are two systems available for measuring the 

characteristics of coarse and fine aggregates. Fig. 2.19 shows pictures of both systems 

used for analysis of coarse aggregates (PSSDA-Large) and fine aggregates (PSSDA-

Small).  

 

 

 
 

(a)  
 
Fig. 2.19. Buffalo Wire Works (PSSDA) Systems for Coarse and Fine Aggregates. (a) 

PSSDA-Large and (b) PSSDA-Small 
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(b)  
 

Fig. 2.19. Continued  

 

 
Camsizer  

Two optically matched digital cameras comprise the heart of the Camsizer system as 

seen in Fig. 2.20(a).  These two cameras are used to capture images of fine and coarse 

aggregates at different resolutions.  Individual particles exit the hopper and fall between 

the light source and the camera.  Particles are detected as projected surfaces and 

digitized in the computer.  This commercially available system automatically produces 

particle size distributions and some aspects of particle shape characteristics (Christison 

Scientific Equipment Ltd).  Fig. 2.20(b) shows an illustration of the Camsizer. 
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(a)  

 

 
b)  

 

Fig. 2.20.  Camsizer System. (a) Overall View of the Camsizer and (b) Illustration of the 

Two Cameras Used in the Camsizer 
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WipShape 

The system was developed by Dr. Maerz with the University of Missouri for coarse 

aggregate analysis. In the first version of the system, the aggregate particles were fed 

from a hopper into a mini-conveyor system. In a more recent version, the aggregate 

particles are placed in front of two orthogonal oriented synchronized cameras, which 

capture images of each particle from two views. These images are used to determine the 

three dimensions of particles. The system provides information on aggregate shape and 

gradation (Maerz et al. 1996; Maerz and Lusher 2001; Maerz and Zhou 2001). Fig. 2.21 

below shows the most recent version of WipShape System. 

 

 

 
 

Fig. 2.21.  WipShape System  
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University of Illinois Aggregate Image Analyzer (UIAIA) 

 This method was developed by Dr. Tutumluer with the University of Illinois.  It uses 

three cameras to capture projections of coarse particles as they move on a conveyer belt.  

These projections are used to reconstruct three-dimensional representations of particles.  

The shape is determined from the measured dimensions directly without the need to 

assume idealized shape of particles.  The system provides information on gradation, 

form, angularity, and texture (Rao et al. 2002).  The UIAIA and the aggregate detection 

system are shown in Figs. 2.22(a) and 2.22(b), respectively. 

 
 
 

 
(a)  

 
Fig. 2.22.  University of Illinois Aggregate Image Analyzer (UIAIA). (a) Components of 

the UIAIA system and (b) Details of the Aggregate Detection System 
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(b)  

Fig. 2.22.  Continued 

 

 

Aggregate Imaging System (AIMS) 

This system was developed by Dr. Eyad Masad. The system operates based on two 

modules. The first module is for the analysis of fine aggregates; black and white images 

are captured using a video camera and a microscope. The second module is devoted to 

the analysis of coarse aggregate; gray images as well as black and white images are 

captured. The fine aggregates are analyzed for form and angularity, while the coarse 

aggregates are analyzed for form, angularity, and texture. The video microscope is used 

to determine the depth of particles, while the images of 2-D projections provide the other 

two dimensions. These three dimensions quantify form. Angularity is determined by 

analyzing the black and white images, while texture is determined by analyzing the gray 

images (Fletcher et al. 2002; Masad 2003). A picture of AIMS is shown in Fig. 2.23. 
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Fig. 2.23. Aggregate Imaging System (AIMS) 

 

 

Laser-Based Aggregate Analysis System (LASS) 

 This system was developed by Dr. Carl Hass and Dr. Alan Rauch at the University of 

Texas-Austin to characterize size and shape parameters of coarse aggregates. A laser 

scanner is mounted on a linear motion slide that passes over an aggregate scattered on a 

flat platform, scanning the particles with a vertical laser plane. The three-dimensional (3-

D) scanner data are transformed into gray-scale digital images, where the gray scale 

pixel values present the height of each datum point. These heights are used to calculate 

aggregate characteristics. These images are used to determine parameters of form, 

angularity, and texture (Kim et al. 2001, 2002). Fig. 2.24 shows a schematic description 

of LASS. 
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Fig. 2.24. Laser-based Aggregate Scanning System (LASS) Hardware Architecture 

 

 

IMAGE ANALYSIS METHODS FOR CHARACTERIZING AGGREGATES 

The imaging systems mentioned above utilize different mathematical procedures for the 

analysis of aggregate shape characteristics.  The validity of the mathematical procedures 

is essential for the results to be useful in quantifying aggregate shape. However, the 

validity of these mathematical procedures should be evaluated separate from the 

capabilities of the image acquisition hardware.  

Several investigation studies have been conducted on the use of imaging technology 

to quantify aggregate shape properties and relate them to the performance of pavement 

layers.  Some of these studies focused on developing procedures to describe form 

(Barksdale et al. 1991; Kuo et al. 1996; Masad et al. 1999a,1999b; Brzezicki and 

Kasperkiewicz 1999; Weingart and Prowell 1999; Maertz and Zhou 2001; Tutumluer et al. 

2000), angularity (Li et al. 1993; Wilson and Klotz 1996; Yeggoni et al. 1994; Masad et al. 

2000; Kuo and Freeman 2000; Masad 2001; Rao et al. 2002), and surface texture (Hryciw 
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and Raschke 1996; Wang and Lai 1998; Masad and Button 2000; Masad 2001; Fletcher et 

al. 2002, 2003; Chandan et al. 2004).  

 This section describes, in general terms, most of the image analysis methods used 

to characterize particle form, angularity, or texture. It is crucial to emphasize that the 

discussion provided in this section on the analysis methods is largely taken from Masad 

(2001), Fletcher (2002) master thesis, and Chandan et al. (2004). 

 

Typical Analysis of Form  

In order to properly characterize the form of an aggregate particle, information about 

three dimensions of the particle is necessary {longest dimension, [dl], intermediate 

dimension, [di], and shortest dimension, [ds]).  A number of indices have been proposed 

for measuring form that relate the ratio of two dimensions, such as elongation and 

flatness.  Sphericity (Krumbein 1941) and shape factor are indices that are expressed in 

terms of three dimensions. 

Sphericity  = 3
2

*

l

is

d
dd

                               (2.1) 

Shape Factor  =  
il

s

dd
d

*
         (2.2) 

Form factor is a widely used measure of form in two dimensions and is expressed by the 

following equation: 

Form Factor  =  2

4
P

Aπ           (2.3)  

where P and A are the perimeter and area of  a particle, respectively.  Form factor is 

equal to unity for a circular-shape particle. The inverse of the form factor, which is 

known as roundness (ROUND) can also be used. Some analysis systems use other tems 

to describe form factor, the Camsizer system, for example, uses the term sphericity 

(SPHT) to describe this same term. As in shape factor, a circular object will have a 

roundness value of 1.0 and other shapes will have roundness values greater than 1.0. 
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The form index was proposed by Masad et al. (2001) to describe form in 2-D.  It 

uses incremental changes in the particle radius. The length of a line that connects the 

center of the particle to the boundary of the particle is termed radius. The form index is 

expressed by the following equation: 

Form Index = ∑
∆−=

=

∆+ −θθ

θ θ

θθθ
360

0 R
RR

        (2.4) 

where θ is the directional angle and R is the radius in different directions. By examining 

Eq. (2.4) we can see that if a particle was a perfect circle the form index would be zero. 

Although the form index is based on 2-D measurements, it can easily be extended to 

analyze  the 3-D images of aggregates.   

Fourier series can be used to analyze the form, angularity, and texture of 

aggregate shape. Each aggregate profile, defined by the function R(θ), can be analyzed 

using Fourier series coefficients as follows:  

[ ]∑
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where na and nb are the Fourier coefficients. The function R(θ) traces out the distance to 

the boundary from a central point as a function of the angle θ, 0o  < θ < 360o. Obviously, 

R(θ) is a periodic function. These coefficients can be evaluated using the following 

integrals: 
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If R(θ) is only known numerically, at a discrete number of angles, the above integrals 

can be written using summations as follows:  
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where R(θ) is measured only at predefined increments, and θ takes on values from 0 to 

(2π - ∆θ) with an increment ∆θ of about 4o. The higher the value of n used in Eq. (2.5), 

the better the actual particle profile is reproduced. Wang et al. (2003) formulated shape 

signatures using the an and bn coefficients as follows: 

Form Signature: n ≤ 4  
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The shape parameters (form, angularity, and texture) can all be represented by 

the same function and at the same time can be differentiated by the frequency 

magnitudes of the harmonics used to capture a particle boundary. Form is captured using 

harmonics with lower frequency than texture and angularity. 

Another way of presenting the form of a particle is by using Flat and Elongated 

Ratio (FER). FER represents the ratio between the longest dimension and the shortest 

dimension of a particle. Aspect ratio (ASPCT), which is similar to FER ratio but usually 

used for 2-D projections, is also used to describe the form of particles. It is the ratio of 

the major axis to minor axis of the ellipse equivalent to the object, which is a particle 

image in this case. The equivalent ellipse is supposed to have the same area as the 

particle image and first and second degree moment. Aspect ratio is always equal or 

greater than 1.0 since it is defined as (major axis/minor axis).  

Breadth to width ratio can also be used to describe the form of aggregate 

particles. The Camziser system uses the following equation to calculate this ratio: 
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Ratio of Breadth to Width = 
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Where, xc is the maximum chord, and xFe is the Feret diameter, both determined from up 

to 32 directions for each particle. Feret diameter is the distance between two tangents 

placed 90o to the measuring direction and touching the particle. 

      Symmetry is another term that some imaging systems use to describe aggregate 

form. Symmetry of an aggregate particle can be given by:                                
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where r1 and r2 are the distances of the center of gravity to the edge in a given direction, 

i.e., maximum diameter = r1 + r2 

2-D analysis of form may be influenced when the particle is placed on a flat plate 

to capture the image. A particle will tend to come to rest on a flat side rather than in a 

random position. Therefore, as will be evident in the discussion given later in this 

section, current research efforts are focusing on developing of methods for capturing the 

three dimensions of aggregates that can be used in Eqs. (2.1) and (2.2) to quantify form. 

 

Typical Analysis of Angularity 

Analysis methods for angularity have used mainly black and white images of 2-D 

projections of aggregates. The assumption here is that the angularity elements in 2-D are 

a good measure of the 3-D angularity.  It should be noted that the image resolution 

required for angularity analysis can easily be achieved using automated systems for 

capturing images.  Masad et al. (2001) specified that an image resolution with a pixel 

size less than or equal to 1% of the particle diameter is required for angularity analysis.  

  

Fourier Series Analysis of Angularity 

As mentioned earlier in the previous section, Fourier series analysis can be used to 

analyze angularity of aggregates. The shape signature for angularity as formulated by  

Wang et al. (2003) is given by: 
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Angularity Signature: 5 ≤ n ≤ 25 
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where a0, an, and bn are found using Eqs. (2.9 - 2.11). Angularity is captured using 

harmonics with frequencies that are higher than form and lower than texture. 

 

Surface Erosion-Dilation Technique 

The erosion-dilation technique has been used to capture fine aggregate angularity and 

even surface texture (Masad and Button 2000).  Erosion-dilation is well known in image 

processing, where it is used both as a smoothing technique (Rosenfeld and Kak 1976) 

and a shape classifier (Blum 1967). Erosion is a morphological operation in which pixels 

are removed from the image according to the number of pixels surrounding it with 

different color (Masad et al. 2000).  Erosion can be visualized as a fire burning inward 

from the periphery of an object, in order to shrink the object to a skeleton or a point 

(Calabi and Hartnett 1968).  Layer-by-layer erosion tends to smooth a particle surface.   

Dilation is the opposite of the erosion.  A layer of pixels is added around the 

periphery of the eroded image to form a simplified version of the original object.  An 

image does not necessarily need to be restored to its original state after a number of 

erosion and dilation cycles (Young et al. 1981).  There may be surface angularities that 

are lost under erosion and will not be restored during dilation since there is no seed pixel 

from which the dilation can build (Ehrlich et al. 1984).  Following this logic, one can 

state that the area of the object lost after erosion and dilation is “proportional” to the 

angularity of the particle, assuming that no particles are lost during the procedure.  

Aggregate particle angularity is measured by the area lost during the erosion-dilation 

process and is expressed as a percentage of the total area of the original particle, which is 

described by the following expression: 

Surface Parameter  = %100*
1

21

A
AA −

                           (2.16) 
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where A1 and A2 are the area of the object before and after applying the erosion-dilation 

operations, respectively (Fig. 2.25).  A particle with more angularity would lose more 

area than that of a smooth one; therefore, the surface parameter would be higher.  Masad 

and Button (2000) found that this parameter correlated to angularity of a particle at low 

resolutions and to surface texture of a particle at higher resolutions.   

 

Fractal Behavior Technique 

 In its simplest form, fractal behavior is defined as the self-similarity exhibited by an 

irregular boundary when captured at different magnifications.  Fractal behavior has 

many applications in science (Mandelbrot 1984), particularly for describing the shape of 

natural objects (e.g., clouds, body organs, rocks, etc.). Smooth boundaries erode (or 

dilate) at a constant rate. However, irregular or fractal boundaries have more pixels 

touching opposite-color neighbors, and, hence, they do not erode (or dilate) uniformly.  

This effect has been used to estimate fractal dimensions, and, consequently, angularity 

along the object boundary. The basic idea for measuring a fractal dimension by image 

analysis came from the Minkowski definition of a fractal boundary dimension (Russ 

1998).  This procedure was used by Masad et al. (2000) to characterize the angularity of 

a wide range of aggregates used in asphalt mixes. The procedure is depicted in Fig. 2.25. 

The first step is to apply a number of erosion and dilation operations on the original 

image as shown in Fig. 2.25(a), (b), and (d).  Then, the eroded and dilated images are 

combined using the logical operator (Ex-OR).  Using this operator, the two images (b and 

d) are compared and pixels that have black color representing aggregate and are at the same 

location on both images are removed, as shown in Fig. 2.25(e).  By doing so, the pixels 

retained on the final image (Fig. 2.25(e)) are only those removed during erosion and 

added during dilation. These pixels form a boundary, which has a width proportional to 

the number of erosion-dilation cycles and surface angularity (Fig. 2.25e).  

 The procedure continues by varying the number of erosion-dilation cycles and 

measuring the increase in the effective width of the boundary (total number of pixels 

divided by boundary length and number of cycles). Then, the effective width is plotted 
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versus the number of erosion-dilation cycles on a log-log scale. For a smooth boundary, 

the effective width to number-of-cycles relationship shows no trend; that is, the effective 

width remains constant at different numbers of cycles. However, for a boundary with 

angularity, the graph would show a linear variation, where the slope gives the fractal 

length of the boundary. 

 

 

 

Erosion Dilation 

Area = A1 Area = A2 
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Effective width 

Erosion - Dilation
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Fig. 2.25. Illustration of the Erosion-Dilation and Fractal Behavior Method (after Masad 

et al. 2001) 
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Hough Transform 

Hough Transform is another technique used to recognize co-linearity in pixels that form 

the particle outline (Hough 1962). This technique has been successfully implemented in 

the medical field and in the analysis of aerial images. By detecting and measuring the 

length of any straight lines in a 2-D image and the angle between them, angularity of a 

particle can easily be determined.  

 Wilson et al. (1997) used the Hough Transform to develop an index for 

quantifying aggregate angularity.  This transform was used to determine the longest line 

on the outline of particle images at each possible direction A(θ).  Then, the length of the 

longest line, AMax, in all directions and the average length of the line, A, which also 

corresponds to the longest line on the edge of the particle are computed. Angularity is 

then quantified by the index: 

Hough Transform Shape Index = 
MaxA
A

−1                 (2.17) 

Wilson and Klotz (1996) noted that if only one or two lines dominated the 

particle the value approached 1.0.  However, if the particle was rounded or irregular, 

then the all of the straight lines are short and close to the average and the index 

approached 0.0.  Therefore, the index approaches 0.0 for rounded particles and is 

typically greater than 0.6 for angular particles. 

 

Gradient Method 

The main idea behind this method is that at sharp corners of the surface of a particle 

image, the direction of the gradient vector for adjacent points on the surface changes 

rapidly. On the other hand, the direction of the gradient vector for rounded particles 

change slowly for adjacent points on the surface. 

The gradient-based method for measuring angularity consists of the following 

steps. The acquired image is first thresholded to get a binary image.  This is followed by 

the boundary-detection step. Next, the gradient vectors at each surface point are 
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calculated, using a Sobel mask that operates at each point on the surface and its eight 

nearest neighbors (Chandan et al. 2004).   

The Sobel operator performs a 2-D spatial gradient measurement on an image 

and emphasizes regions of high spatial gradient that are located at the surface. The Sobel 

operator picks up the horizontal (Gx) and vertical (Gy) running edges in an image. These 

can then be combined to find the absolute magnitude of the gradient at each point and 

the orientation of the gradient. The angle of orientation of the edge (relative to the pixel 

grid) that results in the spatial gradient is given by: 

⎟
⎟
⎠

⎞
⎜
⎜
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⎛
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x

G
G

yx 1tan),(θ                                                  (2.18) 

For the angularity analysis, the angle of orientation values of the edge points (θ) 

and the magnitude of the difference in these values (∆θ) for adjacent points on the edge 

are calculated to describe how sharp or how rounded the corner is.  Fig. 2.26 illustrates 

the method of assigning angularity values to a corner point on the edge.  The angularity 

values for all the boundary points are calculated and their sum accumulated around the 

edge to finally form a measure of angularity, which is denoted the gradient index (GI) 

(Chandan et al. 2004): 

∑
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3
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i
iiGI θθ                                                       (2.19) 

where i denotes the ith point on the edge of the particle and N is the total number of 

points on the edge of the particle. 

 

Direct Measurements of Particle Dimensions 

Kuo and Freeman (2000) proposed an angularity parameter, which is expressed by the 

following equation: 

Angularity Parameter  = 
2
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where Pellipse is the perimeter of an equivalent ellipse (i.e., an ellipse with the same 

longest and shortest axes of a particle), and Pconvex is the perimeter of the bounding 

polygon.  

 

 

 

 

 

 

Fig. 2.26. Illustration of the Difference in Gradient between Particles (after Chandan et 

al. 2004) 

 

 

Angularity Index 

Masad et al. (2001) proposed the angularity index, which is described by the following 

equation: 

Angularity Index  =  ∑
∆−=

=

−θθ

θ θ

θθ
360

0 EE

EEP

R
RR

                (2.21) 

where RPθ is the radius of the particle at a directional angle, θ.  REEθ is the radius of an 

equivalent ellipse at the same θ. The index relies on the difference between the radius of 
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a particle in a certain direction and a radius of an equivalent ellipse taken in the same 

direction as a measure of angularity. By normalizing the measurements to the ellipse 

dimensions, the effect of form on angularity is minimized (Masad et al. 2001).  

 

Outline Slope  Method 

Based on image analysis from the images captured by the University of Illinois 

Aggregate Imaging Analyzer (UIAIA), a quantitative angularity index (AIUI) was 

developed (Rao et al. 2002).  The AIUI methodology is based on tracing the change in 

slope of the particle image outline obtained from each of the top, side, and front images.  

Accordingly, the AIUI procedure first determines an angularity index value for each 2-D 

image. Then, a final AIUI is established for the particle by taking a weighted average of 

its angularity determined for all three views. 

To determine of the Angularity for each 2-D projection, an image outline, based 

on aggregate camera view projection, and its coordinates are first extracted. Next, the 

outline is approximated by an n-sided polygon as shown in Fig. 2.27. The angle 

subtended at each vertex of the polygon is then computed. Relative change in slope of 

the n sides of the polygon is subsequently estimated by computing the change in angle 

(β) at each vertex with respect to the angle in the preceding vertex. The frequency 

distribution of the changes in the vertex angles is established in 10o class intervals. The 

number of occurrences in a certain interval and the magnitude are then related to the 

angularity of the particle profile. 

Eq. (2.22) is used for calculating angularity of each projected image. In this 

equation, e is the starting angle value for each 10o class interval and P(e) is the 

probability that change in angle α  has a value in the range e to (e+10).                                                          

                                                 ∑
=

==
170

0
)(*          

e
ePeAAngularity                                                                  (2.22) 

The UIAI of a particle is then determined by averaging the angularity values (see 

Eq. 2.22) calculated from all three views when weighted by their areas as given in the 

following equation: 
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The final UIAI value for the entire sample is simply an average of the ngularity 

index values of all the particles weighted by the particle weight, which measures overall 

degree changes on the boundary of a particle. 
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Fig. 2.27. Illustration of an n-Sided Polygon Approximating the Outline of a Particle 

(after Rao et al. 2002) 

 

 

Convexity 

Convexity is another parameter that can used to describe angularity of aggregate 

particles.  Convexity can be calculated using the following formula: 

                                        Convexity = 
Convex

Particle

A
A

Conv =                                         (2.24) 

Where AParticle is the area of the real projection of the particle, and AConvex is the area of 

the convex particle’s projection. 
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Minimum Average Curve Radius 

This method is described by Maerz (2004) and illustrated in Fig. 2.28. In this method 

aggregate angularity is defined as the minimum average curve radius of the individual 

particles. Maerz (2004) described the following procedure to calculate the minimum 

average curve radius: The radius of a circle containing three points on the profile is 

calculated from the array of x, y points, each point separated by 10 pixels. An 

instantaneous curve radius is determined for each point on the profile in this manner, 

creating an array of curve radii. Then the array of curve radii values are smoothed by a 

moving average filter. A 5-point Gaussian low-pass filter is used (see Fig. 2.29). The 

array of smoothed curve radii is examined to find local minima in the curve radius 

function. A test is performed to ensure that a corner of the aggregate piece does not 

result in more than one local minimum. Then the list of local minimum curve radii is 

ordered from smallest to largest. The averages of the four smallest curve radii are 

averaged to produce the minimum average curve radius of the individual piece. 

 

Typical Analysis of Texture 

The analysis of texture has been carried out using both black and white images and gray 

images.  The main disadvantage of using black and white images is the high resolution 

required for capturing images, which makes it difficult be do using automated systems. 

In addition, the majority of texture details are lost when a gray image is converted to 

black and white. The analysis of gray images has the advantage of analyzing more 

texture data at the surface of a particle, leading to detailed information about texture.  

However, the main challenge facing this technique is the influence of natural variation of 

color on gray intensities and, consequently, texture analysis. Some image analysis 

techniques have the potential to separate the actual texture from color variations. The 

following sections discuss some of the techniques used to analyze the texture of 

aggregates. 
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Fig. 2.28.  Average Minimum Curve Radius Calculations.  Left: Rounded Aggregate. 

Right: Angular Aggregate. Bottom:  Aggregate Profile with Inscribed Curve Radii (after 

Maerz 2004) 
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Fig. 2.29. Curve Radius Measurements around the Profile of the Rounded Particle in 

Fig. 2.28; Raw and Smoothed Values (After Maerz 2004) 
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Fourier Series Analysis of Texture 

As mentioned earlier in the previous section, Fourier series analysis can be used to 

analyze texture of aggregates. The shape signature for texture as formulated by Wang et 

al. (2003) is given by: 

Texture Signature: 26 ≤ n ≤ 180 
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where a0, an, and bn are found using Eqs. (2.9 to 2.11). Texture is captured using 

harmonics with frequencies that are higher than angularity and form. 

 

Intensity Histogram Method 

An intensity histogram evaluates the variation in the gray intensity of the gray-scale 

image over the entire image. The mean and standard deviation of the variations are the 

output from the intensity histogram. There is a correlation between the standard 

deviation of gray intensity and the surface texture of the particle (Masad et al. 2001).  

Standard deviations are typically much lower for smooth particles compared to those for 

rough particles. Fig. 2.30 shows images of smooth and rough particles and their intensity 

histograms.   

 
Fast Fourier Transform Method 

This is a well-known method in the sciences for converting data from the time or spatial 

domain to the frequency domain.  Dominant frequencies become apparent when a Fast 

Fourier Transform (FFT) is applied to a gray-scale image. Frequency is a measure of 

reoccurrence of a distinct gray level intensity in the image. The resulting FFT image 

consists of points of different gray levels, where the distance of a point from the center 

represents the frequency and the gray level in the FFT image corresponds to the peak 

intensity at a given frequency (Russ 1998). The number of dominant peaks in the FFT 

has been found to be a measure of the surface texture (Masad et al. 2001) (Fig. 2.30).   
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(a)  Smooth texture     (b) Rough texture 
 

 
         (c)  FFT of smooth texture         (d) FFT of rough texture 

 

 
(e) Histogram of smooth texture  (f) Histogram of rough texture 

 
 

Fig. 2.30.  Images of Smooth-and Rough-Textured Aggregates and Their Fast Fourier 

Transforms and Histograms (after Masad 2001) 
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Wavelet Analysis 

 Texture in an image is represented by the local variation in the pixel gray intensity 

values. Although there is no single scale that represents texture, the histogram and FFT 

analyses of texture capture only a single scale. Wavelet theory offers a mathematical 

framework for multi-scale image analysis of texture (Mallat 1989). This is advantageous 

to determine the texture scale or a combination of them that has the most influence on 

the aggregate performance in pavement layers 

 The wavelet transform works by mapping an image onto a low-resolution image 

and a series of detail images. An illustration of the method is presented here with the aid 

of Fig. 2.31. The original image is shown in Fig. 2.31(a). It is decomposed into a low-

resolution image (Image 1 in Fig. 2.31(b)) by iteratively blurring the original image.  

The remaining images contain information on the fine intensity variation (high 

frequency) that was lost in Image 1. Image 2 contains the information lost in the y-

direction, Image 3 has the information lost in the x-direction, and Image 4 contains the 

information lost in both x- and y-directions. Image 1 in Fig. 2.31b can be further 

decomposed similarly to the first iteration, which gives a multi-resolution decomposition 

and facilitates quantification of texture at different scales. An image can be represented 

in the wavelet domain by these blurred and detailed images. The texture parameter used 

is the average energy on Images 2,3, and 4 at each level. Texture index is taken at a 

given level as the arithmetic mean of the squared values of the detail coefficients at that 

level (level 6 is used):  

( )( )
23

,
1 1

1 ,
3

N

n i j
i j

Texture Index D x y
N = =

= ∑∑    (2.26) 

where N denotes the level of decomposition and i takes values 1, 2, or 3, for the three 

detailed images of texture, and j is the wavelet coefficient index. More details on this 

method can be found in other references (Mallat 1989; Fletcher et al. 2002; Chandan et 

al. 2004). Owing to the multi-resolution nature of the decomposition, the energy 

signature, or equivalently, the texture content has a physical meaning at each level. 

Energy signatures at higher levels reflect the “coarser” texture content of the sample,  
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Fig. 2.31.  Illustration of the Wavelet Decomposition (after Chandan et al. 2004) 
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while those at lower levels reflect the “finer” texture content. 

 

Direct Measurements of Particle Dimensions 

 Kuo and Freeman (2000) proposed the texture parameter, which is expressed as follows: 

Texture Parameter  =  
2

convexP
P

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
                  (2.27) 

Where, P is the perimeter of a particle measured on a black and white image and Pconvex 

is the perimeter of a bounding polygon. 

 

 

SUMMARY 

The focus of this chapter was on presenting the findings of previous studies that are 

relevant to the influence of aggregate shape on performance of different types of 

pavements, and on identifying aggregate characteristics affecting performance. This chapter 

also included a brief description of the available test methods (direct and indirect) used for 

measuring aggregate shape characteristics. Image analysis techniques, that some of the 

imaging systems uses were also discussed in this chapter. 

 The comprehensive literature review revealed that the shape properties of coarse 

and fine aggregates used in hot-mix asphalt, hydraulic cement concrete, and unbound 

base and subbase layers are very important to the performance of the pavement system 

in which they are used. Aggregate shape can be decomposed to three independent 

characteristics: form, angularity and texture. Current methods used in practice for 

measuring these characteristics have several limitations; they are laborious, subjective, 

lack direct relation with performance parameters, and limited in their ability to separate 

the influence of angularity from that of texture. A number of research studies have 

shown that aggregates that exhibit high texture do not necessarily have high angularity, 

especially in coarse aggregates. Consequently, it is important to develop methods that 

are able to quantify each of the aggregate characteristics rather than a manifestation of 

their interactions.  
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CHAPTER III 

IMPROVED AGGREGATE IMAGING SYSTEM (AIMS) FOR MEASURING 

SHAPE PROPERTIES 

 

INTRODUCTION 

This chapter describes the improvements made to the Aggregate Imaging System 

(AIMS). AIMS was developed to capture images and analyze the shape of a wide range 

of aggregate types and sizes, which covers those used in asphalt mixes, hydraulic cement 

concrete, and unbound layers of pavements.  Improvements were made in this study to 

AIMS hardware and both the control and analysis softwares. The improvements 

addressed the operational characteristics, lighting scale, and automation capabilities.

  

DESCRIPTION OF THE AGGREGATE IMAGING SYSTEM “AIMS” 

Details of the main components and design of the prototype aggregate imaging system 

have been reported in different publications (Fletcher 2002, Fletcher et al. 2003, Masad 

2003). Fig. 3.1 shows a 3-D graphical model of AIMS illustrating the various 

components of the system.  

AIMS was developed to capture images and analyze the shape of  a wide range 

of aggregate types and sizes, which cover those used in HMA, hydraulic cement 

concrete, and unbound aggregate layers of pavements. AIMS uses a simple setup that 

consists of one camera and two different lighting schemes to capture images of 

aggregates at different resolutions, from which aggregate shape properties are measured 

using image analysis techniques that are based on sound scientific concepts. 

The system operates based on two modules.  The first module is for the analysis 

of fine aggregates (smaller than 4.75 mm (#4 sieve)), where black and white images are 

captured. The second module is devoted to the analysis of coarse aggregate (larger than 

4.75 mm (#4 sieve)). In the coarse module, gray images as well as black and white 

images are captured. Combining analysis of both the coarse and fine aggregate analysis 

into one system is considered an advantage to reduce the cost of developing the system. 
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It also allows using the same analysis methods to quantify aggregate shape irrespective 

of size to facilitate relating aggregate shape to pavement performance.  

 

 

 

 

Fig. 3.1.  3-Dimensional  Graphical Model of AIMS (after Fletcher 2002) 
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The fine aggregates are analyzed for form and angularity using black and white 

images captured using backlighting under the aggregate sample tray. This type of 

lighting creates a sharp contrast between the particle and the tray, thus giving a distinct 

outline of the particle. A study by Masad et al. (2001) clearly showed that a high 

correlation exists between the angularity (measured on black and white images) and 

texture (measured on gray-scale images) of fine aggregates. Since it was easier to 

capture black and white images for angularity analysis than the high resolution images 

required for texture, this helped to simplify the AIMS operation for conducting 

angularity analysis only.   

AIMS is designed to capture images for measuring fine aggregate angularity and 

form at a resolution such that the pixel size is less than 1% of the average aggregate 

diameter and the field of view covers 6-10 aggregate particles (Masad et al. 2000). In 

other words, the resolution of an image is a function of aggregate size. The image 

acquisition setup was configured to capture a typical image of 640 by 480 pixels at these 

resolutions in order to analyze various sizes of fine aggregates.    

For coarse aggregates, it was found that there is a distinct difference between 

angularity and texture, and these properties have different effects on performance 

(Fletcher et al. 2003). In accordance with this finding, AIMS analyzes coarse aggregates 

for form, and angularity using black and white images and analyzes texture using gray 

images. The black and white images are captured using a backlighting table, while top 

lighting is used to capture gray images of particles surfaces. As for fine aggregates, the 

image acquisition setup captures images at a resolution of 640 by 480 pixels. In the 

coarse aggregate module, only one particle is captured per image in order to facilitate the 

quantification of form, which is based on 3-D measurements. As described later in this 

chapter, the video microscope is used to determine the depth of a particle, while the 

images of 2-D projections provide the other two dimensions to quantify form. Texture is 

determined by analyzing the gray images using the wavelet method that was described 

earlier in Chapter II. The system is computer controlled and achieves motion in x-, y-, 

and z-directions as well as magnifies images. 
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IMPROVEMENTS MADE TO HARDWARE COMPONENTS AND FUNCTIONS 

In this section the main improvements made to the hardware components are reported. 

The improvements were directed to enhance the operational characteristics of the 

system, reduce human involvement, and enhance its automation capabilities. This 

section also includes a very concise description of the procedures and measurements 

used in the fine and coarse modules. 

 

Hardware Improvements 

AIMS utilizes a closed-loop direct current (DC) servo control unit for precise 

positioning of the x-, y-, and z-axes and highly repeatable focusing (GTS-1500). The x- 

and y-axes travel distance is 37.5 cm (15 inches); and z-axis travel distance is 10 cm (4 

inches). These travel distances were improved compared to the previous prototype 

system which achieved x- and y-axis travel distance of 25 cm (10 inches); and a z travel 

distance of 5 cm (2 inches). This improvement in the x- and y-axes travel distance made 

it possible to more than double the size over the first prototype system. Increasing the 

lighting table size made it possible to analyze larger aggregate sample and helped to 

reduce the time required to analyze more aggregates. The increase in the z-axis travel 

distance allows the improved AIMS system to analyze larger aggregate sizes. Figs 3.2 

and 3.3 show pictures of the AIMS system first prototype and the improved version, 

respectively. The difference in the size of the lighting table can be easily noticed by 

comparing the two figures. 

AIMS uses Optem Zoom 160 video microscope. The Zoom 160 has a zoom 

range of X16, which means that an image can be magnified 16 times. This allows 

capturing wide range of particle sizes without changing parts. The first prototype version 

of AIMS used a linescan camera (LC-150) black and white video camera with an 

external controller. The unit utilizes the ICX088DLA Charged-Coupled Device (CCD), 

which is a 12.5 mm (1/2 inch) interline CCD.  The LC-150 offers high sensitivity and 

more than 600 TV lines horizontal resolution. The external controller is housed in a 

small 15 X 10 cm (6 x 4 inch) case. The controller offers both manual and automatic 
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gain control and enhances black level and contrast control. The improved AIMS system 

is equipped with a Pulnix TM-9701 progressive scan video camera with a 16.9 mm (2/3 

inch) CCD imager. It has an adjustable shutter speed from 1/60 sec to 1/16,000 sec. The 

progressive scan video camera allows capturing images at higher speeds than line scan 

cameras, and it is less affected by noise. A small vibration in the system caused some 

noise that affected the image quality when a line scan camera was used. The progressive 

scan camera is much less affected by these vibrations and provides more consistent 

quality of images. The same video controller functions are used in the improved AIMS 

system but without automatic gain control (AGC) and gain functions that no longer 

apply with Pulnix cameras. This camera is also equipped with its own power supply, 

rather than using the controller to power the camera, as was the case for the first 

prototype version.  

 

 

 

 

Fig. 3.2. First Prototype of Aggregate Imaging System (AIMS) 
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Fig. 3.3. Improved Aggregate Imaging System (AIMS) 
 

 

The existence of two controllers (GTS-1500 and video controller) required 

several wire connections from and into these controllers (see Fig. 3.2). Consolidating the 

number of wires is desirable to simplify the AIMS assembly, reduce the number of 

power outlets, and reduce the noise generated by these wires. In order to overcome these 

problems, the two controllers are now housed in one bigger case as shown in Fig. 3.3.  A 

fan was installed in the new controller case to reduce the generated heat, which might 

cause a malfunction when using the system for long periods of time. In addition to the 

above, some of the video controller functions (enhancement and black level) are fixed 

inside the box to reduce human involvement and make the system easier to set and use.  

The new controller still provides manual and automatic control of motion in x, y, z, and 

magnification axes. 

The first prototype version of AIMS had four halogen lights for the top lighting 

and two fluorescent bulbs for the backlighting (see Fig. 3.2). It was noticed that the 

uniformity of the light in an image produced by these sources was affected by the 
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location of the particle on the lighting table. Improvements were made to the lighting 

schemes where a new large array of light-emitting diodes (LEDs) is used for bottom 

lighting as shown in Fig. 3.4. These LEDs provide a uniform and variable backlighting 

source. Top lighting is accomplished in the improved AIMS system with a fiber-optic 

ring-light mounted on the video microscope. The ring light provides uniform 

illumination of the region directly in the view of the microscope. It also has a variable 

intensity control so the desired degree of illumination can be adjusted. Fig. 3.5 shows the 

top lighting used in the improved AIMS. Fig. 3.6 shows the top lighting sources used in 

the two versions of AIMS. 

 

 

 
 

Fig. 3.4. Lighting Table Using LEDs for Backlighting Source 

 

 

 

 

 

 

 

 

a) Top Lighting Source                                 b) Fiber-Optic Ring-Light 

 

Fig. 3.5. Top Lighting Used in the Improved AIMS 
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                a) First Prototype                                              b) Improved System 

 

Fig. 3. 6.  Top Lighting in Different Versions of AIMS 

 

 

In order to ensure longer service life for the LEDs a ventilation system was 

added. A fan was installed to circulate air inside the lighting table to reduce the heat 

generated from the LEDs while the system is in use. The LEDs are expected  to last 

longer as generated heat is reduced. The new ventilation system is shown in Fig. 3.7. 

An important issue, especially when capturing images of fine particles, is to keep 

images in focus and acquire sharp images. This can be achieved using the auto focus 

option of the microscope. Auto focusing is implemented in capturing coarse aggregates; 

however, it was found to be time consuming in capturing images of fine aggregates. An 

alternative solution is to determine a head of time the location of the microscope to 

capture sharp images. In doing so, the lighting table has to be leveled. An inclination in 

the lighting table causes the images to be out of focus. The allowable inclination is a 

function of the optical stystem depth of field (DOF). The DOF is defined as the axial 

distance that the object can be moved toward or a way from the lens without 
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objectionable loss of sharpness (Thales-Optem Zoom brochure; (www.thales-

optem.com/pdf/Zoom160Brochure.pdf). In order to achieve a leveled table with respect 

to the video microscope, the table was designed with four tray leveling screws as shown 

in Fig. 3.8. The leveling process can be easily accomplished by focusing on the surface 

of the tray on the lighting table in one corner at maximum magnification. Then the 

optical system is moved to another corner without disturbing the zoom and the leveling 

screw at the corner is adjusted to maintain the image in focus. This procedure is repeated 

for the other corners.  

 

 

 
 

Fig. 3.7. Ventilation System 

 

 

The first prototype version of AIMS used National Instruments (NI) IMAQ-PCI 

1407 image acquisition hardware. PCI 1407 is simple to configure and has the advantage 

of low cost and high accuracy. It has a single monochrome video input for standard 

video and features gain calibration, high-impedance mode, and an 8-bit flash analog-to-

digital converter (ADC) that converts video signal to digital form.  

Fan 

Ventilation 
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Fig. 3.8. Adjusting Sample Tray Level 

 

 

The improved version of AIMS uses IMAQ-PCI 1409 image acquisition 

hardware instead of IMAQ-PCI 1407. PCI 1409 has the advantage of being able to 

digitize analog images to 10 bits per pixel and 8 bits per pixel. The 10 bits per pixel is 

useful for obtaining higher-precision images that have 1024 gray-scale instead of 256. 

PCI 1409 has more board memory to store images, and PCI 1409 supports a wider range 

of video types including double-speed progressive scan, video cassette recorder (VCR), 

and analog line scan that the 1407 does not support. PCI 1409 exposes four additional 

control lines that can be used for additional pattern generation to control cameras. More 

details are available at the National Instrumentation website (www.ni.com). 

Both IMAQ–PCI devices are controlled through the NI-IMAQ driver software. 

This software serves as the link between the board and the application software. More 

details can be found at the National Instruments website. 

 The optical system performance specifications that AIMS uses are presented in 

Table 3.1 below. 
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Table 3.1. Optical System Performance Specifications 

Objective Lens 0.25X 0.5X 
Dovetail Tube 1X 1X 

Camera Format (inch) 2/3 2/3 
Working Distance (W.D.) (mm) 370 181 

Low 0.0022 0.0045 Numerical Aperture (N.A.) High 0.038 0.076 
Low 0.13 0.25 Magnification High 2 4 
Low 108.8 27.2 Depth-of-Field (D.O.F) 

(mm) High 0.38 0.1 
Low 52.8 x 70.4 26.4 x 35.2 Field-of-View (F.O.V.) 

(mm) High 3.3 x 4.4 1.6 x 2.2 
 

 

 The terms and factors used in the Table 3.1 above are defined by Thales-Optem 

Zoom 160 brochure, which can be found at 

(www.thalesoptem.com/pdf/Zoom160Brochure.pdf), as follows: 

• Dovetail Tube: The link between the upper zoom module and the video camera. 

• Camera Format: Impacts magnification and field of view. As camera format 

increases field of view also increases. It is a set factor based on the chip size of 

the camera. 

• Working Distance: The distance in (mm) from the specimen being viewed and 

the bottom-most mechanical components of the optical system. 

• Numerical Aperture (N.A.): A measurement of the light collecting ability of the 

lens. A higher (N.A.) translates to a brighter image, better resolution, and shorter 

depth of field. 

• Magnification (MAG.): The ratio of image size to actual object size. 

• Depth of Field (D.O.F.): The axial depth in (mm) of the space on both sides of 

the object plane within which the object can be moved without objectionable loss 

of sharpness. 
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• Field of View (F.O.V.): The maximum area that can be seen through the optical 

system. There are two filed-of view extremes. One at high magnification and one 

at low magnification. 

 

Fine Aggregate Module Operation Procedure 

The analysis of fine aggregate starts by randomly placing an aggregate sample (ranging 

from a few grams for small fine aggregate sizes up to a couple of hundred grams for the 

larger fine aggregate size) on the aggregate tray with the backlighting turned on.  A 

camera lens of 0.5X object is used to capture the images.  The 0.5X objective lens 

provides a field of view of (26.4 x 35.2 mm) with a 1X Dovetail tube and a 2/3 inch 

camera format at a working distance of 181 mm. The camera and video microscope 

assembly moves incrementally in the x-direction at a specified interval capturing images 

at every increment.  Once the x-axis range is complete, the aggregate tray moves in the 

y-direction for a specified distance, and the x-axis motion is repeated.  This process 

continues until the whole area is scanned. An illustration of the camera path is shown in 

Fig. 3.9.  

 

 

Fig. 3.9. Illustration of the Camera Path 

Start Point 

End Point 
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Depending on the size of aggregates to be analyzed, the z-location of the camera 

is specified in order to meet the resolution criteria in Table 3.2. These criteria are 

established such that the images for measuring fine aggregate shape and angularity are 

captured with pixel size less than 1% of the average aggregate diameter and the field of 

view is large enough to cover 6-10 aggregate particles.  This is a very important feature 

because the results are not influenced by size.  The system is designed in such a way that 

aggregates that are not within the size for which the scan is conducted and, consequently 

those that do not meet the criteria in Table 3.2, are removed from the image.  

 

 

Table 3.2. Resolution and Field of View Used in Angularity Analysis for Different Fine 

Sieve Sizes Using 0.5X lens 

(1) 
Particle Size 
(mm) Pass - 

Retain 

(2) 
Average 
Particle 
diameter 

(mm) 

(3) 
Magnification 

(4) 
Field of 

View (mm) 

(5) 
Resolution = 
640/ 70.4 or 

480/ 52.8 
(Pixel/mm)  

Average 
Particle 

diameter in 
Pixels 

(2) * (5) 

Size range 
Upper – 
Lower 

(Pixels) 
(1) * (5) 

4.725 - 2.36 3.56 2.00X 13.2 x 17.6 36.36 129.45 172 - 86 

2.36 - 1.18 1.77 4.125X 6.4 x 8.5 75.29 133.26 178 - 88 

1.18 - 0.6 0.89 8.25X 3.2 x 4.3 148.84 132.46 176 - 89 

0.6 - 0.30 0.45 16X 1.65 x 2.2 290.91 130.9 175 - 73 

0.30 - 0.15* 0.225 16X 1.65 x 2.2 290.91 65.45 72 - 44 

Gradation  2.75X 9.6 x 12.8 50.0   

* Resolution criterion does not apply for this size range 
 

 

Coarse Aggregate Module Operation Procedure 

The analysis starts by placing the aggregates on the sample tray with marked grid points.  

The camera lens used in capturing the coarse aggregate has a 0.25X objective. The 

maximum F.O.V achieved in the coarse aggregate module is 52.8 x 70.4 mm with a 1X 

Dovetail tube and a 2/3 inch camera format at a working distance of 370 mm.  The 

camera and microscope move as for fine aggregates, but with different distances and 
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intervals. In this module only one particle is captured in each image.  Backlighting is 

used to capture images for the analysis of angularity while top lighting is used for 

capturing images for texture analysis.  Two scans are conducted for the coarse aggregate.  

Backlighting is used in order to capture black and white images. These images 

are analyzed later to determine angularity, and the major (longest axis) and minor 

(shortest axis) axes on these 2-D images. The analysis of coarse aggregate angularity 

starts by placing the aggregate particles in a grid pattern with a distance of 50 mm in the 

x-direction and 40 mm in the y-direction apart center to center. The z-location of the 

camera is fixed for all aggregate sizes. Resolutions used in the coarse aggregate 

angularity analysis are presented in Table 3.3.  

 

 

Table 3.3. Resolution and Field of View Used in Angularity Analysis of Different 

Coarse Sieve Sizes Using 0.25X lens 

(1) 
Particle 

Size (mm) 
Pass - 
Retain 

(2) 
Average 
Particle 
diameter 

(mm) 

(3) 
Magnification

(4) 
Field of 

View (mm) 

(5) 
Resolution = 
640/ 70.4 or 

480/ 52.8 
(pixel/mm) 

Average 
Particle 

diameter in 
Pixels 

(2) * (5) 

Size 
Range 

Upper -
Lower 

(Pixels) 
(1) * (5) 

9.5 – 
4.725 7.1125 1 52.8 X 70.4 9.12 64.87 86 - 43 

12.7 – 9.5 11.1 1 52.8 X 70.4 9.12 101.23 116 - 87 
19.0 – 
12.7 15.85 1 52.8 X 70.4 9.12 144.55 173 - 117 

25.4 – 
19.0 22.2 1 52.8 X 70.4 9.12 202.46 231 - 174 

> 25.4 25.4 1 52.8 X 70.4 9.12 231.65 > 232 
Note: Size range applied for all size ranges was > 43 pixels. 

 

 

Capturing of images for the analysis of coarse aggregate texture is very similar to 

the angularity except that top lighting is used instead of backlighting in order to capture 

gray images. The texture scan starts by focusing the video microscope on a marked point 

on the lighting table while the backlighting is turned on. The location of the camera on 
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the z-axis at this point is considered as a reference point (set to zero coordinate). Then an 

aggregate particle is placed over the calibration point. With the top light on, the video 

microscope moves up automatically on the z-axis in order to focus on the aggregate 

surface. The z-axis coordinate value at this new position is recorded. Since the video 

microscope has a fixed focal length, the difference between the z-axis coordinate at the 

new position and the reference position (zero) is equal to the aggregate depth. This 

procedure is repeated for all particles. The particle depth is used along with the 

dimensions measured on black and white images to analyze particle form, as discussed 

later. 

One of the major improvements made to AIMS that enhanced its automation 

capabilities is adding the capability to capture images for texture analysis with different 

resolutions based on aggregate sizes.. A criterion was set that required images to be 

captured so that the area is proportional to 25% of the aggregate. Table 3.4 presents the 

resolution criteria for capturing images of coarse aggregates for texture analysis. 

 

 

Table 3.4. Resolution and Field of View Used in Texture Analysis for Coarse Sieve 

Sizes Using 0.25X lens 
Particle 

Size 
(mm) 
Pass - 
Retain 

(Average 
Particle 
diameter 

(mm) 

Particle 
Min. 

Expected 
Area (mm2) 

%25 of 
particle 

Min. 
Expected 

Area 
(mm2) 

Suggested 
Magnif.  

Field of 
View (mm) 

Covered 
Area 

(mm2) 

Resolution = 
640/ 70.4 or 

480/ 52.8 
(Pixels/mm) 

*9.5 – 
4.725 7.1125 22.32 5.58 16X 3.3 X 4.4 14.52 145.45 

12.7 – 9.5 11.1 90.25 22.56 12X 4.4 X 5.9 25.96 108.00 
19.0 – 
12.7 15.85 161.29 40.32 9X 5.9 X 7.8 43.68 82.10 

25.4 – 
19.0 22.2 361 90.25 6X 8.8 X 11.7 102.96 54.70 

> 25.4 25.4 645.16 161.29 5X 10.6 X 14.1 149.46 45.40 

* Resolution criteria can not be achieved with this size. 
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DEVELOPMENT OF TEXTURE LIGHTING SCALE 

Lighting is an important factor influencing the quality of an image and analysis results. 

During the preliminary use of the AIMS system it was noted that texture results were 

influenced significantly by the intensity of the top lighting. This section describes the 

experiment that was conducted to develop a standard lighting scale for the improved 

AIMS system that uses a new source of top lighting. 

In the past, similar lighting scales were developed by fixing the type, location 

and angle of lighting with respect to an aggregate sample. This approach was found to be 

impractical as the parameters (location and angle) have to be changed as the type of the 

lighting source changes. Therefore, there was a need to develop a lighting scale based on 

a parameter measured on the captured images rather than the specifics of the lighting 

hardware components.  

In order to develop a standard lighting scale for the improved AIMS system, gray 

images of coarse aggregate particle surfaces of different types (slag, traprock, limestone, 

dolomite, gravel, and granite) and colors (dark gray, light gray, white, pink, yellow, and 

others) were captured using variable top light intensities. Then, these particles were cut 

using a saw to create smoother surfaces and were imaged again. The AIMS control 

software was used to record the mean of the gray scale histogram for each particle 

during scanning. The histogram gives the distribution of the different gray shades in an 

image from zero for black to 255 for white. The mean of the histogram reflects the 

average light reflection by a particle.   

The histogram mean values resulting from the scanned particles before and after 

cutting are shown in Fig. 3.10. On average, the cut sections had an intensity mean 30 

points higher than the original sections. However, this difference is not significant, 

especially when the variation of the mean within particles from the same source prior to 

cutting is taken into consideration. In Fig. 3.10 the horizontal bars shown for three of the 

aggregates indicate the range of variability within the same aggregate source.  

The measured texture was plotted as a function of the histogram mean intensity 

as shown in Fig. 3.11. It can be seen that light intensity can have a significant effect on 
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the measured texture. Moreover, particles with high texture in the original form 

maintained high texture after being cut. This was expected since cutting would produce 

surface texture level dependent on the particle mineralogy.  
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Fig. 3.10. Mean of Gray Scale Intensity Histogram for Different Aggregates with Cut and 

Original Sections 
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Fig. 3.11.   Relation between Surface Texture and Histogram Intensity Mean for Different 

Aggregates (O: Original, C: Cut) 

 

 

There is a range of intensity within which the measured texture was fairly uniform 

(see Fig. 3.11). This facilitates the development of a lighting scale with a reasonable range 

that accommodates the natural variation within an aggregate sample and the difference 

between the cut and original sections. This ensures that particle color has a minimal effect 

on the results. According to Fig. 3.11, an image should be captured such that the histogram 

intensity mean is between 110 and 160 in order to minimize the influence of color variation 

on the results. 
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CONTROL AND ANALYSIS SOFTWARE 

This section includes a brief description of both the control and analysis software.  

 

Control Software 

National Instruments LabVIEWTM (version 6.1) and IMAQ Vision (version 2.5) software 

were used to program motion control and the image acquisition. Both software packages 

use the LabVIEW Graphical (G) programming language. IMAQ Vision includes a 

comprehensive set of functions for image processing and analysis. “LabVIEW is a 

software that is designed for data acquisition and instrument control. It consists of 

libraries of functions and development tools.  A program written in G is called a visual 

instrument (VI).  The VI consists of two main parts; the user interface (main panel) 

where the program is controlled, and code diagram or block diagram where the G 

programming instructions are included to carry out the required tasks. Different than any 

other programming languages where text is used, the LabVIEW (G) programming is 

done in a pictorial format” (Fletcher 2002). More information on LabVIEW can be 

found on the Internet or by visiting the National Instrumentation website (www.ni.com).  

Figs. 3.12 and 3.13 show the project description user interface and the image 

acquisition user interface for the original and improved versions of the control program, 

respectively.  As can be seen in Fig. 3.13, a real-time image window is displayed.  

 In running both coarse and fine modules, the first step is always calibration of the 

system. The second step is to distribute the entire aggregate sample on the sample tray. 

On the user interface, “Project Name” and “Hard Drive Location” are entered and the 

type of scan or analysis to be performed is selected. A list of options for the aggregate 

sizes and scan types are available to select from. The selection process is very easy to 

follow as the user is guided by steps and help messages.  
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(a)  

 
 

 
(b)  

 

Fig. 3.12. Front Panel Interface of the Control Program Used by AIMS First Prototype 

Version. (a) Project Description Interface and (b) Image Acquisition Interface 
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(a)  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

(b)  
 

Fig. 3.13. Front Panel Interface of the Control Program Used by AIMS Improved 

Version. (a) Project Description Interface and (b) Image Acquisition Interface 
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 Once the selections are made and the user clicks the run button the program 

displays the original and processed images of particles (see Fig. 3.14). After the scan 

finishes, the program creates a sub directory with the user-specified project on the user-

specified hard drive.  

 

 

 
 
Fig. 3.14. Control Program Interface Showing Original and Processed Images while 

Running Angularity Analysis Scan 

 

 

As discussed in the previous section, images for texture analysis are captured 

such that average gray intensity is within a specified range. This software is capable of 

showing the value of the mean gray-scale histogram on the real time image. It also plots 

a bar chart of the mean gray histogram for all images of a particle scanned during the 

texture analysis scan (see Fig. 3.15). The program shows graph of the camera path and a 

text window. These new features can show the location and number of the particles on 
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the lighting table whose their mean gray-scale histogram falls above or below scale 

limits. Particles with mean gray-scale histograms that fall within scale limits appear with 

green dots on the chart, as shown in Fig. 3.15. This improvement made it easier for the 

user to identify the particles that need to be rescanned if the lighting was inappropriate 

the first time.  

 The program was developed to be self-guided and to minimize user interruption 

during measurements. Therefore, the program is features instructional message windows 

that promptly display to guide the user through successful analysis. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.15.  New Features in Control Program while Running Texture Analysis Scan 
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Analysis Software 

A detailed description of the software is provided by Masad (2003). The information is 

provided here for the completeness of the description of AIMS. The images captured 

during scanning are analyzed for form, angularity, and texture using the image analysis 

software. The image analysis software was developed as a standalone application that 

could be run on any 32 bit Windows platform (Masad 2003). The program was written 

using the multi-function capabilities (MFC) functionality of C++. The, interface enables 

users to select among two aggregate analysis options (coarse and fine). Then depending 

on the user choice, various analysis options are offered to select from. For coarse 

aggregates, analysis of aggregates’ texture, angularity (two methods); and form (two 

methods) can be conducted. For fine aggregates, the analysis options are angularity (two 

methods), and form.  

 The analysis methods in the AIMS analysis software are based on a fundamental 

concept, and their results are easy to interpret. These analysis methods were discussed in 

Chapter II. The analysis software sorts three dimensions of particles and calculates 

sphericity.  Sphericity is a 3-D measure of coarse aggregate form and is calculated using 

Eq. 2.1. Form Index is a 2-D measure of form that can be quantified using Eq. 2.4. The 

analysis software enables users to calculate the form index for both fine and coarse 

aggregates. Two methods are used to quantify the angularity of coarse and fine 

aggregates. These methods are gradient angularity and radius angularity, given by Eqs. 

2.19 and 2.21, respectively. Texture of coarse aggregate is quantified by the wavelet 

method as given in Eq. 2.26. 

The analysis software stores the results as text files in the same directory as the 

images. The analysis software also shows results in terms of a cumulative distribution 

curve along with some statistics such as standard deviation, mean, and values of first, 

second, and third quartiles, displaying them on a separate interface as shown in Fig. 

3.16.  

The results interface provides the user with the option of storing the analysis 

results in an Excel file. When the sample name is entered and the ‘OK’ button is clicked, 
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an Excel file opens. In the Excel file the results are processed and presented in different 

sheets. The original result values are sorted (ranked) and their cumulative percentiles are 

tabulated. The properties cumulative distribution is plotted on a separate graph, as shown 

in Fig. 3.17.  Statistics and percentage of particles in each aggregate shape property class 

(discussed in Chapter V) are tabulated in a separate sheet (summary sheet). An example 

of the data presented in the summary sheet is presented in Fig. 3.18.  

 

 

 
 
Fig. 3.16. Property Distribution and Statistics Shown on the Software Results Interface 
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Fig. 3.17. Example of the Cumulative Distribution of Texture 

 

 

 
 

Fig. 3.18. Example of the Data Presented in Summary Sheet 
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The interface of the AIMS analysis software has good usability features so the 

user does not need to specify the number of energy levels for texture analysis or the 

number of erosions for angularity analysis. In this software these values are hard-coded 

with the most suitable values for each type of analysis, as shown in Fig. 3.19.  

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

Fig. 3.19. Interface of AIMS Analysis Software 

 

 

AIMS uses a preliminary set of threshold values to classify the shape properties 

of coarse and fine aggregates. As discussed in Chapter VI, these values are based on 

cluster analysis that divides aggregates into groups based on their shape properties. The 

default threshold values for the limits of different properties are hard-coded in the 

program. However, the user is given an option to set new ranges for the classification of 

particles, which makes the software flexible enough to accommodate new threshold 
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values or classification limits based on future measurements. Fig. 3.20 shows the 

interface that can be used to change the classification limits of aggregate shape 

properties. These classification limits are programmed to show on the Excel Charts. This 

makes it easier to examine what percentage of the aggregate distribution fall within each 

shape classification.  

 

 

 
 

Fig. 3.20.  New Feature to Change the Class Limits of Aggregate Shape Properties 

 

 

SUMMARY 

This chapter describes the work that has been done towards achieving the first objective 

of this study (developing an improved version of AIMS).  Several improvements were 

made in the design of the hardware and software components of AIMS to enhance the 

operational characteristics of the system, reduce human involvement and errors, and 

enhance the automation of the test procedure.  
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 One of the important improvements made to AIMS was the development of a 

standard lighting scale. Lighting is an important factor influencing the quality of an 

image and analysis results of texture extracted from it.  Therefore, a lighting scale based 

on a parameter measured on the captured images rather than the specifics of the lighting 

hardware components was developed. The mean of the gray-scale histogram was used as 

scale parameter, and a range of values was specified so that images can be captured with 

minimum influence of color variation on the results.   

 Visualization capabilities were added to the control software to allow the user to 

specify both the aggregate size and shape characteristics being analyzed and to 

determine whether an image is captured within the correct lighting scale or not. In 

AIMS, images for the analysis of angularity and texture are captured based on specified 

criteria for resolution and magnification in order to significantly reduce the influence of 

particle size on the shape characterization results.   
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CHAPTER IV 

COMPARATIVE ANALYSIS OF TEST METHODS FOR MEASURING 

AGGREGATE SHAPE 

 

INTRODUCTION 

This chapter documents the experimental evaluation of the characteristics of the 

available methods used to measure aggregate shape characteristics.  The evaluation was 

conducted in order to compare AIMS to the existing test methods. The first task was to 

conduct a preliminary evaluation, based on the information available in the literature, of 

all test methods documented in Chapter II in order to select candidate tests for more in-

depth evaluation. The evaluation covered the repeatability, reproducibility, accuracy, 

cost, and operational characteristics. The first three characteristics were evaluated 

through statistical analysis of the shape characteristics of a wide range of aggregates 

from different sources with various shape properties. The accuracy analysis was 

conducted for the image analysis methods and parameters employed in some of the 

systems, and for the test methods themselves.  The information that pertains to cost and 

operational characteristics was collected using a survey of vendors, researchers, and 

operators who have dealt with these systems.   

 

EVALUATION OF MERITS AND DEFICIENCIES OF TEST METHODS 

Information gathered from the literature and documented in Chapter II is used here to 

conduct a comparative analysis of the available test methods. This task served the purpose 

of identifying test methods that will be subjected to intensive experimental evaluation in 

this study. A summary of the advantages and disadvantages of the test methods based on 

information synthesized from the literature is documented in Table 4.1.  The table also 

gives the location where the selected test methods are available for further evaluation. 
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Table 4.1. Merits and Deficiencies of the Testing Methods Used to Measure Aggregate Shape Properties  

Test Method Estimated 
Cost ($) 

Aggregate 
Characteristics Advantages Disadvantages 

 
AASHTO T304 
(ASTM C1252) 

Uncompacted Void 
Content of Fine 

Aggregate 

 
250 

• A combination of 
angularity, texture, and 
form. 

• Simple. 
• Inexpensive. 
• Saeed et al. (2001) selected it to measure 
the properties of aggregates in unbound 
layers. 

• Meninger (1998) selected it to measure the 
properties of aggregates in PCC pavements. 

• Janoo and Korhonen (1999) recommended 
it over time index, rugosity, and particle 
index. 

• Used in the current Superpave system. 

• Lee et al. (1999a) and Chowdhury and   
Button (2001) reported that the test 
does not consistently identify angular 
and cubical aggregates.  Also, some 
fine aggregate with good field 
performance history did not meet the 
Superpave criteria. 

• The results are influenced by form, 
angularity, texture, and bulk specific 
gravity. 

 
AASHTO TP56 

Uncompacted Void 
Content of Coarse 

Aggregate 

 
500 

• A combination of 
angularity, texture, and 
form. 

• Simple. 
• Inexpensive. 
• Kandhal and Parker (1998) selected it to 
measure the properties of aggregates in 
asphalt pavements. 

• Meninger (1998) selected it to measure the 
properties of aggregates in PCC pavements. 

• The results are influenced by form, 
angularity, texture, and bulk specific 
gravity. 

 
ASTM D3398 
Standard Test 

Method for Index of 
Aggregate Particle 
Shape and Texture. 

 

 
400 

• A combination of 
angularity, texture, and 
form. 

• Simple. 
• Inexpensive. 

• Saeed et al. (2001) classified this test 
as having fair performance, 
predictability, precision, and accuracy. 

• Meninger (1998) reported that the 
results have high correlation with the 
FAA test, which is more practical and 
easier to use. 

• Foweler et al. (1996) reported that the 
method does not provide good 
correlation with concrete performance. 

• The results are influenced by form, 
angularity, texture, and bulk 
properties. 
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Table 4.1. Continued 

Test Method Estimated 
Cost ($) 

Aggregate 
Characteristics Advantages Disadvantages 

Compacted 
Aggregate 

Resistance CAR Test 
500 

• A combination of 
angularity, texture, and 
form. 

• Simple. 
• Inexpensive.  
• Chowdhury and Button (2001) reported 
that the CAR test method is more sensitive 
than FAA and direct shear to changes in 
shape properties. 

• The results are influenced by shape, 
angularity, texture, and bulk 
properties. 

 

Florida Bearing 
Value of Fine 

Aggregate 
1,000 

• A combination of 
angularity, texture, and 
form. 

• Simple. 
 
 

• The results are influenced by form, 
angularity, texture, and bulk 
properties. 

• Less practical and involves more steps 
than the FAA test. 

• Operates based on the same concept as 
the CAR test but requires more 
equipment and time. 

• Lee et al. (1999b) stated that FAA test 
has better correlation with HMA 
performance than this test. 

Rugosity 500 

• A combination of 
angularity, texture, and 
form. 

• Simple. 
• Inexpensive. 

• The results are influenced by form, 
angularity, texture, and bulk 
properties. 

• It is based on the same concept as the 
FAA test and the uncompacted voids in 
coarse aggregates test.  However, it 
requires more time and is less practical 
than these tests. 

Time Index 500 

• A combination of 
angularity, texture, and 
form. 

• Simple 
• Inexpensive 

• The results are influenced by form, 
angularity, texture, and bulk 
properties. 

• It is based on the same concept as the 
FAA test and the uncompacted voids in 
coarse aggregates test.  However, it 
requires more time and is less practical 
than these tests. 
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Table 4.1. Continued 

Test Method Estimated 
Cost ($) 

Aggregate 
Characteristics Advantages Disadvantages 

AASHTO T 236 
(ASTM D3080) 

Direct Shear Test 
10,000 

• A combination of 
angularity, texture, and 
form. 

• Simple.  
• Chowdhury and Button (2001) reported 

that the test method has good correlation 
with HMA performance. 

• Expensive. 
• The results are influenced by form, 
angularity, texture, mineralogy, and 
particle size distribution. 

• Nonuniform stress distribution causes 
discrepancies in the measured internal 
friction. 

ASTM D5821 
Determining the 
Percentages of 

Fractured Particles in 
Coarse Aggregate 

0 

• Angularity.  • Simple. 
• Inexpensive. 
• Used in the current Superpave system. 

• Labor intensive and time consuming. 
• Depends on the operator’s judgment. 
• Meininger (1998) classified this 

method as having low prediction, 
precision, and medium practicality.  

Flat and Elongated 
Coarse Aggregates 

ASTM D4791 
250 

• Form. • Used in current Superpave system. 
• Able to identify large portions of flat and 

elongated particles. 
• Gives accurate measurements of particle 

dimension ratio. 
• Found to be related to performance of 

unbound pavement layers (Saeed et al. 
2001). 

• Tedious, labor extensive, time 
consuming to be used  on a daily basis 
(Yeggoni et al. 1996, Rao and 
Tutumluer 2000). 

• Limited to test only one particle at a 
time. 

• Unable to identify spherical, rounded, 
or smooth particles. 

• Doesn’t directly predict performance 
(Meininger 1998, Fowler et al. 1996). 

Multiple Ratio Shape 
Analysis 1,500 

• Form. • Simple. 
• Inexpensive. 
• Provides the distribution of dimensional 

ratio in aggregate sample. 

• Does not address angularity or texture. 

VDG-40 
Videograder 45,000 

• Form • Measures the form of large aggregate 
quantity. 

• Wiengart  and Prowel (1999) and 
Tutumluer et al. (2000) reported good 
correlation with manual measurements of 
flat-elongated particles. 

• Expensive. 
• Does not address angularity or texture. 
• Assumes idealized particle shape 
(ellipsoid). 
• Uses one camera to capture images of 
all sizes. 
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Table 4.1. Continued 

Test Method Estimated 
Cost ($) 

Aggregate 
Characteristics Advantages Disadvantages 

Computer Particle 
Analyzer CPA 25,000 

• Form. • Measures the form of large aggregate 
quantity. 

• Expensive. 
•  Does not address angularity or 
texture. 
• Assumes idealized particle shape 
(ellipsoid). 
• Uses one camera to capture images of 
all sizes. 
 

Micromeritics 
OptiSizer PSDA 50,000 

• Form. • Measures the form of large aggregate 
quantity. 

 
 

• Expensive. 
• Does not address angularity or texture. 
• Assumes idealized particle shape 
(ellipsoid). 
• Uses one camera to capture images of 
all sizes. 
• The system is no longer marketed in 
the US. 
 

Video Imaging 
System (VIS) 

 
60,000 

• Form. • Measures the form of large aggregate 
quantity. 

 
 

• Expensive. 
•  Does not address angularity or 
texture. 
• Assumes idealized particle shape 
(ellipsoid). 
• Uses one camera to capture images of 
all sizes. 
 

Buffalo Wire Works 
PSSDA 35,000 

• Form. 
• Angularity. 

• Measures the shape of large aggregate 
quantity. 

 

• Expensive. 
• Does not address texture. 
• Assumes idealized particle shape 
(ellipsoid). 
• Uses one camera to capture images of 
all sizes. 
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Table 4.1. Continued 

Test Method Estimated 
Cost ($) 

Aggregate 
Characteristics Advantages Disadvantages 

Camsizer 45,000 

•  Form. 
•  Angularity. 

• Measures the shape of large aggregate 
quantity. 
• Uses two cameras to capture images at 
different resolutions based on aggregate 
size. 

 

• Expensive. 
• Assumes idealized particle shape 
(ellipsoid). 

 
 

WipShape 35,000 

•  Form. 
•  Angularity. 

• Measures the shape of large aggregate 
quantity. 
• Measure the three dimensions of 
aggregates. 

 

• Expensive. 
• Does not address texture. 
• Uses two cameras to capture images 
of all sizes. 

University of Illinois 
Aggregate Image 
Analyzer (UIAIA) 

 

35,000 

•  Form. 
• Angularity. 
• Texture. 

• Measures the shape of large aggregate 
quantity. 
• Measure the three dimensions of 
aggregates. 

 

• Expensive. 
• Uses three cameras to capture images 
of all sizes.  

 

Aggregate Imaging 
System (AIMS) 

 
35,000 

• Shape. 
• Angularity. 
• Texture. 

• Measure the three dimensions of 
aggregates. 
• Uses a mechanism for capturing images at 
different resolutions based on particle size. 
• Gives detailed analysis of texture. 
 

• Expensive. 
•  Measures the shape of relatively 
small amount of aggregates. 

Laser-Based 
Aggregate Analysis 

System 
25,000 

• Shape. 
• Angularity. 
• Texture. 

• Measure the three dimensions of 
aggregates. 

 

• Expensive 
• Measures the shape of relatively small 
amount of aggregates. 
 

Note: Prices Listed are Estimates and not absolute.
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 The experimental evaluation was conducted for AIMS as well as those methods 

selected based on the preliminary evaluation summarized in Table 4.1. The test methods 

were selected based on three steps as shown in Fig. 4.1. In the first step, methods were 

categorized into direct and indirect, as listed in Table 2.1. Then, methods that share the 

same analysis concept were grouped together. This step ensured that the selected candidate 

methods represent different analysis concepts. The third step was to select test/tests from 

each group based on practicality, labor requirements, cost, repeatability, versatility, and 

field applicability. The preliminary evaluation was necessary in order to ensure that  

resources were not spent evaluating multiple tests that share the same analysis methods and 

operational characteristics. Table 4.2 summarizes the outline of the approach for the 

preliminary evaluation. It should be noted that some of the test methods currently used in  

practice were included in the intensive evaluation in order to compare them with the results 

of the candidate methods. Such comparison is necessary to see if any of the available 

methods are similar or better than methods currently used in the practice.  

All indirect methods in the first group in Table 4.2 rely on packing of aggregates 

that flow through a given-sized orifice. Uncompacted void content of fine aggregates 

(also known as Fine Aggregate Angularity [FAA] test) and uncompacted void content of 

coarse aggregates were selected since they are more popular and widely used and are 

cheaper and easier to use than other tests in the same group. Janoo and Krohonen (1999) 

concluded that the FAA test was the easiest to implement and use when was compared to 

time index, rugosity, and particle index. Time index was not selected since it is a time 

consuming test (Janoo and Korhonen 1999). Saeed et al. (2001) evaluated this test and 

classified it as having fair performance, predictability, precision, and accuracy. 
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Fig. 4.1.  Outline of the Approach for Preliminary Evaluation, Screening, and 

Prioritization of Test Methods 

 

 
 
 
 
 
 

Further Evaluation  

Step 3: Select 
methods based 
on practicality, 
cost, labor 
requirements, 
and field 
applicability. 

All Test Methods 

Direct Indirect 

D-2 D-3 I-1 I-2 I-3 

I-2-aD-3-a D-2-a 

Step 1: Divide 
methods to 
direct and 
indirect. 

I-3-aI-1-a

Step 2: Divide 
methods 
based on  
analysis 
concepts. 

D-1 
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Table 4.2. Criteria for Selecting Test Methods for Intensive Evaluation 

Test 

Direct 
(D) or 

Indirect 
(I) 

Method 
 

Analysis Concept Selected Test for Further Intensive Evaluation 

Uncompacted Void Content of 
Fine Aggregates AASHTO T304 I Yes 

Uncompacted Void Content of 
Coarse Aggregates  AASHTO 

TP56 
I Yes 

Rugosity I No 
Time Index I 

Packing of aggregate that flow 
through a given sized orifice 

No 
Index for Particle Shape and 

Texture ASTM D3398 I Packing of aggregate in a mold 
using two levels of compactions 

No 

Compacted Aggregate Resistance 
CAR I Yes 

Florida Bearing Ratio I No 
Angle of Internal Friction from 

Direct Shear Test I 

Exposing a compacted specimen 
to pressure or shear forces 

No 

Percentage of Fractured Particles 
in Coarse Aggregate ASTM 

D5821 
D Visual inspection of particles Yes 

Flat and Elongated Coarse 
Aggregates ASTM D4791 D Yes 

Multiple Ratio Shape Analysis D 

Measuring particle dimension 
using caliper Yes 

VDG-40 Videograder D Yes 

Computer Particle Analyzer D No 
Micromeritics OptiSizer PSDA D No 

Video Imaging System (VIS) D No 

Buffalo Wire Works PSSDA D 

Using one camera to image and 
evaluate particles in the sample 

as they fall in front of a 
backlight 

Yes 

Camsizer D 

Uses two cameras to image and 
evaluate particles in the sample 

as they fall in front of a back 
light 

Yes 

WipShape D 
Uses two cameras to capture 

image of aggregates passing on a 
mini conveyor system 

Yes 

University of Illinois Aggregate 
Image Analyzer (UIAIA) D 

Uses three cameras to capture 
three projections of a particle 

moving on a conveyor belt 
Yes 

Laser-Based Aggregate Analysis 
System D Uses a laser scan Yes 

 

 

The second group of tests includes those in which a compacted specimen is 

exposed to pressure or shear forces. Of these methods, the CAR test was selected. 

Chowdhury and Button (2001) concluded that the CAR test method offers much more 

sensitivity than either the FAA test or the direct shear test. This method has more 

advantages than the Florida Bearing Ratio and direct shear tests have (see Table 4.1). 
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Moreover, the CAR test is a relatively new test and has not received enough evaluation 

in the past. 

The percentage of fractured particles in coarse aggregate method (ASTM D5821) 

was selected since it is currently included in the Superpave system.  Rao and Tutumluer 

(2000) described this method as being time consuming, labor intensive, and subjective in 

nature. Also, it was classified as having low prediction and precision, with medium 

practicality (Meininger 1998). 

The ASTM D4791 test for measuring flat and elongated coarse aggregates and 

the multiple ratio shape analysis method were both selected. The multiple ratio shape 

analysis method is capable of providing more detailed measurements in terms of the 

distribution of the dimensional ratio. ASTM D4791 was selected since it is included in 

the Superpave system. According to Yeggoni et al. (1996) and Rao and Tutumler (2000) 

ASTM D4791 is considered tedious, labor extensive, and time consuming. The test 

method is also reportedly unable to identify spherical, rounded, or smooth particles, and 

is limited to testing only one particle at a time (Meininger 1998; Fowler et al. 1996).  

The next group of tests that share the same analysis concept includes the VDG-

40 Videograder, Computer Particle Analyzer, Micromeritics OptiSizer PSDA, Video 

Imaging System (VIS), and Buffalo Wire Works PSSDA. Of these methods only the 

VDG-40 Videograder and Buffalo Wire Works PSSDA were selected. The developers of 

Micromeritics OptiSizer PSDA preferred not to participate in the study, and the 

developers of the VIS declared the suspension of their research for the time being. The 

VDG-40 Videograder was selected because it is capable of analyzing every particle in 

the sample. In addition, the VDG-40 Videograder showed good correlation with manual 

measurements of flat and elongated particles (Weingart and Prowel 1999; Tutumluer et 

al. 2000). The Buffalo Wire Works PSSDA method was selected because it is reported 

to analyze particles with a wide range of sizes from those passing sieve #200 to 1.5 

inches. 

The Camsizer system uses two cameras to capture images at different resolutions 

and evaluates a large number of particles in the sample as they fall in front of a 
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backlight. Using two cameras makes this method unique and improves the accuracy of 

measuring the characteristics of both coarse and fine aggregates. The system has the 

capability to automatically produce particle size distribution and particle shape 

characteristics. 

The WipShape system uses two cameras to capture images of aggregates passing 

on a mini-conveyor or on a rotating circular lighting table. This system was selected 

because it can analyze large quantities of particles in a short time. The system has the 

potential to measure and report various shape factors including sphericity, roundness, 

and angularity (Maerz and Lusher 2001; Marez and Zhou 2001). The system is small in 

size, which makes it usable in field laboratories. 

The University of Illinois Aggregate Image Analyzer (UIAIA) uses three 

cameras to capture black and white images for a particle from three orthogonal 

directions and build a 3-D shape construction of each particle. It has automated 

determination of flat and elongated, coarse aggregate angularity, and gradation. The use 

of three images for each particle makes it feasible to accurately compute the volume of 

each aggregate particle. It also provides information about the 3-D characteristics 

without assuming an idealized shape, such as an ellipsoid. 

The Laser-Based Aggregate Analysis System (LASS) uses a laser scan to determine 

particles’ form and angularity.  This system was selected initially for evaluation, but 

unfortunately it was not made available to this study during the experimental evaluation 

period.   

 

LABORATORY TESTING PROCEDURES 

This section includes a description of the aggregates that were selected and used to 

evaluate the testing methods and the testing procedures that were followed in conducting 

each of the selected test methods presented in Table 4.2. 
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Description of Aggregates 

Aggregates were selected to cover a wide spectrum of origin, rock type, and shape 

characteristics. Thirteen coarse aggregates and five fine aggregates were used in this 

study, as shown in Table 4.3. Three coarse aggregate sizes and three fine aggregate sizes 

were used to perform the evaluation (see Table 4.3).  Experienced individuals from the 

industry and highway agencies assisted in selecting and providing these aggregates.   

  

 

Table 4.3. Aggregate Sources and Sizes 
Aggregate Sizes 

Label Source Aggregate 
Description 

25.4 -
19.0 
mm 
(1-

3/4”) 

12.5 - 
9.5 
mm 
(1/2-
3/8”) 

9.5 -
4.75 
mm 

(3/8”-
#4) 

4.75 - 
2.36 
mm 
(#4 - 
#8) 

2.36 - 
1.18 
mm 
(#8 - 
#16) 

0.6 - 
0.3 
mm 

(#30 - 
#60) 

1 Montgomery 
AL 

Uncrushed 
River Gravel X X X X X X 

2 Montgomery 
AL 

Crushed 
River Gravel X X X X X X 

3 Childersburg 
AL Limestone X X X    

4 Auburn 
AL Dolomite X X X    

5 Birmingham 
AL Slag X X X X X X 

6 Brownwood 
TX Limestone X X X X X X 

7 Fairfield 
OH 

Crushed Glacial 
Gravel X X X    

8 Fairfield 
OH 

Uncrushed 
Glacial Gravel X X X    

9 Forsyth 
GA Granite X X X    

10 Ruby 
GA Granite X X X X X X 

11 Knippa 
TX Traprock X X X    

12 San Antonio 
TX Limestone X X X    

13 Augusta 
GA Granite X X X    
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Mineralogical content of the thirteen aggregates was also determined using X-ray 

diffraction (XRD). XRD is a technique for establishing the structures of crystalline 

solids by directing X-rays of a single wavelength at a crystal and obtaining a diffraction 

pattern from which interatomic spaces can be determined.  “In 1912, W. L. Bragg 

recognized a predictable relationship among several factors including: 1) the distance 

between similar atomic planes in a mineral (the interatomic spacing) also called the d-

spacing; 2) the angle of diffraction which is called theta angle; and 3) the wavelength of 

the incident X-radiation.  Bragg combined these factors in what is known as Bragg’s law 

where interatomic spacing can be quantified using the wavelength and the angle of 

diffraction” (www.geosci.ipfw.edu/). Knowing the interatomic spacing and the other two 

factors, an unknown mineral can be identified or the atomic-scale structure of an already 

identified mineral can be characterized. 

 In this study, what is known as powder XRD was used. As the name indicates, 

the sample analyzed in is in a powder form, consisting of fine grains of single crystalline 

material.  Aggregates of the size 9.5 – 4.75 mm (3/8”- sieve #4) were ground to a 

powder form to a size that passes 0.075 mm (sieve #200). A few grams of the powder 

sample was placed in a holder, and then the sample was illuminated with X-rays of a 

fixed wave length in the diffractometer. The diffractometer used in this study is a Rigaku 

Miniflex diffractometer.  The intensity of the reflected radiation was recorded. These 

data were then analyzed for the reflection angle to calculate the interatomic spacing (d-

value in angstrom units - 10-8 cm). The intensity was measured to discriminate the 

various d-spacing, and the results were compared to specific tables to identify possible 

matches with mineral phases. The mineralogical content of the aggregates used in this 

study is presented in Table 4.4 

The ASTM C-702 test procedure was followed to obtain representative samples 

of reasonable sizes. It is important to employ randomization when dividing the aggregate 

into smaller representative samples. The purpose of randomization is to reduce bias due 

to unforeseen factors that would affect measurements. All samples of coarse aggregates 

were washed prior to evaluation.   
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Aggregates selected for evaluation were sieved, reduced into smaller samples, 

and washed according to ASTM and AASHTO standard procedures. The main goal was 

to prepare these aggregates so they could be used to evaluate the selected methods in 

Table 4.2 in terms of repeatability, reproducibility, and accuracy.  

 

 

Table 4.4. Mineralogical Content of Aggregates Using X-Ray Diffraction 

Aggregate Aggregate Description Minerals Present 
1 Uncrushed 

River Gravel 
Quartz, Dolomite (trace) 

2 Crushed 
River Gravel 

Quartz 

3 Limestone Calcite, Dolomite, Quartz 
4 Dolomite Dolomite 
5 Slag Akermanite, Calcite, Quartz 
6 Limestone Calcite, Quartz, Dolomite 
7 Crushed Glacial Gravel Dolomite, Calcite, Quartz 

8 Uncrushed 
Glacial Gravel 

Dolomite, Calcite, Quartz 

9 Granite Quartz, Biotite, Albite, Labradorite 

10 Granite Quartz, Chlorite, Albite, Amesite, Anorthite, 
Phlogophite (Mica), Muscovite 

11 Traprock Tephrite, Diopside, Augite, Anorthite 
12 Limestone Calcite 

13 Granite Quartz, Albite, Calcite, Anorthite, 
Microcline, Kaolinite 

 

 

It was decided to use the same sample for nondestructive tests by all operators 

and for all test replicates. It was also decided to consider the aggregate sample as a 

specific sample weight, 1 kg sample for coarse aggregates and 0.5 kg for fine aggregates. 

In conducting the tests, the operators were asked to return the aggregates to the sample 

after running a test, mix the sample, and acquire material randomly for each test.   
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Testing Methods Procedures 

This section presents the test methods that were used in this study in addition to AIMS.  

As indicated earlier, some of the selected methods have been in practice for years and 

they are usually performed using standard procedures. On the other hand, there are some 

methods that have been developed recently. For these methods, the manufacturer’s or the 

developer’s instructions were followed to perform the testing. It was necessary in some 

cases to perform the standard tests with minor modifications in order to conduct the tests 

on the selected aggregate sizes. Description of the test methods were presented in 

Chapter II. In this section, only brief descriptions of the testing procedures and 

modifications, if any, are reported. A summary of aggregate sizes and measured shape 

parameters obtained from each of the selected test methods is shown in Table 4.5. Also, 

the last column in Table 4.5 lists the names of the indices, parameters or analysis 

methods used to present the measurements.   

 

AASHTO 3304 (ASTM C1252) Uncompacted Void Content of Fine Aggregate 

This test method was conducted at the Texas Transportation Institute (TTI). Method B of 

this test procedure was performed, where individual size fractions are tested on the 

smaller two sizes of the proposed fine aggregate sizes: 2.36 - 1.18 mm (sieve #8 - #16) 

and 0.6 - 0.3 mm (sieve #30 - #50). The size of 4.75 - 2.36 mm (sieve #4 - #8) was not 

tested for two reasons: First, this size was not included in the specifications, and second, 

this aggregate particles size did not pass through the orifice of the test apparatus freely.  

Complying with the standards, a 190 g sample size was used.  In this study, the results 

are reported using the individual sizes, a slight modification from the Method B 

procedure, which requires that the average uncompacted void content from the three 

sizes to be reported. The test measures angularity of fine aggregates by measuring the 

loose uncompacted void content (UCVCF) in a sample that falls from a fixed distance 

through a given size orifice. Higher void content is associated with more angular 

particles. The apparatus used for this study is shown in Fig. 2.5. 
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Table 4.5. Aggregate Size and Shape Parameters Measured Using the Test Methods 

Aggregate Size Shape Property  
Test 

C
1 

C
2 

C
3 

F
1 

F
2 

F
3 

Form 
(Abbreviation) 

Angularity 
(Abbreviation) 

Texture 
(Abbreviation) 

Uncompacted 
Void Content of 
Fine Aggregates 
AASHTO T304 

    X X  

% Loose 
Uncompacted 
Void Content 

(UCVCF) 

 

Uncompacted 
Void Content of 

Coarse 
Aggregates  

AASHTO TP56 

 X X     

% Loose 
Uncompacted 
Void Content 

(UCVCC) 

 

Compacted 
Aggregate 

Resistance CAR 
   X X X  

Max Shear 
Resistance 

(CAR) 
 

Percentage of 
Fractured 
Particles in 

Coarse 
Aggregate 

ASTM D5821 
 

X X X     % of Fractured 
Faces (PFF)  

Flat and 
Elongated 

Coarse 
Aggregates 

ASTM D4791 

X X X    Flat Elongated 
Ratio (FER)   

Multiple Ratio 
Shape Analysis X X X    Dimensional 

Ratio (MRA)   

VDG-40 
Videograder 

X X X X   

Flat Ratio (VDG-
40 FLAT) & 

Slenderness ratio 
(VDG-40 
SLEND) 

  

Buffalo Wire 
Works PSSDA-

Large 
X X X    

Roundness 
(PSSDA-Large 

ROUND) 

Roundness 
(PSSDA-Large 

ROUND) 
 

Buffalo Wire 
Works PSSDA-

Small 
   X X X 

Roundness 
(PSSDA-Small 

ROUND) 

Roundness 
(PSSDA-Small 

ROUND) 
 

Camsizer  X X X X X 

Sphericity 
(CAMSPHT), 

Symmetry 
(CAMSYMM), 
Ratio of Length 

to Breadth 
(CAML/B) 

 

Convexity 
(CAMCONV)   
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Table 4.5. Continued 

Aggregate Size Shape Property 
Test 

C
1 

C
2 

C
3 

F
1 

F
2 

F
3 

Form 
(Abbreviation) 

Angularity 
(Abbreviation) 

Texture 
(Abbreviation) 

WipShape X X X    Dimensional 
Ratio (WSFER) 

Minimum 
Average Curve 

Radius 
(WSMACR) 

 

University of 
Illinois 

Aggregate 
Image Analyzer 

(UIAIA) 

X X X    Flat Elongated 
Ratio (UIFER) 

Angularity 
Index (UIAI) 

Surface 
Texture Index 

(UISTI) 

Aggregate 
Imaging System 

(AIMS) 
X X X X X X 

Sphericity 
(AIMSSPH) 

& 
 Form 2-D Index 
(AIMSFORM) 

Gradient 
Angularity 

Index 
AIMSGRAD), 

Radius 
Angularity 

Index 
(AIMSRAD) 

Texture Index 
(Wavelet) 

(AIMSTXTR) 

Aggregate sizes: 

C1 = 25.4 - 9.0 mm (1- ¾”); C2 = 12.5-9.5 mm (1/2 - 3/8”); C3 = 9.5-4.75 mm (3/8”- #4);  

F1 = 4.75 - 2.36 mm (#4 - #8); F2 = 2.36 - 1.18 mm (#8 - #16); F3 = 0.6 - 0.3 mm (#30 - #60). 

 

 

AASHTO TP56 Uncompacted Void Content of Coarse Aggregate (as Influenced By 

Particle Shape, Surface Texture, and Grading)  

This test method was conducted at TTI.  Method B of this test procedure was performed, 

where individual size fractions are tested. This test was conducted on the smaller two 

sizes of the proposed coarse aggregate sizes; 12.5 – 9.5 mm (1/2 - 3/8 inches) and 9.5 – 

4.75 mm (3/8”- #4). The larger size of 25.4 –19.0 mm (1 - 3/4 inches) was not tested 

because it was not included in the test procedure. A sample size of 5000 g was used. In 

this study, the results are reported using the individual sizes, a slight modification from 

the Method B procedure, which requires that the average uncompacted void content 

from the three sizes to be reported. The test measures angularity of coarse aggregates by 

measuring the loose uncompacted void content (UCVCC) in a sample that falls from a 



 

 

107
fixed distance through a given size orifice. Higher void content is associated with more 

angular particles. The apparatus used in this test method is shown in Fig. 2.6. 

 

Compacted Aggregate Resistance (CAR) Test 

The CAR test was conducted at TTI with some modification to the procedure provided 

by Mr. David Jahn.  The procedure suggested by Mr. Jahn was to use the fine aggregates 

of a blend used in the preparation of the asphalt mix in their as-received condition. Two 

options were available. The first was to test the individual aggregate sizes. This option 

was dismissed after consultation with Mr. Jahn since these individual particles would not 

have the shear resistance that would develop from using combined sizes. The second 

option, which was followed in this study, was to develop a blend using the three fine 

aggregate sizes used in this study. The blend used here is given in Table 4.6 below. The 

sample size was 1200 g. The aggregate sample was oven-dried, and then 3.5% moisture 

was added to the specimen. The sample was placed in a mold, and 50 blows were 

applied on one face only. The sample was then placed in the Marshall stability and flow 

machine and tested at 2 inch/min to report shear resistance versus penetration. The test 

provides information on the shear resistance of compacted fine aggregates (CAR) which 

is used as a measure of angularity. Higher shear resistance is associated with higher 

angularity.  The CAR testing setup is shown in Fig. 2.7. 

 

 

Table 4.6. Fine Aggregate Blend Used in CAR Test 

Size Percentage 

4.75 – 2.36 mm (sieve #4-#8) 40% 

2.36 – 1.18 mm (sieve #8-#16) 20% 

0.6 – 0.3 mm (sieve #30-#60) 40% 
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ASTM D5821 Determining the Percentages of Fractured Particles in Coarse Aggregate 

In this test method, which was conducted at TTI, the size of the sample was chosen such 

that the number of particles exceeded 50 for aggregate sizes 25.4 – 19.0 mm (1- 3/4 

inches) and 12.5 – 9.5 mm (1/2 - 3/8 inches).  For the smaller size of 9.5 – 4.75 mm 

(3/8”- #4) a sample size of 200 grams, as recommended by specifications, was used. The 

total sample weight from each aggregate type always exceeded 500 g, as specified by 

ASTM D5821. This method provides information on the angularity of coarse aggregate 

by visually examining each particle and counting the number of fractured or crushed 

faces (PFF). A high percent of crushed faces (one face, two or more faces) is associated 

with higher angularity.  

 

ASTM D4791 Flat and Elongated Coarse Aggregates 

This test method was also conducted at TTI. The test specification does not provide a 

procedure for testing samples of one size. It was decided to use the same aggregate 

sample size that was used in conducting ASTM D5821. This method provides the 

percentage by number or weight of flat, elongated, or both flat and elongated particles in 

a given sample of coarse aggregates.  The procedure uses a proportional caliper device, 

as shown in Fig. 2.13, to measure the dimensional ratio of aggregates. Following 

Superpave specifications, the ratios of length to thickness or the maximum dimension to 

the minimum dimension were reported in this study (FER).  

 

Multiple Ratio Shape Analysis (MRA) 

This test was conducted at TTI.  In this method, aggregates were classified according to 

their dimensional ratios into five different categories instead of one (<2:1, 2:1 to 3:1, 3:1 

to 4:1, 4:1 to 5:1, >5:1). The device consists mainly of a digital caliper connected to a 

data acquisition system and a computer. A particle is placed on a press table, and the 

press is lowered until it touches the aggregate particle and stops. The device records the 

gap between the press and the table, which is equal to the particle dimension. The 

particle is then rotated in another direction and the procedure is repeated to obtain other 
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dimensions.  These readings are recorded in a custom-designed spreadsheet that displays 

the distribution of dimensional ratios in the aggregate sample. Fig. 2.14 shows the 

device. There was no specific sample size, as there were no standards for this test; 

therefore, it was decided, after consulting with Mr. David Jahn, that the same samples 

and sample sizes that were used in the flat and the elongated test and fractured faces test 

be used in this test.  

 

VDG-40 Videograder 

In this method an electromagnetic vibrator extracts the constituents of the sample in the 

hopper and directs them a long a feed channel toward separator drums. The separator 

drum orients the aggregates toward the falling plane at the required speed. The system 

uses a line-scan CCD camera to image and evaluate every particle in the sample as it 

falls in front of the backlight. All analysis and data reporting are performed in a custom 

software package. This system provides information on aggregate gradation 

measurements and particle flatness (VDG-40 FLAT) and slenderness ratios (VDG-40 

SLEND). Fig. 2.15 shows the VGD-40 Videograder.   

Only coarse aggregate sizes were analyzed using this system. The VDG 40 

Videograder has no standard specification for sample size. It was decided to use a 1.0 kg 

sample size. To ensure that the sample will have at least 50 particles, which is 

considered a statistically valid number. The system was brought from Turner-Fairbank 

Highway Research Center to TTI, where the testing was conducted. 

 

Camsizer  

The test was conducted at TTI.  This system operates in a very similar way to the VDG-

40 Videograder. Particles exit the hopper to a vibrating feed channel and fall between the 

light source and the camera.  Particles are detected as projected surfaces and digitized by 

the computer (see Fig. 2.20). This system automatically produces particle size 

distributions and some aspects of particle shape characteristics. The system was not 

capable of analyzing the large size of coarse aggregates 25.4 – 19.0 mm (1 - 3/4 inches), 
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since these aggregates were too large to pass through the hopper.  

 The Camsizer measures the following parameters: Aggregate form, sphericity 

(CAMSPHT), symmetr (CAMSYMM), and length to breadth (CAML/B). CAMSPHT is 

the same as form factor described in Chapter II and is given by Eq. 2.3. Both 

CAMSYMM and CAML/B are described in Chapter II and can be calculated using Eq.s 

2.14 and 2.13, respectively.  Angularity in the Camsizer is described using convexity 

(CAMCONV), which was also described earlier in Chapter II and can be quantified 

using Eq. 2.24. 

 

University of Illinois Aggregate Image Analyzer (UIAIA) 

This method was conducted at the University of Illinois. It uses three cameras to capture 

projections of coarse aggregate particles as they move on a conveyer belt. These 

projections are then used to reconstruct a 3-D representation of the particles. The system 

is designed to measure the shape of coarse aggregates. Particles are placed individually 

on the conveyer belt. Once a particle is detected at a certain location on the conveyer belt 

using sensors, the cameras are capture the three projections of particles individually. The 

UIAIA and aggregate detection system are presented in Fig. 2.22. Some of the 

aggregates with dark color were not measured using this system (aggregate 11 in Table 

4.3). 

 The UIAIA measures all three aggregate shape characteristics (form, angularity, 

and texture). The methods used by UIAIA to measure these properties were presented in 

Chapter II. Form of aggregate particles is measured by calculating the flat and elongated 

ratio (UIFER). The UIAIA measures angularity (UIAI) using the outline slope method, 

while aggregate surface texture (UISTI) is measured using the erosion-dilation method. 

 

WipShape 

This test was also conducted at the University of Illinois. WipShape system uses two 

orthogonal cameras to capture images of each particle individually from two views. The 

individual particles are placed on a conveyer belt or on a circular rotating lighting table. 
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The WipShape system is shown in Fig. 2.21. WipShape provides a measure of aggregate 

form by providing information on the dimensional ratio from particle images (WSFER). 

WipShape also uses the minimum average curve radius method, described in Chapter II, 

to quantify aggregates angularity (WSMACR). 

 

Buffalo Wire Works PSSDA 

This test was performed at the University of Tennessee. The developer of the system 

(Dr. Dayakar Penumadu) created two experimental test devices that have the same 

analysis concept. These devices are called PSSDA-Large and PSSDA-Small. PSSDA-

Large is devoted to analyzing coarse aggregate particles while PSSDA-Small is used for 

analysis of fine aggregates. Similar to the principle of the VDG-40 Videograder and 

Camsizer, the system uses one line-scan CCD camera to image and evaluate particles as 

they fall in front of the backlight. The system provides information about gradation and 

shape.  Roundness (ROUND), which is the inverse of Eq. 2.3, is used to describe form. 

Both PSSDA systems are shown in Fig. 2.19. 

 

EVALUATION OF REPEATABILITY AND REPRODUCIBILITY  

Repeatability and reproducibility of test methods were evaluated through measuring the 

characteristics of aggregate samples several times using single and multiple operators, 

respectively. The following considerations were taken into account during the 

experimental evaluation: (1) operators were uniformly trained on the application of the 

test methods; (2) operators were provided with the same set of instructional guidelines; 

and (3) they were instructed that accuracy is more desirable than “good numbers” or 

“favorable results.” 

One coarse aggregate size (12.5 - 9.5 mm [1/2 - 3/8 inches]), and one fine 

aggregate size (2.36 -1.18 mm [sieve #8 - #16]) were used for the repeatability analysis.  

Therefore, each of the operators measured the properties of these aggregate sizes three 

times.  Reproducibility was assessed by measuring all aggregate sizes listed in Table 4.3 

by each of the three operators. All operators conducted measurements using the same 
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samples.    

Detailed information about the repeatability and reproducibility analysis is 

provided by Bathina (2004).  Bathina (2004) used standard deviation and coefficient of 

variation as measuring parameters to quantify repeatability and reproducibility. Analysis 

of variance (ANOVA) was used in the statistical analysis according to the ASTM 

procedures (ASTM E177, ASTM C802, and ASTM C670). The repeatability and 

reproducibility statistical parameters were pooled over all materials for each test method. 

In the analysis process, the following steps and equations have been used:  

 

1. Repeatability calculations: For one material size (m), and operator (p), the average of 

(n) replicates is given by Eq. 4.1, and the variation in measurements is calculated by Eq. 

4.2.  
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Table 4.7 shows the arrangement of variation data within and between operators for one 

single material using one test method.  The repeatability of a test method is evaluated for 

each aggregate material and all operators by Eq. (4.3):  
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2. Reproducibility Calculations: The average of measurements made by (p) operators for 

a singe material (Eq. 4.4) and the variation between operators (Eq. 4.5) are calculated. 

p
x

x
i

m
∑=                                                      (4.4) 

( )
( )1p

xpx
s

2
m

2
i2

xm −

−
= ∑                                          (4.5) 



 

 

113
Variations between operators are calculated by: 

 ]/)(2[22 npooledmS
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Then, reproducibility of a test method is given by: 
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+=                                  (4.7) 

 

 

Table 4.7. Arrangement of Variation in Measurements within and between Operators  

Operator 
Data (replicates)   

jx  

Average 

( ix ) 
 

Within Operator  Variance 
2
iS  

1 I II III 1x  
2

1S  

2 I II III 2x  
2
2S  

3 I II III 3x  
2
3S  

 

         
Repeatability and reproducibility of the test method on all aggregates were 

estimated by pooling standard deviations and coefficients of variations over all materials 

according to the guidelines of ASTM C 802 (Bathina 2004).  Since each of the selected 

test methods measure shape properties using different parameters and these 

measurements had different scales, repeatability and reproducibility were assessed 

independently (i.e., calculated for each parameter). This assessment implies that 

repeatability and reproducibility of a test method varies with the measured parameter. 

The final results of repeatability and reproducibility for all test methods are reported for 

each shape property and for each aggregate size (coarse and fine) separately.  Results of 

repeatability and reproducibility of test methods used to measure shape properties of 

coarse and fine aggregates are presented in Tables 4.8 and 4.9, respectively. The 

notations of the parameters are maintained as they are described in the manuals and 



 

 

114
standards of test methods. 

Several factors should be taken into consideration in the interpretation of the 

repeatability and reproducibility results reported in Tables 4.8 and 4.9. First, the methods 

differ significantly in the level of detail provided in the results. All the indirect methods 

provide an average index, while the imaging-based methods provide, or at least are 

capable of providing, the entire distribution of a shape property in an aggregate sample.  

This advantage of the imaging–based methods is not reflected here since the calculations 

are all conducted using average values in order to analyze all test methods.  Second, the 

test methods differ in the range of the results from different aggregates. For example, it 

was found that the Camsizer parameters have a narrow range, where the maximum and 

minimum values between aggregates differ by about 20%. However, the AIMS 

parameters have wide range. Third, all the measurements were conducted by trained 

operators, and it is expected that the results in Tables 4.8 and 4.9 are low compared to 

wide use by many operators in different laboratories. Finally, all measurements were 

conducted using a single device, and the results do not reflect the possible differences 

among different devices for the same test method. To this end, it was recommended to 

use the results in Tables 4.8 and 4.9 to classify test methods as low (L), medium (M), 

and high (H) variability rather than comparing the test method based on slight 

differences in the coefficient of variation. Consequently, the test methods are classified 

based on variability as shown in Tables 4.10 and 4.11.  



 

 

115
Table 4.8. Repeatability and Reproducibility of Test Methods Measuring Coarse Aggregate Shape Properties 

Standard Deviation (S) Coefficient of Variation (CV) 
Shape 

Property Test Method 

Parameter 
Abbreviation 
Used in This 

Study 

Measure 
Parameter as 

Reported by Test 
Method 

Repeatability Reproducibility Repeatability Reproducibilit
y 

Uncompacted 
Void Content 

of Coarse 
Aggregates 

 

 UCVCC % Uncompacted 
Void content 0.010 0.013 0.009 0.018 

0 Fractured Faces 0.075 0.260 0.227 0.766 
1 Fractured Face 0.059 0.156 0.165 0.502 % Fractured 

Faces  PFF 
≥2 Fractured 

Faces 0.050 0.361 0.123 1.150 

Camsizer 
 CAMCONV Conv3 0.00034 0.00032 0.00032 0.00031 

WipShape 
 WSMACR Min Avg. Curve 

Radius 0.001 0.004 0.010 0.037 

University of 
Illinois 

Aggregate 
Image 

Analyzer 
UIAIA 

 

UIAI Angularity Index 9.555 15.384 0.018 0.031 

AIMSGRAD Gradient 
Angularity 321.968 357.771 0.084 0.106 Aggregate 

Imaging 
System  
AIMS 

 
AIMSRAD Radius Angularity 0.309 0.470 0.031 0.048 

Angularity 

Buffalo Wire 
Works  

PSSDA-Large 
 
 

PSSDA-Large 
ROUND 

Average 
Roundness 0.046 0.080 0.027 0.049 
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Table 4.8. Continued 

Standard Deviation (S) Coefficient of Variation (CV) Shape 
Property Test Method 

Parameter 
Abbreviation 
Used in This 

Study 

Measure 
Parameter as 

Reported by Test 
Method Repeatability Reproducibility Repeatability Reproducibility 

University of 
Illinois 

Aggregate 
Image 

Analyzer 
UIAIA 

 

UISTI Mean Surface 
Texture Index 0.065 0.093 0.028 0.0556 

Aggregate 
Imaging 

System AIMS 
AIMS 

 

AIMSTXTR Texture Index 36.037 37.395 0.139 0.163 

Camsizer 
 CAMCONV Conv3 0.00034 0.00032 0.00032 0.00031 

Uncompacted 
Void Content 

of Coarse 
Aggregates 

UCVC 
 

UCVCC % Uncompacted 
Void content 0.010 0.013 0.009 0.018 

WipShape 
 
 

WSMACR Min Avg. Curve 
Radius 0.001 0.004 0.010 0.037 

Texture 

University of 
Illinois 

Aggregate 
Image 

Analyzer 
UIAIA 

 
 

UIAI 
 Angularity Index 9.555 15.384 0.018 0.031 
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Table 4.8. Continued 

Standard Deviation (S) Coefficient of Variation (CV) Shape 
Property Test Method 

Parameter 
Abbreviati
on Used in 
This Study 

Measure 
Parameter as 
Reported by 
Test Method Repeatability Reproducibility Repeatability Reproducibility 

CAMSPHT SPHT3 0.004 0.004 0.003 0.003 
Camsizer CAMSYM

M Symm3 0.001 0.001 0.002 0.001 

AIMSFOR
M Form 2-D 0.229 0.303 0.031 0.041 Aggregate 

Imaging System 
AIMS  AIMSPH Sphericity 0.014 0.018 0.020 0.026 

Form/ 
Parameter 

Buffalo Wire 
Works  

PSSDA-Large  

PSSDA-
Large 

ROUND 

Average 
Roundness 0.046 0.080 0.027 0.049 

        

Flat and 
Elongated Ratio FER 

%  of Flat and 
Elongated 
Particles 

1.000 4.570 0.064 0.317 

<Wt. 2:1 0.015 0.025 0.033 0.053 
Wt 2:1- 3:1 0.016 0.025 0.039 0.060 
Wt 3:1-4:1 0.010 0.012 0.374 0.478 

Multiple Ratio 
Analysis 

MRA 
MRA 

Wt 4:1-5:1 0.005 0.007 0.132 0.312 
VDG-40 
SLEND  

Slenderness 
Ratio 0.021 0.023 0.013 0.014 VDG-40 

Videograder VDG-40 
FLAT Flatness Factor 0.023 0.042 0.016 0.027 

Camsizer CAML/B l/b3 0.016 0.016 0.008 0.008 
<2:1 3.502 8.323 0.052 0.114 
<3:1 2.396 4.506 0.159 0.275 WipShape WSFER 
<4:1 1.334 2.196 0.302 0.405 
< 3:1 2.370 3.650 0.024 0.036 

Form/ 
Dimensional 

Ratio 

University of 
Illinois Aggregate 
Image Analyzer 

UIAIA 

UIFER 
3:1 - 5:1 2.136 3.180 0.204 0.268 
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Table 4.8. Continued 

Standard Deviation (S) Coefficient of Variation (CV) Shape 
Property Test Method 

Parameter 
Abbreviation 
Used in This 

Study 

Measure 
Parameter as 
Reported by 
Test Method 

Repeatabilit
y Reproducibility Repeatability Reproducibility 

<3 :1 5.061 7.383 0.063 0.091 Form/ 
Dimensional 

Ratio 

Aggregate 
Imaging 

System AIMS  
AIMSFER 

3:1 - 5:1 4.753 6.917 0.309 0.398 

 
 
 
 
Table 4.9. Repeatability and Reproducibility of Test Methods Measuring Fine Aggregate Shape Properties 

Standard Deviation (S) Coefficient of Variation (CV) 
Shape 

Property Test Method 

Parameter 
Abbreviation 
Used in This 

Study 

Measure 
Parameter as 

Reported by Test 
Method 

Repeatability Reproducibility Repeatability Reproducibility 

Uncompacted  
Void Content 

of Fine 
Aggregates 

UCVCF % Uncompacted 
Void Content 0.002 0.0053 0.004 0.010 

Camsizer 
 CAMCONV Conv3 0.0002 0.0002 0.0002 0.0002 

AIMSGRAD Gradient 
Angularity 190.779 314.718 0.046 0.071 Aggregate 

Imaging 
System  
AIMS AIMSRAD Radius Angularity 0.319 0.331 0.029 0.032 

Buffalo Wire 
Works PSSDA-

Small 

PSSDA-Small 
ROUND 

Average 
Roundness 0.111 0.101 0.113 0.111 

Angularity 

Compacted 
Aggregate 
Resistance 

CAR  

CAR  Aggregate 
Resistance 3241.977 4237.560 0.072 0.073 
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Table 4.9. Continued 

Standard Deviation (S) Coefficient of Variation (CV) 

Shape 
Property Test method 

Parameter 
Abbreviation 
Used in This 

Study 

Measure 
Parameter 

as Reported 
by Test 
Method 

Repeatability Reproducibility Repeatability Reproducibility 

CAMSPHT SPHT3 0.0017 0.0018 0.0019 0.002 
CAMSYMM Symm3 0.00032 0.00065 0.00035 0.0007 Camsizer 

CAML/B l/b3 0.0015 0.0052 0.0011 0.003 
Aggregate 
Imaging 
System  
AIMS 

AIMSFORM Form 2-D 0.305 0.387 0.032 0.041 Form 

Buffalo Wire 
Works PSSDA-

Small 

PSSDA-Small 
ROUND 

Average 
Roundness 0.111 0.101 0.113 0.111 
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Table 4.10. Classification of Coarse Aggregate Test Methods Based on Repeatability and Reproducibility. 

Coefficient of Variation (CV) Shape 
Property Test Method 

Parameter 
Abbreviation Used in 

This Study 

Measure Parameter as 
Reported by Test Method Repeatability Reproducibilit

y 
Uncompacted Void Content of 

Coarse Aggregate 
 

UCVCC % Uncompacted Void Content L L 

0 Fractured Faces H H 
1 Fractured Face M H % Fractured Faces  PFF 
≥2 Fractured Faces M H 

Camsizer CANCONV Conv3 L L 
WipShape WSMACR Min Avg. Curve Radius L L 

University of Illinois Aggregate 
Imaging System 

UIAIA 
UIAI Angularity Index L L 

AIMSGRAD Gradient Angularity L L Aggregate Imaging System 
AIMS AIMSRAD Radius Angularity L L 

Angularity 

Buffalo Wire Works 
PSSDA-Large 

PSSDA-Large 
ROUND Average Roundness L L 

University of Illinois Aggregate 
Imaging System 

UIAIA 
UISTI Mean Surface Texture Index L L 

Aggregate Imaging System 
AIMS 

 
AIMSTXTR Texture Index M M 

Camsizer CAMCONV Conv3 L L 
Uncompacted Void Content of 

Coarse Aggregate  
 

UCVCC % Uncompacted Void content L L 

WipShape WSMACR Min Avg. Curve Radius L L 

Texture 

University of Illinois Aggregate 
Imaging System  

UIAIA 
UIAI Angularity Index  L L 
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Table 4.10. Continued 

Coefficient of Variation (CV) Shape 
Property Test Method 

Parameter 
Abbreviation Used in 

This Study 

Measure Parameter as 
Reported by Test Method Repeatability Reproducibility 

CAMSPHT SPHT3 L L Camsizer 
CAMSYMM Symm3 L L 
AIMSFORM Form 2-D L L Aggregate Imaging System 

AIMS AIMSSPH Sphericity L L 
Form/ 

Parameter 
Buffalo Wire Works 

PSSDA-Large 
PSSDA-Small 

ROUND Average Roundness L L 

Flat and Elongated Ratio FER %  of Flat and Elongated 
Particles L H 

<Wt 2:1 L L 
Wt 2:1- 3:1 L L 
Wt 3:1-4:1 H H 

Multiple Ratio Analysis 
MRA MRA 

Wt 4:1-5:1 M H 
VDG-40 SLEND Slenderness Ratio L L VDG-40 Videograder 
VDG-40 FLAT Flatness Factor L L 

Camsizer CAML/B l/b3 L L 
<2:1 L M 
<3:1 M H WipShape WSFER 
<4:1 H H 
< 3:1 L L University of Illinois Aggregate 

Imaging System  
UIAIA 

UIFER 
3:1 - 5:1 H H 

<3 :1 L L 

Form/ 
Dimensional 

Ratio 

Aggregate Imaging System 
AIMS AIMSFER 

3 :1 - 5:1 H H 

Low (L) CV<=10%, Medium (M) 10%< CV<=20%, High (H) CV>20% 
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Table 4.11. Classification of Fine Aggregate Test Methods Based on Repeatability and Reproducibility 

Coefficient of Variation (CV) Shape 
Property Test Method 

Parameter 
Abbreviation Used in 

This Study 

Measure Parameter as 
Reported by Test Method Repeatability Reproducibility 

Uncompacted void content of 
Fine Aggregates UCVCF % Uncompacted Void 

Content L L 

Camsizer CAMCONV Conv3 L L 
AIMSGRAD Gradient Angularity L L Aggregate Imaging System 

AIMS AIMSRAD Radius Angularity L L 
Buffalo Wire Works 

PSSDA-Small 
PSSDA-Small 

ROUND Average Roundness M M 

Angularity 

Compacted Aggregate Resistance 
CAR  CAR  Aggregate Resistance L L 

CAMSPHT SPHT3 L L 
CAMSYMM Symm3 L L Camsizer 

CAML/B l/b3 L L 
Aggregate Imaging System 

AIMS AIMSFORM Form 2-D L L 
Form 

Buffalo Wire Works 
PSSDA-Small 

PSSDA-Small 
ROUND Average Roundness M M 

Low (L) CV<=10%, Medium (M) 10%<CV<=20%, High (H) CV>20% 
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 The percentage of fractured faces test had very high variability compared to all 

other test methods. This is in agreement with the evaluation and ratings reported by 

Meininger (1998) and Saeed et al. (2001). According to the results in Table 4.11, the 

uncompacted void content test for fine aggregate had low variability. Saeed et al. (2001) 

rated this test as having a fair precision (ability to repeatedly provide correct results).  

The results of this test were analyzed using the same specific gravity for each aggregate.  

The variability of this test comes mainly from error in measuring the specific gravity.  

Therefore, it is expected that the variability of the uncompacted void content test would 

increase significantly when the variability in specific gravity measurements is included.   

 AIMS and most of the image analysis methods had high variability when the 

percentage of particles with a dimensional ratio of 5:1 were considered. This was mainly 

due to the small percentages of particles that exhibited this characteristic, such that any 

slight variation in accounting for these particles was manifested as high coefficient of 

variation. The variability was reduced by considering the percentage of particles with a 

dimensional ratio smaller or larger than 3:1. The AIMS angularity indices had low 

variability, while the texture indices had medium variability. It is expected that this 

variability would be reduced further through automation of the top lighting.   

 Comparing the repeatability results for theVDG-40 Videograder and Buffalo 

Wire Works PSSDA, which are presented in Table 4.8, shows that the VDG-40 

Videograder had better repeatability than the Buffalo Wire Works PSSDA. These results 

are in agreement with the findings of Browne et al. (2001), who found that the 

repeatability of the VDG-40 Videograder was better than the Buffalo Wire Works 

PSSDA for size distribution measurements. This is due to the difference in the type of 

cameras used in these systems. In the VDG-40 Videograder the camera used (line-scan 

camera) captures successive images with very short delays between them, enabling the 

system to analyze almost every particle. The Buffalo Wire Works PSSDA use a matrix-

scan camera that captures successive images with longer delays between them, allowing 

the system to analyze only about 10 to 20% of particles while the remainder of particles 

are missed during the time intervals between the image acquisitions. 
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EVALUATION OF ACCURACY 

Ideally speaking, the accuracy of the test methods can be analyzed by evaluating the 

correlation of the measurements from these tests with the measurements conducted using 

standards or reference tests that are accepted to be accurate. The three dimensions of 

coarse particles can be measured using a digital caliper. This is an accurate, but slow, 

method of assessing the shape of particles.  However, a set of test methods that are 

accepted to be accurate in quantifying texture and angularity does not exist. The 

existence of such “accurate” tests would have made the analysis of the accuracy of the 

test methods evaluated in this chapter an easy task. Therefore, the following approach 

was adopted to assess, to some extent, the accuracy of the test methods: 

1. The accuracy should be evaluated for the test methods based on the procedure 

recommended by standards and/or by the developers, and for the analysis 

methods (mathematical functions and indices) employed in the imaging-based 

systems. This task allows evaluation of the accuracy of the analysis methods 

irrespective of the characteristics of the image acquisition setup.   

2. Accuracy of analysis methods in imaging-based systems is evaluated through: 

a. Analysis of diagrams of sediments with different shape characteristics.  

These diagrams were developed by geologists in the past to describe and 

quantify the two-dimensional form and angularity of sediments. They 

were plotted based on actual observations of sediments and manual 

measurements of their form and angularity. This task was used to 

determine whether the analysis methods are capable of identifying clear 

differences between particle projections. Also, this task was helpful to 

determine if an analysis method is able to separate the different 

characteristics of shape (form, angularity, and texture). This was the first 

screening test for the analysis methods. 

b. Analysis of the uniqueness of test methods. It is necessary to evaluate the 

correlations among the different test methods. This task will serve the 
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purpose of identifying analysis methods that are able to capture the same 

characteristics. Consequently, the method that is easier to implement and 

interpret should be recommended. 

c. Comparison between visual rankings of texture and angularity of 

aggregates by experienced individuals and results of test methods. This is 

useful to identify analysis methods that are not capable of discriminating 

aggregates with extreme angularity and texture characteristics (e.g., 

uncrushed river gravel vs. crushed gravel, uncrushed river gravel vs. 

crushed granite). 

3. Accuracy of test methods is evaluated through: 

a. Comparison between the form measurements using the test methods and 

the measurements of particles’ dimensions using a digital caliper. 

b. Comparison between the texture and angularity visual rankings of 

aggregates by experienced individuals and results of test methods. This is 

useful to identify test methods that are not capable of discriminating 

aggregates with extreme angularity and texture characteristics (e.g., 

uncrushed river gravel vs. crushed gravel, uncrushed river gravel vs. 

crushed granite). 

 

Accuracy of Analysis Methods 

Comparison with Geological Projections 

The two dimensional image analysis methods listed in Table 4.12 were used to analyze 

the particle projections shown in Fig. 4.2. A detailed description of these analysis 

techniques was presented in Chapter II. These particle projections, shown in Fig. 4.2, 

were developed by geologist in the past to describe and quantify the 2-D form and 

angularity of sediments. These diagrams were plotted based on actual observations of 

sediments and manual measurements of their form and angularity. Fig. 4.2(a) was 

developed by Rittenhouse (1943) to measure 2-D form (or sphericity). This method is 

based on the one developed earlier by Wadell (1932, 1935), which is considered a 
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standard and accurate method for evaluating form (Riley 1941; Powers 1953). The 

method by Rittenhouse (1943) was developed originally for fine particles. It assumes the 

particle dimension in the third direction to be nearly equal to the shorter of the two 

dimensions in the projection.  Fig. 4.2(b) was developed by Krumbien (1941) to evaluate 

angularity. This method is also based on the one proposed by Wadell (1932, 1935).  This 

method was originally developed for coarse aggregates. 

 

 

Table 4.12. Analysis Methods Used in Analyzing Aggregate Images 

Method Description 

Texture Index Using  Wavelet Used by AIMS analysis software (AIMSTXTR) 

Gradiant Angularity Index Used by AIMS analysis Software (AIMSGRAD) 

Radius Angularity Index Used by AIMS analysis Software (AIMSRAD) 

2-D Form Index Used by AIMS analysis Software (AIMSFORM) 

Sphericity Used by AIMS analysis Software (AIMSSPH) 

Texture Index (Fourier) (FRTXTR) 

Angularity Index (Fourier) (FRANG) 

Form Index (Fourier) (FRFORM) 

Flat & Elongated Ratio Used By University Of Illinois System (UIFER) 

Angularity Using Outline Slope Used By University Of Illinois System (UIAI) 

Surface Texture Using Erosion-  

Dilation technique 
Used By University Of Illinois System (UISTI) 

Aspect Ratio Used in Image Pro Software (ASPTPRO) 

Fractal Dimension Used in Image Pro Software (FRCTLPRO) 

Roundness Used in Image Pro Software (ROUNDPRO) 

 



 

 

127

 
                                                 (a) Rittenhouse (1943) 

 

  
                                                (b)  Krumbein (1941) 

 

Fig. 4.2. Charts Used by Geologists in the Past for Visual Evaluation of Granular 

Materials 
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Correlations between analysis method parameters and visual numbers by 

Rittenhouse and Krumbein are shown in Tables 4.13 and 4.14, respectively. Rittenhouse 

and Krumbein projections can be used to identify analysis methods capable of capturing 

changes in form and angularity, respectively. The correlation results in Tables 4.13 and 

4.14 suggest that: 

• The following methods can be used only to describe form without being affected 

by angularity of a particle: (a) Flat Elongated Ratio used by University of Illinois 

test method (UIFER); (b) Form Index measured using Fourier Series 

(FRFORM); and (c) Aspect Ratio measured using Image Pro software 

(ASPTPRO). 

• The following methods can be used to describe angularity without being affected 

by form: (a) Gradient Angularity used in the Aggregate Imaging system AIMS 

(AIMSGRAD); (b) Angularity Index used by the University of Illinois test 

method (UIAI); (c) Texture Index used by the University of Illinois test method 

(UISTI); and (d) Fractal technique used in Image Pro software (FRCTLPRO). 

 

 

Table 4.13. Pearson and Spearman Correlation Coefficients of Rittenhouse Sphericity  

Analysis Method 
Parameter 

Pearson 
Correlation 
Coefficient  

Spearman 
Correlation 
Coefficient 

Applicability 

AIMSGRAD 0.458 -0.54 N 
AIMSRAD* -0.868 -0.894 Y 

AIMSFORM* -0.98 -0.991 Y 
FRFORM -0.918 -0.993 Y 
FRANG* -0.814 -0.99 Y 
FRTXTR* -0.858 -0.999 Y 

UIFER -0.938 -0.993 Y 
UIAI -0.388 -0.368 N 
UISTI 0.273 0.425 N 

ASPTPRO -0.938 -0.995 Y 
FRCTLPRO 0.256 -0.322 N 

ROUNDPRO* -0.941 -0.996 Y 
* Method correlates with two shape properties at the same time. 
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Table 4.14. Pearson and Spearman Correlation Coefficients of Krumbein Roundness 

Analysis Method 
Parameter 

Pearson 
Correlation 
Coefficient 

Spearman 
Correlation 
Coefficient 

Applicability 

AIMSGRAD -0.886 -0.983 Y 
AIMSRAD* -0.964 -0.967 Y 

AIMSFORM* -0.958 -0.967 Y 
FRFORM -0.016 -0.033 N 
FRANG* -0.908 -0.883 Y 
FRTXTR* -0.942 -0.967 Y 

UIFER 0.486 -0.317 N 
UIAI -0.959 -0.983 Y 
UISTI -0.957 -0.983 Y 

ASPTPRO -0.414 0.317 N 
FRCTLPRO -0.869 -0.867 Y 

ROUNDPRO* -0.959 -0.967 Y 
* Method correlates with two shape properties at the same time. 
 

 

• The Angularity Index (UIAI) has very good correlation with the Texture Index 

(UISTI). This might suggest that these two parameters are capturing similar 

geometries on the boundary of particles. 

• Roundness measured using Image Pro (ROUNDPRO), and Texture Index using 

Fourier (FRTXTR), Angularity Index using Fourier (FRANG), Form Index 

Using AIMS (AIMSFORM), and Radius Angularity using AIMS (AIMSRAD) 

have good correlation with Rittenhouse sphericity numbers and Krumbein 

roundness numbers. This indicates that these methods are not as unique as the 

other methods in distinguishing between angularity and form of particles.   

 

Uniqueness of Test Methods Based on Aggregate Clustering  

This task was performed to examine the uniqueness of the analysis methods in capturing 

aggregate shape characteristics. A simple setup of a camera and a microscope was used 

to capture images of 50 randomly selected coarse particles (12.5 – 9.5 mm; 1/2 - 3/8 
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inches), and 50 fine particles (2.36 – 1.18 mm; sieve #8 - #16) of each aggregate type at 

specific resolution. The setup was equipped with top lighting to capture gray images for 

texture analysis and a backlighting to capture black and white images for angularity 

analysis. The resulting images were analyzed using standard image analysis techniques, 

shown in Table 4.12, which are also employed as analysis techniques in some of the 

imaging-based tests evaluated in this study.  

Using the capabilities of SPSS software, the analysis results from the 50 images 

of the coarse aggregate size of each aggregate type were used to cluster the analysis 

methods. The analysis methods were clustered using Ward’s Linkage method. Clustering 

is a widely used pattern recognition method for grouping data and variables. Grouping is 

done on the basis of similarities or distances. In many areas of engineering and science, 

it is important to group items into natural clusters. Basic references about clustering 

methods include most applied multivariate statistical texts (e.g., Johnson and Wichern 

2002; Morrison 2004). All clustering methods start from a choice of a metric (a distance 

or closeness among objects) and a choice of a method for grouping objects. When items 

(units or cases) are clustered, proximity is usually indicated by some sort of distance. On 

the other hand, variables are usually grouped on the basis of correlation coefficients or 

like measure of association (Johnson and Wichern 2002). 

  In this study, two types of similarities were used.  Pearson correlation coefficient, 

given by Eq. (4.8), is used as a measure of proximity when variables are grouped. The 

second measure of similarity was the Euclidean distance, given by Eq. (4.9), which is 

used to cluster cases. The Pearson correlation coefficient of a set of observations {(xi,yi): 

i=1,..,n} is given by the formula:  

                                        
( )( )

( ) ( )∑ ∑

∑

= =

=

−−

−−
=

n

i

n

i
ii

n

i
ii

yyxx

yyxx
r

1 1

22

1
 

                                                  (4.8) 

 

 



 

 

131
and the Euclidean distance is given by: 

                                  ( )∑
=
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2)( y x,                                                  (4.9) 

where x and y represent two p-dimensional observations (items) x = [x1, x2,…, xp] and y 

= [y1, y2,…, yp]. 

Ward’s Linkage method tries to make the similarity or distance measures sum of 

squares within groups as small as possible. In this sense, it makes an ANOVA F-test 

among the clusters as large as possible. Or, in other words, Ward’s method groups 

clusters whose combination results in the smallest increase in the sum of squared 

deviations from the cluster mean. 

Ward’s Linkage method with Pearson correlation proximity measure was applied 

to the analysis results. This type of analysis was needed in order to identify clusters of 

analysis methods. The results of the cluster analysis are shown in Table 4.15.  For each 

aggregate type, the test methods that have the same number (1, 2, 3, or 4) indicate that 

these methods are clustered, or they are more correlated with each other than with other 

test methods. For example, the data from AIMSTXTR analysis of CA-1 is statistically 

different than the data from all the other test methods, indicating that this analysis 

method captures an aggregate characteristic different than what is captured by all the 

other methods. The UIAI and UISTI methods are clustered for 12 of the 13 aggregates. 

The percentage of aggregates that a test method is clustered with other test methods is 

shown in Table 4.16. For example, the AIMSTXTR method is clustered alone in 54% of 

aggregates, clustered with another method in 31% of aggregates, and so on. In other 

words, an increase in percentage in the cells toward the left of the table is an indication 

of an increase in the uniqueness of the characteristic measured using this method. Based 

on the results in Tables 4.15 and 4.16, AIMSTXTR is the most unique among the texture 

parameters, AIMSGRAD and UIAI are the most unique among the angularity 

parameters, and AIMSSPH is the most unique among the form parameters.   
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Table 4.15. Clustering of Analysis Methods (4 Clusters) Based on Pearson Correlation 

Aggregate Analysis 
Method CA-

1 
CA-

2 
CA-

3 
CA-

4 
CA-

5 
CA-

6 
CA-

7 
CA-

8 
CA-

9 
CA-
10 

CA-
11 

CA-
12 

CA-
13 

AIMSTXTR 1 1 1 1 1 1 1 1 1 1 1 1 1 

AIMSGRAD 2 2 2 2 2 2 2 2 2 2 1 2 2 

AIMSRAD 2 2 3 2 2 3 2 1 2 3 2 3 3 

AIMSFORM 2 2 2 2 2 3 2 1 2 3 2 3 3 

AIMSSPH 3 3 3 3 3 1 3 3 3 1 3 1 4 

UIFER 4 4 4 4 4 4 4 3 4 4 4 4 1 

UIAI 4 4 4 4 4 4 4 2 4 4 4 4 2 

UISTI 4 4 4 4 4 4 4 2 4 4 4 4 1 

FRFORM 2 2 2 2 2 3 2 1 2 3 2 3 3 

FRANG 2 2 2 2 2 3 2 1 2 3 2 3 3 

FRTXTR 2 2 2 2 2 3 2 4 2 3 2 3 3 

ASPCTPRO 2 2 2 2 2 3 2 1 2 3 2 3 3 

FRCTLPRO 2 2 3 2 2 3 3 1 2 3 2 3 3 

ROUNDPRO 2 2 2 2 2 3 2 1 2 3 2 3 3 

 

 

Table 4.16. Percentage of Clustered Aggregates for Each Analysis Method  

Number of Methods to Cluster With 
Analysis Method  0 1 2 6 7 8 

AIMSTXTR 54% 31% 8%   8%   
AIMSGRAD 23% 15% 8% 8% 8% 38% 
AIMSRAD     8%   54% 38% 

AIMSFORM       8% 54% 38% 
AIMSSPH 54% 38% 8%       

UIFER   8% 92%       
UIAI   8% 92%       

UISTI     100%       
FRFORM       8% 54% 38% 
FRANG       8% 54% 38% 

FRTXTR 8%     8% 46% 38% 
ASPCTPRO       8% 54% 38% 
FRCTLPRO   8% 8%   46% 38% 
ROUNDPRO       8% 54% 38% 
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Ward’s Linkage method was used to cluster aggregates based on their angularity 

and texture measured using different analysis methods. The results of four clusters are 

shown in Tables 4.17 and 4.18.  This analysis is useful to identify those inaccurate 

methods that cluster aggregates with distinct shape characteristics.   

As shown in Table 4.17, both the FRTXTR and FRACTLRPO parameters show 

aggregates CA-1 (uncrushed gravel) and aggregates CA-9 and CA-10 (both are granite) 

in the same cluster. This finding indicates the inability of these methods to detect 

significant differences between aggregates. UISTI shows both aggregates CA-2 (crushed 

gravel) and CA-10 (granite) in the same texture cluster.   

 

 

Table 4.17. Coarse Aggregates in Texture Classes Estimated Using Ward’s  Linkage 

Method Class 1 Class 2 Class 3 Class 4 
AIMSTXTR 1, 2, 12 3, 5, 10, 11, 13 4, 6, 7, 8 9 
UISTI 1, 8 2, 3, 7,  10, 11, 13 4, 6, 9, 12 5 
FRTXTR 1, 7, 9, 10, 12 2, 4 3, 5, 6, 11, 13 8 
FRACTLPRO 1, 4, 9, 10, 12 2, 3, 6, 11, 13 5, 7 8 

 
 

 
Table 4.18. Coarse Aggregates in Angularity Classes Estimated Using Ward’s Linkage 

Method Class 1 Class 2 Class 3 Class 4 
AIMSGRAD 1, 8 2, 4, 6, 7, 12 5, 9, 10 3, 11, 13 
AIMSRAD 1, 2, 9 3, 4, 11, 13 5, 6, 7, 10, 12 8 
UIAI 1 2, 6, 9 3, 4, 5, 7, 10, 

11, 12, 13 
8 

FRANG 1, 2, 3, 6, 9, 
11, 12 

4, 5, 7, 10 8 13 

FRACTLPRO 1, 4, 9, 10, 
12 

2, 3, 6, 11, 13 5, 7 8 

ROUNDPRO 1, 2, 6, 12 3, 4, 5, 7, 9, 
10, 11 

8 13 
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The results in Table 4.18 show that AIMSRAD, FRANG, FRTXTR, and 

ROUNDPRO methods cluster the uncrushed (CA-1) and crushed gravel (CA-2) in the 

same group. This result indicates the inability of these methods to capture the influence 

of crushing on angularity.  Recall that these methods are also not unique in 

distinguishing between angularity and form when used to analyze the geological 

projections.  Table 4.19 shows a summary of the findings about the analysis methods. 

 

 

Table 4.19. Analysis Methods Used in Analyzing Aggregate Images 

Method Description Features 

Texture Index Using  
Wavelet 

Used by AIMS analysis 
software (AIMSTXTR) 

• Capable of separating aggregates 
with different texture 
characteristics. 

• Most unique among the texture 
parameters. 

Gradient Angularity 
Index 

Used by AIMS analysis 
Software (AIMSGRAD) 

• Capable of separating aggregates 
with different angularity 
characteristics. 

• Capable of separating angularity 
from form. 

• Most unique among angularity 
parameters. 

Radius Angularity 
Index 

Used by AIMS analysis 
Software (AIMSRAD) 

• Captures angularity but it is not 
capable of separating 2-D form 
from angularity. 

2-D Form Index Used by AIMS analysis 
Software (AIMSFORM) 

• Captures 2-D form but it is not 
capable of separating form from 
angularity. 

Sphericity Used by AIMS analysis 
Software (AIMSSPH) 

• Capable of separating aggregates 
with different form 
characteristics. 

• Captures unique characteristics of 
aggregates. 

• Most unique among the form 
parameters. 
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Table 4.19. Continued 

Method Description Features 

Texture Index 
(Fourier) FRTXTR 

• Does not separate angularity 
from form. 

• Clusters aggregates with distinct 
characteristics. 

Angularity Index 
(Fourier) FRANG 

• Does not separate angularity 
from form. 

• Clusters aggregates with distinct 
characteristics. 

Form Index 
(Fourier) FRFORM 

• Capable of separating form from 
angularity. 

• Clusters aggregates with distinct 
characteristics. 

Flat & Elongated 
Ratio 

Used By University Of 
Illinois System (UIFER) 

• Capable of separating aggregates 
with different form 
characteristics. 

• Capable of separating form from 
angularity. 

Angularity Using 
Outline Slope 

Used By University Of 
Illinois System (UIAI) 

• Capable of separating aggregates 
with different aggregate 
characteristics. 

• Capable of separating angularity 
from form. 

Surface Texture 
Using Erosion-
Dilation technique 

Used By University Of 
Illinois System (UISTI) 

• Clusters aggregates similar to 
angularity analysis. 

• Capable of separating angularity 
from form. 

Aspect Ratio Used in Image Pro 
Software (ASPTPRO) 

• Separates angularity from form. 

 

Fractal Dimension Used in Image Pro 
Software (FRCTLPRO) 

• Separates angularity from form. 

• Clusters aggregates with distinct 
characteristics. 

Roundness Used in Image Pro 
Software (ROUNDPRO) 

• Separates angularity from form. 

• Clusters aggregates with distinct 
characteristics. 
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Accuracy of Test Methods 

A digital caliper was used to measure the three dimensions of 100 particles selected 

randomly from each of the aggregates. Particle sizes passing a 12.5 mm (1/2 inch) sieve 

and retained on a 9.5 mm (3/8 inch) sieve. The measurements were used to calculate the 

percentage of particles with a ratio of longest dimension to shortest dimension of 3 : 1, 

and to calculate sphericity as defined in Eq. (2.1). The results of the digital caliper are 

shown in Table 4.20. The correlations between the caliper measurements and results of 

test methods in terms of R2 are shown in Figs. 4.3 and 4.4.   R2 is the square of the 

multiple correlation coefficient and the coefficient of multiple determination. It is a 

statistic that measures how successful the fit is in explaining the variation of the data. It 

can take on any value between 0 and 1, with a value closer to 1 indicating a better fit. R2 

is defined as the ratio of the sum of squares of the regression (SSR) and the total sum of 

squares (also known as sum of squares about the mean) (SST). R2 (coefficient of 

multiple determinations) is expressed as  
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Fig. 4.3 shows that the Multiple Ratio Shape Analysis (MRA) method had the 

best correlation with the digital caliper.  However, considering the irregular shape of the 

particles and the different methods that can be employed to identify the longest and 

shortest dimensions, all methods except the WipShape and the flat and elongation caliper 

tend to give reasonable correlations. The asterisk (*) indicates that not all aggregates 

were measured using this method. The sphericity measured using the digital caliper had 

very good agreement with AIMS and PSSDA-Large measurements as shown in Fig. 4.3.   

Fig. 4.4 shows a comparison between AIMS measurements and digital caliper 

measurements for sphericity. 
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Table 4.20.  Digital Caliper Results 

Aggregate Average Sphericity 3:1 & Higher (%) 
CA-1 0.717 8 
CA-2 0.740 2 
CA-3 0.675 18 
CA-4 0.662 30 
CA-5 0.731 2 
CA-6 0.711 6 
CA-7 0.624 42 
CA-8 0.706 6 
CA-9 0.643 38 

CA-10 0.697 18 
CA-11 0.659 22 
CA-12 0.666 18 
CA-13 0.638 38 

Note: CA= coarse aggregate. 
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Fig. 4.3. Correlations of Test Methods with the Digital Caliper Results for Coarse 

Aggregates Form (* : Not all aggregates were measured using this method) 
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Fig. 4.4. Comparison between Sphericity Measurements of AIMS and the Digital 

Caliper 

 

 

Measurements of angularity and texture of coarse aggregates were compared 

with visual rankings of aggregates by five experienced individuals with backgrounds in 

asphalt pavements, concrete pavements, geology, and petrographic analysis. These 

individuals were provided with a form to fill with the rankings. R2 values between the 

experienced individuals for texture and angularity rankings are shown in Table 4.21.  

 The rankings of the “experienced individuals” are more correlated for texture 

than for angularity. The high correlation between the visual rankings warrants 

comparing the average of the texture rankings with the experimental measurements.  

However, this is not the case for the angularity rankings, as the low correlation prevents 

establishing reliable correlations with the experimental measurements. A follow-up 

discussion with the experienced individuals revealed that the main difficulty is in 

visually separating angularity from texture. However, they indicated that it is easier to 

rank aggregates based on surface irregularity that combined both angularity and texture. 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.20 0.40 0.60 0.80 1.00
Sphericity-AIMS

S
ph

er
ic

ity
-M

an
ua

l M
ea

su
re

m
en

ts
.



 

 

139
Therefore, it was decided for this study to establish a visual ranking of surface 

irregularity. The correlation between rankings of surface irregularity is shown in Table 

4.21. 

   

 

Table 4.21. Coefficient of Multiple Determination (R2) between the Rankings of 

Experienced Individuals for Angularity, Texture, and Surface Irregularities  

Evaluator I II III IV V 
I 1 0.57 0.58 0.37 0.3 
II   1 0.9 0.41 0.57 
III     1 0.41 0.46 
IV       1 0.41 

 
 
 

Angularity 
 
 

V         1 
              

Evaluator I II III IV V 
I 1 0.91 0.92 0.89 0.82 
II   1 0.95 0.79 0.84 
III     1 0.84 0.82 
IV       1 0.74 

  
  

Texture 
  
  
  V         1 
       

Evaluator I II III IV V 
I 1 0.77 0.80 0.76 0.59 
II  1 0.95 0.69 0.79 
III   1 0.70 0.72 
IV    1 0.71 

 
 

Surface 
Irregularity 

 
 
 V     1 

 

 

 The experimental measurements were compared to the visual rankings of surface 

irregularity and texture. The comparison with surface irregularity is useful since the 

evaluated tests themselves do not use the same methods to analyze angularity and 
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texture.  In fact, the definition of angularity in a certain test method can be similar to the 

definition of texture in another test method.  Very good correlation was found between 

the “experienced individuals” in ranking aggregates based on surface irregularity.  The 

average rankings are shown in Table 4.22. Similarly, experts were asked to rank fine 

aggregate angularity by examining their shape under a microscope. The visual ranking of 

fine aggregates is shown in Table 4.23.   

 

 

Table 4.22.  Average Visual Rankings of Coarse Aggregates by Experienced Individuals 

Aggregate Texture Surface Irregularity 
CA-1 1.6 1.8 
CA-2 4.4 4.2 
CA-3 6.8 8.6 
CA-4 7.4 8.1 
CA-5 12.8 9.8 
CA-6 5.2 5.8 
CA-7 5.8 6.0 
CA-8 1.4 1.2 
CA-9 11.4 9.9 

CA-10 11.6 10.4 
CA-11 9.0 10.3 
CA-12 3.6 4.2 
CA-13 10.0 10.7 

Note: 1- CA= coarse aggregate; 2- Higher rank is associated with higher angularity and/or texture. 

 

 

Table 4.23. Visual Ranking of Fine Aggregate Angularity by Experienced Individuals 

Aggregate Visual Ranking  
FA-1 2 
FA-2 4 
FA-5 5 
FA-6 1 
FA-9 3 

Note: 1- FA= fine aggregate; 2- Higher rank is associated with higher angularity. 
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 The correlation between the measurements (texture and surface irregularities for 

coarse aggregate, and angularity for fine aggregates) and the corresponding visual 

ranking are used to rank the test methods. Figs. 4.5 through 4.7 show these correlations.    

It is important to emphasize that the correlations were calculated between visual 

rankings of aggregates and the corresponding average measurements of each test method 

for each shape property. As discussed in Chapter VII, expressing an aggregate shape 

based on average only can be misleading due to the high variability in shape within an 

aggregate sample. However, this is the only available method to get an idea about the 

ability of these methods to rank aggregates in a reasonable way, or at least identify those 

methods that are not able to rank aggregates appropriately.   
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Fig. 4.5. Correlations of Test Methods with Visual Rankings for Coarse Aggregates 

Texture (* : Not all aggregates were measured using this method) 
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Fig. 4.6. Correlations of Test Methods with Visual Rankings for Coarse Aggregates 

Surface Irregularity (* : Not all aggregates were measured using this method) 
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Fig. 4.7.  Correlations of Test Methods with Visual Rankings of Fine Aggregate 

Angularity 
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 Figs. 4.5 through 4.7 clearly show that AIMS is one of the most accurate testing 

methods available. AIMS is the only test method that is able to operate on all aggregate 

sizes investigated in this study. AIMS measurements had very good correlation with the 

rankings of texture and surface irregularity of coarse aggregates, and angularity of fine 

aggregates.   

 

COST AND OPERATIONAL CHARACTERISTICS OF TEST METHODS 

Information about cost and operational characteristics was collected using a survey of 

vendors, researchers, and operators who have dealt with these systems. The survey 

aimed at collecting information involving cost, ease of use, portability, ability of 

interpreting data, readiness for implementation in central laboratories as well as field 

laboratories, and applicability of test method to measure different aggregate types and 

sizes.  Tables 4.24 through 4.27 show the extracted information from the conducted 

survey.  This information is used in Chapter V in the ranking of test methods.  
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Table 4.24. Cost and Readiness for Implementation of Test Methods  

Test Method Estimated Price 
($) 

Scale of 
Readiness for 

Implementation 
Uncompacted Void Content of  Fine Aggregates 
AASHTO T304 250 1 

Uncompacted Void Content of Coarse Aggregates  
AASHTO TP56 500 1 

Compacted Aggregate Resistance (CAR) 500 1 
Percentage of Fractured Particles in Coarse 
Aggregate ASTM D5821 0 1 

Flat and Elongated Coarse Aggregates  
ASTM D4791 250 1 

Multiple Ratio Shape Analysis 1,500 2 

VDG-40 Videograder 40,000 - 50,000 2 

Buffalo Wire Works PSSDA -Large 30,000 - 40,000 3 

Buffalo Wire Works PSSDA -Small 30,000 - 40,000 2 

Camsizer 40,000 - 50,000 2 

WipShape 30,000 - 40,000 2 
University of Illinois Aggregate Image Analyzer 
(UIAIA) 30,000 - 40,000 3 

Aggregate Imaging System (AIMS) 30,000 - 40,000 2 
1: Available commercially. Wide use in laboratories.   
2: Available commercially. Limited use in laboratories.  
3: Not available commercially. Limited use in research laboratories. Can be made available commercially. 
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Table 4.25. Ease of Use and Data Interpretation of Test Methods  

Test Method 
Ability to 
Interpret 

Data 

Ease of Use by 
Technician 

Uncompacted Void Content of  Fine Aggregates 
AASHTO T304 1 1 

Uncompacted Void Content of Coarse Aggregates  
AASHTO TP56 1 1 

Compacted Aggregate Resistance (CAR) 1 1 
Percentage of Fractured Particles in Coarse Aggregate 
ASTM D5821 1 1 

Flat and Elongated Coarse Aggregates ASTM D4791 1 1 
Multiple Ratio Shape Analysis 2 2 
VDG-40 Videograder 3 2 
Buffalo Wire Works PSSDA-Large 3 3 
Buffalo Wire Works PSSDA-Small 3 2 
Camsizer 3 2 
WipShape 3 3 
University of Illinois Aggregate Image Analyzer (UIAIA) 3 3 
Aggregate Imaging System (AIMS) 3 3 

1: Very Easy 
2: Easy 
3: Intermediate 
4: Difficult 
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Table 4.26.  Portability of Test Methods 

Test Method Portability Scale 

Uncompacted Void Content of  Fine Aggregates AASHTO T304 1 
Uncompacted Void Content of Coarse Aggregates  AASHTO TP56 1 
Compacted Aggregate Resistance  (CAR) 1 
Percentage of Fractured Particles in Coarse Aggregate ASTM 
D5821 1 (NA) 

Flat and Elongated Coarse Aggregates ASTM D4791 1 
Multiple Ratio Shape Analysis 1 
VDG-40 Videograder 2 
Buffalo Wire Works PSSDA-Large 3 
Buffalo Wire Works PSSDA-Small 2 
Camsizer 2 
WipShape 2 
University of Illinois Aggregate Image Analyzer (UIAIA) 3 
Aggregate Imaging System (AIMS) 2 

1: Can be used in central and field laboratories.  Require less than 1 hr to move it.    
2: Can be used in central and field laboratories.  Require less than 1-4 hrs to move it.    
3: Not portable or require more than 8 hours to move it.  Can become portable      
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Table 4.27. Applicability of Test Methods to Measure Different Aggregate Types and 

Sizes 

Test Method Applicability Scale 

Uncompacted Void Content of  Fine Aggregates AASHTO T304 1 
Uncompacted Void Content of Coarse Aggregates  AASHTO TP56 1 
Compacted Aggregate Resistance  (CAR) 1 
Percentage of Fractured Particles in Coarse Aggregate ASTM 
D5821 1  

Flat and Elongated Coarse Aggregates ASTM D4791 1 
Multiple Ratio Shape Analysis 1 
VDG-40 Videograder 1 
Buffalo Wire Works PSSDA-Large 1 
Buffalo Wire Works PSSDA-Small 1 
Camsizer 1 / 2* 
WipShape 1 
University of Illinois Aggregate Image Analyzer (UIAIA) 3 
Aggregate Imaging System (AIMS) 1 

1: Measure all aggregate sizes and Types.    
2: Measure all aggregate types but not all sizes 
3: Measure all sizes but not all aggregate types 
* Use value of (1) if used in fine aggregates and value of (2) if used in coarse aggregates.    
 
 

SUMMARY 

This chapter documents the experimental evaluation of the characteristics of the 

available methods to measure aggregate shape properties. In this chapter, the second 

objective of this study was achieved by evaluating the improved version of AIMS along 

with other test methods used for measuring aggregate shape properties. The evaluation 

was conducted based on accuracy, repeatability, reproducibility, cost, ease of use, ease 

of interpretation of the results, readiness of the test for implementation, and portability.  

Thirteen different coarse aggregate types and five different fine aggregate types were 

used in this evaluation.   

Analyses of repeatability and reproducibility results were conducted under the 
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guidelines of ASTM standards E177, C802 and C670.  Accuracy of the analysis methods 

used in the imaging systems was assessed by analyzing some particle projections that 

have been used by geologists for visual evaluation of particles’ shape.  Also, all analysis 

methods were used to analyze images of aggregate particles in order to identify the 

ability of these methods to accurately rank aggregates and capture unique characteristics 

of aggregates. The analysis results revealed that some of the available analysis methods 

are influenced by both angularity and form changes and, consequently, are not suitable 

to distinguish between these two characteristics. Also, some of the analysis methods are 

not capable of distinguishing between changes in texture and angularity.  The following 

analysis methods are recommended: 

• Texture: Wavelet analysis of gray images of particle surface (implemented 

in AIMS software), 

• Angularity: The gradient method (implemented in AIMS software) and the 

changes in the slope of a particle outline. 

• Two-dimensional form: Aspect ratio. 

• Three-dimensional form: Sphericity or the proportions of the three particle 

         dimensions. 

 Accuracy of test methods was assessed through statistical analysis of the 

correlations between the results from test methods with measurements of form using a 

digital caliper and visual rankings of surface irregularity and texture by experienced 

individuals. AIMS results were ranked at or very close to the top for all shape 

characteristics. 

 Information about cost and operational characteristics were collected using a 

survey of vendors, researchers, and operators who have dealt with these systems. 
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CHAPTER V 

RANKING OF TEST METHODS USING THE ANALYTICAL HIERARCHY 

PROCESS (AHP)  

 

INTRODUCTION 

It has already been established in previous chapters that AIMS is the only 

comprehensive test that applies for coarse and fine aggregates, and it can measure the 

relevant shape characteristics (see Chapter IV). However, it is of interest to compare 

AIMS to the test methods evaluated in Chapter IV of this study based on certain shape 

characteristics and aggregate size fractions. In order to do so, a consistent and powerful 

methodology is needed to rank the test methods according to their repeatability, 

reproducibility, accuracy, cost, and operational characteristics. To this end, the 

Analytical Hierarchy Process (AHP) is presented as a mathematical tool to perform 

rankings of test methods. A brief description of AHP is provided in order to demonstrate 

its power and flexibility. A program was developed to expedite conducting the 

calculations involved in AHP. The program provides the decision maker with an 

enormous amount of flexibility to specify the objectives, ranking criteria, and relative 

importance or priorities of the different criteria elements. Examples of the rankings of 

test methods using the AHP are presented.  

 

ANALYTICAL HIERARCHY PROCESS (AHP)  

AHP was developed by Dr. Thomas Saaty in 1970s. AHP is a powerful and flexible 

decision making process that helps people set priorities and make preeminent choices. 

AHP provides a proven, effective means to deal with complex decision making by 

dropping these decisions to a series of one-on-one comparisons, then combining the 

results. In this way, AHP helps decision makers arrive at the best, most justified 

decision. AHP helps capture both subjective and objective evaluation measures such that 

the bias in decision making is reduced. AHP has been a well-regarded and widely used 

decision-making theory. It has been used in several applications that include the 
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selection of an approach based on defined criteria such as the selection of alternatives, 

investment distribution, and energy allocation (Saaty 1980).  

The AHP method is based on decomposing the goal into its component parts, 

moving from the general to the specific (i.e., proceeding from the goal to objectives to 

sub-objectives down to the alternative courses of action). In its simplest form, AHP 

structure comprises a goal, criteria, and alternative levels. After structuring the hierarchy 

of all criteria, the next step is to assign a relative weight to each criterion. Weights are 

assigned based on a pairwise comparison judgment scale, also known as standard 

preference table, that a decision maker develops (takes values from 1-9). Then the 

decision maker calculates priorities, using a simple mathematical procedure, throughout 

the hierarchy to arrive at overall priorities for the alternatives. The sum of all the criteria 

beneath a given parent criterion in each level of the model must equal one. Each priority 

list shows its relative importance within the overall structure. From the overall priority 

list, the decision maker can choose among alternatives by selecting the highest priority 

alternative. The mathematical functions involved in AHP can be found in Saaty (1980).   

 

AHP PROGRAM DESCRIPTION 

A program was developed so that the calculation process conducted in AHP to obtain the 

overall ranking of test methods was easier and faster. The new program provides the 

decision maker with an enormous amount of flexibility to change his/her objectives or 

selection criteria weights before making the final selection from available multiple 

alternatives. The program was developed with the help of Ms. Aparna Kanungo from the 

Computer Science Department at Texas A&M University. The program was created using 

VC++ programming language. The program, when compiled, generates the executable that 

can be run on any computer irrespective of operating system. 

 The program uses the crude estimate, specified by Saaty (1980), to calculate the 

priority vector through the process of averaging over normalized columns technique. 

The elements of each column are divided by the sum of that column, and then the 

elements in each resulting row are added and divided by the sum of the numbers in that 
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row.  

This program uses a graphical interface environment where the user is allowed to 

enter the number of testing methods being compared and the characteristics determining 

the performance of the test method (see Fig. 5.1(a)). Based on the numbers input by the 

user, generic text boxes are generated to allow the user to input the names of each of the 

characteristics and testing methods (see Fig. 5.1(b)). For demonstration purposes, the 

second example described in the preceding section (fine aggregate angularity) is used to 

describe the operation steps of the new program. 

For each of the characteristics, the user is allowed to enter the weights assigned 

to test methods when pairwise comparison is conducted with respect to each 

characteristic, as shown in Fig. 5.2(a). Since the lower triangle of these matrices is the 

reciprocal of the upper triangle with ones along the diagonal, the user can input the 

upper half of the matrix and the other values are updated automatically. After the values 

for all weights of all methods in each characteristic have been entered, the user is 

prompted to enter the weights comparing the various characteristics with respect to 

overall satisfaction with a method in a new interface, which is shown in Fig. 5.2(b).  

After entering all the weights for all methods and characteristics, the program 

calculates the priority vectors for each of the matrices and displays them in a new interface 

window, as shown in Fig. 5.3(a). Then the program calculates the overall ranking of the test 

methods by multiplying the priority matrix of the methods by the priority vector of the 

characteristics and displays it in a separate interface window, as shown in Fig. 5.3(b).   

The program has extra features that enable user to:  

1. Extract the priority vectors and the overall ranking from a text file. The results 

for the vectors for characteristics and final priority vector are stored in the text 

file named FinalAnswer.txt on the C: drive. 

2. If the user wants to examine the influence of changes in the weights or 

importance of one or more of the characteristics without changing the remaining 

ones (i.e., the software has to be executed several times with just one matrix 
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change), the program enables him/her to do so without a need to enter the 

unchanged matrices again. 

 

 

 
 

(a) Input of Number of Characteristics and Test Methods 
 
 

 
 

(b) Input Names of Characteristics and Test Methods 
 

Fig. 5.1. Program Graphical Interface to Enter Numbers and Names of Characteristics and 

Test Methods 
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(a) Input Weights Comparing Test Methods to Characteristics 
 

 

 
 

(b) Input Weights Comparing Characteristics 
 
 
Fig. 5.2. Program Graphical Interface to Enter Weights Comparing Test Methods to 

Characteristics, and Characteristics with Respect to Overall Satisfaction with Method 
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(a) Priority Vectors 

 

 
(b) Overall Ranking 

 

Fig. 5.3. Resulting Priority Vectors and Overall Ranking of Test Methods 

 

 

While entering the matrix weights, there is a button marked “Skip.” Clicking this 

button before entering values will cause the program retain the same values as 
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those in the previous run. For this, the program maintains the values in the 

immediate previous run in two files called “testread.txt” and “testwrite.txt” on 

the C: drive. 

 

AHP RANKING OF TEST METHODS 

The ranking of test methods depends significantly on the desired outcomes from the test 

as specified by the user. This section provides an example of how the AHP can be used 

to determine the ranking of AIMS relative to the other test methods for certain 

applications such as measuring fine aggregate angularity, and texture and form of coarse 

aggregates.   

The simplest form of AHP structure (i.e., goal, criteria, and alternative levels) is 

selected in this example. The first level is the overall objective, which is the satisfaction 

with test methods. The second level consists of the characteristics or criteria elements 

based on which this satisfaction is measured. These characteristics are repeatability, 

reproducibility, accuracy, price, readiness for implementation, ability to interpret data 

and results, ease of use by technician, portability, and applicability to measure different 

aggregate types and sizes. These criteria are considered to be the most fundamental 

factors affecting the selection of a test method. They determine the desired 

characteristics in any test method that meets the satisfaction. The third level of AHP 

consists of the test methods that are under evaluation using the characteristics in the 

second level.  Fig. 5.4 shows a basic hierarchy for AHP that can be used in this study. 

 AHP achieves the ranking using pairwise comparisons of the characteristics 

(level 2) and the test methods (level 3). The first pairwise comparison is conducted 

among the characteristics in the second level. This is illustrated in Table 5.1. The 

number in each cell of the table is a weight that reflects the relative importance of the 

characteristic in the horizontal list compared with the one in the vertical list. If this 

number is higher than one, it means that the characteristic listed in the row is more 

important than the characteristic listed in the column. In Table 5.1 accuracy is 

considered three times as important as repeatability and reproducibility and five times as 
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important as all the other characteristics. All the remaining characteristics are considered 

to be equal in their importance. The selection of weights should be based on consultation 

with researchers and experts in the pavement and aggregate field.  The weights in Table 

5.1 are assigned following the comparison scale shown in Table 5.2.    

 

 

 
 

Fig. 5.4.  Basic Hierarchy for Analytical Hierarchy Process (AHP) Used in Presented 

Example 
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Table 5.1. Example of the Relative Importance of the Characteristic Based on Overall 

Satisfaction with Method 

Characteristics of Test Methods 
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Repeatability 1 1 0.33 1 1 1 1 1 1 
Reproducibility 1 1 0.33 1 1 1 1 1 1 

Accuracy 3 3 1 5 5 5 5 5 5 
Cost 1 1 0.2 1 1 1 1 1 1 

Readiness 1 1 0.2 1 1 1 1 1 1 
Interpret Data 1 1 0.2 1 1 1 1 1 1 

Ease of Use 1 1 0.2 1 1 1 1 1 1 
Portability 1 1 0.2 1 1 1 1 1 1 

Applicability  1 1 0.2 1 1 1 1 1 1 
 

 

Table 5.2. AHP Comparison Scale 

Verbal Judgment of Preference Numerical Rating 
Equally Important or Preferred 1 

Weakly More Important 3 
Moderately  More Important 5 

Strongly More Important 7 
Absolutely More Important 9 

 

 

Weights that compare test methods based on each of the characteristics in Table 

5.1 should also be specified.  This is accomplished here based on the measurements and 

data collected and presented in Chapter IV. The weights that compare test methods 

based on each of the characteristics shown in Table 5.3. The selection of the comparison 

scale values in Table 5.3 above can be rationalized based on the importance of each of 

the test characteristics.  For example, the values in Table 5.3 can be supported by the 

following discussion on each of the characteristics: 
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Table 5.3. Weights that Compare Test Methods Based on Each of the Characteristics 

Criterion Comparison Scale Table or Figure Where 
Data is Available 

Repeatability/ 
Reproducibility 1 3 5 7 9 

2:1  X    

3:2   X   

3:1     X 

Table 4.10 
& 

Table  4.11 

Accuracy Coarse-
Form (Ratio of R2 
groups)  

1 3 5 7 9 

2:1  X    
3:1   X   
3:2  X    
4:1     X 
4:2    X  
4:3  X 

    

Fig. 4.3 
 

Accuracy Coarse-
Irregularity (Ratio 
of R2 groups) 
 

1 3 5 7 9 

2:1  X    
3:1   X   
3:2  X    
4:1     X 
4:2    X  
4:3  X 

    

Fig. 4.6 

Accuracy Coarse-
Texture (Ratio of 
R2 groups) Rankings) 

1 3 5 7 9 

2:1  X    
3:1   X   
3:2  X    
4:1     X 
4:2    X  
4:3  X 

    

Fig. 4.5 

Accuracy Fine-
Angularity (Ratio 
of R2 groups)  

1 3 5 7 9 

2:1  X    
3:1   X   
3:2  X    

4:1     X 

4:2    X  
4:3  X    

Fig. 4.7  
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Table 5.3. Continued 

Criterion Comparison Scale Table or Figure Where 
Data in Available 

Cost (Ratio of 
Cost) 1 3 5 7 9 

<6 X     
>6 
<20  X    

>20 
<50   X   

>50 
<80    X  

>80     X 
 

Table 4.24 

Readiness 1 3 5 7 9 
2:1  X    
3:2  X    
3:1   X 

   

Table 4.24 

Portability 1 3 5 7 9 
2:1  X    
3:2  X    
3:1   X   

Table 4.26 

Data Interpretation 1 3 5 7 9 
2:1  X    
3:2  X    
3:1   X   
4:3    X  
4:2     X 

 

Table 4.25 

Ease of Use 1 3 5 7 9 
2:1  X    
3:2  X    
3:1   X   
4:3    X  
4:2     X 

 

Table 4.25 

Applicability   1 3 5 7 9 
2:1  X    
3:2  X    
3:1   X   

Table 4.27 

 

 

• Repeatability/Reproducibility: As discussed in Chapter IV, repeatability and 

reproducibility are categorized into three main categories as levels 1, 2, and 3.   

Levels 1 and 2 can be considered as acceptable scales and some of the test methods 

can move from level 2 to 1 with some improvements. However, level 3 is 
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unacceptable since it covers high ranges of coefficient of variations for repeatability 

and reproducibility. Therefore, the scales are given such that the difference between 

levels 3 and 2 is less desirable than the difference between levels 1 and 2.  

• Accuracy: As indicated earlier, accuracy of test methods was assessed by finding the 

correlation between the test method and a reference method. In order to assign a 

scale for accuracy, the R2 values were divided into four categories as shown in Table 

5.4. The ratio between the numbers assigned to each accuracy group is then used to 

assign the accuracy scale.  

 

 

Table 5.4. Accuracy Categories Based on R2 values 

R2 Category 
> 0.70 1 

0.6 - 0.7 2 
0.5 - 0.6 3 

< 0.5 4 
 

 

• Cost: The cost scale is assigned taking into consideration that the lowest price of a 

test method is about $250, while the highest price is around $45,000.  If $250 is 

taken as the basis for the cost ratio, the following ranges are considered to have the 

same weight ($250 - $1,500, $1,500 - $7,500, $7,500 - $20,000, and $20,000 - 

$45,000). 

• Readiness/Portability: The scale for readiness is assigned to emphasize the 

importance of recommending a test method that has been used already by research 

and testing laboratories. Methods that are not available commercially are considered 

slightly less desirable than those that are available. However, this point is not 

emphasized in the scale (the maximum possible ratio is only 5) since a method that is 

supported by state highway agencies can be made available commercially in the 

future.  The same applies for portability, as the portability of those methods that are 
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given a scale of “3 Not portable or require more than 8 hours to move” (see Table 

4.26) can be improved. 

• Interpretation of Data and Ease of Use: It is essential for a method to be able be 

simple enough to be used in routine analysis of aggregates. The values assigned in 

Table 4.25 are based on current knowledge of the test methods. Unless it is labeled 

(4: difficult), technical training can improve the assigned value from (3: 

intermediate) to (2: easy) and even (1: very easy). Therefore, the change from 3 to 4 

is considered less desirable than the change from 1 to 3. 

• Applicability to Measure Different Aggregate Types and Sizes: It is essential that 

any test method be capable of measuring all aggregate types and sizes. If the method 

fails to measure some sizes or some aggregate types, or both, its applicability should 

be reduced. The values assigned for the applicability of test method to measure 

different aggregate types and sizes, as presented in Table 4.27, are based on current 

knowledge and experience with the test methods. The scale values are assigned 

assuming that it is weakly more important (assigned a value of 3) to have a method 

that can measure all aggregate types and sizes than a method that can measure all 

aggregate types but not all aggregate sizes. It is also considered weakly more 

important (assigned a value of 3) to have a method that can measure some aggregate 

sizes for all aggregate types than a method that can measure all sizes for some 

aggregate types. It is considered moderately more important (assigned a value of 5) 

to have a method that can measure all aggregate types and sizes than a method that 

can measure all aggregate sizes but not all aggregate types.  

 

Fine Aggregate Angularity 

AHP is used in this example to rank the test methods that measure fine aggregate 

angularity, which are listed in Tables 4.9 and 4.11. These methods are uncompacted void 

content of fine aggregate (UCVCF); compacted aggregate resistance (CAR); Camsizer; 

Buffalo Wire Works (PSSDA-Small); and AIMS. The initial priority list is developed 
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with the same weights for all the characteristics in the second level (i.e., characteristics 

are equally important), as presented in Table 5.5.   

 

 

Table 5.5. Comparison of the Characteristic Based on Overall Satisfaction with Method 

Assuming Characteristics Are Equally Important 

Characteristics of Test Methods 
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Repeatability 1 1 1 1 1 1 1 1 1 
Reproducibility 1 1 1 1 1 1 1 1 1 

Accuracy 1 1 1 1 1 1 1 1 1 
Cost 1 1 1 1 1 1 1 1 1 

Readiness 1 1 1 1 1 1 1 1 1 
Interpret Data 1 1 1 1 1 1 1 1 1 

Ease of Use 1 1 1 1 1 1 1 1 1 
Portability 1 1 1 1 1 1 1 1 1 

Applicability  1 1 1 1 1 1 1 1 1 
 

 

The second pairwise comparison is conducted on matrices of test methods.  Each 

matrix includes a pairwise comparison of all test methods according to one characteristic 

from the upper level. Each cell in the matrix includes a number, selected from Table 5.3, 

which is originally based on Table 5.2. These numbers compare a test method from the 

horizontal list to that of the vertical list based on the characteristics under consideration. 

Table 5.6 shows the set of matrices in which pairwise comparison is performed between 

methods based on each of the characteristics in the second level.  

Once the values in Tables 5.5 and 5.6 are assigned, the next step consists of the 

computation of priority lists from the matrices. From each of the 10 matrices listed in 

Tables 5.5 and 5.6, a priority list will be calculated. In mathematical terms, the principal 

eigen vector is computed for each matrix which gives the vector of priority ordering. 

Saaty (1980) proposed some crude estimates that can be easily followed to calculate  
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Table 5.6.  Comparison of Test Methods Measuring Fine Aggregate Angularity with 

Respect to the Nine Characteristics 

Characteristic Test Method 
Repeatability UCVCF CAR PSSDA-Small Camsizer AIMS 

UCVCF 1 1 3 1 1 
CAR 1 1 3 1 1 

PSSDA-Small 0.33 0.33 1 0.33 0.33 
Camsizer 1 1 3 1 1 

T
es

t M
et

ho
d 

AIMS 1 1 3 1 1 
 

Reproducibility UCVCF CAR PSSDA-Small Camsizer AIMS 
UCVCF 1 1 3 1 1 

CAR 1 1 3 1 1 
PSSDA-Small 0.33 0.33 1 0.33 0.33 

Camsizer 1 1 3 1 1 

T
es

t M
et

ho
d 

AIMS 1 1 3 1 1 
 

Accuracy UCVCF CAR PSSDA-Small Camsizer AIMS 
UCVCF 1 1 1 0.143 0.11 

CAR 1 1 1 0.143 0.11 
PSSDA-Small 1 1 1 0.143 0.11 

Camsizer 7 7 7 1 0.33 

T
es

t M
et

ho
d 

AIMS 9 9 9 3 1 
 

Price UCVCF CAR PSSDA-Small Camsizer AIMS 
UCVCF 1 1 9 9 9 

CAR 1 1 7 9 7 
PSSDA-Small 0.11 0.14 1 1 1 

Camsizer 0.11 0.11 1 1 1 

T
es

t M
et

ho
d 

AIMS 0.11 0.14 1 1 1 
 

Readiness UCVCF CAR PSSDA-Small Camsizer AIMS 
UCVCF 1 1 3 3 3 

CAR 1 1 3 3 3 
PSSDA-Small 0.33 0.33 1 1 1 

Camsizer 0.33 0.33  1 1 

T
es

t M
et

ho
d 

AIMS 0.33 0.33 1 1 1 
      

Interpretation of Data UCVCF CAR PSSDA-Small Camsizer AIMS 
UCVCF 1 1 5 5 5 

CAR 1 1 5 5 5 
PSSDA-Small 0.20 0.20 1 1 1 

Camsizer 0.20 0.20 1 1 1 

T
es

t M
et

ho
d 

AIMS 0.20 0.20 1 1 1 
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Table 5.6. Continued 

Characteristic Test Method 
Ease of Use UCVCF CAR PSSDA-Small Camsizer AIMS 

UCVCF 1 1 3 3 5 
CAR 1 1 3 3 5 

PSSDA-Small 0.33 0.33 1 1 3 
Camsizer 0.33 0.33 1 1 3 

T
es

t M
et

ho
d 

AIMS 0.20 0.20 0.33 0.33 1 
 

Portability UCVCF CAR PSSDA-Small Camsizer AIMS 
UCVCF 1 1 3 3 3 

CAR 1 1 3 3 3 
PSSDA-Small 0.33 0.33 1 1 1 

Camsizer 0.33 0.33 1 1 1 

T
es

t M
et

ho
d 

AIMS 0.33 0.33 1 1 1 
      

Applicability UCVCF CAR PSSDA-Small Camsizer AIMS 
UCVCF 1 1 1 1 1 

CAR 1 1 1 1 1 
PSSDA-Small 1 1 1 1 1 

Camsizer 1 1 1 1 1 

T
es

t M
et

ho
d 

AIMS 1 1 1 1 1 
 

 

these vectors. One good estimate method is to divide the elements of each column in the 

matrix by the sum of that column (i.e., normalize the column). Then elements in each 

resulting row are added then divided by the number of elements in the row. This is a 

process of averaging over the normalized column. 

The resulting priority vectors from each matrix in Table 5.6 are then combined to 

create a matrix that represents priority of test method by each characteristic. In order to 

obtain the overall ranking of the test methods, the priority matrix of the methods by each 

characteristic will be multiplied by the priority vector of the characteristics resulting 

from Table 5.5. In other words, the overall ranking of a method can be obtained by 

multiplying the weight indicating the rank of a test method with respect to the 

characteristic by the weight of that characteristic then add them up for all characteristics. 

The resulting priority vectors and the overall ranking of test methods used to measure 

fine aggregate angularity are presented in Table 5.7. 
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The results of the above example show that when all characteristics are assumed 

to be equally important, the uncompacted void content of fine aggregate (UCVCF) 

method was at the top of the priority list, mainly due to the low cost of this test. This 

priority list changes if the weights assigned to the characteristics or to the methods are 

changed. Consequently, one can examine the influence of favoring one characteristic on 

the overall rank of test methods.  

Considering a more realistic example, where accuracy of test method is 

considered more favorable than all other characteristics, the only change made is the 

weight assigned to the accuracy, which is considered moderately more important than 

the other characteristics, and is thus assigned a value of 5 based on the scale provided in 

Table 5.2. The new matrix, where accuracy is 5 times the importance of other 

characteristics, along with the calculated priority vector is presented in Table 5.8. If the 

new characteristic’s priority vector is multiplied by the matrix of priority vectors 

resulting from comparing method with respect to the characteristics (presented in Table 

5.5), a new overall ranking of test methods will be obtained. Table 5.9 presents the 

overall ranking of test methods using different accuracy levels of preference. 

It is apparent from Table 5.9 that when only accuracy is considered moderately 

favorable over the other characteristics the ranking of test methods have changed. AIMS, 

for example, is now ranked first in the priority ordering list using such a preference. 

Similarly, AIMS is also ranked first when accuracy is considered absolutely more 

important than the other characteristics (assigned a factor of 9) but with more significant 

difference between their values or numerical scores in the priority vector.  

 The results from the two examples suggest that when using AHP it is very 

important that the weights should be selected based on consultation with researchers and 

experts in order to truly find the best ranking that meets the objectives or the main goal of 

the whole process. The selected weights can have a significant influence on the overall 

ranking of test methods. 
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Table 5.7. Resulting Priority Vectors and Overall Ranking of Test Methods Measuring Fine Aggregate Angularity Assuming 

Characteristics Are Equally Important  

Priority Vectors for Test Methods with Respect to Characteristics   
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  Priority Vector of 
Characteristics with Respect 
to Overall Satisfaction with 

Method 

  Overall 
Ranking 

Test 
Method 

UCVCF 0.231 0.231 0.051 0.444 0.333 0.385 0.342 0.333 0.20   0.111 Repeatability   0.283 UCVCF 

CAR 0.231 0.231 0.051 0.402 0.333 0.385 0.342 0.333 0.20   0.111 Reproducibility   0.279 CAR 

 
PSSDA-

Small 
0.077 0.077 0.051 0.052 0.111 0.077 0.130 0.111 0.20 X  0.111 Accuracy  = 0.098 PSSDA-

Small 

Camsizer 0.231 0.231 0.306 0.049 0.111 0.077 0.130 0.111 0.20   0.111 Cost   0.161 Camsizer 

AIMS 0.231 0.231 0.540 0.052 0.111 0.077 0.056 0.111 0.20   0.111 Readiness   0.179 AIMS 

            0.111 Interpret Data     

            0.111 Ease of Use     

            0.111 Portability     

            0.111 Applicability     
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Table 5.8. Comparison of Characteristics with Respect to Overall Satisfaction with 

Method (Accuracy is Moderately More Important than Other Characteristics) 

Characteristic 
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Priority 
Vector 

Repeatability 1 1 0.2 1 1 1 1 1 1 0.077 
Reproducibility 1 1 0.2 1 1 1 1 1 1 0.077 

Accuracy 5 5 1 5 5 5 5 5 5 0.385 
Cost 1 1 0.2 1 1 1 1 1 1 0.077 

Readiness 1 1 0.2 1 1 1 1 1 1 0.077 
Interpret Data 1 1 0.2 1 1 1 1 1 1 0.077 

Ease of Use 1 1 0.2 1 1 1 1 1 1 0.077 
Portability 1 1 0.2 1 1 1 1 1 1 0.077 

Applicability 1 1 0.2 1 1 1 1 1 1 0.077 
 

 

Table 5.9. Overall Ranking of Test Methods Measuring Fine Aggregate Angularity 

Using Different Accuracy Levels of Preference 

Accuracy Level of Preference  
Test Method 1 = Equally 

Important 
5 = Moderately 

Important 
9 = Absolutely 

Important 
UCVCF 0.28 0.21 0.17 

CAR 0.28 0.21 0.17 
PSSDA-Small 0.1 0.08 0.08 

Camsizer 0.16 0.21 0.23 
AIMS 0.18 0.29 0.35 

 

 

Coarse Aggregate Texture 

AHP is used in this example to rank the test methods that are used to measure coarse 

aggregate texture, which are listed in Tables 4.8 and 4.10. These methods are UCVCC; 

Camsizer, WipShape; UIAIA, and AIMS. In this example, accuracy is considered 

moderately more important than applicability of test method to measure all aggregate sizes 

and types (assigned a value of 5) and absolutely more important than all other remaining 
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characteristics (assigned a value of 9). At the same time applicability is considered 

moderately more important than other methods (assigned a value of 5). The priority list for 

all the characteristics in the second level based on this consideration and the resulting 

priority vector are presented in Table 5.10.   

 

 

Table 5.10. Comparison of Characteristics with Respect to Overall Satisfaction with 

Method (Accuracy is Moderately More Important than Applicability and Absolutely 

More Important than Other Characteristics) 

Characteristic 
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Priority 
Vector 

Repeatability 1 1 0.11 1 1 1 1 1 0.2 0.046 
Reproducibility 1 1 0.11 1 1 1 1 1 0.2 0.046 

Accuracy 9 9 1 9 9 9 9 9 5 0.465 
Cost 1 1 0.11 1 1 1 1 1 0.2 0.046 

Readiness 1 1 0.11 1 1 1 1 1 0.2 0.046 
Interpret Data 1 1 0.11 1 1 1 1 1 0.2 0.046 

Ease of Use 1 1 0.11 1 1 1 1 1 0.2 0.046 
Portability 1 1 0.11 1 1 1 1 1 0.2 0.046 

Applicability 5 5 0.2 5 5 5 5 5 1 0.211 
 

 

Using the weights provided in Table 5.3, the second pairwise comparison is 

conducted on matrices of test methods. Each matrix includes a pairwise comparison of 

all test methods according to one characteristic from the upper level. As has been done 

in the previous examples, after the weights are assigned, the priority lists from the 

matrices of each characteristic are then computed. The resulting priority vectors for 

testing methods with respect to characteristics are presented in Table 5.11. 

The overall ranking of test methods used to measure coarse aggregate angularity 

is presented in Table 5.12. It can be clearly seen that AIMS has the highest rank among 
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all other methods. As discussed earlier in Chapter IV, the wavelet method that AIMS 

uses in analyzing coarse aggregate texture was found to be unique and most accurate. 

This fact contributed significantly in ranking AIMS at the top of the priority list although 

some imaging methods have equal or even better characteristics than AIMS. 

 

 

Table 5.11. Resulting Priority Vectors of Test Methods Measuring Coarse Aggregate 

Texture With Respect to Characteristics 

Priority Vectors for Test Methods with Respect to Characteristics 

Test 
Method 
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UCVCC 0.231 0.231 0.036 0.650 0.442 0.556 0.496 0.442 0.280 

Camsizer 0.231 0.231 0.183 0.084 0.165 0.111 0.238 0.165 0.107 

WipShape 0.231 0.231 0.036 0.088 0.165 0.111 0.089 0.165 0.281 

UIAIA 0.231 0.231 0.372 0.088 0.063 0.111 0.089 0.063 0.051 

AIMS 0.077 0.077 0.372 0.088 0.165 0.111 0.089 0.165 0.281 

 

 

If it is assumed that the imaging methods, after being in practice for some time, 

may become more practical and easy to use, this will imply that only repeatability, 

reproducibility, accuracy, and applicability should be considered in comparing test 

methods. This criterion was applied to the example above, and the overall ranking of test 

methods measuring coarse aggregate texture is shown in Table 5.12. Again, AIMS 

shows on the top of the priority list, indicating that it would be the user first choice when 

measuring coarse aggregate texture.  
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The overall rankings of test methods presented in Table 5.12 show that UCVCC 

method has high priority when all characteristics are considered, but this method 

becomes less favorable when price becomes of less concern to the choice maker. 

 

 

Table 5.12. Overall Ranking of Test Methods Measuring Coarse Aggregate Texture 

Test Method All Characteristics Considered 
Only Repeatability, 

Reproducibility, Accuracy, and 
Applicability Considered 

UCVCC 0.22 0.10 
Camsizer 0.16 0.13 
WipShape 0.13 0.10 

UIAIA 0.22 0.21 
AIMS 0.27 0.24 

 

 

Coarse Aggregate Form 

AHP is used in this example to rank test methods that measure coarse aggregate form 

(both form parameter and dimensional ratio), which are listed in Tables 4.8 and 4.10. 

These methods are FER, MRA; VDG-40 Videograder, Camsizer, WipShape, UIAIA, 

AIMS; and Buffalo Wire Works (PSSDA-Large). The same criterion that was used in 

the coarse aggregate texture example was also used here. Therefore, the priority list for 

all the characteristics in the second level and the resulting priority vector for this 

example will be the same as those presented in Table 5.10.  

The second pairwise comparison is conducted on matrices of test methods 

measuring form of coarse aggregates. The resulting priority vectors for testing methods 

with respect to characteristics are presented in Table 5.13. 

The overall ranking of test methods used to measure coarse aggregate form is 

presented in Table 5.14. It can be clearly seen that the MRA has the highest rank among 

all other methods. This method is very accurate, easy to use, and inexpensive, which 

allows it to be ranked high in the priority list. AIMS and the VDG-40 Videograder were 

ranked almost the same and came second in the priority list. 
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Table 5.13. Resulting Priority Vectors of Test Methods Measuring Coarse Aggregate 

Form with Respect to Characteristics 

Priority Vectors for Test Methods with Respect to Characteristics 

Test 
Method 
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FER 0.143 0.019 0.041 0.496 0.328 0.408 0.356 0.270 0.180 
MRA 0.143 0.183 0.213 0.244 0.125 0.213 0.158 0.270 0.180 

VDG-40 0.143 0.183 0.213 0.052 0.125 0.076 0.158 0.105 0.180 
Camsizer 0.143 0.183 0.213 0.052 0.125 0.076 0.158 0.105 0.066 
WipShape 0.143 0.066 0.019 0.052 0.125 0.076 0.057 0.105 0.180 

UIAIA 0.143 0.183 0.088 0.052 0.046 0.076 0.057 0.041 0.034 
AIMS 0.143 0.183 0.213 0.052 0.125 0.076 0.057 0.105 0.180 

PSSDA-
Large 0.143 0.183 0.088 0.052 0.046 0.076 0.057 0.041 0.180 

 

 

If it is assumed that the imaging methods, after being in practice for some time 

may become more practical and easy to use, this will imply that only repeatability, 

reproducibility, accuracy, and applicability should be considered in comparing test 

methods. This criterion was applied to the example above, and the overall ranking of test 

methods measuring coarse aggregate form is shown in Table 5.14. Comparing the results 

in Table 5.14 shows that MRA, VDG-40 Videograder, and AIMS are on the top of the 

priority list with the same priority values. These results suggest that imaging systems 

will have a better chance to compete and get higher ranks, especially when price 

becomes of less concern. 

The results from the above three examples suggest that for a choice maker who 

would consider accuracy and applicability to be more important than any other 

characteristics required in a test method, his first choice will be AIMS when measuring 

fine aggregate angularity and coarse aggregate texture. Competing with MRA, AIMS 

would be a first choice too, when measuring coarse aggregate form, especially when 

price becomes of less concern. In general, if a choice maker wants a system that can 
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measure all aggregate shape properties of coarse and fine aggregates of all aggregate 

types, AIMS will be the best method. 

 

 

Table 5.14. Overall Ranking of Test Methods Measuring Coarse Aggregate Form 

Test Method All Characteristics Considered 
Only, Repeatability, 

Reproducibility, Accuracy, and 
Applicability Considered 

FER 0.15 0.06 
MRA 0.20 0.15 

VDG-40 0.18 0.15 
Camsizer 0.15 0.13 
WipShape 0.08 0.06 

UIAIA 0.08 0.06 
AIMS 0.17 0.15 

PSSDA-Large 0.11 0.09 
 

 

 In summary, AHP can be used to examine the sensitivity of the priority list of test 

methods to judgment of the relative importance of certain characteristics (the values in 

Table 5.2) and the relative comparison of test methods for each characteristic (the values in 

Table 5.3).  Also, AHP can be used to develop separate priority lists of tests for fine and 

coarse aggregates as well as for each of the aggregate characteristics (shape, angularity, and 

texture).  

 

SUMMARY 

The Analytical Hierarchy Process (AHP) was implemented in a program to rank 

the test methods.  AHP is a process of developing a numerical score to rank test methods 

based on how each of these methods meets certain criteria of desirable characteristics. 

AHP requires the user to enter numeric values that indicate the relative importance of the 

different characteristics and numeric values that indicate how the methods compare 

against each other for each of the characteristics. The measurements of repeatability, 

reproducibility, and accuracy were used to obtain the input for the AHP.  In addition, 



 

 

173
information about cost and operational characteristics which was collected using a 

survey of vendors, researchers, and operators who have dealt with the test methods, was 

also used as input for the AHP.  

 AHP was found to be a powerful and flexible tool to rank test methods. It provides 

flexibility to examine the influence of changes in the importance of the characteristics on 

the ranking of test methods. It also provides a great deal of information on the relationship 

between test methods and desirable characteristics.  The AHP rankings clearly 

demonstrated the advantage of AIMS over other test methods as a comprehensive 

methodology for measuring the shape characteristics of both coarse and fine aggregates. 
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CHAPTER VI 

STATISTICALLY BASED METHODOLOGY FOR AGGREGATE SHAPE 

CLASSIFICATION  

 

INTRODUCTION 

As indicated in the previous chapters, aggregate shape characteristics have long been 

recognized to influence the structural performance of the pavement system in which they 

are used. Therefore, the design methodologies used in hot-mix asphalt (HMA), for 

example, have included tests and specifications to ensure the quality of aggregates used 

in asphalt pavements. In addition to structural performance, aggregate shape influences 

the functional properties of asphalt pavements such as pavement surface friction and 

skid resistance (Yandell 1970; Forster 1981).   

The approach that has generally been followed to develop aggregate shape 

specifications relies almost entirely on the correlation between an indirect measure of 

aggregate shape and laboratory measurements of HMA physical and mechanical 

properties (Wedding and Gaynor 1961; Li and Kett 1967; Sanders and Dukatz 1992; 

Kandahal and Parker 1998; Chowdhury et al. 2001; Masad 2003). This approach tends to 

inherit the uncertainties of the laboratory methods used to measure performance.  There 

is also the risk of emphasizing a certain material property while ignoring other equally or 

more important properties. The indirect methods that have been typically used in 

practice are limited in their ability to separate the fundamental characteristics of shape 

and their distinct influences on performance (Masad 2003). These limitations have led to 

discrepancies in the extent that different aspects of shape influence performance 

(Wedding and Gaynor 1961; Li and Kett 1967; Sanders and Dukatz 1992; Kandahal and 

Parker 1998; Chowdhury et al. 2001; Masad 2003). As a result, aggregate specifications 

could be biased toward overemphasizing the need for superior aggregate properties 

within the framework of certain mix design methodology, or, in contrast, allowing the 

use of marginal shape properties.   

The benefits of developing accurate methods for measuring and classifying 
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aggregate shape characteristics will be realized in different areas of pavement 

engineering. In asphalt pavement engineering, for example, the relationships between 

aggregate shape characteristics, asphalt mix volumetrics, and performance will be better 

understood and utilized to develop asphalt mix design methodologies that accommodate 

a wide range of shape characteristics. The link between aggregate shape characteristics 

and asphalt pavement surface microtexture can be better developed and used to improve 

the skid resistance of asphalt pavement surfaces. Also, performance prediction models 

with high reliability can emerge, leading to the development of innovative contractual 

and construction practices.     

A reliable methodology for the classification of aggregate shape should be 

established based on a number of key aspects. The first aspect is to use a test that is 

capable of separating the fundamental characteristics of shape (form, angularity, and 

texture) based on sound scientific methods. In this respect, imaging technologies have 

been proven to be successful in material characterization in various fields such as 

material science and geotechnical engineering (Kuo et al. 1996; Masad et al. 2001; Rao 

et al. 2001). The second aspect is to use aggregates from different sources and sizes that 

exhibit a wide range of shape characteristics in the development of such a methodology. 

The third aspect is to employ statistical analysis in identifying aggregate groups based on 

the distribution of these shape characteristics. Dealing with the distribution of aggregate 

characteristics rather than average indices is advantageous for the development of 

reliable specifications given the high variability in shape characteristics within an 

aggregate sample. Finally, laboratory performance tests and field test sections are needed 

to support these measurements and the classification of aggregates.  

 

CLASSIFICATION SYSTEM FEATURES 

A comprehensive methodology for classification of aggregates based on the distribution 

of their shape characteristics should exhibit the following features:  
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• It represents the three characteristics of aggregate shape (three dimensions of 

coarse aggregates, angularity, and texture), as measured using the recently 

developed AIMS.   

•   It unifies the methods used to measure the shape characteristics of fine and 

coarse aggregates. 

• Similar to what is currently done for aggregate gradation; it represents each of 

the shape characteristics by a cumulative distribution function rather than an 

average value. Therefore, the methodology is capable of accommodating 

variations in shape within an aggregate sample and better represents the effects 

of different processes such as blending and crushing on aggregate shape. 

• When developed, it considers statistical analysis of a wide range of aggregate 

types and sizes.  

• It incorporates all the analysis methods and data visualizations in software to 

facilitate data interpretation and comparative analysis. 

 

CLASSIFICATION SYSTEM DEVELOPMENT METHODOLOGY 

This section presents the procedure that was followed to develop the new classification 

system for aggregate shape. The methodology is based on measuring the shape 

characteristics of aggregates from a wide range of sources and varying sizes using AIMS. 

These measurements were described in Chapter IV when AIMS was evaluated for its 

repeatability and reproducibility. As indicated earlier in Chapter IV, aggregates’ form, 

angularity, and texture were measured using the analysis methods that are part of the AIMS 

software.  These methods, which were discussed in Chapter II, are (1) sphericity as a 3-D 

measure of coarse aggregates; (2) form Index as a 2-D measure of fine aggregates; (3) 

gradient angularity for coarse and fine aggregates; and (4) Texture of coarse aggregates 

quantified by the wavelet method. The measurements were made on aggregates selected to 

cover a wide spectrum of rock type, shape characteristics, and sizes. These aggregates and 

their used sizes are listed in Table 4.3. 

The analysis conducted in the evaluation of repeatability and reproducibility in 
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Chapter IV generated a total of 195 tests on coarse aggregates and 75 tests on fine 

aggregates. On average, a coarse aggregate test involved 56 particles while a fine 

aggregate test involved about 300 particles. All these data were used in the development 

of the new classification system. The use of different operators and repeated 

measurements ensures that the classification methodology is developed in such a way 

that variations in measurements among operators are accounted for in the classification 

methodology.   

 

STATISTICAL-BASED AGGREGATE SHAPE CLASSIFICATION 

Cluster analysis, discussed earlier in Chapter IV, was used to develop groups (or 

clusters) of aggregates based on the distribution of shape characteristics. In this study, 

we chose the usual metric of Euclidean distance (Eq. 4.9) and Ward’s Linkage method. 

The clustering method was applied to the analysis results of each shape property 

obtained from AIMS.  

Three methods for grouping the analysis results were performed with the 

objective of determining whether common group limits can be obtained for aggregates 

irrespective of their size. The first method was to find the group limits for each shape 

property based on measurements by all operators for each size separately. The second 

method was simply to determine the group limits by averaging those obtained for the 

three sizes. The third approach was to group the analysis results obtained for each shape 

property using data from all operators and for all sizes combined.  Results of clustering 

using the three different approaches are shown in Fig. 6.1.  Fig. 6.1a shows the groups’ 

limits of the coarse aggregate texture for each size, the average for the limits of three 

sizes (“Avg. Sizes” label in Fig. 6.1a), and for all sizes combined (“All” label in Fig. 

6.1a). The results clearly show that the groups’ limits obtained using the three 

approaches were very close. The same conclusion was reached by examining the results 

in Figs. 6.1b, c, d, and e for the other shape characteristics. In other words, the groups’ 

limits are similar for all sizes within the coarse and fine fractions.   
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(b) Coarse Aggregates Angularity 

 

Fig. 6.1. Shape Properties Groups for Individual and Combined Aggregates 
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        (c) Fine Aggregate Angularity     
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(d) Coarse Aggregates Form (Sphericity) 
 

Fig. 6.1. Continued 

 



 

 

180

0

2

4

6

8

10

12

14

16

18

20

22

Circular Semi-Circular Semi-Elongated Elongated

Upper Limits for Form 2D Classes

Fo
rm

 2
D

 In
de

x

All
Avg Sizes
#8
#16
#60

 
 

      (e) Fine Aggregates Form   
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Fig. 6.1. Continued 
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Further analysis was also conducted to determine whether it is feasible to unify 

the angularity groups’ limits of both the fine and coarse fractions. The groups’ limits for 

the angularity of fine and coarse aggregates were determined and plotted in Fig. 6.1f. As 

can be seen, slight differences existed between the limits of fine and coarse fractions, 

with the largest difference being in the third group. However, it was determined that this 

difference is still small compared to the actual angularity values, and it would warrant 

unifying the limits. The results in Fig. 6.1 significantly simplified the development of the 

classification methodology, as the same limits can be used irrespective of aggregate size.  

The new aggregate shape classification limits are shown in Fig. 6.2. 

 

ANALYSIS AND RESULTS 

The AIMS software was used to calculate the percentages of each aggregate that belong 

to the different groups in Fig. 6.2. The results are shown in Figs. 6.3 and 6.4.  These 

figures are convenient to rapidly examine the distribution of a certain shape property in a 

number of aggregate samples. The variability in shape characteristics within and 

between aggregates indicates that comparing or classifying aggregates based  

on percent of particles in a single group could be misleading. This is also true for the 

classification based on average values, especially when an aggregate sample includes a 

small percent of particles that have extremely high or low values. As such, the new 

classification methodology considers the distribution rather an average value. The 

discussion provided in the following sections is intended to highlight the implications of 

using the developed methodology on aggregate shape classification with emphasis on 

examining the effects of different factors such as crushing on shape characteristics. 

 

Aggregate Texture versus Angularity 

The shape classification methodology incorporates measurements of texture and 

angularity for coarse aggregates, while it uses angularity measurements only for fine 

aggregates. A study by Masad et al. (2001) clearly showed that a high correlation exists 

between angularity (measured on black and white images), and texture (measured on   
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Fig. 6.2. Aggregate Shape Classification Chart 
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Fig. 6.3. Distributions of Shape Characteristics in Coarse Aggregates     
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(a) Angularity in Fine Aggregate 
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(b) Form in Fine Aggregates 
 
 

Fig. 6.4.  Distributions of Shape Characteristics in Fine Aggregates   
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 gray-scale images) of fine aggregates. This finding led to simplifying the AIMS design 

since angularity measured on black and white images is deemed sufficient to 

characterize fine aggregates. This is an easier task than capturing the surface texture of 

fine aggregates rapidly and accurately using a computer-automated system. In case of 

coarse aggregates, it was found that there is a distinct difference between angularity and 

texture, and these two properties have different effects on performance (Fletcher et al. 

2003). This point is further illustrated in Fig. 6.5(a), which shows the average texture 

and corresponding angularity for each of the coarse aggregate samples. As can be seen, 

aggregates could have high angularity but low texture, and vice versa. This is even true 

for individual particles, as shown in Fig. 6.5(b).  Particles from aggregates CA-2 and 

CA-9 had comparable angularity values but there was a significant difference in texture.   

Fig. 6.6 shows the cumulative distribution of texture in the coarse aggregate 

samples.  It is evident that the texture of these aggregate samples was spread over a wide 

range. In fact, none of the other shape properties had such a wide range.  Texture also 

had higher variability than angularity within an aggregate sample (see Fig. 6.3(a) versus 

Fig. 6.3(b)). 

Unfortunately, a direct measure of texture has not been implemented in the past, 

which might have caused discarding some aggregate sources that exhibit reasonable 

texture levels. Aggregate selection and mix design should be based on the evaluation of 

both the angularity and texture of coarse aggregates. Both of these characteristics 

contribute to friction among aggregates, which is an important mix property that 

contributes to the resistance to permanent deformation. Proper performance can be 

achieved by determining the acceptable limits of angularity and texture. 
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(a) Average Texture and Angularity of Coarse Aggregates 
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(b) Texture and Angularity of Coarse Aggregate Particles 

 

Fig. 6.5. Variations in Texture and Angularity Properties in Coarse Aggregates 
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Fig. 6.6. Texture Index for Different Coarse Aggregate Types  
 

 

Effect of Crushing and Size on Shape Properties 

The developed methodology can be used to examine the influence of crushing on shape.  

Two types of crushed and uncrushed aggregates were used in this study. The first was 

river gravel (CA-1 and CA-2), and the second was glacial gravel (CA-7 and CA-8).  CA-

1 and CA-8 were uncrushed, while CA-2 and CA-7 were crushed. The results in Figs. 

6.3(a) and 6.3(b) show that crushing the gravel did not improve texture, while it did 

significantly increase their angularity.   

Texture measurements were conducted on different sizes of the same aggregate 

type in order to investigate the influence of aggregate size on texture.  Examples of 

results are shown in Fig. 6.7. Aggregate size did not have a noticeable influence on 

texture.  On the other hand, it was found that aggregate angularity changed as a function 

of aggregate size. 
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Fig. 6.7. Examples of the Effect of Coarse Aggregate Size on Texture 
 

 

The analysis methods were also able to capture the influence of crushing on form 

or proportions of particle dimensions. The effect of aggregate size on sphericity varied 

from one aggregate to another. For example, the sphericity of CA-2 was higher than that 

for CA-1, indicating that aggregate crushing made the particles more equi-dimensional. 

On the contrary, crushing the glacial gravel made CA-7 to have less sphericity than CA-

8.   

Crushing the natural sand FA-1 to become FA-2 increased angularity, as depicted 

in Fig. 6.4a. FA-1 is an example of high quality natural sand that had angularity 

comparable to or even better than some manufactured sands. For example, FA-1 had 

higher angularity than FA-6, which is crushed limestone.   
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Shown in Fig. 6.8 is an example of the effect of size on fine aggregate angularity.    

Angularity increased as particle size decreased due to crushing. The form analysis of 

fine aggregates showed that crushing and aggregate size had very slight effect on the 

resulting values of the form index. The form index tended to become larger (more 

elongated) as particles got smaller.   
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Fig. 6.8. Example of the Effect of Fine Aggregate Size on Angularity  

 

 

Identifying Flat, Elongated, or Flat and Elongated Particles 

The sphericity value gives a very good indication of the proportions of particle 

dimensions.  However, one cannot determine whether an aggregate has flat, elongated, 

or flat and elongated particles using the sphericity alone. To this end, the chart shown in 
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Fig. 6.9 is included in the AIMS software to distinguish among flat, elongated, and flat 

and elongated particles. Superimposed on this chart are the 3:1 and 5:1 limits for the 

longest to shortest dimension ratio.  The use of this chart is illustrated here with the aid 

of the results from CA-2 and CA-4. Both aggregates CA-2 and CA-4 pass the 5:1 

Superpave requirement (both had less than 10% particles with dimensional ratio of 5:1), 

but they had distinct distributions in terms of flat and elongated particles.  
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Fig. 6.9. Chart for Identifying Flat, Elongated, or Flat and Elongated Aggregates 
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The analysis in Fig. 6.9 reveals valuable information about the distribution that 

would not have been obtained if aggregates were classified based on the ratio of 5:1 

only. Such details are needed to understand the influence of shape characteristics on 

asphalt mix performance. It is believed that some of the discrepancies in the literature 

regarding the influence of shape on performance are attributed to the lack of such details 

and relying on indirect methods of measuring average indices to describe shape. 

 

SUMMARY 

In this chapter, the third objective (develop a methodology for the classification of 

aggregates based on the distribution of their shape characteristics measured using the 

improved version of AIMS) was achieved.  Cluster analysis was used to set new limits for 

aggregate shape classes. The developed classification methodology is based on direct 

measurements of form (three dimensions), angularity, and texture. It unifies the methods 

used to measure the shape characteristics of fine and coarse aggregates. The analysis 

methods are simple and the results have physical meanings that can be interpreted easily.  

The limits for the different shape groups were found to be similar for the different 

aggregate sizes. This finding simplified the methodology, as one set of limits are needed 

irrespective of aggregate sizes.  

The classification results are presented in terms of the distribution of shape 

properties within an aggregate sample. This feature gives the methodology the 

capabilities to (1) explore the influence of different processes such as crushing and 

blending on aggregate shape, (2) conduct quality control activities to detect changes in 

the distribution of any of the shape characteristics, (3) relate the distribution of different 

shape characteristics to performance, and (4) develop specifications based on the 

distribution of aggregate shape characteristics rather than average indices.  
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CHAPTER VII 

SUMMARY, CONCLUSIONS, IMPLEMENTATION, AND 

RECOMMENDATIONS 

 

SUMMARY AND CONCLUSIONS 

The comprehensive literature review conducted as part of this study revealed that the 

shape properties of coarse and fine aggregates used in hot-mix asphalt, hydraulic cement 

concrete, and unbound base and subbase layers are very important to the performance of 

the pavement system in which they are used in. Aggregate shape can be decomposed to 

three independent characteristics: form, angularity, and texture. Current methods used in 

practice for measuring these characteristics have several limitations; they are laborious, 

subjective, lack direct relation with performance parameters, and limited in their ability 

to separate the influence of angularity from that of texture. A number of research studies 

have shown that aggregates that exhibit high texture do not necessarily have high 

angularity, especially in coarse aggregates. Consequently, it is important to develop 

methods that are able to quantify each of the aggregate characteristics rather than a 

manifestation of their interactions.  

The first objective of this study was achieved through the development of an 

improved version of the Aggregate Imaging System (AIMS). Several improvements 

were made in the design of the hardware and software components of AIMS to enhance 

the operational characteristics of the system, reduce human involvement and errors, and 

enhance the automation of the test procedure.  

 One of the important improvements made to AIMS was the development of a 

standard lighting scale. Lighting is an important factor influencing the quality of an 

image and analysis results of texture extracted from it. Therefore, a lighting scale based 

on a parameter measured on the captured images rather than the specifics of the lighting 

hardware components was developed. The mean of the gray-scale histogram was used as 

scale parameter, and a range of values was specified so that images can be captured with 

minimum influence of color variation on the results.   
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 Visualization capabilities were added to the control software to allow the user to 

specify both the aggregate size and shape characteristics being analyzed and to 

determine whether an image is captured within the correct lighting scale or not. In 

AIMS, images for the analysis of angularity and texture are captured based on specified 

criteria for resolution and magnification in order to significantly reduce the influence of 

particle size on the shape characterization results.   

 The second objective was achieved by evaluating the improved version of AIMS 

along with other test methods used for measuring aggregate shape properties. The 

evaluation was conducted based on accuracy, repeatability, reproducibility, cost, ease of 

use, ease of interpretation of the results, readiness of the test for implementation, and 

portability. Thirteen different coarse aggregate types and five different fine aggregate 

types were used in this evaluation.   

Analyses of repeatability and reproducibility results were conducted under the 

guidelines of ASTM standards E177, C802, and C670. Accuracy of the analysis methods 

used in the imaging systems was assessed by analyzing some particle projections that 

have been used by geologists for visual evaluation of particles’ shape.  Also, all analysis 

methods were used to analyze images of aggregate particles in order to identify the 

ability of these methods to accurately rank aggregates and capture unique characteristics 

of aggregates. The analysis results revealed that some of the available analysis methods 

are influenced by both angularity and form changes and, consequently, are not suitable 

to distinguish between these two characteristics. Also, some of the analysis methods are 

not capable of distinguishing between changes in texture and angularity.  The following 

analysis methods are recommended: 

• Texture: Wavelet analysis of gray images of particle surface 

 (Implemented in AIMS software), 

• Angularity: The gradient method (implemented in AIMS software) and the 

changes in the slope of a particle outline. 

• Two-dimensional form: Aspect ratio. 

• Three-dimensional form: Sphericity or the proportions of the three particle 
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dimensions. 

Accuracy of test methods was assessed through statistical analysis of the 

correlations between the results from test methods with measurements of shape using a 

digital caliper and visual rankings of surface irregularity and texture by experienced 

individuals. AIMS results were ranked at or very close to the top for all shape 

characteristics. 

The Analytical Hierarchy Process (AHP) was implemented in a program to rank 

the test methods. AHP is a process of developing a numerical score to rank test methods 

based on how each of these methods meets certain criteria of desirable characteristics. 

AHP requires the user to enter numeric values that indicate the relative importance of the 

different characteristics and numeric values that indicate how the methods compare 

against each other for each of the characteristics. The measurements of repeatability, 

reproducibility, and accuracy were used to obtain the input for the AHP. In addition, 

information about cost and operational characteristics, which was collected using a 

survey of vendors, researchers, and operators who have dealt with the test methods, was 

also used as input for the AHP.  

 AHP was found to be a powerful and flexible tool to rank test methods. It provides 

flexibility to examine the influence of changes in the importance of the characteristics on 

the ranking of test methods. It also provides a great deal of information on the relationship 

between test methods and desirable characteristics. The AHP rankings clearly demonstrated 

the advantage of AIMS over other test methods as a comprehensive methodology for 

measuring the shape characteristics of both coarse and fine aggregates. 

The third objective in this study was to develop a methodology for the classification 

of aggregates based on the distribution of their shape characteristics measured using the 

improved version of AIMS. Cluster analysis was used to set new limits for aggregate shape 

classes. The developed classification methodology is based on direct measurements of form 

(three dimensions), angularity, and texture. It unifies the methods used to measure the 

shape characteristics of fine and coarse aggregates. The analysis methods are simple, and 

the results have physical meanings that can be interpreted easily. The limits for the different 
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shape groups were found to be similar for the different aggregate sizes.  This finding 

simplified the methodology, as one set of limits are needed irrespective of aggregate sizes.  

The classification results are presented in terms of the distribution of shape 

properties within an aggregate sample. This feature gives the methodology the 

capabilities to (1) explore the influence of different processes such as crushing and 

blending on aggregate shape, (2) conduct quality control activities to detect changes in 

the distribution of any of the shape characteristics, (3) relate the distribution of different 

shape characteristics to performance, and (4) develop specifications based on the 

distribution of aggregate shape characteristics rather than average indices.  

In summary, the comparative analysis and the intensive evaluation conducted in 

this study highlighted the advantages of AIMS in measuring aggregate shape properties: 

• Captures images and analyzes the shape of a wide range of aggregate sizes 

(coarse and fine) and types, which covers those used in asphalt mixes, hydraulic 

cement concrete, and unbound aggregate layers of pavements.  

• Measures all three aggregate shape properties (form, angularity, and texture) for 

all aggregate types and for different aggregate sizes. 

•  Performs two- and three-dimensional analysis as needed.  

•  Captures images of aggregates at specified resolutions in order to minimize the 

influence of particle size on shape results.   

• Uses image analysis techniques that are based on sound scientific concepts.  

• Presents each of the shape characteristics by a cumulative distribution function 

rather than an average value, therefore, the system is able to better represent the 

influence of blending of different sources on aggregate characteristics. 

• Provides rapid, computer automated, accurate, practical, and user-friendly 

operation. 

• Works in central and field laboratories. 
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IMPLEMENTATION  

This study provides the pavement community with a practical, reliable, and accurate 

method for rapidly measuring aggregate characteristics. AIMS is based on sound 

scientific concepts, is practical, and yields results that are easy to interpret and 

implement in specifications.  AIMS will be useful for the industry, highway agencies, 

and researchers in Quality Control (QC), Quality Assurance (QA), and problem 

diagnosis to advance the fundamental understanding of aggregates and their effects on 

performance of pavement structures. In addition, AIMS will help the industry to 

understand its own product and set criteria for providing better product to ensure the 

quality of aggregates in pavements and significantly improve their performance, which 

will lead to considerable cost savings in the construction and rehabilitation of 

pavements. AIMS can be implemented in the following aspects of pavement 

engineering: 

• Measuring aggregate shape properties before and after subjecting aggregates to 

skid forces. The change in aggregate shape properties, especially texture, can be 

used as an indication of aggregate resistance to polishing. 

• Developing a method to quantify the resistance of aggregates to abrasion. The 

changes in aggregate shape characteristics after subjecting it to abrasion forces 

such as those in the Micro-Deval test can be used to assess resistance to abrasion.  

• Monitoring QA and QC of aggregate properties during production. to ensure 

good quality of aggregates in pavements. The use of AIMS in QC and QA will 

lead to considerable cost savings in the construction and rehabilitation of 

pavements. 

• Evaluating different crushing methods. AIMS can be used to evaluate different 

crushing procedures by measuring aggregate shape properties resulting from each 

method. This evaluation will be very helpful for aggregate industry to know 

which of the crushing methods would produce aggregate with the most desirable 

shape characteristics.  
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• Unifying the methods used to measure all of the three shape characteristics of 

fine and coarse aggregates and representing each of the shape characteristics by a 

cumulative distribution. This feature facilitates developing specifications for 

aggregate shape. Consequently, pavement performance models can be developed 

relating shape properties to performance measures.  

• Conducting different research studies related to hot-mix asphalt, hydraulic 

cement concrete, and unbound aggregate layers. In hot-mix asphalt pavements, 

AIMS can be used to study the relationship between the bond of asphalt and 

aggregates and shape characteristics. AIMS can also be used to develop 

performance-based aggregate shape classification considering the fact that 

aggregate shape properties for both coarse and fine aggregates affect permanent 

deformation, fatigue cracking, and frictional resistance of HMA pavements. In 

hydraulic cement concrete pavements AIMS can be used to study the effect of 

aggregate shape properties on workability, compactibility, and aggregate-paste 

bond. In unbound layers, AIMS can be utilized to explore the effect of aggregate 

shape properties on the resilient modulus, permeability, and compactibility. 

  

RECOMMENDATIONS 

The main recommendation of this study is to move forward in adopting AIMS as a test for 

aggregate shape properties.  It is recommended that future studies should be performed to 

relate the distribution of different aggregate shape characteristics to performance of 

different types of pavements. This is essential in order to develop new specifications for 

aggregate shape based on the relationship to performance of various pavement layers.   

In this study, the rankings of test methods were conducted based on the average 

value of shape property measurements. This approach was followed since some of the 

available systems provide average values only.  It is recommended that more statistical 

analysis should be conducted that considers the distribution of shape properties within a 

sample.   

The repeatability and reproducibility analysis of AIMS was conducted using only 
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one unit. It is highly recommended that ruggedness of AIMS be further analyzed using 

multiple units and in a number of research laboratories. 
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