Electrical Stimulation
Purpose, Application and Results

Texas Agricultural Extension Service • The Texas A&M University System • Daniel C. Pfannstiel, Director • College Station, Texas
ES is of greatest benefit to carcasses that would produce less tender meat if they were not stimulated.

History
The use of electrical stimulation (ES) for increasing meat tenderness is not a new idea. Benjamin Franklin remarked in 1749 that, "Killing turkeys electrically, with the pleasant side effect that it made them uncommonly tender, was the first practical application that had been found for electricity." In 1951, more than two centuries after Franklin's discovery, patents were obtained by Harsham and Deatherage (U.S. Patent No. 2,544,681) and Rentschler (U.S. Patent No. 2,544,724) for their processes of tenderizing carcasses by ES. However, ES was not utilized by the packing industry until recent advancements were made in its technology and new research substantiated its usefulness.

Most of the research on ES has been reported since 1976. Experiments conducted by researchers in New Zealand, Australia, Great Britain and the United States have shown that ES markedly improves meat tenderness. In addition, researchers at the Texas Agricultural Experiment Station observed that this process enhanced certain quality characteristics such as lean color, lean firmness and visibility of marbling. The packer, retailer, purveyor, restaurateur and consumer benefit when ES is used as an integral part of the process of converting live animals to meat and meat products.

Palatability
The search for a postmortem tenderizing method stems from the need to provide the consumer with a uniform, consistent and desirable product relative to palatability (eating satisfaction) attributes. Tenderness is considered the most important palatability characteristic of meat. Researchers have studied numerous methods to improve meat tenderness which include alternate suspension (Tenderstretch), delayed chilling, high temperature conditioning and cooler aging. These procedures influence tenderness by affecting the muscle contractile proteins, connective tissue or both. During postmortem chilling, muscle undergoes a series of biochemical, histological and physical events, collectively termed death stiffening or rigor mortis. Alterations of the events involved in rigor mortis have a profound influence on product desirability.

Research at the Texas Agricultural Experiment Station has demonstrated that sizable tenderness improvements result from ES (Table 1). Although most of the research has involved beef, efforts have also been made to determine the influence of ES on pork, lamb and goat. On the average, tenderness, measured by reduced resistance to shear force, was increased approximately 23, 9, 24 and 29 percent for beef, pork, lamb and goat carcasses, respectively. Sensory panel evaluations indicated that steaks or chops from electrically stimulated sides were, on the average, 26, 3, 12 and 32 percent more tender than steaks or chops from untreated sides, for beef, pork, lamb and goats, respectively. ES is of greatest benefit on carcasses that would produce less tender meat if they were not stimulated. Table 2 summarizes the effects of ES on tenderness of cooked steaks from cattle of varying ages and from different nutritional management regimens.

Tenderness Mechanisms
There are three theories regarding the mechanism or mechanisms by which ES tenderizes meat. The first involves the fact that in muscle which has not been electrically stimulated, muscle fibers can, and often do, shorten during rigor mortis; such shortening occurs in response to cold and is thus called cold-shortening. Cold-shortened muscle fibers are normally less tender than muscle fibers which have not cold-shortened. Cold-shortening occurs most often in
<table>
<thead>
<tr>
<th>Trait</th>
<th>Beef</th>
<th>Veal</th>
<th>Pork</th>
<th>Lamb</th>
<th>Goat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of carcasses</td>
<td>Percentage improvement</td>
<td>Number of carcasses</td>
<td>Percentage improvement</td>
<td>Number of carcasses</td>
</tr>
<tr>
<td>Lean maturity score<sup>b</sup></td>
<td>1261</td>
<td>23</td>
<td>--</td>
<td>--</td>
<td>151</td>
</tr>
<tr>
<td>Marbling score<sup>b</sup></td>
<td>1251</td>
<td>11</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>USDA quality grade<sup>b</sup></td>
<td>1086</td>
<td>8</td>
<td>--</td>
<td>--</td>
<td>510</td>
</tr>
<tr>
<td>Lean color score</td>
<td>1261</td>
<td>14</td>
<td>80</td>
<td>12</td>
<td>90</td>
</tr>
<tr>
<td>Lean firmness score<sup>d</sup></td>
<td>458</td>
<td>4</td>
<td>40</td>
<td>36</td>
<td>90</td>
</tr>
<tr>
<td>Lean texture score<sup>e</sup></td>
<td>--</td>
<td>--</td>
<td>40</td>
<td>28</td>
<td>--</td>
</tr>
<tr>
<td>Heat-ring score<sup>f</sup></td>
<td>1171</td>
<td>23</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

^aThe effects of electrical stimulation on lean quality characteristics are reported as percentage improvement.

^bBased on USDA beef quality grade standards.

^cBased on 8-point scale where 8=very light pink; 1=very dark red or purple.

^dBased on 8-point scale where 8=extremely firm; 1=extremely soft.

^eBased on 8-point scale where 8=extremely fine; 1=extremely coarse.

^fBased on 5-point scale where 5=no heat-ring; 1=extremely severe heat-ring.

Cutting beef were stimulated, ES did not improve lean color.

For veal and lamb, lean color was also improved (Table 3) by ES. However, ES of pork carcasses seems to have a deleterious effect on lean color. Lean maturity was improved in electrically stimulated veal and goat carcasses (Table 3). Since color, texture and firmness of lean are the most important value-determining characteristics in veal carcasses and cuts, ES greatly improves their quality and value.

Heat-ring prevention A problem not uncommon in the meat industry is heat-ring development in the ribeye muscle of beef carcasses that have not been chilled properly. Heat-ring appears to be caused by the differential chill rate among areas of the ribeye muscle which are believed to cause differing rates of color development and rigor mortis (and consequent differences in extent of muscle fiber shortening) from the exterior to the interior portions. This condition is prevalent in cattle with a thin covering of external fat over the ribeye and results in sunken ribeyes with a two-toned color development. Prevention of heat-ring is important because carcasses with severe heat-ring may not be eligible for federal meat grading since the grade factors are difficult to evaluate.

Heat-ring is really a misnomer, since this condition apparently results from cold temperature slowing the color and rigor mortis development processes in the portion of the ribeye muscle nearest its outside surface. The proper term for this condition should be cold-ring since the portion of the ribeye that is dark in color, coarse in texture and sunken beneath the plane.
of the cut-surface is significantly colder, early in the chilling process, than is the inside ribeye portion. Nevertheless, the condition has been termed heat-ring by the meat industry for at least several decades. Research conducted at the Texas Agricultural Experiment Station has shown that heat-ring incidence can be significantly reduced or eliminated by ES. Studies on paired sides of carcasses, where one side was electrically stimulated and the other was not, have revealed that heat-ring formation in carcasses ribbed 18 hours after death was substantially reduced in electrically stimulated sides.

Marbling Research has shown that marbling scores can be slightly increased by ES when carcasses are ribbed and presented for grading after 12 to 24 hours of chilling. It is common knowledge in the meat industry that sides of beef left to chill longer than their opposite sides usually will exhibit slightly higher marbling scores when evaluated. For example, the percentage of carcasses that grade U.S. Choice on a Monday after 2 or more days of chilling (weekend cattle) is generally higher than the percentage for cattle ribbed on other days of the week after only 24 hours of chilling. Apparently, the greater development of marbling in electrically stimulated carcasses ribbed 1 day after slaughter is similar to that observed in weekend cattle. ES causes the lean to be firmer, finer textured and brighter colored and therefore, probably causes faster setting-up of the fat and greater contrast in appearance of fat and lean in the ribeye. Differences in marbling between electrically stimulated and not electrically stimulated sides are minimal or nonexistent if carcasses are chilled for 48 hours or more before ribbing.

Grading Research results at the Texas Agricultural Experiment Station indicate that, on the average, young (A and B maturity groups) beef carcasses that have been subjected to ES and ribbed within 24 hours postmortem will grade 8 percent higher than beef carcasses that have not been stimulated. Such results are highly dependent on the type of cattle being stimulated and the proportions of carcasses falling in the middle of the grade versus those at the extreme ends of the grade. For lambs, USDA grade was improved by 17 percent when ES was used.

Retail caselife When the first electrically stimulated beef was merchandised, retailers were concerned that the retail caselife might be shortened by the ES process. To study this, Texas Agricultural Experiment Station scientists conducted retail caselife studies using both steaks and ground beef. Retail caselife of ground beef was not affected by ES and such product had the same discoloration pattern as ground beef from carcasses that had not been stimulated. Round steaks from electrically stimulated sides, displayed under identical conditions for 4 days, remained brighter for an extra day when compared to round steaks from not stimulated sides. Discoloration of steaks from stimulated carcasses was also less severe. These results indicate that an extra one-half to one full day of retail caselife is possible for steaks from electrically stimulated carcasses.

Safety and Installation

Food Safety and Inspection Service (FSIS), in conjunction with Occupational Safety and Health Administration (OSHA), has developed safety and sanitation standards and requirements for the installation and use of ES units or devices. Electrical stimulators may be installed only upon approval by the Facilities Group of Meat and Poultry Inspection (MPI) and by the Equipment Group, Facilities Group, Technical Services, Meat and Poultry Inspection, FSIS, USDA, Washington, DC 20250.

Persons who work near or operate such equipment must recognize the potential danger associated with high voltage electrical stimulators which produce lethal quantities of electricity. Because of this, FSIS requires barriers at all openings to the stimulator, flashing or rotating lights and audible signals to warn plant personnel that the unit is operating. "Danger — High Voltage" signs must be displayed prominently, and emergency stop buttons to shut off the electrical current must be plainly labeled. The power supply must be locked in the off position when not in use to prevent unauthorized personnel from turning on the stimulator. Also, a fail-safe system must be installed around the stimulator to prevent personnel from entering the area while the unit is operative. Low voltage units which are now available to packing plants offer a significant safety advantage compared to high voltage electrical stimulators.

Commercial Application

In early electrical stimulation tests, a commercially available, B and D "Electro-Sting" Hog Stunner® (440 volt) was used. The stunner was modified for electri-
cally stimulating carcasses or sides by attaching two
cables to the separated electrodes in the wand so the
probes could be attached to the extremities of the car-
cass. A metal pin was attached to the end of each
cable; one pin was placed in the muscles of the round
(leg) near the hock and the other pin was placed in the
muscles between the blade bone (scapula) and the
vertebrae in the shoulder region. High voltage ES was
administered in pulses of .5 to 1 second duration with
intervals between pulses of approximately 1 second.
Carasses were stimulated with 25 to 50 pulses of
electricity within 1 hour after stunning-sticking and
then processed normally.

Later tests (conducted in cooperation with H and H
Meat Products, Mercedes, Texas) of ES, before in-
plant implementation, used a unit (developed in co-
operation with personnel of Agricultural Research,
USDA, College Station, Texas) which could generate
different voltages, pulse durations and pulse intervals.
With this unit, a single electrode was inserted into the
neck of the carcass and electricity was administered
automatically. Voltage used in these experiments was
either 150 or 550; amperage ranged from 0.5 to 5; and
up to 20 impulses were administered in a period of 45
to 70 seconds. Response in terms of tenderness in-
crease was not closely associated with voltage. How-
ever, lean color, freedom from heat-ring and
marbling scores appeared to be greatly improved by
the use of the higher voltage.

H and H Meat Products was the first firm to use ES.
They used a unit patterned after the Texas Agri-
cultural Experiment Station test machine. Because of the
interest shown by the U.S. meat industry in incorpo-
rating ES into the slaughter-dressing sequence of beef
packing plants, several companies: LeFiell Company;
Omeco-Boss; Britton Manufacturing, Inc.; and Cervin
Company, manufacture equipment to administer
electricity to carcasses. The LeFiell Company was the
first commercial firm to install a fully automated high
voltage electrical stimulator in a beef packing plant in
the U.S. when their electrical stimulator, the Lectro-
Tender®, was installed in the Sam Kane Beef Proc-
essors plant in Corpus Christi, Texas. Britton Manu-
facturing Inc. was the first company to install a man-
ually operated, safety enclosed system in a beef
slaughter plant. Their high voltage unit was installed in
Freedman Packing Company, Houston, Texas.
Electrical stimulators are now available for packing
plants with kill rates of one to ten head per day, 10 to
40 head per hour or 200 to 300 or more head per hour.
Stimulators of all of these capacities are presently in
use in the industry.

Hand-operated units, both high and low voltage,
designed for use by locker plants or small packer
operators are also available. These stimulators
operate over a range of 30 to 700 volts and usually
pulse 20 times (2 seconds on, 1 second off) during a 1-
minute cycle. A manually inserted probe is placed in
the neck or shoulder of the carcass for the high
voltage units and a probe or nose clamp is used for the
low voltage units. For higher volume slaughter opera-
tions, units which consist of single or multiple rub-bars
or continuous chainbelt systems are available.

Along with the many ES units available, consider-
able variation exists with regard to the location of the
ES unit on the slaughter floor. The earliest point in the
slaughter-dressing sequence where ES is being com-
mmercially applied is the bleeding area. An advantage
of this location is that additional blood forced from the
carcass during stimulation can be readily processed.
A surface-contact stimulator is required in this area to
prevent contamination of the meat caused by
penetration of the hide. Because contact is made only
with the hide, no special sanitation of the equipment
is necessary. Certain disadvantages are associated with
ES in the bleeding area since most plants shackle and
suspend cattle by a single leg. Because of this, there
may be violent contractions of the free hindleg and
subsequent damage to certain muscles (for example,
the tenderloin). Also, because of the erratic jerking
during stimulation some carasses break the point of
contact, causing some arcing of the electrical current
and hide damage if a surface contact system, rather
than nose clamp system, is used.

Other slaughter plants have positioned ES units after
dehiding and before evisceration. Depending on the
stage in the slaughter-dressing sequence, there
remain problems with urine or fecal contamination if
the viscera has not been removed. However, these
problems have generally been solved by not rimming
or by placing plastic bags around the bung, tying off
the urinary bladder or other practices. Regardless of
where stimulation is accomplished if it is performed on
carcasses after hide removal the contact point must
be sterilized between carasses—before touching the
next carcass. ES of the eviscerated, unsplit carcase
best prevents contamination of the carcass by viscera
contents. Stimulating sides (after the carasses are
split) is not recommended because it is inefficient,
generally does not provide any advantage over
stimulation of an unsplit carcass and is associated with
violent contractions which can separate the vertebrae

**ES may revolutionize the way cattle are bred, fed, merchandised and mar-
teted . . .**
(units of the backbone) and pull the meat away from the feather bones.

Low voltage (35 to 70 volts) stimulation units are also commercially available to packing plants in the U.S. These units employ probe attachment in a manner that causes the brain and central nervous system to elicit muscle contractions. To be effective such stimulation must be conducted in the bleeding area. Low voltage ES will cause muscle contraction only if it is applied within 10 minutes after stunning. The primary advantage of low voltage stimulation is that it requires minimal safety precautions. Preliminary data suggest that low voltage stimulation initiates a muscle pH decline similar to that associated with the use of high voltage stimulation. Documented data concerning color development and uniformity, marbling set-up and the influence of low voltage stimulation on muscle tenderness are limited and inconclusive. Some researchers have investigated ES using 100 to 150 volts applied subsequent to bleeding, hide removal and evisceration (approximately 45 minutes after slaughter). Data from those studies suggest a more rapid muscle pH drop for electrically stimulated sides than for sides that were not stimulated, but lean quality attributes do not appear to be as favorably affected when ES is applied this way as when high voltage stimulation is used.

Trade names for electrically stimulated meat products have evolved as commercial application has increased. Sam Kane Beef Processors (Corpus Christi, Texas) call their product ELECTROTENDER-aged®. They roller brand carcasses and use that trademark on their boxed beef and portion controlled products. Gooch Packing Company (Abilene, Texas) calls its product Gooch Good’n Tender Beef® and makes point-of-purchase materials, such as gummed labels, posters and signs, and newspaper advertisement inserts available to retailers. Other packers and retailers have initiated campaigns to promote electrically stimulated products and to inform the public of the availability of meat improved by this process.

Figure 3 — High voltage commercial rub-bar stimulator. The beef carcass on the left is in a relaxed state while the beef carcass on the right is in the stimulated state. (Notice upward movement of foreshanks in the stimulated carcass.)
ES has become a reality in the U.S. because of the efforts of certain progressive beef packers, equipment manufacturers and retailers. The amount of electrically stimulated beef in the U.S. beef supply has achieved major proportions. ES may revolutionize the way cattle are bred, fed, merchandised and marketed; as such, this process could have a tremendous impact on the cattle industry of the future.

Appreciation is extended to the King Ranch, Inc., Kingsville, Texas; the Texas Cattle Feeders Association, Amarillo, Texas; the LeFiell Company, Inc., San Francisco, California; the Britton Manufacturing, Inc., College Station, Texas; and the Oscar Schmidt Meat Research Development Fund for support of the electrical stimulation studies conducted by the Texas Agricultural Experiment Station.
Educational programs conducted by the Texas Agricultural Extension Service serve people of all ages regardless of socioeconomic level, race, color, sex, religion or national origin.

10M — 5-82, New AS 5