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ABSTRACT 

 

Design and Operation of Membrane Microcalorimeters for Thermal Screening of 

Highly Energetic Materials.  (December 2010) 

Víctor Hugo Carreto Vazquez, B.S., Instituto Politécnico Nacional; 

M.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. Mahboobul S. Mannan 
                                                                       Dr. Dragomir B. Bukur 

 

  Following several terrorist attacks that have occurred during this decade, 

there is an urgent need to develop new technologies for the detection of highly 

energetic materials that can represent an explosive hazard. In an effort to 

contribute to the development of these new technologies, this work presents the 

design aspects of a chip-scale calorimeter that can be used to detect an 

explosive material by calorimetric methods. The aim of this work is to apply what 

has been done in the area of chip-scale calorimetry to the screening of highly 

energetic materials. The prototypes presented here were designed using 

computer assisted design and finite element analysis tools. The design 

parameters were set to satisfy the requirements of a sensor that can be 

integrated into a portable system (handheld) for field applications. The design 

approach consisted of developing a sensor with thick silicon membranes that 

can hold micro-size samples and that can operate at high temperatures, while 

keeping the cost of the sensor low. Contrary to other high resolution systems 
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based on thin-film membranes, our prototypes exhibit a contribution from 

addenda that is comparable to that from the sample, and hence they have lower 

sensitivity. However, using thick membranes offers the advantage of producing 

sensors strong enough for this application and that have significantly lower cost. 

Once the prototypes were designed, the fabrication was performed using 

standard microfabrication techniques. Finally, the operation of our prototypes 

was demonstrated by conducting thermal analysis of different liquid and solid 

samples. 
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NOMENCLATURE 

 

DAQ Data acquisition system 

DC Direct current 

DSC Differential scanning calorimetry 

DTA Differential thermal analyzer 

HEM Highly energetic material 

HMTD Hexamethylene triperoxide diamine 

MEMS Microelectromechanical systems 

PCB Printed circuit board 

PEEK Polyether ether ketone 

RIE Reactive ion etching 

RTD Resistance temperature detector 

TATP Triacetone triperoxide 

TNT Tinitro toluene 

A Cross sectional area of the heater  

Cp Specific heat capacity at constant pressure, J/kg-K 

E Thermal radiation constant 

I Current flowing through the resistive heater, amps 

J Input current density, amps/m3 

L Length of the heater, m 

Q Heat sources other than viscous heating, W/m3 
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QJoule Joule heating, W 

R(T) Resistance as function of temperature, ohms 

Sheater Surface area of the heater, m2 

SRTD sensor output 

Tamb Ambient temperature, K 

Te External temperature, K 

To Reference temperature, K 

Tsurface Surface temperature, K 

k Material thermal conductivity, W/m-K  

n Normal vector of the lateral walls 

qjoule Joule heating per unit area, W/m2 

qo Inward heat flux, which is normal to the boundary, W/m2 

u Velocity vector, m/s 

α Temperature coefficient of resistivity, %/oC 

δo  Resistivity at the reference temperature, ohm-m 

ρ Material density, kg/m3 
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1. INTRODUCTION1 

Calorimetry is a useful tool in chemical engineering because it provides a 

simple and universal method for characterizing materials and processes [1]. It 

has multiple applications including material properties characterization, chemical 

kinetics research, and the assessment of reactive chemicals hazards [2-6]. 

There are different calorimetric techniques, including differential scanning 

calorimetry (DSC), reaction calorimetry, and adiabatic calorimetry. Among these 

three types of calorimetric techniques, the simplest and most commonly used is 

DSC. This technique offers fundamental information including heat of transition, 

mixing, decomposition, or reaction, which can be studied in detail through 

calorimetric measurements. Unfortunately, conventional DSC techniques are 

difficult to use in applications where the samples are very small because the 

sensitivity required is very high [7].  

Evolving areas of research and new applications where thermal analysis of 

small samples is required has increased the interest for investigating and 

developing new calorimetric tools. For example, the use of chip-scale 

calorimeters based on micro electro mechanical systems (MEMS) has been in 

constant development for the last twenty years. These new calorimeters bring in 

the possibility of creating small devices of relatively low cost that potentially can 

translate the analysis from the laboratory to the field by using handheld 
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calorimeters. However, this requires refinements to the technique and the 

development of new devices that currently are not commercially available. 

In this dissertation, I will first present background information about the 

research that other groups have done using chip-scale calorimeters. Following 

this introduction, I will describe a new application for these devices that our 

research group is developing. Then, I will detail the various tools and methods 

used to conduct this research on the design of a chip-scale calorimeter for 

screening of highly energetic materials. Finally, I will proceed to discuss the 

results obtained in this work, propose possible future work, and conclude with a 

short summary. 

 

1.1 MEMS-based calorimeters 

Multiple peer-review papers have reported the design and use of 

miniaturized calorimeter systems [8]. One major challenge in developing these 

devices arises from the fact that thermal signals from small samples are also 

small and difficult to measure. These calorimeters were optimized for measuring 

small amounts of energy in the order of few micro joules and even nano joules 

for very sensitive devices [9-18]. Such high sensitivities have allowed the 

investigation of thermal transitions of nanomaterials [19-22], biological systems 

[23-29], polymers [19-20, 30-31], sensing of combustible gases [32-33], among 

other applications where high sensitivity is required. With the intent of reaching 
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such high sensitivities, nano- and microscale calorimeters have been fabricated 

on thin membranes of silicon nitride suspended on silicon frames. The design 

approach employed in their fabrication is to create very thin membranes with 

very small thermal mass, which is translated into devices with high sensitivity 

and ultrafast response times [34]. 

Despite the multiple applications where these devices have shown an 

excellent performance, none of these devices has been optimized for field 

applications or for thermal screening of highly energetic materials (hereafter 

referred as HEM). The reduced thickness of their membrane makes them 

extremely fragile and requires delicate operation to place the sample. 

Additionally, with the exception of the devices manufactured by Xensor 

Integration [35], most of these calorimeters were tailored for a specific 

application and they are not commercially available. 

 

1.2 Energetic materials and terrorist threats 

Chemical nature of some substances makes them very sensitive or 

unstable and in cases when their energy content is high, these materials may 

represent a significant hazard if not handled properly. For example, in the case 

of organic peroxides under the right conditions, these compounds can liberate 

enough energy to be a hazard. Some organic peroxides are shock-sensitive and 

explosive, others are more stable, but contamination makes them more 
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sensitive. Energy content of organic peroxides may not be of the same 

magnitude as for high explosives. However, their value to terrorists is not their 

performance, it is the simplicity for their preparation and easy access [36], and 

because they are more difficult to detect using current technologies.  

 

1.3 Use of calorimetry for explosive detection 

The idea of using calorimetry as a tool for detection of HEM has been 

explored by different research groups [1, 37-40]. In 2002, Bannister et al. first 

proposed the application of calorimetry for detection of energetic materials in 

samples of unknown composition. In the US patent No. 6,406,918 B1, the 

authors emphasized the advantages of using calorimetry for explosive detection 

over traditional detection techniques [38]. Because an explosive can be 

prepared from different types of materials, it is very difficult that a single 

traditional detection system can detect all types of explosives, which results in 

possible false negatives during the screening process. However, detectors 

based on calorimetric sensors offer an alternative way of overcoming these 

problems. The concept behind the use of calorimeters as explosive detectors is 

relatively straightforward. A thermal screening of an unknown sample may be 

used to determine the existence of an exothermic behavior. The relative thermal 

hazard of an unknown sample can be evaluated from information obtained from 

a thermal scan, which includes the position of the exotherms, and its relative 

intensity and energy content. Sharp exotherms with relatively high area under 
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the peak, will be a sign of the possible presence of a HEM (i.e., explosives). On 

the other hand, insignificant exothermic behavior or its complete absence can be 

used to designate a material as not hazardous from the point of view of thermal 

energy content. An advantage of this approach is that this method can be used 

to screen materials for the presence of explosives regardless of their 

composition. Therefore, they can be used to detect any kind of explosives and 

help reduce the number of false negatives [1, 37]. 

 

1.4 Limitations of traditional calorimetry for screening of HEM 

Typical calorimeters used for reactive chemical research require relatively 

large amounts of sample (i.e., few grams) for obtaining reliable results. This 

feature in fact limits their use for analysis of HEM because the high energy 

content of these substances increases the chances of damaging the equipment 

during the tests [41]. Even differential scanning calorimeters (DSC’s) and 

differential thermal analyzers (DTA’s), which require small amounts of sample 

(i.e., few milligrams) have this limitation. It is possible to reduce the sample size 

but the sensitivity of the apparatus has to be very high to obtain meaningful 

results. As an alternative, the use of MEMS-based techniques provides an 

effective way to fabricate highly sensitive calorimeters that can use very small 

samples in order to overcome the limitations of traditional calorimeters for 

screening of highly energetic materials.  
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It is important to understand that variations in the composition or 

concentration of the samples screened using chip-scale calorimeters will affect 

the position and intensity of the peaks in the same way that they affect traditional 

differential scanning calorimeters [42]. Therefore, identification of the specific 

substance by thermal screening may result in a nontrivial task, and thermal 

screening cannot be considered as a stand-alone technique for the identification 

of energetic substances for security applications. However, quick measurements 

of the potential exothermic behaviors will be an excellent determining factor of 

conducting further testing to identify an unknown sample.  
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2. MOTIVATION AND PROBLEM STATEMENT 

2.1 Motivation  

Almost all the current explosive detection techniques developed until now 

focus on identifying common nitrogen-based military explosives. However, as 

the access to traditional explosives becomes more controlled and restricted, it is 

likely that terrorists will try to use different materials for their attacks. For 

example, it has been reported that peroxides with multiple –O–O– functionalities 

per molecule including TATP (triacetone triperoxide) and HMTD (hexamethylene 

triperoxide diamine) can have TNT equivalences of around 88% and 60%, 

respectively [36]. These compounds can easily be transported hidden in the 

luggage or disguised as other materials. In the case of TATP, it is a very 

powerful explosive that unlike many conventional explosives, do not contain 

nitro- groups, which makes its detection by traditional detection systems quite 

difficult. TATP has an inoffensive appearance similar to sugar. However, as 

mentioned above its power is close to TNT. The value of TATP and other HEM 

for the terrorist is the ease with which materials required for their synthesis can 

be obtained [43-44]. In addition, the mobility of terrorists makes possible that 

they try to target practically any location and not only secured facilities such as 

airports and government offices. As happened in the London bombings in 2005, 

where several people died or received injuries as a result of terrorist attacks 

using TATP [45].  
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2.2 Problem statement 

As mentioned above, non-conventional explosives are difficult to detect with 

current technologies. The explosion potential of substances can, however, be 

estimated from their thermal analysis. This type of analysis can determine the 

explosive tendency of an unknown sample based on the energy content 

obtained from thermal analysis. Unfortunately, due to limitations associated with 

their size, cost, and throughput, there are not commercially available 

calorimeters that are suitable for deployment to detect explosives in field 

applications. In addition, the use of calorimeters for the thermal characterization 

of explosive materials has been limited because energetic materials can contain 

enough explosive power to damage the equipment during the test. With all this 

in mind our ultimate goal is to contribute to the development of a detection tool 

that is able to detect HEM regardless of their composition, and that can be easily 

deployed where needed. We proposed the use of chip-scale calorimeters to 

determine if a solid or liquid sample is a threat or not. 

 

 



The approach for the calorimeters design consisted of using computer 

assisted design (CAD) and finite element software tools for defining preliminary 

prototypes and estimating their performance before

(Figure 1).  This approach was chosen to reduce the cost associated with the 

fabrication of the device and to explore the effect of the variables that affect the 

design including geometri

sensors, materials of construction and metal layer thickness. These factors will 

be discussed in more detail later in this manuscript.

 

 

 

 

 

 

 

 

 

 

Figure 1 Schematics of the design 

3. CALORIMETER DESIGN 

The approach for the calorimeters design consisted of using computer 

assisted design (CAD) and finite element software tools for defining preliminary 

prototypes and estimating their performance before proceeding to fabrication 

).  This approach was chosen to reduce the cost associated with the 

fabrication of the device and to explore the effect of the variables that affect the 

design including geometries of heaters, location of heaters and temperature 

sensors, materials of construction and metal layer thickness. These factors will 

be discussed in more detail later in this manuscript. 

Schematics of the design approach used in this work. 
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The approach for the calorimeters design consisted of using computer 

assisted design (CAD) and finite element software tools for defining preliminary 

proceeding to fabrication 

).  This approach was chosen to reduce the cost associated with the 

fabrication of the device and to explore the effect of the variables that affect the 

es of heaters, location of heaters and temperature 

sensors, materials of construction and metal layer thickness. These factors will 
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3.1 Definition of concept 

The application of chip-scale calorimeters for screening of HEM requires 

that the device fulfills a number of requirements, which include general and 

specific requirements. The former ones related to the whole apparatus, and the 

latter ones related to the calorimeter sensor itself. General requirements include 

portability, simple operation, easy results interpretation, and low acquisition and 

operation cost. All these factors are related to the hardware and electronics and 

won’t be discussed here. On the other hand, specific requirements define the 

design of the calorimeter sensor for studying the thermal behavior of HEM. 

These include broad operating temperature range, high sensitivity, and low 

power consumption. 

Operating temperatures – The desired operating temperature range of the 

calorimeter sensor was fixed by the expected temperature at which an 

exothermic behavior can be detected for an explosive material. For this work, 

the exothermic behavior is associated with combustion, intense decomposition 

or detonation of the sample, and hereafter will be simply referred to as sample 

decomposition. As it can be observed in Table 1, common explosives have 

thermal decompositions in the range of 250-380oC. Therefore, the calorimeter 

sensor should be designed to work in this temperature range. 
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Table 1 Heat of decomposition and melting and decomposition temperatures for 

some common explosive materials (extracted from [46] and [47]).  

Name 
Tm Td ∆∆∆∆H decomposition 
oC oC J/g cal/g 

 Nitromethane -29.0 101 4,301 1,028 

Trinitro-2,4,6-phenilmethylnitramine (Tetryl) 129.5 185 4,770 1,140 

Hexamethylenetriperoxide Diamine (HMTD) --- 200 3,188 762 

Dipentaerylthritol Hexanitrate 72.0 200 5,142 1,229 

Pentaerylthritol Tetranitrate (PETN) 141.3 205 6,276 1,500 

Ammonium Nitrate (AN) 169.6 210 2,630 629 

1,3,5,-Trinitro-1,3,5,-triazacyclohexane (RDX) 202 229 5,540 1,324 

Ethylene Glycol Dinitrate (EGDN) --- 240 7,130 1,704 

1,3,5,7-Tetranitro-1,3,5,7-tetrazacyclooctane 

(HMX) 
276 276 5,669 1,355 

Picric Acid 122.5 300 3,351 801 

2,4,6-Trinitrotoluene (TNT) 80.7 300 4,230 1,011 

Ammonium Picrate 280.0 320 2,870 686 

Dinitrotoluene  2,4- isomer(DNT) 70.5 360 3,192 763 

Tetranitrodibenzo-1,3 a, 4,6 a-tetrazapentalene 

(TACOT) 
378.0 378 4,100 980 

Nitroglycerin (NG) 13.2 4,250 6,276 1,500 

Ammonium Perchlorate (APC)ǂ --- --- 1,971 471 

ǂ: Decomposes on heating 
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Device sensitivity – The calorimeter sensor was designed to use 

microgram powder samples. This sample size was set to allow a relatively 

uncomplicated handling of the samples without requiring special tools and to 

facilitate operation of the device. In addition, using relatively large samples in 

comparison to other nanocalorimeter systems reported in the literature, allow 

designing a system with intermediate sensitivity, which can yet provide useful 

data for this application with HEM. Also, the reduction in the required sensitivity 

of the proposed devices simplifies the fabrication process, which keeps the cost 

sensors of the sensors low for better commercialization. In Table 1 it can be 

observed that most common explosives have heats of decomposition in the 

range of 500 cal/g (2,100 J/g) to 2,000 cal/g (8,500 J/g). It has been reported 

that HEM samples with heat of explosion smaller than 800 cal/g (3,350 J/g) 

usually do not explode [46]. However, the device should be designed to detect 

energy amounts below 500 cal/g using micro samples. Therefore, the geometry 

of the calorimeter sensor and the thickness of the sensing area were defined to 

allow sensitivity in the millijoule range. 

Power consumption – The energy required to operate the calorimeter 

device will be supplied through an electrical DC power supply. The total 

electrical power required is defined by the desired maximum temperature range, 

heating rate, heat losses, and the addenda of the device, which is defined by the 

size of the calorimeter and the thickness of its sensing area. Addenda is defined 
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as the heat capacity of the calorimeter components and surrounding elements 

[48]. 

 

3.2 Prototype geometry modeling using CAD 

The design concept for the calorimeter defined in Section 3.1 was used to 

generate prototypes using CoventorWare DESIGNER
®

. This software makes 

3D solid models that can be processed later using finite element analysis in 

COMSOL Multiphysics™ from 2D layouts by virtually resembling the actual 

micro fabrication process such as metal evaporation, anisotropic wet etching, 

deep reactive ion etching, etc.  Under this approach, it is possible to evaluate 

several alternative options before a decision is made to construct a calorimeter 

prototype. The following sections describe in detail the main parameters 

considered during the design of the calorimeter. For simple explanation, these 

sections will refer to two of the calorimeter prototypes used in this work, which 

are described below. 

Prototype TAMU/ULL–03: The device prototype shown in Figure 2 has two 

resistive temperature detectors (RTD). One located on the center of the heated 

area of the membrane and the other on the silicon frame. This prototype has one 

resistive heater for normal operation and other for calibration purposes with a 

resistance of 1-1.2 and 0.6-0.7 kohm, respectively. The calorimeter prototypes 

have membranes of 50 µm and 10 µm (hereafter referred to as TAMU/ULL-03a 
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Sample 
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Main Heater

Calibration 

Heater

Frame 

RTD
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and -03b). The silicon area surrounding the membrane facilitates a good thermal 

contact between the sensor and the heat sink where the sensor is connected, 

and provides an area to build the contact pads of the calorimeter. Despite these 

advantages having a relatively large silicon frame has a detrimental effect on the 

cost of the devise. Therefore, a final device should have a reduced silicon frame 

to maximize the number of sensors per wafer. 

 

 

 

 

 

 

 

 

 

 

Figure 2 Membrane calorimeter with resistive heaters and RTD sensors 

fabricated at TAMU/ULL (TAMU/ULL-03).  

  



15 

Front side

Back side

Resistive Heaters

Prototype TAMU/ULL–04: A second prototype has two membranes with a 

thin-film resistor of 60-100 ohms on each one. These membranes are separated 

from each other by a third membrane, which is intended for improving their 

thermal isolation (Figure 3). In this prototype, the thin-film resistors are used as 

heaters and temperature sensors simultaneously. The design of the sensor 

allows placing the reference and the sample cells in a single chip.  

 

 

 

 

 

 

 

 

Figure 3 Dual calorimeter fabricated at TAMU/ULL (TAMU/ULL-04).  

 

3.3 Computer simulation using finite element analysis 

The aim of using Finite Element Analysis (FEA) tools for the design of the 

calorimeter is to obtain information about the expected heat transfer in the 

prototypes and the performance of their resistive heaters and RTDs prior to their 

fabrication. COMSOL Multiphysics™ (formerly FEMLAB) can be used to 

construct very detailed models that represent the real geometry. By doing this, a 
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detailed thermal design that takes into account the addenda of the device, the 

potential heat losses, and the effect of the geometric parameters is possible. 

The process starts by constructing a geometric model of the prototype 

using CoventorWare™. Then, the geometry is meshed and the appropriate 

equations that describe the heat transfer and electrical domains are selected. 

Next is to define the materials properties for each sub-domain in the geometry. 

After the problem is formulated, the model is run and the design parameters are 

adjusted for model refinement. The appendix of this dissertation describes in 

detail the process followed to construct the model for two commercial 

nanocalorimeters, which are representative examples of one thin-film silicon 

membrane calorimeter and one calorimeter based on a thick silicon membrane.  

In the following section, the information obtained from the models is described. 

 

3.3.1 Calorimeter substrate selection 

The material for the calorimeter substrate is silicon. This material was 

selected based on their compatibility with standard micro fabrication techniques. 

The use of silicon is expected to reduce the calorimeter sensitivity due to its high 

thermal conductivity [25]. However, from the practical point of view silicon is still 

the best option for these devices. The silicon substrates were covered with a 

layer of silicon nitride on both sides to be able to fabricate the membranes by 

wet etching. An intermediate layer of silicon oxide was added to the electronics 
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side of the wafer to act as an electrical insulator for the electronics side of the 

sensor, which prevents temperature sensor shunting at high operating 

temperatures because of changes in silicon conductivity [49].  Modeling results 

showed that the thermal resistance of thin-film silicon membranes are close to 

50kK/W and for the calorimeters fabricated using thick membranes the thermal 

resistance is typically reduced to 50-200 K/W depending on the specific design. 

These values give an idea about the differences in sensitivity of these different 

types of calorimeters. 

 

3.3.2  Thin-film resistive heaters 

The heat required to operate the calorimeters is produced in thin-film 

resistive heaters when an electrical current flows through them. A thin-film 

resistor consists of a resistive material layout deposited on the surface of an 

isolating substrate [50]. The power dissipated by the heaters in the calorimeter is 

given by Joule’s law according to the following expression [51]. 

 

�� = �� × �       (3.1) 

where, Pd is the power dissipated by the heater (Watts), I is the steady-state 

current (Ampere), and R is the steady state resistance (ohm).   
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Material selection - The prospective materials for the heaters fabrication 

are selected based on their compatibility with standard metal deposition 

techniques, their effect on the device performance, linear temperature 

dependency on the range of interest, and economical reasons.  For the 

heaters/RTDs fabrication, materials with high temperature resistance coefficients 

(TCR) and low specific resistivity are desired from the point of view of the device 

sensitivity [49]. For this work, aluminum, gold, and platinum, which meet these 

criteria, were considered for the design of the calorimeter sensor (see Table 2).  

 

Table 2 Selected properties at room temperature for Al, Au and Pt (extracted 

from [49]). 

Metal k Density CP ρρρροοοο    TCR Tm 

 W/m-
o
C kg/m

3
 J/kg-

o
C Ohm-m 1/

o
C 

o
C 

Al 237 2,700 904 2.82 x10
-8

 0.00398 660 

Au 317 19,300 129 2.44 x10
-8

 0.0034 1063 

Pt 72 21,450 133 1.05 x10
-7

 0.00392 1770 

 

The plots shown in Figure 4 were obtained to compare the effect of 

different metallization materials on the performance of the heater. These plots 

were constructed using a model with constant geometry parameters for the 

heater (i.e., prototype TAMU/ULL-04a), and different construction materials. As 

it can be observed, Al, Au, and Pt all exhibit a linear behavior of the resistance 

as a function of temperature and hence they are suitable for the heaters 
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fabrication. Each point shown in Figure 4 was obtained by modeling steady-state 

conditions using a constant power. Maintaining the geometric parameters 

constant shows that heater fabricated on Pt will exhibit a larger temperature 

increase. Also, as it can be observed, there is no significant difference between 

heaters modeled using Au properties and the ones using Al.  Therefore, for this 

work, Al was preferred because it has reduced chemical activity compared to Au 

and Pt, high adhesion on the substrate materials without requiring adhesion 

underlayer[49], its availability, and because its cost is the lowest among these 

three options. 

 

Dimensions and configuration – The dimensions of the heaters define 

their nominal resistance at room temperature and the power dissipation at a 

given current flow. The resistance at room temperature of the heaters in the 

calorimeter is dependent on their geometric parameters (length, width and 

thickness) and the material selected for their fabrication. This nominal resistance 

is expressed by: 

 

�� = 	�



��
= 	�





 × �
       (3.2) 

where, ρο is the material bulk resistivity per unit length at room temperature 

(ohm-m); Ac is the cross sectional area of the heaters (m2); and l, w, and t are 
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Figure 4 Estimated resistance changes as a function of temperature and heater 

material. Results were obtained for model prototype TAMU/ULL-04a. 
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their length (m), width (m), and thickness, respectively. A

properties, and the length and width of the heaters are initially defined for the 

prototypes shown in this work, the resistance is now only defined by the 

thickness of the metallization layer.  As it can be observed in 

was obtained for prototype TAMU/ULL

the metal thickness is more obvious for layers below 50 

prototypes the controlled metal thickness was maintained above 10

because variations during the metal deposition process can lead to significant 

differences in the metal thickness and the desired nominal resistance of the 

resistive elements.  

 

 

 

 

 

 

 

 

 

 

Figure 5 Dependency of resist

metallization layer thickness for prototype TAMU/ULL

their length (m), width (m), and thickness, respectively. As the material 

properties, and the length and width of the heaters are initially defined for the 

prototypes shown in this work, the resistance is now only defined by the 

thickness of the metallization layer.  As it can be observed in Figure 

was obtained for prototype TAMU/ULL-03, the dependence of the resistance on 

the metal thickness is more obvious for layers below 50 µm. Therefore, for our 

prototypes the controlled metal thickness was maintained above 10

because variations during the metal deposition process can lead to significant 

differences in the metal thickness and the desired nominal resistance of the 

Dependency of resistance of heaters and RTD elements on the 

metallization layer thickness for prototype TAMU/ULL-03.  

21 

s the material 

properties, and the length and width of the heaters are initially defined for the 

prototypes shown in this work, the resistance is now only defined by the 

Figure 5, which 

03, the dependence of the resistance on 

m. Therefore, for our 

prototypes the controlled metal thickness was maintained above 100 µm. This is 
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differences in the metal thickness and the desired nominal resistance of the 
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On the other hand, the temperature distribution on the calorimeter surface 

is strongly influenced by the configuration or shape of the heaters and their 

location. These factors were investigated using 2D and 3D FEA models. The 

models were built based on general recommendations for the construction of 

thin-film heaters to limit the number of possible designs. This includes 

maintaining a large aspect ratio (l/w) to reduce the signal-to-noise ratio (SNR) 

of the device, and maintaining a heater layout that reduces the thermal gradients 

across the membrane. The design constraints were the planar dimensions of the 

membrane, and the desired nominal resistance of the thin-film sensors at room 

temperature (Ro RTD). The resistors have a meander shape to fit the length of the 

resistive element within the constraints of the membrane dimensions (see Figure 

6). The dimensions of the heaters in prototype TAMU/ULL-03 were adjusted to 

give a nominal resistance value of 1,000-1,200 and 600-700 ohms for the main 

and calibration heaters, respectively. In the case of prototype TAMU/ULL-03 the 

dimensions were adjusted to give a nominal resistance of 60-100 ohms. 
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Figure 6 Resistive element shape for prototypes TAMU/ULL-03 and -04.  

 

Figure 7 shows the estimated temperature distributions for TAMU/ULL 

calorimeter prototypes. As it can be observed, the temperature gradients in the 

plane x-y inside the membrane area are more homogeneous in prototype 

TAMU/ULL-03. In this figure the height of the plot represents the temperature 

gradients. Flat profiles are preferred because the heat generated in the resistive 

layer is evenly transferred to the sample and the RTD sensor (located at the 

center of the membrane). In the case of prototype TAMU/ULL-04, the heater 

layout leads to larger temperature gradients.  

  



24 

 

 

 

 

 

 

 

 

 

 

Figure 7 Estimated temperature distributions for prototypes (a) TAMU/ULL-03 

and (b) TAMU/ULL-04. Heater details show the distribution of the resultant 

potential differential when a current is applied to the heaters. 

 

3.3.3 Resistive temperature detectors 

Design considerations for the temperature detectors are similar to the 

ones for the thin-film resistive heaters. The fabrication materials should be 

capable to work in the temperature range of interest, and their resistivity should 

have a linear variation as a function of temperature. For the RTDs used in this 

work, we follow the design proposed by Liu et al.[1, 37], where the temperature 

detection is performed using 4-wire resistive temperature detectors with 

meander pattern as the one shown in Figure 8. It has been reported that the 
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architecture and geometry of thin-film RTDs affects their response [52]. 

However, further investigation about this subject was beyond the scope of this 

work and here only one RTD design was studied.  

 

 

 

 

 

 

 

 

Figure 8 4-wires RTD temperature sensor. The sensors have a resistance of 

200 ohm at room temperature and an estimated TCR equal to 0.4%/oC. 

 

One aspect that needs careful considerations in designing the 

temperature sensor for the calorimeter is its operational principle. RTDs respond 

to a temperature change with an equivalent change in resistance. However, its 

operation requires an excitation current and consequently a given amount of 

power will be dissipated by the thin-film resistance according to equation 4.1, 

and transferred to the calorimeter surface. For this application, this is particularly 

important because the amount of heat measured is small. Therefore, the current 

supplied to the RTDs has to be reduced to prevent self heating, whereas 
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maintaining an acceptable reading output. Figure 9 shows how the excitation 

current affects the reading stability of the RTD. For prototype TAMU/ULL-03, an 

excitation current of 1mA gives a stability of ±0.0375 ohms, which is equivalent 

to ±0.005oC for temperature readings. With this excitation current self heating 

was negligible. When the thin-film resistors are used simultaneously as heaters 

and temperature sensors (i.e., TAMU/ULL-03), the stability of the readings will 

vary depending on the power supplied. 

In the case of the commercial calorimeters developed by Xensor 

Integration, the temperature sensing is done using thermopiles. This is because 

thermopiles have the advantage of generating its own electromotive force (emf) 

and does not need a bias power supply as the RTD. Therefore, no self-heating 

or other thermoelectric effects occur when operating a thermopile [25], and there 

is no need to make corrections in the signal due to the heat contribution from the 

RTD. One disadvantage is that contrary to RTDs that can sense temperatures 

above 300oC in TAMU/ULL prototypes, the operating range of the thermopiles of 

Xensor devices is around 100oC due to shifts in the output signal. 
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Figure 9 a) Experimental RTD response using different excitation currents for 

prototype TAMU/ULL-04. b) RTD response of prototype TAMU/ULL-03 using an 

excitation current of 1 mA. 
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The sensitivity of the RTDs was characterized through their temperature 

coefficient of resistance (TCR). Its value represents the sensitivity of the sensor 

resistance to a change in temperature and can be estimated from the following 

equation [52]: 

 

������ = �������

���×��
 × ���       (3.3) 

 

where TCRRTD is the sensor’s temperature coefficient of resistance (%/oC); R100 

is the sensor resistance at 100oC (ohm); and R0 is the sensor resistance at 0oC 

(ohm). TCR values were determined both calculated and experimentally.  

Calculated TCR values were estimated using the models constructed in 

COMSOL Multiphysics. In these models the geometry of the RTDs and the 

excitation current flowing through them were maintained constant. The heat 

supplied through the electrical heaters was varied to increase the surface 

temperature of the calorimeter chip. Then, the change in resistance was 

recorded and the TCR values were estimated using the equation shown above 

(Figure 10). The averaged TCR calculated in this way was 0.4 %/oC are in very 

good agreement with the values obtained experimentally during the sensor 

calibration (see Section 5.3).  
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Figure 10 RTD sensor (TAMU/ULL-03) response as a function of temperature 

and metallization thickness obtained from 2D FEA models.  

 

3.3.4 Bonding pads 

The interconnections between the circuit leads in the calorimeter chip and 

the PCB/chip carrier are typically made using Al wires (D= 20 µm) that are 

welded to the surface of the bonding pads. The dimensions of the bonding 

pads/circuit leads have to be considered in the design because they can 

contribute to the overall calorimeter addenda by adding mass to the device, and 

provide highly conductive paths for heat losses from the heated area (middle of 

the membrane) to the silicon frame of the device.  
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3.4 Thermal resistance 

The thermal resistance expressed in units of K/W depicts the spread of 

heat through the different material layers forming the calorimeter. These layers 

include bonding pads; membrane; silicon oxide; and adhesive layers. The 

thermal resistance can be expressed as: 

 

��� = ∆�

��
= �

�×��
        (3.4) 

The thermal resistance is dependent on the length along the heat flow 

path or characteristic length (L); the thermal conductivity of the material (k); and 

the cross sectional area that is available for the heat conduction [51]. From this 

expression, it is clear that chip-scale calorimeters with thin membranes will have 

larger thermal resistances. For example, TCG-3880 gauges have a calculated 

thermal resistance in air of around 30kK/W, whereas TAMU/ULL prototypes and 

NCM-9924 have thermal resistances in the order of 50-200K/W. This difference 

in thermal resistance is noticed in the sensitivity of the devices and the power 

required for the operation of these calorimeters. 
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4. PROTOTYPES FABRICATION  

This section describes the experimental procedures used to fabricate the 

calorimeter sensor, printed circuit board (PCB); test chambers, and related 

hardware required to operate the device. 

 

4.1 Micro calorimeter fabrication 

The prototype calorimeters used in this work were fabricated in the 

Materials Characterization Facility (MCF) at Texas A&M University and the 

Center for Advanced Microstructures and Devices (CAMD) at Louisiana State 

University. Prime grade double-side polished p-type Si wafers (100) with silicon 

oxide (200 nm) on the topside and silicon nitride (100 nm) on both sides were 

used as substrate for the sensor fabrication (Addison Engineering Inc.). The 

fabrication steps included: backside lithography for membrane pattern transfer 

(Figure 11b); back-side reactive ion etching (Figure 11c); top-side lithography for 

heater/thermometers pattern transfer (Figure 11d); vapor deposition of pure 

aluminum or chromium/gold (Figure 11e); lift-off (Figure 11f); and anisotropic wet 

etching in an aqueous solution of potassium hydroxide at 85oC (Figure 11g). 

Prior to the wet etching step, the edge and the upper side of the wafer were 

protected by a special PEEK wafer holder. A detailed fabrication procedure is 

given below.   



 

 

 

 

 

 

 

Figure 11 Simplified processing steps for the fabrication of the calorimeters 

used in this work.  

 

1. Cleaning: The wafers were blown with nitrogen to remove any trace of dust, 

and then rinsed with acetone, isopropyl alcohol, and deioni

wafers were immediately dried using nitrogen.

2. Surface preparation: 

60 minutes to remove moisture because it prevents good photoresist 

adhesion. 

3. Photoresist spin coating

WS-650S) with photoresist shipley

of the wafer. After each coating of photoresist, the wafers were soft baked in 

a hotplate at 90oC for 1.5 minutes.

4. Pattern transfer (Backside):

the backside of the wafer using a Quintel UV exposure station (Quintel 

Simplified processing steps for the fabrication of the calorimeters 

The wafers were blown with nitrogen to remove any trace of dust, 

and then rinsed with acetone, isopropyl alcohol, and deionized water. The 

wafers were immediately dried using nitrogen. 

 The wafers were dried in a hotplate at 90-100

60 minutes to remove moisture because it prevents good photoresist 

Photoresist spin coating:  Both sides of the wafer were spin-coated (Laurell 

650S) with photoresist shipley-1827 to protect them during the handling 

of the wafer. After each coating of photoresist, the wafers were soft baked in 

C for 1.5 minutes. 

Pattern transfer (Backside): The pattern of the membrane was transferred to 

the backside of the wafer using a Quintel UV exposure station (Quintel 
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Simplified processing steps for the fabrication of the calorimeters 

The wafers were blown with nitrogen to remove any trace of dust, 

zed water. The 

100oC for 30-

60 minutes to remove moisture because it prevents good photoresist 

coated (Laurell 

1827 to protect them during the handling 

of the wafer. After each coating of photoresist, the wafers were soft baked in 

e pattern of the membrane was transferred to 

the backside of the wafer using a Quintel UV exposure station (Quintel 
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UL7000-OBS mask aligner).The exposure time was set according to the 

dose recommended for the S1800 series photoresist. The wafer was 

developed using shipley-351 diluted solution for 30 sec. 

5. Reactive ion etching (RIE): the exposed part of the silicon nitride on the back 

side of the wafer was etched away by reactive ion etching (March Plasma 

Systems CS-1701) using CF4 as etching gas at a power of 150 Watts for 200 

seconds. After this step the wafer was cleaned and dried according to steps 

1 and 2. 

6. Pattern transfer (Front Side): Steps 3 and 4 were repeated and the pattern of 

the heaters and temperature sensors were transferred to the front side of the 

wafer using the Quintel UV exposure station. 

7. Metal deposition: a metal layer is deposited on the front side of the wafer 

using a metal evaporation chamber (BOC Edwards Auto 306). The material 

used for the metallization was aluminum or chromium/gold. The thickness of 

the layer was defined by the desired heater/RTD resistance. After deposition 

the photoresist and the excess of metal were removed by lift-off using 

acetone as a solvent.  

8. Front side protection: The electronics’ side of the wafer was protected by a 

special PEEK wafer holder that prevented any liquid to get in contact with it.  

9. The back side of the wafer was etched in a 35 wt% KOH aqueous solution at 

80°C to remove the silicon exposed during the RIE step. This step is used to 

create the membranes in the sensor structure. The exposure time and 
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conditions for the anisotropic etching process were carefully controlled to 

produce membranes of several microns thick (10, 50 and 100 µm). 

10. Individual calorimeter sensors were diced using an automatic diamond blade 

and then connected to a PCB either by wire bonding (Kulicke & Soffa Ltd.) or 

by mechanical contact using standard pogo pins, depending on the sensor 

design. 

The fabrication procedures can be adapted to produce sensors, which 

electronics side is directly on the silicon oxide layer (Figure 11g’), or embedded 

in the etched cavities of the silicon nitride layer (Figure 11g’’). 

 

4.2 Printed circuit board 

The PCB used to connect the calorimeters to the hardware and DAQ were 

fabricated using positive photoresist pre-sensitized phenolic PCBs (Kinsten). 

The fabrication started by transferring the desired circuit pattern to the pre-

sensitized PCBs by exposing it to UV light through a mask. Then, the PCB was 

developed in a NaOH dilute solution (3.5 ml of NaOH@50% and 500 ml H2O). 

Finally, the exposed area of the PCB was etched using ammonium persulphate 

solution (75 g and 500 ml H2O) at 40-50 ºC. Finally, the photoresist was 

removed using acetone at room temperature. 
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5. EXPERIMENTAL  

5.1 Experimental setup  

The experimental setup for testing the chip-scale calorimeters used in this 

work consisted of the following components: 

Testing chamber – This chamber allows conducting experiments under a 

controlled atmosphere using air, nitrogen or vacuum. When the experiments 

were performed under air atmosphere, the chamber acted simply to reduce 

signal fluctuations due to thermal disturbances from the surroundings. Figure 12 

shows the chamber used for testing a single calorimeter, but using two 

calorimeters simultaneously is also possible. 

Aluminum block – The function of the aluminum block is to act as a 

thermostat to dissipate the heat that is transmitted through the chip-carrier or 

PCB. This is important to maintain the temperature of the areas outside the 

membrane close to room temperature. 

Power source – The electrical power for the resistive heaters in the 

calorimeters is supplied either by two 16-bit programmable DC power supplies 

(NI PXI-4100), or a high-resolution custom-made constant power supply, 

depending on the experiment requirements.  

Data collection – A sensing system consisting of 61/2 digital multimeters 

with a flexible resolution of 10 to 23-bits (NI PXI-4070) was used to measure the 



36 

thermopiles and RTDs outputs. In addition, a 16-bit 4-wire RTD module (NI FP-

RTD-124) was also used for measuring the output from the RTDs. 

Software interface – The data acquisition and the control algorithm for the 

chip-scale calorimeters were implemented using LabView™. The customized 

LabView™ program and hardware allows multiple operation modes including 

temperature ramps with a feedback control with variable gains, programmable 

time-dependent voltage mode, programmable time-dependent current mode, 

and isothermal mode. 

 

 

 

 

 

 

 

 

 

 

Figure 12 a) Test chamber for performing the experiments using different types 

of calorimeters. b) Schematic drawing showing the chamber components. 
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5.2 Temperature control 

The temperature program used in the experiments was linear with time, or 

under isothermal mode when indicated. A PID temperature control was 

implemented in LabView™ to regulate the power supplied to the heaters. The 

control received temperature feedback from the RTD sensors, which are 

previously calibrated as described in Section 5.3. In the case of Xensor devices, 

the temperature information can be obtained from their thermopiles. Using 

thermopiles as temperature sensor have the advantage that they do not need a 

bias power supply as the RTDs. Therefore, no self-heating or other 

thermoelectric effects occur when operating a thermopile [25]. In addition, 

thermopiles provide fast time responses. However, as mentioned before, the 

maximum operating range of thermopiles in sensors LCM-9924 and LCM-2506 

was limited to around 100oC.   

 

5.3 Temperature sensor calibration 

Before performing experiments, the RTDs were calibrated against an 

external and commercially available thin-film RTD (F3105 from Omega), by 

placing the calorimeter and the reference RTD in an oven and recording the 

resistance of the RTDs as a function of the temperature (R(T)). The calibration 

temperature was fixed depending on the expected maximum temperature for 

each experiment. Table 3 shows the resistance values used for the TCR 

estimation for prototype TAMU/ULL-03 collected using three different devices. 
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Resistance values at 100oC were obtained directly during the calibration 

process, whereas resistance values at 0oC were obtained by extrapolation of the 

R(T) data set. The TCR values were calculated according to equation given in 

page 28. 

 

Table 3 RTD temperature coefficients of resistance obtained experimentally for 

three different devices with the same design (TAMU/ULL-03) fabricated in the 

same wafer. 

Device R(0oC), ohm R(100oC), ohm TCRexp, %/oC 

I 199.1 204.5 0.42 

II 198.9 207.2 0.41 

III 198.9 206.9 0.40 

Average TCR 0.41 

 

Figure 13 shows a snapshot of the LabView™ routine created to carry out 

the calibration of the sensors.  The routine automatically collects the 

temperature readings from the external calibration RTD and the resistance 

values of the calorimeter RTD. This subroutine also allows selecting which data 

is used for the estimation of R(T), visualizing the corresponding equation (linear 

or quadratic), and saving the calibration data into an ASCII file.  
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Figure 13 Screen shot of the LabView™ subroutine used for the RTD 

calibration. 

 

The calibration of the sensors was verified by determining the transition 

temperature of indium. This material was selected because it is a very known 

calorimetric standard that has a well defined endothermic peak corresponding to 

its melting transition. For the experiments, a minute amount of indium (Sigma-

Aldrich) in the form of fine powder was placed in the cavity created beneath the 

calorimeter membrane. The sample was heated until melted several times to 

form a thin layer on the surface of the heated area in the membrane. This was 
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done to have a well defined endothermic peak. Notice that for the design of chip-

scale calorimeters, the uniformity of the heated area is critical for obtaining 

acceptable results. The peak definition depends on an adequate sample/sensor 

contact. Transition lags may appear if the sample is not heated evenly due to 

temperature gradients. Figure 14 shows the raw data obtained experimentally 

and the time-averaged values. The transition temperature measured with the 

RTD was then adjusted with the expected temperature from literature.  

 

 

 

 

 

 

 

 

 

 

 

Figure 14 Thermogram of the thermal transition of pure indium obtained with 

TAMU/ULL-03 prototype showing the differential (dots) and the time averaged 

signal (continuous line) [53].  
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5.4 Application examples using liquid samples 

Chip-scale calorimeters with membranes of 10-50 µm are relatively strong 

for use with liquid samples. The membrane acts a physical barrier that separates 

the electronic side of the calorimeter from the sample and the hollow space acts 

as sample reservoir with a known volume. By using this cavity, the use of micro 

channels is not required and the sample can be simply injected through micro 

holes drilled on a glass cover (see Figure 15a). For this work the glass covers 

were drilled using spark assisted chemical engraving (SACE). This procedure 

was done in an aqueous solution of NaOH (30 wt. %) at room temperature using 

an electrode connected to a VDC source. Details about spark assisted chemical 

engraving are not discussed here, but can be found elsewhere [54-55]. 
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Figure 15 a) Schematic representation of the experimental setup used for using 

the chip-scale calorimeters with liquid samples. b) SACE procedure used for the 

fabrication of the injection port in the glass covers. 

 

5.4.1 Evaporation of acetone 

The evaporation of acetone was determined using a TAMU/ULL-03a 

prototype. The experiment started with the sample injection using a micro 

syringe and keeping the sample at the desired temperature (total volume 

included glass cover ~25 µL). Then, the perforated holes allowed free 
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evaporation of the sample. The area of the heat required

related to the enthalpy of vaporization. The averaged heat of vaporization 

determined at 30oC was 384 J/g, which differs from the literature value of 550 

J/g. This difference is attributed to uncertainties during the sample injection

the calibration process [53]

the procedure described above. Further work needs to be done to improve the 

control and methods to reduce this error. 

 

 

 

 

 

 

 

 

 

 

 

Figure 16 a) Thermogram of the evaporation of acetone obtained with 

calorimeter TAMU/ULL-03a 

evaporation of the sample. The area of the heat required by the controller was 

related to the enthalpy of vaporization. The averaged heat of vaporization 

C was 384 J/g, which differs from the literature value of 550 

J/g. This difference is attributed to uncertainties during the sample injection

[53]. Figure 16 shows a thermogram obtained following 

the procedure described above. Further work needs to be done to improve the 

control and methods to reduce this error.  

a) Thermogram of the evaporation of acetone obtained with 

03a [53]. 
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by the controller was 

related to the enthalpy of vaporization. The averaged heat of vaporization 

C was 384 J/g, which differs from the literature value of 550 

J/g. This difference is attributed to uncertainties during the sample injection and 

shows a thermogram obtained following 

the procedure described above. Further work needs to be done to improve the 

a) Thermogram of the evaporation of acetone obtained with 
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5.4.2 Heat of mixing (HOM) screening 

Chip-scale calorimeters based on thick-membranes are ideal for 

screening liquid samples for changes in energy due to the mixture between two 

samples. From an application point of view, chip calorimeters can be used to 

fabricate handheld devices which can be deployed on field applications for 

safety screening of liquid mixtures. In order to illustrate this application, LCM-

2506 and NCM-9924 liquid nanocalorimeters were used to screen two binary 

mixtures to determine the release or absorption of energy when the individual 

components are combined. 

These calorimeters can be also operated in isothermal mode to monitor 

HOM. Using the same experimental setup shown in Figure 15a, a microsyringe 

can be used to inject two liquid samples. Then, the heat evolved or absorbed 

during the process can be related to the change in the output from the 

calorimeter sensor. Figure 17 shows a qualitative determination of the HOM for 

the mixture of benzene/ethanol. This mixture was selected because there are 

results reported in the literature using traditional scanning calorimeters that can 

be used as reference. The experiment started by adding benzene into the 

calorimeter, and maintaining an electrical power to produce a temperature of 

around 30oC, and the changes in the resistance of the sensor was monitored. 

Then successive injections of ethanol were performed and the sensor output 

was recorded. The results obtained using LCM-2506 liquid nanocalorimeter 

(Figure 17a) showed similar trend reported by Mita et al [56]. The sensor output 
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was smaller for successive higher concentrations of ethanol. Figure 17b shows 

the results obtained with a NCM-9924 liquid nanocalorimeter when different 

amounts of ethanol are added to 20 µL of benzene. These results show an 

endothermic behavior when benzene and ethanol are mixed together.  

In a different experiment, a mixture of pyridine and acetic acid was 

prepared as an example of an exothermic HOM. In this case, pyridine was 

injected to a NCM-9924 containing acetic acid at around 40oC. As can be 

observed in Figure 18, the first peak occurs when the acetic acid is injected, 

then subsequent peaks are related to the addition of pyridine. The magnitude of 

the HOM decreases as the concentration of pyridine in acetic acid increases, 

and contrary to the benzene/ethanol case, here the results revealed an 

exothermic behavior. 
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Figure 17 Thermograms obtained for screening the heat released when 

benzene and ethanol are mixed together. a) Results obtained using a LCM-2506 

liquid calorimeter. The insert was obtained with a NCM-9924 calorimeter. b) 

Addition of ethanol (10, 5, 4, and 3 µL) to 25 µL of benzene in a NCM-9924 

calorimeter [53]. 
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These two examples demonstrate that thick-membrane calorimeters are 

useful to detect changes in energy when two liquid samples are mixed. From an 

application point of view, handheld devices based on chip calorimeters can be 

used for safety screening of liquid mixtures in field applications because they will 

provide a quick result about the behavior of a liquid mixture. 

 

 

 

 

 

 

 

 

Figure 18 Thermogram obtained with NCM-9924 sensor. Here, 3 µL of pyridine 

were added successively to an initial volume of 25 µL of acetic acid at 40oC [53]. 

 

5.5 Application examples using solid samples 

Testing of solid samples with membrane calorimeters is also possible. 

However, the complexity increases because the tiny amount of sample required 

is difficult to measure accurately, and because the heat transfer between the 

heated area of the calorimeter and the sample is more complicated because it is 

highly dependent on the contact area of the sample and the sensing area. A 
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common practice for testing solids in nanocalorimeter systems is to place the 

sample directly over the sensing area of the calorimeter in the form of a thin 

layer, which is applied using deposition techniques. In this approach, the amount 

of material is accurately known because the dimensions of the material layer are 

defined. Using this technique, the heat transfer problem is solved because the 

thermal contact between the sensing area in the calorimeter and the sample is 

good. However, this technique is not applicable to all materials, and it is not 

adequate for devices that have an intended use outside the controlled laboratory 

environment. For the experiments conducted in this work, the samples were 

added in powdered form and the amount of sample was approximated from the 

volume of the cavity beneath the calorimeter membranes. Therefore, the 

release/absorption of energy was done in relative terms.  

Regarding the heat transfer, good thermal contact between the sample 

and the sensing area is important to transfer the heat generated in the heaters to 

the sample. Thermal conductivity, area of contact, and thickness of the sample, 

control the effectiveness of the heat transfer and the size of the sample and 

heating rates that can be used for the analysis using chip-scale calorimeters. 

Figure 19 shows calculated temperature distributions of a hypothetical sample 

with spherical shape. The shape of this hypothetical sample was selected 

because it represents the worst case where there are very little contact area 

between the sample and the heated area in the calorimeter. From these model 

results, it is clear that when the material has low thermal conductivity the layer of 
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sample needs to be very thin (<200 µm) to avoid large temperature gradients 

and be able to operate at high heating rates above. The following section 

describes two application examples using solid samples. 

 

5.5.1 Thermal screening of gunpowder 

A typical application of calorimetry is the thermal hazard assessment of 

chemical reactions. The determination of heat of reactions is commonly carried 

out in differential scanning calorimeters. However, in the presence of highly 

energetic materials, experiments using traditional calorimeters are not trivial due 

to the potential high energy release from the decomposition reaction that can 

damage the equipment during testing. The reduced sample required by chip-

scale calorimeters will allow performing thermal analyses of highly energetic 

materials in a safe way.  It is expected that the unique characteristics of chip-

scale calorimeters can be used to produce handheld calorimeters for the 

screening and detection of highly energetic substances in security applications 

[1, 37].  As explained before such handheld calorimeters will be very useful to 

detect hazardous energetic materials. A simple test in a scanning calorimeter 

can reveal if an unknown sample is a thermal hazard. 
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Figure 19 a) Temperature difference between the coldest side of a spherical 

sample and the membrane; b) effect of thermal conductivity and sample size; 

and c) effect of heating rate on the sample temperature. 
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 In this work we used one of our prototypes (TAMU/ULL-04b) to perform a 

thermal screening of a gunpowder sample (Remington). This material was 

selected because it is easily available, and moreover because it can give an 

idea about the performance of the prototypes when used with energetic 

materials. Also, the individual grains of the gunpowder sample are almost 

spherical (D~200 µm).  In this way, it was possible to observe the case where 

the contact between the sample and the heated area in the calorimeter is not 

good. For this sample, the experimental setup was slightly modified in order to 

prevent the rupture of the calorimeter membrane due to the gases generated 

during the decomposition of the sample. The glass cover placed over the 

membrane-side of the calorimeter was not glued to allow the gasses to escape. 

Therefore, the experiments were conducted in a cell not closed hermetically 

Figure 20 shows the differential signal obtained experimentally using a 

gunpowder sample. Here, the power supplied to the heaters was increased 

linearly to produce a heating rate of around 25oC/min. The result obtained 

revealed a sharp exotherm that was in excellent agreement with the thermogram 

obtained with a traditional DSC. The response of the sensor to a rapid event was 

successful and the prototype was able to capture the sharp exothermic 

decomposition of gunpowder. 
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Figure 20 a) Differential signal output obtained using a prototype calorimeter 

TAMU/ULL-04b with gunpowder sample. The insert show the results obtained 

using a conventional DSC (Pyris, from Perking Elmer) [53]. 
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5.5.2 Thermal screening of picric acid  

As mentioned at the beginning of this section, the heating rates that can 

be used with chip-scale calorimeters are very dependent on the thermal mass of 

the device, and the effectiveness of the heat transfer between the calorimeter 

and the sample. Calorimeters with thick membranes (10-50 µm) can be used at 

maximum heating rates around 100-200oC/min. On the other hand, if faster 

heating rates are required, thin-film calorimeters are a desirable alternative.  As 

an example, TCG-3880 gauges (Xensor Integration) are devices with very low 

thermal mass. Therefore, they can be used to perform analysis at very high 

heating rates using very tiny samples with minimum power consumption. Figure 

21 shows the calculated and experimental values of the sensor temperature as a 

function of the applied voltage. As an example of the use of this senosors, 

Figure 22 shows a thermogram obtained from a picric acid sample. For the 

analysis, a needle-sized sample was placed over the heated area of the TCG-

3880 gauge using an optical microscope. The gauge temperature was then 

raised by quickly increasing the voltage across the resistive heater following a 

linear ramp. The experiment was conducted according to the procedure used by 

Zuck et al [40]. For comparative purposes a thermogram obtained with a 

conventional DSC using a closed cell is shown in the figure insert.  As it can be 

observed, the result obtained with the TCG-3880 agrees with the thermogram 

obtaining using a commercial DSC, and the endothermic/exothermic transitions 

were successfully identified.  



 

 

 

 

 

 

 

 

 

 

 

Figure 21 TCG-3880 gauge’s temperature as a function of the applied voltage 

and position. Green dots are experimental values measured with the change in 

resistance of the poly-Si

using the gauge’s thermopile. The rest of the values were obtained using 

 

 

 

3880 gauge’s temperature as a function of the applied voltage 

and position. Green dots are experimental values measured with the change in 

Si heater. The orange dots are the temperature measured 

using the gauge’s thermopile. The rest of the values were obtained using 
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3880 gauge’s temperature as a function of the applied voltage 

and position. Green dots are experimental values measured with the change in 

. The orange dots are the temperature measured 

using the gauge’s thermopile. The rest of the values were obtained using FEA. 
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Figure 22 Differential signal obtained using a TCG-3880 sensor for the 

screening of impure picric acid. The insert shows the result obtained using a 

conventional DSC [53]. 
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6. CONCLUSIONS AND FUTURE RESEARCH PATHS 

6.1 Conclusions 

Thermal analysis of unknown samples provides information about the 

energy released during their thermal decomposition. Therefore, calorimetric 

methods can be used as a novel approach for detection of highly energetic 

materials with the potential of being an explosive hazard. However, to date, no 

commercial calorimeter can satisfy the features required to be used as an 

explosive detector. In this work we have designed and fabricated two chip-scale 

calorimeters based on thick silicon membranes that can be used for thermal 

screening of microscale samples. The use of thick membranes has a negative 

impact on the sensitivity of the device. However, the mechanical strength is 

improved, which makes more robust devices that are strong enough to be 

deployed outside the laboratory environment. This feature opens the possibility 

to be incorporated into portable (handheld) systems that can be deployed in field 

applications. Despite their lower sensitivity in relation to thin-film film 

nanocalorimeters, we have shown that the calorimeters presented here, based 

on thick membranes, can successfully detect the thermal transition of a number 

of different liquid and solid samples. Also their potential to be used with 

energetic materials was demonstrated by detecting the rapid decomposition of a 

gunpowder sample in a semi-confined environment.  With this work, it is 

expected that that the knowledge gained in this work can rapidly be applied to 
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the development of a final device that can be tested under real test conditions 

for a variety of controlled substances.  

 

6.2 Future work 

The work presented here focused on the design of chip-scale calorimeters 

prototypes based on thick-membrane silicon technology. These sensors were 

successfully tested with gunpowder and the results obtained agreed with 

previous literature. However, the use of these sensors under real conditions 

requires additional work, which needs to be completed before chip-scale 

calorimeters can be used in commercial applications.  The following research 

tasks are expected to produce a tool with the required characteristics of a 

handheld device for the thermal screening and detection of energetic materials. 

Sensor geometry optimization: The sensing part of the calorimeter is located 

in its membrane, which is supported on a silicon rim that serves as a heat sink 

and it is where the bonding pads are located. During this work, the silicon rim 

was over dimensioned to accommodate large area bonding pads in order to 

facilitate the wire-bonding operations. The large silicon rim has a positive effect 

by providing a large area for the contact between the sensor and the heat sink. 

However, the number of sensors that can be fabricated in a single wafer is 

reduced and the fabrication costs increases. In large scale production, the wire-

bonding operations are fully automated. Therefore, it is possible to reduce the 
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silicon rim and lower the fabrication costs. A final prototype should take this into 

account, especially when considering the effect of reducing the contact area with 

the heat sink on the overall temperature distribution of the sensor and chip 

carrier. 

Automated sampling system: Chip-scale calorimeters with thick membranes 

are suitable for handling both liquid and solid samples. In the case of liquid 

samples, the sampling system is relatively straightforward because the sample 

is injected using a micro syringe or a syringe pump and the sample mass can be 

determined from the injected volume. However, for solid samples an automated 

sampling system suitable for handheld devices is not available. This sampling 

system should take into account an accurate determination of the sample mass, 

sample thickness, and an enhanced thermal contact between the sample and 

the membrane of the sensor.  

Integrated electronics: The majority of the electronics required to operate 

and to collect data from the calorimeter used in this work are commercially 

available, and hence not specifically tailored for this application. Therefore, 

collaboration with another engineering field such as electrical engineering will be 

beneficial for the construction of a final calorimetric device. The experience 

gained with this research and the collected data will help to design and 

manufacture tailored electronics that can fit into handheld devices.  
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Modeling of Prototypes by Finite Element Analysis 

This appendix is dedicated to describing the finite element models 

constructed to study the design of the chip-scale calorimeters used in this 

project. Information obtained from the models was used to estimate the 

temperature distributions, influence of boundary conditions, power consumption 

and electrical response of heaters and resistance temperature detectors. 

 

Thin-film based calorimeters: Xensor TCG-3880 example 

A thermal conductivity gauge TCG-3880 from Xensor Integration [35] was 

used as an example of nanocalorimeters based on thin-film silicon nitride 

technology. TCG-3880 gauges are not optimized for use in calorimetric 

applications [34]. However, because of their characteristics, TCG-3880 gauges 

have been used in ultra-fast nanocalorimetry in multiple research works [40, 57].  

 

Device description 

TCG-3880 gauges consist of a closed thin-film silicon nitride membrane 

of 50 x 100 µm2 and 1 µm-thick. The membrane is supported by a silicon rim of 

2.50 x 3.33 mm2 and 300 µm-thick (Figure 23). The central area of the 

membrane is assumed to be isolated thermally from the surroundings due to the 

high thermal resistance achieved by its reduced thickness. Temperature 

monitoring in TCG-3880 gauge is done with a thermopile with an effective 

sensitivity of 1.3 mV/K. The thermopile hot junctions are placed around 50 µm 
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from the polysilicon heater, whereas the cold junction are placed at a distance of 

one millimeter. The heat required to operate the device is supplied by a 600 ohm 

polysilicon heater with a temperature coefficient of 0.1 %/oC [35]. Additional 

specifications are given in Table 4.  

 

Table 4 Specification parameters for TCG-3880 gauges (adapted from [35]).  

Parameter TCG-3880 

Membrane thickness 1 µm 

Hot spot area 50 x 100 µm2 

Overall Si frame dimensions 2.50 x 3.33 mm2 

Output in air 30 V/W 

Thermopile resistance 55,000 ohm 

Thermopile effective sensitivity (intrinsic) 1.3 (2.4) mV/K 

Heater resistance 600 ohm 

TCR 0.1 %/K 

Thermal resistance in vacuum 100 kK/W 

Maximum heating voltage in air (vacuum) 2.5 (1.0) V 

Heater maximum temperature 250oC 

  



 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 a) Picture of TCG

thermopile leads and the polysilicon heater; c) and d) 2D model constructed with 

COMSOL Multiphysics™. Numbers indicate thermopile leads in the sensor.

 

a) Picture of TCG-3880 gauge; b) magnification showing the 

thermopile leads and the polysilicon heater; c) and d) 2D model constructed with 

Multiphysics™. Numbers indicate thermopile leads in the sensor.
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3880 gauge; b) magnification showing the 

thermopile leads and the polysilicon heater; c) and d) 2D model constructed with 

Multiphysics™. Numbers indicate thermopile leads in the sensor. 
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Model construction – TCG-3880 gauge 

A two-dimensional (2D) model of the TCG-3880 was constructed using 

the electro-thermal interaction module of COMSOL Multiphysics™. This module 

solves the equations that describe the electrical and heat transfer domains 

simultaneously. These equations are given as follows: 

 

Electrical domain: 

����
� = ��×��� 

!"�#��$
       (A.1) 

 

��� = %�� �

�
    (A.2) 

 

%�� = %�&� + (�� − �� *    (A.3) 

 

where, I is the current flowing through the resistive heater (amps), R(T) is the 

resistance of the heater as a function of temperature (ohms), SHeater is the 

surface area of the heater (m2), δo is the resistivity of the heater’s material at the 

reference temperature (ohm-m), To is the reference temperature (K), α is the 

temperature coefficient of resistivity (K-1), L is the length of the heater (m), and A 

is the cross sectional area of the heater (m2). 
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Heat transfer domain: 

 

	�+
,�

,�
+ - ∙ �−�-� = / − 	�+� ∙ -� − 0 ∙ ��1 − ��

1        (A.4) 

 

where ρ is the material density (kg/m3), Cp is the specific heat capacity at 

constant pressure (J/kg-K), T is absolute temperature (K), u is the velocity vector 

(m/s), k is the thermal conductivity (W/m-K), Q represents heat sources other 

than viscous heating (W/m3), E is the constant for thermal radiation and Te is the 

external temperature (K).  

The following sections describe the initial and boundary conditions used 

to solve these equations. 

 

Electrical Domain - Boundary Conditions 

The first boundary condition was fixed by assuming that the resistive 

heater is surrounded by isolating material and there are not current losses 

through the lateral walls of the heater, therefore: 

 

2 ∙ � = �         (A.5) 
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In a second boundary condition, an electrical potential between the 

terminals of the heaters of length L are established. 

 

0��, 4, 5 = �     �6$��2�        (A.6) 

 

0��, 4, 5 = 7     �#++
8�� 9�
�#6�       (A.7) 

 

where J is the input current density (amps/m3) and V is the applied voltage 

(volts). 

For the model construction, the geometric dimensions were approximated 

from microscope images of the sensor, and from personal communications with 

the manufacturer. Five sub-domains were created and their properties were 

assigned to match the properties of the construction material in the sensor. Then 

a triangular mesh of 31,811 elements was applied to the 2D model (see Figure 

24a).  

The 2D model was solved by finite element analysis using the a Direct 

(UMFPACK) [58-59] linear system solver method, which is included in COMSOL 

Multiphysics™. The current supplied to the heater was increased following the 

expression Irate/60*tN, where Irate is the current rate, t is the time in seconds and 

N is a constant selected to simulate an approximate linear heating of the 

calorimeter. The results collected from the model include the electrical potential 



across the heater, resistance change, and joule heating. 

electrical potential and the joule heating obtained when applying

mA to the polysilicon heater. More detailed results will be discussed in a 

following section. 

 

 

 

 

 

 

 

 

Figure 24 Postprocessing results obtained from TCG

electrical domain: a) meshed geometry,

resistive heating. 

 

The power required to operate the TCG

electrical power produced in polysilicon heaters. The basic assumption is that all 

this electrical heat is transferred to the calor

increase their temperature. The modeling of this heat transfer was modeled as 

follows: 

 

across the heater, resistance change, and joule heating. Figure 

electrical potential and the joule heating obtained when applying a current of 4.6 

mA to the polysilicon heater. More detailed results will be discussed in a 

Postprocessing results obtained from TCG-3880 2D model in the 

electrical domain: a) meshed geometry, b) electrical potential distribution, c) 

The power required to operate the TCG-3880 gauges is equal the 

electrical power produced in polysilicon heaters. The basic assumption is that all 

this electrical heat is transferred to the calorimeter/sample and it is used to 

increase their temperature. The modeling of this heat transfer was modeled as 
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Figure 24 show the 

a current of 4.6 

mA to the polysilicon heater. More detailed results will be discussed in a 

3880 2D model in the 

b) electrical potential distribution, c) 

3880 gauges is equal the 

electrical power produced in polysilicon heaters. The basic assumption is that all 

imeter/sample and it is used to 

increase their temperature. The modeling of this heat transfer was modeled as 
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Heat transfer - Initial Conditions 

The initial conditions used to solve the heat transfer equations were fixed 

assuming that the temperature of the TCG-3880 gauge in all points is 

homogeneous and it is in complete thermal equilibrium with the surrounding air. 

Therefore, its temperature at time zero is equal to the ambient temperature. 

 

�&�, 4, 5, �� = � * = �#:;        (A.8) 

 

Heat transfer - Boundary Conditions 

The first boundary condition specified the temperature on the edge of the 

TCG-3880 gauge (Dirichlet boundary condition). Here, the backside of the 

device was connected directly to the chip holder, which is massive in relation to 

the calorimeter itself. The temperature of the chip holder was assumed constant 

and equal to the ambient temperature at all times [60-61]. Also, the temperature 

at the edges of the membrane was assumed to be constant and equal to the 

ambient temperature (25 deg C). This should be a reasonable assumption, since 

the 300 µm-thick silicon frame has a much larger heat capacity than the 

membrane, and should not heat significantly. 

 

<�|!�$>#�� = �#:;        (A.9) 
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A second boundary condition can be stated on the lateral walls of the 

calorimeter. The total area of the lateral sides is considerably smaller in relation 

to the upper and lower faces of the calorimeter.  Then, it is reasonable to 

assume that the heat flow through the lateral walls is negligible [62]. As a 

simplification these walls can be assumed as perfectly insulated, hence: 

 

<−2|!�$>#�� ∙ � = �� = �        (A.10) 

and 

� = −�?� + 	�+��        (A.11) 

 

where: qo is the inward heat flux, which is normal to the boundary (W/m2) and n 

is the normal vector of the lateral walls. On the other hand, the upper face of the 

calorimeter is exchanging heat with the surroundings. Therefore, this layer is 

defined by the following expression: 

 

<−2|!�$>#�� ∙ �−�-� = �<�� − �#:; |!�$>#��       (A.12) 

 

Finally, the heaters can be considered as a heat sources due to Joule 

effects (see previous section). The expression that represents them is: 

 

<−2|!�$>#�� ∙ �−�-� = ����
� + �<�� − �#:; |!�$>#��      (A.13) 
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Additional assumptions are that the temperature gradients in the z-

direction of the calorimeter are negligible. The thickness of the calorimeter is 

much smaller than the lateral dimensions, and hence this assumption is a 

reasonable simplification. Finally, the heat transfer equation can be simplified by 

assuming that the heat generated by the electrical heaters is transmitted to the 

calorimeter and the sample mainly by conduction mechanisms. Therefore, 

thermal radiation and convection were neglected. 

Figure 25 shows 2D postprocessing results of the TCG-3880 gauge with 

the corresponding temperature profile obtained from simulations in the transient 

mode. The plots show a steady-state screen shot when there is a differential 

voltage of 3.8 volts across the polysilicon heater. For the model the effect of the 

temperature on the properties of the material was taken into account by coupling 

the electrical domain equations with the heat transfer domain equations. With 

this it was possible to predict the change in resistance at different temperatures 

and the changes in heat capacity of the calorimeter. Experimental results will be 

included in a subsequent section in order to test the validity of the COMSOL 

Multiphysics™ model. 

As it can be seen from the 2D models, in TCG-3880 gauges the heated 

area is well insulated from the surroundings due to the good thermal insulation 

achieved by the reduced thickness of the membrane. However, the lateral 

temperature gradients are large due to the non-homogeneous heating. This is 



because the heater consists of two resistive heater stripes confined to a small 

area in the center of the membrane. 

gradients of several degrees around the heaters in very short distances. This 

confirms that the sample should be precisely placed inside the heated area for 

accurate results. Similar findings have been reported by Zhuravlev and Schick 

[63] using other thin-

Integration (i.e., XI-292, XI

 

 

 

 

 

 

 

 

 

Figure 25 Postprocessing results showing the temperature distribution obtained 

from TCG-3880 2D model in the heat tr

 

because the heater consists of two resistive heater stripes confined to a small 

area in the center of the membrane. Figure 25 (b and d) shows temperature 

gradients of several degrees around the heaters in very short distances. This 

confirms that the sample should be precisely placed inside the heated area for 

accurate results. Similar findings have been reported by Zhuravlev and Schick 

-membrane nanocalorimeters developed by Xensor 

292, XI-320, XI-296). 

Postprocessing results showing the temperature distribution obtained 

3880 2D model in the heat transfer domain. 
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because the heater consists of two resistive heater stripes confined to a small 

s temperature 

gradients of several degrees around the heaters in very short distances. This 

confirms that the sample should be precisely placed inside the heated area for 

accurate results. Similar findings have been reported by Zhuravlev and Schick 

membrane nanocalorimeters developed by Xensor 

Postprocessing results showing the temperature distribution obtained 
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Thick-membrane based calorimeters: Xensor NCM-9924  

A different type of chip-scale calorimeters are based on thick silicon 

membranes. These devices are typically used with liquid samples because they 

are robust and the space behind the membrane can be used to contain the 

sample. However, due to their thicker membrane the thermal resistance is 

smaller compared to devices based on silicon nitride membranes. As an 

example of these devices we used a commercial NCM-9924 liquid 

nanocalorimeter from Xensor Integration [24, 35].  

 

Device description 

NCM-9924 devices have aluminum thin-film resistive heaters, which have 

a resistance of 260 or 1050 ohms depending on the electrical connections (see 

Figure 26). Also these sensors have an additional p-type silicon resistor of 440 

ohms. The heater design and the excellent thermal conductivity of silicon allow a 

relatively homogeneous temperature distribution over the entire membrane. 

However, because of its lower thermal resistance compared to thin-film based 

calorimeters, heat losses by lateral conduction through the chip carrier are 

expected especially at high temperatures, which reduce their sensitivity and 

increase the power requirements to operate these devices. These calorimeters 

have a limited temperature range of operation (~100oC) because the electrical 

behavior of the materials used in their fabrication changes. Additional 

specifications for NCM-9924 liquid calorimeters are given in Table 5 



 

 

 

 

 

 

 

Figure 26 a) Picture of NCM

the thermopile leads and the Al heater; c) and d) 2D model constructed with 

COMSOL Multiphysics™. 

 

Table 5 NCM-9924 nanocalorimeter specifications (adapted from

Parameter

Membrane thickness

Membrane area

Overall Si frame dimensions

Output in air 

Output in water

Thermopile resistance

Thermopile sensitivity (intrinsic)

Heater resistance

Thermal resistance

 

a) Picture of NCM-9924 liquid calorimeter; b) magnification showing 

the thermopile leads and the Al heater; c) and d) 2D model constructed with 

COMSOL Multiphysics™.  

9924 nanocalorimeter specifications (adapted from [35]

Parameter NCM-9924 

thickness 22-45 µm 

Membrane area 8.3×8.3 mm2 

Overall Si frame dimensions 10.0×10.0 mm2 

 1.2-2.4 V/W 

Output in water --- 

Thermopile resistance 50,000 ohm 

Thermopile sensitivity (intrinsic) 50 mV/K 

Heater resistance 440 (800, 260) ohm

hermal resistance 24-48 K/W 
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orimeter; b) magnification showing 

the thermopile leads and the Al heater; c) and d) 2D model constructed with 

[35]). 

440 (800, 260) ohm 
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Model construction: NCM-9924 liquid nanocalorimeter 

NCM-9924 liquid nanocalorimeters 2D models were also modeled 

constructed using the electro-thermal interaction module of COMSOL 

Multiphysics™. Here, the chip carrier also modeled because its heat transfer 

with the nanocalorimeter cannot be neglected. 

 

Heat transfer - Initial Conditions 

In a similar way that for TCG-3880 gauges, the initial conditions used to 

solve the heat transfer equations were fixed assuming that the temperature of 

the NCM-9924 liquid nanocalorimeter is homogeneous in all points and it is 

equal to the ambient temperature (eq. A.8). 

 

Heat transfer - Boundary Conditions 

A Dirichlet boundary condition was chosen to solve the 2D model for the 

NCM-9924 liquid nanocalorimeter. Here, the temperature on the edge of the chip 

carrier was initially set to be equal to the ambient temperature (25oC). The 

interior boundaries of the model (i.e., frontier between chip carrier and liquid 

calorimeter) were assumed to freely exchange heat by conduction mechanisms. 

This condition represents the heat dissipation that occurs from the heated area 

of the device to the chip carrier and its surroundings. 
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The final boundary condition exists between the thin film heater and the 

surface of the membrane. Here, the heat flux through the boundary is specified 

and it is equal to the joule heating per unit area (eq. A.10).  

Figure 27 shows 2D postprocessing results of the NCM-9924. As it can 

be observed from these results, the heated area is not completely insulated and 

the chip carrier will heat due to conduction mechanisms. On the other hand, the 

lateral temperature gradients in NCM-9924 sensors are smaller due to the 

excellent thermal conductivity of silicon. This has the limitation that the sensitivity 

of the device will be affected. On the other hand, Figure 28 shows the 

temperature distribution of the calorimeter device at different positions as a 

function of the applied voltage. As it can be observed the voltage required by 

this device is larger compared to TCG-3880 gauges because the larger mass of 

the sensor. This is a disadvantage in terms of device sensitivity, but this problem 

is compensated for the robustness of NCM-9924 sensor, which can be used in 

applications with liquid samples and without requiring special handling of the 

sample under analysis. 

  



 

 

 

 

 

 

 

 

Figure 27 Postprocessing results showing the temperature distribution o

from NCM-9924 2D model. 

 

 

 

 

 

 

 

 

 

 

Figure 28 Temperature profile for calorimeter NCM

models as a function of the applied voltage to de heaters.

Postprocessing results showing the temperature distribution o

9924 2D model.  

Temperature profile for calorimeter NCM-9924 obtained from 2D FEA 

models as a function of the applied voltage to de heaters. 
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Postprocessing results showing the temperature distribution obtained 

9924 obtained from 2D FEA 
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