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ABSTRACT 
 

Development and Testing of a Multi-layer Soil-roller Interaction Model. 

(December 2010) 

Daniel Joseph Rich, B.S.C.E., Rose-Hulman Institute of Technology; 

M.C.E., The University of Houston 

Chair of Advisory Committee: Dr. Robert L. Lytton 

  

This dissertation focuses on the development of a mechanics based soil-roller 

interaction model intended to determine the degree of compaction of the top soil layer.  

The model was calibrated with, and compared to, soils data obtained from field and 

laboratory tests.  The model contained 2 soil layers, but can be expanded to include 

additional layers. 

This study concludes that the developed soil-roller interaction model is capable 

of accurately determining the degree of compaction of the upper soil layer through back 

calculation of the soil modulus values.  The model was able to reach convergence 

between the calculated and measured values of roller drum deflection through a 

regression analysis of soil stiffness and damping characteristics.  The final values of the 

stiffness and damping characteristics needed to achieve a 1% difference between the 

calculated and measured values of roller drum deflection fell within expected ranges for 

the type of material tested.  

Part of this study included a sensitivity analysis of the input characteristics.  The 

results of the sensitivity analysis revealed that the output of the model was highly 

sensitive to the mass of the second soil layer and to the elastic and plastic stiffness 

characteristics within both soil layers, but relatively insensitive to the mass of the first 

soil layer.  The lack of sensitivity to the mass of the first soil layer means that large 

changes in the layer mass, and by extension the density, will have little effect on the 

output of the model.  This characteristic is a drawback for conventional, density based 
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specifications.  However, specifications based on installing fill to the designed values of 

stiffness or modulus could benefit from the model. 

Much of the initial difference between calculated and measured roller drum 

deflection was probably caused by the difficulty in determining accurate starting values 

for the soil stiffness, damping and mass model characteristics.  Future research should 

focus on ways to determine accurate values of the required input characteristics. 
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CHAPTER I 

INTRODUCTION 

 

GENERAL 

 The current methodology of establishing and controlling compaction of 

pavement subgrade and base materials, and embankment fills, is based on achieving 

specified densities or unit weights within each layer of the placed material.  The terms 

unit weight (weight per unit volume) and density (mass per unit volume) are often used 

interchangeably in the literature when discussing compaction.  This convention can 

create a degree of confusion unless one bears in mind that under the U.S. system of 

measure scales are generally programmed to display weights (pounds and ounces), not 

mass (slugs).  Scales reporting in metric units usually display mass (grams) rather than 

force (Newtons).  Both systems of units were used during this research project.  The 

values measured during the project are reported in the text with approximate conversions 

immediately following in parentheses. 

 Many government agencies base their quality assurance (QA) and acceptance 

programs on random, in-place unit weight measurements and/or laboratory analysis of 

core samples (Brock and Sutcliffe, 1986; McCarthy, 2007; Spangler and Handy, 1982; 

TxDOT, 2005).  These methods generally test much less than 1% of the placed material 

(TxDOT, 2005; Thurner and Sandstrom, 2000).  As such, a strong possibility exists that 

some areas will be over or under compacted and that the each layer will not have a 

uniform density or support profile (TxDOT, 2005).  This lack of uniformity can result in 

uneven pavement settlement under traffic loads, which could accelerate surface distress 

(Haas et al., 1994). 

 

 

____________ 

This dissertation follows the style of Soil & Tillage Research. 
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 Methods of testing the compaction of approximately 100% of each layer of 

compacted material have been in use in several European countries for a number of 

years and efforts have been made to introduce the technology into the U.S. marketplace 

(Anderegg and Kaufmann, 2004; Peterson et al., 2007; Thurner and Sandstrom, 2000).  

The majority of these methods are based on attaching 1 or more accelerometers to a 

vibratory smooth drum roller and correlating the measured displacement of the roller 

drum to soil stiffness or resistance to deflection.  An onboard data processing and 

display system allows the roller operator to give more attention to under compacted 

areas while avoiding areas that have already been adequately compacted (Anderegg and 

Kaufmann, 2004; Peterson et al., 2007; Rinehart and Mooney, 2005; Thurner and 

Sandstrom, 2000). 

 Unfortunately, the basic research behind the commercially developed systems is 

generally considered proprietary, which makes it difficult to independently verify the 

results and establish specifications.  This difficulty led the Texas Department of 

Transportation (TxDOT) to contract with the Texas Transportation Institute (TTI) to 

develop and test an after-market compaction monitoring system for potential use by 

TxDOT and the construction community (Scullion et al., 2006).  A large amount of 

experimental data was collected over the course of the system’s 3 year development and 

testing period.  These data included roller drum deflections, in-place densities and water 

contents, falling weight deflectometer and portable falling weight deflectometer 

readings, resilient moduli, and Atterberg Limits.  Attempts to correlate the measured 

roller drum deflections with the degree of compaction of the top layer of tested material 

were unsuccessful.  This general lack of correlation has also been verified by other 

researchers (Anderegg and Kaufmann, 2004; Peterson et al., 2007; Rahman et al., 2007; 

Scullion et al., 2006; Thurner and Sandstrom, 2000).   

For this reason, it was decided that a mechanics based soil-roller interaction 

model should be developed in an attempt to isolate the degree of compaction of the top 

layer of compacted material from the influence of the underlying layers.   
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OBJECTIVE 

 The primary objective of this laboratory and field research study was the 

development and testing of a mechanics based, 2 layer, soil-roller interaction model that 

would allow for an accurate determination of the degree of compaction of the top soil 

layer.  The degree of compaction was inferred by the amount of deflection of the 

instrumented vibratory roller drum during operation over the test sections.  This 

convention was used because the measured mass of the top and underlying soil layers 

were needed to test the model.  The model would be considered accurate if the measured 

and calculated amounts of roller drum deflections agreed within approximately 1%.  The 

1% threshold was selected because current methods of compaction measuring are 

considered to be acceptable if the errors are in this range (Padlo et al., 2005).  

 

SCOPE 

 Numerous field and laboratory tests were conducted during the development of 

the Roller Acceleration Monitoring (RAM) system.  These tests resulted in a significant 

amount of experimental data.  Many of the field tests were conducted on active TxDOT 

road construction projects and at Texas A&M University’s Riverside Campus.  The mix 

of active construction projects, experimental test sections, and completed road beds 

provided a good cross-section of the material variability that would likely be 

encountered during commercial use. 

 A detailed discussion of the experimental methods used to gather the test data 

will be provided in Chapter IV.  However, a brief summary of a typical testing protocol 

is as follows.  Once a test section, usually 10 feet (3.05 m) wide by 100 feet (30.48 m) 

long, was selected within a specific project or test area, a series of test points would be 

laid out at 10 feet (3.05 m) increments along the centerline of the test section.  Each of 

the 11 test points were evaluated by the available test equipment that might include; in-

place density and water content (nuclear gauge), resilient modulus (falling weight 

deflectometer and portable falling weight deflectometer), and layer thickness (dynamic 

cone penetrometer).  Soil samples were taken on 1 occasion to allow for laboratory 
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testing of density, water content, resilient modulus, Atterberg Limits, and unconfined 

compressive strength.  The instrumented, vibrating roller was driven across the 

centerline of the test section several times and the test points were reevaluated to 

determine what, if any, changes in measured properties had occurred.  The vibrating 

roller was again driven across the centerline of the test section several times and the test 

points were reevaluated a final time. 

 

ORGANIZATION OF DISSERTATION 

 This dissertation is organized into 8 chapters.  Chapter I describes the project 

objective and scope.  Chapter II provides a brief overview of the relevant literature 

pertaining to compaction and compaction monitoring reviewed for this dissertation.  

Chapter III gives background information about TTI’s RAM system, while Chapter IV 

explains the experimental methodology used to gather the field and laboratory data.  

Chapter V presents a brief discussion of the unsuccessful attempts to correlate the test 

data to the compaction level of the top soil layer.  Chapter VI discusses the need for and 

the derivation of a mechanics based soil-roller interaction model to allow for the degree 

of compaction of the top soil layer to be isolated from the influence of the underlying 

layers.  Chapter VII presents the results of the model testing using data obtained during 

the development of the RAM system.  The findings and conclusions of this study, as 

well as recommendations for future research, are contained in Chapter VIII.  The 

appendix provides the details of the derivation of the mechanics based, 2 layer, soil-

roller interaction model. 



  5 

 

CHAPTER II  

BACKGROUND 

 

GENERAL 

 This chapter briefly defines compaction as it relates to roadway and embankment 

construction, outlines the common current practices used to measure compaction, and 

summarizes the pertinent compaction literature reviewed for this dissertation. 

 

COMPACTION 

 For the purposes of this dissertation, compaction is defined as the densification or 

stiffening of in-situ and/or imported material through the addition of mechanical energy 

(Holtz and Kovacs, 1981; Spangler and Handy, 1982).  The most common pieces of 

compaction equipment used in roadway and embankment construction are rollers (Brock 

and Sutcliffe, 1986; Holtz and Kovacs, 1981; McCarthy, 2007; Mitchell and Soga, 2005; 

Spangler and Handy, 1982).  While other methods of compaction, such as blasting or 

dynamic impact exist, they are not pertinent to this research.  Compaction differs from 

consolidation in that compaction is a relatively rapid, artificial process, while 

consolidation is a slower process resulting from the application of long-term, usually 

static, loads, such as fill.  Additionally, compaction involves the reduction of air voids in 

a material by particle rearrangement, whereas consolidation occurs when water and/or 

water and air are forced out of the soil matrix (Bardet, 1997; Fredlund and Rahardjo, 

1993; Holtz and Kovacs, 1981; McCarthy, 2007; Mitchell and Soga, 2005). 

 

CURRENT PRACTICE 

 The usual methods of establishing a material’s compacted density are based on 

the work conducted by R. R. Proctor in California in the late 1920’s and early 1930’s 

(Bardet, 1997; Das, 1999; Holtz and Kovacs, 1981; Spangler and Handy, 1982).  Proctor 

found that if the amount of compaction energy for a specific soil was held constant, that 

the addition of water would increase the dry unit weight up to a certain point.  After that 
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point, which is known as the optimum water content, the further addition of water would 

decrease the dry unit weight.  For purposes of roadway and embankment construction, 

the dry unit weight at the optimum water content is generally assumed to be the 

maximum dry unit weight that can be achieved with the available compaction equipment 

(Holtz and Kovacs, 1981; Yoder and Witczak, 1975).  The degree of compaction called 

for in project specifications is typically a percentage of the Proctor maximum dry unit 

weight.  Additionally, the specified dry unit weight must be obtained within a range of 

water contents slightly above or below the optimum water content (Brock and Sutcliffe, 

1986; Holtz and Kovacs, 1981; Yoder and Witczak, 1975). 

Whether or not a pavement subgrade, base material or embankment fill has 

reached its required degree of compaction is often determined by measuring the 

material’s in-place density and water content at random locations within each layer 

(Brock and Sutcliffe, 1986).  The target density and water contents are generally 

determined by performing laboratory compaction tests on representative samples of each 

subgrade or fill material to determine how density varies with water content for a 

specified amount of compaction energy (ASTM, 2001).  Typical results of a Standard 

Proctor test are shown in Figure 2-1.  The data in Figure 2-1 is for illustration purposes 

only and does not correspond to soil at any of the test sites.  The peak of the curve 

denotes the maximum dry unit weight (approximately 120 pounds per cubic foot in this 

example), which was obtained when the sample was compacted at a water content of 

about 9.5%. 
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Fig. 2-1.  Typical Proctor compaction curve. 

 

 

There is some debate as to the exact role that the water added to a material on the 

dry side of optimum plays in compaction.  One school of thought is that the water acts as 

a physical lubricant that allows the particles to move more easily past each other as they 

are aligned during compaction (Bardet, 1997; Das, 1999; Holtz and Kovacs, 1981).  

Another theory is that the dry soil has a high degree of suction that holds the particles 

tightly together and prevents their movement.  The addition of water decreases suction 

and aids in compaction (Spangler and Handy, 1982).  What is not generally debated is 

that there is a point where the addition of water, which is less dense than the soil 

particles, begins to take up space previously occupied by soil particles and thereby 

reduces the compacted material’s dry unit weight (Bardet, 1997; Das, 1999; Holtz and 

Kovacs, 1981; Spangler and Handy, 1982).  

 A commonly used method of measuring the in-place density of compacted fill is 

the nuclear gauge.  These gauges became widely used in the 1980’s and provide a much 

quicker way of measuring density than the sand cone or liquid displacement methods 

(McCarthy, 2007).  The gauges function by emitting gamma photons from a radioactive 

source into the material to be tested.  In general, the more photons that are deflected 
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back to the detectors embedded within the gauge, the denser the material (Troxler, 

2009).  A drawback to the nuclear gauge is that its radioactive source necessitates careful 

storage, handling, and record keeping in order to abide by the numerous regulations 

governing the gauges (ASTM, 2001). 

 Pavements are not designed on the basis of the density of the various pavement 

layers; they are designed on the basis of each layer’s modulus or strength (Haas et al., 

1994; Huang, 2004; Yoder and Witczak, 1975).  These values are assumed, incorrectly, 

to be uniform throughout each layer (Bardet, 1997; Das, 1999; Dunham, 1962; Fredlund 

and Rahardjo, 1993; Holtz and Kovacs, 1981; McCarthy, 2007; Mitchell and Soga, 

2005; Spangler and Handy, 1982).  Additionally, the random and minimalistic nature of 

some testing protocols can lead to a 10 to 40% chance that good material is rejected or 

that poor material is accepted (Spangler and Handy, 1982; TxDOT, 2005; Thurner and 

Sandstrom, 2000).  To compound the problem, the inherently non-homogeneous nature 

of naturally occurring materials like soil almost guarantees that some areas of each layer 

will be over compacted while some areas will be under compacted (Thurner and 

Sandstrom, 2000). 

 Spangler and Handy (1982) found that over compaction can lead to the 

development of slickensides or shear-failure surfaces at the interface of the roller drum 

and the soil.  These areas will be weak, even if the density specifications are met, and 

can lead to slope failures or other long-term performance issues.  Under compacted 

materials can experience greater than expected settlements and may be weaker and more 

prone to erosion than soils that were compacted to the specified density (Das, 1999; 

Holtz and Kovacs, 1981; McCarthy, 2007; Spangler and Handy, 1982).   

 Methods of testing the compaction of approximately 100% of each compacted 

layer have been in use in several European countries for a number of years and efforts 

have been made to introduce the technology into the U.S. marketplace (Anderegg and 

Kaufmann, 2004; Thurner and Sandstrom, 2000).  The majority of these methods are 

based on attaching 1 or more accelerometers to a vibratory roller and correlating the 

measured displacement of the roller drum to a material property such as stiffness.  An 
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onboard data processing and display system allows the equipment operator to give more 

attention to under compacted areas while avoiding areas that have been adequately 

compacted (Anderegg and Kaufmann, 2004; Rinehart and Mooney, 2005; Thurner and 

Sandstrom, 2000; Scullion et al., 2006). 

 

LITERATURE REVIEW 

 The study of compaction is not limited to civil engineering applications.  The 

agronomy community has been interested in determining the level of compaction caused 

by the passage of farm equipment across fields for many years (Assouline, 2002; 

Ghezzehei and Or, 2001; Grift et al., 2005; Saeys et al., 2004).  Engineers and 

agronomists are generally interested in finding the optimum level of compaction that 

will provide the most benefit to the project at hand, whether it be a roadway or a corn 

field (Assouline, 2002; Canillas, 2001; Jonsson et al., 2004; Or and Ghezzehei, 2002; 

Way et al., 2005).   

 Some of the pioneering work in vibratory compaction modeling was conducted 

by Tai-Sung Yoo and Ernest T. Selig (1979) in the late 1970’s at the University of 

Massachusetts.  Their research focused on, “the dynamic interaction of the soil-roller 

system, and the relationship of the system parameters to the amount of compaction.”  

Their model consisted of: an idealized roller frame mass, a static drum mass with a 

rotating eccentric mass, and a single soil layer.  The frame and drum and the drum and 

soil were separated by springs to model stiffness (resistance to deformation) and 

dashpots to model damping (resistance to motion).  The results of their tests suggested 

that relationships existed between roller motions and the amount of compaction and that, 

“the key roller characteristic appears to be the magnitude of drum displacement during 

vibration.” 

 Dieter Pietzsch and Wolfgang Poppy (1992) expanded upon the Yoo and Selig 

model in the early 1990’s by separating the stiffness of the springs into elastic 

(recoverable deformation) and plastic (permanent deformation) components and by 

including a soil mass-spring-dashpot subsystem required to, “control the motion of the 
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soil mass during bounce operation of the drum (drum not in contact with the soil 

surface).”  This model was primarily developed as a way to examine changes in 

compaction efficiency related to theoretical roller modifications rather than to determine 

the level of compaction of the upper soil layer.  In fact, they stated, “Because of the 

complex effects inside of the soil it is not possible to describe the internal processes 

during compaction mathematically.  Therefore, all model-based calculations can only 

approximate the actual vibration and compaction behavior.” 

 Ghezzehei (2001) and Or (2002) have conducted work to determine the 

rheological properties of soils under varying stress conditions (steady state and 

oscillating) caused by climatic conditions such as wetting and drying of soil and 

mechanically applied loads.  The determination of rheological properties allowed for the 

development of time-dependent stress-strain relationships that were used to develop 

models to predict changes in the level of compaction.  Their findings indicated that soils 

with higher water contents behaved as viscoplastic materials under steady state loading, 

and as viscoelastic materials under loading caused by the passage of farm equipment 

(transient loading).  Drier soils had a greater elastic component, or recovery of 

deformation, because of rapid, transient loading. 

 Methods of modeling or predicting soil compaction have also included 

correlation to the measured resistance of a cutting tool pulled through the soil at constant 

depth (Saeys et al., 2004) to methods involving monitoring the noise produced by a cone 

being pulled or pushed through the soil (Grift, 2005).  Both methods were able to detect 

compacted zones or layers, but the disturbance of the compacted layer caused by 

drawing the instrument through the soil would render the layer unusable for roadway and 

embankment applications. 

 Heinz Thurner and Ake Sandstrom (2000) are well known in the field of 

continuous compaction control (CCC) or the constant monitoring of the compaction of a 

soil system.  Their goal has been to develop a vibratory roller capable of providing a 

homogeneously compacted soil system by varying the amplitude and frequency of the 

eccentric, rotating mass that causes the roller drum to vibrate.  Their results have 
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generally indicated that, “the result from a CCC - recording cannot - and should not – be 

expected to correspond to the density or to the compaction degree of the [top] layer – 

especially in fine grained materials at optimum or above optimum water content.”  Or in 

other words, the response of the roller drum is a function of the entire soil system 

mobilized by the passage of the vibrating roller drum, not just the degree of compaction 

of the upper soil layer. 

 Anderegg and Kaufmann (2004) have also contributed to the CCC field.  They 

have found that large amplitude, low frequency vibrations produce compaction at deeper 

depths than high frequency, low amplitude vibrations. They have also observed that as 

the level of compaction of a soil system increases there is a corresponding decrease in 

the level of damping.  They have used these findings to develop a series of “intelligent” 

rollers that automatically adjust the frequency and amplitude of the roller drum vibration 

to produce homogeneously compacted soil systems.  

 The Minnesota Department of Transportation commissioned a study to evaluate a 

set of standard specifications for projects using intelligent compaction equipment 

(Peterson el al., 2006).  According to the Peterson report, the standard specification 

required that, “a project- or site-specific intelligent compaction target value (IC-TV) is 

developed from a contractor-constructed control strip, using an approved IC roller, 

which measures or estimates in-situ stiffness or modulus, or another compaction related 

index parameter.”  The study concluded that geostatistical methods were required to 

correlate the IC-TV to the degree of compaction of the tested material. 

 Intelligent compaction research performed by Kansas State University was 

similar to TTI’s approach in evaluating the degree of compaction of a specific lift 

(Rahman et al., 2007).  The main difference between TTI’s study methodology, which is 

detailed in Chapter III, and the Kansas State University study was that TTI used an in-

house manufactured monitoring system whereas Kansas State used commercially 

available intelligent compaction rollers.  The Kansas State study concluded that the IC 

roller stiffness was sensitive to the water content of the compacted material and that no 
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single correlation existed between the IC roller stiffness and the results of traditional 

testing methods such as back calculated modulus. 

 Robert Rinehart and Michael Mooney (2005) of the Colorado School of Mines 

instrumented a double drum vibratory roller with 6 accelerometers (3 per drum) to 

monitor the roller’s vibration characteristics during operation.  The study was reportedly 

an intermediate step along the way to developing a model to determine the degree of 

compaction of subgrade and fill material.  The testing and verification protocol for the 

roller was not detailed in the paper, but several conclusions were made.  Among the 

conclusions was that changes in the level of compaction were reflected in changes in the 

phase lag angle and vibration characteristics of the roller.      

 

SUMMARY 

 Attempts to model compaction have been on going for over 40 years.  As 

discussed above, many of the modeling methods relied heavily on correlating measured 

parameters such as roller drum deflection to soil stiffness or a modulus.  Correlation 

does not imply causation.  In other words: just because a statistically significant line or 

curve can be drawn through a set of data points does not mean that the relationship will 

work in other circumstances.  Some research undertaken within the last few years has 

attempted to use a mechanics based approach to develop a more portable mathematical 

model that can be calibrated to specific sites.  The model discussed throughout the 

remainder of this dissertation is such a model. 
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CHAPTER III 

ROLLER ACCELERATION MONITORING (RAM) SYSTEM 

 

GENERAL 

 This chapter describes the RAM system developed by TTI for TxDOT.  The 

system’s composition and function are discussed and typical system outputs are shown.  

Additionally, the status of the system, which was transferred to TxDOT in 2008, is 

briefly discussed.   

 

RAM SYSTEM COMPOSITION AND FUNCTION 

 TTI developed the prototype 100% coverage quality assurance system for 

TxDOT shown in Figure 3-1.  The system measured the acceleration of a vibrating roller 

drum as the roller traveled across the layer surface.  The prototype system was tested a 

number of times on varying sites to include active construction projects, manufactured 

test strips and gravel surfaced roads and parking lots.  A great deal of roller drum 

acceleration and soil data was collected. 

 

Accelerometer 

 The RAM system consisted of an accelerometer, which was mounted to a non-

rotating portion of the roller drum assembly (Figure 3-2).  The accelerometer was 

positioned between the vibrating drum and the isolation mounts so that only the 

acceleration of the drum was measured.  The accelerometer contained a piezo-electric 

element that generated a current proportional to the amount of force that the element 

experienced by drum acceleration.    
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Fig. 3-1.  Prototype roller system on SH 21 near Caldwell, Texas.  Photograph courtesy 
of Dr. Wenting Liu. 
 

 

 

Fig. 3-2.  Accelerometer mounted on roller. 

 

 

Prior to field testing, the accelerometer and the associated data acquisition 

system were calibrated in the laboratory.  An exciter of known frequency and amplitude 
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was used to verify that the accelerometer was performing within specifications. The 

signal from the accelerometer passed through a signal conditioner that amplified and 

double integrated the signal to provide sensor displacement.  This displacement was 

assumed to be essentially equal to the displacement of the roller drum because of the 

lack of damping between the roller drum and the accelerometer. 

In the early field tests, the signal conditioner was housed in a padded box 

attached to the side of the roller as shown in Figure 3-3.  The system provided to TxDOT 

had the signal conditioner, data acquisition system, and power supply housed in a box 

that was mounted in the roller operator’s compartment to provide greater protection. 

 

 

 

Fig. 3-3.  Signal conditioner. 

 

 

Distance Measuring Instrument 

 The position of the roller along the length of each test path was tracked by a 

distance measuring instrument (DMI) attached to 1 of the roller drive wheel hubs, as 

shown in Figure 3-4.  The DMI functioned by counting the number of pulses caused by 

the inner mechanism rotating as the roller traveled down the test strip.  Calibration of the 

DMI was required for each model of roller used and was accomplished by driving the 
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roller along a known distance and inputting the pulse count into the data acquisition and 

analysis software. 

 

 

 

Fig. 3-4.  Distance measuring instrument. 

 

 

Data Acquisition System 

 The data acquisition system consisted of a rugged laptop computer, a National 

Instruments A/D card, and custom written software to collect, process, and display the 

measured data.  The roller drum displacement and distance location information was 

typically sampled approximately 1,000 times per second.  The raw roller displacement 

data from 1 of the runs of the system is shown in the upper plot of Figure 3-5.  This is a 

plot of vertical drum movement versus horizontal distance along the test strip.  This 

signal consisted of 2 superimposed waveforms.   Low frequency displacements, between 

0 and 3 Hertz (Hz), are caused by the movement of the roller over the ground and were 

an indication of surface roughness.  High frequency drum displacements (32 Hz) are 

superimposed on these low-frequency displacements and are shown in the lower plot of 

Figure 3-5.  It is these high-frequency displacements that are an indication of the degree 
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of compaction of the soil beneath the roller (Anderegg and Kaufmann, 2004; Thurner 

and Sandstrom, 2000; Yoo and Selig, 1979). 

 

 

 
Fig. 3-5.  Typical raw (top) and filtered (bottom) system output.  Figure courtesy of Dr. 
Wenting Liu. 
 

 

To decompose these signals, the raw data was processed through a Fast Fourier 

Transform which transformed the time domain into the frequency domain and allowed a 

frequency distribution plot to be produced.  A frequency distribution plot shows the 

magnitude of the roller drum displacements on the Y axis in relation to the frequency at 

which the displacements occur along the X-axis.  To separate the 2 components, a low 

pass band filter was applied to the data.  Once filtering was completed a plot of roller 

displacement with distance was developed, as shown in the lower plot of Figure 3-5.  

Once the low frequencies associated with ground roughness were removed, the motion 

of the roller drum was measured by the system software.  A typical frequency 

distribution plot is shown in the Appendix. 

The deflection pattern shown in the lower plot of Figure 3-5 is judged as ideal.  

The peak to peak amplitudes show the displacement of the roller drum in contact with 
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the soil being compacted.  However, on very stiff materials such as stabilized base 

courses or very dry, stiff clay a different deflection pattern was observed (Figure 3-6).  

The upper plot of the figure is the raw data, and the lower plot shows the motion of the 

drum.  The lower plot shows a non-consistent set of amplitudes.  This pattern was 

associated with cases where the roller drum was not in contact with the layer surface on 

every cycle of vibration (i.e. the roller was “double jumping”). 

 

 

 

Fig. 3-6.  Drum displacement during double jumping.  Figure courtesy of Dr. Wenting 
Liu. 

 

 

The final step in the data acquisition system was to measure the average peak-to-

peak amplitudes and display those amplitudes against their location within the test strip.  

Analysis of the displacement versus location display allowed for areas with higher than 

average and lower than average displacements to be found.  A typical roller 

displacement versus distance plot is contained in the Appendix. 

 

 

 

Raw data 
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RAM SYSTEM STATUS 

 Three RAM systems were delivered to TxDOT in 2008 for further field testing 

and evaluation.  Difficulties with the software and the fragile nature of the electronic 

equipment have limited the usefulness of the system.  The goal during the development 

of the system was to develop a correlation between roller drum displacement and the 

degree of compaction of the top soil/base layer. 

 Attempts to correlate drum deflection to a characteristic or property of the top 

soil/base layer such as strength, density, stiffness, or modulus have been unsuccessful, 

both by TTI and other researchers (Peterson et al., 2007; Rahman et al., 2007; Thurner 

and Sandstrom, 2006).  Results of field tests of the prototype roller system indicated that 

the response of the roller is governed by more than just the upper few inches of the soil 

mass.  This finding corresponds to the results reported by others in the literature 

(Peterson et al., 2007; Rahman et al., 2007; Thurner and Sandstrom, 2006).  In order for 

a roller mounted system to be useful to government agencies and the construction 

industry, the system must be able to distinguish the effect of the top layer, which is being 

compacted, from the underlying layers, which have either already been accepted, or are 

not the responsibility of the contractor. 
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CHAPTER IV 

EXPERIMENTAL METHODOLOGY 

 

GENERAL 

 The RAM system was tested on a variety of soil and base course materials at 

Texas A&M University’s Riverside Campus and on three active road construction 

projects in Texas (State Highway 6, State Highway 21 and State Highway 130).  Some 

of the field testing was preformed with the sole intention of debugging the software and 

making the system easier to install and operate.  As such, whatever data that was 

collected from those tests, which were primarily conducted at the Riverside Campus, 

was not rigorously analyzed for inclusion within the model.  For the tests that were 

meant to gather roller and soil data, test strips ranging in length from approximately 100 

feet (30.48 m) to over 1,000 feet (304.8 m) were laid out within each project.  The 

following sections discuss the field and laboratory test protocols and equipment used 

during the evaluation program. 

 

FIELD TESTING PROTOCOL AND EQUIPMENT   

 For test strips 100 feet (30.48 m) in length the following procedure was used.  

The initial material characteristics along the center line of each test strip were obtained 

at intervals of 10 feet (3.05 m) with several standard pieces of soil testing equipment 

prior to running the roller across the test strip.  The equipment included; the nuclear 

density/moisture gauge, falling weight deflectometer (FWD), portable falling weight 

deflectometer (pFWD), and dynamic cone penetrometer (DCP).  Not every piece of 

equipment was used on every project because of equipment non-availability and time 

constraints.  Once the initial conditions at the prescribed points were established, the 

vibrating roller made 2 to 4 longitudinal passes along the centerline of the test strip and 

the standard equipment tests were again conducted at the prescribed points.  An 

additional 2 to 4 longitudinal passes were then made along the test strip and a final set of 

standard equipment tests was conducted at the prescribed points. 
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 For test strips longer than 100 feet, the vibrating roller was run along the center 

line of the strips.  The output data was then analyzed in the field to locate areas with high 

and low roller deflections and areas with deflections approximately midway between the 

high and low deflections.  Points meeting these criteria were tested with the available 

standard instruments to determine the in-place material characteristics. 

 A brief description of the standard test equipment is provided in the following 

sections. 

 

Nuclear Density/Moisture Gauge 

 The nuclear gauge, shown in Figure 4-1, measures the wet and dry density and 

water content of the soil/base material from the surface down to approximately 12 inches 

(0.305 m) below the surface by means of a radioactive source.  The radioactive source 

emits gamma photons which are reflected back to detectors within the instrument.  In 

general, the greater the number of photons deflected back to the detectors the greater the 

density of the tested material (Troxler, 2009). 

 

 

 

Fig. 4-1.  Nuclear gauge.  Photograph courtesy of Dr. Wenting Liu. 
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Falling Weight Deflectometer (FWD) 

 The falling weight deflectometer (Figure 4-2), functions by dropping prescribed 

weights from standard heights in order to simulate the passing of transient wheel loads.  

Seven geophones measure surface deflection at the center of the loading point and at 12 

inch (0.305 m) intervals from the loading plate.  The resulting set of deflections, which 

generally decrease with distance from the loading plate, is known as a deflection bowl.  

By knowing the shape of the deflection bowl, general material properties, and the 

approximate layer thicknesses, a resilient modulus for several layers can be back 

calculated using software programs such as MODULUS 6.0 (Lytton, 1989; Scullion et 

al., 1989). 

 

 

 

Fig. 4-2.  TxDOT falling weight deflectometer. 

 

 

Portable Falling Weight Deflectometer (pFWD) 

 The pFWD, shown in Figure 4-3, is a much smaller version of the FWD.  This 

unit measures vertical displacement of the surface at 3 points spaced 30 cm (11.81 
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inches) apart in response to a vertical impact load.  A back calculated modulus is also 

determined by use of a supplied computer program. 

 

 

 

Fig. 4-3.  Portable falling weight deflectometer.  Photograph courtesy of Dr. Wenting 
Liu. 
 

 

Dynamic Cone Penetrometer (DCP) 

 The dynamic cone penetrometer (Figure 4-4) measures a material’s resistance to 

penetration.  The penetration energy is provided by raising a cylindrical hammer of 

constant mass to a constant height and then letting the mass freefall along a guide rod 

until the mass contacts the driving rod (Kessler, 2005).  Analysis of the data defines 

layers within the test depth, normally up to 30 inches (0.762 m), by revealing changes in 

the slope of the penetration rate.   
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Fig. 4-4.  Dynamic cone penetrometer.  Photograph courtesy of Dr. Wenting Liu. 

 

 

 A typical DCP cumulative penetration versus depth graph is shown in Figure 4-5.  

The red arrow denotes the approximate depth at which the penetration rate changed from 

approximately 1 inch per blow to about 1/4 inch per blow.  The change in penetration 

rate was caused by a change in 1 or more of the soil characteristics such as density, 

water content and/or shear strength.  The change in penetration rate was assumed to 

denote the beginning of a new soil layer.  

 

 



  25 

 

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

Cumulative DCP Blows

D
ep

th
 f
ro

m
 S

u
rf

ac
e 

(i
n
ch

es
)

 

Fig. 4-5.  Typical DCP penetration rate graph. 

 

 

LAB TESTING PROTOCOL 

 Shelby tube soil samples were gathered by an outside geotechnical consulting 

firm on 2 of the SH 21 test strips after rolling was completed so that a series of 

laboratory tests could be conducted.  The locations of the samples were determined by 

TTI and were selected in order to obtain soils data from locations with high, low and 

average measured roller drum accelerations.  Four 2.8 inch (71.12 mm) diameter 

samples were taken to a depth of approximately 4 feet (1.22 m) at 6 different locations 

within the 2 test strips (total of 24 samples) and delivered to TTI for testing.  The 

samples, which had been wrapped in foil and placed in plastic bags in the field, were 

stored in insulated coolers in TTI’s humidity room in order to minimize moisture change 

prior to testing.   

The laboratory tests included; wet and dry unit weight, water content, liquid and 

plastic limits, resilient modulus, and unconfined compressive strength.  A brief 

description of each test and why the test was conducted, is provided below.  It should be 

noted that while continuous sampling was conducted by the drilling crew, continuous 
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recovery was not possible.  As such, it is possible that some of the tested samples 

contained material from multiple layers, which could skew the results. 

 

Wet and Dry Unit Weights 

 Specifications for road and embankment fill usually require that the material 

must be compacted to a percentage of the material’s maximum dry unit weight as 

outlined in the Current Practice section of Chapter II.  For this reason, TTI made every 

effort to take unit weight readings during our testing protocol.  The laboratory 

determination of unit weights was done to verify the results obtained with the Troxler 

nuclear gauge and to determine the unit weights of samples deeper than the effective test 

depth of the nuclear gauge, which is approximately 12 inches (30.48 cm) (Troxler, 

2009). 

 The wet and dry unit weights were calculated using cylindrical samples that had 

been trimmed for the resilient modulus tests.  The height and circumference of each 

sample was measured in three places, and the average value of each dimension was used 

to calculate the volume of each sample.  The water content of the sample was found by 

taking the average of the water content of 3 samples of the soil trimmings removed from 

the top and the bottom of the each sample. 

 

Water Content 

 The water content of a sample is a comparison of the weight of the water in a 

sample compared to the weight of the solids within the sample.  The result is usually 

expressed as a percentage.  It is possible for soil to have water contents greater than 

100%.   

 Water content tests were conducted in general accordance with the appropriate 

ASTM procedure. 
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Liquid and Plastic Limits 

 The liquid limit and the plastic limit are two of the Atterberg Limits developed in 

the early 1900’s by Swedish soil scientist A. Atterberg (Holtz and Kovacs, 1981).  The 

Atterberg Limits are water contents that represent standardized demarcations between 

states of cohesive soil consistency.  The states of soil consistency are defined as; liquid, 

plastic, semisolid and solid (Liu and Evett, 2008).  For example, the liquid limit is the 

water content at which a soil has reached the lower limit of viscous flow or transitions 

between the liquid and plastic states (Holtz and Kovacs, 1981; Liu and Evett, 2008).  

This is not to say that soils with water contents above the liquid limit flow like water.  It 

simply means that, in general, the greater the water content is above the liquid limit, the 

less viscous the flow. 

 The Plasticity Index (PI) is defined as the difference in the water contents of the 

soil at the liquid limit and the soil at the plastic limit.  The PI is expressed as a whole 

number and provides an indication of how much water a soil can absorb during its time 

in the plastic state.  Soils with high PIs will exhibit a high degree of volume change with 

changes in soil water content (Holtz and Kovacs, 1981). 

 Liquid and Plastic limit tests were conducted in general accordance with the 

appropriate ASTM procedure. 

 

Resilient Modulus 

 The resilient modulus is an elastic modulus that is based on the recoverable strain 

of a material under repeated loads (Huang, 2004).  Most of the materials used in 

pavement base and embankment construction are considered to be partially elastic and 

plastic.  This means that the materials undergo some degree of permanent (plastic) 

deformation with each load.  The elastic assumption is valid if the magnitudes of the 

applied loads are well below the ultimate strength of the material and the number of 

applied loads is large (Huang, 2004). 

 The resilient modulus tests were conducted in general accordance with standard 

TTI procedures. 



  28 

 

Unconfined Compressive Strength 

 The compressive strength of a soil sample depends upon several factors.  One 

factor is whether or not a confining pressure is applied to the test sample as the 

compressive load is applied.  In general, the greater the confining pressure the greater 

the compressive strength of the sample.  The confining pressure is often used to model 

the stress conditions of deep soil samples and obtain a more realistic assessment of in-

place soil strength.   

 Another factor is what degree of sample deformation (strain) constitutes failure.  

For some embankment applications a strain of 5% or more may be acceptable, whereas a 

strain of 1% may be unacceptable for other applications.  As such, a graph of 

compressive strength as it varies with percent strain is normally used to determine 

compressive strength in situations where the sample does not catastrophically fail. 

 The unconfined compression tests were conducted in general accordance with the 

appropriate ASTM procedure on samples that had already been subjected to resilient 

modulus testing.  The use of the samples for both resilient modulus and unconfined 

compression testing is permissible because the resilient modulus test is considered to be 

a non-destructive test (Huang, 2004). 
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CHAPTER V 

DRUM DEFLECTION COMPARED TO OTHER DATA 

 

GENERAL 

 The roller drum deflection data was compared to data from several field and 

laboratory tests in an attempt to determine if a correlation existed between roller drum 

deflection and the level of compaction of the upper soil layer.  The most common 

comparisons were with pFWD and FWD sensor deflection and dry unit weight measured 

with the nuclear gauge.  Comparisons involving resilient modulus, unconfined 

compressive strength, and DCP penetration rate are not discussed in this chapter because 

the small amount of data available for comparisons precludes the development of 

statistically significant conclusions.  However, the results of the resilient modulus tests 

are presented in the Chapter VII as a means to compare the starting and ending values of 

the elastic modulus for each layer.   

 The data presented below corresponds to pFWD, FWD, and unit weight readings 

taken in the test strips either before any passes where made with the RAM system or 

after several passes were made.  In cases where the data was collected before any RAM 

passes were made, the roller drum deflection readings from the first test pass were used.  

In cases where the data was collected after several roller passes were made, the last set 

of roller drum deflection readings taken before the standard instrument tests were 

conducted was used. 

 

REGRESSION ANALYSIS 

 Regression analysis is a method used to predict the value of a dependent 

characteristic, Y, given the value of an independent characteristic, X, (Revelle et al., 

2004).  Regression analysis requires a series of {X,Y} data pairs that are usually 

gathered from historical records, or laboratory/field experiments.  The data pairs are 

plotted and the line through the data points that results in the lowest sum of the squared 

errors is deemed to be the best fit line.  Error is defined as the difference between the 
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actual, measured value of Y for the corresponding measured value of X and the value of 

Y that would be found substituting the measured value of X into the equation of the best 

fit line (Scheaffer and McClave, 1990). 

 The slope of the best fit line can provide some insight into the interrelation or 

correlation of the test data.  The closer the slope of the best fit line is to 0 the less useful 

the equation is to predict values of the dependent characteristic.  The lack of usefulness 

is a result of the fact that for even large changes in the value of the independent 

characteristic, X, there is only a small change in the value of the dependent 

characteristic, Y, (Scheaffer and McClave, 1990; Revelle et al., 2004).   

 The dimensionless coefficient of determination, or R2 is another tool available to 

judge whether or not the best fit line adequately models the data pairs.  The R2 value 

defines the amount of the variance in the dependent characteristic that is attributed to the 

regression equation.  For example, an R2 value of 0.61 would mean that 61% of the 

variance in the dependent characteristic is attributable to the regression equation.  The 

remaining 39% of the variance is not attributable to the regression equation and is 

unexplained (Statpac, 2009).  An R2 value of 1 would mean that the best fit line passes 

directly through all of the data points and would suggest that a strong correlation exists 

between the independent and dependent characteristic (Scheaffer and McClave, 1990). 

 The RAM system was constructed to determine the compaction of the upper 

layer of the soil surface based on the deflection of the vibrating roller drum.  As such, 

the data comparisons outlined below always use the roller drum deflection as the 

dependent characteristic.  This convention was valid because the results of all other test 

methods such as pFWD and FWD sensor deflections were compared to roller drum 

deflection.  

 Correlation between the data sets would not prove that a causal relationship 

exists between the two test methods.  However, correlation must be present in order for 

such a relationship to exist.  In other words, if a correlation does not exist between the 

compared data points (i.e. low R2 values), then there is not a causal relationship.  A 

rigorous statistical analysis (t-distribution) of the data was not conducted because the 
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low R2 values and the fact that the purpose of this dissertation is to discuss the 

development and testing of a mechanics based soil-roller interaction model. 

 

pFWD SENSOR DEFLECTION 

 The pFWD measured the deflection of the ground surface at three points; 

immediately beneath the falling weight, and at distances of 30 cm (11.81 inches) and 60 

cm (23.62 inches) from the first sensor.  The sensors were labeled D1, D2, and D3 with 

sensor D1 located beneath the falling weight and sensor D3 located 60 cm (23.62 inches) 

from sensor D1.  Sensors farther from the load point are more affected by deeper soils 

than sensors located closer to the load point (Lytton, 1989).  The results of the 

comparison between roller drum deflection and pFWD sensors D1 and D3 are shown in 

Figures 5-1 and 5-2, respectively. 

 

 

pFWD Sensor D1 Deflection vs. Roller Drum Deflection
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Fig. 5-1.  pFWD sensor D1 deflection compared to drum deflection. 
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pFWD Sensor D3 Deflection vs. Roller Drum Deflection
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Fig. 5-2.  pFWD sensor D3 deflection compared to drum deflection. 

 

 

 A visual comparison of the data presented in Figures 5-1 and 5-2 shows that the 

data taken on SH 21 in September 2006 has less scatter than the other 2 sets of data.  

Additionally, the SH 6 data has significant scatter for both sensors D1 and D3.  The fact 

that the test strip was underlain with a synthetic geogrid may have contributed to the 

scatter.  The R2 values for a linear trend line for the 6 sets of data ranged from about 

0.004 to 0.4.  The low R2 values indicated that the degree of correlation between roller 

drum deflection and pFWD sensor deflection was minimal, if any. 

 

FWD SENSOR DEFLECTION 

 The FWD measured the deflection of the ground surface at 7 points; immediately 

beneath the falling weight, and 6 points spaced 12 inches (30.48 cm) perpendicular to 

the first sensor.  The sensors were labeled R1 through R7 with sensor R1 located beneath 

the falling weight and sensor R7 located 72 inches (182.88 cm) from sensor R1.  As with 

the pFWD, deflection of sensors farther away from the load point is governed more by 

the condition of the lower soil layers than the condition of the upper soil layers.  The 
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results of the comparison between roller drum deflection and FWD sensors R1 and R7 

are shown in Figures 5-3 and 5-4, respectively. 

 

 

FWD Sensor R1 Deflection vs. Roller Drum Deflection
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Fig. 5-3.  FWD sensor R1 deflection compared to drum deflection. 

 

Again, a visual comparison of the data presented in Figures 5-3 and 5-4 shows 

that the SH 21 data has less scatter than the SH 6 data.  The R2 values for a linear trend 

line through each of the 4 sets of data ranged from about 0.003 to 0.4.  The low R2 

values suggest that whatever correlation that may exist between the data is weak, if any. 

 

 



  34 

 

FWD R7 Sensor Deflection vs. Roller Drum Deflection
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Fig. 5-4.  FWD sensor R7 deflection compared to drum deflection. 

 

 

FIELD DRY UNIT WEIGHT MEASUREMENTS 

 The dry unit weight of the upper 12-inches (30.48 cm) of material was measured 

with the nuclear gauge.  The comparison between the roller drum deflection and the 

measured dry unit weigh is shown in Figure 5-5. 

 An examination of the data from the SH 21 testing, shown in Table 5-1, is 

enlightening.  A roller drum deflection of 0.038 inches (0.965 mm) was measured for 

dry unit weights of 110.9 and 112.9 pcf (1,776.4 and 1,808.4 kg/m3).  In other words, the 

same roller drum deflection was measured for unit weights which varied by 2 pcf.  Two 

pounds per cubic foot could easily be the difference between a soil meeting, or not 

meeting, specification.  Additionally, dry densities ranging from 101.5 to 112.9 pcf 

(1,625.8 to 1,808.8 kg/m3) corresponded to roller drum deflections within a narrow 

range of approximately 0.007 inches (0.1778 mm).  Such inconsistent roller data is of 

little value in determining the dry density of the upper soil layer. 
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Dry Unit Weight vs. Drum Deflection

0.00000

0.02000

0.04000

0.06000

0.08000

0.10000

0.12000

0.14000

90 95 100 105 110 115

Dry Unit Weight (pcf)

D
ru

m
 D

ef
le

ct
io

n
 (

in
)

SH 21 8-15-05

SH 6 12-5-06

 

Fig. 5-5.  Dry unit weight compared to drum deflection. 

 

 

Table 5-1: SH 21 Dry Unit Weight vs. Roller Drum Deflection 

Dry Unit Weight 

(pcf) 

Drum 

Deflection (in) 

Dry Density 

(kg/m3) 

Drum 

Deflection (mm) 

101.5 0.039 405.0 0.991 

106.9 0.036 426.5 0.914 

108.3 0.042 432.1 1.067 

110.9 0.038 442.5 0.965 

112.3 0.037 448.1 0.940 

112.5 0.043 448.9 1.092 

112.9 0.038 450.5 0.965 
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 The apparent lack of correlation was reinforced by the slopes and R2 values of 

the regression equations for each data set.  The slopes of the SH 6 and SH 21 regression 

equations were both very close to 0: -0.0017 and 0.00002, respectively.  The R2 value for 

SH 6 was 0.4182, and the R2 value for SH 21 was 0.0016. 

 Further comparisons of the test data with the layer moduli inferred from the 

mechanics-based roller model will be made in Chapter VII. 
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 CHAPTER VI 

DERIVATION OF THE SOIL-ROLLER INTERACTION MODEL 

 

GENERAL 

 As was shown in Chapter V, there was no evident correlation between the 

measured vibratory roller drum deflection and the degree of compaction within the upper 

soil layer.  The lack of correlation was not surprising given the multitude of 

characteristics within the upper few feet of the soil system that can affect the deflection 

of the vibratory roller drum (density, water content, layer thickness, etc.).  More 

importantly, correlation does not imply causation.  Or simply: just because a reasonably 

well fit line can be drawn through a set of data points does not mean that the compared 

characteristics are actually interrelated.  The subject soil-roller interaction model was 

derived through a mechanics based approach and then calibrated, not correlated, with 

available field and laboratory data. 

 

BACKGROUND AND ASSUMPTIONS 

 The soil-roller interaction model developed for this dissertation (Figure 6-1) was 

an extension of work completed by Yoo and Selig (1979) and by Pietzsch and Poppy 

(1992).  Their models were primarily developed as a way to theoretically evaluate 

proposed changes in roller design without the need to construct expensive physical 

prototypes.  Neither of these earlier models allowed for consideration of multiple soil 

layers, nor rigorously addressed the non homogeneous nature of soil.  The subject model 

contained 2 soil layers, but could be extended to 3 or more soil layers if circumstances 

warranted. 

Model development began by separating the soil-roller system into 4 distinct 

sections.  The first section was the roller frame, which contained the roller components 

that surround the roller drum and connect the drum to the remainder of the roller.  The 

second section was the roller drum, including the rotating eccentric mass that causes the 

roller drum to vibrate.  The third and fourth sections were the top and underlying soil 
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layers, respectively.  The symbols used in the model are summarized in Table 6-1.  

Metric units were used during the model testing process because the majority of the 

available data regarding stiffness and damping were reported in metric units. 

 The free body diagrams (FBDs) for each of the 4 sections were constructed using 

the basic principles of statics and dynamics.  The construction necessitated several 

simplifying, though realistic, assumptions.  These assumptions are briefly explained in 

the following paragraphs.  The FBDs of the model sections are included in the Appendix 

along with the detailed derivation of the model equations. 

 

 

 

Fig. 6-1. Schematic of soil-roller interaction model. 
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Energy from the vibrating roller drum is imparted into the soil mass only when 

the roller drum is in contact with the soil surface.  Therefore, the roller drum was 

assumed to be in contact with the soil surface throughout testing.  Situations in which the 

roller drum was not in contact with the surface (i.e. the roller drum was double jumping) 

were not pertinent to this project and were not included in the model. 

 

 

Table 6-1: Symbols Used in Soil-Roller Interaction Model 

Symbol Description Units 

mf mass of drum frame mass 

zf displacement of drum frame length 

kf elastic stiffness between drum frame and drum  force/length 

df damping between drum frame and drum force*time/length 

Fe exciting force force 

Ω = ω frequency of eccentric mass Hertz or rad/sec 

md mass of drum mass 

zd displacement of drum length 

ke1 elastic stiffness of top soil layer force/length 

kp1 plastic stiffness of top soil layer force/length 

t1 thickness of top soil layer length 

m1 mass of the first soil layer mass 

d1 damping of top soil layer force*time/length 

z1 displacement of top soil layer length 

ke2 elastic stiffness of lower soil layer force/length 

kp2 plastic stiffness of lower soil layer force/length 

t2 thickness of lower soil layer length 

m2 mass of the second soil layer mass 

d2 damping of lower soil layer force*time/length 

z2 displacement of lower soil layer length 
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When the roller drum is in contact with the ground surface the springs and 

dashpots are in compression.  This means that the theoretical devices would push up on 

the elements above them (negative sign in the FBD) and downward on the elements 

below them (positive sign in the FBD).  It may be useful to note here that springs are 

used to model resistance to displacement while dashpots are used to model resistance to 

the rate of displacement.  In other words, springs resist movement while dashpots delay 

the motion. 

 The pertinent components acting on the roller frame are the mass of the frame, 

which can be estimated from manufacturer’s data, and the isolating connections between 

the frame and the drum.  The connections between the frame and drum were modeled 

with an elastic spring and a dashpot.  The choice of an elastic spring was valid because 

the relative positions of the roller drum and roller frame are essentially equal at the 

beginning and end of operation.  If the relative positions are not essentially equal, it 

would mean that the roller has suffered a mechanical failure.   

The dashpot simulates the isolators present on the roller that minimize the 

amount of vibration transmitted from the vibrating roller drum to the remainder of the 

roller.  If the dampers were not present the displacement of the roller frame would be 

nearly equal to or, depending on frequency, greater than that of the roller drum, which 

would result in damage to the roller and discomfort to the operator.  The degree of 

damping can be estimated by attaching an accelerometer to the vibrating roller drum and 

a separate accelerometer to the roller frame.  The difference between the 2 measured 

accelerations would be directly proportional to the effectiveness of the damping system 

(Rinehardt and Mooney, 2005). 

The components acting on the roller drum are the rotating eccentric mass, the 

mass of the roller drum, both of which are available from manufacturer’s data, the spring 

and dashpot connection from the roller frame, and the springs and dashpot of the top soil 

layer.  The spring and dashpot between the roller drum and frame push up on the roller 

frame and down on the roller drum.  Additionally, the elastic and plastic springs and 
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dashpot in the upper soil layer push up on the roller drum.  The rotating eccentric mass is 

the driving force behind the model and is the primary component of compaction. 

 The rotating eccentric mass causes the roller drum to vibrate and allows the roller 

to impart dynamic, as well as, static energy into the soil mass.  During operation, some 

of the energy causes the soil to densify and compact.  Compaction is modeled with a 

plastic spring, which experiences a permanent deformation when the roller imparts 

enough energy to overcome the forces holding the soil particles apart.  An elastic spring 

is necessary in each soil layer because not all imparted energy causes compaction.  The 

stiffer, or more compact, that the soil matrix becomes the more of the imparted energy 

will be returned to the roller or passed through to the underlying layers (Anderegg and 

Kaufmann, 2004; Scullion et al., 2006; Thurner and Sandstorm, 2000).  The dashpots in 

the soil layers model the energy absorbing characteristics of the soil layers. 

 

DERIVATION OF THE MODEL 

 The starting point for the mechanics based soil-roller interaction model was 

Newton’s Second Law of Motion which is stated as equation 6-1 (Sears et al., 1987): 

 

F = M*A          (6-1) 

where F = force, N or kN 

 M = mass, kg 

 A = acceleration, m/sec2 

 

 By combining Newton’s Second Law with the free body diagram developed for 

each of the model’s 4 sections, base or starting equations were developed.  The notation 

used in the equations was summarized in Table 6-1.  Additionally, prime and double 

prime (′ and ′′) following a displacement, z, denote velocity and acceleration of the 

particular component.  For example, z′f denotes velocity of the roller frame and z″f 

denotes the acceleration of the roller frame. 
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 The base equation for the roller frame is stated in equation 6-2: 

 

mf ( z″f)  = - kf(zf-zd)-df(z′f-z′d)       (6-2) 

  

 The base equation for the roller drum is stated in equation 6-3: 

 

md(z″d) - Fe = kf(zf-zd)+df(z′f-z′d)-ke1(zd-z1)-kp1(zd-z1)-d1(z′d-z′1)   (6-3) 

 

 The base equation for the top soil layer is stated in equation 6-4: 

 

m1(z″1) = ke1(zd-z1)+kp1(zd-z1)+d1(z′d-z′1)-ke2(z1-z2)-kp2(z1-z2)-d1(z′1-z′2)  (6-4) 

  

 The base equation for the second soil layer is stated in equation 6-5: 

 

m2(z″2) = ke2(z1-z2)+kp2(z1-z2)+d2(z′1-z′2)      (6-5) 

  

 A detailed derivation of the model equations is included in the Appendix.  

However, a test of the initial validity of equations 6-2 through 6-5 can be made by 

ensuring the dimensional consistency of each of the term groupings, which should have 

units of force or mass*length/time2.  For example, the left hand side of equation 6-2 is 

the product of mass and acceleration, which is force.  The first grouping of terms on the 

right hand side of the equation is the product of stiffness (force/length) and displacement 

(length).  The lengths cancel out, which leaves force.  The second grouping of terms is 

the product of damping (force*time/length) and velocity (length/time).  The time and 

length terms cancel out, which also leaves force.  Thus, the units of all of the term 

groupings on the left and right hand sides of the equations are force.  Analysis of the 

remaining equations yielded similar results. 

 The force causing the roller drum to vibrate was an eccentric, rotating mass, 

which produced a varying load upon the soil.  As such, the displacements, velocities and 
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accelerations within each of the 4 base equations, which depended upon the force 

exerted by the drum, needed to be expressed in terms of the rotational frequency, Ω or ω 

of the load.  Additionally, the dampers between the roller drum and the roller frame, and 

the damping of each soil layer, caused the load transmission through the roller frame and 

soil mass to lag behind the rotating mass.  To account for this phenomenon a lag angle, 

Φ was introduced into the base equations for the roller frame and the first and second 

soil layers.   

 The new terms for displacement, velocity and acceleration were then substituted 

into equations 6-2 through 6-5.  The equations were then expanded, similar terms were 

gathered and the equations were simplified.  A matrix was developed and the 

determinants and discriminants were calculated.  Four equations showing the 

displacement of the roller drum, roller frame, upper soil layer and second soil layer were 

developed.   

 The final equation describing the displacement of the roller frame is stated in 

equation 6-6: 

 

X1 =  -FeA12[(A33A44)-(A34A43)+(A23A34)-(A23A44)]    (6-6) 

 ÷ 

 A11[(A22A33A44)-(A22A34A43)+(A23A34A42)-(A23A32A44)] 

-A12[(A21A33A44)-(A21A34A43)-(A23A34A41)-(A23A31A44)] 

 

The final equation describing the displacement of the roller drum is shown in 

equation 6-7: 

  

X2 =  FeA11[(A33A44)-(A34A43)+(A23A34)-(A23A44)]    (6-7) 

 ÷ 

 A11[(A22A33A44)-(A22A34A43)+(A23A34A42)-(A23A32A44)] 

-A12[(A21A33A44)-(A21A34A43)-(A23A34A41)-(A23A31A44)] 
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 The final equation describing the displacement of the top soil layer is stated in 

equation 6-8: 

 

X3 =  FeA11[(A22A44)-(A22A34)+(A34A42)-(A32A44)]    (6-8) 

-FeA12[(A21A44)-(A21A34)+(A34A41)-(A31A44)] 

 ÷ 

 A11[(A22A33A44)-(A22A34A43)+(A23A34A42)-(A23A32A44)] 

-A12[(A21A33A44)-(A21A34A43)-(A23A34A41)-(A23A31A44)] 

 

 The final equation describing the displacement of the second soil layer is stated 

in equation 6-9: 

 

X4 =  FeA11[(A22A33)-(A22A43)+(A23A42)-(A23A32)+(A32A43)-  (6-9) 

 (A33A42)]-FeA12[(A21A33)-(A21A43)+(A23A41)-(A23A31)+ 

 (A31A43)-(A33A41)] 

 ÷ 

 A11[(A22A33A44)-(A22A34A43)+(A23A34A42)-(A23A32A44)] 

-A12[(A21A33A44)-(A21A34A43)-(A23A34A41)-(A23A31A44)] 

 

Where X1=Zfe
-i(ωt-Φf) 

 X2=Zde
-iωt  

 X3=Z1e
-i(ωt-Φ1) 

 X4=Z2e
-i(ωt-Φ2) 

 A11=(-mfω
2+kf-dfiω)   

 A12=(-kf+dfiω) 

 A13=0 

 A14=0 

 A21=(-mfω
2) 

 A22=(-mdω
2+ke1+kp1-iωd1) 
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 A23=(-ke1-kp1-iωd1)  

 A24=0 

 A31=(-mfω
2) 

 A32=(-mdω
2) 

 A33=(-m1ω
2+ke2+kp2-iωd2) 

 A34=(-ke2-kp2-iωd2) 

 A41=(-mfω
2) 

 A42=(-mdω
2) 

 A43=(-m1ω
2) 

 A44=(-m2ω
2) 

 i=(-1)1/2 

 



  46 

 

CHAPTER VII 

TESTING OF THE SOIL-ROLLER INTERACTION MODEL 

 

GENERAL 

 Testing of the model described in Chapter VI was conducted using field and 

laboratory data obtained during the development and testing of the RAM system.  The 

testing methodology consisted of determining initial input values for the 14 

characteristics comprising the model, performing a sensitivity analysis on the 14 

characteristics, modifying the 8 characteristics related to the stiffness and damping of the 

soil layers to minimize the difference between the measured and calculated roller drum 

deflection and comparing the initial soil input characteristic values to the values needed 

to minimize the difference between the measured and calculated roller drum deflections.  

The model would be considered to be an accurate prediction of the degree of compaction 

of the upper soil layer if the calculated roller deflection matched the measured roller 

deflection to within approximately 1%. 

 

MODEL TESTING 

 Expansion of the 4 base equations, 6-2 through 6-5, resulted in 4 equations, 6-6 

through 6-9, which described the displacement of the 4 components of the model; roller 

frame, roller drum, top soil layer and second soil layer.  The field testing of the RAM 

system measured the acceleration of the roller drum.  The displacement of the roller 

drum was calculated in the field by double integrating the measured acceleration.  The 

accelerations of the other 3 components of the model; roller frame, top soil layer and 

second soil layer, were not measured.  Therefore, the model was tested by using 

Equation 6-7, which described the displacement of the roller drum. 

 An Excel spreadsheet was developed to test the model.  The model contained 14 

input characteristics.  Six of the characteristics described the roller and 8 characteristics 

described the first and second soil layers.  The data used to test the model came from the 
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field testing conducted on SH 21 on August 18, 2005 and the results of laboratory tests 

conducted on soil samples taken from this site.   

 The initial value of a number of the characteristics relating to the mass, stiffness 

and damping of the soil layers varied at each of the 6 points tested within the test strip.  

The variation was caused by the fact that the measured soil density, modulus and layer 

thickness at each of the 6 test points was not consistent.  The approximate initial input 

characteristics used in the testing, and the source of each characteristic, are summarized 

in Table 7-1. 

 

 

Table 7-1: Initial Values of Input Characteristics Used for Model Testing 

Input 

Characteristic 

Value (units) Source 

mf 1,346 (kg) Caterpillar, 2003; Pietzsch and Poppy, 1992 

kf 5,480,000 (N/m)  Pietzsch and Poppy, 1992 

df 10,480 (N*s/m) Pietzsch and Poppy, 1992 

Fe 105,000 (N) Caterpillar, 2003; Pietzsch and Poppy, 1992 

Ω = ω 200.43 (radians/s) Caterpillar, 2003 

md 2,046 (kg) Caterpillar, 2003; Pietzsch and Poppy, 1992 

ke1 33E6 to 66E6 (N/m) Pietzsch and Poppy, 1992; Richart et al., 1970 

kp1 29E6 to 57E6 (N/m) Pietzsch and Poppy, 1992; Richart et al., 1970 

m1 215 to 1,456 (kg) Field and laboratory measurements 

d1 7.8E3 to 21E3 (N*s/m) Richart et al., 1970; Tateyama et al., 2006 

ke2 39E6 to 140E6 (N/m) Pietzsch and Poppy, 1992; Richart et al., 1970 

kp2 33E6 to 122E6 (N/m) Pietzsch and Poppy, 1992; Richart et al., 1970 

m2 886 to 2,147 (kg) Field and laboratory measurements 

d2 15E3 to 39E3 (N*s/m) Richart et al., 1970; Tateyama et al., 2006 
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SELECTION OF THE INITIAL MODEL INPUT VALUES 

 The initial values for several of the model characteristics were easily obtained 

from manufacturer’s literature and/or field and laboratory measurements.  Other 

characteristics, particularly those relating to the damping and stiffness of the soil layers, 

were inter-related to the shear modulus of the soil layer and were more difficult to 

determine.  The following subsections describe the procedures and assumptions used to 

find the initial values for each of the 14 input characteristics. 

 It bears reiterating at this point that the RAM system was primarily developed as 

a quality assurance tool.  As such, the soil input characteristics used to validate the 

model were taken from test points that had reportedly met project specifications relating 

to density and water content prior to TTI’s testing.  Uncompacted, loose or excessively 

dry soil could have vastly differing values for mass, shear modulus, stiffness and 

damping than soil that has been compacted to at or near its specified unit weight. 

 

Mass of the Roller Drum (md) and Mass of the Roller Frame (mf)  

 The mass of the roller drum (md) term accounts for the mass of the roller drum 

and the components housed inside the drum that provide the excitation force which 

causes the roller to vibrate. 

 The manufacturer’s data for the CS-433E Caterpillar roller that was used in the 

RAM system testing stated that the total operating weight of the roller was 6,745 kg 

(14,875 lbs) and that the operating weight at the drum was 3,410 kg (7,515 lbs) 

(Caterpillar, 2003).  These weights were very similar to the weights of the HAMM 2310 

roller used by Pietzsch and Poppy during their research in the late 1980’s and early 

1990’s (Pietzsch and Poppy, 1992).  The similarities between the rollers suggested that a 

reasonably accurate value of md could be obtained by adjusting the Pietzsch and Poppy 

value of md by the ratio of the weight of the HAMM 2310 roller drum to the weight of 

the CS-433E roller drum. 

 The mass of the roller frame (mf) term encompasses the mass of the roller super 

structure that surrounds and supports the roller drum and connects the drum to the 
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remainder of the roller body.  This mass is separated from the roller drum by several 

isolation pads, which decrease the vibrations transmitted to the frame and the remainder 

of the roller.  Pietzsch and Poppy found their roller frame mass by subtracting the mass 

of the roller drum from the static weight of the roller at the drum reported by the 

manufacturer.  This procedure was judged to be adequate for the subject model based on 

the similarities between the rollers. 

 

Angular Frequency of the Eccentric Mass (ω or Ω) 

 The vibration of the roller drum is the result of the rapid rotation of an eccentric 

mass contained in the roller drum.  The angular frequency (ω) indicates how many times 

the eccentric mass rotates through 360 degrees in a second.  The model requires that the 

angular frequency be inputted in radians per second.  The manufacturer’s data stated that 

the vibrating frequency of the roller was 31.9 hertz, which equates to approximately 200 

radians per second (Caterpillar, 2003).  Drum acceleration data obtained during field 

testing confirmed that the eccentric mass rotated at approximately 32 hertz. 

 

Frame Stiffness (kf) 

 The frame stiffness term (kf) models the resistance to displacement between the 

roller drum and the roller frame.  The frame stiffness is an elastic stiffness in that 

essentially all of the displacement that occurs between the roller drum and roller frame 

resulting from the vibration of the roller drum is recovered once the vibrations cease.  If 

the displacement was plastic, or non-recoverable, then a permanent, ever increasing 

deformation between the roller drum and roller frame would occur during operation. 

 Pietzsch and Poppy (1992) used a value of 5,480,000 N/m for the HAMM 2310 

roller.  This value was judged to be acceptable as an initial value for the roller model 

because of the reported similarities with the CS 433E roller. 
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Frame Damping (df) 

 The isolation mounts that are located between the roller drum and the roller 

frame are installed to reduce, or damp, the transfer of vibrations between the roller drum 

and the remainder of the roller.  Excessive vibrations within the roller would stress the 

mechanical systems and cause discomfort to the operator.  According to research by 

others, isolation mounts typically prevent approximately 90% of the drum vibrations 

from reaching the roller frame (Rinehart and Mooney, 2005). 

 A frame damping value of 10,480 N*s/m was used for the HAMM 2310 roller by 

Pietzsch and Poppy (1992).  Again, this value was judged to be acceptable as an initial 

value for the roller model. 

 

Force Applied by Rotating Eccentric Mass (Fe) 

 The roller drum vibrations are produced by a rotating eccentric mass housed 

within the central portion of the drum (Caterpillar, 2003).  The dynamic loading caused 

by the vibrations imparts energy into the underlying soil mass and contributes to 

compaction.  The manufacturer’s data indicated that the roller produced between 67,000 

N and 134,000 N of centrifugal force when operating at 31.9 hertz (Caterpillar, 2003).  

An initial value of Fe of 105,000 N was selected based on the Pietzsch and Poppy (1992) 

testing. 

 

Mass of the Soil Layers (m1 and m2)   

 The purpose of the model was to determine the degree of compaction of the top 

soil layer by monitoring the displacement of the vibrating roller drum.  However, in 

order to test the accuracy of the model by comparing the measured roller drum 

displacement to the calculated roller drum displacement, the masses of the first and 

second soil layers (m1 and m2) had to be input into the model.  Should the model prove 

to be accurate the model equation could be rearranged to solve for m1.   

 Determination of the masses required several steps.  First, the wet and dry unit 

weights of the Shelby tube soil samples taken from each layer were found.  Once the unit 
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weights were found they were converted into wet and dry unit masses.  Next, the depth 

of the first and second soil layers had to be determined.  The depth of the first soil layer 

was estimated by finding the change in the dynamic cone penetrometer (DCP) 

penetration rate at each point.  The depth at which the penetration rate, measured in 

blows per inch, changed was assumed to represent the boundary between soil layers.  

The effective depth of the DCP was approximately 30 inches and none of the 6 points 

within the test section showed a second change in penetration rate that would have 

denoted the boundary between the second and third soil layer.  Research by others 

suggested that the limiting depth of compaction for a roller such as the CS 433E was 

approximately 1 meter (3.28 feet) (Richart et al., 1970; Rinehart and Mooney, 2009).  

The thickness of the second layer was assumed to be the difference between 1 meter and 

the thickness of the first soil layer. 

 The volume of soil within each layer that was potentially subject to compaction 

was estimated.  The vibrating roller drum is essentially a vibrating machine sitting atop 

the soil.  The design of foundations for vibrating machines tends to model the dissipation 

of vibration energy into the underlying soil as an inverted cone (Wolf, 1994; Wolf and 

Deeks, 2004).  A dissipation rate of 2:1 was assumed within the soil mass.  This meant 

that the cone of dissipation increased horizontally 0.3 m (1 foot) for every 0.6 m (2 feet) 

of vertical penetration into the soil mass.  A 0.15 m (6 inch) roller contact surface was 

assumed based on observations made during field testing with the roller.  The 

manufacturer’s literature reported that the roller drum was 1.7 m (5.58 feet) long.  The 

mass of soil within the first and second soil layers at each point were then calculated 

based on the layer thickness, vibration dispersion geometry and measured unit masses at 

each of the 6 test points. 

 

Soil Elastic Stiffness Characteristics (ke1 and ke2) 

 The elastic stiffness characteristics (ke1 and ke2) model the portion of the soil 

matrix that is not permanently deformed by the passage of the vibrating roller.  The more 

compact, or denser, that the soil matrix becomes the less the soil deformations when the 
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roller passes and the more energy is rebounded back toward the roller (Pietzsch and 

Poppy, 1992; Anderegg and Kaufmann, 2003). 

 Very little data regarding elastic spring constants of soil undergoing compaction 

was found in the literature.  As such, techniques used to estimate the elastic spring 

constants of soil beneath vibrating machinery were used.  These techniques were judged 

to be adequate because the goal of machine foundation design is to minimize movement 

of the foundation so that the operation of the machine is not compromised.  Because the 

RAM system was designed as a QA system, the tested soil had reportedly met density 

specification and should experience minimal permanent, or plastic, deformation when 

the roller was driven across.   

 Richart et al., (1970) devoted several sections of their book Vibrations of Soil 

and Foundations to estimating elastic spring constants of soil based on the shear modulus 

of the soil mass.  The soil at the test points had been tested by a portable falling weight 

deflectometer, or pFWD.  Back calculation of the deflection bowl data produced by the 

pFWD with the manufacturer’s software yielded 3 elastic moduli at each test point.  The 

farther away the soil surface deflection detector is from the drop point, or center of the 

pFWD, the less influence the upper soil layers have on the deflection, and by extension 

the modulus (Lytton 1989; Scullion et al., 1989).  As such, the modulus related to the 

deflection beneath the pFWD pad was used as the layer 1 modulus while the modulus 

related to the deflection beneath the third pFWD sensor was used as the layer 2 modulus.  

 Richart et al., (1970) provided a formula relating the elastic modulus to the shear 

modulus, which is stated below as equation 7-1: 

  

G = E/(2*(1+v))         (7-1) 

where G = shear modulus, N/m2 

 E = elastic modulus, N/m2 

 v = Poisson’s ratio 
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The literature generally reports the range of Poisson’s ratios of clay soil, which was the 

soil type present at the test site, to be between 0.3 and 0.5 (Holtz and Kovacs, 1981; 

Richart et al., 1970; Das, 2008).  A mid-range value of 0.4 was judged to be acceptable 

for model analysis given that this value is commonly used in foundation design of 

vibrating machines (Richart et al., 1970). 

 Once the shear modulus within each layer was determined with equation 7-1 the 

information could be used to determine the starting values of the elastic spring constants 

by the following equation, 7-2 (Richart et al., 1970): 

 

ke = (4*G*r0)/(1-v)         (7-2) 

where G = shear modulus, N/m2 

 r0 = the radius of an equivalent circular area of roller drum contact, m 

 v = Poisson’s ratio 

 

 The contact area of the roller drum used during testing was estimated to be 

approximately 0.15m by 1.7m (0.5 ft by 5.6 ft), which corresponded to a narrow footing 

with a very long length.  The charts provided in the literature to estimate the spring 

constants of a rectangular foundation were not useful because machine foundations are 

typically not 11 times longer than they are wide.  To work around this difficulty, the 

roller drum contact area of approximately 0.26 m2 (2.8 ft2) was transformed into an 

equivalent circular area with a radius of approximately 0.3 m (1 ft).  A Poisson’s ratio of 

0.4 was still used. 

 Equation 7-2 points out that the elastic spring constant depends upon the radius, 

or size of the loaded area.  As such, the spring constant will vary as compaction 

continues because the contact area of the roller drum generally decreases as compaction 

progresses.  In essence, the roller drum walks its way out of the fill as the fill gets denser 

and stronger and needs less area to support the weight of the roller. 



  54 

 

 The elastic modulus values obtained from the pFWD tests that were used to 

determine the shear moduli and elastic spring constants at each point are summarized in 

Table 7-2. 

 

 

Table 7-2: Initial Moduli and Elastic Stiffness Values 

Point Layer E (N/m2) G (N/m2) ke (N/m) 

1 1 46,666,667 16,666,667 33,333,334 

1 2 68,333,333 24,404,762 48,809,524 

2 1 61,500,000 21,964,286 43,928,571 

2 2 90,333,333 32,261,905 64,523,809 

3 1 52,500,000 18,750,000 37,500,000 

3 2 54,666,667 19,523,810 39,047,619 

4 1 69,500,000 24,821,429 49,642,857 

4 2 65,500,000 23,392,857 46,785,714 

5 1 85,500,000 30,535,714 61,071,429 

5 2 79,000,000 28,214,286 56,428,571 

6 1 92,000,000 32,857,143 65,714,286 

6 2 196,000,000 70,000,000 140,000,000 

 

 

Soil Plastic Stiffness Characteristics (kp1 and kp2) 

 The plastic stiffness characteristics (kp1 and kp2) model the portion of the soil 

matrix that is permanently deformed, or compacted, by the passage of the vibrating 

roller.  The plastic springs essentially lock into place as the soil is compacted.  Further 

compaction of the soil takes place only if subsequent loads cause the numerically stiffer 

elastic springs to deflect more than they have during the previous loadings (Pietzsch and 

Poppy, 1992). 
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 As with the elastic springs, very little data regarding plastic spring constants of 

soil undergoing compaction was found in the literature.  Foundation design data was not 

helpful because foundations are supposed to be designed to keep the soil in the elastic 

rather than the plastic region.  The Pietzsch and Poppy (1992) soil-roller model used a 

value of 75.8 x 106 N/m for their plastic spring constant, which was 13% lower than the 

corresponding value of their elastic constant.  This 13% reduction relationship was used 

to set the initial values of the plastic spring constants at each of the 6 test points. 

 

Soil Damping Characteristics (d1 and d2) 

 Damping serves to decrease motion once a displacement has occurred.  For 

example, stiffness is what makes it difficult to stretch a coiled spring.  However, once a 

spring is stretched and released it will continue to oscillate unless damping is present to 

attenuate and eventually halt the oscillation. 

 There are 2 types of damping that are applicable to the subject model; material 

damping and geometric damping.  Material damping depends upon the composition of 

the material.  For example, rubber damps vibrations better than steel, which is why 

rubber is often used as a vibration isolator between steel components.  Geometric 

damping depends on the shape or amount of the material.  Rubber isolation mounts with 

a few grams of mass would generally be less effective at damping vibrations than 

isolation mounts with a few kilograms of mass.  No attempt was made to separate the 

individual contributions of each type of damping within the model. 

 More data was found in the literature relating to soil damping than was found 

relating to the elastic and plastic stiffness characteristics.  However, much of the data 

was related to the design of large foundations rather than to compacting soil (Richart et 

al., 1970; Wolf, 1994; Wolf and Deeks, 2004).  Tateyama et al., (2006) used a formula 

similar to equation 7-3 to calculate their damping values: 

 

d = 2*D*(m*ke)
0.5         (7-3) 

where  d = the combined material and geometric damping of the material, N*s/m 
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 D = a dimensionless material damping factor  

 m = the mass of the material causing the damping, kg 

 ke = the elastic stiffness of the material causing the damping, N/m 

 

The value of D selected for the model was 0.035, which was the average value for 

material damping reported in the literature for clay soils (Richart et al., 1970). 

 The values used to obtain the initial input values for the damping at each of the 6 

test points are summarized in Table 7-3. 

 

 

Table 7-3: Initial Mass, Elastic Stiffness and Damping Values 

Point Layer Mass (kg) ke (N/m) d (N*s/m) 

1 1 383.3 33,333,334 7912 

1 2 1833.6 48,809,524 20,941 

2 1 638.4 43,928,571 11,722 

2 2 1618.8 64,523,809 22,623 

3 1 934.3 37,500,000 13,103 

3 2 1327.8 39,047,619 15,939 

4 1 255.6 49,642,857 7885 

4 2 2040.9 46,785,714 21,630 

5 1 1456.0 61,071,429 20,874 

5 2 886.3 56,428,571 15,654 

6 1 215.1 65,714,286 8322 

6 2 2147.7 140,000,000 38,384 

 

 

INITIAL RESULTS 

 A roller drum displacement was calculated for each of the 6 test points using the 

initial values of the 14 input characteristics described in the subsection above.  The 
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calculated value of roller drum displacement was then compared to the measured value 

of roller drum displacement at each point.  The measured value of roller drum deflection 

was deemed to be the correct value.  Therefore, a negative percent difference would 

indicate that the calculated value of roller drum deflection was less than the measured 

value.  A summary of the measured and calculated values of roller drum deflection, and 

the percent difference between the measured and the calculated values, is presented in 

Table 7-4. 

 

 

Table 7-4: Roller Drum Deflections and Differences Using Initial Estimates  

Point Measured Roller 

Drum Deflection (m) 

Calculated Roller 

Drum Deflection (m) 

Percent 

Difference 

1 0.001 0.01034 934.3 

2 0.00107 0.00095 -10.8 

3 0.00091 0.00245 169.7 

4 0.00096 0.00274 185.7 

5 0.00108 0.00006 -94.5 

6 0.00095 0.00010 -89.0 

 

 

SENSITIVITY ANALYSIS OF MODEL ERROR 

 The initial results summarized in Table 7-4 were based on estimated values for 

the input characteristics.  A sensitivity analysis was conducted on the 14 input 

characteristics to determine which characteristics most greatly influenced the model 

error, or difference between the measured and calculated values of roller drum 

deflection.  Each of the 14 input characteristics were individually increased and then 

decreased by 10% of the initial input value.  The sensitivity coefficient for each 

characteristic was then determined by comparing the change in percent error to the 

percent change in the initial value of each characteristic, which was a constant ±10 %. 
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 For example, when the mass of the roller drum (md) was increased by 10% the 

difference at Point 2 decreased from -10.8% to -3.6%.  When the mass of the roller drum 

at Point 2 was decreased by 10% the difference at Point 2 increased from -10.8% to -

16.9%.  The absolute value of the change in differences resulting from the increase and 

decrease in the initial value was 13.3%.   The 13.3% was then divided by the absolute 

value of the initial percent difference, -10.8%, which resulted in a value of 1.23.  

Dividing 1.23 by 20% yielded a sensitivity coefficient of approximately 6.16. 

 The higher the sensitivity coefficient of an individual characteristic, the greater 

the effect that changes in that characteristic have on the outcome of the formula.  The 

sensitivity coefficient for the frequency of the vibrating mass within the roller drum (ω) 

at Point 2 was 89.17.  This means that the model error is approximately 14.4 times more 

sensitive to changes in frequency than it is to changes in the mass of the roller drum at 

Point 2.  As such, it is about 14.4 times more important to accurately determine the 

angular frequency than it is to determine the mass of the roller drum at Point 2.   

 The average values of the sensitivity coefficients of each input characteristic at 

all 6 test points were calculated and then rank ordered from highest to lowest.  Relatively 

small changes in the characteristics with the highest sensitivity characteristics would 

affect the model error more than corresponding changes in the values of input 

characteristics with the lowest sensitivity coefficients.  The average values of the 

sensitivity coefficients, in descending order, are contained in Table 7-5. 

 

Interpretation of Sensitivity Analysis 

 The following subsections provide an interpretation of the model error sensitivity 

analysis for each of the 14 input characteristics using the average sensitivity coefficients 

shown in Table 7-5. 
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Table 7-5: Average Model Error Sensitivity Coefficients 

Characteristic Average Sensitivity 

Coefficient 

ω 36.88 

ke1 8.9 

m2 8.18 

ke2 5.23 

md 4.14 

kp1 3.96 

kp2 2.28 

Fe 2.12 

kf 1.10 

m1 0.47 

mf 0.11 

d2 0.11 

df 0.07 

d1 0.02 

 

 

Angular Frequency (ω) 

 By rank ordering the sensitivity characteristics it becomes readily apparent that 

the angular frequency plays a key role in the model error.  In fact, the model error is 

approximately 17 times less sensitive to changes in the eccentric force (Fe) than to 

changes in angular frequency.  Fortunately, the eccentric mass reached its top speed 

within a few seconds of being activated and does not significantly vary during operation 

(Caterpillar, 2003).  The field measurements of angular frequency matched closely with 

the value of 31.9 hertz reported in the manufacturer’s literature.  As such, confidence is 

high that the correct value of angular frequency was input into the model. 
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Soil Layer Masses (m1 and m2) 

 The model error is apparently, on average, 17 times more affected by changes in 

the mass of the second soil layer than to changes in the mass of the top soil layer.  This 

characteristic can be highly undesirable because it is ultimately the mass of the top soil 

layer that needs to be known to determine the degree of compaction under most current 

standard specifications (Spangler and Handy, 1982; TxDOT, 2005).  The mass, or 

degree of compaction, of the second soil layer, is of much less importance during the 

construction process because that layer must meet specifications before the next layer 

can be added.   

 

Soil Layer Stiffnesses (ke1, ke2, kp1 and kp2) 

 The model error is approximately 2 times more sensitive to changes in the elastic 

stiffnesses as it is to changes in the plastic stiffnesses.  This result is not surprising 

because the plastic stiffnesses are calculated as a fraction of the elastic stiffnesses.  

Additionally, the soil layer damping characteristics (d1 and d2) depend on the elastic 

stiffnesses, as well as the mass of the soil layers (m1 and m2).  The intertwining of the 

elastic stiffnesses with several other characteristics means that small changes in the 

elastic stiffnesses will telegraph through to other characteristics and ultimately have a 

more pronounced affect on the model.   

 

Roller Components (md, mf, kf and df) 

 The model error is apparently least sensitive to changes in the amount of 

damping between the roller drum and the roller frame and the mass of the roller frame.  

This is not surprising because the acceleration of the roller drum was measured during 

the field testing procedures. The damping between the roller drum and the roller frame, 

the stiffness of the roller frame and the mass of the frame, would probably have been 

more important if the acceleration of the roller frame been measured and used to test the 

model. 
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 The average sensitivity coefficient of the mass of the roller drum was 

approximately 4 times higher than the sensitivity coefficient for the stiffness of the roller 

frame and almost 60 times higher than the mass of the roller frame.  As such it is fairly 

important to have a good estimate of the roller drum mass to input into the model.  

Fortunately, information regarding the mass of the roller drum, and the other roller 

related characteristics, could be obtained from a detailed study of the roller and/or from 

the manufacturer.  Once the values of the inputs are found they would not appreciablely 

change during the lifetime of the roller.  

 

Magnitude of the Eccentric Force (Fe) 

 The eccentric force is the main source of soil compaction and the driving force 

behind the model.  The roller drum would not vibrate without the eccentric mass rotating 

and dynamic energy would not be imparted into the soil to be reflected back to the roller 

and detected by the accelerometer.  As with the mass of the roller drum (md), a good 

estimate of the eccentric force could be obtained from the manufacturer for various 

combinations of roller drum amplitude and frequency.   

 

Soil Damping (d1 and d2)  

 The model error was apparently less sensitive to changes in the soil layer 

damping characteristics than it was to changes in the mass of the corresponding soil 

layer.  For example, the model error was almost 75 times more sensitive to changes in 

the mass of the second soil layer (m2) than to changes in the damping of layer 2.  The 

model was about 24 times as sensitive to changes in the mass of the first soil layer (m1) 

compared changes in the damping of the first soil layer.  The suggestion that the 

damping of layer 2 plays a larger role in the outcome of the model than the damping of 

layer 1 may be the result of the generally greater volume of the second soil layer, and 

hence geometric damping, than of layer 1. 
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SENSITIVITY ANALYSIS OF THE MODEL 

 The previous section outlined how the sensitivity of the model error was found 

by comparing the calculated value of roller drum deflection with the measured value of 

roller drum deflection.  The current section deals with determining the sensitivity of the 

model to changes in the input characteristics.  The model sensitivity was analyzed by 

adjusting each of the 14 input characteristics up and down by 10% from their starting 

values.  The value of roller drum deflection that resulted from each of the changes in the 

input characteristics was then compared to the initial calculated value of roller drum 

deflection at the appropriate test point.  The average model sensitivity coefficients for all 

6 test points are shown in Table 7-6. 

 It is apparent that the magnitudes of the model error sensitivity coefficients have 

similar magnitudes as the model sensitivity coefficients, as shown in Table 7-7.  For 

example, the angular frequency had a model error sensitivity coefficient of 36.88 while 

the angular frequency had a model sensitivity coefficient of 26.39.  Additionally, the 

sensitivity coefficients of the roller and soil damping characteristics were all well below 

1.  The rank order of the coefficients remained very similar between the two analyses, as 

shown in Table 7-8.   
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Table 7-6: Average Model Sensitivity Coefficients 

Characteristic Average Sensitivity 

Coefficient 

ω 26.39 

ke1 7.62 

m2 7.17 

ke2 3.79 

kp1 3.48 

Fe 2.12 

md 1.76 

kp2 1.72 

m1 0.78 

kf 0.69 

d2 0.19 

mf 0.07 

d1 0.02 

df 0.01 
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Table 7-7: Model and Model Error Sensitivity Characteristics 

Characteristic Average Model  

Sensitivity Coefficient 

Average Model Error 

Sensitivity Coefficient 

ω 26.39 36.88 

ke1 7.62 8.9 

m2 7.17 8.18 

ke2 3.79 5.23 

kp1 3.48 3.96 

Fe 2.12 2.12 

md 1.76 4.14 

kp2 1.72 2.28 

m1 0.78 0.47 

kf 0.69 1.1 

d2 0.19 0.11 

mf 0.07 0.11 

d1 0.02 0.02 

df 0.01 0.07 
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Table 7-8: Rank Order of Model and Model Error Sensitivity Coefficients 

Characteristic Model Sensitivity  

Coefficient Rank 

Model Error Sensitivity  

Coefficient Rank 

ω 1 1 

ke1 2 2 

m2 3 3 

ke2 4 4 

kp1 5 6 

Fe 6 8 

md 7 5 

kp2 8 7 

m1 9 10 

kf 10 9 

d2 11 12 

mf 12 11 

d1 13 14 

df 14 13 

 

 

COMPARING SENSITIVITY COEFFICIENTS 

 The model sensitivity analysis was based on the changes between the calculated 

values of roller drum deflection for consistent changes in the input characteristics.  The 

model error sensitivity analysis was based on the difference between the calculated and 

measured values of roller drum deflection.  An error in the measured value of roller 

drum deflection at 1 or more of the test points could affect the magnitude and order of 

the sensitivity coefficients in the model error sensitivity analysis.  The model sensitivity 

analysis did not rely on a measured value and would not be affected by an error in the 

measured value.  As such, the model sensitivity characteristics are probably more 

representative of how the model would react to changes in the input characteristics.  
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MINIMIZING THE DIFFERENCES 

 The purpose of the error minimization procedure was to determine what values 

of the soil related input characteristics were required to obtain agreement between the 

calculated and measured values of roller drum deflection.  If realistic values of the input 

characteristics were obtained it would tend to suggest that the model contained the 

appropriate input characteristics.  Unrealistic values would suggest that unnecessary 

characteristics were included in the model and/or that important characteristics had been 

omitted. 

 

Method Used to Minimize Differences 

 Microsoft Excel contains a solver function which allows for 1 or more input 

characteristics within an equation to be varied so that the output of the equation will 

converge to a desired result.  The desired result of this study was that the calculated 

value of roller drum displacement match the measured value of roller drum displacement 

to within (±) 1%.  A 1% error was deemed acceptable because the percent error between 

field and lab measurements of material density reported in the literature often exceeds 

1% (Padlo et al., 2005).  The values of the input characteristics were constrained to be 

equal to, or greater than, 100 to prevent negative values, which have no physical 

meaning in the model, from being generated.  

 According to the Microsoft’s online help site, the solver function uses the 

Generalized Reduced Gradient method to solve nonlinear problems.  Linear and integer 

problems are solved by the simplex method and the branch-and-bound method 

(Microsoft, 2010).  Given that the subject model contained terms with both real and 

imaginary exponents, it is most certainly a nonlinear problem.  

 Gradients are changes in slope between numbers, which can be thought of in this 

case as an input characteristic and the solution to the model.  At one extreme, gradient 

slopes can be very steep and approach vertical, which means that a small change in the 

input characteristic leads to a large change in the output (i.e. a sensitive characteristic).  

At the other extreme the gradient may be shallow and approach horizontal, which means 
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that a large change in the input characteristic produces little change in the output (i.e. a 

non-sensitive characteristic).  A gradient change solution method makes small changes 

in the specified input characteristic or characteristics and then monitors how the changes 

affect the desired outcome and continues to adjust the characteristics in an efficient way 

to reach the desired outcome (Revelle et al., 2004). 

 Just because a solver tool adjusts a series of numbers to achieve the desired 

outcome does not necessarily mean that the adjusted numbers are correct, or even 

realistic.  The gradient change solution method can be compared to a hiker, without a 

topographical map of the area, attempting to find the lowest elevation within a series of 

valleys by simply walking around until it is not possible to go any lower.  While the 

hiker may have found the local minimum within one valley, there is no guarantee that 

the lowest point within the series of valleys was found.  The same holds true for the 

minimization of the differences between the measured and calculated values of roller 

drum displacement.   

 

Approach to Difference Minimization  

 The subject model used to calculate roller drum deflection contains 14 input 

characteristics.  Six of the characteristics describe the roller and 8 characteristics are 

used to describe the 2 soil layers.  The values that describe the roller were considered to 

be fixed because they were either known with a reasonable degree of certainty, or do not 

appreciably change with the degree of compaction or variations in soil layer depth and 

mass.  As such, the minimization procedures focused exclusively on varying some or all 

of the 8 soil related characteristics at each point. 
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Results of Difference Minimizations 

Adjustment of all 8 Soil Related Characteristics 

 The solver tool tended to focus on making large adjustments to the mass when 

the initial values of all 8 soil related characteristics were allowed to vary.  Point 5 did not 

follow this general trend in that the damping characteristics were increased by about 300 

to 400% in order to reach 1% agreement.  The results of the error minimization for each 

test point are shown in Table 7-9. 

 Allowing all 8 soil related characteristics to vary in the error minimization did 

not appear to be valid for several reasons.  First, the final masses at Point 5 both 

decreased to the limiting value of 100 kg (220.5 lbs) to reach closure.  These values are 

both unreasonable and probably explain why the values of the damping characteristics 

increased by such high percentages.  Second, the minimization tended to focus on the 

mass of the first and second soil layers to reach closure.  This is not surprising given the 

fact that the model is highly sensitive to the mass of the second soil layer.  Third, the soil 

damping is related to the elastic stiffness, which was not adjusted during the 

minimization. 

 

 

Table 7-9: Percent Change in Initial Input Values When All Eight Soil Related 
Characteristics Were Allowed to be Adjusted 

Point m1 m2 kp1 kp2 ke1 ke2 d1 d2 

1 -9.05 -37.64 0.00 0.00 0.00 0.00 0.00 0.00 

2 2.06 3.61 0.00 0.00 0.00 0.00 0.00 0.00 

3 -3.23 -24.88 0.00 0.00 0.00 0.00 0.00 0.00 

4 -1.45 -24.28 0.00 0.00 0.00 0.00 0.00 0.00 

5 -93.13 -88.72 0.00 0.00 0.00 0.00 291.46 416.56 

6 336.05 79.43 0.00 0.00 0.00 0.00 0.00 0.00 
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Adjustment of Only the Soil Masses 

 The results of the error minimization when only the masses were allowed to be 

varied were similar to the results of 8 soil characteristic minimization, as shown in Table 

7-10.  Specifically, the masses of Layer 1 and Layer 2 at Point 5 were reduced to the 

minimum value of 100 kg (220.5 lbs), which was unrealistic.  The large increase in the 

Layer 1 mass at Point 6 were also unrealistic given that the change in Layer 1 mass at 

Points 1 through 4 was relatively minor.   

 

 

Table 7-10: Percent Change in Initial Input Values When the Soil Masses Were Allowed 
to be Adjusted 

Point m1 m2 kp1 kp2 ke1 ke2 d1 d2 

1 -6.52 -37.72 0.00 0.00 0.00 0.00 -3.31 -21.08 

2 2.25 3.93 0.00 0.00 0.00 0.00 1.12 1.94 

3 -3.16 -24.56 0.00 0.00 0.00 0.00 -1.59 -13.14 

4 -0.92 -23.98 0.00 0.00 0.00 0.00 -0.46 -12.81 

5 -93.13 -88.72 0.00 0.00 0.00 0.00 -73.79 -66.41 

6 358.13 79.66 0.00 0.00 0.00 0.00 114.04 34.04 

 

 

Adjustment of Soil Elastic Stiffness Characteristics 

 The soil elastic stiffness characteristics (ke1 and ke2) were allowed to vary so that 

their effect on the calculated value of roller drum deflection could be observed.  As 

previously stated, the values of the plastic stiffness and damping characteristics depend 

upon the value of the corresponding elastic stiffness characteristic.  The path the solver 

tool used to minimize the difference between the calculated and measured values of 

roller drum deflection depended upon the initial difference between the 2 deflections.  

The layer 1 elastic stiffness characteristics were increased from their initial values if the 

initial difference between the drum deflections was positive (i.e. the calculated value of 

roller drum deflection was greater than the measured value of roller drum deflection).  
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The layer 1 elastic stiffness characteristics were decreased if the initial difference 

between the two deflections was negative.  Table 7-11 contains a summary of the 

percent change in stiffness and damping characteristic values needed to obtain a closure 

between the measured and calculated roller drum deflections of approximately 1%. 

 

 

Table 7-11: Percent Change in Stiffness and Damping Characteristics When Elastic 
Stiffness Characteristics Were Adjusted 

Point kp1  kp2  ke1  ke2 d1 d2 

1 10.74 64.25 10.74 64.25 5.23 28.16 
2 -33.83 45.92 -33.83 45.92 -18.66 20.80 
3 19.51 18.75 19.51 18.75 9.32 8.97 
4 27.07 16.13 27.07 16.13 12.72 7.76 
5 -39.42 -7.41 -39.42 -7.41 -22.17 -3.78 
6 -70.93 105.27 -70.93 105.27 -46.09 43.27 

 

 

 The formulas for the plastic stiffness and damping characteristics used in the 

Excel spreadsheet depend upon the elastic stiffness characteristic within each layer.  For 

example, the plastic stiffness characteristic was set to be 87% of the layer’s elastic 

stiffness characteristic (Pietzsch and Poppy, 1992).  As such, raising and lowering the 

values of the elastic stiffness characteristics caused the values of the plastic stiffness and 

damping characteristics to change as well.  This phenomenon is illustrated by the fact 

that the percent change in the elastic and plastic stiffness characteristics were equal and 

that the percent change in the damping characteristics were essentially one-half the 

percent change in the elastic characteristics.   

 The final values of the elastic and plastic stiffness characteristics were converted 

into elastic moduli to determine if the final values of these characteristics were realistic.  

The conversion was accomplished by reversing the procedure that was used to find the 

initial values of the elastic stiffness characteristics using the soil layer modulus values 

obtained by pFWD tests.  The plastic stiffness characteristics were treated as elastic 
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stiffnesses because the literature contained very little information on plastic moduli 

related to soil.  The results of the conversion are displayed in Table 7-12.  

 

 

Table 7-12: Final Moduli When only Elastic Stiffness Was Varied 

Point Ep1 (GPa) Ep2 (GPa) Ee1 (GPa)  Ee1(psi) Ee2 (GPa) Ee2 (psi) 

1 0.066 0.067 0.076 11,023 0.077 11,168 
2 0.052 0.078 0.060 8,702 0.090 13,053 
3 0.057 0.054 0.065 9,427 0.062 8,992 
4 0.072 0.070 0.083 12,038 0.081 11,748 
5 0.042 0.069 0.048 6,962 0.079 11,458 
6 0.050 0.164 0.057 8,267 0.189 27,412 

 

 

 The literature reported that an unspecified rubber material, which was subjected 

to small strains, had an elastic stiffness on the order of 0.01 to 0.1 GPa (1,500 to 15,000 

psi) (Engineer’s Toolbox, 2010).  The majority of the final modulus values fell within 

the middle of the given range, with the elastic and plastic moduli of Test Point 6’s first 

layer exceeding the range.  These results appear to be reasonable given that the tested 

material was a hard clay soil undergoing small strains because the specified degree of 

compaction had reportedly been achieved.  As a point of comparison, the Young’s 

modulus for 29,000 ksi steel is 200 GPa. 

 The initial values of the elastic stiffnesses used in the model were based on 

average values of elastic moduli obtained from pFWD tests.  Resilient modulus tests 

were also conducted on several soil samples from the site.  A comparison of the starting 

and ending values of elastic moduli with the moduli obtained from pFWD and resilient 

modulus testing is contained in Table 7-13.  The table shows that almost all of the final 

values of the elastic moduli needed to obtain a closure of 1% between the calculated and 

measured amount of roller drum deflection fell within the range of the values obtained in 

the field and the laboratory. 
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Table 7-13: Initial and Final Model Moduli Compared to Field and Lab Tests 

Point Layer Initial Input 

Value of  

Elastic 

Modulus (psi) 

Final Value of  

Elastic 

Modulus (psi) 

pFWD Moduli (psi) 

[values from all three 

sensors] 

Lab Resilient 

Moduli (psi) 

1 1 6,768 11,023 

1 2 9,910 11,168 

5,656 to  

12,328 

7,000 to 

14,000 

2 1 8,919 8,702 

2 2 13,101 13,053 

4,786 to  

16,824 

No Tests 

Conducted 

3 1 7,614 9,427 

3 2 7,928 8,992 

5,221 to  

10,588 

8,000 to 

19,000 

4 1 10,079 12,038 

4 2 9,499 11,748 

6,962 to  

12,328 

6,000 to 

18,000 

5 1 12,400 6,962 

5 2 11,457 11,458 

11,458 to 12,618 10,000 to 

22,000 

6 1 13,342 8,267 

6 2 28,425 27,415 

13,198 to 28,717 47,000 to 

91,000 

 

 

 The fact that the overwhelming majority of the final moduli values fell within the 

ranges of the field and laboratory moduli was a further indication that the model can 

accurately predict the degree of compaction of the upper soil layer.  The discrepancies 

between the starting and ending moduli values were probably caused by a couple of 

factors.  First, the pFWD cannot isolate the first soil layer from the second soil layer.  As 

such, the modulus value calculated for sensor 1 depends upon the soil throughout the 

entire test depth.  The third sensor is affected by the lower soil, but there is no guarantee 

that the soil lies only within the second soil layer used in the model.  Second, it is quite 

possible that the samples used in the resilient modulus testing contained soil from both 

the top and bottom soil layers. 
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CHAPTER VIII 

CONCLUSION 

 

SUMMARY 

 This project focused on the development of a mechanics based soil-roller 

interaction model capable of determining the degree of compaction of the top layer of a 

soil profile.  The model was an extension of work performed by others who sought to 

determine the effects of theoretical modifications to vibratory rollers without the need to 

build working prototypes (Pietzsch and Poppy, 1992; Yoo and Selig, 1972).  This model 

included 2 non-uniform soil layers instead of treating the soil as a single, homogeneous 

mass as many previous models have.  The multilayer approach has the potential to more 

accurately capture the conditions encountered on actual construction projects.    

 An accelerometer based monitoring system was attached to a vibratory smooth 

drum roller in an attempt to determine the degree of compaction of the top soil layer.  

The roller was then driven across a number of test sections and the displacement of the 

roller drum was determined from the measured acceleration of the roller drum.  The test 

sections included portions of active construction projects such as roadways and running 

tracks, as well as in-service gravel roads and parking lots.  Baseline testing of the soil 

within the test sections was conducted before and after the roller was driven across the 

test sections.  The baseline tests included; dry and wet density by nuclear methods, DCP 

penetration rate, pFWD and FWD back calculated moduli and wet and dry density 

determined by laboratory testing of Shelby tube samples. 

 

FINDINGS 

 A sum-of-the-square of the errors (best fit line) procedure was used to determine 

if a causal relationship existed between the gathered baseline soil data, roller drum 

deflection and the degree of compaction of the upper soil layer.  Analysis of the data 

revealed that there was no evident correlation between roller drum deflection and the 

degree of compaction of the upper soil layer when roller drum deflection was compared 
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to only 1 of the input characteristics.  The lack of correlation was not surprising given 

the number of characteristics that contribute to soil compaction and the measured 

deflection of the roller drum. 

 The accuracy of the mechanics based soil-roller-interaction-model was tested 

against the results of baseline measurements and data obtained from two SH 21 test 

sections.  The model should be considered to be accurate if the calculated value of roller 

drum deflection was within 1% of the measured value of roller drum deflection.  

Additional model parameters/inputs such as elastic and plastic spring stiffness, damping 

values, eccentric mass frequency and roller drum force were obtained from 

manufacturer’s literature and research by others (Caterpillar, 2003; Pietz and Poppy, 

1992; Rinehart and Mooney, 2005; Richart et al., 1970).  The difference between the 

calculated values of roller drum deflection and the measured values of roller drum 

deflection using the initial estimated values of the input characteristics ranged from 

approximately -95% to 935%.   

 An error minimization procedure using the solver tool in Microsoft Excel (2010) 

was used to adjust several of the soil related characteristics in an attempt to decrease the 

error between the calculated and measured values of roller drum deflection to 

approximately 1%.  The minimization process suggested that the model could accurately 

predict the degree of compaction of the upper soil layer.  The moduli that were back 

calculated from the final stiffnesses needed to reach a 1% closure generally fell within 

the range of the moduli resulting from pFWD and resilient modulus testing.  Had the 

error minimization process resulted in excessively high or low back calculated moduli it 

would probably have been necessary to adjust the input characteristics. 

 Both the model error sensitivity analysis and the model sensitivity analysis 

showed that the mass of the second soil layer was an important characteristic.  In fact, 

the model was, on average, 9 to 17 times more sensitive to changes in the mass of the 

second layer than it was to changes in the mass of the first layer.   This result suggests 

that any model attempting to determine the degree of compaction must be composed of 

at least 2 layers.  The importance of the mass of the second soil layer, m2, is probably 
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caused by the fact that the second soil layer acts as the anvil upon which the top layer is 

compacted.  A poorly compacted, or soft, underlying layer makes it difficult to compact 

the top layer (Holtz and Kovacs, 1981).  

 The sensitivity analysis also showed that the model was more sensitive to 

changes in the elastic and plastic stiffnesses than to the mass of the top soil layer.  This is 

an important finding in that the low sensitivity of the mass of the top soil layer, and by 

extension the density of the top soil layer, means that large changes in the mass of layer 

1 would have minimal effects on the output of the model.  This characteristic is a 

drawback if the fill is to be installed and tested according to standard density 

specifications.  However, this characteristic would be an advantage if the fill is to be 

installed and tested according to a specification based on the design material modulus or 

stiffness. 

 As previously stated, roadways are not designed on the basis of the density of 

their component parts; they are designed based on stiffness or modulus.  The fact that 

most specifications use a density based acceptance criteria is probably based more on 

convenience and the availability of equipment that can accurately determine density in 

the field.  Fortunately, equipment that can accurately determine the modulus or stiffness 

of a material in the field is becoming available and governing agencies are beginning to 

develop specifications to address these advances. 

 

RECOMMENDATIONS 

 Future measuring systems should contain at least 2 accelerometers so that the 

redundancy in the model may be used to minimize the errors.  Additionally, the 

installation of a second pair of accelerometers on the roller frame could improve the 

accuracy of the model by allowing the equation for the displacement of the roller frame 

to be evaluated.  The second set of accelerometers would also provide a way to 

accurately determine the stiffness and damping of the roller frame (kf and df). 

 The plastic spring characteristics were set as a percentage of the elastic spring 

characteristics in the Excel spreadsheet.  A more correct procedure may involve 
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developing an equation along the line of what was used to determine the initial values of 

the elastic spring characteristics from the pFWD data so that the elastic an plastic spring 

values are uncoupled from each other.  Such a procedure would probably entail 

laboratory testing of soil samples to determine the relationship between a compacted soil 

sample subjected to elastic and plastic deformations. 

 Additional testing is required to determine how best to model the roller drum 

vibration distribution pattern, which has a direct impact on the mass of the first and 

second soil layers.  The current model used a triangular distribution pattern whose lateral 

spread was limited by the outside edges of the roller drum.  Other distribution patterns 

could be steeper or shallower, and/or extend beyond the outside edges of the roller drum.  

Implanting accelerometers into the soil mass could provide insight to the correct 

distribution pattern and may also allow for more rigorous testing of the model by 

providing the information needed to test the equations describing the displacement of the 

two soil layers.   
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APPENDIX A 

MISCELLANEOUS FIGURES 

 

TYPICAL FREQUENCY DISTRIBUTION PLOT 

 

 

 

Fig. A-1.  Frequency distribution plot showing roller drum displacements along the Y-
axis as a function of the frequency at which the displacements occur along the X-axis. 
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TYPICAL RAMS OUTPUT 
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Fig. A-2.  Roller drum displacements versus distance along test strip.  Figure courtesy of 
Dr. Wenting Liu. 
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APPENDIX B 

DERIVATION OF THE MODEL 

 

SCHEMATIC AND MODEL CHARACTERISTICS 

 

 This portion of the Appendix presents a detailed derivation of the soil-roller 

interaction model, which was generally described in Chapter VI.  Figure A-3 illustrates 

the components of the model while Table A-1 defines the characteristics and units for 

each characteristic within the model. 

 

 

 

Fig. B-1.  Schematic of the model components. 
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 The “T” shaped bar that connects the roller frame to the roller drum is a massless 

construct that is used to show that the frame stiffness and damping connect to the roller 

drum at the drum axle. 

 

 

Table B-1: Model Characteristics and Units 

Symbol Description Units 

mf mass of drum frame mass 

zf displacement of drum frame length 

kf elastic stiffness between drum frame and drum  force/length 

df damping between drum frame and drum force*time/length 

Fe exciting force force 

Ω or ω frequency of eccentric mass Hertz 

md mass of drum mass 

zd displacement of drum length 

ke1 elastic stiffness of top soil layer force/length 

kp1 plastic stiffness of top soil layer force/length 

t1 thickness of top soil layer length 

d1 damping of top soil layer force*time/length 

m1 mass of the first soil layer mass 

z1 displacement of top soil layer length 

ke2 elastic stiffness of lower soil layer force/length 

kp2 plastic stiffness of lower soil layer force/length 

t2 thickness of lower soil layer length 

d2 damping of lower soil layer force*time/length 

m2 mass of the second soil layer mass 

z2 displacement of lower soil layer length 
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FREE BODY DIAGRAMS 

 

 The free body diagrams of each of the four model components were constructed 

and used to develop the model equations.  The free body diagrams and base equations 

for each component are shown below. 

 

Roller Frame 

 

 

 

Fig. B-2.  Free body diagram of roller frame. 

 

 

Model equation for roller frame (base equation 1): 

 

mf ( z″f) = - kf(zf-zd)-df(z′f-z′d) 
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Roller Drum 

 

 

 

Fig. B-3.  Free body diagram of roller drum. 

 

 

 

Model equation for roller drum (base equation 2): 

 

md(z″d)- Fe = kf (zf-zd)+df(z′f-z′d)-ke1(zd-z1)-kp1(zd-z1)-d1(z′d-z′1) 
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Soil Layer 1 

 

 

 

Fig. B-4.  Free body diagram of soil layer 1. 

 

 

Model equation for soil layer 1 (base equation 3): 

 

m1(z″1)= ke1(zd-z1)+kp1(zd-z1)+ d1(z′d-z′1)- ke2(z1-z2)-kp2(z1-z2)- d1(z′1-z′2) 
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Soil Layer 2 

 

 

 

Fig. B-5.  Free body diagram of soil layer 1. 

 

 

Free body diagram equation for soil layer 2 (base equation 4):  

 

m2(z″2)= ke2(z1-z2)+ kp2(z1-z2)+ d2(z′1-z′2) 

 

EFFECTS OF DAMPING 

 

 The amount of force imparted to the roller frame and soil layers by the roller 

drum varies with the position of the rotating eccentric mass within the roller drum.  The 

damping between the drum and the frame, and the damping within each soil layer, 

causes the force to be felt at a slightly later time than the load is imparted (Richart et al 

1970).  This means that the maximum displacements, velocities and accelerations within 

each component lag behind the forcing function provided by the roller drum.  As such, 

the characteristics representing displacement, velocity and acceleration must be 
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expanded into the following equations or identities to account for the lag effect (Pietzsch 

and Poppy 1992; Richart et al 1970; Yoo and Selig 1979).   

 

Roller Frame 

zf = Zfe
-i(ωt-Φf) 

z′f = -iω Zfe
-i(ωt-Φf) 

z″f = -ω2Zfe
-i(ωt-Φf) 

 

Roller Drum 

zd = Zde
-iωt 

z′d = -iωZde
-iωt 

z″d = -ω2Zde
-iωt 

 

Soil Layer 1 

z1 = Z1e
-i(ωt-Φ1) 

z′1 = -iωZ1e
-i(ωt-Φ1) 

z″1 = -ω2Z1e
-i(ωt-Φ1) 

 

Soil Layer 2 

z2 = Z2e
-i(ωt-Φ2) 

z′2 = -iωZ2e
-i(ωt-Φ2) 

z″2 = -ω2Z2e
-i(ωt-Φ2) 

 

Where: 

Z = the maximum amplitude of the component displacement 

i2 = -1 

Φf = lag angle of frame 

Φ1 = lag angle of layer 1 

Φ2 = lag angle of layer 2 
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′ = first derivative of displacement (velocity) 

″ = second derivative of displacement (acceleration) 

 

 The lag angle represents the degree to which the subject component is out of 

phase with the forcing function.  The identities describing the roller drum do not contain 

a lag angle because there is no delay because it is the drum that provides the forcing 

function. 

 

SUBSTITUTION INTO THE FOUR BASE EQUATIONS 

 The lag identities developed above are substituted into the four base equations as 

outlined below. 

 

Roller Frame 

 

-mfω
2(Zfe

-i(ωt-Φf)) = -kf(Zfe
-i(ωt-Φf)-Zde

-iωt)+dfiω(Zfe
-i(ωt-Φf)-Zde

-iωt)   

 

Roller Drum 

 

-mdω
2(Zde

-iωt) = kf(Zfe
-i(ωt-Φf)-Zde

-iωt)-dfiω( Zfe
-i(ωt-Φf)+Zde

-iωt)-ke1(Zde
-iωt-Z1e

-i(ωt-Φ1)) 

-kp1(Zde
-iωt-Z1e

-i(ωt-Φ1))+iωd1(Zde
-iωt-Z1e

-i(ωt-Φ1))+Fe 

 

Soil Layer 1 

 

-m1ω
2(Z1e

-i(ωt-Φ1)) = ke1(Zde
-iωt-Z1e

-i(ωt-Φ1))+ kp1(Zde
-iωt-Z1e

-i(ωt-Φ1))- iωd1(Zde
-iωt-Z1e

-i(ωt-Φ1)) 

- ke2(Z1e
-i(ωt-Φ1)-Z2e

-i(ωt-Φ2))-kp2(Z1e
-i(ωt-Φ1)-Z2e

-i(ωt-Φ2))+iωd2(Z1e
-i(ωt-Φ1)-Z2e

-i(ωt-Φ2)) 

Soil Layer 2 

 

-m2ω
2(Z2e

-i(ωt-Φ2)) = ke2(Z1e
-i(ωt-Φ1)-Z2e

-i(ωt-Φ2))+kp2(Z1e
-i(ωt-Φ1)-Z2e

-i(ωt-Φ2)) 

-iωd2(Z1e
-i(ωt-Φ1-Z2e

-i(ωt-Φ2)) 
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COMBINE COMPONENT EQUATIONS 

 

Frame and Drum Equation 

 

mfz″f+mdz″d = -mfω
2(Zfe

-i(ωt-Φf))-mdω
2(Zde

-iωt)+ Fe 

 

expand, gather terms, and simplify 

 

-mfω
2(Zfe

-i(ωt-Φf))-mdω
2(Zde

-iωt) = ke1(Zde
-iωt-Z1e

-i(ωt-Φ1)) -kp1(Zde
-iωt-Z1e

-i(ωt-Φ1)) 

+iωd1(Zde
-iωt-Z1e

-i(ωt-Φ1))+Fe 

 

Frame, Drum, and Layer 1 Equation 

 

mfz″f+mdz″d+m1z″1 = -mfω
2(Zfe

-i(ωt-Φf))-mdω
2(Zde

-iωt)-m1ω
2(Z1e

-i(ωt-Φ1)) 

 

expand, gather terms, and simplify 

 

-mfω
2(Zfe

-i(ωt-Φf))-mdω
2(Zde

-iωt)-m1ω
2(Z1e

-i(ωt-Φ1)) = -ke2(Z1e
-i(ωt-Φ1)-Z2e

-i(ωt-Φ2)) 

-kp2(Z1e
-i(ωt-Φ1)-Z2e

-i(ωt-Φ2))+iωd2(Z1e
-i(ωt-Φ1)-Z2e

-i(ωt-Φ2))+Fe 

 

Frame, Drum, Layer 1, and Layer 2 Equation 

 

mfω
2(Zfe

-i(ωt-Φf))+mdω
2(Zde

-iωt)+m1ω
2(Z1e

-i(ωt-Φ1))+m2ω
2(Z2e

-i(ωt-Φ2))=Fe 
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Let: 

 

Zfe
-i(ωt-Φf) = X1 = displacement of the frame 

 

Zde
-iωt = X2 = displacement of the drum 

 

Z1e
-i(ωt-Φ1) = X3 = displacement of soil layer 1 

 

Z2e
-i(ωt-Φ2) = X4 = displacement of soil layer 2 

 

Rewrite equations using above identities and expand. 

 

Frame equation 

 

-mfω
2X1 = -kfX1+kfX2+dfiωX1-dfiωX2 

 

Frame and drum equation 

 

-mfω
2X1-mdω

2X2 = -ke1X2+ke1X3-kp1X2+kp1X3+iωd1X2-iωd1X3+Fe 

 

Frame, drum, and layer 1 equation 

 

-mfω
2X1-mdω

2X2-m1ω
2X3 = -ke2X3+ke2X4-kp2X3+kp2X4+iωd2X3-iωd2X4+Fe 

 

Frame, drum, layer 1, and layer 2 equation 

 

-mfω
2X1-mdω

2X2-m1ω
2X3-m2ω

2X4 = Fe  
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 Set above equations equal to zero and collect terms (characteristics of the X’s) to 

form the matrix of equations that describe the factors that effect the movement or 

displacement of each component: 

 

Frame equation: 

 

X1(-mfω
2+kf-dfiω)   

X2(-kf+dfiω) 

 

Frame and drum equation: 

 

X1(-mfω
2) 

X2(-mdω
2+ke1+kp1-iωd1) 

X3(-ke1-kp1-iωd1)  

 

Frame, drum, and layer 1 equation: 

 

X1(-mfω
2) 

X2(-mdω
2) 

X3(-m1ω
2+ke2+kp2-iωd2)  

X4(-ke2-kp2-iωd2) 

 

Frame, drum, layer 1, and layer 2 equation: 

 

X1(-mfω
2) 

X2(-mdω
2) 

X3(-m1ω
2)  

X4(-m2ω
2) 
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Collect terms: 

 

X1((-mfω
2+kf-dfiω)+(-mfω

2)+(-mfω
2)+(-mfω

2))= 0 

 

X2((-kf+dfiω)+(-mdω
2+ke1+kp1-iωd1)+(-mdω

2)+(-mdω
2))=Fe 

 

X3((-ke1-kp1-iωd1)+(-m1ω
2+ke2+kp2-iωd2)+(-m1ω

2))=Fe 

 

X4((-ke2-kp2-iωd2)+(-m2ω
2))=Fe 

 

 The above equations can be grouped together to form a 4 x 4 matrix with the X 

vectors representing the unknowns and the other terms on the left hand side of the 

equations representing characteristics.  The terms on the right hand side of the equation 

are the knowns. 

 

 To simplify the housekeeping of the matrix manipulation, write the matrix as 

follows: 

 

 

44434241

34333231

24232221

14131211

AAAA

AAAA

AAAA

AAAA

 * 

4

3

2

1

X

X

X

X

 = 

e

e

e

F

F

F

0

 

 

 

Where, 

 

A11=(-mfω
2+kf-dfiω)   

A12=(-kf+dfiω) 

A13=0 
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A14=0 

A21=(-mfω
2) 

A22=(-mdω
2+ke1+kp1-iωd1) 

A23=(-ke1-kp1-iωd1)  

A24=0 

A31=(-mfω
2) 

A32=(-mdω
2) 

A33=(-m1ω
2+ke2+kp2-iωd2) 

A34=(-ke2-kp2-iωd2) 

A41=(-mfω
2) 

A42=(-mdω
2) 

A43=(-m1ω
2) 

A44=(-m2ω
2) 

 

 The determinant of a 4 x 4 matrix can be found by breaking the matrix into four 3 

x 3 matrixes, multiplying the determinant of each 3 x 3 matrix by the appropriate 

characteristic from the first row of the matrix, and then summing the results.  Because 

the last two terms (A13 and A14) in the first row of our 4 x 4 matrix are equal to zero, 

the contributing value of the determinants of the two 3 x 3 matrixes associated with the 

zero terms is zero. 

 

 

321

321

321

CCC

BBB

AAA

 

 

 

The determinant of the above 3 x 3 matrix is equal to: 

 

A1B2C3-A1B3C2+A2B3C1-A2B1C3+A3B1C2-A3B2C1 
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 Therefore, because A24 is equal to zero, the determinant of our 4 x 4 matrix is 

equal to: 

 

A11((A22A33A44)-(A22A34A43)+(A23A34A42)-(A23A32A44)) 

-A12((A21A33A44)-(A21A34A43)-(A23A34A41)-(A23A31A44)) 

 

 The values of the unknown terms (X1 through X4) can be found by taking the 

discriminant found by systematically substituting the unknowns into each column and 

dividing the result by the determinant of the original 4 x 4 matrix. 

 

 

44434241

34333231

24232221

14131211

AAAA

AAAA

AAAA

AAAA

 

 

 

Where, 

 

A11= 0 

A12=(-kf+dfiω) 

A13=0 

A14=0 

A21=Fe 

A22=(-mdω
2+ke1+kp1-iωd1) 

A23=(-ke1-kp1-iωd1)  

A24=0 

A31=Fe 

A32=(-mdω
2) 

A33=(-m1ω
2+ke2+kp2-iωd2) 



  98 

 

A34=(-ke2-kp2-iωd2) 

A41=Fe 

A42=(-mdω
2) 

A43=(-m1ω
2) 

A44=(-m2ω
2) 

 

 The discriminant of the A11 column is: 

 

-FeA12((A33A44)-(A34A43)+(A23A34)-(A23A44)) 

 

 By similar manipulation, the three remaining discriminants are as follows: 

 

A12 column: 

 

FeA11((A33A44)-(A34A43)+(A23A34)-(A23A44)) 

 

A13 column: 

 

FeA11((A22A44)-(A22A34)+(A34A42)-(A32A44)) 

-FeA12((A21A44)-(A21A34)+(A34A41)-(A31A44)) 

 

A14 column: 

 

FeA11((A22A33)-(A22A43)+(A23A42)-(A23A32)+(A32A43)-(A33A42)) 

-FeA12((A21A33)-(A21A43)+(A23A41)-(A23A31)+(A31A43)-(A33A41)) 

 

 Therefore, the displacements of each of the four model components can be 

calculated by the following four equations. 
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X1 =  -FeA12((A33A44)-(A34A43)+(A23A34)-(A23A44))  

 ÷ 

 A11((A22A33A44)-(A22A34A43)+(A23A34A42)-(A23A32A44)) 

-A12((A21A33A44)-(A21A34A43)-(A23A34A41)-(A23A31A44)) 

  

X2 =  FeA11((A33A44)-(A34A43)+(A23A34)-(A23A44)) 

 ÷ 

 A11((A22A33A44)-(A22A34A43)+(A23A34A42)-(A23A32A44)) 

-A12((A21A33A44)-(A21A34A43)-(A23A34A41)-(A23A31A44)) 

 

X3 =  FeA11((A22A44)-(A22A34)+(A34A42)-(A32A44)) 

-FeA12((A21A44)-(A21A34)+(A34A41)-(A31A44)) 

 ÷ 

 A11((A22A33A44)-(A22A34A43)+(A23A34A42)-(A23A32A44)) 

-A12((A21A33A44)-(A21A34A43)-(A23A34A41)-(A23A31A44)) 

 

X4 =  FeA11((A22A33)-(A22A43)+(A23A42)-(A23A32)+(A32A43)-(A33A42)) 

-FeA12((A21A33)-(A21A43)+(A23A41)-(A23A31)+(A31A43)-(A33A41)) 

 ÷ 

 A11((A22A33A44)-(A22A34A43)+(A23A34A42)-(A23A32A44)) 

-A12((A21A33A44)-(A21A34A43)-(A23A34A41)-(A23A31A44)) 

 

Where, 

 

A11=(-mfω
2+kf-dfiω)   

A12=(-kf+dfiω) 

A13=0 

A14=0 
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A21=(-mfω
2) 

A22=(-mdω
2+ke1+kp1-iωd1) 

A23=(-ke1-kp1-iωd1)  

A24=0 

A31=(-mfω
2) 

A32=(-mdω
2) 

A33=(-m1ω
2+ke2+kp2-iωd2) 

A34=(-ke2-kp2-iωd2) 

A41=(-mfω
2) 

A42=(-mdω
2) 

A43=(-m1ω
2) 

A44=(-m2ω
2) 

 

Development of the Excel Spreadsheet 

 

 Only the displacement of the roller drum was measured during the course of the 

field investigation of the RAM system.  This meant that only the X2 equation could be 

used to test the model. 

 The X terms were identities that were used to simplify the development of the 

equation.  They represented the displacement of each of the four model components 

which varied with time as a result of the variation in applied energy caused by the 

rotating eccentric mass.  The measured roller drum deflections were based on the peak-

to-peak accelerations.  This meant that the maximum deflections were measured and that 

the effects of time and the lag angle were captured in the measured value of roller drum 

deflection. 
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