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ABSTRACT 

 

Phospholipids and Terpenes Enhance the Absorption of  

Polyphenolics in a Caco-2 Cell Model.   

(December 2010)  

Jorge Alfredo Cardona Ponce, B.S., Zamorano University;  

M.S., University of Florida  

Chair of Advisory Committee: Dr. Stephen T. Talcott    

 

Anthocyanins are the most important class of water-soluble pigments responsible for 

red to blue colors in various plants.  Anthocyanins naturally occur in a broad range of plants 

and studies have shown associations between fruit consumption and reduction of certain 

diseases thought to be related to the presence of these and other polyphenolics.  However, 

anthocyanin absorption is fairly poor which hinders their potential to be utilized in the 

human body.  

Absorption of anthocyanins extracted from açaí puree and port wine was assessed.  

Various combinations of terpenes and phospholipids were added to anthocyanins to 

modulate and increase their transport within a model system.  Açaí and port wine 

anthocyanins were poorly transported in the absence of phospholipids and terpenes.  The 
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addition of terpenes and phospholipids significantly increased the transport of 

anthocyanins.  Additionally, the presence of phospholipids and terpenes did not 

influence the way anthocyanins degraded over a 40 day period of time at three different 

temperatures.  Transport of anthocyanins was not dependent on dosage since absorption 

results were similar at both concentrations of anthocyanins tested.  Two methods to mix 

anthocyanins, phospholipids, and terpenes were also assessed (Sonication and French 

Press).  Comparisons illustrated that both technologies created matrices that maintained 

the properties of phospholipids and terpenes as transport enhancers. 

Finally, a study to determine the efficacy of phospholipids and terpenes on a 

different type of polyphenolic compound was assessed.  Transport of gallic acid was 

enhanced by the use of these agents that cemented the idea that phospholipids and 

terpenes can enhance the transport of various types of polyphenolics. 

The aiding effect of phospholipids and terpenes was well established and could 

play an important role in future investigation in this field.  Further research needs to be 

conducted to reveal more information about the nature of these vesicles or associations 

that phospholipids and terpenes may have with anthocyanins.  In vivo studies need to be 

considered to confirm these effects in rat models and, ideally, in humans.  Nevertheless, 

these findings open a new line of investigation that could harvest promising results for 

the future of ingredient development for food products. 
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I. INTRODUCTION 

 

Polyphenlics are plant metabolites renowned for their antioxidant capacity and 

their contribution to flavor and color of several fruits and vegetables (Croft 1999).  

Recently, polyphenolic functionalities such as enzyme inhibition and radical scavenging 

have attracted consumer attention because of the potential association of these 

compounds activity with long-term human health (Parr and Bowell 2000).  

Anthocyanins represent a major group of polyphenolics responsible for the red to blue 

coloration in plants, flowers, roots, fruits, and vegetables (Bridle and Timberlake 1997).  

Several in vitro studies have shown anthocyanins antioxidant capacity to counter 

carcinogenic (Jing and others 2008; Kamei and others 1998), inflammatory (Lietti and 

others 1976; Šarić and others 2009), and atherosclerotic (Lapauld and others 1997; 

Miyazaki and others 2008) effects.  In contrast, the bioavailability of polyphenolics is 

extremely low which hinders their potential to achieve potential health benefits as shown 

on in vitro models.  Anthocyanins, specifically, are among the most common 

polyphenolics in nature but their absorption is very limited (Ichiyanagi and others 2008; 

Yi and others 2006). 
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The use of phospholipids and terpenes as transport/absorption enhancing agents 

could increase bioavailability of anthocyanins.  Phospholipids are amphiphilic molecules 

commonly found in cell membranes.  In addition, phospholipids can be found in foods 

containing membranes such as eggs, milk, and soybeans.  Due to their structure, 

phospholipids act as surfactants by reducing surface tension and interacting with both 

lipophilic and hydrophilic regions of interfaces (McClements and Decker 2007).  Studies 

have shown their potential to protect and absorb components both lipophilic and 

hydrophilic.  Most of the research explaining absorption regulation using phospholipids 

has been conducted on lipophilic substances such as vitamin E (Koo and Noh 2000), 

carotenoids (Baskaran and others 2003; Sugawara and others 2001), and cholesterol 

(Homan and Hamelehle 1998; Rampone and Machida 1981) in nano-emulsions, but little 

is known about their potential to protect and transport anthocyanins through the 

gastrointestinal tract. 

Terpenes might also be used as enhancers in the absorption of anthocyanins.  

Several investigations have demonstrated the effectiveness of terpenes in transdermal 

drug delivery (Cal 2005, Lim and others 2006; Lim and others 2008) that might be 

replicated at a transepithelial level.  In addition, terpenes mixed with phospholipids 

could create a matrix where anthocyanins are not only protected against exogenous 

conditions, but could also enhance their absorption to deliver more of these components 

to the blood stream, increasing their potential to offset chronic diseases. 

Increasing stability and bioavailability of phytochemicals would represent a 

breakthrough in the food industry since these compounds have gained so much attention 
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in recent years and any type of enhancement for these compounds would represent future 

steps in augmenting the quality of foods.  In addition, the increase in absorption of 

phytochemicals would revolutionize the food industry creating opportunities to develop 

new products and shifting the trend towards optimization of phytochemicals absorption 

and stability.  Most of the encapsulation research and use of phospholipids and terpenes 

has been done on a pharmaceuticals and this field is growing as technology becomes 

more available and cost effective, and as the demand for healthier foods increases.  

Encapsulation technology in the food industry has been related mainly to protection and 

delivery of enzymes and antimicrobials (Keller 2001; Mozafari and others 2008).  

Therefore, the objectives of this research were to investigate the potential impacts of 

phospholipids and terpenes on the stability and bioavailability of anthocyanins and; 

investigate the mechanisms by which terpenes and phospholipids may interact with 

anthocyanins. 

This research study assessed the absorption/transport of anthocyanins with and 

without the presence of phospholipids and terpenes in the matrix.  Furthermore, two 

techniques to homogenize samples and elaborate phospholipid-terpene-anthocyanin 

matrices were used, compared and assessed for bioavailability and physico-chemical 

stability. 
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II. LITERATURE REVIEW 

 

2.1 Flavonoids 

Flavonoids are phytochemicals recognized for their red, purple, and blue color and 

their association with health in diets rich in fruits and vegetables.  Currently, more than 

6,000 flavonoids have been identified from diverse plant species.  Flavonoids comprise a 

wide group of compounds that share a similar diphenylpropane (C6-C3-C6) basic 

structure (Figure 2-1) and depending on the position of the association on the aromatic 

ring and the benzopyrano, flavonoids could be divided in three main groups:  flavonoids, 

isoflavonoids, and neoflavonoids (Marais and others 2006; Winkel 2006). 

Flavonoids are formed from the condensation of phenylpropane with coenzyme A 

to form chalcones that will then form other structures.  Flavones, flavanones, flavonols, 

flavanonols, flavan-3-ols, and anthocyanidins are differentiated by the level of oxidation 

of the central pyran ring of the main diphenylpropane structure (Shahidi and Naczk 

2003).  Other differences within each flavonoid subgroup are dictated by the number and 

distribution of hydroxyl and carboxyl groups and the degree of alkylation or 

glycosylation (Le Marchand 2002). 

 
Figure 2-1. Basic flavonoid structure (Pietta 2000). 
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Flavones and flavonols comprise the majority of flavonoids in foods with 

approximately 100 flavones and 200 flavonols identified to date.  The most common 

flavonols include myricetin, quercetin and kaempferol, found in many fruits and 

vegetables.  Flavonols differ from flavones due to the presence of a hydroxyl group on 

the 3-position and are also known as 3-hydroxyflavones (Shahidi and Naczk 2003; Le 

Marchand 2002).  Flavanones and flavanonols have a saturated C-ring.  Flavanones are 

mainly found in citrus fruits and are frequently glycosylated in the 7-position with 

disaccharides (Tomás-Barberán and Clifford 2000).  Catechins and anthocyanins are also 

known as flavans and are a significant group of flavonoids.  Catechins are primarily 

found in tea and wine while anthocyanins are generally found in many berries, grapes, 

flowers, and other colored fruit and vegetable sources (Le Marchand 2002; Shahidi and 

Naczk 2003). 

Due to their bright coloration, flavonoids can act as visual attractants for 

pollinating insects.  Some flavonoids might also have protective mechanisms against 

predatory insects (Pietta 2000, Winkel 2006).  In addition to their physiological 

functions in plants, flavonoids constitute a significant component of the human diet as 

they are present in most edible fruits and vegetables.  Dietary intake of flavonoids varies 

significantly, ranging from 3 to 800 mg/day (Erlund 2004; Le Marchand 2002; Pietta 

2000). 

2.1.1 Anthocyanins 

Anthocyanins are the most important class of water-soluble pigments responsible 

for the red, blue and violet colors in many fruits, vegetables, roots, tubers, bulbs, 
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legumes, cereals, leaves and flowers (Bridle and Timberlake 1997).  Several fruits 

contain high concentrations of anthocyanins and studies have shown a relationship 

between fruit consumption and reduction of certain diseases attributable to the presence 

of antioxidant polyphenolics (Rommel and Wrosltad 1993; Parr and Bowell 2000; Aaby 

and others 2005).  Anthocyanins are effective radical scavengers and can break free 

radical reactions through their electron donation, metal chelation, enzyme inhibition, and 

oxygen radical quenching capabilities (Kong and others 2003; Pastrana-Bonilla and 

others 2003; Pietta 2000). 

2.1.1.1 Structure and occurrence 

Anthocyanins are flavonoids formed by the cyclation of a chalcone molecule under 

acidic conditions (Shahidi and Naczk 2003).  Variations on the hydroxylation (OH) 

and/or methoxylation (OCH3) of their structure (B-ring) yield 17 naturally occurring 

anthocyanins.  However, only six of them (Figure 2-2) are common in higher plants.  

From those six, Cyanidin (Cy), Delphinidin (Dp), and Pelargonodin (Pg) are the most 

widespread in nature (Kong and others 2003).  Anthocyanins are exclusively found as 

glycosides in intact tissues of flowers and fruits.  They can be bound to one or more 

molecules of sugar which yields more than 200 different anthocyanins that have been 

identified (Shahidi and Naczk 2003). 

The flavylium cation arrangement (2-phenylbenzopyrilium) is the basic structure 

of the anthocyanins that has conjugated double bonds responsible for the color of these 

structures (Rein 2005).  Depending on the presence of hydroxyl or carboxyl, the hue of 

the color will vary between blue and red, respectively (Shahidi and Naczk 2003).  
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Anthocyanins are usually glycosylated with glucose, galactose, arabinose, xylose, or 

rhamnose as 3-glycosides (monoglycosides), 3,3, 3,5 or 3,7-diglycosides (diglycosides) 

or triglycosides (Rein 2005).  Anthocyanins can also be acylated with organic acids that 

are usually aromatic or aliphatic dicarboxyl acids bound to the anthocyanin through ester 

bonding.  The most common acylating agents include hydroxycinnamic acids (p-

coumaric, ferulic, caffeic and sinapic acids), hydroxybenzoic acids (gallic, p-hydroxy-

benzoic, protocatechuic, and vanillic) and aliphatic acids including malonic, acetic, 

malic, succinic and oxalic acids (Francis 1989; Bruneton 1995; Cabrita and Andersen 

1999). 

 
Figure 2-2. Chemical structures of anthocyanidins (Shahidi and Naczk 2003). 

 

2.1.1.2 Color stability 

The stability of anthocyanins is intimately related to self-association, concentration 

and structure, pH, organic chemicals, temperature, light, enzymes, oxygen, copigments, 

metallic ions, ascorbic acid, sugars, and processing (Shahidi and Naczk 2003; Stingzing 
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and others 2002).  Glycosylation, acylation, methylation, and hydroxylation contribute to 

anthocyanin stability.  It has been reported that acyl groups, such as aromatic and 

aliphatic acids, improve the juice color stability by interacting with anthocyanins.  

Increase in acylation of anthocyanin increases the stability of the molecule (Bassa and 

Francis 1987; Giusti and Wrosltad 2003; Rein and Heinonen 2004).  In addition, 

hydroxylation in positions C-4 and C-5 prevents water addition that results in the 

formation of colorless species (Saito and others 1995; Rein 2005; Turker and others 

2004; Shahidi and Naczk 2003).  Copigmentation which is the association of enhances 

the perception of color by increasing the absorbance due to pigment concentration and 

association with other compounds by hydrophobic interaction between aromatic bases of 

the molecules involved (Shahidi and Naczk 2003).  Anthocyanin copigmentation results 

in a stronger and more stable color than a singular anthocyanin molecule.  Furthermore, 

overlapping association of copigmentation prevents the exposure of molecules to 

nucleophillic attack of water (Rein 2005).  Copigments are colorless or slightly 

yellowish natural molecules in plant cells that exist along with anthocyanins.  

Copigments include flavonoids, organic acids, amino acids, and metal ions (Brouillard 

and others 1989). 

Anthocyanins are extremely susceptible to pH shifts.  Anthocyanins in solution 

exist in four different forms: blue neutral and ionized quinonoidial base, red flavylium 

cation or oxonium salt, colorless pseudobase, and colorless chalcone (Figure 2-3).  Each 

of the four species has a variety of tautomeric forms and the chalcone could exist as cis 

or trans forms (Shahidi and Naczk 2003; Clifford 2000). 
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Figure 2-3. Anthocyanin equilibria: quinonoidal base (A), flavylium cation (B), carbinol 

base or pseudobase (C) and chalcone (D) (Clifford 2000; Shahidi and Naczk 
2003). 

 

Even though anthocyanins can exhibit a diversity of color tones in the pH range 

from 1-14, they are more stable at acidic media showing an intense red coloration in the 

pH range of 1 to 3 (Rein 2005; Shahidi and Naczk 2003).  The increase of pH reduces 

the concentration of the flavylium cation, thus decreasing the intense red color to form 

the colorless carbinol base.  As pH continues to increase (Figure 2-4), the colored 

quinonoidial form is produced by losing a hydrogen atom.  If pH continues to rise, the 

cabinol base yields a colorless chalcone form (Rein 2005). 
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Figure 2-4. Effect of pH value on anthocyanin equilibria (Clifford 2000). 

 

Anthocyanin stability is also affected by temperature.  Thermal degradation 

follows first order kinetics (Kirca and others 2006).  Elevated temperatures alter the 

anthocyanin equilibria or hydrolyze the glycosidic bonding to form unstable chalcones 

or aglycone forms, respectively.  Ultimately, thermal degradation leads to the formation 

of brown pigments (Rein 2005; Clifford 2000).  Conversely, extremely low temperatures 

also affect the quality of anthocyanins.  Low temperatures favor quinonoidal base 

formation.  Therefore, if a product was frozen red, it might appear blue after thawing due 

to the change of flavylium cation to quinonoidal form during that low temperature 

exposure (Bridle and Timberlake 1997). 

Oxygen intensifies the degradation of anthocyanins.  Even though the formation of 

unstable chalcones due to pH or thermal changes is reversible, the presence of oxygen 
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during these procedures impedes the normal reconversion of these compounds (Bridle 

and Timberlake 1997).  The effect of oxygen on anthocyanins occurs as direct oxidative 

mechanisms or through indirect oxidation, yielding colorless or brown end products 

(Rein 2005).  Visible and UV light are also harmful to anthocyanins (Laleh and others 

2006).  Although light is needed in the biosynthesis of anthocyanins, once formed light 

damages these compounds (Markakis 1982).  In a photochemical study, Furtado and 

others (1993) found that aqueous solutions of anthocyanins submitted to irradiation help 

with the disappearance of the flavylium cation due to the formation of the chalcone 

form. 

Enzymes can also contribute to the overall degradation of anthocyanins, thus 

inactivation of these compounds is important in the production of a variety of fruit and 

vegetable products (Fang and others 2006).  The most common enzymes related to the 

degradation of anthocyanins are glycosidases.  Glycosidases are not specific in the 

structural requirements of the aglycone portion of a molecule (Huang 1955); thus, they 

cleave the anthocyanins separating the sugar from the unstable aglycone form.  

Peroxidases (POD) and polyphenol oxidases (PPO) are enzymes naturally present in 

fruits that degrade phenolics compounds resulting in the formation of precursors of 

brown pigments (Kader and others 1997).  PPOs degrade anthocyanins indirectly by the 

formation of quinones that subsequently will react with anthocyanins to form colorless 

products (Fang and others 2006; Kader and others 1998). 

Sugars, ascorbic acid, and bisulfites also impact anthocyanin stability as they play 

a dual role in anthocyanin stability.  Sugars and syrups could be used as cryoprotectants 
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by associating with plant water by osmosis.  This process is known as osmotic 

dehydration (Wang 2006).  In contrast, sugars can participate in the formation of 

browning products (furfural and Maillard products) which promote the degradation of 

anthocyanins (Tsai and others 2005).  Ascorbic acid fortification has commonly been 

used in fruit juices as antioxidant protection and to increase the nutritional value.  

Ascorbic acid has proven to retard enzymatic browning by reducing o-quinones to o-

diphenols that no longer produce brown pigments or degrade anthocyanins (Gregory 

1996; Kader and others 1998).  However, addition of ascorbic acid was shown to 

degrade anthocyanins in pomegranate (Marti and others 2001) and açaí juice (Pacheco-

Palencia 2006).  Bisulfite and other sulfurous compounds are also used to protect color 

and phenolic compounds.  These compounds are usually used in wine production as 

antioxidants and bacteriostatic agents (Morata and others 2006).  Bisulfite, like ascorbic 

acid, reacts with the o-quinone to eliminate the basic compound to form brown pigments 

(Lindsay 2007).  Nevertheless, SO2 prevents the formation of visitins.  Visitins are 

compounds formed by condensation of anthocyanins and pyruvic acid or acetaldehyde 

released by certain strains of yeast.  Visitins are more stable than anthocyanins and do 

not affect the desired color of these compounds (Morata and others 2006). 

2.1.1.3 Anthocyanins as antioxidants 

Anthocyanins are naturally occurring antioxidants that prevent oxidation of 

substrates.  This prevention occurs not only in foods but also in humans, relating 

anthocyanins with the control of many degenerative diseases.  Antioxidants protect 

oxidative substrates by reducing the concentration of oxygen, intercepting singlet 
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oxygen, or scavenging initial radicals to prevent the activity of reactive oxygen, nitrogen 

and chlorine species that are closely related to diseases such as arthritis, diabetes, and 

atherosclerosis (Shahidi and Naczk 2003; Le Marchand 2002).  Even though the precise 

association of polyphenolics with some diseases is not fully understood, flavonoids have 

proven not only to inhibit enzymes directly related in the generation of reactive oxygen 

species, but also chelate metals that are important in the oxygen metabolism (Pietta 

2000). 

The most predominant method of antioxidant activity seems to be the hydrogen 

donation, also known as radical scavenging (Robbins 2003).  Free radicals cause 

extensive damage to macromolecules in the body including deoxyribonucleic acid 

(DNA), ribonucleic acid (RNA), and cellular tissues (Khan and others 2008; Montoro 

and others 2005).  Free radicals remove a proton from macromolecules, generating 

highly reactive radicals of high molecular weight creating a chain degradation reaction 

where radicals are trying to stabilize by removing a proton from a neighboring molecule.  

Anthocyanins may donate a hydrogen atom, breaking this degradation cycle.  

Furthermore, if anthocyanins can react with initial forms of free radicals, they could 

donate their proton, thus quenching the free radical and producing a less reactive radicals 

that will be subsequently stabilized by resonance delocalization (Parr and Bowell 2000; 

Shahidi and Naczk 2003).  Many studies have suggested that the antioxidant properties 

of flavonoids are generally located in the B ring of the molecule, more specifically in the 

number of hydroxyl groups present in that ring (Reviewed by Pietta 2000). 
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2.1.1.4 Absorption of anthocyanins 

Bioavailability of phytochemicals is an important issue when trying to correlate in 

vitro studies concerning chemopreventive and antioxidant properties of anthocyanins 

with in vivo results in disease prevention (Balimane and others 2000).  Research has 

shown that anthocyanin absorption is extremely low since minute concentrations were 

detected in Caco-2 cell monolayer models, and plasma from rats and humans (Ichiyanagi 

and others 2008; Miyazawa and others 1999).  Miyazawa and others (2009) also 

demonstrated the direct absorption of anthocyanins in rats and humans but due to their 

low stability at high pH, only trace amount could be found and quantified.  To date 

investigations are still trying to understand the mechanisms by which anthocyanin are 

absorbed and only modest effort has been focused on improving this outcome. 

2.2 Phospholipids  

Phospholipids, also known as phosphoglycerides, are amphiphilic lipid molecules 

found as the major elements of biological membranes.  Phospholipids act as surfactants 

(emulsifiers) by reducing the surface tension between hydrophilic and hydrophobic 

compounds.  As with other surfactants, phospholipids are made of polar (hydrophilic) 

and non-polar (hydrophobic) structures.  These amphiphilic compounds have been 

associated with disease prevention and human health due to their potential as agents to 

lower low-density lipoprotein cholesterol (LDL) in the blood stream (Koo and Noh 

2000; Kirana and others 2005; Rampone and Machida 1981). 
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2.2.1 Structure and Occurrence 

Phospholipids are commonly found organized in biological membranes.  

Phospholipids are triglycerides normally modified in position sn-3 where a phosphate 

group replaces a fatty acid chain (Silvius 1993).  The presence of the polar phosphate 

groups make phospholipids surface active.  This property allows them to form bilayers 

that are critical for biological properties in membranes (McClements and Decker 2007).  

Phospholipids are common in the human diet as a component of the food matrix and as 

an emulsifier or stabilizer (Yonekura and others 2006).  Phosphatidylcholine (PC) is the 

most common phospholipid and is often called lecithin which can be commonly 

extracted from egg yolk or soybeans.  Other major phospholipids include 

phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidylserine (PS) 

depending on the organic molecule attached to the phosphate group.  This class of 

compounds can also be found in organelles and membranes of mammals, fungi, bacteria, 

fish, and other living organisms (Neidleman 1993; Yorek 1993). 

Phospholipids are synthesized from phosphatidic acid.  Phosphatidic acid could 

result from three pathways: (1) stepwise acylation of sn-glycerol 3-phosphate; (2) 

acylation of dihydroxyacetonephosphate followed by reduction to 1-acyl-sn-glycerol-3-

phosphate and a final acylation at position sn-2; and (3) by phosphorylation of a 

diacylglycerol (Longmuir 1993).  Subsequently, organic bases (choline, ethanolamine, 

serine, inositol, or glycerol) attach to the phosphate group to yield a phospholipid.  A 

single phospholipid is comprised of a diglyceride molecule, a phosphate group, and a 

simple organic molecule (Figure 2-5).  Fatty acids of different chain length and in the 
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saturated and/or unsaturated forms are present at positions sn-1 and sn-2 (R) of the 

glycerol backbone.  The phosphate group is commonly attached to position sn-3, 

attached to an organic molecule through ester bonding.  Variations in the simple organic 

molecule, in addition to variations of fatty acids structure and positioning, yield a variety 

of phospholipids as previously mentioned (PC, PE, PI, PS).  In addition, the removal of a 

fatty acid (normally from position sn-2) yields lyso-phospholipids.  All these structural 

differences create a substantial amount of phospholipids found in nature that have 

specific characteristics and functions. 

  

X = OH Phosphatidic acid (PA) 

X = O-(CH2)2-N
+(CH3)3 Phosphatidylcholine (PC) 

X = O-(CH2)2-NH2 Phosphatidylethanolamine (PE) 

X = O-CH2-CH(NH2)-COOH Phosphatidylserine (PS) 

X = C6H12O6 Phosphatidylinositol (PI) 
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R = Fatty acid chain  

Figure 2-5. Structure of phospholipids (McClements and others 2007). 

 

2.2.2 Hydration of Phospholipids and Formation of Liposomes 

Lipids can be conveniently classified in three groups depending on their behavior 

in water (McIntosh and Magid 1993).  Insoluble, non swelling amphiphiles (cholesterol 

and waxes) which do not imbibe water (I), insoluble amphiphiles (II) which merely 

swell in water to form ordered “mesophases” (phospholipids with acyl chains longer 

than 8 carbons), and soluble amphiphiles (III) forming lyotropic liquid crystals at lower 
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water content (lysolecithins, short acyl chain phospholipids, and salts of long-chain fatty 

acids). 

At concentrations above the critical micelle concentration (CMC) phospholipids 

form a variety of structures depending on the water content.  Self-aggregation and 

polymerization of phospholipids is driven thermodynamically by the hydrophobic effect 

(Singh and Shnur 1993; Walstra and van Vliet 2007).  In the presence of water, 

phospholipids organize into spherical, disc-like, or cylindrical micelles, or into bilayers 

and vesicles.  Spheres or oblate spheroids are the simplest shapes that minimize surface 

area/volume ratio (McIntosh and Magid 1993; Singh and Schnur 1993).  The polar head 

groups array on the surface and aggregate.  Since one dimension of the head groups 

cannot embrace or exceed the fully extended chain length, phospholipids arrange in 

spheres.  Phospholipids, with double acyl chains will tend to form double-layered 

vesicles rather than micelles because of the area required per lipid molecule (McIntosh 

and Magid 1993).  Area per lipid molecule is lower for bilayers than any micellar form.  

In addition, bilayers can accommodate limitless number of chains without requiring a 

change in area per molecule (Barenholz and Crommelin 1994; McIntosh and Magid 

1993).  Once assembled, bilayers commonly form closed fluid-filled vesicles (Figure 2-

6). 
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Figure 2-6. Structure of bilayers and formation of a liposome (Adapted from Reineccius 
1995). 

Phospholipids spontaneously hydrate in the presence of excess water forming 

closed membrane structures called liposomes (Figure 2-7) (Hauser 1993; Reineccius 

1995).  Liposomes of multiple layers are called multilamellar vesicles (MLVs) and are 

spherical particles consisting of concentrically arranged, equally spaced bilayers that are 

separated by water (Hauser 1993; McIntosh and Magid 1993).  MLVs can range in 

diameter from 0.2 – 10 µm with a water holding capacity of about 4 µL per milligram of 

liposome (Yesair 1990).  Multivesicular vesicles (MVVs) can also be formed and they 

consist of smaller vesicles formed inside larger vesicles (Barenholz and Crommelin 

1994).  Water is imbibed by the phospholipids up to a point and additional water forms 

an excess fluid phase.  Lipid and water form separate layers.  Water that is imbibed by 

phospholipids can be strongly associated with the head groups and also weakly 

associated within vesicle layers (Hauser 1993; McIntosh and Magid 1993). 
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Figure 2-7. Various liposome structures (Adapted from Taylor and others 2005). 

 

When energy (mechanical, electrical or chemical) is included in the system, MLVs 

and MVVs start breaking to form unilamellar vesicles of different sizes (SUVs and 

LUVs) (Taylor and others 2005).  Vesicles undergo repeated disruption-resealing cycles 

that produce smaller, more homogeneous vesicles (Hauser 1993).  Since energy is 

required to produce these vesicles, LUVs and SUVs are thermodynamically unstable 

mostly because of the vesicle’s curvature that creates free energy (McIntosh and Magid 

1993).  Therefore, smaller vesicles will tend to coalesce and re-fabricate bigger 

multilamellar vesicles which are the most stable structures (Fan and others 2007). 

2.2.3 Phospholipid and Liposome Stability 

The chemical structure of phospholipids plays a significant role on their stability.  

Phospholipids can undergo hydrolytic splitting in strongly acidic and alkaline media.  

These compounds are only stable at neutral pH values. Splitting leads to the formation of 

glycerophosphates and free fatty acids.  Further hydrolysis of glycerol phosphate will 

yield the separation of the organic base from the glycerophosphate molecule.  Further 

degradation in alkaline media will yield the formation of 2- and 3-glycerolphosphates 

(Evstigneeva 1993). 

SUV LUV MLV MVV 
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Enzymes can also affect stability and structure of phospholipids.  There are four 

types of phospholipases (A1, A2, C, and D) that react with phospholipids and are very 

region and stereo selective.  Phospholipases A1 and A2 hydrolyze ester bonds at 

positions sn-1 and sn-2 of the glycerol backbone, respectively.  Phospholipases C and D 

react in position sn-3 between the ester bond of the glycerol and phosphate and the 

phosphate and organic base, respectively.  Pancreatic lipase can also affect 

phospholipids but with no specificity to the location of hydrolysis (Evstigneeva 1993).  

Similar to other lipids, phospholipids with unsaturated fatty acid chain in their structure 

undergo auto-oxidation and photooxygenation creating hydroperoxides.  In addition, 

phospholipids are prone to decomposition during storage at high temperatures and with 

light and oxygen exposure (Evstigneeva 1993). 

Instability of liposomes could happen by flocculation, coalescence, or Ostwald 

ripening (Walstra and van Vliet 2007).  Flocculation consists of the aggregation of 

particles that remain intact.  Particles tend to clump forming flocs or flakes which then 

tend to float over the liquid or precipitate depending on the nature of the system.  

Coalescence is produced by the rupture of thin films between close droplets.  This 

rupture forces droplets to unite forming a larger particle.  Ostwald ripening occurs more 

in water in oil emulsions and consists of the addition of smaller particles to larger 

particles.  Small particles have high surface energy whereas large particles do not.  This 

favors the inclusion of smaller particles into larger particles reducing the overall surface 

energy. 
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2.2.4 Liposome Encapsulation and Controlled Release of Active Ingredients 

Liposome encapsulation has been a recognized technology in the pharmaceutical 

area for years but it is yet to be well established in the food industry (Gouin 2004; 

Reineccius 1995; Taylor and others 2005; Yesair 1990).  Currently, efforts of liposome 

technology in the food industry are concentrated on encapsulation of enzymes to 

accelerate and optimize cheese processing (Kheadr and others 2006; Picon and others 

1993), encapsulation of antimicrobials (Taylor and others 2008; Were and others 2003; 

Were and others 2004), and stabilization of vitamins (Kirby and others 1991).  As 

liposome encapsulation is developing as a novel process, natural sources of 

phospholipids should be explored to reduce cost for food systems.  The food industry 

differs from the pharmaceutical industry since it is very dependent on cost efficiency. 

For that reason, this technology’s cost needs to be minimized to insure the widest use in 

large-scale food applications (Reineccius 1995).  Other areas of improvement include 

the evaluation and optimization of flavor and aroma encapsulation and delivery (Taylor 

and others 2005).  Finally, stability of liposomes to processing (temperature and 

pressure) should be improved.  Some investigators (Filipovic-Grcic and others 2001; 

Guo and others 2003; Laye and others 2008) have been working on this area also known 

as release on demand.  This area illustrates how liposomes could be enhanced to 

withstand processing and other hostile environments to deliver the desired payload to a 

specific site. 
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2.3 Terpenes 

Terpenes also known as terpenoids and isoprenoids represent the largest class of 

metabolites with more than 40,000 structures.  Many of these compounds possess 

essential physiologic, metabolic, and structural roles in numerous plants (Bohlman and 

Keeling 2008).  In addition, terpenoids are responsible for aromas and flavors in fruits 

and herbs (Lindsay 2007).  The chemical diversity of plant terpenoids may underlie their 

widespread biological activities. These activities drive interest in pharmaceutical, food, 

cosmetics, and pesticide applications (Sell 2003; Wang and others 2005). 

2.3.1 Structure and Occurrence 

Terpenes originate from the mevalonic acid (MEV) and the 2-C-methyl-D-

erythritol-4-phosphate (MEP) metabolic pathways that yield two isomeric five-carbon 

structures, dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP) that 

serve as precursors for terpenoid synthesis (Cane 1999; Wang and others 2005).  The 

smallest plant terpenoids are hemiterpenoids (C5) which can be formed directly from 

DMAPP and IPP (Miller and others 2001; Sell 2003).  Combination of one of more IPP 

and DMAPP molecules, catalyzed by enzymes (prenyltransferases), can synthesize 

linear prenyl diphosphates which serve as precursors of larger terpenoids (Miller and 

others 2001; Wang and others 2005).  Thus, terpenoids can be classified in hemi (C5), 

mono (C10), sesqui (C15), di (C20), sester (C25), tri (C30), tetra (C40), and polyterpenoids 

(Cn x 5) based upon the chain length and the amount of isoprene units present in the 

molecule.  After the formation of the backbone terpenoid structure, terpenoid modifying 

enzymes give raise to a variety of structures and classifications (Figure 2-8) with 
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distinctive characteristics and functions in plants (Bohlman and Keeling 2008; Wang and 

others 2005). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-8. Structure of various terpenes: (A) isoprene (C5), (B) limonene (C10), (C) 
artemisinin (C15), (D) retinol (C20), (E) squalene (C30), and (F) lycopene 
(C40). 

Terpenoids are widely distributed in almost 100 orders of plants.  Due to the 

immense number of molecular forms that exist for these compounds, they are present in 

various sources such as oils, bitters, resins, green tissue, roots, fruits, and latex, among 

others (Banthorpe 1991).  Monoterpenes are volatile compounds known as components 

of essential oils, floral scents, and resins of aromatic plants.  Common examples of 

monoterpenes include limonene, menthol, pinene, carvone, and geraniol, among others 

(Charlwood and Charlwood 1991; Wang and others 2005).  Sesquiterpenes comprise the 

largest class of terpenoids and occur in marine and terrestrial organisms.  Artemisin, α-

bisabolol, guaianolide, and eudomanolides are examples of this terpenoid group (Fischer 

1991; Fraga 1991).  Diterpenes are commonly found in plants, fungi, insects, and marine 
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organisms.  Examples of diterpenes include phytol, taxol, and gibberelins (Beale and 

Willis 1991; Hanson 1991).  Sesterterpenes are quite uncommon and are found primarily 

in marine organisms and fungi (Wang and others 2005).  Triterpenes are a diverse 

terpenoid group derived from squalene.  These compounds are very widespread making 

it difficult to generalize their distribution (Connoly and Hill 1991). 

2.3.2 Terpene Stability 

Stability of terpenes is closely related to the presence of oxygen and light in the 

environment (Sell 2003).  Batterman and others (1998) assessed the stability of various 

terpenes exposed to humid air, humid nitrogen gas, and dry air.  A strong effect was 

illustrated by dry air exposure on half-life of limonene, α-pinene, β-pinene, and 3-carene.  

Limonene, specifically, is very sensitive to oxidation and could convert to limonene 

oxide, limonene hydroperoxide, and carvone (Bertollini and others 2001; Clark and 

others 1981; Djordjevic and others 2008; Thomas and Bessière 1989).  Terpenes are also 

susceptible to elevated temperature exposure.  Yang and others (2007) demonstrated the 

effect of temperature treatment on the stability of certain terpenes.  In addition, Cully 

and others (1991) developed a procedure to remove terpenes from fruit oils since they 

showed limited storage stability and thermolability.  In contrast, terpenes in heated olive 

oil showed marked stability with a loss of only 23% in 72 hours at 180 ºC while more 

than 30% of total sterols were lost in the same time (Boskou 1978). 

2.3.3 Terpenes as Absorption Enhancers 

Research has demonstrated the effective mechanism of terpenes to interact with 

tissue and create openings for several drugs (Elgorashi and others 2008; Lim and others 
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2008) that could promote the access of anthocyanins into the blood stream.  Transdermal 

efficiency of terpenes in drug delivery has been long established (Cal 2005. Lim and 

others 2006; Lim and others 2008) and this behavior could be replicated in the 

gastrointestinal tract if a product rich in terpenes is used.  Another possibility is for 

terpenes to interact with anthocyanins and make them more lipophillic thus enhancing 

their absorptivity.  There is a group of compounds known as prenylflavonoids that are 

combinations of isoprene units C-prenylated to ring A of flavonoid structures (Barron 

and others 1996).  These compounds are commonly found in roots, barks, and seeds of 

Leguminoseae, Moraceae, and Asterceae plant families.  Studies have been conducted to 

assess their impact on melanin biosynthesis by tyrosinase inhibition (Arung and others 

2006; Son and others 2003) but no absorption/transport studies have been conducted 

with these compounds.  Possibly due to their structure, they could illustrate better 

absorption than anthocyanins and flavonoids alone. 

2.4 Cell Culture 

2.4.1 Transepithelial Transport Assessed with Caco-2 Cells 

Almost 40 years ago, a compilation of cell lines was obtained from gastrointestinal 

tumors, with the intention to analyze cancer mechanisms (Fogh and others 1977).  Later, 

problems in the differentiation of intestinal cells for in vitro studies of intestinal transport 

of compounds and toxicity assessments lead to the use of tumor cells for this purpose.  

Among all tumor cells, Caco-2 cells showed spontaneous differentiation and expression 

of numerous morphological and biochemical characteristics observed in small intestine 

enterocytes making them a clear substitute in the development of in vitro modeling of 
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intestinal absorption and toxicity of compounds (Hidalgo and others 1989b; Pinto and 

others 1983). 

2.4.1.1 Caco-2 cell morphology 

Caco-2 cells (Fig 2-9) form a monolayer with a cylindrical polarized morphology, 

produce microvilli in the apical side, gain tight junctions between adjacent cells, and 

express small intestinal enzyme activity (Anderson and Van Itallie 1995; Chantret and 

others 1988; Matsumoto and others 1990).  To further improve the steric conditions of 

Caco-2 monolayers (conditions that exist in the intestine), cells are seeded in permeable 

inserts which allowed nutrient access from both sides of monolayers.  With all these 

charactiristics in mind, Caco-2 cells have been broadly employed for intestinal transport 

and toxicity analyses (Artursson 1990; Artursson and others 2001; Hidalgo and others 

1989b).  

 

 

Figure 2-9. Caco-2 cells at different life cycle stages: (A) proliferation, (B) 75% 
confluency, (C) fully differentiated (21 days after confluency). 

 

Caco-2 cells are morphologically similar to enterocytes once they have reached 

full differentiation evidenced by the presence of microvilli and the formation of tight 

B C A 
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junctions that separate the apical from basolateral domains (Hidalgo and others 1989b).  

Monolayers created show formation of two distinct patterns.  Some cells can form a 

thick layer of brush border with high density of microvilli while some can form clusters 

(Delie and Rubas 1997, Pinto and others 1983).  Growth characteristic of Caco-2 cells 

are very similar to the regeneration of intestinal epithelium (Pinto and others 1983).  The 

life cycle of Caco-2 cells is characterized by three steps: (1) proliferation, where cells are 

homogenously undifferentiated, (2) confluency, where cells have populated an area 

completely, and (3) differentiation, where cells are heterogeneously polarized and 

differentiated (day 0 to 20 after confluency) (Vachon and Beaulieu 1992).  Cells 

differentiate and become polarized with specific expressions of lipids and proteins in the 

apical and basolateral membranes.  Although differentiation is complete after 25-30 

days, enzymatic activities are gradually increased, becoming maximal 15-21 days after 

confluency (Delie and Rubas 1997). 

2.4.1.2 Differentiation of Caco-2 cells 

Factors influencing differentiation include the support where cells are seeded 

(material and pore size) as well as growth conditions (medium used, cell line, passage 

number, presence of antibiotics, nature of support, temperature, and relative humidity) 

(Sambuy and others 2005).  Enterocytes and other intestinal cells are equipped with a 

collection of proteins that assist uptake of compounds.  Some of these transport systems 

include: peptide, amino acid, and nucleosides carriers as well as transporters for bile 

acids, sugars, and amino-acids.  Acid-base transport systems, receptor and carrier 

mediated transport, and efflux pumps are also observed in intestinal cells (Delie and 
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Rubas 1997; Sambuy and others 2004).  Coincidentally, these transporters are also 

identified in Caco-2 cells which allowed their use for drug carrier interactions which is 

not feasible in vivo.  Caco-2 cells were shown to express glucose transporters (SGLT1, 

GLUT2, GLUT5), commonly observed in intestinal cells and have shown similar lipid 

metabolism with enterocytes (Blais and others 1987; Field and others 1987; Trotter and 

Storch 1991).  Additionally, Caco-2 cells express insulin growth factors (IGF) and 

epidermal growth factors (EGF) which play an instrumental role in early development of 

Caco-2 cell monolayers (Hidalgo and others 1989a, McDonald and others 1993).  Caco-

2 cells have also been shown to express enzymes related with drug metabolism (Pinto 

and others 1983, Chantret and others 1994). 

2.4.1.3 Assessment of polyphenolic absorption with Caco-2 cells 

Due to the increased awareness about healthy diets and the perception that 

consumption of fruits and vegetables was related to prevention of chronic diseases, 

researchers started to use Caco-2 cell monolayer models to analyze phytochemical 

transport, absorption, and bioavailability.  Investigations have been conducted in a series 

of polyphenolics including phenolic acids (Konishi and others 2003; Pacheco-Palencia 

and others 2008), anthocyanins (Yi and others 2006), kavalactones (Matthias and others 

2007), catechins (Chan and others 2007; Vaidyanathan and Walle 2001), flavonols 

(Walgren and others 1998; Walgren and others 2000), and procyanindins (Déprez and 

others 2000; Déprez and others 2001) of various sources.  Numerous investigations have 

illustrated that phenolic acids get transported by the monocarboxilic acid transporter 

(MCT) and via paracellular pathway (Konishi and others 2002; Konishi and Shimizu 
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2003; Konishi and others 2004; Konishi and Kobayashi 2004).  In contrast, various 

mechanisms of transport/absorption of flavonoids have been elucidated and research has 

reported discrepancies on how they can be transported/absorbed in a Caco-2 cell 

monolayer model.  Paracellular transport has been proposed as one of the mechanisms 

by which flavonols and procyanidins have been detected in the basolateral side of Caco-

2 cell monolayer models (Walgren and others 1998; Déprez and others 2001).  

Additionally, bigger molecules could be broken down to phenolic acids that could then 

be absorbed (Déprez and others 2000).  Milbury and others (2002) suggested that 

anthocyanin transport could also occur by glucose transport receptors which agreed with 

investigations that explained the involvement of SLGT1 transporter in the transport of 

quercetin glycosides and anthocyanins (Walgreen and other 2000; Gee and others 1998; 

Mulleder and others 2005).  Additionally, Faria and others (2009) illustrated the 

enhancement of GLUT2, a glucose transporter, when malvidin glucoside was present in 

the apical side of the system.  In contrast, transport of polyphenolics could be hindered 

by the action of efflux pumps in the basolateral side of the system (Chan and others 

2007; Vaidyanathan and Walle 2001; Walgren and others 1998).  Tea catechins were 

transported back from the basolateral to apical side by the action of multidrug resistance-

associated protein-2 (MRP2) which is a multispecific transporter responsible for the 

efflux of exogenous materials from the basolateral side to the apical side, limiting their 

bioavailability (Chan and others 2007; Vaidyanathan and Walle 2001).  In parallel, high 

efflux from basolateral to apical side of quercetin and its glucosides was also observed 

(Walgren and others 1998) illustrating the complexity of the Caco-2 monolayer to 
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control the transport/absorption of flavonoids.  Onced flavonoids have been transported 

through the gastric epithelia, glucoronidation by UDP-glucoronosyl transferase (UGT) 

and o-methylation by catechol-o-methyl-transferase (COMT) have been observed as 

common metabolism pathways of flavanols and anthocyanins (Ichiyanagi and others 

2008; Spencer 2003; Wu and others 2006). 

In conclusion, Caco-2 cells shared outstanding resemblance with intestinal cells.  

They are characterized by the presence of tight junctions and the development of apical 

and basolateral domains with similar structures and characteristics as enterocytes.  

Regardless of their colonic origin, Caco-2 cells display many features that other colonic 

cell would not express making them an excellent candidate for intestinal absorption 

models for nutrients and other compounds.  Nevertheless, research has shown cloning of 

Caco-2 cells in different laboratories depending on growing conditions (medium used, 

cell line, passage number, presence of antibiotics, nature of support, temperature, 

relative humidity) and from batch to batch which leads to believe that every laboratory 

works with different Caco-2 cell sub-clones (Walter and Kissel 1995; Herold and others 

1994).  This may explain the difficulty to compare results from different published 

reports using Caco-2 cells as a mean to assess intestinal absorption.  Although research 

conducted in transport and/or absorption of polyphenolics has not yet fully explained 

specific routes for their uptake in the small intestine, Caco-2 cell model monolayer 

promises to be a useful technique to better understand the interaction of these 

compounds with the small intestine.
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III. EFFECT OF PHOSPHOLIPIDS AND TERPENES ON THE THERMAL 

STABILITY AND ABSORPTION OF AÇAI ANTHOCYANINS 

 

3.1 Introduction 

There is extensive research that explains the benefits, both in vivo and in vitro, of 

anthocyanins on human health (Briviba and others 2002; Dillard and German 2000; 

Elattar and Viriji 1999; Khan and others 2008).  However, anthocyanin absorption is 

fairly poor, and this hinders their potential to be utilized in the human body.  Studies 

have shown the limited absorption (about 1%) of anthocyanins due to their highly polar 

properties such as glycosylation and multiple hydroxyl groups on their structure (Yi and 

others 2006; Ichiyanagi and others 2008).  In addition, Yi and others (2006) suggested 

that anthocyanins might degrade under conditions in the gastric duodenum (pH 7 at 

37ºC).  Another investigation illustrated the direct absorption of anthocyanins in rats and 

humans but, due to their low stability at high pH, only trace amount could be found and 

quantified (Miyazawa and others 1999). 

The absorption of anthocyanins could be enhanced by certain aiding agents that 

facilitate access or interact and carry compounds through the intestinal epithelia 

increasing the availability of target compounds for various applications in the body.  

Phospholipids could promote absorption of compounds to the blood stream making them 

more available (Williams and Barry 2004).  Some mechanisms proposed for this 

application include the formation of micelles or liposomes (Taylor and others 2005).  

Liposomes are common structures built by phospholipids in excess water.  Liposomes 
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are bilayered vesicles or vessels that entrap compounds in a solution similar to the 

surroundings.  Large vesicles are spontaneously formed in water and energy is required 

to produce smaller more homogenous liposomes, thus requiring energy input to be 

formed (Barenholz and others 1977).  Liposomes could entrap anthocyanins to carry 

them and possibly protect them from exogenous agents (Were and others 2003). 

Improvement in the absorption of anthocyanins could also be accomplished by the 

use of terpenes.  Drug delivery via transdermal transport aided by terpenes is well 

established (Cal 2005, Lim and others 2006; Lim and others 2008).  This effect could be 

a mechanism by which terpenes aid in enhancing the bioavailability of anthocyanins.  

Transdermal transport mechanisms might be replicated in the gastrointestinal tract if a 

product rich in terpenes is used, thus, creating openings in the gastric epithelia by 

reacting with the tissue (Elgorashi and others 2008; Lim and others 2008).  In addition, 

the mixture of terpenes and phospholipids may enhance anthocyanin absorption even 

further than they would do separately. 

Therefore, the purposes of this study were to determine the efficacy of terpenes 

and/or phospholipids to aid in the absorption of anthocyanins through a Caco-2 cell 

monolayer model and to evaluate their effect on anthocyanin storage stability. 

3.2 Materials and Methods 

Clarified açaí concentrate from Brazil was obtained from Stiebs Pomegranate 

Products (Madera, CA).  Anthocyanins from açaí were isolated by loading samples onto 

an activated 10g reversed phase Sep-Pak C18 20cc cartridge (Waters Corporation, 

Milford, MA) and allowed to adsorb by gravity feed.  The cartridge was then washed 
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with water and ethyl acetate to remove organic acids, sugars, metals, phenolic acids, and 

flavonoids other than anthocyanins (Pacheco-Palencia and others 2007).  Anthocyanin 

fractions were recovered with acidified methanol (0.01% HCl), concentrated following 

solvent evaporation under vacuum (40°C), and kept at -80°C until further analysis. 

Dubelcco’s Phosphate Saline Buffer (PBS), Hank’s Balanced salt solution (HBSS) and 

Dubelcco’s Modified Eagle’s Medium (DMEM) were purchased from Invitrogen Inc. 

(Grand Island, NY). 

Fractions were re-dissolved in a HBSS (pH 6.0), standardized to a final 

concentration of 500 mg cyanidin-3-glucoside equivalents/L (anthocyanin stock 

solution) which was determined spectrophotometrically by the pH differential method 

(Wrolstad 1976).  Briefly, samples were appropriately diluted with buffer solutions at 

pH 1.0 and 4.5.  Absorbance was read on a UV-Vis microplate reader (Molecular 

Devices Spectra Max 190, Sunnyvale, CA) at a fixed wavelength of 520 nm and total 

anthocyanin concentration calculated and reported in mg/L equivalents of cyanidin-3-

glucoside with an extinction coefficient of 29,600 (Jurd and Asen 1966). 

Subsequently, the anthocyanin stock solution was mixed with appropriate 

concentrations of phospholipids and/or terpenes based on concentrations found in 

previous investigations using these aiding agents.  Samples were then sonicated for 10 

minutes, vortexed for 1 minute, and sterile-filtered (220 nm) prior cell culture transport 

study.  All handling and processing methods were compared to a control of the starting 

clarified extract for calculation of phytochemical recovery of changes due to process 
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techniques.  Upon completion of each isolation or processing protocol, samples were 

held at -20oC until analysis. 

Antioxidant capacity was determined by the oxygen radical absorbance capacity 

(ORAC) method (Cao and others 1996), adapted to be performed with a 96-well 

Molecular Devices fmax® fluorescent microplate reader (485 nm excitation and 538 nm 

emission).  The assay measures the ability of an antioxidant to inhibit the decay of 

fluorescein induced by the peroxyl radical generator 2,2-azobis (2-amidinopropane 

dihydrochloride) as compared to Trolox, a synthetic, water-soluble vitamin E analog.  

For analysis, samples were diluted in pH 7.0 phosphate buffer and 50µL of each sample 

was then transferred to a microplate along with a Trolox standard curve (0, 6.25, 12.5, 

25, 50µM Trolox) and phosphate buffer blanks. 100µL of fluorescein and 50µL of 

peroxyl radical generator were added to all samples, standard curve, and blanks.  

Readings were taken every 2 min over a 70 min period at 37°C.  Antioxidant capacity 

was quantified by linear regression based on the Trolox standard curve and results were 

expressed in µmol of Trolox equivalents per gram (µmol TE/g). 

Transepithelial transport of anthocyanins was conducted using a Caco-2 colon 

carcinoma cells model.  Caco-2 cells were obtained from American Type Culture 

Collection (ATCC, Manassas, VA) and maintained at 37ºC in an atmosphere of 5% CO2 

and 95% relative humidity.  Cells were cultured in DMEM, containing 4.5g/L of 

glucose, 20% fetal bovine serum, 1% nonessential amino acids, 100 units/ml of 

penicillin, 100µg/ml of streptomycin sulfate, and 1mM of sodium pyruvate (chemicals 

supplied by Sigma-Aldrich Co., St. Louis, MO).  Cells grown in a 75 cm2 T-flask were 
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passed after reaching 80-90% of confluence at a split ratio 1:7.  The medium was 

changed every 2 days.  Cells between passages 24-30 were seeded at a density of 

100,000 cells/well onto a transparent 12 mm polycarbonated 0.4 µm pore diameter insert 

well plate (Transwell, Corning Costar Corp., Cambridge, MA).  All volumes were kept 

constant at 0.5 ml at the apical side and 1.5 ml at the basolateral side and medium 

(DMEM) was changed every 2 days until enterocytic cell differentiation was achieved 

(18-21 days).  Transepithelial electrical resistance (TEER) was monitored every seven 

days with an EndOhm Voltohmmeter equipped with a STX2 electrode (World Precision 

Instruments Inc., Sarasota, FL) to check cell confluence, integrity, and proper 

development of the monolayer.  Only monolayers with TEER values above 350 Ω cm2 

were used for the experiment to assure monolayer integrity and strength.  Transport of 

anthocyanins was conducted by modifying conditions explained elsewhere (Mertens-

Talcott and others 2007).  Monolayers were initially rinsed with PBS followed by the 

addition of HBSS previously adjusted to pH 7.4 with 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES) and to pH 6.0 with 2-(N-Morpholino)-

ethanesulfonic acid solution (MES) for the basolateral side and apical side, respectively.  

After applying HBSS to both sides, cells were incubated (30 min) and treatments 

containing combinations of anthocyanins, phospholipids, and/or terpenes were then 

added to the apical side of the wells.  Thereafter, sample aliquots (200 µL) were taken at 

time zero and every 30 min for 2 hours from the basolateral side, immediately acidified 

with a known volume of 4N HCl, kept refrigerated (5 ºC) and analyzed within hours 

after analysis.  Basolateral volume was kept constant by adding fresh HBSS (200 µL) 
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after sampling.  Resistance (TEER) was measured once again after assay was completed 

to insure monolayer integrity.  Only monolayers with a final resistance above 350 Ω cm2 

were accepted for data analysis and samples collected from its basolateral side were 

considered for high performance liquid chromatography (HPLC) analysis. 

Samples collected from the transport study were analyzed by reverse phase HPLC 

using modified chromatographic conditions (Talcott and Lee 2002) with a Waters 2690 

Alliance HPLC system using a Water PDA detector.  Separations were performed on a 

250 x 4.6 mm Nova-Pak C18 column (Waters Corporation, Milford, MA) with a C18 

guard column.  Mobile phase A consisted of water acidified with o-phosphoric acid (pH 

2.4) and Mobile phase B consisted of 60:40 methanol and water acidified with o-

phosphoric acid (pH 2.4).  The gradient solvent program run phase B from 0 to 30% in 1 

min; 30 to 50% in 1 min, 50 to 70% in 2 min, 70 to 100% in 4 min and held at 100% for 

8 min for a total run time of 16 minutes at a flow rate of 0.8 mL/min.  Anthocyanins 

were identified by UV/VIS spectral interpretation, retention time and comparison to 

authentic standards (Sigma Chemical Co., St. Louis, MO).  Data was reported as mg/L 

of each compound. 

In parallel, a kinetic study was conducted for 40 days to assess the effect of 

phospholipids and terpenes on the degradation characteristics of anthocyanins at three 

different temperatures.  Anthocyanin stock solution was appropriately mixed with 

known concentrations of phospholipids and/or terpenes based on results from the 

transepithelial transport study previously conducted.  Samples were then sonicated for 

10 minutes, vortexed for 1 minute, and sterile-filtered (220 µm) prior storage stability 
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assessment.  Total anthocyanins were determined spectrophotometrically by the pH 

differential method (Wrolstad 1976) at day 0.  Thereafter, samples were taken at days 

10, 29 and 40, immediately acidified with a known volume of 4N HCl, kept refrigerated 

(5 ºC), and analyzed for total anthocyanins as explained earlier (spectrophotometrically) 

within hours after analysis. 

Data from experiments were analyzed by one-way analysis of variance (ANOVA) 

using JMP software (SAS Institute, Cary, NC).  Data for each treatment represents the 

mean of three replicates.  Mean separations were conducted using a Least Significant 

Differences (LSD) test (P < 0.05). 

3.3 Results and Discussion 

Anthocyanins from açaí puree were isolated, measured, characterized by HPLC 

analyses, and used for a unidirectional transport study assessed from the apical to the 

basolateral side of Caco-2 cells monolayers.  Caco-2 cells have been widely 

characterized and used as an in-vitro model in the field of drug absorption and 

permeability (Hidalgo and others 1989) and were previously used to evaluate intestinal 

absorption and transport of various flavonoids (Chan and others 2006; Deprez and others 

2001; Pacheco-Palencia and others 2008; Vaidyanathan and Walle 2001; Yi and others 

2006). 

3.3.1 Transepithelial Transport Study 

Transport of açaí extracts was assessed from apical to basolateral side.  Extracts 

were loaded into the apical side of the cells monolayer and presence of anthocyanin in 

the basolateral side was evaluated chromatographically and spectrophotometrically over 
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time for up to 2 hours.  Extract transported in 2 hours and found in the basolateral side 

was compared to the initial concentration of anthocyanins loaded to the apical side (Fig. 

3-1).  According to Pacheco-Palencia and others (2007), Cyanidin-3-rutinoside (C3R) 

and Cyanidin-3-glucoside (C3G) are the two predominant anthocyanins in açaí.  These 

anthocyanins were monitored through the transepithelial transport study and results are 

presented in Table 3-1.  Açaí anthocyanins with no aiding agents were poorly 

transported as reported in previous studies illustrating polyphenolics transport through 

cell monolayers (Ichiyanagi and others 2008; Yi and others 2006; Pacheco-Palencia and 

others 2008).  Transport of C3G (1.38%) was better than C3R (1.06%).  Both terpenes 

and phospholipids significantly increased the transport of anthocyanins.  Significant 

increases in transport ranged from 30 to 343% for C3G and 91 to 305% in the case of 

C3R.  Best results were observed in mixtures of terpenes and phospholipids. 

When soy lecithin (500 mg/L) was added to the matrix as a source of 

phospholipids, overall transport of C3G and C3R was increased by 29.6% and 30.6% 

respectively.  Soy lecithin concentration was then increased (5 g/kg), and the transport of 

C3G and C3R was increased by 135% and 156% respectively.  This increase might be 

attributed to the encapsulation of compounds by the formation of aggregates due to 

phospholipid interactions promoted by physical forces such as sonication, vortexing, and 

filtration (Lasch and others 2003; Walstra and van Vliet 2007).  In addition increased 

presence of phospholipid molecules might have allowed formation of aggregates that 

potentially held, protected, and carried more anthocyanin molecules through the 
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monolayer.  Besides, anthocyanins can also interact with outside of aggregates forming a 

thin layer of anthocyanins surrounding them which could also enhance transport. 
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Figure 3-1. Chromatograms of anthocyanins from açaí extract in the apical side before 
analysis (A) and present in the basolateral side after an incubation period of 2 
hours (B) I. 

 

Filtration following sonication and vortexing was decisive at determining 

anthocyanin transport due to the potential formation of smaller and more homogenous 

liposomes.  Although filtration reduced the anthocyanin concentration of samples before 

transport analysis, anthocyanin transport of filtered samples was significantly higher 

than non-filtered samples (p<0.05).  Vortexing and sonication alone might have 
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produced a diverse group of vesicles of different sizes that demonstrated lower transport 

of compounds through the monolayer.  When samples were not sterile filtered (0.22 

µm), bigger aggregates might have been formed in the matrix and were not transported 

as efficiently as the filtered mixture of anthocyanins and PLs.  Transport of the non-

filtered sample was reduced by 10.2% for C3G and 10.8% in the case of C3R.  Larger 

aggregates could not be transported and anthocyanins entrapped in these structures were 

not allowed to be transported through the monolayer.  When samples were discarded 

after 2 hours, a red cloud was observed over the monolayer, suggesting that most of the 

compounds were still in the apical side. 

 

Table 3-1. Percent transport of anthocyanins (500 mg/L) from apical to basolateral side 
of Caco-2 cell monolayers following incubation for 2 h. 

% Anthocyanin Transport 
Treatment 

Concentration 
[mg/L] Cyanidin-3-glucoside Cyanidin-3-rutinoside 

Control  1.38 ± 0.15gh 1 1.06 ± 0.12fg 1 

50 4.08 ± 0.33b 3.61 ± 0.39bc 

500 2.41 ± 0.20f 2.03 ± 0.12e Terpenes 

5000 2.60 ± 0.08def 2.24 ± 0.05de 

500 1.79 ± 0.15g 1.38 ± 0.07f 
Phospholipids 

5000 4.22 ± 0.35b 3.55 ± 0.41bc 

NF2 Terpenes 500 2.97 ± 0.36d 2.22 ± 0.30de 

NF2 Phospholipids 500 1.24 ± 0.05h 0.95 ± 0.05g 

50 / 50 2.88 ± 0.15de 2.62 ± 0.23d 

50 / 500 3.81 ± 0.33bc 3.92 ± 0.35ab 

50 / 5000 6.12 ± 0.17a 4.29 ± 0.21a 

500 / 50 3.52 ± 0.40c 3.45 ± 0.43c 

Terpenes / Phospholipids 

500 / 500 2.46 ± 0.28ef 2.25 ± 0.17de 

1Values with different letters within the same column are significantly different (LSD test, p<0.05). 2Non-
filtere samples. 
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Valencia orange cold pressed oil was used as the source of terpenes.  The major 

component of cold pressed oil from orange peels is d-limonene.  Other components 

include α-pinene, sabinene, myrcene, linalool, and decanal (Temelli and others 1988).  

Terpenes also had a major impact on transport of açaí anthocyanins (Table 3-1).  Even at 

very low concentrations (50 mg/L), anthocyanin transport was enhanced and resulted in 

higher values than samples containing more orange oil (0.5 and 5 g/kg).  In the case of 

terpenes, micelles might have been formed due to the presence of inherent phospholipids 

and mono- and diglycerides present in the oil.  However, terpenes might have interacted 

with the monolayer creating gaps for anthocyanins to passively be transported and this 

may be the principal method by which anthocyanin transport was enhanced.  Terpenes 

are known to disrupt the stratum corneum to allow passage of compounds (Cal 2005; 

Mackay and others 2001; Anjos and others 2007).  Although intestinal epithelia are 

structurally different from stratum corneum, the effect of terpenes could be similar due 

to the type of interaction they may exert on the intestinal surface.  Filtration had no 

effects on the transport of samples containing terpenes, which increased the average 

values by 115% for C3G and 109% in the case of C3R.  In addition, no negative effect 

from filtration may illustrate the possible lack of aggregate formation compared to 

treatments with soy lecithin, and substantiate the latter proposed method by which 

terpenes interact with the monolayer rather than with anthocyanins.  Another possibility 

is that terpenes could interact with anthocyanins as it occurs in the formation of 

prenylflavonoids.  Anthocyanins and terpenes could interact but not form aggregates of 

large molecular weight and filtration might not change this relationship. 



 

 

42 

The transport aiding effect of phospholipids and terpenes was enhanced when 

mixed together.  Phospholipids at the highest concentration assessed (5000 mg/L) 

resulted in transport enhancements of 205% and 235% (C3G and C3G, respectively).  

When citrus oil (50 mg/L) was added to the matrix a 489% and 825% increase in 

transport compared to samples with only phospholipids were observed in C3G and C3R 

respectively (Table 3-1). 

3.3.2 Anthocyanin Storage Stability and Antioxidant Capacity 

Total anthocyanin concentration and antioxidant capacity were measured through a 

40 day period at 5, 25, and 37ºC for samples that showed highest absorption/transport 

through the transport study.  Samples with appropriate mixtures of anthocyanins, 

terpenes, and phospholipids were prepared and initial anthocyanin concentration was 

adjusted to ~500 mg/L.  Filtration showed significant differences on anthocyanin 

concentration between treatments (Table 3-2).  Anthocyanins mixed with terpenes (Ter) 

showed the highest concentration of anthocyanins after sterile filtration (477 mg/L) 

followed by the non-filtered sample (NF) containing 445 mg/L of anthocyanins.  A 

significant loss was observed on the sample containing only anthocyanins (An) (394 

mg/L).  The highest losses were recorded in samples containing 5,000 mg/L of 

phospholipids (PL and PL+T).  Such losses could be explained by the size of aggregates 

formed by phospholipids.  Aggregates bigger than 0.22 µm were trapped in the filter and 

these aggregates trapped anthocyanins with them.  Similar behavior was observed for 

antioxidant capacity with (Ter) showing the highest antioxidant value (27.7 µmol TE/ml) 
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and samples (PL) and (PL+T) containing phospholipids exhibited the highest losses after 

filtration (18.7 and 18.1 µmol TE/ml, respectively). 

 

Table 3-2. Total anthocyanins and antioxidant capacity of filtered anthocyanin fractions 
from açaí juice mixed with terpenes and/or phospholipids. 

Treatments1 
Total Anthocyanins 

[mg/L] 
Antioxidant Capacity 

[µmol/ml] 
Control2 394 ± 12.1c 3 21.8 ± 0.89c 

Phospholipids [5000mg/L] 332 ± 3.51d 18.7 ± 2.65d 

Terpenes [50mg/L] 477 ± 13.8a 27.7 ± 0.64a 

Phospholipids [500mg/L] NF4 445 ± 16.7b 25.2 ± 0.57b 

Mix (Phospholipids + Terpenes)5 314 ± 8.41e 18.1 ± 0.26d 
1All treatments were filtered unless mentioned in the table. 2Control was adjusted to 500 mg/L of total 
anthocyanins before filtration and did not contain phospholipids or terpenes. 3Values with different letters 
within the same column are significantly different (LSD test, p<0.05). 4NF: Non-filtered sample. 5Mix 
contained phospholipids (5000 mg/L) and terpenes (50 mg/L). 
 

 

Color degradation followed a first-order kinetic model where degradation rate 

constants (β1) and half-life (t1/2) for anthocyanin loss were calculated (Cemeroğlu and 

others 1994; Kirca and Cemeroğlu 2003) as ln At/A0 = - β1 × time, and t1/2 = ln 0.5/β1, 

where A0 is the initial color absorbance value at 520nm, and At is the absorbance value at 

a given time (Table 3-3).  Anthocyanin degradation was similar within treatments at 

every temperature illustrating that the presence or absence of terpenes and/or 

phospholipids did not affect anthocyanins degradation kinetics.  On the contrary, effects 

of storage temperature were evident.  Higher temperature storage resulted in higher 

losses of anthocyanins and reduced shelf life of the samples.  Refrigeration (5 ºC) 
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resulted in an average half-life of 97.7 days whereas higher temperatures (25 ºC and 37 

ºC) resulted in a reduction of 43% and 59% in half-life respectively. 

3.4 Conclusions 

Addition of phospholipids and terpenes as absorption enhancers was effective.  

Transport values for anthocyanins with no enhancers on the matrix were 1.22% on 

average.  When phospholipids were initially added to the matrix (500 mg/L) the increase 

in transport of anthocyanins was of about 30% while anthocyanins mixed with a higher 

concentration of phospholipids (5000 mg/L) increased absorption was almost three times 

more.  In the case of terpenes, higher concentrations (500 and 5,000 mg/L) of this 

enhancer resulted in increased transport of anthocyanins (82% and 98% respectively).  

Best results were observed when the lowest concentration of terpenes was used (50 

mg/L) which increased transport values 3.1 times from the control.  Combinations of 

phospholipids and terpenes resulted in even greater transport of anthocyanins.  The 

highest average transport values recorded (5.21%) occurred when phospholipids and 

terpenes were combined at 5,000 and 50 mg/L in the matrix, respectively.  Anthocyanin 

degradation during storage followed first-order kinetics over a wide temperature range, 

and was unaffected by the presence of phospholipids or terpenes in solution.  On the 

contrary, effects of storage temperature were evident.  Anthocyanins under refrigeration 

(5 ºC) maintained a half life of almost 100 days while under temperatures above 25 ºC; 

anthocyanin half life resulted shorter than 50 days on average.
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Table 3-3. Kinetic parameters of anthocyanin degradation during storage at 5, 25, and 37 ˚C in of filtered anthocyanin 

fractions from açaí juice mixed with terpenes and/or phospholipids. 
5 ºC  25 ºC  37 ºC 

Treatments1 
β1

2 t ½
3  Β1 t ½

4  β1 t ½
4 

An 6.96 ± 0.34a 5 99.7 ± 5.05a  12.1 ± 0.34bc 57.4 ± 1.65ab *  17.3 ± 0.06a 40.1 ± 0.13a * 

PL 7.12 ± 0.89a 98.3 ± 12.7a  12.9 ± 0.32a 53.6 ± 1.33c *  17.2 ± 0.06a 40.2 ± 0.13a * 

Ter 7.67 ± 1.27a 91.9 ± 14.1a  12.3 ± 0.19b 56.7 ± 0.85b *  17.4 ± 0.18a 39.8 ± 0.42a * 

PL+T 6.87 ± 0.40a 101 ± 5.74a  13.2 ± 0.23a 52.5 ± 0.94c *  17.0 ± 0.90a 40.9 ± 2.24a * 

NF 7.14 ± 0.64a 97.5 ± 8.32a  11.6 ± 0.30c 59.7 ± 1.51a *  17.4 ± 0.49a 39.8 ± 1.13a * 
1Anthocyanin control (An), Anthocyanins mixed with 5000mg/L of soy lecithin (PL), Anthocyanins mixed with 50mg/L of cold pressed citrus oil 
(Ter), Anthocyanins mixed with 5000mg/L of soy lecithin and 50mg/L of cold pressed oil (PL+T), Unfiltered mixture of anthocyanins and 500mg/L of 
soy lecithin (NF). 2Reaction rate constants (β1 × 103 days-1). 3Half-life (days) of initial anthocyanin content. 4Asterisk (*) for half-life indicates a 
significant effect (LSD test. P<0.05) due to storage temperature. 5Values with similar letters within columns are not significantly different (LSD test. 
P<0.05). 
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These results demonstrated the potential of phospholipids and terpenes to increase 

absorption of anthocyanins.  In addition, the stability and bioavailability of anthocyanins 

was illustrated and that phospholipids and terpenes did not promote the degradation of 

anthocyanins.  The outcome of this investigation could represent a breakthrough for the 

food industry in future product development.  Further analysis needs to be conducted to 

understand the concentration of enhancers used, find optimum concentrations, and 

attempt to explain how they are interacting with anthocyanin in the matrix. 
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IV. EFFECT OF PHOSPHOLIPIDS AND TERPENES ON THE ABSORPTION OF 

AÇAI ANTHOCYANINS AND ON THE PHYSICAL STABILITY OF THE MATRIX 

 

4.1 Introduction 

Anthocyanins are a major group of water-soluble pigments in plants and are the 

most consumed flavonoids in the US diet (Clifford 2000; Galvano and others 2004).  

The benefits of anthocyanins on human health have been elucidated in an extensive body 

of research (Briviba and others 2002; Galvano and others 2004; Khan and others 2008).  

However, studies have shown their limited absorption and susceptibility to gastric 

conditions (Miyazawa and others 1999; Ichiyanagi and others 2008; Yi and others 2006).  

As mentioned in Section 3, absorption of anthocyanins may be enhanced by some 

compounds (aiding agents) that facilitate access through the gastric epithelia increasing 

their bioavailability.  Phospholipids and terpenes were selected as aiding agents due to 

the extensive literature explaining their use in absorption of compounds (Yonekura and 

others 2006; Keller 2001; Sugawara and others 2001; Cal 2005, Lim and others 2006; 

Lim and others 2008).  However, the use of these compounds has not been previously 

assessed in potential absorption enhancement of anthocyanins.  The use of phospholipids 

and terpenes was shown to increase absorption of anthocyanins in Caco-2 cells 

transepithelial model (Section 3).  Nevertheless, improvement in the absorption of 

anthocyanins needs to be assessed further with additional combinations (terpenes-

phospholipids) and anthocyanin dose-dependency for better knowledge of their 

distinctive absorption enhancement properties.  In addition, particle size analysis might 
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be a useful tool to further understand the association of anthocyanins with terpenes and 

phospholipids in the matrix.  Therefore, the purposes of this study were to further 

evaluate the efficacy of terpenes and/or phospholipids in the absorption aiding of 

anthocyanins through a Caco-2 cell model, assess dose response of anthocyanins, and 

evaluate the potential formation of vesicles in the matrix. 

4.2 Materials and Methods 

Clarified açaí concentrate from Brazil was obtained from Stiebs Pomegranate 

Products (Madera, CA).  Anthocyanins from açaí were isolated by loading samples onto 

an activated 10g reversed phase Sep-Pak C18 20cc cartridge (Waters Corporation, 

Milford, MA) as explained in Section 3.  Anthocyanin extract was then kept at -80°C 

until further analysis.  Dubelcco’s Phosphate Saline Buffer (PBS), Hank’s Balanced Salt 

Solution (HBSS) and Dubelcco’s Modified Eagle’s Medium (DMEM) were purchased 

from Invitrogen Inc. (Grand Island, NY).  

Anthocyanins were re-dissolved in HBSS (pH 6.0) for analyses and standardized 

to a final concentration of 750 and 1,500 mg cyanidin-3-glucoside equivalents/L 

(anthocyanin stock solutions) which were determined spectrophotometrically by the pH 

differential method (Wrolstad 1976).  Absorbance of samples diluted with pH 1 and 4.5 

buffers were read on a UV-Vis microplate reader (Molecular Devices Spectra Max 190, 

Sunnyvale, CA) at a fixed wavelength of 520 nm and 700 nm, and expressed in mg/L 

equivalents of cyanidin-3-glucoside.  Subsequently, the anthocyanin stock solutions 

were mixed with appropriate concentrations of phospholipids and/or terpenes. Samples 
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were then sonicated for 10 minutes, vortexed for 1 minute, and sterile-filtered (0.22 µm) 

prior cell culture transport study and particle size analysis. 

Particle size analysis was conducted by dynamic light scattering (Walzem and 

others 1994).  Diameter measurements were determined optically using a Microtrack® 

Series 9200 Ultrafine Particle Analyzer (Leeds and Northrup, Wales, PA).  Samples 

were loaded in a well and system software and laser (3 mWatt, λ= 780nm) were 

activated.  Light scattering was recorded for 30 seconds, adapted to an audio range, and 

deconvoluted.  Polydispersity of particle populations was calculated as the width (nm) of 

the measured particle size distribution. 

Transepithelial transport of anthocyanins was conducted using a Caco-2 colon 

carcinoma cells model as explained in Section 3.  Samples collected from the transport 

study were analyzed by reverse phase HPLC using modified chromatographic conditions 

(Talcott and Lee 2002); detailed explanation of the chromatographic conditions can be 

found in section 3.  Data was reported as ratios between compounds found in the 

basolateral compartments (mg/L) to compounds initially added to the apical 

compartments (mg/L). 

Data from experiments were analyzed by one-way analysis of variance (ANOVA) 

using JMP software (SAS Institute, Cary, NC).  Data for each analysis represents the 

mean of three replicates.  Mean separations were conducted using LSD test (P < 0.05). 

4.3 Results and Discussion 

Verification and further assessment of results from Section 3 was conducted on 

anthocyanins isolated from açaí puree.  Characterized anthocyanins, Cyanidin-3-
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Glucoside (C3R) and Cyanidin-3-Rutinoside (C3R), were used for a unidirectional 

transport study, assessed from the apical to the basolateral side of Caco-2 cells 

monolayers, and particle size analysis was conducted to possibly relate formation of 

liposomes to enhancement of anthocyanin absorption. 

4.3.1 Transepithelial Transport Study 

Transepithelial transport of açaí extract rich in anthocyanins was assessed through 

a Caco-2 cell model.  Extracts properly mixed with various concentrations of terpenes 

and/or phospholipids were loaded into the apical side of the cells monolayer and 

presence of anthocyanins in the basolateral side was evaluated chromatographically and 

spectrophotometrically over time for up to 2 hours.  Samples transported over 2 hours 

and found in the basolateral side were compared to the initial concentration of 

anthocyanins loaded to the apical side (Fig. 4-1).  Samples were taken every 30 min, 

concentration of anthocyanins was calculated, and the total anthocyanin content found in 

the basolateral side was added and compared the concentration initially applied to the 

apical side (Appendix A).  Cyanidin-3-glucoside (C3G) and Cyanidin-3-rutinoside 

(C3R) were detected in all samples as the main anthocyanins found in açaí which agreed 

with previous investigations conducted with this commodity (Pacheco-Palencia and 

others 2007; Pacheco-Palencia and others 2009).  These anthocyanins were then 

monitored through the transepithelial transport study and results are presented in Tables 

4-1 and 4-2 depending on the concentration of anthocyanins loaded initially (250 and 

500 mg/L of anthocyanins, respectively). 
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Figure 4-1. Chromatograms of anthocyanins from açaí extract in the apical side before 
analysis (A) and present in the basolateral side after an incubation period of 2 
hours (B) II. 

 

Açaí anthocyanins with no phospholipids or terpenes were transported 

inadequately at both concentrations (1.77%) agreeing with Section 3 and other 

investigations that demonstrated polyphenolic transport through cell monolayers 

(Pacheco-Palencia and others 2008; Walgren and others 1998).  In general, addition of 

both terpenes and phospholipids increased the amount of anthocyanins found in the 

basolateral compartment.  Increases in transport values ranged from 66 to 158% and 59 

to 151% for C3G and C3R, respectively.  In addition, relative transport of anthocyanins 

did not vary as a function of anthocyanin concentration since results were fairly similar 

and enhancement transport effect of phospholipids and terpenes did not change with 

change in anthocyanins content. 

A 

B 520 nm 

520 nm 
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Table 4-1. Transport of anthocyanins (250 mg/L) from açaí juice extracts from the apical to the basolateral side of Caco-2 cell 

monolayers following incubation (120 min, 37ºC), as a function of phospholipid and terpene concentrations. 
% Transport of Anthocyanins from Açaí Juice Extracts 

Cyanidin-3-Glucoside  Cyanidin-3-Rutinoside 
Phospholipid Concentration [mg/L]  Phospholipid Concentration [mg/L] 

 
Terpene 

Concentration 
[mg/L] 0 5,000 10,000  0 5,000 10,000 

0 1.70 ± 0.13f 1 3.89 ± 0.35ab 3.86 ± 0.16abc  1.79 ± 0.04d 4.01 ± 0.24a 2.83 ± 0.30c 
25 4.00 ± 0.13a 3.08 ± 0.25e 3.56 ± 0.33bcd  3.73 ± 0.37ab 3.54 ± 0.34ab 3.85 ± 0.37ab 
50 3.51 ± 0.14cd 3.18 ± 0.25de 3.64 ± 0.07abc  3.50 ± 0.29b 2.86 ± 0.12c 3.59 ± 0.28ab 

1Values with different letters within anthocyanin transport data set (C3G and C3R) are significantly different (LSD test, p<0.05). 
 
 
 
 
Table 4-2. Transport of anthocyanins (500 mg/L) from açaí juice extracts from the apical to the basolateral side of Caco-2 cell 

monolayers following incubation (120 min, 37ºC), as a function of phospholipid and terpene concentrations. 
% Transport of Anthocyanins from Açaí Juice Extracts 

Cyanidin-3-Glucoside  Cyanidin-3-Rutinosidee 
Phospholipid Concentration [mg/L]  Phospholipid Concentration [mg/L] 

 
Terpene 

Concentration 
[mg/L] 0 5,000 10,000  0 5,000 10,000 

0 1.80 ± 0.15d 1 4.58 ± 0.35a 4.31 ± 0.24a  1.80 ± 0.18e 4.46 ± 0.45a 4.26 ± 0.02ab 
25 3.59 ± 0.30b 2.95 ± 0.30c 3.57 ± 0.15b  3.70 ± 0.38c 3.10 ± 0.31d 3.69 ± 0.18c 
50 3.47 ± 0.20b 3.39 ± 0.16b 3.74 ± 0.09b  3.91 ± 0.05bc 3.17 ± 0.05d 3.88 ± 0.33bc 

1Values with different letters within anthocyanin transport data set (C3G and C3R) are significantly different (LSD test, p<0.05). 
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At the lowest concentration of anthocyanins (250 mg/L), differences between 

treatments were difficult to observe for either anthocyanin assessed.  Highest transport 

values were observed in at least four different treatments.  No trends were found that 

could guide selection of treatments that were better at enhancing transport of açaí 

anthocyanins.  In contrast, differences were clear at higher concentration of anthocyanins 

(500 mg/L).  Best results were observed when only phospholipids were present in the 

samples as aiding agents.  Among all samples with phospholipids and terpenes present in 

the matrix, all combinations containing terpenes and 5,000 mg/L of phospholipids 

frequently resulted in the lowest transport of C3G and C3R despite anthocyanin 

concentration.  These results illustrated a different position compared to previous studies 

which demonstrated that combinations of terpenes and phospholipids increased 

absorption of anthocyanins more than using these aiding agents separately.  This could 

be attributed to the nature of the açaí extract used for theses studies which could vary 

slightly compared to the extract used in Section 3 which illustrates the complexity of the 

interactions between anthocyanins, phospholipids, and terpenes. 

Transport rates are another significant assessment in a Caco-2 cell model.  These values 

indicated the concentration of anthocyanins transported from the apical side to the 

basolateral side in a unit of time.  Average transport rates (µg/mL·h) of açaí 

anthocyanins from the apical to the basolateral side were given in time depending on the 

concentration of anthocyanins (250 and 500 mg/L) initially mixed in the matrix (Tables 

4-3 and 4-4, respectively).  Individual anthocyanin transport rates (0.023 – 0.212 

µg/mL·h) increased in a concentration-dependent matter (Fig. 4-2).  When concentration 
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of anthocyanins was doubled, average transport rates of all samples were almost double 

for both C3G and C3R (1.96 and 1.95, respectively) which suggested that passive 

diffusion was occurring.  In addition, average transport rates for C3G were significantly 

higher than for C3R (2.32 fold), which could be explained by the concentration 

difference of these two anthocyanins in the açaí extract.  Concentration of C3G was 

almost 3.5 times higher than C3R in the extract utilized for these experiments.  When 

evaluating C3G average transport rates, samples with no phospholipids had the highest 

recorded values regardless of terpene presence or concentration.  An inverse relation was 

observed between phospholipid concentration and average absorption rates since 

transport rates decreased as phospholipid concentration increased.  When C3G 

concentration was doubled, this effect was not as evident probably due to saturation of 

the system.  A different scenario was observed for C3R.  Samples with no phospholipids 

had the highest transport rates regardless of terpene concentration but rates of samples 

with no aiding agents were significantly lower.  An inverse relation was also observed 

between phospholipid concentration and average transport rates but it was not as evident 

as for C3G. 
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Table 4-3. Average transport rates of anthocyanins (250 mg/L) from açaí juice extracts from the apical to the basolateral side 

of Caco-2 cell monolayers, as a function of phospholipid and terpene concentrations. 
Transport Rate (µg/mL·h) of Anthocyanins from Açaí Juice Extracts 

Cyanidin-3-Glucoside  Cyanidin-3-Rutinoside 
Phospholipid Concentration [mg/L]  Phospholipid Concentration [mg/L] 

Terpene 
Concentration 

[mg/L] 
0 5,000 10,000  0 5,000 10,000 

0 0.111 ± 0.008b 1 0.091 ± 0.007c 0.073 ± 0.002de  0.034 ± 0.000d 0.034 ± 0.001d 0.023 ± 0.002e 
25 0.124 ± 0.009a 0.075 ± 0.007de 0.068 ± 0.006e  0.047 ± 0.002ab 0.038 ± 0.002cd 0.037 ± 0.003cd 
50 0.112 ± 0.005b 0.076 ± 0.002cd 0.066 ± 0.000e  0.052 ± 0.004a 0.040 ± 0.002b 0.041 ± 0.002bc 

1Values with different letters within anthocyanin transport data set (C3G and C3R) are significantly different (LSD test, p<0.05). 
 
 
 
 
 
Table 4-4. Average transport rates of anthocyanins (500 mg/L) from açaí juice extracts from the apical to the basolateral side 

of Caco-2 cell monolayers, as a function of phospholipid and terpene concentrations. 
Transport Rate (µg/mL·h) of Anthocyanins from Açaí Juice Extracts 

Cyanidin-3-Glucoside  Cyanidin-3-Rutinoside 
Phospholipid Concentration [mg/L]  Phospholipid Concentration [mg/L] 

Terpene 
Concentration 

[mg/L] 
0 5,000 10,000  0 5,000 10,000 

0 0.202 ± 0.016a 1 0.212 ± 0.014ab 0.173 ± 0.007cd  0.073 ± 0.009c 0.077 ± 0.008c 0.074 ± 0.002c 
25 0.202 ± 0.009ab 0.141 ± 0.010de 0.144 ± 0.008e  0.110 ± 0.008a 0.083 ± 0.008bc 0.092 ± 0.005b 
50 0.182 ± 0.004bc 0.156 ± 0.002cde 0.152 ± 0.012de  0.057 ± 0.005d 0.049 ± 0.002d 0.056 ± 0.011d 

1Values with different letters within anthocyanin transport data set (C3G and C3R) are significantly different (LSD test, p<0.05). 
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Figure 4-2.  Average transport rates of açaí anthocyanins, cyanidin-3-glucoside (C3G) 

and cyanidin-3-rutinoside (C3R) at two different total anthocyanin 
concentrations (250 and 500 mg/L), from the apical to the basolateral side of 
Caco-2 cell monolayers over 120 min at 37ºC. 

 

4.3.2 Particle Size Analysis 

Particle size of açaí extract rich in anthocyanins was assessed by dynamic light 

scattering.  Anthocyanin-rich extract properly mixed (as explained in the materials and 

methods section) with various concentrations of terpenes and/or phospholipids were 

subjected to two rounds of sonication and vortexing (~15 min) followed by sterile 

filtration (0.22 µm).  Diameter measurements were determined. Light scattering was 

recorded for 30 seconds, adapted to an audio range, and deconvoluted by a software 

system.  Sample particle populations were calculated as the width (nm) of the measured 

particle size distribution and are presented in Table 4-5. 

Contrary to what was initially believed, there was no formation of vesicles except 

for samples containing no terpenes at the lowest concentration of anthocyanins assessed 

(250 mg/L).  Perhaps vesicles created by the sonication/filtration method were too big to 
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be allowed through the filter (220nm).  In contrast, transport of anthocyanins through a 

Caco-2 model was enhanced by terpenes and phospholipids regardless of vesicle 

formation, which suggested that the only presence of these absorption enhancers is 

necessary to see a significant increase in transport of polyphenolics rather than vesicle 

formation. 

 

Table 4-5. Particle size of matrices as a function of anthocyanin, phospholipid, and 
terpene concentrations. 

Particle diameter [nm] 
Phospholipid Concentration [mg/L] 

Anthocyanin  
Concentration 

[mg/L] 

Terpene 
Concentration 

[mg/L] 0 5,000 10,000 
0 0.92 ± 0.00a 185 ± 12.1a 416 ± 13.6a 

25 3.79 ± 0.57a 1.12 ± 0.13b 0.97 ± 0.02b 250 
50 0.94 ± 0.03a 0.92 ± 0.00b 0.92 ± 0.00b 

     
0 1.00 ± 0.00a 0.92 ± 0.00a 0.92 ± 0.00a 

25 0.93 ± 0.02a 0.92 ± 0.00a 0.92 ± 0.00a 500 
50 0.92 ± 0.00a 0.92 ± 0.00a 0.94 ± 0.04a 

1Values with different letters within the same column are significantly different (LSD test, p<0.05). 
 

4.4 Conclusions 

The ability of phospholipids and terpenes to serve as transport enhancers of 

anthocyanins was confirmed through these experiments.  Transport values for 

anthocyanins with no enhancers on the matrix were 1.77% on average.  Addition of 

phospholipids and terpenes resulted in average transport increase of 59 to 158% for both 

anthocyanins assessed (C3G and C3R).  In addition, transport of anthocyanins was not 

dependent on dosage since absorption results were similar at both concentrations of 

anthocyanins tested.  Contrary to results from Section 3, transport of anthocyanins was 

enhanced by the use of terpenes and phospholipids, but no significant differences were 
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observed between various concentrations of these compounds.  Additionally, the 

additive effect of combining terpenes and phospholipids was not observed in these 

experiments.  These results suggested that these compounds can achieve transport 

enhancement both individually and as a whole. 

Transport rates were correlated with the concentration of anthocyanins initially 

applied to the Caco-2 cells monolayers.  Additionally, transport rates for C3G were 

significantly higher than for C3R (2.32 fold), which also has to do with concentration 

difference of these two anthocyanins in the açaí extract.  Different from overall 

absorption, which is a ratio of what is added to the apical side and what is found in the 

basolateral side, transport rates are only values found in the basolateral side which 

explains the differences related not only to treatment differences but also to 

concentration of analytes. 

Particle size analysis revealed that vesicles over 50 nm in diameter were only 

found in samples with no terpenes in the matrix.  Perhaps, terpenes together with 

phospholipids form a bigger liposome that is not allowed through the filter thus creating 

small vesicles and most of the anthocyanins are not encapsulated.  Therefore, 

enhancement properties of terpenes and phospholipids could be attributed simply to the 

mere presence of these compounds. 

Although increases in transport of anthocyanins were not as evident as in Section 

3, the relevance of the increase still possesses tremendous implications for future 

research on this area.  These results reinforced the idea of phospholipids and terpenes as 

transport enhancers for anthocyanin and other polyphenols.  Further analysis needs to be 
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conducted to understand the mechanisms by which phospholipids and terpenes interact 

with anthocyanins and with the system to show enhanced transport of compounds 

through the epithelia. 
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V. EVALUATION OF TECHNOLOGIES TO MANUFACTURE MATRICES 

CONTAINING ANTHOCYANINS, TERPENES, AND PHOSPHOLIPIDS AND ITS 

EFFECTS ON ABSORPTION OF ANTHOCYANINS 

 

5.1 Introduction 

Interest in phytochemicals such as anthocyanins has increased in recent years due 

to their association with human health benefits (Talcott and Lee 2002; Wang 2006).  The 

major mechanism by which these compounds enhance food quality and aid human 

health is radical scavenging which stops a degradation chain reaction caused by free 

radicals that are formed inside and outside the body (Robbins 2003).  Around 100 

radicals have been associated with degenerative diseases such as cancer, atherosclerosis, 

arthritis, and cataracts, and anthocyanins can donate a hydrogen atom, obstructing the 

development of such diseases (Shahidi and Naczk 2003; Parr and Bowell 2000).  

However, studies have illustrated the poor stability of anthocyanins exposed to the 

gastric environment and their limited absorption in the small intestine (Miyazawa and 

others 1999; Ichiyanagi and others 2008; Yi and others 2006).  As mentioned in previous 

sections, transepithelial transport of anthocyanins could be enhanced by aiding agents 

that improve the absorption of compounds through the intestinal epithelia thus increasing 

their bioavailability.  Research has illustrated the absorption/transport enhancement 

properties of phospholipids and terpenes in carotenoids, cholesterol, antimicrobials, and 

drug delivery (Yonekura and others 2006; Keller 2001; Sugawara and others 2001; Cal 

2005, Lim and others 2006; Lim and others 2008).  Yet, little work have been found in 
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the use of this technology to increase transport of polyphenolics.  The use of 

phospholipids and terpenes was shown to increase transport of anthocyanins in Caco-2 

cells transepithelial models (Section 3 and 4).  Nevertheless, comparison of technologies 

to produce a matrix containing phospholipids, terpenes, and polyphenolics was not 

conducted in the past.  Technologies commonly used to create vesicles from 

phospholipids include extrusion, sonication, French press, and ethanol injection.  In 

addition, particle size analysis can be a useful tool to further understand the association 

of anthocyanins with terpenes and phospholipids in the matrix.  Therefore, the purposes 

of this study were to further evaluate the efficacy of terpenes and/or phospholipids in the 

absorption of anthocyanins through a Caco-2 cell model, compare manufacturing 

technologies, and evaluate the potential formation of vesicles in the matrix. 

5.2 Materials and Methods 

Anthocyanins from açaí were isolated as explained in Section 3.  Briefly, 

anthocyanins were allowed to adsorb onto an activated 10g reversed phase Sep-Pak C18 

20cc cartridge (Waters Corporation, Milford, MA) cartridge by gravity feed followed by 

washes with water and ethyl acetate.  Anthocyanin fractions were then recovered with 

acidified methanol (0.01% HCl), and kept at -80°C until further analysis.  Anthocyanins 

were re-dissolved in Hank’s Balanced Salt Solution (HBSS; pH 6.0) as explained is 

Section 3.  Subsequently, the anthocyanin stock solutions were mixed with appropriate 

concentrations of phospholipids and/or terpenes.  Samples were subjected to two 

different technologies (Sonication and French Press).  One batch was bath sonicated (42 

KHz) for 10 minutes, vortexed for 1 minute at 3000 RPM, and sterile-filtered 
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(Sonication) while two other batches were forced twice through a French needle-valve 

press (Fig. 5-1) at two different pressures (4,000 and 18,000 psi).  More information on 

physical parameters and characteristics of this machine can be found in Appendix B.  

After processing, samples were assessed in a Caco-2 cell culture transport study and 

particle size analysis as explained in Sections 3 and 4, respectively. 

 

 

Figure 5-1. Photographs of French Press® and pressure cell used for experiments. (A) 
Position before sample collection. (B) Position for sample collection (C) 
Pressure Cell parts. 

Data from experiments were analyzed by one-way analysis of variance (ANOVA) 

using JMP software (SAS Institute, Cary, NC).  Data for each analysis represents the 

mean of three replicates.  Mean separations were conducted using LSD test (P < 0.05). 
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5.3 Results and Discussion 

A comparison between technologies (French press and sonication-vortexing) to 

create a matrix comprising of anthocyanins, terpenes, and phospholipids was conducted.  

Selected combinations of these compounds were assessed based on their performance in 

anthocyanin transport previously assessed and to have representation of samples 

containing phospholipids, terpenes, and combinations of both.  Samples were assessed at 

two different anthocyanin concentrations (250 and 500 mg/L).  First sample set included 

5,000 mg/L of phospholipids and no terpenes (T0 P5K); second set of samples contained 

25 mg/L of terpenes and no phospholipids (T25 P0); third set of samples included 25 

mg/L of terpenes and 10,000 mg/L of phospholipids (T25 P10K); and a final set 

combining 50 mg/L of terpenes and 10,000 mg/L of phospholipids (T50 P10K).  

Characterized anthocyanins, Cyanidin-3-Glucoside (C3R) and Cyanidin-3-Rutinoside 

(C3R), were used as analytes for a unidirectional transport study, assessed from the 

apical to the basolateral side of Caco-2 cells monolayers.  Particle size analysis was also 

conducted to verify formation of vesicles (liposomes) that could be related to 

enhancement of anthocyanin transport. 

5.3.1 Transepithelial Transport Study 

Transepithelial transport of anthocyanins obtained from açaí was assessed through 

a Caco-2 cells model.  Extracts properly mixed with various concentrations of terpenes 

and/or phospholipids were subjected to pressure (French press) or sonication before cell 

culture analysis.  Subsequently, samples were loaded into the apical side of Caco-2 cells 

monolayers and presence of anthocyanins in the basolateral side was evaluated 
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chromatographically over time for up to 2 hours.  Samples absorbed over 2 hours and 

found in the basolateral side were compared to the initial concentration of anthocyanins 

loaded to the apical side (Fig. 5-2).  All samples contained C3G and C3R as the main 

anthocyanins found in açaí which agreed with results from previous sections.  These 

anthocyanins were then monitored through the transepithelial transport study and results 

are presented in Tables 5-1 and 5-2 depending on the concentration of anthocyanins 

loaded initially (250 and 500 mg/L of anthocyanins, respectively). 
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Figure 5-2. Chromatograms of anthocyanins from açaí extract in the apical side before 
analysis (A) and present in the basolateral side after an incubation period of 2 
hours (B) III. 
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Table 5-1. Transport of anthocyanins (~250 mg/L) from açaí juice extracts from the 
apical to the basolateral side of Caco-2 cell monolayers following incubation 
(120 min, 37ºC), as a function of phospholipid and terpene concentrations 
and type of energy applied to the system. 

  % Transport of Anthocyanins from Açaí Juice Extracts 
  Procedures 
 Pressure [psi] 
 

Treatments1 
4,000 18,000 

Sonication/Vortexing 
/Filtration 

T0 P5K2 4.05 ± 0.16a 3 4.49 ± 0.40a 3.89 ± 0.35a 
T25 P0 3.70 ± 0.18a 3.89 ± 0.34b 4.00 ± 0.13a 

T25 P10K 3.89 ± 0.26a 4.41 ± 0.24ab 3.56 ± 0.33a 

Cyanidin 
-3- 

Glucoside 
T50 P10K 2.78 ± 0.22b 2.68 ± 0.17c 3.64 ± 0.07a 

     
T0 P5K 4.02 ± 0.35a 4.08 ± 0.35a 4.01 ± 0.24a 
T25 P0 3.55 ± 0.32ab 3.73 ± 0.50a 3.73 ± 0.37a 

T25 P10K 4.09 ± 0.26a 4.20 ± 0.11a 3.85 ± 0.37a 

Cyanidin 
-3- 

Rutinoside 
T50 P10K 3.08 ± 0.31b 2.78 ± 0.16b 3.59 ± 0.28a 

1Combinations of terpenes (T) and phospholipids (P) subjected to three different procedures. 2Treatments 
abbreviations: (T0 P5K) no terpenes and 5,000mg/L of phospholipids, (T25 P10K) 25 mg/L of terpenes 
and no phospholipids, (T25 P10K) 25 mg/L of terpenes and 10,000 mg/L of phospholipids, (T50 P10K) 50 
mg/L of terpenes and 10,000 mg/L of phospholipids. 3Values with different letters within the same column 
are significantly different (LSD test, p<0.05). 
 

 

Table 5-2. Transport of anthocyanins (~500 mg/L) from açaí juice extracts from the 
apical to the basolateral side of Caco-2 cell monolayers following incubation 
(120 min, 37ºC), as a function of phospholipid and terpene concentrations, 
and type of energy applied to the system. 

  % Transport of Anthocyanins from Açaí Juice Extracts 
  Procedures 
 French Press [psi] 
 

Treatments1 
4,000 18,000 

Sonication/Vortexing 
/Filtration 

T0 P5K2 3.26 ± 0.10b 3 3.42 ± 0.18b 4.58 ± 0.35a 
T25 P0 3.49 ± 0.29ab 3.24 ± 0.16b 3.59 ± 0.30b 

T25 P10K 3.46 ± 0.03ab 3.79 ± 0.08a 3.57 ± 0.15b 

Cyanidin 
-3- 

Glucoside 
T50 P10K 3.63 ± 0.02a 2.92 ± 0.02c 3.74 ± 0.09b 

     
T0 P5K 3.33 ± 0.15ab 3.65 ± 0.29a 4.46 ± 0.45a 
T25 P0 3.34 ± 0.12ab 3.19 ± 0.34ab 3.70 ± 0.38b 

T25 P10K 3.12 ± 0.14b 3.61 ± 0.16a 3.69 ± 0.18b 

Cyanidin 
-3- 

Rutinoside 
T50 P10K 3.52 ± 0.06a 3.04 ± 0.23b 3.88 ± 0.33ab 

1Combinations of terpenes (T) and phospholipids (P) subjected to three different procedures. 2Treatments 
abbreviations: (T0 P5K) no terpenes and 5,000mg/L of phospholipids, (T25 P10K) 25 mg/L of terpenes 
and no phospholipids, (T25 P10K) 25 mg/L of terpenes and 10,000 mg/L of phospholipids, (T50 P10K) 50 
mg/L of terpenes and 10,000 mg/L of phospholipids. 3Values with different letters within the same column 
are significantly different (LSD test, p<0.05). 
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Increased transport of anthocyanins by the addition of terpenes and phospholipids 

was demonstrated once again.  General increases in absorption ranged from 51 to 159% 

for C3G and 57 to 152% for C3R compared to transport of anthocyanins with no aiding 

agents.  There were no differences in transport values for the lowest concentration of 

anthocyanins tested (250 mg/L) when the technology used to process the matrices was 

sonication and vortexing followed by filtration.  In contrast, differences could be 

detected when anthocyanin concentration was doubled.  Highest transport values were 

observed in T25 P10K samples for C3G (4.58%) and T0 P5K for C3R (4.46%). 

Highest transport for C3G at the lowest concentration of anthocyanins analyzed 

(250 mg/L) were observed in T25 P10K and T0 P5K which occurred when French Press 

was the technology used at 18,000 psi of pressure (4.49 and 4.41%, respectively).  This 

effect was observed in samples subjected to pressure (French Press) whereas no 

differences were observed in samples subjected to sonication/vortexing.  For C3R, 

results illustrated that results from all technologies were fairly similar which ranged 

from 3.55% to 4.20%. Only T50 P10K samples subjected to French Press (at both 

pressures) were significantly lower.  Although transport of anthocyanins was still 

enhanced compared to samples with no aiding agents, saturation of the system with a 

mixture of terpenes and phospholipids might have started antagonizing the enhancement 

of anthocyanin transport. 

Results observed at the highest concentration of anthocyanins (500 mg/L) were 

different from the lowest concentration assessed (250 mg/L).  Highest transport results 

for C3G and C3R were observed in samples subjected to sonication/vortexing (4.58% 
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and 4.46%, respectively).  Transport of C3G in T25 P10K samples were among the 

highest when high pressure (18,000 psi) or sonication/vortexing was applied to the 

system.  Lowest transport of anthocyanins (2.92%) was observed in T50 P10K only 

when high pressure was applied (18,000 psi).  Conversely, transport of anthocyanins in 

T50 P10K was among the highest when less pressure (4,000 psi) was applied to the 

system.  For analysis of C3R in samples subjected to pressure, results illustrated no 

important differences.  When anthocyanin concentration was doubled, samples either 

maintained or decreased the level of anthocyanin transport.  On the contrary, T50 P10K 

samples showed enhanced transport of anthocyanins when pressure was applied to the 

system. 

5.3.2 Particle Size Analysis 

Particle size of açaí extract rich in anthocyanins was assessed by dynamic light 

scattering (Walzem and others 1994).  Anthocyanin-rich extract properly mixed with 

various concentrations of terpenes and/or phospholipids were subjected to two different 

encapsulation technologies.  A set of samples was subjected to two rounds of sonication 

and vortexing (~15 min) followed by sterile filtration (0.22 µm) while two other sample 

sets were forced twice through a needle-valve press at two different pressure levels 

(4,000 and 18,000 psi).  Diameter measurements were determined.  Light diffusion was 

recorded for 30 seconds, modified to an audio range, and deconvoluted by a software 

system.  Sample particle populations were calculated as the width (nm) of the measured 

particle size distribution and are presented in Table 5-3. 
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Table 5-3. Particle size of matrices as a function of anthocyanin, phospholipid, and 
terpene concentrations and manufacturing technologies. 

   Particle size [nm] 
  Procedures 
 French Press [psi] 

Anthocyanin 
Concentration 

[mg/L]  
Treatment1 

4,000 18,000 

Sonication / 
Vortexing / 
Filtration 

T0 P5K3 1750 ± 178b 4 1760 ± 161b 185 ± 12.1a 
T25 P0 0.92 ± 0.00d 0.92 ± 0.00d 0.92 ± 0.00b 

T25 P10K 1054 ± 78.0c 2160 ± 7.77a 0.97 ± 0.02b 
MV2 

T50 P10K 2190 ± 239a 1270 ± 118c 0.92 ± 0.00b 
     

T0 P5K 386 ± 18.2c 937 ± 36.9b 179 ± 11.6a 
T25 P0 0.90 ± 0.00d 0.90 ± 0.00d

 0.90 ± 0.00b 
T25 P10K 681 ± 84.7a 2130 ± 8.72a 0.94 ± 0.01a 

MN 

T50 P10K 501 ± 10.8b 514 ± 30.6c 0.90 ± 0.00a 
     

T0 P5K 798 ± 73.3b 1170 ± 109b 183 ± 11.9a 
T25 P0 0.91 ± 0.00c 0.91 ± 0.00d 0.91 ± 0.00b 

T25 P10K 822 ± 90.1b 2150 ± 7.51a 0.95 ± 0.01b 

250 

MA 

T50 P10K 1552 ± 115a 885 ± 95.5c 0.91 ± 0.00b 
      
      

T0 P5K 1730 ± 80.6b 2390 ± 62.5a 0.92 ± 0.00a 
T25 P0 1.63 ± 0.04d 1.33 ± 0.21d 0.93 ± 0.00a 

T25 P10K 2020 ± 183a 1760 ± 108b 0.92 ± 0.00a 
MV 

T50 P10K 794 ± 35.4c 1470 ± 140c 0.94 ± 0.04a 
     

T0 P5K 500 ± 29.4a 502 ± 91.1b 0.90 ± 0.00a 
T25 P0 1.35 ± 0.13d 1.05 ± 0.04d 0.90 ± 0.00a 

T25 P10K 389 ± 29.5b 923 ± 34.5a 0.90 ± 0.00a 
MN 

T50 P10K 296 ± 10.3c 320 ± 11.8c 0.92 ± 0.03a 
     

T0 P5K 1210 ± 61.5b 1270 ± 83.9a 0.91 ± 0.00a 
T25 P0 1.52 ± 0.07d 1.20 ± 0.13c 0.91 ± 0.00a 

T25 P10K 1490 ± 214a 1330 ± 135a 0.91 ± 0.00a 

500 

MA 

T50 P10K 427 ± 14.4c 512 ± 39.6b 0.93 ± 0.03a 
1Combinations of terpenes (T) and phospholipids (P) subjected to three different procedures. 2Particle Size 
measurements: (MV) Volume distribution, (MN) Mean distribution, (MA) Area distribution. 3Treatments 
abbreviations: (T0 P5K) no terpenes and 5,000mg/L of phospholipids, (T25 P10K) 25 mg/L of terpenes 
and no phospholipids, (T25 P10K) 25 mg/L of terpenes and 10,000 mg/L of phospholipids, (T50 P10K) 50 
mg/L of terpenes and 10,000 mg/L of phospholipids. 4Values with different letters within the same column 
are significantly different (LSD test, p<0.05). 
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Formation of vesicles over 220 nm confirmed the hypothesis proposed in the 

preceding Section.  Vesicles created by any of the treatments (sonication/filtration or 

pressure) were too big to be allowed through the filter (220nm).  Formation of vesicles 

was observed only in treatments subjected to pressure and T0 P5K in the case of 

sonicated samples.  This is mostly due to the lack of a filtration process following 

French Press treatment.  Little or no vesicle formation was observed in samples without 

phospholipids present on their matrix.  Filtration created homogenous matrices since 

values for mean volume distribution (MV), mean area distribution (MA), and mean 

number distribution (MN) were similar within treatments. 

In contrast, results from pressure treatments indicated that the population of 

vesicles created ranged broadly from 296 to 2,390 nm in diameter.  Variations in particle 

size were more pronounced when anthocyanin concentrations were 500 mg/L.  In 

addition, samples subjected to 18,000 psi of pressure created matrices with the least 

variability compared to a lower pressure (4,000 psi).  Higher pressure applied to the 

system forces phospholipids to form a more homogenous population, which agreed with 

preliminary studies on understanding the effect of pressure on a system containing 

phospholipids.  When no pressure is applied to the system, phospholipids naturally 

arrange but particle diameters are extremely variable.  As pressure is applied, vesicles re-

arrange and homogeneity is strongly related to force applied to the system.  In addition, 

T25 P10K samples resulted in the least variability of all samples subjected to pressure.  

However, these differences did not affect the transport of anthocyanins as importantly as 

the presence of phospholipids and terpenes did in the matrix. 
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When particle size was related to transport of anthocyanins, weak correlations 

were observed in all samples subjected to sonication (r < 0.42).  Correlations in samples 

subjected to pressure ranged from 0.25-0.64.  Transport of anthocyanins was maintained 

or reduced when anthocyanin concentration was doubled except for T50 P10K samples, 

effect that was consistent among all samples.  In contrast, changes in particle size were 

well correlated with changes in transport values due to modifications in anthocyanin 

concentration.  The changes in transport of anthocyanins were partly related to particle 

size increment.  This effect is most noticeable when the increase in transport of C3G and 

C3R in T50 P10K samples subjected to 4,000 psi of pressure is accompanied by a 

significant reduction in particle size (64%). 

5.4 Conclusions 

While previous Sections focused on illustrating the ability of phospholipids and 

terpenes as anthocyanin transport enhancers, the objective of this investigation was to 

assess two different technologies and their effect on construction of a matrix containing 

phospholipids, terpenes, and anthocyanins, and how this matrix could affect the 

transepithelial transport of anthocyanins.  Comparisons illustrated that both technologies 

created matrices that maintained the properties of phospholipids and terpenes as 

transport enhancers.  General increases in transport values ranged from 51 to 159% for 

C3G and 57 to 152% for C3R compared to transport of anthocyanins with no aiding 

agents.  Best results in transport of anthocyanins at the lowest concentration tested (250 

mg/L) were observed in T25 P10K and T0 P5K that occurred when French Press was the 

technology used at 18,000 psi of pressure.  Additionally, T25 P10K and T0 P5K samples 
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presented the highest transport values in every technology.  Lowest transport of 

anthocyanins was observed in T50 P10K.  This effect was confirmed in all technologies 

with transports values of 2.68-3.56% for C3G and 2.78-3.59% for C3R.  When 

anthocyanin concentration was doubled, best transports of anthocyanin were observed in 

T25 P10K for C3G and T0 P5K for C3R subjected to sonication and vortexing followed 

by filtration.  Samples generally decrease in transport of anthocyanins as the 

concentrations of C3G and C3R were doubled except for T50 P10K samples which 

maintained or increased. 

Particle size analysis illustrated the formation of vesicles that ranged broadly in 

diameter (296-2,390 nm).  Variations in particle size were more pronounced when 

anthocyanin concentrations were 500 mg/L and when pressure applied to the system was 

low (4,000 psi).  When water is initially added to a mixture, phospholipids 

spontaneously form vesicles of extremely variable diameters.  As energy was applied to 

the system, vesicles were forced to re-arrange creating a more homogenous population. 

Particle size was not well correlated with transport of anthocyanins except for C3G 

(500 mg/L) in samples subjected to pressure.  Transport of anthocyanins was reduced 

when anthocyanin concentration was doubled except for T50 P10K samples and 

modifications in particle dimensions were well correlated with this effect in samples 

subjected to pressure (4,000 psi) or sonication/vortexing.  The reduction in transport of 

C3G and C3R were partly related to particle size increment in samples subjected to low 

pressure (4,000 psi).  This effect was noticeable since the increase in transport of C3G 

and C3R in sample T50 P10K was accompanied by a significant reduction in particle 
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size (64%).  These aspects suggested that although the major contribution of these 

transport aiding agents is their presence in the matrix, the dimension and nature of the 

vesicles formed in it could impact the transport of compounds of interest.  However, 

more research needs to be conducted to explore the effect of vesicle formation and 

anthocyanin encapsulation on the transport of these phytochemicals. 

These results corroborate the idea of phospholipids and terpenes as transport 

enhancers for anthocyanin and other polyphenols.  Further analysis needs to be 

conducted to understand the interaction of anthocyanins, phospholipids and terpenes in 

the matrix and confirm if encapsulation is a possible mechanism for enhanced transport 

of compounds through the epithelia. 
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VI. ADDITION OF PHOSPHOLIPIDS EXTRACTED FROM ACAI ENHANCES THE 

ABSORPTION OF ANTHOCYANINS EXTRACTED FROM ACAI AND WINE 

 

6.1 Introduction 

Interest in anthocyanins and other polyphenolics has increased in the past decade 

due to their potential health benefits related to their radical scavenging properties 

(Robbins 2003, Talcott and Lee 2002; Wang 2006).  Anthocyanins are a major group of 

water-soluble pigments in plants responsible for the red, blue and violet colors in many 

fruits and vegetables (Bridle and Timberlake 1997).  In addition, consumers in the US 

have an average daily intake of over 200 mg/L of anthocyanins (Galvano and others 

2004).  Although extensive research has suggested benefits of anthocyanin consumption 

on human health (Elattar and Viriji 1999; Khan and others 2008), absorption of these 

flavonoids is fairly poor.  Their limited bioavailability may also limit their potential 

action against free radicals in the body.  As established in previous Sections, transport of 

anthocyanins through a Caco-2 cells monolayer model was enhanced by the application 

of phospholipids and terpenes thus increasing their presence in the body.  There is an 

extensive body of research illustrating the absorption/penetration enhancement 

properties of phospholipids and terpenes (Yonekura and others 2006; Keller 2001; 

Sugawara and others 2001; Cal 2005, Lim and others 2006; Lim and others 2008).  

Nevertheless, no investigations were conducted on the absorption enhancement 

properties of phospholipids extracted from açaí oil.  Investigations have demonstrated 

the presence of phospholipids in crude oils from sunflower and soybean suggesting that 
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crude açaí oil may contain phospholipids (Carelli and others 1997; Mounts and Nash 

1990).  Therefore, the purpose of this study was to assess the efficacy of phospholipids 

extracted from crude açaí oil on the absorption/ transport of anthocyanins extracted from 

of açaí and grapes through a Caco-2 cell model. 

6.2 Materials and Methods 

Clarified açaí concentrate from Brazil was obtained from Stiebs Pomegranate 

Products (Madera, CA).  Port wine was obtained from Messina Hof Winery (Bryan, 

TX).  Anthocyanins from açaí and port wine were isolated by loading samples onto an 

activated 10g reversed phase Sep-Pak C18 20cc cartridge (Waters Corporation, Milford, 

MA) as explained in Section 3.  Anthocyanin fractions were desorbed from the cartridge 

with acidified methanol (0.01% HCl), and kept at -80°C until further analysis.  

In parallel, açaí oil was solvent extracted using a patent-pending process (Talcott 

2007) from a water-insoluble processed juice by-product.  Phospholipids were isolated 

from açai oil using a modified method from Carelli and others (1997) using a Hypersep 

Diol 5000 mg cartridge (Thermo-Fisher Scientific, Waltham, MA).  Cartridge was 

previously washed with methanol, followed by a chloroform rinse.  Subsequently, the 

cartridge was thoroughly cleaned with hexane before sample loading.  Oil was dissolved 

in chloroform prior to loading onto the cartridge and allowed to adsorb to the cartridge.  

The cartridge was then rinsed with chloroform to assure all unbound compounds had 

been eluted.  The fraction containing phospholipids was then desorbed with 100% 

methanol.  Following evaporation to dryness, samples were stored at -40˚ C prior to 

analysis. 
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For analysis, methanol was completely removed from samples containing 

anthocyanins from açaí and wine.  Anthocyanins were re-dissolved in Hank’s Balanced 

Salt Solution (HBSS; pH 6.0) and standardized to a final concentration of 1,000 mg 

cyanidin-3-glucoside equivalents/L (anthocyanin stock solutions), which was determined 

spectrophotometrically by the pH differential method (Wrolstad 1976).  In parallel, 

phospholipids were also re-dissolved in HBSS (pH 6.0) and standardized to a final 

concentration of 20,000 mg total phospholipids/L (phospholipid stock solution) 

determined spectrophotometrically according to a modified method by Totani and others 

(1982).  The anthocyanin stock solutions from açaí and wine were mixed with 

appropriate concentrations of the phospholipid stock solution to generate various 

samples at different concentrations of both compounds.  Samples were subjected to two 

rounds of bath sonication (5 min @ 42 MHz) and vortexing (30 seconds @ 3,000 RPM) 

prior to cell culture transport study. 

Transepithelial transport of anthocyanins was conducted using a Caco-2 colon 

carcinoma cells model as illustrated in Section 3.  Samples collected from the transport 

study were analyzed by reverse phase HPLC using modified chromatographic conditions 

(Talcott and Lee 2002) with a Waters 2690 Alliance HPLC system using a Water PDA 

detector as explained in Materials and Methods section of Section 3.  Data was reported 

as ratios between compounds found in the basolateral compartments (mg/L) to 

compounds initially added to the apical compartments (mg/L). 
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Data from experiments were analyzed by one-way analysis of variance (ANOVA) 

using JMP software (SAS Institute, Cary, NC).  Data for each analysis represents the 

mean of three replicates.  Mean separations were conducted using LSD test (P < 0.05). 

6.3 Results and Discussion 

Potential transport enhancement of anthocyanins from two different sources (açaí 

juice and port wine) by the use of phospholipids extracted form açaí oil was examined.  

Characterized anthocyanins from açaí, Cyanidin-3-Glucoside (C3R) and Cyanidin-3-

Rutinoside (C3R), and from port wine, Anthocyanin 1 (An 1), Anthocyanin 2 (An 2), 

and Anthocyanin 3 (An 3), were used for a unidirectional transport study, assessed from 

the apical to the basolateral side of Caco-2 cells monolayers, and particle size analysis 

was conducted to possibly relate formation of liposomes to enhancement of anthocyanin 

absorption. 

6.3.1 Transepithelial Transport Study 

Transepithelial transport of açaí juice and port wine extracts rich in anthocyanins 

was assessed through a Caco-2 cells model.  Extracts properly mixed with various 

concentrations of açaí oil phospholipids were loaded into the apical side of the cells 

monolayer and presence of anthocyanins in the basolateral side was evaluated 

chromatographically over time for up to 2 hours.  Samples transported over 2 hours and 

found in the basolateral side were compared to the initial concentration of anthocyanins 

loaded to the apical side.  C3G and C3R were detected in all samples as the main 

anthocyanins found in açaí, which agreed with results from previous sections (Fig. 6-1).  

Three predominant anthocyanins (An-1, An-2, An-3) were found and characterized in 



 

 

77 

Port wine (Fig. 6-2).  These characterized anthocyanins from açaí juice and port wine 

were then monitored through the transepithelial transport study and results are presented 

in Tables 6-1 and 6-2, respectively. 
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Figure 6-1. Chromatograms of anthocyanins from açaí extract in the apical side before 
analysis (A) and present in the basolateral side after an incubation period of 2 
hours (B) IV. 

 

Açaí anthocyanins with no phospholipids were transported inadequately at both 

concentration of anthocyanins (1.77%) agreeing with results from previous Sections and 

other investigations regarding polyphenolic transport through cell monolayers (Pacheco-

Palencia and others 2008; Chan and others 2007).  In general, addition of phospholipids  
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Table 6-1. Transport of anthocyanins from açaí juice extracts from the apical to the 
basolateral side of Caco-2 cell monolayers following incubation (120 min, 
37ºC), as a function of anthocyanin and phospholipid concentrations. 

% Transport of Anthocyanins  
from Açaí Juice Extracts 

Anthocyanin 
Concentration 

[mg/L] 

Phospholipid 
Concentration 

[mg/L] Cyanidin-3-Glucoside Cyanidin-3-Rutinoside 
0 1.70 ± 0.13c 1 1.79 ± 0.04b 

5,000 4.12 ± 0.40a 3.16 ± 0.22a 250 
10,000 3.46 ± 0.17b 3.02 ± 0.08a 

0 1.80 ± 0.15c 1.80 ± 0.18b 
5,000 3.24 ± 0.10b * 2 3.11 ± 0.20a 500 

10,000 3.29 ± 0.38b 3.05 ± 0.18a 
1Values with different letters within the same column are significantly different (LSD test, p<0.05). 
2Asterisk indicates significant difference in transport values of cyanidin-3-glucoside when concentration of 
anthocyanins fluctuated. 
 
 

 

Table 6-2. Transport of anthocyanins from port wine extracts from the apical to the 
basolateral side of Caco-2 cell monolayers following incubation (120 min, 
37ºC), as a function of phospholipids concentrations. 

% Transport of Anthocyanins from Açaí Juice 
Extracts 

Anthocyanin 
Concentration 

[mg/L] 

Phospholipid 
Concentration 

[mg/L] An-1 An-2 An-3 
0 NDd 1 NDe NDe 

5,000 1.94 ± 0.06a 2 3.92 ± 0.10a 1.94 ± 0.12a 250 
10,000 1.68 ± 0.05b 3.38 ± 0.23bc 1.15 ± 0.11c 

0 0.36 ± 0.01c * 3 0.96 ± 0.03d * 0.32 ± 0.00d * 
5,000 2.07 ± 0.22a * 3.53 ± 0.35b 1.96 ± 0.19a 500 

10,000 2.08 ± 0.03a 3.20 ± 0.10c 2.03 ± 0.04a * 
1Compounds were not detected. 2Values with different letters within the same column are significantly 
different (LSD test, p<0.05). 3Asterisk indicates significant difference in anthocyanin transport values 
when concentration of anthocyanins fluctuated. 

 

increased the anthocyanins found in the basolateral compartments.  Increases in transport 

values ranged from 83 to 142% and 69 to 74% for C3G and C3R, respectively.  Relative 

transport of anthocyanins did not vary as a function of anthocyanin concentration since 

results were fairly similar and enhancement transport effect of phospholipids did not 

change with change in anthocyanins content.  The only variation detected due to 
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anthocyanin concentration change was observed in samples containing 5,000 mg/L of 

phospholipids were there was an inverse relation between concentration of C3G and 

transport of anthocyanins. 
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Figure 6-2. Chromatograms of anthocyanins from port wine extract in the apical side 
before analysis (A) and present in the basolateral side after an incubation 
period of 2 hours (B). 

 

Differences in transport values were observed in C3G whereas no significant 

differences were observed for C3R when phospholipids where in the matrix.  The 

highest anthocyanin transport values for C3G and C3R were observed in samples 

containing 5,000 mg/L (4.12% and 3.16%, respectively) elucidating the idea that 5,000 
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mg/L of phospholipids extracted from açaí are the best combination to promote 

absorption of açaí anthocyanins.  Higher concentrations of phospholipids may hinder 

transport by interacting with anthocyanins and or monolayer too long hindering the 

passage of analytes through the Caco-2 monolayer thus making it unavailable for 

assessment after two hours. 

In parallel, port wine anthocyanins with no phospholipids were also transported 

poorly which agreed with results from açaí samples in this and previous sections.  No 

transport of anthocyanins was recorded after 2 hours of incubation at the lowest 

concentration of anthocyanins assessed (250 mg/L).  Samples containing 500 mg/L of 

anthocyanins demonstrated the deprived transport of these compounds through a Caco-2 

cell monolayer model.  The transport values of the three main anthocyanins detected in 

port wine were lower than 1%. 

Addition of phospholipids extracted from açaí oil significantly increased the 

anthocyanins found in the basolateral compartments.  Increases in transport values 

ranged from 371 to 485%, 234% to 310%, and 264% to 543% for An-1, An-2, and An-3, 

respectively.  Dissimilar to açaí anthocyanins, dependency on anthocyanin concentration 

was illustrated in relative transport of two of the three port wine anthocyanins assessed. 

An-2 did not show dependency on the concentration of anthocyanins tested.  Changes 

were detected in all anthocyanins with no phospholipids in the matrix, and An-1 and An-

3 in samples containing 10,000 mg/L of phospholipids where a positive relation between 

concentration and transport of anthocyanins was noticed. 
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Higher overall transport values were observed for An-2 compared to An-1 and An-

3.  Evident differences in transport values were observed in all three port wine 

anthocyanins.  Highest anthocyanin transport values for An-1 and An-3 were observed in 

samples containing 10,000 mg/L at both concentrations of anthocyanins and when 

anthocyanins at the lowest concentration assessed was mixed with 5,000 mg/L of 

phospholipids.  Additionally, best results in all anthocyanins were generally detected 

when 5,000 mg/L of phospholipids. 

6.4 Conclusions 

The capacity of phospholipids extracted from açaí oil as transport enhancers of 

anthocyanins was confirmed through these experiments.  Transport values for açaí 

anthocyanins with no enhancers on the matrix were 1.77% on average.  Addition of 

phospholipids resulted in average increase in anthocyanin transport from 83 to 142% and 

69 to 74% for C3G and C3R, respectively.  In addition, transport of anthocyanins was 

not dependent on dosage since absorption results were similar at both concentrations of 

anthocyanins tested except for samples containing 5,000 mg/L of phospholipids where 

an inverse relation between concentration and transport of anthocyanins was observed.  

Highest anthocyanin transport values for C3G and C3R were observed in samples 

containing 5,000 mg/L (4.12% and 3.16%, respectively) and C3G transport values were 

generally higher than those of C3R. 

Similarly to açaí anthocyanins, port wine anthocyanins with no phospholipids were 

transported poorly.  No transport of anthocyanins was detected after 2 hours of 

incubation when total anthocyanin concentration was 250 mg/L.  When anthocyanin 
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concentration was doubled, transport values of the An-1, An-2, and An-3 were detected 

in samples assessed and the transport values were very low (0.36%, 0.96%, and 0.32%, 

respectively).  Addition of phospholipids significantly increased the transport of 

anthocyanins demonstrating increases from 371 to 485%, 234% to 310%, and 264% to 

543% for An-1, An-2, and An-3, respectively. 

Açaí phospholipids illustrated their transport enhancement properties on two 

different matrices containing anthocyanins from açaí and port wine.  These findings 

strengthen the idea of using phospholipids to improve bioavailability of different 

phytochemicals.  This improvement possesses tremendous implications for future 

research on the area of modulation of phytochemical transport/absorption.  

Phospholipids were assessed on two anthocyanins sources (açaí and grape) and results 

illustrated anthocyanin transport enhancement on both.  Additionally, anthocyanins from 

port wine were enhanced at a much higher proportion than açaí anthocyanins were which 

suggests that associations between phospholipids and polyphenolics are very sensitive 

not only to concentration of components and nature of the matrix (temperature, acidity, 

etc) but also to the type of components present in the matrix.  These results confirmed 

that phospholipids could serve as transport enhancers for anthocyanin in various 

commodities.  Further analysis needs to be conducted to demonstrate if phospholipids 

could enhance absorption of other polyphenolics in other commodities. 
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VII. EFFECT OF PHOSPHOLIPIDS AND TERPENES ON THE ABSORPTION OF 

GALLIC ACID AND THE SIZE OF PARTICLES FORMED 

 

7.1 Introduction 

Interest in polyphenolics has increased in recent years due to their potential health 

benefits (Robbins 2003, Talcott and Lee 2002).  However, polyphenolic recognition is 

not only due to their bioactive properties but also for their contribution to flavor and 

color of several fruits and vegetables (Croft 1999).  Gallic acid is a phenolic acid widely 

spread in nature and has been found in strawberries, lemons, grapes, and tea, among 

others (Chu and others 2002).  Research has elucidated the antiproliferative, anti-

tumorigenic, and pro-apoptotic properties of gallic acid (Kaur and others 2009; Loizzo 

and others 2009).  In contrast, poor absorption of gallic acid has been illustrated and 

compared to other phenolic acids (Konishi and others 2004; Konishi and others 2006).  

Due to this limited bioavailability, gallic acid’s potential action against free radicals is 

hindered. 

As established in previous Sections, anthocyanin transport of various sources was 

enhanced by the application of phospholipids and terpenes.  However, no investigations 

have elucidated the effect of phospholipids and terpenes on the transport/absorption of 

other polyphenolics.  Gallic acid was selected as a marker compound to examine its 

transport through a Caco-2 cell monolayer model and how phospholipids and terpenes 

may modulate it.  Gallic acid is a common phenolic acid found in nature that is 

structurally dissimilar to anthocyanins and other flavonoids.  Additionally, polarity, 
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molecular weight, ionic strength, acidity, and other characteristics provide an 

opportunity to assess phospholipids and terpenes on transport of a different polyphenolic 

group and their contribution to the physical nature of the matrix.  If enhancement 

properties of phospholipids and terpenes could be reproduced in gallic acid, it would 

cement the idea that phospholipids and terpenes can improve absorption of various 

polyphenolic groups.  Therefore, the purposes of this study were to assess the efficacy of 

phospholipids and terpenes on the absorption/ transport of gallic acid through a Caco-2 

cell model and the effect of these enhancers on the dimensions of particles created in the 

matrix. 

7.2 Materials and Methods 

Gallic acid was obtained from Fischer Scientific (Fair Lawn, NJ).  Dubelcco’s 

Phosphate Saline Buffer (PBS) and Hank’s Balanced Salt Solution (HBSS) were 

purchased from Invitrogen Inc. (Grand Island, NY).  Gallic acid was dissolved in HBSS 

(pH 6.0) and standardized to a final concentrations of 750 and 1,500 mg/L (gallic acid 

stock solutions) which were determined spectrophotometrically by the Folin-Ciocalteu 

assay (Singleton and Rossi 1965).  Subsequently, the gallic acid stock solutions were 

mixed with appropriate concentrations of phospholipids and/or terpenes to generate 

various samples at different concentrations of all compounds.  Samples were then 

subjected to two rounds of bath sonication for 5 minutes at 42 KHz (Branson Ultrasonic 

Corp. Danbury, CT) and vortexing (30 seconds at 3,000RPM) prior to cell culture 

transport study and particle size analysis. 
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Transepithelial transport of gallic acid was conducted using a Caco-2 colon 

carcinoma cells model as explained in Section 3.  Briefly, monolayers were rinsed with 

PBS.  Once PBS was removed from the plate, HBSS was added to the basolateral and 

apical side.  After applying HBSS to both sides, cells were incubated (30 min) and 

treatments containing combination of gallic acid, phospholipids, and/or terpenes were 

added to the apical side of the wells.  Thereafter, sample aliquots (200 µL) were taken at 

time zero and every 30 min for 2 hours from the basolateral side, immediately 

refrigerated (5 ºC) and analyzed within hours after analysis.  Basolateral volume was 

kept constant by adding fresh HBSS (200 µL) after sampling.  Resistance (TEER) was 

measured once again after assay was completed to insure monolayer integrity.  Only 

compartments with TEER values over 350 Ω cm2 were considered for data analysis. 

Samples collected from the transport study were analyzed by reverse phase HPLC 

using modified chromatographic conditions (Talcott and Lee 2002) with a Waters 2690 

Alliance HPLC system using a Waters PDA detector.  Separations were performed on a 

250 x 4.6 mm Nova-Pak C18 column (Waters Corporation, Milford, MA) with a C18 

guard column.  Mobile phase A consisted of water acidified with o-phosphoric acid (pH 

2.4) and Mobile phase B consisted of 60:40 methanol and water acidified with o-

phosphoric acid (pH 2.4).  The gradient solvent program run phase B from 0 to 30% in 1 

min; 30 to 50% in 1 min, 50 to 70% in 2 min, 70 to 96.2% in 3.5 min, 96.2 to 100% in 

0.5 min and held at 100% for 1 min for a total run time of 9 minutes at a flow rate of 0.8 

mL/min.  Gallic acid was identified by UV/VIS spectral interpretation, retention time 

and comparison to an authentic standard (Fisher Scientific, Fair Lawn, NJ).  Data was 



 86 

 

analyzed as mg/L of gallic acid and reported as a ratio between gallic acid found in the 

apical and basolateral compartments. 

Data from experiments were analyzed by one-way analysis of variance (ANOVA) 

using JMP software (SAS Institute, Cary, NC).  Data for each analysis represents the 

mean of three replicates.  Mean separations were conducted using LSD test (P < 0.05). 

 
7.3 Results and Discussion 

7.3.1 Transepithelial Transport Study 

Transport enhancement of gallic acid by the addition of phospholipids and 

terpenes was examined through a unidirectional transport study by assessing it from the 

apical to the basolateral side of Caco-2 cells monolayers.  Gallic acid properly mixed 

with various concentrations of phospholipids and terpenes were loaded into the apical 

side of the cells monolayer and presence of gallic acid in the basolateral side was 

evaluated chromatographically over time for up to 2 hours (Fig. 7-1).  Samples 

transported over 2 hrs and found in the basolateral side were compared to the initial 

concentration of gallic acid loaded to the apical side.  Results are presented in Table 7-1. 
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Figure 7-1. Chromatograms of gallic acid in the apical side before analysis (A) and 
present in the basolateral side after an incubation period of 2 hours (B). 

 

Gallic acid with no aiding agents (phospholipids and terpenes) was poorly 

transported at both concentration assessed (0.13%) agreeing with other investigations 

regarding gallic acid absorption in Caco-2 monolayers and in rats after oral 

administration (Konishi and others 2003; Konishi and others 2004; Konishi and others 

2006).  In general, addition of phospholipids and terpenes increased the gallic acid found 

in the basolateral compartments which agreed with results from previous studies and 

confirmed the hypothesis that the use these aiding agents could improve absorption of 

polyphenolics other than anthocyanins through the intestinal epithelia.  Increases in 

transport values ranged from 37 to 920%.  Relative transport of gallic acid was dose 
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dependent when phospholipids and terpenes were present in the matrix.  The increase in 

transport of gallic acid ranged from 1.4 to 9 fold when gallic acid increased from 125 to 

250 mg/L. 

 

Table 7-1. Transport of gallic acid from the apical to the basolateral side of Caco-2 cell 
monolayers following incubation (120 min, 37ºC), as a function of 
phospholipid and terpene concentrations. 

% Transport of Gallic Acid 
Phospholipid Concentration [mg/L] 

Gallic Acid  
Concentration 

[mg/L] 

Terpene 
Concentration 

[mg/L] 0 5,000 10,000 
0 0.19 ± 0.01e 1 0.32 ± 0.03c 0.22 ± 0.03e 

25 -2 0.26 ± 0.01d 0.98 ± 0.02a 125 
50 - 0.43 ± 0.02b 0.33 ± 0.03c 

     
0 0.18 ± 0.02e 1.75 ± 0.29ab * 3 1.86 ± 0.24a * 

25 - 1.73 ± 0.09ab * 1.48 ± 0.15b * 250 
50 - 0.81 ± 0.09d * 1.12 ± 0.04c * 

1Values with different letters within the same column are significantly different (LSD test, p<0.05). 
2Samples not assessed due to rupture of monolayer. 3Asterisk indicates significant difference in transport 
values of gallic acid when concentration of anthocyanins fluctuated. 

 

No trends were observed in samples containing 125 mg/L of gallic acid.  The 

highest enhancement accomplished was 467% identified in samples containing 25 mg/L 

of terpenes and 10,000 mg/L of phospholipids.  No transport enhancement was observed 

when only phospholipids (10,000 mg/L) were present in the matrix and only 35% 

increase in transport was observed in samples containing 25 mg/L of terpenes and 5,000 

mg/L of phospholipids in the matrix.  When gallic acid concentration was doubled, more 

pronounced increases in transport were observed.  Highest gallic acid transport values 

were observed in samples containing no terpenes regardless of phospholipid 

concentration and samples containing 25 mg/L of terpenes and 5,000 mg/L of 
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phospholipids.  Samples containing 50 mg/L of terpenes and 5,000 mg/L of 

phospholipids resulted in the lowest transport values of gallic acid.  No results were 

recorded when terpenes were the only transport aides present in the matrix.  

Unfortunately, resistance of the monoloyers utilized for these treatments were lower than 

120 Ω cm2 hence data could not be used for analysis. 

Transport rates are another important assessment in a Caco-2 cell model.  These 

values indicated the concentration of gallic acid transported from the apical side to the 

basolateral side in a unit of time.  Average transport rates (µg/mL·h) of gallic acid from 

the apical to the basolateral side were given in time depending on the gallic acid 

concentration initially mixed in the matrix and detected in the basolateral compartments 

assessed (Table 7-2).  Individual gallic acid transport rates (0.026 – 0.305 µg/mL·h) 

increased in a concentration-dependent matter.  When concentration of gallic acid was 

doubled, average transport rates of all samples were at least doubled and increases went 

up to almost 12 fold (11.5). 

No trends were observed in samples regardless of gallic acid concentration.  In 

samples containing 125 mg/L of gallic acid, the highest enhancement in transport rates 

accomplished (344%) was identified in samples containing 25 mg/L of terpenes and 

10,000 mg/L of phospholipids.  Improvement in gallic acid transport rates were also 

detected in samples containing 5,000 mg/L of phospholipids and no terpenes (64%).  

When gallic acid was doubled (250 mg/L), highest gallic acid transport rates were only 

observed in samples containing the highest concentration of terpenes and phospholipids 

assessed (50 and 10,000 mg/L, respectively). 
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Average transport rates were calculated and the increase was dependent on gallic 

acid concentration (Fig. 7-2).  At the lowest gallic acid concentration analyzed (125 

mg/L), average transport rate was 0.043 µg/mL·h.  When gallic acid concentration was 

doubled, average transport rate was significantly increased (5.2 fold). 

 

Table 7-2. Average transport rates of gallic acid from the apical to the basolateral side of 
Caco-2 cell monolayers, as a function of phospholipid and terpene 
concentrations. 

Transport Rate (µg/mL·h) of Gallic Acid 
Phospholipid Concentration [mg/L] 

Gallic Acid 
Concentration 

[mg/L] 

Terpene 
Concentration 

[mg/L] 0 5,000 10,000 
0 0.028 ± 0.002c 1 0.043 ± 0.003b 0.026 ± 0.006c 

25 -2 0.030 ± 0.002c 0.116 ± 0.002a 125 
50 - 0.030 ± 0.002c 0.026 ± 0.004c 

     
0 0.055 ± 0.007c 0.256 ± 0.052ab 0.254 ± 0.053ab 

25 - 0.230 ± 0.015b 0.208 ± 0.035b 250 
50 - 0.238 ± 0.033b 0.305 ± 0.008a 

1Values with different letters within the same column are significantly different (LSD test, p<0.05). 
2Samples not assessed due to rupture of monolayer. 
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Figure 7-2.  Average transport rates of gallic acid at two different gallic acid 

concentrations (125 and 250 mg/L), from the apical to the basolateral side of 
Caco-2 cell monolayers over 120 min at 37ºC. 
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7.3.2 Particle Size Analysis 

Particle size of matrices containing gallic acid with terpenes and phospholipids 

was assessed as explained in previous sections.  Gallic acid properly mixed with various 

concentrations of terpenes and/or phospholipids were subjected to two rounds of 

sonication and vortexing (~12 min).  Diameter measurements were determined by light 

scattering that was recorded for 30 seconds, adapted to an audio range, and deconvoluted 

by a software system.  Sample particle populations were calculated as the width (nm) of 

the measured particle size distribution and are presented in Table 7-3. 

Vesicles formed ranged from 54.5 to 375 nm (MV) in diameter which confirmed 

the assumption that vesicles created with phospholipids are intimately related with the 

compounds found in the matrix.  Vesicles formed in previous studies, with anthocyanins 

present in the matrix, were much bigger than the vesicles created in this investigation 

with gallic acid.  Similarly to previous results, no vesicles were formed when 

phospholipids were not present in the matrix. 

Particles formed, when concentration of gallic acid in the matrix was lower (125 

mg/L), were generally bigger than the particles formed when gallic acid concentration 

was doubled.  Correlations between particle size and transport of gallic acid were 

conducted.  At the lowest concentration of gallic acid (125 mg/L), there was a high 

correlation (r = 0.94) between particle size and transport of gallic acid when 

phospholipid concentration fluctuated and terpene concentration was kept constant.  In 

contrast, a very low correlation (r = 0.18) was observed when terpene concentration 

fluctuated and phospholipid concentration was kept constant. 
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Table 7-3. Particle size of matrices as a function of gallic acid, phospholipid, and terpene 
concentrations. 

 Particle Diameter [nm] 
 Phospholipid Concentration [mg/L] 

Gallic Acid 
Concentration 

[mg/L] 

Terpene 
Concentration 

[mg/L]  0 5,000 10,000 
0 0.92 ± 0.00d 1 127 ± 22.3c 375 ± 67.1a 

25 0.92 ± 0.00d 210 ± 14.0b 329 ± 34.8a 
50 

MV2 
0.96 ± 0.07d 251 ± 9.71b 100 ± 15.3c 

     
0 0.90 ± 0.00c 63.0 ± 22.8ab 62.2 ± 22.7ab 

25 0.90 ± 0.00c 71.8 ± 5.24a 59.3 ± 16.7ab 
50 

MN 
0.92 ± 0.04c 78.0 ± 22.1a 35.8 ± 14.9b 

     
0 0.91 ± 0.00d 92.4 ± 25.0bc 143 ± 42.9a 

25 0.91 ± 0.00d 120 ± 5.90ab 135 ± 27.9ab 

125 

50 
MA 

0.94 ± 0.06d 133 ± 21.4ab 58.7 ± 21.5c 
      
      

0 0.92 ± 0.00d 100 ± 16.5a 83.9 ± 5.66b 
25 0.92 ± 0.00d 70.1 ± 5.54b 54.5 ± 8.55c 
50 

MV 
0.92 ± 0.00d 83.7 ± 4.93b 75.4 ± 9.32b 

     
0 0.90 ± 0.00d 39.6 ± 12.4ab 39.4 ± 5.05ab 

25 0.90 ± 0.00d 30.4 ± 5.02bc 23.3 ± 3.40c 
50 

MN 
0.90 ± 0.00d 33.7 ± 4.51abc 43.5 ± 3.05a 

     
0 0.91 ± 0.00d 62.7 ± 16.0a 56.7 ± 5.86ab 

25 0.91 ± 0.00d 43.2 ± 4.68bc 37.7 ± 8.53c 

250 

50 
MA 

0.91 ± 0.00d 53.7 ± 4.51ab 55.9 ± 4.09ab 
1Values with different letters within the same columns  and rows are significantly different (LSD test, 
p<0.05).  2Particle Size measurements: (MV) Volume distribution, (MN) Mean distribution, (MA) Area 
distribution. 
 

 

When concentration of gallic acid was doubled (250 mg/L), correlations were different.  

The highest correlation was reduced by 36.8% (r = 0.60) while the lowest correlation 

almost doubled (r = 0.36).  Regardless of the changes in correlations due to the increase 

in gallic acid concentration, results illustrated that the relation between gallic acid 

transport and particle size was mostly dependent on occurrence of phospholipids rather 

than terpenes in the matrix.  Additionally, high correlations between particle size and 
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transport rates as a function of phospholipid concentration illustrated the idea that 

vesicle formation played an important role in absorption of gallic acid. 

7.4 Conclusions 

Preceding Sections focused on illustrating the ability of phospholipids and 

terpenes as anthocyanin transport enhancers.  In contrast, the objective of this 

investigation was to assess those capabilities of terpenes and phospholipids in the 

transport a different phenolic compound.  Gallic acid transport was assessed through a 

Caco-2 monolayer model followed by a particle size analysis.  Results illustrated the 

positive influence of terpenes and phospholipid had on the transport of gallic acid.  

Gallic acid alone was transported inadequately (0.19%).  General increases in transport 

values ranged from 37 to 920% compared to transport of gallic acid alone.  In addition, 

transport of gallic acid was dose-dependent with increases in transport of gallic acid 

ranging from 1.4 to 9 fold when gallic acid concentration was doubled.  No results could 

be recorded for samples containing only gallic acid and terpenes.  Final TEER of the 

monoloyers (after 2 hours of incubation) utilized for these treatments were lower than 

120 Ω cm2 and data could not be used for analysis.  Gallic acid transport rates (0.026 – 

0.305 µg/mL·h) increased in a concentration-dependent matter.  When concentration of 

gallic acid was doubled, average transport rates of all samples were significantly 

increased (2.0-11.5). 

Vesicles formed ranged from 54.5 to 375 nm (MV) in diameter.  These results 

cemented the idea that vesicles formation is closely related to the compounds found in 

the matrix.  Gallic acid is a smaller molecule (m/z 170) than anthocyanins (m/z 449-
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595), which leads to the formation of smaller vesicles.  No vesicles were formed when 

phospholipids were not present in the matrix.  Correlations between gallic acid transport 

and particle size illustrated a greater contribution from phospholipids presence in the 

matrix compared to terpenes which also suggested that encapsulation may play an 

important role in modulating absorption of gallic acid. 

Results from this experiment confirmed the idea that phospholipids and terpenes 

can act as transport enhancers for various polyphenolics.  Further analyses need to be 

conducted to understand the interaction of gallic acid, phospholipids, and terpenes in the 

matrix and confirm if encapsulation is a potential mechanism for enhanced transport of 

compounds through the epithelia.  In addition, phospholipids and terpenes need to be 

assessed on some other phytochemicals to establish their positive effect on their 

bioavailability. 
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VIII. SUMMARY 

 

Anthocyanins are the most important class of water-soluble pigments responsible 

for the red, blue and violet colors in many fruits and vegetables.  Several fruits contain 

high concentrations of anthocyanins and studies have shown associations between fruit 

consumption and reduction of certain diseases attributable to the presence of antioxidant 

polyphenolics.  Extensive research has elucidated the health benefits of anthocyanins.  

However, anthocyanin absorption is fairly poor which hinders their potential to be 

utilized in the human body. 

The bioavailability of anthocyanins and other polyphenolics could be enhanced by 

compounds known to assist in the transport/absorption of phytochemicals through the 

gastric epithelia increasing the availability of these compounds for various applications 

in the body.  Phospholipids could promote absorption of compounds to the blood stream 

making them more available.  Improvement in the absorption of anthocyanins could also 

be accomplished by the use of terpenes.  Transdermal transport could be replicated in the 

gastrointestinal tract if a product rich in terpenes is used, thus, creating temporary 

apertures in the gastric epithelia by reacting with the tissue.  

Anthocyanins isolated from açaí puree were used for multiple unidirectional 

transport studies assessed from the apical to the basolateral side of Caco-2 cells 

monolayers.  Cyanidin-3-glucoside (C3G) and cyanidin-3-rutinoside (C3R) were the two 

most predominant anthocyanins in açaí, thus, they were monitored through the 

transepithelial transport study.  Açaí anthocyanins with no aiding agents were poorly 
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transported with transport values of 1.38% and 1.06% (C3G and C3R, respectively).  

Both terpenes and phospholipids significantly increased the transport of anthocyanins.  

Significant increases in transport ranged from 74 to 343% for C3G and 91 to 305% in 

the case of C3R.  The transport aiding effect of phospholipids and terpenes was 

enhanced when mixed together.  Phospholipids at the highest concentration assessed 

(5000 mg/L) resulted in transport value enhancement of 204% and 234% of C3G and 

C3R absorption, respectively.  When terpenes (50 mg/L) were added to the matrix 

already containing phospholipids (5,000 mg/L), a 1.5 and 1.2 increase in transport values 

were observed for C3G and C3R, respectively. 

Total anthocyanin concentration and antioxidant capacity were monitored through 

a 40 day period at various temperatures for samples that showed highest anthocyanin 

transport through the previous study.  Color degradation followed first-order kinetics.  

There were no differences in anthocyanin degradation within treatments at every 

temperature assessed illustrating that the presence of terpenes and/or phospholipids did 

not affect anthocyanins degradation kinetics. 

A confirmation transepithelial transport study was conducted to support the 

findings of the earlier investigations.  A more complete dose-dependency study was 

carried out and particle size analysis was also assessed to understand the association of 

anthocyanins with terpenes and phospholipids in the matrix and possibly relate the 

formation of particles to enhanced transport of anthocyanins.  Açaí anthocyanins with no 

phospholipids or terpenes were transported scantily at both concentrations of 

anthocyanins (1.77%) agreeing with results previously revealed.  Addition of 
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phospholipids and terpenes resulted in average transport from 59 to 158% for both 

anthocyanins assessed (C3G and C3R).  Furthermore, transport of anthocyanins was not 

dependent on dosage since absorption results were similar at both concentrations of 

anthocyanins tested.  Contrary to previous results, no additive effect between 

combinations of terpenes and phospholipids could be detected in these experiments.  

This implied that the associations created in the confirmation studies were different from 

the previous investigation which could be attributed to an older sample of anthocyanins 

used which increase in the monomer-polymer ratio.  Particle size analysis revealed that 

vesicles over 50 nm in diameter were only found in samples with no terpenes in the 

matrix.  Perhaps, terpenes together with phospholipids formed a larger vesicle that was 

not allowed through the filter thus creating minute vesicles and most of the anthocyanins 

were not encapsulated.  Therefore, enhancement properties of terpenes and 

phospholipids could be attributed simply to the mere presence of these compounds.  

Additionally, these results suggested that phospholipids and terpenes could achieve 

transport enhancement both individually and together as a whole. 

A third study was conducted to compare three methods to produce matrices 

containing anthocyanins, terpenes and phospholipids. Furthermore, the effect of these 

technologies on matrix construction and transport of anthocyanins was assessed.  

Comparison between technologies (French press at two pressure levels and sonication-

vortexing) was conducted.  Selected combinations of phospholipid and terpenes at two 

different anthocyanin concentrations (250 and 500 mg/L) were assessed.  Increased 

transport of anthocyanins by the addition of terpenes and phospholipids was, once again, 
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demonstrated.  General increases in absorption ranged from 51 to 159% for C3G and 57 

to 152% for C3R compared to transport of anthocyanins with no aiding agents.  In 

addition, no dependency on anthocyanin concentration was observed.  Comparisons 

illustrated that both technologies created matrices that maintained the properties of 

phospholipids and terpenes as transport enhancers.  Particle size analysis demonstrated 

the formation of vesicles that ranged broadly in diameter (296-2,390 nm).  Variations in 

particle size were more pronounced when anthocyanin concentrations were 500 mg/L 

and when pressure applied to the system was low (4,000 psi).  When water is initially 

added to a mixture, phospholipids naturally arrange but particles arrangement and size 

are extremely variable.  As energy is applied to the system, vesicles are forced to re-

arrange creating a more homogenous population.  Weak correlations were observed in 

all samples except those subjected to the highest pressure (18,000 psi) through the 

French Press when particle size was assessed against transport of anthocyanins.  Only in 

certain samples, reduction in particle size was related to an increase in transport of 

anthocyanins suggesting that the main contribution of phospholipids and terpenes was 

their presence in the matrix rather than the dimension or nature of vesicles formed in it. 

Since the absorption improving properties of phospholipids were well established 

in previous studies, phospholipids extracted from açaí oil were assessed in transport of 

anthocyanins from açaí and port wine to find similar effects as for phospholipid from 

soybeans.  There is an extensive body of research illustrating the absorption/penetration 

enhancement properties of phospholipids from soybeans.  Nevertheless, no 

investigations were conducted on the absorption enhancement properties of 
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phospholipids extracted from açaí oil.  The ability of açaí phospholipids as transport 

enhancers of anthocyanins was confirmed through these experiments.  Transport values 

for açaí anthocyanins with no enhancers on the matrix were lower than 3% on average.  

Addition of phospholipids resulted in average increase in anthocyanin transport from 83 

to 142% and 69 to 74% for C3G and C3R, respectively.  Moreover, transport of 

anthocyanins was not dependent on dosage except for samples containing 5,000 mg/L of 

phospholipids where an inverse relation between concentration and transport of 

anthocyanins was observed.  In parallel, port wine anthocyanins with no phospholipids 

were also transported poorly.  No transport of anthocyanins was detected after 2 hours of 

incubation when total anthocyanin concentration was 250 mg/L.  When anthocyanin 

concentration was doubled, transport values were detected (0.32% to 0.96%) illustrating 

that poor absorbability of anthocyanins occurs in various commodities.  Addition of 

phospholipids to the matrix increased the transport of anthocyanins demonstrating 

increases from 234% to 543%.  These findings illustrated that phospholipids extracted 

from açaí also had transport enhancement properties on two different types of 

anthocyanins (açaí and port wine). 

Finally, a study on the effects of phospholipids and terpenes on a non-anthocyanin 

polyphenolic was assessed.  Gallic acid is a phenolic acid widely spread in nature and 

investigations have illustrated the health benefits of this compound.  Unfortunately, poor 

absorption of gallic acid has also been demonstrated and compared to other phenolic 

acids that hinder gallic acid potential action against free radicals in the body.  

Consequently, gallic acid was selected for a transepithelial transport study where 
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phospholipids and terpenes acted as absorption enhancers.  Additionally, a particle size 

analysis was conducted to understand the relation gallic acid might have with 

phospholipid and terpenes in the matrix.  Gallic acid with no aiding agents was poorly 

transported at both concentrations assessed (0.13%).  Addition of phospholipids usually 

increased the gallic acid found in the basolateral compartments suggesting that 

phospholipids and terpenes could promote absorption of various types of 

phytochemicals.  Increases in transport values ranged from 37 to 920%.  Relative 

transport of gallic acid was dose dependent when phospholipids and terpenes were 

present in the matrix.  The increase in transport of gallic acid ranged from 1.4 to 9 fold 

when gallic acid increased from 125 to 250 mg/L.  In contrast, no transport enhancement 

was observed when no terpenes and 10,000 mg/L of phospholipids were present in the 

matrix.  Vesicles formed ranged from 54.5 to 375 nm (MV) in diameter which 

confirmed the idea that vesicle formation is closely related to the compounds found in 

the matrix.  Gallic acid is a smaller molecule (m/z 170) than anthocyanins (m/z 449-595) 

which leads to the formation of smaller more homogenous vesicles.  No vesicles were 

formed when phospholipids were not present in the matrix.  Correlations between gallic 

acid transport and particle size illustrated that the relation between absorption and 

particle size was mostly dependent on phospholipids rather than terpenes presence in the 

matrix. 
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APPENDIX A 

CALCULATION OF COMPOUND TRANSPORT THROUGH THE CACO-2 CELL 

MONOLAYER IN 2 HOURS OF INCUBATION 

 
 

Table A-1 explains the calculation process for transport values over a period of 

120 min.  These results could be areas under the curve or concentration of compounds. 

Since the calculation ends up in a ratio, the standard curve is used for both apical and 

basolateral values, thus, they cancel out in the calculation. The principle of these 

calculations relies on the idea of knowing the presence of compounds (area under the 

curve) at the different volumes used in the apical and basolateral side. It is only possible 

to compare presence of compounds in the apical and basolateral side when volume 

differences are taking into account. 

To understand this example, the values observed in the table, will be treated as 

single molecules or units which could be then translated to weight (mg).  In this specific 

example, it was assumed that 1 unit was absorbed per minute which yielded 30 units at 

every sampling time frame and 120 units overall.  If 1,000 units were initially added to 

the apical side, the % absorption was 12%.  These calculations will illustrate how to 

determine these results. 
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Table A-1. Calculation of the transepithelial transport of compounds from the Apical to 
the Basolateral Side of Caco-2 Cell Monolayers following Incubation (120 
min, 37ºC). 

  Apical 
Side 

Basolateral Side 

 Time [min] 0 0 30 60 90 120 
1 100 µLa 200 0 2 3.73 5.24 6.54 
2 200 µLb 400 0 4 7.47 10.47 13.07 
3 Total Volumec 1000 0 30 56.00 78.53 98.06 
4 Area after samplingd  0 26 48.53 68.06 84.99 
5 Area correctede 1000 0 30 60.00 90.00 120.00 
6 Area Transported in 30 minf 1000 0 30 30 30 30 
7 %Trans per 30 ming 100.00% 0.00% 3.00% 3.00% 3.00% 3.00% 
8 Total %Transh 12.00%      
aArea under the curve (AUC) detected in a sample of 100 µL analyzed through HPLC. 
bAUC which was removed from the basolateral side for HPLC analysis (200µL). 
cTotal volume found in the apical side (500µL) and in the basolateral side (1,500µL). 
dAUC which was left after removing 200µL of sample. 
eAUC that was found at a certain point in time taking into account losses due to sampling 
fAUC which was transported in 30 min 
gAUC compared to the initial AUC found in the apical side 
hSum of the %Abs at every time point 
 

 

As shown in table A-1, 200 units were detected by HPLC analysis in 100µL of 

sample drawn by the autosampler.  If 200 units are present in 100µL, 400 units would be 

present in 200µL.  Similar thinking is used to calculate the next value.  If 400 units were 

found in 200µL, 1,000 units will be found in the 500µL added to the apical side.  

Therefore, 1,000 units were initially added to the apical side and this was the value used 

to calculate the %Transport per 30 min and overall transport. 

More calculations were used for data analysis from the basolateral side.  The first 

three rows were calculated similarly, the only difference would be the volume from the 

basolateral side which was three times the volume found in the apical side (1,500µL).  

At time zero no units were found; thus the entire column is filled with zeros. At 30 min, 
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2 units were measured by the HPLC from a 100µL sample from the basolateral side.  

This meant that 4 units were removed from the basolateral compartment. If 4 units were 

sampled, it meant that at 30 min, 30 units were transported from the apical to the 

basolateral side.  However, since 4 units were removed to assess transport by HPLC, 

only 26 units remain in the basolateral compartment.  Since no units were detected in the 

previous time point (0 min) the units absorbed in 30 min are compared to 1,000 units 

initially added to the apical side, which resulted in a 3% transport in 30 minutes 

(30/1,000). 

At the next time point (60 min), 3.73 units were detected through HPLC analysis 

in a 100µL sample.  This means that 7.47 units were removed from the basolateral 

compartment (200µL).  If 7.47 units were present in 200µL, 56 units would occur in 

1,500µL. 26 units were transported in the first 30 min thus 30 units were transported in 

the second 30 min which is also 3.00% when compared to the 1,000 units initially added 

to the apical side. From those 56 units, 7.47 were subtracted for sampling so the 

remaining units after 60 min were 48.53. 

In the next sampling at 90 min, 5.24 units were detected in the 100µL sample.  

This meant that 200µL sample extracted from the basolateral side had 10.47 units.  Due 

to the sample, it was determined that 78.53 units were detected in 90 minutes.  After 

subtraction of the units that were already in the basolateral since the last sampling 

(48.53), it was concluded that 30 units were absorbed in the last 30 min which was, once 

more, 3.00% of the total amount of units added to the apical side.  From those 79.53 
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units, 10.47 were subtracted for sampling so the remaining units after 900 min were 

68.06. 

At the final sampling time, 6.54 units were identified in the HPLC sample, 

meaninig that 13.07 units were removed from the basolateral side.  If 6.54 units were 

assessed, 98.06 units were found in the basolateral side after 120 min of analysis.  After 

subtraction of the units that were already in the basolateral since the last sampling 

(68.06), it was concluded that 30 units were absorbed in the last 30 min which was also 

3.00% of the total amount of units added to the apical side.  If 3.00% was transported 

every 30 min, a total of 12.00% was transported throughout the Caco-2 cell monolayer 

model (2 hrs). 
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APPENDIX B 

FRENCH PRESS DETAILS 

 

The French Press is a hydraulic press which uses control valves and a motor-

driven pump to vary hydraulic pressure generated by the press (Fig B-1).  This method 

involves the extrusion of samples through a small orifice.  Samples are subjected to 

enormous quantities of pressure that is quickly dropped when samples are released 

through the outlet tube. This pressure differential causes the phospholipids to rearrange 

forming smaller vesicles.  It is important to maintain internal pressure, thus, sample 

should be drawn slowly (15 drops/min).  This rate allows for a much slower decrease in 

internal pressure which will determine the homogeneity of the product. 

 

Figure B-1. French Press from Spectronic Instruments. 
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The French Press machinery is fairly simple (Fig. B-2) and equipment should be 

treatment with care.  Dust and other exogenous materials should be cleaned before using 

the equipment since they could damage the pressure cell of any other parts subjected to 

high pressures. 

 

 

Figure B-2. Controls and Indicators of the French Pressure Cell Press. 

 

The miniature pressure cell used for experiments had a cell piston diameter of 

0.375 inches and a maximum sample capacity of 3.7 mL (Fig. B-3).  The maximum 

pressure that could be applied was 20,000 psi. The first thing to before assembling the 

equipment is to decide on the pressure that will be applied to the samples by calculating 

the gauge pressure and relating that pressure to the internal pressure created by the cell. 

1. Side panel access door 

2. Ratio selector valve 

3. Pump switch 

4. Pressure increase control 

5. Pressure gauge 

6. Top panel access hole 

7. Lower platen 

8. Cell clamp 

9. Aligning pins 

10. Cell clump with thumb screws 

11. Upper platen 

12. Line cord 
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This determination could be done by using Figure B-4 which is a chart relating internal 

pressure of the miniature pressure-cell and gauge pressure of the French Press. 

 

 

Figure B-3. Diagram of the Miniature Pressure Cell. 

 

 

Figure B-4. Chart of the Internal Pressure in Miniature Pressure Cell Influenced by 
Gauge Pressure. 

1. Handle and piston 

2. Valve system screw 

3. Miniature cell body 

4. Outlet tube sampler 

5. Closure plug 



 

 

122 

Once pressure is selected, press cell is assembled starting by putting the piston, 

outlet tube and handle on their respective places in the cell.  Oil need to be check every 

time machine is being used to assure proper functioning of the pump and hydraulic 

system. 

To add sample, pressure cell needs to be inverted, sample is introduced inside the 

cell and the closure plug is put to close the pressure cell.  Place the pressure cell inside 

the French Press.  Turn the ratio selector valve to start the hydraulic system. Once the 

pressure cell has been lifted towards the upper platen and desired pressure has been 

reached, open the flow valve slightly to allow slow release of sample.
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