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ABSTRACT 

 

Probabilistic decline curve analysis (PDCA) methods have been developed to quantify 

uncertainty in production forecasts and reserves estimates. However, the application of 

PDCA in shale gas reservoirs is relatively new. Limited work has been done on the 

performance of PDCA methods when the available production data are limited. In 

addition, PDCA methods have often been coupled with Arp’s equations, which might 

not be the optimum decline curve analysis model (DCA) to use, as new DCA models for 

shale reservoirs have been developed. Also, decline curve methods are based on 

production data only and do not by themselves incorporate other types of information, 

such as volumetric data. My research objective was to integrate volumetric information 

with PDCA methods and DCA models to reliably quantify the uncertainty in production 

forecasts from hydraulically fractured horizontal shale gas wells, regardless of the stage 

of depletion.  

 

In this work, hindcasts of multiple DCA models coupled to different probabilistic 

methods were performed to determine the reliability of the probabilistic DCA methods. 

In a hindcast, only a portion of the historical data is matched; predictions are made for 

the remainder of the historical period and compared to the actual historical production. 

Most of the DCA models were well calibrated visually when used with an appropriate 

probabilistic method, regardless of the amount of production data available to match. 

Volumetric assessments, used as prior information, were incorporated to further enhance 
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the calibration of production forecasts and reserves estimates when using the Markov 

Chain Monte Carlo (MCMC) as the PDCA method and the logistic growth DCA model.  

 

The proposed combination of the MCMC PDCA method, the logistic growth DCA 

model, and use of volumetric data provides an integrated procedure to reliably quantify 

the uncertainty in production forecasts and reserves estimates in shale gas reservoirs.  

Reliable quantification of uncertainty should yield more reliable expected values of 

reserves estimates, as well as more reliable assessment of upside and downside potential. 

This can be particularly valuable early in the development of a play, because decisions 

regarding continued development are based to a large degree on production forecasts and 

reserves estimates for early wells in the play.  
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1. INTRODUCTION  

 

1.1 Statement and Significance of the Problem 

Reserves estimates and production forecasts in hydraulically fractured horizontal shale 

gas wells have considerable uncertainty. Major sources of uncertainty in shale gas 

production forecasts and reserves estimates arise from complex flow geometry, large 

variability in reservoir and completion properties, and lack of long-term production data. 

Shale gas reservoirs possess extremely low matrix permeability. For this reason, shale 

reservoirs require massive hydraulic fracture treatments to become economical (Agarwal 

et al., 2012). In addition, the desorption dynamics of adsorbed gas are uncertain (Mengal 

and Wattenbarger, 2011). All of these phenomena result in complex flow geometry, 

which contributes to uncertainty in production forecasting and reserves estimation.      

 

 

 

____________ 

*Part of this chapter (portions of pages 1-2, 14-15) is reprinted with permission from 

Gonzalez, R.A., Gong, X., and McVay, D.A. 2012. Probabilistic Decline Curve Analysis 

Reliably Quantifies Uncertainty in Shale Gas Reserves Regardless of Stage of Depletion. 

Paper SPE 161300 presented at the SPE Eastern Regional Meeting, Lexington, 

Kentucky, USA, 3-5 October. DOI: 10.2118/161300-MS. Copyright [2012] by Society 

of Petroleum Engineers. 
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Another challenge to production forecasting and reserves estimation in shale gas 

reservoirs is lack of long-term production data. The history of drilling horizontal wells 

with multiple hydraulic fractures in shale gas reservoirs is relatively short, only a few 

years. Because of their low permeability, shale gas reservoirs require years to reach 

boundary dominated flow. To the best of our knowledge, only a small number of 

hydraulically fractured horizontal shale gas wells have experienced boundary-dominated 

flow. Conventional decline curve analysis (DCA) using Arps’ equation requires the 

analysis of production data from stabilized flow (Arps, 1945). Despite the lack of a 

stabilized flow period, DCA using Arps’ equations coupled with a minimum terminal 

decline is the preferred methodology to estimate reserves and forecast production in 

shale gas wells (Lee and Sidle, 2010). 

 

Uncertainty will always be present in reserves estimates and it can be quite large early in 

the producing lives of hydraulically fractured shale gas wells. Early in the development 

of a field, producing wells are used as analogous wells for wells that have not been 

drilled, yet. Hence, while taking development decisions it is important to have accurate 

production forecast and reserves estimates. To ignore the quantification of uncertainty or 

to do a poor while quantifying the uncertainty in production forecast and reserves 

estimates can yield to overconfidence. And if we are trying to identify the most 

profitable fields to develop, overconfidence could yield to the selection of fields that 

might not be the most profitable. McVay and Dossary (2012) quantified the cost of 
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underestimating the uncertainty. McVay and Dossary (2012) concluded that by reducing 

overconfidence other biases and decision error are reduced as well. 

 

1.2 Status of the Question 

To analyze production data from hydraulically fractured horizontal shale gas wells, 

several DCA models have been developed. In addition, PDCA methods have been 

proposed to quantify uncertainty in production forecasts and reserves estimates.  

 

1.2.1 Decline Curve Analysis Models 

DCA using Arps’ equations (1945), or Arps with an imposed minimum decline are the 

preferred methodologies to estimate reserves and forecast production in shale gas wells 

(Lee and Sidle 2010). However, it might not be the optimal DCA model to forecast 

production and estimate reserves as several DCA models have been developed to 

analyze transient production data from shale gas reservoirs, such as: Power Law (Ilk et 

al., 2008) model, Stretched Exponential (Valko and Lee, 2010) model, Rate-Decline 

analysis for fracture-dominated shale gas reservoirs (Duong, 2011), and the logistic 

growth (Clark et al., 2011) model.   

 

Arps’ Equations 

Arps’ equations (Eq. 1) are the most commonly used DCA models to forecast production 

in oil and gas reservoirs. The most common two forms of the equations are exponential 
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and hyperbolic decline. The exponential case is observed when b is set to be zero and the 

hyperbolic for b values between zero and one. When b is one, the decline is harmonic.  

 

     {

  

        
 
 

    

              
  ...................................................................... (1) 

 

In Eq. 1, q(t) is the production rate as a function of time, Mcf/month,  qi is initial gas 

production rate, Mcf/month, b is Arp’s dimensionless hyperbolic decline constant, and 

Di is Arps’ initial decline rate, 1/month, and t is the time, month.  

 

Arps’ equations were derived empirically. Nevertheless, Fetkovich et al. (1996) derived 

Arps’ equations using the following assumptions: the reservoir is in boundary-dominated 

flow, there is constant bottomhole pressure, the reservoir fluid is slightly compressible, 

and the skin factor does not change. An additional constraint is that the b value should 

remain constant through the life of the well. Nevertheless, because of shale’s low 

permeability, shale gas reservoirs require long times, often years, to reach boundary-

dominated flow. Hence, the only available production data to be matched is still on 

transient flow. When transient data is analyzed using Arps’ equations, it can yield b 

values greater than 1. When a b value greater than 1 is used, it could overestimate 

reserves estimates (Ilk et al., 2008; Lee and Sidle, 2010). To fix this problem, a 

minimum decline is often imposed on Arps’ equations. 
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Arps’ Hyperbolic Equation with an Imposed Minimum Decline 

Arps’ hyperbolic equation with a minimum decline is an empirical relation used to 

account for wells in which a b factor greater than 1 is used to match the production data. 

It can be proved that if a b factor greater than 1 is used, the cumulative production goes 

to infinity as times goes to infinity. In the other hand, if a b factor less than or equal to 1 

is used to match the production data, the forecasted production rate eventually goes to 

zero and the cumulative production reaches a limit.  

 

To solve the problem of infinite cumulative production, an exponential tail is commonly 

imposed on the hyperbolic fitting by imposing a minimum decline. By doing this, it can 

ensured that a finite cumulative production is forecasted. Nevertheless, the correct 

minimum decline rate is unknown, as most of the reservoirs that need a b factor greater 

than 1 to match the data, such as shale gas reservoirs, are relatively new and little 

production data have been acquired. The limitations of this model are the same as with 

Arps’ equations. 

 

Modified Arps’ Equation 

The modified Arps’ equation (Eq. 2) is based on Arps’ equations and a fourth parameter 

defined as the time in which the production rate goes to an exponential decline. At time 

To, the model calculates the instantaneous decline, and the model an exponential decline 

after To. 
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In Eq. (2), To is the modified Arps’ time required to go into exponential decline, months. 

 

The modified Arp’s equation describes both the early and the latest trend from the 

production data. For example, if the data initially displays a hyperbolic decline, but the 

latest trend is an exponential decline, the model will provide a model that fits the early 

hyperbolic trend and the latest exponential decline. On the other hand, if the data follows 

an exponential decline the model will use To as zero and it will present a match based on 

an exponential decline. Another scenario is that the production data does not exhibit an 

exponential decline. In this case, To will be extremely large and the behavior fitted by the 

model will be only hyperbolic. This scenario can be modified by manually setting To, as 

the last month of the production data. In this case the model will follow and exponential.   

 

The modified Arps’ model can accommodate transient data, provided latest trend form 

the production data exhibits an exponential decline. If the latest trend is still in 

hyperbolic decline, the model by itself does not solve the problem of the cumulative 

production going to infinity when a b greater than 1 is used to match the data. The user 

can set To, at the end of the data to solve this problem and provide a conservative 

estimate for cumulative production.  
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Arps’ equations and its variants have worked well for the industry for years. 

Nevertheless, with the boom of shale gas newer models have been proposed to analyze 

the transient data. Several deterministic decline curve models have been developed 

specifically for shale gas reservoirs: Power Law (Ilk et al., 2008) model, Stretched 

Exponential (Valko and Lee, 2010) model, Rate-Decline analysis for fractured-

dominated shale gas reservoirs (Duong, 2011), and logistic growth (Clark et al., 2011) 

model.  

 

Power Law Model 

The Power Law model (Eq. 3) was developed by Ilk et al. (2008). The model is based on 

a power law loss ratio. The loss ratio was modeled “by a decaying power law function 

with a constant behavior at large times” Ilk et al. (2008). The constant behavior at large 

times is described by constant decline parameter, D∞. By having a four parameter model, 

the model can describe transient and boundary-dominated flow.  

 

       ̂   (      ̂  ) ........................................................................ (3) 

 

In Eq. (3),  ̂ is the power law decline constant, 1/month, D∞  is the power law decline at 

infinite time constant, 1/month, and n is dimensionless time exponent. 

 

Mattar (2008) analyzed public monthly production data of gas wells from the Barnett 

Shale with the Power Law model. Five wells were analyzed with available production 
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data from three to seven years. It was found that the model fit the data and that it was 

able to model the different observed flow regimes. They also found that the Power Law 

model worked well with simulated data from horizontal wells with multiple fractures.  

Also, they found that for their limited scenarios the inclusion of D∞  did not affect the 

matches. For all the scenarios the D∞  value was on the order of 10-5. Proper estimation 

of D∞  would require the matching of longer periods of production data.  

 

Stretched Exponential Production Decline 

The stretched exponential production decline (SEPD) model (Eq. 4) was introduced by 

Valko and Lee (2010). The SEPD model assumes a large number of volumes 

individually decaying exponentially.  It can be proved, by rearranging the variables and 

the elimination of the D∞, that it is equivalent to the Power Law (Ilk et al., 2008).  The 

difference is the approach taken and the objectives of the models.  

 

          [ (
 

 
)
 

] .................................................................................. (4) 

 

In Eq. (4), η is a dimensionless exponent parameter and τ is the characteristic time 

parameter, months. 

 

Can and Kabir (2012) analyzed production data from 820 wells from three different 

shale formations (220 wells in the Bakken oil shale, 100 wells in the Marcellus shale and 

500 wells in the Barnett Shale). The wells analyzed were both oil and gas wells. The 
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amount of data being analyzed was seven years of synthetic data and at least a year for 

real production data. They concluded that the SEPD model is better than Arps’ model to 

estimate reserves in unconventional reservoirs, because it is a bounded model, and did 

not overestimate reserves.  

 

Rate-Decline Analysis for Fracture Dominated Shale Reservoirs 

The rate-decline analysis for fractured dominated shale reservoirs model (Eq. 5) was 

developed by Duong (2011). The driving assumption for Duong’s model is long-term 

linear flow. Matrix contribution to the EUR is negligible when compared to fracture 

contribution to production forecast and EUR estimations (Duong, 2011). The model is 

based on three variables, from which two of them are strongly correlated. Therefore, we 

can estimate one of them, making it a two parameter model. One of the key features is 

that the model is bounded as the production rate eventually goes to zero.  

 

        
     [

 

   
        ] ............................................................. (5) 

 

In Eq. (5), a is the intercept constant for Duong’s model, 1/month and m is the 

dimensionless slope for Duong’s model. 

 

Duong (2011) used different types of wells to validate his model: tight/shallow, dry 

shale and wet shale gas. He tested for dry shale gas a sample of 25 wells from the 

Barnett shale. The amount of data used and the other sources were not described in the 
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paper. Duong (2011) found that for various shale plays a varied from 0 to 3 and m from 

0.9 to 1.3. Duong (2011) concluded that hi model provided more conservative estimates 

for cumulative production than the Power Law (Ilk et al., 2008) and Arps’ hyperbolic 

model.  

 

Logistic Growth Model 

The logistic growth model was developed by Clark et al. (2011). The model is based on 

the logistic growth curves with are used to forecast growth (for example cumulative oil 

or gas production). The logistic model is based on 2 or 3 parameters. The third parameter 

depends on the knowledge of the estimated ultimate recovery (EUR), which can be 

obtained independently from a volumetric estimate (recoverable amount of production 

without economic constraints). The model is bounded by the EUR.  However, when the 

EUR is not known, the solution is non-unique, as multiple good matches can be fitted.  

 

     
      

    

         
 .......................................................................................... (6) 

 

In Eq. (6), K is the carrying capacity (EUR) Mcf, nL is the dimensionless decline 

exponent, and aL is the time to the power n at which half of the carrying capacity has 

been produced, months.  

 

Clark et al. (2011) tested the model on a sample of 600 wells. Their original sample 

included 1000 wells. Nevertheless, 400 wells exhibit unreasonable values for any of the 
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parameters. The authors did not provide any criteria to describe values that were 

considered unreasonable.  The wells they used were completed through January 2004 

and December 2006. For the given sample they estimated K to be log normal distributed 

with a minimum value of 1.3 Mcf, a maximum value of 9 Bcf and a mean value of 1.7 

Bcf. They also estimated aL to be normally distributed with a minimum value of 7 

months, a maximum value of 153 months and a mean of 33 months. Finally, they 

estimated nL to be log normal distributed with a minimum value of 0.1, a maximum 

value of 1.3 and a mean of 0.9. They concluded that the logistic model estimates for 

cumulative production are more modest that the ones provided by Arps’ equations. 

 

1.2.2 Probabilistic Decline Curve Analysis Models 

All the DCA models described above are deterministic and do not quantify the 

uncertainty in production forecasts and reserves estimates. Capen  (1976) pointed out 

that by performing a probabilistic analysis, we should obtain better estimates for the 

mean than following a purely deterministic methodology. Probabilistic decline curve 

analysis (PDCA) methods have been proposed to quantify the uncertainty in production 

forecasts and reserves estimates in conventional and unconventional reservoirs. Three 

PDCA methods published in the literature are the bootstrap method (JSM) developed by 

Jochen and Spivey (1996), the modified bootstrap method (MBM) developed by Cheng 

et al. (2010), and the Markov Chain Monte Carlo method (MCMC) developed by Gong 

et al. (2011).  
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The Bootstrap Method or Jochen and Spivey Method (JSM) 

The JSM relies only on the DCA of synthetic data sets. The synthetic data sets are 

created by resampling the data. A data set is created by picking production data points at 

a random time to replace others at a random time. From the DCA of the synthetic data 

sets a distribution for reserves estimates and production forecast is created.  

 

Bootstrapping as a sampling technique requires no time dependency between the data. 

However, this is not true for production data; production data is time dependent and 

should not be treated as independent events. This problem was addressed by Cheng et al 

(2010). 

 

Modified Bootstrap Methodology 

The MBM relies only on DCA of synthetic data sets. The MBM creates synthetic data 

sets based on data that is not time dependent. The creation of the synthetic data sets is 

based on blocks of residuals obtained from production data and the best fit from any 

DCA model. The residuals are blocked to take into account the log difference in 

production data.  

 

A three stage backward approach was introduced to take into account the analysis of 

transient data. The backward approach eliminates a certain amount of data, which is 

considered to be in transient flow, from the synthetic data sets. The first stage of the 

backward approach involves performing DCA on the most recent 50% of the synthetic 
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data sets. The second and third stage analyzes the most recent 30% and the 20% of the 

synthetic data sets respectively. The percentages used for the backward approach were 

estimated, calibrated and tested on conventional mature wells. Cheng et al. (2010) data 

set consisted of 100 oil and gas wells with no apparent changes in development strategy 

or production operations.  

 

From the DCA of the three stages, for a total of 360 synthetic data sets, three 

distributions for reserves estimates and production forecasts are created. The reserves’ 

distribution P90 is the minimum P90 from the three distributions from the stage analysis. 

The P50 is the mean of the three P50 from the distributions from the stage analysis, and 

the P10 is the maximum P50 from the three distributions from the stage analysis. The 

MBM method was demonstrated to be well calibrated for conventional reservoirs and 

unconventional reservoirs (Gong et al., 2011). 

 

Markov Chain Monte Carlo Methodology 

The MCMC method is based on Bayes’ theorem (Eq. 7), more specifically on Bayesian 

inference.  

 

 (    )  
 (    ) (  )

∫            
  .......................................................................................................................................  (7) 

 

In Eq. (7), π(θ|y) represents the posterior distribution, f(y|θ) a likelihood function, π(θ) 

the prior distribution of parameters. Gong et al. (2011) allowed θj to be a candidate of 
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the DCA parameter (j = 3 to 4 depending on the DCA model) while y is the available 

production data for matching. A Bayesian study’s goal is to estimate the posterior 

distribution, after a certain amount of data has been observed (Gong et al., 2010). Gong 

et al. (2010) set the DCA parameters to be random variables. Therefore, they wanted to 

evaluate the distribution of DCA parameters after all the available production data was 

observed.  

 

The prior distribution is the distribution of DCA parameters before any production data 

have been analyzed. The likelihood function is the conditional probability of the 

available production data given the DCA parameters. The posterior distribution is the 

distribution of the DCA parameters after all the available data have been taken into 

account. Production forecast and reserves estimates can be obtained from the distribution 

of DCA parameters. Further details regarding the formal definition of these distributions 

can be found in Gong et al. (2011). 

 

Gong et al. (2011) used a random walk algorithm for MCMC sampling. In this algorithm 

samples are drawn from a proposal distribution. The proposal distribution is not 

necessarily related to what we know before we draw the samples; it is simply a starting 

point. The proposal distribution should not be confused with the prior distribution. The 

prior distribution is what we believe the distribution should be before any additional 

information, and it is part of the calculation of the posterior distribution. In other words, 

a proposal distribution is just a starting distribution to sample from, while the prior 
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distribution is part of the posterior distribution calculation and is more important. 

Properties of the proposal distribution can be found in Gong et al. (2011).  The standard 

deviation of the proposal distribution for each DCA model parameter is the only 

parameter needed to be specified.   

 

Gong et al. (2011) created a likelihood function which honors the quality of the fit 

provided by each sample of decline curve parameters. Gong et al. (2011) assumed that 

the difference between the log of the available production data and the log of the 

predicted production from any given DCA model follows a standard normal distribution 

(Eq. 8). 

 

           
 

   
   ( 

         
 

  )  .............................................................................................  (8) 

 

In Eq. (8),    is the candidate for DCA parameter (   for i = 1 to 3 or 4 depending on the 

DCA). It is fairly simple to integrate information from independent assessments when 

using the MCM. Gong et al. (2011) used a uniform prior distribution for DCA 

parameters. The prior distribution can be enhanced to accommodate other types of 

information, such as volumetric.  

 

Of the three described PDCA methods, according to the literature only the MBM and the 

MCMC have been tested on shale gas wells (Gong et al., 2011). The MCMC method 

performed faster and provided narrower uncertainty ranges.   
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There is a gap in the literature regarding how well the MBM and the MCMC methods 

perform when limited production data are available. In the literature, the MBM and the 

MCMC have undergone only one test on a dataset from hydraulically fractured 

horizontal shale gas wells. The dataset included Barnett shale wells with producing times 

ranging from 50 to 120 months. Most of the newly developed shale fields do not possess 

wells with such long histories.  

 

One of the weaknesses of MBM and the MCMC is that both were developed and tested 

in the literature using Arps’ equations. In the literature, neither method has been tested 

with other DCA models. Arps’ equations might not be the optimal DCA model as new 

DCA models have been developed for unconventional reservoirs. Using PDCA methods 

with DCA models developed specifically for shale gas wells could enhance reserves 

estimates and provide better quantification of uncertainty.  

 

The advantage of performing PDCA is that it relies solely on the analysis of production 

data. Some authors have combined estimation methods to decrease the uncertainty and 

provide more accurate reserves estimates. Typical Bayesian applications in the oil 

industry involve updating probability estimates for reserves from volumetric data (static 

data) as additional information is gathered from production data (dynamic data). Ogele 

et al. (2006) and Aprilia et al. (2006) coupled volumetric assessments with material 

balance equations to better quantify the uncertainty and produce more accurate 
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estimations of oil initially in place (OIIP) and gas initially in place (GIIP) respectively. 

Both MBM and the MCMC rely on the analysis of production data only and do not take 

advantage of all the known information regarding the reservoir. A more robust 

probabilistic method should integrate other sources of information to reduce uncertainty. 

 

In summary, the main limitations of performing PDCA on hydraulically fractured shale 

gas wells are: 

 PDCA methods have been tested using fairly large amounts of production data 

(5 to 10 years), and limited work is available on their performance outside those 

time ranges. 

 PDCA methods have been tested using one DCA model (Arps’ equations) that 

might not be the best available for analysis of production data from hydraulically 

fractured horizontal shale gas wells 

 Currently there is no published method to integrate other types of information 

into PDCA production forecasts and reserves estimates.  

 

1.4 Research Objectives 

The objectives of this research are to: 

1. Determine the probabilistic methods and decline curve models that reliably 

quantify the uncertainty in production forecasts from hydraulically fractured 

horizontal shale gas wells, regardless of the stage of depletion. 
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2. Develop a Bayesian method to integrate volumetric information with decline 

curve analysis to enhance quantification of uncertainty in production 

forecasts from hydraulically fractured horizontal shale gas wells.   

 

1.5 Overview of Methodology  

A systematic study of different combinations of PDCA methods, DCA models, amounts 

of production data available for matching, and availability of volumetric data was 

performed. The two best PDCA methods on unconventional wells were studied with all 

the DCA models. The best performing PDCA method from this analysis was evaluated 

with different amounts of production data available to match. The best combination 

overall of PDCA and DCA methods was enhanced by incorporating volumetric 

information. 
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2. VALIDATION OF PUBLISHED PROBABILISTIC DECLINE CURVE ANALYSIS 

METHODS  

 

2.1 Methodology 

Three published PDCA methods the JSM (Jochen and Spivey, 1996), the MBM (Cheng 

et al., 2010), and the MCMC (Gong et al., 2011) were studied. A validation study was 

performed on the implementation of the JSM and the MBM based on Cheng et al. (2010) 

dataset.  The MCMC was also tested on a conventional data set of wells because there is 

no published work on its applications on conventional wells. The dataset studied 

contained mature wells with useable production data ranging from 48 to 335 months, 

with an average of 198 months. 

 

A hindcast study was performed for each of the PDCA methods using Arps’ equations as 

the decline curve model. In a hindcast study a portion of the known history is matched 

and the remainder of the known history is considered to be “future” production and is  

___________ 

*Part of this chapter (portions of pages 20-22) is reprinted with permission from 

Gonzalez, R.A., Gong, X., and McVay, D.A. 2012. Probabilistic Decline Curve Analysis 

Reliably Quantifies Uncertainty in Shale Gas Reserves Regardless of Stage of Depletion. 

Paper SPE 161300 presented at the SPE Eastern Regional Meeting, Lexington, 

Kentucky, USA, 3-5 October. DOI: 10.2118/161300-MS. Copyright [2012] by Society 

of Petroleum Engineers. 
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compared to the model’s prediction to the same point in time (i.e., hindcast).50% of the 

known history hindcast were used, in which 50% of the known data was matched and 

the rest 50% of it was compared against the predictions from each of the PDCA models. 

 

The probabilistic methodology was conducted independently for each well in the data 

set. The individual wells’ P90, P50, and P10 predictions for the JSM and the MBM were 

determined from the distribution of each well’s cumulative production at the end of the 

hindcast period (CPEOH). The individual wells’ P90, P50, and P10 predictions for the 

MCM were based on the CPEOH period determined from the distribution of DCA 

parameters. However, a single well prediction cannot be used to evaluate the reliability 

of a PDCA method. Hence, a sample of wells must be analyzed to determine if a PDCA 

method is well calibrated. We believe there is likely correlation among the wells. 

Nevertheless, for simplicity we assumed that the wells were perfectly correlated.  

Therefore, the P90, P50, and P10 values for the set of wells, were calculated by adding the 

individual-well P90, P50, and P10 estimates, respectively, assuming the wells’ individual 

estimates are perfectly correlated (r=1). 

 

The coverage rate (CR) was used to assess the calibration of the PDCA methods. The 

CR is the number of wells in which the actual production falls within the P90-P10 range 

divided by the total number of wells. For a well calibrated methodology generating 80% 

confidence intervals (C.I), approximately 80% percent of the wells would bracket the 

true cumulative production within its C.I. 
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A calibration curve was also used to assess the calibration of the PDCA methods (Fig. 

2.1). In a calibration curve, the x-axis represents the probability associated with each 

forecast, such as the P90, P50, or P10 estimates. The y-axis represents the fraction of wells 

that comply with the definition. For example, the well actual production at the end of 

hindcast should be greater than the P10 estimate for approximately 10% of the wells 

being analyzed. The fraction of wells in which the actual production exceeded the P10 

estimate was calculated and plotted on the y-axis. This process was repeated for the P50 

and the P90 estimates. 

  

A methodology is well calibrated if, for all the estimates assigned the same probability, 

the proportion correct is equal to the probability assigned (Fig. 2.1). For high 

probabilities (above P50), underconfidence occurs when the probability assigned is lower 

than the proportion correct and overconfidence occurs when probability assigned is 

greater than the proportion correct. On the other hand, for low probabilities (below P50), 

underconfidence occurs when the probability assigned is higher than the proportion 

correct and overconfidence occurs when probability assigned is lower than the 

proportion correct for high probabilities. In other words, being overconfident means 

having narrower ranges for our production forecasts.  
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Fig. 2.1—Probability calibration plot. Well calibrated results should lie on the unit-slope 

line.  

 

Two different options to match the DCA to the known production data: Cartesian and 

logarithmic regressions were used.  The Cartesian regression is the most common 

regression used. This regression has the disadvantage that it honors higher production 

data point more than lower production data points. For gas wells that decline extremely 

fast in the first months, using Cartesian regression could yield to matches that do not 

honor the late production behavior. The logarithmic regression rate was introduced to 

account for gas wells that decline extremely fast within the first months. While using the 

log scale all the data available is honored.   
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2.2 Validation of MBM and Evaluation of MCMC on Conventional Wells 

A validation studied was conducted for the MBM method for the same data set as Cheng 

et al. (2010). It was recommended to achieve stable results to use 120 bootstrap 

realizations (Cheng et al., 2010). An evaluation studied was conducted on the same data 

set for the MCMC method. Gong et al. (2011) used log-normal proposal distributions for 

Di and qi with given standard deviations of 0.4 and 0.2 for the proposal distribution. 

Gong et al. (2011) used a normal proposal distribution for b with a given standard 

distribution of 0.2 for the proposal distribution, and a length for the Markov chain of 

2000. The bounds for Arps’ equations were taken from Gong et al. (2011), which were 

in accordance to Cheng et al. (2010).  The prior distributions for decline curve 

parameters were taken from Gong et al. (2011) as independent, uninformative uniform 

distributions.  

 

The validation results (Table 2.1) are consistent with Cheng et al. (2010) results. As the 

creation of the synthetic data sets is random, the probability to obtain the exact same 

results twice is really small. The wells from which the predictions differ are wells that 

demonstrate the most spurious behavior and longest production. By having the longest 

production the amount of synthetic data sets that can be selected increases considerably 

and yields to a larger amount of possible predictions. However, the results are stable 

within an acceptable range as demonstrated by the low error value obtained. The MCMC 

method was equally well calibrated as the MBM. It was concluded that the MCMC and 

the MBM are both equally well calibrated for the given sample of mature conventional 
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wells. The MBM and the MCMC are well calibrated for our sample of conventional 

wells. In, accordance to high coverage rate, a good calibration was achieved (Fig. 2.2). 

On the other hand, the JSM clearly shows overconfidence.  

 

Table 2.1—Comparison of PDCA Methods on a Sample of Conventional Wells Using Arps 

Equations 

  Cheng et al. (2010) MBM MCMC 

No of Wells 100 100 100 
Coverage rate 83% 84% 81% 
 

Relative error:                  

Average((P50-CPEOH)/CPEOH) 
15.44% 12.41% -2.25% 

 

Absolute Error: 

Average(|P50-CPEOH|/CPEOH) 
29.17% 28.57% 28.22% 

Average(C.I./P50) 0.9566 1.0135 1.0676 
True CPEOH, MSTBOE 4,557.24 4,295.22 4,204,459 
Sum of P50 values,  MSTBOE 4,114.54 4,114.54 4,114.54 
Percentage Error in CPEOH 10.76% 4.38% 2.16% 
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Fig. 2.2— MBM and MCMC PDCA methods provide the best calibration for the tested 

sample of conventional wells. Accordingly, the MBM and the MCMC provide the best 

coverage rate.    
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3. PERFORMANCE OF MULTIPLE PROBABILISTIC DECLINE CURVE 

ANALYSIS METHODS ON SHALE GAS RESERVOIRS 

 

3.1 Selection of the Sample Data 

The performance and benefits of using the JSM, MBM, MCMC PDCA methods in a 

sample of Barnett shale gas wells was evaluated. Three DCA models widely used in the 

industry: Arps, modified Arps, Arps with a minimum decline and four DCA models 

presents in the literature specially developed for shale gas resources: Power Law (Ilk et 

al., 2008), Stretched Exponential (Valko and Lee, 2010), Rate-Decline analysis for 

fractured-dominated shale gas reservoirs (Duong, 2011), and logistic growth Model 

(Clark et al., 2011) were tested. The objective of the analysis was to evaluate how the 

probabilistic methods compare to a deterministic approach, how well calibrated were the 

80% confidence intervals results over time, their width and the overall calibration of the 

PDCA methods.  

 

____________ 

*Part of this chapter (portions of pages 27, 33-36, 38-46) is reprinted with permission 

from Gonzalez, R.A., Gong, X., and McVay, D.A. 2012. Probabilistic Decline Curve 

Analysis Reliably Quantifies Uncertainty in Shale Gas Reserves Regardless of Stage of 

Depletion. Paper presented at the SPE Eastern Regional Meeting, Lexington, Kentucky, 

USA.  Society of Petroleum Engineers SPE-161300-MS. DOI: 10.2118/161300-ms. 

Copyright [2012] by Society of Petroleum Engineers. 
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Public production data from 197 horizontal wells from the Barnett shale was collected 

(Fig. 3.1). The Barnett shale was chosen because it is one of the longest-producing plays 

where multi-stage hydraulic fractures have been performed on horizontal wells. The 

chosen wells were active gas wells from Denton, Tarrant and Wise counties in Texas. 

Production data was edited for wells that had undergone an obvious 

stimulation/recompletion treatment. In wells in which the stimulation process appeared 

to be performed near the beginning of the known history, the starting date was shifted to 

model the dominant decline trend (Fig. 3.2). With these exclusions, the wells had 

useable production data ranging from 59 to 119 months, with an average of 80 months. 

 

 

Fig. 3.1—Barnett shale gas wells location. 
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Fig. 3.2—Hindcast example of edited Gas well No. 1 

 

3.2 Introduction to the Multimodel  

The Multimodel was a simple and fast method developed during this research to assess 

the difference in the matches and forecasts provided by each DCA model. The method 

relies on the different matches that different DCA models provide. In the multimodel, for 

each well, the best fit using the following six DCA models: Arps, modified Arps, Power 

Law, SEPD, Duong and logistic growth model was calculated.  

 

After the matches were obtained, the CPEOH was ranked for each of the DCA. The 

highest hindcast cumulative production obtained at the end of hindcast was considered to 

be the P10. The lowest hindcast cumulative production obtained at the end of hindcast 

was considered to be the P90. The P50 was assumed to be the 4th highest hindcast 
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CPEOH. The choice to use the 4th highest hindcast CPEOH was based on the 

performance of the probabilistic method. Hence, the selection was based on the 

procedure that brought the P50 closer to the actual CPEOH for the field.  

 

3.3 Evaluation of PDCA Methods in Shale Gas Fields 

A hindcast study for the MultiModel, JSM, MBM and MCMC models using Arps’ 

equations on a single gas well was performed. The main objective was to determine the 

benefits of using PDCA methods over deterministic methods. And also to evaluate 

which PDCA methods work better on shale gas wells. The parameters to apply each 

PDCA method are the same ones as in Chapter II. 

 

Arps’ equations bracket the CPEOH of a single gas well (No. 47) when used with the 

JSM, the MBM and the MCMC method (Table 3.1). The MultiModel did not bracket 

the CPEOH and yielded the narrowest C.I. (Fig. 3.3a). The JSM method brackets the 

CPEOH and gave the second narrowest C.I. results (Fig. 3.3b). The MBM also brackets 

the CPEOH and it yielded the widest C.I. (Fig. 3.3c). The MCMC PDCA method 

yielded the results that are closer to the actual CPEOH and provided the second wider 

C.I. (Fig. 3.3d). The MCMC, for this particular well, provided the closest estimate to the 

actual CPEOH, even better than the deterministic outcome.  
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Table 3.1—Comparison of PDCA Methods on Gas Well 47 Using Arps 

Equations 

 MultiModel JSM MBM MCMC 

Actual CPEOH, Mcf 182,825 182,825 182,825 182,825 
Arps' Equations Best Fit, Mcf 121,124 121,124 121,124 121,124 
CPEOH P90, Mcf 107,500 49,838 8,733 93,381 
CPEOH P50, Mcf 117,992 102,528 102,630 167,876 
CPEOH P10, Mcf 142,689 191,114 190,802 263,664 
C Mean, Mcf  114,019 103,124 175,133 

 
 

The reliability of a PDCA method cannot be based on a single well hindcast. C.I.s are 

probabilistic results and their reliability cannot be based on a single outcome. Capen 

(1976) stated that the proper method to evaluate the reliability of a probabilistic method 

is by evaluating multiple predictions, under the same conditions, over time. Hence, a 

hindcast study using Arps’ equations as the DCA model was performed on the sample of 

wells from the Barnett shale to evaluate whether the PDCA methods are well calibrated 

and if they provide reliable quantification of uncertainty.  

 

The MBM and the MCMC are the best calibrated PDCA methods (Table 3.2). The 

MBM and the MCMC have the closest coverage rate to the expected 80%, with 77% and 

79% respectively. The MultiModel and the JSM provided poor coverage rates of around 

30%. The MCMC yielded the smallest average absolute error between the estimated P50 

and the actual CPEOH. The MultiModel yielded the smallest C.I in average, while the 

MBM yielded the widest C.I. in average. The MBM and the MCMC provided results 
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that are closer to the sample of well’s CPEOH, even better than the ones from a 

deterministic outcome.  

 

 

 
(a)        (b) 

 
(c)        (d) 

Fig. 3.3—PDCA on gas well 47, a) MultiModel, Arp’s equations and b) JSM, c) MBM, d) 

MCMC.  PDCA methods bracket actual production data in a single gas well hindcast.  
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Table 3.2—Comparison of PDCA Methods on a Sample of Barnett Shale Gas Wells Using 

Arps Equations 

 MULTI JSM MBM MCMC Deterministic 

No of Wells 199 199 199 199 199 
Coverage rate 30% 31% 77% 79% N/A 
 

Relative error: 

Average((P50-CPEOH)/ 
CPEOH) 

-0.91% -5.07% 0.76% 1.00% -1.23% 

 

Absolute Error: 

Average(|P50- CPEOH 
|/CPEOH) 

25.76% 26.96% 29.82% 20.93% 25.49% 

Average(C.I./P50) 0.3202 1.0329 1.0402 0.8031 N/A 
True CPEOH, MSCF 77,528,345 77,528,345 77,477,694 77,528,345 77,528,345 
Sum of P50 values,  

MSCF 
77,515,554 75,933,759 77,809,417 78,003,468 78,151,911 

Percentage Error in 

CPEOH 
0.02% 2.06% 0.43% 0.61% 0.80% 

 

In accordance to low coverage rates, poor calibration was obtained for the JSM and 

Multimodel (Fig. 3.4). The MultiModel and the JSM clearly show underconfidence. The 

MBM and the MCMC are well calibrated for our sample of wells.  

 

Based on the results from Table 3.2 it was decided to discard the MultiModel and the 

JSM as candidates for further study. Hence, the application of multiple DCA models was 

only evaluated when coupled to the MBM and the MCMC as PDCA methods.  
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Fig. 3.4—MBM and MCMC PDCA methods provide the best calibration for the sample of 

Barnett shale gas wells. In accordance, the MBM and the MCMC provide the best 

coverage rate.    

  

3.4 Evaluation of Multiple DCA Models with MBM and MCMC as PDCA Methods 

A 50% of the known history hindcast study was performed for all the reviewed DCA 

models with MBM and the MCMC methods. The bounds for the DCA parameters 

(Table 3.3) were defined wide enough to accommodate all realistic scenarios provided 

by the synthetic data sets for MBM and the matches for MCMC. The MCMC requires 

that a prior distribution be specified for each of the decline curve parameters used in 

each of the DCA models. The prior distributions for decline curve parameters were 

defined as independent, uninformative uniform distributions. The bounds for these 

uniform prior distributions (Table 3.3) were also used in the likelihood function; no 
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values outside these bounds were considered. The bounds for all the variables are wide 

enough so any reasonable combination of decline curve parameters can be considered.  

 

In the MCMC method the proposal distribution, given the previous step candidates of 

DCA parameters is δi,proposal ~ N(δi,t-1, σi). The only unknowns are the standard deviations 

for each of the decline curve parameters. Hence, the MCMC requires that a proposal 

distribution be specified for each of the decline curve parameters used in each of the 

DCA models. The standards deviations were chosen to obtain the best calibrated results 

in the MCMC method (Table 3.4). 

 

The MCMC method provided slightly better graphical results than the MBM method. 

The MCMC was well calibrated for all the DCA models at the 50% hindcast (Fig. 3.5). 

Overall the MBM was well calibrated for methods based on Arps’ equations. This was 

expected as it was developed, calibrated and tested using Arps’ equations (Cheng et al., 

2010). 

 

For the MBM the best coverage rates, were provided when used with Arp’s equations.  

In the other hand, the MCMC provided fairly good coverage rates despite the DCA 

model used. One of the main advantages of the MCMC over the MBM is that is faster. 

Because of this, it was decided to discard the MBM method from further study and focus 

on the calibration of the DCA models with the MCMC method over time.  
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Table 3.3—Bounds for Decline Curve 

Model Equations 

DCA Parameter (δ) Upper bound Lower bound 
Arps’ Equations 

qi, Mcf/D 1,000,000 0.01 
Di, 1/year 50 0.1 

b 2 0 
Arps’ with 5% Min Decline 

qi, Mcf/D 1,000,000 0.01 
Di, 1/year 50 0.1 

b 2 0 
Modified Arps’ Equations 

qi, Mcf/D 1,000,000 0.01 
Di, 1/year 50 0.1 

b 2 0 
T0, months 10,000 3 

Power Law Model 
qi, Mcf/D 1,000,000 0.01 

Dhat 10 0.001 
D∞ 1 1 Exp-09 

n 2 0.001 
Stretched Exponential Model 

qi, Mcf/D 1,000,000 0.01 
η 5 0.01 
τ 10 0.15 

Duong's Model 
qi, Mcf/D 1,000,000 0.01 

a 5 0.5 
m 2 0.5 

Logistic Growth Model 
K, Mcf 100,000,000 1,000 

aL, months 1 1000 
nL 0.01 1 
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Table 3.4— Proposal Distribution for Each 

DCA Model 

DCA Parameter (δ) σ 
Arps’ Equations 

Ln (qi) 0.2 
Ln (Di) 0.4 

b 0.2 
Arps’ with 5% Min Decline 

Ln (qi) 0.2 
Ln (Di) 0.4 

b 0.2 
Modified Arps’ Equations 

Ln (qi) 0.2 
Ln (Di) 0.4 

b 0.2 
T0 1 

Power Law Model 
Ln (qi) 0.2 

Ln (Dhat) 0.4 
Ln (D∞) 0.2 

n 0.4 
Stretched Exponential Model 

Ln (qi) 0.2 
Ln(η) 0.4 

τ 0.2 
Duong's Model 

Ln (qi) 0.2 
a 0.2 

m 0.2 
Logistic Growth Model 

Ln(K) 0.4 
Ln(aL) 0.2 

nL 0.3 
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a)                                                               b) 

Fig. 3.5—Various DCA models with PDCA a) MBM and b) MCMC. MCMC provided a 

slightly better calibration for the sample of Barnett shale gas wells. The MCMC coverage 

rates are slightly better than the ones from the MBM.  

 

The results have been presented for hindcasts predictions from 59-119 months.  The use 

of Arps’ equations with a 5% minimum decline is almost equivalent to the use of Arps 

without any constraints (Fig. 3.5). Therefore, for the reminder of the study the behavior 

of Arps with a 5% minimum decline was discarded from further study as it is equivalent 

to Arps without any constraints within the hindcast prediction window. 

 

 

 

 



 

38 

 

3.5 Evaluation of MCMC Using Multiple DCA Models and Stages of Depletion on 

Shale Gas Fields 

The analysis was performed using several hindcasts by increasing the amount of months 

analyzed. Six hindcasts were performed by increasing the amount of production data 

available to match from 6 to 36 months using 6-month steps.  The rest of the months not 

used to hindcast were assumed to be the actual future production. Moreover, following 

Gong et al. (2011) a “white noise was added to the production data to model the inherent 

error”. The white noise was added to the standard deviation from the residuals.  

 

In addition to the calibration plot, the C.I.s evolution over time was calculated. To 

calculate the P90, P50, and P10 values for the set of wells, the individual-well P90, P50 and 

P10 estimates were aggregated assuming the wells’ individual estimates are perfectly 

correlated. 

 

The hindcast cumulative production P90 to P10 range for the set of wells narrows as the 

amount of production data matched increases (Fig. 3.6a to 3.6f). In other words, 

uncertainty in the CPEOH period decreases over time, as expected. In general, the 

results are biased if 18 months or less of production are matched. The bias for the 

CPEOH is the difference between the mean value of CPEOH and the actual CPEOH. As 

more production data are matched, the results become less biased. For most of the 

models (modified Arps, Power Law, SEPD, Duong’s Model, and logistic growth) but 
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Arps’ the P50 estimate for the set of wells is more accurate than the deterministic 

estimate when limited production data are available to be matched (less than 18 months). 

 

One of the narrowest C.I.s are produced with Arps’ equations (Fig. 3.6a to Fig. 3.6b). 

However, the results for the Arps models tend to be more biased if one year or less of 

production is matched. For the two models based on Arps’ equations the P50 

underestimated the actual production for the set of wells; i.e., the models were 

pessimistic.  

 

The C.I. for the Power Law model is the second widest (Fig. 3.6c). However, the results 

are less biased than Arps’ results at 6 months. The Power Law model P50 underestimates 

true production for the set of wells if one year of production is matched, while it 

overestimates true production for the rest of the hindcasts. This is the only method that 

crosses; all the other methods either consistently underestimate or overestimate. The 

results for 6 months using the SEPD model were not plotted because the model yielded 

unrealistic results for this limited amount of data. Nevertheless, the SEPD model 

provided one of the least biased results overall (Fig. 3.6d). The SEPD model P50 slightly 

overestimated actual production for the set of wells; i.e., the results were optimistic. 

Duong’s model yields a wider C.I. (Fig. 3.6e), and it required the most production data 

to produce relatively unbiased results. The Duong model P50 significantly overestimated 

actual production for the set of wells; i.e., the results were optimistic.  The Duong model 

P50 might overestimates production for the set of wells because it assumes long-term 
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linear flow for all the wells analyzed, even though some wells may deviate from that 

trend. The C.I. for the logistic growth model is one of the narrower from all the models 

(Fig. 3.6f). Furthermore, the logistic growth model provided one of the least biased 

results overall. The logistic growth model P50 slightly overestimated actual production 

for the set of wells; i.e., the results were optimistic. 

 

In general, the hindcasts were reasonably well calibrated (i.e., close to the unit-slope 

line), particularly the P10 and P90 values (Fig. 3.7a to Fig. 3.7f). Most of the deviations 

from the unit-slope line occur in the Arps’ P50 values at early times. Calibration 

improves when more production data is matched in the hindcasts. Except for the Duong 

model, the curves lie at or above the unit-slope line, indicating the P10, P50 and P90 

estimates are too low. Overall, the coverage rate ranges from 64% to 85% for the 80% 

C.I.s, with most hindcasts in the 77-82% range.  

 

With the Arps and modified Arps models, more production data is required to be well 

calibrated compared to the other models (Fig. 3.7a to Fig. 3.7f). This is likely related to 

having smaller C.I.s, as seen in Fig. 3.6a to 3.6c. The P10, P50 and P90 estimates all lie on 

or above the unit-slope line. Thus, the hindcast production estimates should be greater to 

be well calibrated. Coverage rates are near 80% for the Arps’ models. This means that 

approximately 80% of the P10-P90 ranges bracket the actual production. 
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The hindcasts appear to be better calibrated for the Power Law model, although 

coverage rates are below 70% for 6 and 12 months of production data matched and are 

no greater than 74% for more production data (Fig. 3.7c). This indicates that coverage 

rate alone is not sufficient to measure the quality of the probabilistic hindcast. With the 

SEPD model, 12 months of production data were required for the model to be stable 

(Fig. 3.7d). The coverage rate ranges from 71% to 78% for matches of 12 to 26 months 

of production data. The SEPD exhibits the best calibration overall, and is well calibrated 

for all production data periods matched. The Duong model has the best calibration and 

coverage rate with 6 months of production data matched (Fig. 3.7e), and calibration and 

coverage rate decrease with more production data matched. Compared to the other 

models, the Duong model predictions are consistently optimistic; i.e., the estimates 

should be smaller to be well calibrated. The hindcasts appear to be better calibrated for 

the logistic growth model, although coverage rates are below 70% for 6 to 18 months of 

production data matched and are no greater than 71% for more production data (Fig. 

3.7f), similar to the behavior exhibit by the Power Law model.  

 

The different models have different assumptions, which affect their performance in shale 

gas reservoirs. In general, when limited production data are available (6–12 months), 

models that were not developed for shale gas resources, such as Arps, tend to 

underestimate future production. This is because with little data, the steep early declines 

are fit best with either exponential declines or hyperbolic declines with relatively low b 

values, which do not capture the subsequent flattening of the decline curve. 
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(a)       (b) 

 
(c)       (d)

 
(e)       (f) 

Fig. 3.6—MCMC and a) Arps’ equations, b) Modified Arps’ equations, c) Power Law, d) 

Stretched Exponential, e) Duong’s model, d) logistic growth model. In general, 80% C.I 

decrease in size as the amount of production analyzed increases.  Also, the results are 

biased if less than 18 months of production data are available to match in the hindcast.   



 

43 

 

 

  
(a)       (b) 

 
(c)       (d) 

 
(d)       (e) 

Fig. 3.7—MCMC and a) Arps’ equations, b) Modified Arps’ equations, c) Power Law, d) 

Stretched Exponential, e) Duong’s model, d) logistic growth model.  In general, calibration 

is enhanced over time using MCMC as probabilistic method.  
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The opposite occurs for the Duong model. The assumption of long-term linear tends to 

overestimate future production, at least for the well set examined in this study. I believe 

that both model types can be improved with use the use of different prior distributions 

(Chapter IV) 

 

Overall, there seems to be a correspondence between size of the confidence intervals and 

quality of calibration. The two Arps models tend to have smaller confidence intervals 

(Fig. 3.6a and 3.6b) and, correspondingly, do not appear to be as well calibrated (Fig. 

3.7a and 3.7b), in spite of the coverage rates near 80%.  

 

The Power Law and Duong models have larger confidence intervals (Fig. 3.6c and 3.6e) 

and, correspondingly, appear to be better calibrated (Fig. 3.7c and 3.7e), despite the 

lower coverage rates. The SEPD model appears to be somewhat of an exception to this; 

it has small confidence intervals (Fig. 3.6d) but is also very well calibrated (Fig. 3.7d). 

The primary disadvantage of the SEPD model is that it did not work well with only 6 

months of production data to match. A special case is the logistic growth model that 

exhibits smaller confidence intervals (Fig. 3.6f) and is well calibrated (Fig. 3.7f). 

Nevertheless, the coverage rate is the lowest one of only 70%. 

 

It does not appear to be a correspondence between visual quality of the calibration and 

the coverage rate. Models that appear to be better calibrated visually (Power Law, 
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SEPD, Duong and logistic growth model) tend to have coverage rates that deviate more 

from 80% than models that appear to be poorer calibrated visually (the Arps models).  

 

Despite the comparisons between models and qualifications offered, all of the DCA 

models are reasonably well calibrated when used in conjunction with the MCMC 

probabilistic methodology, which is remarkable given the small amount of production 

data that is being analyzed in these cases. In the next section, I investigate if the poorer 

calibration at early production stages (6-12 months of production) for some of the 

models can be improved even further.  
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4. INTEGRATION OF VOLUMETRIC DATA INTO THE MARKOV CHAIN 

MONTE CARLO USING THE LOGISTIC GROWTH DECLINE CURVE MODEL 

 

4.1 Evaluation of MCMC-Logistic Growth Models at Different Stages of Depletion 

with Informative Prior Distribution 

In Chapter III, the evolution of the calibration of different combinations of MCMC with 

DCA models was studied. It was concluded that the SEPD and the logistic growth 

models were the best calibrated DCA models overall. Nevertheless, the SEPD presented 

some limitations when using only 6 months of data. On the other hand, the logistic 

growth model was well calibrated at 6 months and it allows for the integration of 

volumetric information because of its decline parameters. The K parameter in the logistic 

growth model is known as the carrying capacity, and is defined similarly as the EUR of a 

well (Clark et al., 2011).  

 

Because of the flexibility of the logistic model, it can provide some non-unique matches 

if the carrying capacity cannot be obtained from other types of assessments, such as 

volumetric (Clark et al., 2011). Clark et al. (2011) validated their model on a 1000-well 

sample base. From this sample base, 400 wells were not matched because they yielded 

unreasonable DCA parameters. The authors did not describe what kind of values for 

DCA parameters were considered unreasonable. However, the distributions of 

parameters provided by Clark et al. (2011) give us an idea of the range of values they 

consider reasonable.  
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The MCMC requires that a prior distribution be specified for each of the decline curve 

parameters used. For the logistic growth model, the prior distribution for the carrying 

capacity, K, was taken from Clark et al. (2011) (Fig. 4.1). Clark et al. (2011) performed 

DCA using the logistic growth model on a sample of 600 Barnett shale gas wells to 

obtain a distribution for the carrying capacity, K (Table 4.1). Despite using Clark et al. 

(2011) boundaries as constraints for the prior K distribution, the boundaries for the 

likelihood function were defined as before in Table 3.3. The boundaries for the 

likelihood function are wider than the boundaries for the prior distribution. The 

boundaries for the prior distribution are based on prior knowledge, while the boundaries 

for the likelihood were set wider so any reasonable combination of decline curve 

parameters that match the data can be considered. The prior distributions for the other 

two DCA parameters, aL and nL, were kept as uniform distributions, with boundaries 

defined in Table 3.3. 

 

Gas well No. 47 was used to evaluate the use of a lognormal distribution on a single gas 

well (Fig. 4.2). The use of a lognormal prior distribution increased the P50 for the 

CPEOH when using only six months of data (Table 4.2). By using a lognormal prior 

distribution the P50 for the CPEOH estimate was shifted further away from the actual 

CPEOH than when using a uniform prior distribution. When only 6 months of 

production are matched, the prior distribution has a higher weight in the posterior 

distribution than the likelihood function. For this well, the estimated CPEOH when using 

a lognormal prior distribution was higher than the one given by the likelihood function 
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(the uniform distribution does not affect the results of the posterior distribution and are 

only based on the likelihood function). Hence, a poor choice of a prior distribution could 

result in poor calibrated results at 6 months. When more data become available, the 

likelihood function should correct the estimates for CPEOH. 

 

 

Fig. 4.1—Informative prior distribution for K, from Barnett Shale analogous wells. 

 

 

Table 4.1—Properties of the Logistic Prior 

Distribution 
Logistic Growth Model 

DCA Parameter  µL σL Type 

K, Mcf 1,782,392 1,309,691 Logarithmic 
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(a)        (b) 

Fig. 4.2—PDCA MCMC-logistic growth on gas well 47, a) uniform prior and b) lognormal 

prior. Probabilistic methods bracket actual production data in a single gas well hindcast.  

  

Table 4.2—Comparison of PDCA Methods on Gas Well 47 Using a Uniform and a 

Lognormal Prior Distribution 

 Uniform prior Lognormal prior 

Actual CPEOH, Mcf 507,713 507,713 
Arps' Equations Best Fit, Mcf 432,614 432,614 
CPEOH P90, Mcf 406,667 431,565 
CPEOH P50, Mcf 557,327 705,456 
CPEOH P10, Mcf 932,132 1,246,104 
CPEOH Mean, Mcf 634,028 770,034 
 

Nevertheless, as mentioned before, a single-well estimate cannot provide a good 

measurement of the calibration and reliability of a PDCA method. The analysis was 

performed using several hindcasts with increasing amounts of production data. Six 

hindcasts, using an uninformative (uniform) prior distribution, were performed by 

increasing the months of production data analyzed from 6 to 36 months using 6-month 
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steps. The previous process was repeated using different informative (lognormal) prior 

distributions. The rest of the months not used to hindcast were assumed to be the actual 

“future” production. 

 

The performance of the logistic growth model was evaluated using different lognormal 

prior distributions for K. One of the prior distributions for K was taken from Clark et al. 

(2011) (Fig. 4.1). The rest of the prior distributions studied for K were proportional to 

the one by Clark et al. (2011). The prior that yielded the best calibrated visually results 

was 1.5 times higher than the one reported by Clark et al. (2011) (Table 4. 3 and Fig. 

4.3). 

 

The use of a lognormal prior distribution for K increased the coverage rate from 60% to 

around 70% (Table 4.4). The use of a lognormal prior distribution can either increase 

our decrease the percentage error in CPEOH (Table 4.4).  By using the K distribution 

from Clark et al. (2011) we increase the percentage error in CPEOH, because the 

estimate for CPEOH from the prior distribution was too low. The corrected prior was 

chosen because it yielded the best calibrated results; hence we obtained a lower 

percentage error in CPEOH (Fig. 4.4). Therefore, a poor choice of a prior distribution 

could result in poor calibrated results at 6 months. The use of a lognormal prior 

distribution (from Clark et al. (2011) or the corrected prior) enhances the calibration 

(Fig. 4.4).  
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Fig. 4.3—Corrected informative prior distribution for K. 

 

Table 4.3—Properties of the Corrected Logistic 

Prior Distribution 
Logistic Growth Model 

DCA Parameter  µL σL Type 

K, Mcf 2,673,588 1,964,537 Logarithmic 
 

Table 4.4—Comparison of PDCA Methods With the Logistic Growth Model on a Sample 

of Barnett Shale Gas Wells Using Uniform and Volumetric Prior Distributions 

  Uniform Prior Lognormal Prior 1 Lognormal Prior 2 

No of Wells 197 197 197 
Coverage rate 61% 66% 68% 
  

2.31% 0.812% 
 

Relative error:                  4.08% 
Average((P50-CPEOH)/CPEOH)  
  

26.56% 25.328% 
 

Absolute Error: 24.72% 
Average(|P50-CPEOH|/CPEOH)  
Average(C.I./P50) 0.6510 0.6665 0.7026 
True CPEOH MSCF 204,328,815 204,039,437 204,039,437 
Sum of P50 values,  MSCF 203,475,374 194,351,296 207,526,061 
Percentage Error in CPEOH 0.41% 4.74% 1.71% 
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Fig. 4.4—PDCA MCMC-DCA logistic growth using a volumetric prior enhanced the 

calibration for the sample of Barnett shale gas wells. 

 

The calibration for the sample of wells with the corrected prior still shows a clear 

overconfidence. This behavior can be corrected by incorporating a function that 

calibrates the prior distribution over time. In a true Bayesian approach, as we obtain 

more production data, our prior distribution should be updated from the posterior 

distribution obtained using the previous prior distribution.  We can roughly approximate 

this trend, by modeling the prior as a power function that decreases over time (Eq. 9),  

 

                  ..............................................................................................................................................  (9) 

 



 

53 

 

The function g(t) was approximated using the best value of g (that which provided the 

best calibration for our sample of wells, i.e., achieved the best P90, P50 and P10) at each 

hindcast.  It was found that the relation between g(t) and t can be approximated by a 

power law relation, Eq. 10, plotted in Fig. 4. 6. 

 

                   ...............................................................................................................................................  (10) 

 

 

Fig. 4.5—g(t) decreases as the available amount of production, t, increases. The prior 

distribution has less impact as more production data become available to match.  

 

The g(t) function for a lognormal prior distribution for K was chosen to reduce the bias 

from the mean of the CPEOH regardless of the amount of data available to match (Fig. 

4.6a and 4.6b). The use of a lognormal prior distribution provides results that are better 
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calibrated, regardless of the amount of data available to match, than when using a 

uniform prior distribution (Fig 4.7a and 4.7b). In addition, the use of a lognormal prior 

distribution enhances the CR than when using a uniform prior distribution (Fig. 4.7b).  

 

 

 
a)                                                            b) 

Fig. 4.6—MCMC and logistic growth model with a) uniform prior distribution, b) 

lognormal prior distribution.  In general, 80% C.I decrease in size as the amount of 

production analyzed increases. The results are less biased if a lognormal prior is used. 
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a)                                                            b) 

Fig. 4.7—MCMC and logistic growth model with a) uniform prior distribution, b) 

lognormal prior distribution.  The calibration is enhanced over time using a lognormal 

prior distribution. Furthermore, the coverage rate is enhanced.  

 

 

4.2 Application to Barnett Shale of MCMC-Logistic Growth Models at Different 

Stages of Depletion with Volumetric Prior Distribution  

The MCMC-logistic growth model combination was tested and calibrated using a prior 

distribution for K, obtained from the DCA of 600 wells from the Barnett Shale. As in the 

previous section, during any hindcast the prior distribution was the same for all the wells 

in the sample.  

 

A hindcast test was conducted in which K was now defined as the technically 

recoverable resources (TRR) for a Barnett shale gas well. The distribution for TRR for 

the Barnett shale was taken from Dong et al. (2012) (Fig. 4.8 and Table 4.5). Dong et al. 

(2012) estimated the TRR for the Barnett shale based on analytical simulation. Dong et 

al. (2012) also calculated the distribution for recovery factors for the Barnett Shale. 
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Hence, for any given well with known volumetric assessment, a distribution of TRR for 

each well can be approximated based on the recovery factor distribution from Dong et al. 

(2012).  The distribution for TRR from Dong et al. (2011) (Fig. 4.8) is similar to the 

corrected lognormal prior distribution tested in the previous section (Fig. 4.3) 

 

 

Fig. 4.8—Informative prior distribution for K, from TRR from the Barnett Shale. 

 

Table 4.5—Properties of the Technically 

Recoverable Resources Distribution   

Logistic Growth Model 
DCA Parameter  µL σL Type 

K, Mcf 2,226,008 1,820,854 Logarithmic 
 

Six hindcasts were performed by increasing the amount of production data analyzed 

from 6 to 36 months using 6-month steps, once with a uniform prior and once with the 
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TRR lognormal prior distribution. The rest of the months not used to hindcast were 

assumed to be the actual “future” production.  

 

The use of a TRR prior distribution reduces the bias from the mean of the CPEOH 

regardless of the amount of data available to match (Fig. 4.9a and Fig 4.9b). We 

expected this since the TRR distribution reported by Dong et al. (2012) is similar to the 

corrected lognormal prior distribution used to calibrate the model. The use of a TRR 

distribution as the prior distribution for K provides results that are better calibrated 

regardless of the amount of data available to match than when using a uniform prior 

distribution (Fig 4.10a and 4.10b).  In addition, the use of a TRR prior distribution 

enhances the CR than when using a uniform prior distribution (Fig. 4.10b).  

 

The proposed combination of MCMC, logistic growth DCA model and the incorporation 

of volumetric data provides an integrated procedure to reliably quantify the uncertainty 

in production forecasts and reserves estimates in shale gas reservoirs.  The reliability of 

the results has been demonstrated for predictions to 59-119 months, and not for long-

term forecasts. Thus, it cannot be claimed that these methods will reliably quantify 

uncertainty in long-term forecasts and reserves estimates. However, I believe it is safe to 

say that long-term probabilistic forecasts and reserves estimates will be more reliable 

that they would be if they were not reliable in the short term.  
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a)                                                           b) 

Fig. 4.9—MCMC and logistic growth model with a) uniform prior distribution, b) TRR 

prior distribution.  In general, 80% C.I decrease in size as the amount of production 

analyzed increases. The results are less biased if a volumetric prior is used. 

 

 

b)                                                            b) 

Fig. 4.10—MCMC and logistic growth model with a) uniform prior distribution, b) TRR 

prior distribution.  The calibration is enhanced over time using a volumetric prior 

distribution. Furthermore, the coverage rate is enhanced.  
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5. CONCLUSIONS 

 

Based on hindcasts of 197 hydraulically fractured horizontal Barnett-shale gas wells 

with 59-119 months of production data available, I conclude the following:  

 The uncertainty in cumulative production at the end of hindcast, CPEOH, 

decreases as the amount of monthly production data available for 

matching increases. 

 The MBM and the MCMC probabilistic methods reliably quantify 

uncertainty in CPEOH, matching 50% of known production history, for 

all of the DCA models studied.  

 The MCMC probabilistic method combined with the DCA models 

developed for shale gas resources reliably quantifies the uncertainty, 

regardless of the amount of monthly data available. Even with DCA 

models based on Arps’ equations, the MCMC method is reasonably well 

calibrated. 

 The DCA models developed for shale gas wells were better calibrated, 

but have wider confidence intervals for CPEOH, than models based on 

Arps’ equations.  

 For the modified Arps, Power Law, SEPD, Duong, and logistic growth 

models, the MCMC P50 estimate is more accurate than the deterministic 

estimate for the sample of wells when only 6-12 months of production 

data are available for matching. 
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 When a uniform prior distribution is used for the MCMC probabilistic 

method, the SEPD and logistic growth models are the best calibrated 

visually and have the best coverage rate overall.  

 The use of a lognormal prior distribution for the carrying capacity, K, 

enhances the calibration of the logistic growth model and improves the 

overall coverage rate when used with the MCMC probabilistic method.  

 The use of a volumetric TRR prior distribution for the carrying capacity, 

K, enhances the calibration of the logistic growth model, reduces the bias 

at early times and improves the overall coverage rate when used with the 

MCMC probabilistic method.  

 

While uncertainty will always be present in any production forecast and reserves 

estimate, and will likely be quite large early in the producing life, reliable assessment of 

uncertainty enables better assessment of upside and downside potential, as well as better 

assessment of the expected value of reserve estimates. This can be particularly valuable 

early in the development of a play, because decisions regarding continued development 

are based to a large degree on production forecasts and reserves estimates for early wells 

in the play.   
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NOMENCLATURE 

 

a Duong intercept constant, 1/day  

aL Time to the power nl at which half of K has been produced, months 

b Arps decline exponent, dimensionless 

CR Coverage rate 

C.I. Confidence intervals 

CPEOH Cumulative production at the end of hindcast, Mcf 

DCA Decline curve analysis 

Di Arps initial decline rate, 1/year 

D∞ Power Law decline at “infinite time” constant, 1/day 

 ̂ Power Law decline constant, 1/day 

EUR Estimated ultimate recovery, Mcf 

f Likelihood function 

K Logistic growth Model carrying capacity, Mcf 

JSM Jochen and Spivey method 

MBM Modified Bootstrap method 

MCMC Markov Chain Monte Carlo 

m Duong slope  

n Power Law time exponent, dimensionless 

nL Duong decline exponent, dimensionless 

PDCA Probabilistic decline curve analysis 
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P10 Value at confidence level 10% 

P50 Value at confidence level 50% 

P90 Value at confidence level 90% 

qi Initial gas rate, Mcf/D 

t Available monthly production data, months 

T0 Modified Arps time go into exponential decline, months 

y Monthly production, Mcf 

δ DCA parameter 

θ DCA parameter acting as random variable 

θj Parameter at step j in MCMC 

θproposal Candidate drawn from proposal distribution 

η Exponent parameter or SEPD model, dimensionless 

τ Characteristic time parameter for SPED model, month 

σ Sample variance from best fit 

σj Sample variance at step j in MCMC 

σproposal Sample variance from proposal distribution 

π Prior or posterior probability 
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