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ABSTRACT 

 

Time-rate analysis and time-rate-pressure analysis methods are available to estimate reserves and study 

flow performance of wells in unconventional gas reservoirs.  However, these tools are often incorrectly 

used or the analysis can become difficult because of the complex nature of the reservoir system. 

Conventional methods (e.g., Arps' time-rate relations) are often used incorrectly to estimate reserves from 

such reservoirs.  It was only recently that a serious study was conducted to outline the limitations of these 

relations and to set guidelines for their correct application.  New time-rate relations, particularly the 

Duong and logistic growth model, were introduced to estimate reserves and forecast production from 

unconventional reservoirs.  These new models are being used with limited understanding of their 

characteristics and limitations.  Moreover, well performance analyses using analytical/semi-analytical 

solutions (time-rate-pressure) are often complicated from non-uniqueness that arises when estimating 

well/formation properties.   

In this work, we present a detailed study of the Duong model and logistic growth model to investigate the 

behaviors and limitations of these models when analyzing production data from unconventional reservoirs.  

We consider production data generated from numerical simulation cases and data obtained from 

unconventional gas reservoirs to study the quality of match to specific flow regimes and compare accuracy 

of the reserve estimates.  We use the power-law exponential model (PLE), which has been shown to model 

transient, transition and boundary-dominated flow regimes reliably, as a benchmark to study performance 

of Duong and logistic growth models.  Moreover, we use the "continuous EUR" approach to compare 

these models during reserve estimation.  Finally, we develop four new time-rate relations, based on 

characteristics of the time-rate data on diagnostic plots.  Using diagnostic plots we show that the new time-

rate relations provide a quality match to the production data across all flow regimes, leading to a reliable 

reserve estimate. 

In a preliminary study, we integrated time-rate model parameters with fundamental reservoir properties 

(i.e., fracture conductivity (Fc) and 30 year EUR (EUR30yr)), by studying 15 numerical simulation cases to 

yield parametric correlations.  We have demonstrated a methodology to integrate time-rate model 

parameters and reservoir properties.  This method avoids the non-uniqueness issues often associated with 

model-based production data analysis.  This study provides theoretical basis for further demonstration of 

the methodology using field cases. 

  



iii 

 

DEDICATION 

 

I dedicate this work to my family. 

  



iv 

 

ACKNOWLEDGEMENTS 

 

I would like to thank, Dr. Blasingame, chair of my committee, for his constant support and guidance to 

perfection, Dave Symmons for his unyielding technical assistance, Dilhan Ilk for his crucial suggestions 

and advice, Viannet Okouma for his encouragement and guidance and Dr. Ayers and Dr. Barrufet for their 

support and for their service as committee members.  

  



v 

 

TABLE OF CONTENTS 

 

 Page 

ABSTRACT ........................................................................................................................................  ii 

DEDICATION ....................................................................................................................................  iii 

ACKNOWLEDGEMENTS ................................................................................................................  iv 

TABLE OF CONTENTS ....................................................................................................................  v 

LIST OF FIGURES .............................................................................................................................  vii 

LIST OF TABLES ..............................................................................................................................  xi 

CHAPTER 

I INTRODUCTION ...........................................................................................................  1 

  1.1 Statement of Problem ..........................................................................................  1 

  1.2 Objectives ...........................................................................................................  2 

  1.3 Importance ..........................................................................................................  2 

  1.4 Validation and Application .................................................................................  3 

II LITERATURE REVIEW ................................................................................................  13 

  2.1 Empirical, Semi-Analytical and Analytical Production Data Analysis ...............  13 

  2.2 Production Data Analysis of Unconventional Gas Resources ............................  16 

III ANALYSIS OF TIME-RATE RELATIONS ..................................................................  17 

  3.1 Power-Law Exponential Model ..........................................................................  17 

  3.2 Duong Model ......................................................................................................  18 

  3.3 Logistic Growth Model .......................................................................................  19 

  3.4 Comparison of Time-Rate Models ......................................................................  20 

IV MODIFIED TIME-RATE RELATIONS ........................................................................  38 

  4.1 Modified Duong Model – 1 (MDNG – 1) ...........................................................  38 

  4.2 Modified Duong Model – 2 (MDNG – 2) ...........................................................  39 

  4.3 Modified Logistic Growth Model – 1 (MLGM – 1) ...........................................  42 

  4.4 Modified Logistic Growth Model – 2 (MLGM – 2) ...........................................  42 

  4.5 Field Example 1 – Mexico Tight Gas Well .........................................................  46 

  4.6 Field Example 2 – Barnett Shale Gas Well .........................................................  52 

V INTEGRATION OF PRODUCTION DATA ANALYSIS AND TIME-RATE 

 ANALYSIS VIA PARAMETRIC CORRELATION – A THEORETICAL 

 CONSIDERATION .........................................................................................................  59 



vi 

 

CHAPTER Page 

  5.1 Methodology .......................................................................................................  59 

  5.2 PLE Model – Parametric Correlations ................................................................  61 

  5.3 Duong Model – Parametric Correlations ............................................................  66 

  5.4 Logistic Growth Model – Parametric Correlations .............................................  71 

VI SUMMARY, CONCLUSIONS AND  

 RECOMMENDATIONS FOR FUTURE WORK ..........................................................  76 

  6.1 Summary .............................................................................................................  76 

  6.2 Conclusions .........................................................................................................  76 

  6.3 Recommendations for Future Work ....................................................................  77 

NOMENCLATURE ............................................................................................................................  78 

REFERENCES ....................................................................................................................................  79 

APPENDIX A  MODIFIED DUONG MODEL—1 (MDNG‒1) ........................................................  81 

APPENDIX B  MODIFIED DUONG MODEL—2 (MDNG‒2) ........................................................  83 

APPENDIX C  MODIFIED LOGISTIC GROWTH MODEL—1 (MLGM‒1) .................................  86 

APPENDIX D  MODIFIED LOGISTIC GROWTH MODEL—2 (MLGM‒2) .................................  87 

APPENDIX E  SEMI-LOG PLOTS – PARAMETRIC CORRELATION STUDY ...........................  89 

  



vii 

 

LIST OF FIGURES 

 

FIGURE Page 

1.1 (Semi-log Plot): Production history plot for numerical simulation case – flow rate (qg) 

and cumulative production (Gp) versus production time (East Tx tight gas well 

numerical simulation model). ...................................................................................................... 4 

1.2 (Log-log Plot): q/Gp versus production time. Duong model and Modified Duong Model 

(MDNG – 2) matches for numerical simulation case (East Tx tight gas well). ........................... 6 

1.3 (Log-log Plot): K/Gp – 1 versus production time.  Modified Logistic Growth Model 

(MLGM – 2) matches for numerical simulation case (East Tx tight gas well). ........................... 7 

1.4 (Log-log Plot): Flow rate (qg), D-, b-parameter and -derivative versus production 

time. PLE, logistic growth, Duong, MLGM – 1, MLGM – 2, MDNG – 1, and MDNG 

– 2 time-rate model matches for numerical simulation case (East Texas tight gas well). ........... 9 

1.5 (Log-log Plot): Rate and cumulative production versus time plot. PLE, logistic growth, 

Duong, MLGM – 1, MLGM – 2, MDNG – 1, and MDNG – 2 time-rate models 

matches for numerical simulation case (East Tx tight gas well). ................................................. 10 

1.6 (Cartesian Plot): EUR estimates from PLE, logistic growth, and Duong model matches 

and Gp,max projected from numerical simulation case (East Texas tight gas well) ....................... 11 

1.7 (Log-log Plot): Comparison of fracture conductivity calculated using the fracture 

conductivity correlation using PLE model parameters versus fracture conductivity of 

numerical simulation models. ...................................................................................................... 12 

3.1 (Semi-log Plot): Production history plot for numerical simulation case – flow rate (qg) 

and cumulative production (Gp) versus production time (horizontal well model with 

multiple transverse fractures). ..................................................................................................... 22 

3.2 (Log-log Plot): Flow rate (qg), D-, b-parameter and -derivative versus production 

time. PLE, logistic growth, and Duong model matches for numerical simulation case............... 23 

3.3 (Log-log Plot): Continuous EUR analysis. Flow rate (qg), D-, b-parameter and -

derivative versus production time. PLE model matches for numerical simulation case. ............. 25 

3.4 (Log-log Plot): Continuous EUR analysis. Flow rate (qg), D-, b-parameter and -

derivative versus production time. Duong model matches for numerical simulation 

case. ............................................................................................................................................. 26 

3.5 (Log-log Plot): Continuous EUR analysis. Flow rate (qg), D-, b-parameter and -

derivative versus production time. Logistic growth model matches for numerical 

simulation case. ........................................................................................................................... 27 

3.6 (Cartesian Plot): EUR estimates from PLE, logistic growth, and Duong models matches 

and Gp,max projected from numerical simulation case (horizontal well model with 

multiple transverse fractures).. .................................................................................................... 28 

 



viii 

 

FIGURE Page 

3.7 (Semi-log Plot): Production history plot of East Tx tight gas well – flow rate (qg) and 

cumulative production (Gp) versus production time .................................................................... 29 

3.8 (Log-log Plot): Continuous EUR analysis. Flow rate (qg), D-, b-parameter and -

derivative versus production time. PLE model matches for East Tx tight gas well. .................... 30 

3.9 (Log-log Plot): Continuous EUR analysis. Flow rate (qg), D-, b-parameter and -

derivative versus production time. Duong model matches for East Tx tight gas well. ................ 31 

3.10 (Log-log Plot): Continuous EUR analysis. Flow rate (qg), D-, b-parameter and -

derivative versus production time. Logistic growth model matches for East Tx tight gas 

well .............................................................................................................................................. 32 

3.11 (Cartesian Plot): EUR estimates from PLE, logistic growth, and Duong models matches 

and Gp,max of East Tx tight gas well. ............................................................................................. 33 

3.12 (Log-log Plot): Continuous EUR analysis. Flow rate (qg), D-, b-parameter and -

derivative versus production time. PLE model matches for numerical simulation case 

of East Tx tight gas well. ............................................................................................................. 34 

3.13 (Log-log Plot): Continuous EUR analysis. Flow rate (qg), D-, b-parameter and -

derivative versus production time. Duong model matches for numerical simulation case 

of East Tx tight gas well. ............................................................................................................. 35 

3.14 (Log-log Plot): Continuous EUR analysis. Flow rate (qg), D-, b-parameter and -

derivative versus production time. Logistic growth model matches for numerical 

simulation case of East Tx tight gas well. ................................................................................... 36 

3.15 (Cartesian Plot): EUR estimates from PLE, logistic growth, and Duong models matches 

and Gp,max projected from numerical simulation case (East Texas tight gas well).. ..................... 37 

4.1 (Log-log Plot): q/Gp versus production time. Duong model and Modified Duong Model 

– 2 (MDNG – 2) diagnostic plot match for numerical simulation cases. ..................................... 40 

4.2 (Log-log Plot): Flow rate (qg), D-, b-parameter and -derivative versus production 

time. Schematic of Duong model, MDNG – 1, and MDNG – 2 time rate models. ..................... 41 

4.3 (Log-log Plot): K/Gp – 1 versus production time. Modified Logistic Growth Model 

(MLGM – 2) match for numerical simulation case. .................................................................... 44 

4.4 (Log-log Plot): Flow rate (qg), D-, b-parameter and -derivative versus production 

time. Schematic of logistic growth model, MLGM – 1, and MLGM – 2 .................................... 45 

4.5 (Semi-log Plot): Production history plot for field data case – flow rate (qg) and 

cumulative production (Gp) versus time (Mexico tight gas well). ............................................... 46 

4.6 (Log-log Plot): q/Gp versus production time. Modified Duong Model – 2 (MDNG – 2) 

diagnostic plot matches for Mexico tight gas well. ..................................................................... 48 

4.7 (Log-log Plot): K/Gp – 1 versus production time. Modified Logistic Growth Model – 2 

(MLGM – 2) diagnostic plot match for Mexico tight gas well. ................................................... 49 

 



ix 

 

FIGURE Page 

4.8 (Log-log Plot): Flow rate (qg), D-, b-parameter and -derivative versus production 

time. PLE, logistic growth, Duong model, MLGM – 1, MLGM – 2, MDNG – 1, and 

MDNG – 2 time rate model matches for Mexico tight gas well. ................................................. 50 

4.9 (Log-log Plot): Rate and cumulative production versus time plot. PLE, logistic growth, 

Duong , MLGM – 1, MLGM – 2, MDNG – 1, and MDNG – 2 time-rate models 

matches for Mexico tight gas well. .............................................................................................. 51 

4.10 (Semi-log Plot): Production history plot for numerical simulation case – flow rate (qg) 

and cumulative production (Gp) versus time (Barnett shale gas well). ........................................ 53 

4.11 (Log-log Plot): q/Gp versus production time. Modified Duong Model – 2 (MDNG – 2) 

diagnostic plot matches for Barnett shale gas well. ..................................................................... 54  

4.12 (Log-log Plot): K/Gp – 1 versus production time. Modified Logistic Growth Model – 2 

(MLGM – 2) diagnostic plot match for Barnett shale gas well. .................................................. 55 

4.13 (Log-log Plot): Flow rate (qg), D-, b-parameter and -derivative versus production 

time. PLE, logistic growth, Duong, MLGM – 1, MLGM – 2, MDNG – 1, and MDNG 

– 2 time rate model matches for Barnett shale gas well. .............................................................. 56 

4.14 (Log-log Plot): Rate and cumulative production versus time plot. PLE, logistic growth, 

Duong model, MLGM – 1, MLGM – 2, MDNG – 1, and MDNG – 2 time-rate model 

matches for Barnett shale gas well. ............................................................................................. 57 

5.1 Diagram of numerical simulation model showing horizontal well and multiple 

transverse fractures. ..................................................................................................................... 59  

5.2 (Log-log Plot): Flow rate (qg) versus production time. PLE model matches of 15 

numerical simulation cases. ......................................................................................................... 62 

5.3 (Log-log Plot): b-parameter versus production time. PLE model matches of 15 

numerical simulation cases. ......................................................................................................... 62 

5.4 (Log-log Plot): -parameter versus production time. PLE model matches of 15 

numerical simulation cases. ......................................................................................................... 63 

5.5 Cross-plots showing relationship between PLE model parameters and numerical 

simulation case fracture conductivity (Fc) and 30 year EUR estimates. ...................................... 64 

5.6 Comparison of fracture conductivity and 30 year EUR values calculated using 

parametric correlations developed using PLE model parameters versus numerical 

simulation models. ....................................................................................................................... 66 

5.7 (Log-log Plot): Flow rate (qg) versus production time. Duong model matches of 15 

numerical simulation cases. ......................................................................................................... 67 

5.8 (Log-log Plot): b-parameter versus production time. Duong model matches of 15 

numerical simulation cases. ......................................................................................................... 67 

5.9 (Log-log Plot): -parameter versus production time. Duong model matches of 15 

numerical simulation cases. ......................................................................................................... 68 



x 

 

FIGURE Page 

5.10 Cross-plots showing relationship between Duong model parameters and numerical 

simulation cases fracture conductivity (Fc) and 30 year EUR values. ......................................... 69 

5.11  Comparison of fracture conductivity and 30 year EUR values calculated using 

parametric correlations developed using Duong model parameters versus numerical 

simulation models. ....................................................................................................................... 70 

5.12 (Log-log Plot): Flow rate (qg) versus production time. Duong model matches of 15 

numerical simulation cases. ......................................................................................................... 71 

5.13 (Log-log Plot): b-parameter versus production time. Duong model matches of 15 

numerical simulation cases. ......................................................................................................... 72 

5.14 (Log-log Plot): -parameter versus production time. Duong model matches of 15 

numerical simulation cases. ......................................................................................................... 72 

5.15 Cross-plots showing relationship between logistic growth model parameters and 

numerical simulation cases fracture conductivity (Fc) and 30 year EUR values. ........................ 74 

5.16 Comparison of fracture conductivity and 30 year EUR values calculated using 

parametric correlations developed using logistic growth model parameters versus 

numerical simulation models. ...................................................................................................... 75 

 

  



xi 

 

LIST OF TABLES 

 

TABLE Page 

1.1 Reservoir and fluid properties for numerical simulation case (vertical tight gas well 

with hydraulic fractures) .............................................................................................................. 3 

1.2 PLE, Duong, logistic growth model and newly derived time-rate relations. ............................... 5 

1.3 MDNG – 1 and MLGM – 1 model parameters for numerical simulation case (East Tx 

tight gas well). ............................................................................................................................. 5 

1.4 MDNG – 2 model parameters for numerical simulation case (East Tx tight gas well). ............... 7 

1.5 MLGM – 2 model parameters for numerical simulation case (East Tx tight gas well). .............. 8 

1.6 Comparison of calculated cumulative production values for East Texas tight gas well 

numerical simulation model. (Gp,max = 1.82 BSCF from numerical simulation.) ......................... 10 

3.1 Reservoir and fluid properties for numerical simulation case (multi-fractured horizontal 

well model with multiple fractures). ............................................................................................ 21 

3.2 30 year reserve estimate obtained using PLE, Duong and logistic growth models for 

numerical simulation model (Gp,max=14.2 BSCF from numerical simulation.)............................ 24 

4.1 MDNG – 1 and MLGM – 1 time-rate relations model parameters (Mexico tight gas 

well). ............................................................................................................................................ 47 

4.2 MDNG – 2 time-rate relation model parameters (Mexico tight gas well). .................................. 47 

4.3 MLGM – 2 time-rate relation model parameters (Mexico tight gas well). .................................. 50 

4.4 Comparison of calculated cumulative production values for Mexico tight gas well 

(Gp,max = 13.52 BSCF). ................................................................................................................. 52 

4.5 MDNG – 1 and MLGM – 1 time-rate relations model parameters (Barnett shale gas 

well). ............................................................................................................................................ 53 

4.6 MDNG – 2 time-rate relation model parameters (Barnett shale gas well). .................................. 55 

4.7 MLGM – 2 time-rate relation model parameters (Barnett shale gas well). ................................. 56 

4.8 Comparison of calculated cumulative production values for Barnett shale gas well 

(Gp,max = 0.84  BSCF) ................................................................................................................... 58 

5.1 Reservoir and fluid properties for numerical simulation case (horizontal well with 

multiple transverse fractures). ..................................................................................................... 60 

5.2 Power Law Exponential model (PLE) parameters. Model matches to 15 numerical 

simulation cases. .......................................................................................................................... 63 

5.3 Duong model parameters. Model matches to 15 numerical simulation cases. ............................. 68 

5.4 Logistic growth model matches to 15 numerical simulation cases. ............................................. 73 



1 

 

CHAPTER I 

INTRODUCTION 

 

1.1 Statement of the Problem 

The discovery of significant unconventional gas reserves and the advent of new technologies, specifically, 

horizontal completion and hydraulic fracturing, have opened up vast natural gas resources for economic 

development.  Unconventional gas resources currently account for about 40 percent (7.5 Tcf per year) of 

the total U.S natural gas production, and its contribution is expected to grow to more than half of the total 

U.S natural gas production by 2030 (8.0 Tcf per year) (EIA, 2007).  The increasing interest in these 

unconventional gas resources (tight gas, coal bed methane (CBM), and shale gas) requires careful 

consideration in order to produces these resources successfully and economically. 

Analytical production analysis techniques have been developed to study flow performance of wells in 

unconventional reservoirs.  From rigorous analysis of rate and pressure data, it is possible to estimate 

reservoir properties and fracture characteristics.  However these analyses are often difficult because of the 

non-uniqueness of the well and formation estimates.  On the other hand, simple empirical relations are 

used widely to estimate reserves from oil and gas reservoirs.  Specifically Arps' time-rate relations have 

been adapted to estimate reserves from unconventional reservoirs.  However, incorrect application of Arps' 

rate decline models to match the long transient flow regime that is observed from unconventional 

reservoirs result in reserve estimates exceeding 100 percent (Rushing et al. 2007).  Modern time-rate 

relations (Ilk et al. 2008b; Valko 2009) have been shown to model the long transient flow regimes 

accurately. 

In this work, we consider modern time-rate models including the power law exponential (PLE), Duong 

and the logistic growth model to study their performance in modeling production data obtained from 

unconventional reservoirs.  We present a study of field data as well as numerical simulation cases.  Also, 

we demonstrate their performance in reserve estimation using the "continuous EUR" (Currie et al. 2010) 

approach.  Finally we develop new time-rate relations based on the Duong and logistic growth models and 

show that the new models are superior at matching the transient, transition and boundary-dominated flow 

regimes. 

In addition, we present a preliminary study to integrate time-rate model parameters with fundamental 

reservoir properties (i.e., fracture conductivity (Fc) and 30 year EUR (EUR30yr)) using parametric 

correlations. Previously, Ilk et al. (2011) have shown that it is possible to correlate reservoir/well 

properties that are estimated using model-based production data analysis with parameters of the power-law 
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exponential (PLE) time-rate relation by using a limited number of wells from tight/shale gas reservoirs.  

From that study it was apparent that synthetic data cases are required to obtain a more rigorous (perhaps 

semi-analytical) correlation for the estimation of well/reservoir properties.  We present production data 

analysis of 15 numerical simulation cases using power law exponential model, Duong and logistic growth 

models.  This analysis provides theoretical basis to the work done by Ilk et al. (2011).  Then, we 

demonstrate the relationship between the reservoir parameters and the time-rate model parameters using 

simple parametric functions.  Finally, we show that reservoir properties (Fc and EUR30yr) can be estimated 

from time-rate model parameters using parametric correlations.  The ease of use of the time-rate relations 

helps reduce the amount of time required during model based production data analysis.  Also, this method 

avoids the non-uniqueness issue often associated with model based production data analysis. 

1.2 Objectives 

The objectives of this work are to: 

● Perform a diagnostic plot analysis of Duong and logistic growth model to investigate the short-term 

and long-term behavior of these models.  

● Compare the match quality and reliability of reserve estimates using the PLE model as a benchmark. 

● Develop new time-rate relations based on diagnostic behavior of the time-rate data to improve the 

quality of match and reliability of reserve estimates of Duong and logistic growth models. 

● Develop a methodology for integration of reservoir/well properties — specifically, to demonstrate the 

correlation of fracture conductivity and 30 year EUR estimate (EUR30yr ) with time-rate model 

parameters, using production data generated from numerical simulation models. 

1.3 Importance 

This work outlines advantages and limitations of logistic growth and Duong models when used to analyze 

production data from unconventional reservoirs.  We showed that these models misrepresented 

characteristics of the time-rate data observed on diagnostic plots (i.e. D-, b-parameter and -derivative 

versus time plots).  We have used the PLE model as a benchmark to compare the performance of these 

models when matching the transient, transition and boundary-dominated flow regimes. 

Moreover, we have demonstrated application of the "continuous EUR" approach to investigate reliability 

of the reserve estimates obtained from Duong and logistic growth models.  We have also compared the 

rate of convergence of EUR estimated using these models. 
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We have demonstrated that diagnostic functions are valuable to emphasize characteristics of the time-rate 

data that are not evident otherwise.  Based on diagnostic properties of the time-rate data we have modified 

the Duong and logistic growth model to develop four new relations that conform to the observed 

diagnostic behaviors of the time-rate data.  We have shown that these new models have a superior match 

quality across all flow regimes and provide a reliable reserve estimate compared to the Duong and logistic 

growth models.   

Our methodology to estimate fundamental reservoir properties using the time-rate model parameters is an 

attempt to connect results from time-rate analysis with results from model-based production data analysis 

as a possible correlation mechanism to estimate reservoir properties.  Using simulated data cases, this 

study provides a theoretical basis for further demonstration of the methodology using field cases. 

1.4 Validation and Application  

Here, we demonstrate a performance analysis of Duong, logistic growth, PLE as well as the newly derived 

models using a numerical simulation case.  We perform a model match on a diagnostic plot and compare 

the EUR estimated using these models.  Finally we will introduce the parametric correlation study. 

1.4.1 Numerical Simulation Case: East Texas Tight Gas Well  

We are considering a numerical simulation of a vertical well model producing through a single vertical 

fracture with finite conductivity in a tight gas reservoir.  The model input parameters are provided in 

Table 1.1. The historical flow rate and cumulative production data is shown in Fig. 1.1.  

Table 1.1 — Reservoir and fluid properties for numerical simulation case (vertical tight gas well 

with hydraulic fractures). 

 

 Reservoir Properties: 

  Wellbore radius, rw =  0.333 ft 

  Net pay thickness, h    = 170 ft 

  Average porosity, 𝜙    = 0.088 (fraction) 

  Permeability, k    = 0.005 md 

 Fluid Properties: 

  Gas viscosity at pi, g    = 0.0361 cp 

  Gas compressibility at pi, cgi    = 5 x 10
-5

 psi
-1

 

 Production Parameters: 

  Initial reservoir pressure, pi   = 9,330 psia 

  Gas production after 30 years, Gp,30 yr  = 2.42 BSCF 

  Original gas in place, OGIP    = 2.65 BSCF 
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Figure 1.1 — (Semi-log Plot): Production history plot for numerical simulation case – flow rate 

(qg) and cumulative production (Gp) versus production time (East Tx tight gas well 

numerical simulation model).  

We use the D-, b-parameter and -derivative of the data to diagnose and match all flow regimes as 

accurately as possible.  These diagnostic functions are defined as follows: 

1 ( )

( )

dq t
D

q t dt
   (D-parameter) .......................................................................................... (1.1) 

( )

( ) /

d q t
b

dt dq t dt

 
   

 

 (b-parameter) ........................................................................................... (1.2) 

( )

( )

t dq t

q t dt
    (-derivative) ........................................................................................... (1.3) 

Table 1.2 summarizes the time-rate models studied in this work.  The table also shows the newly derived 

time-rate relations.  
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Table 1.2 — PLE, Duong, logistic growth model and newly derived time-rate relations. 

 

Time-Rate Relations  Models 

Power-Law Exponential Model  ˆˆ( ) exp[ ]n

gi iq t q D t Dt    

Duong Model  
1

1( ) exp ( 1)
1

m ma
q t q t t

m

  
   

, q1 at t = 1 

Logistic Growth Model   

ˆ 1

ˆ 2

ˆ ˆ
( )

ˆ( )

n

n

aKnt
q t

a t






 

New Time-Rate Relations  Models 

Modified Duong Model – 1 

 (MDNG – 1) 
 

1

1 11
1 1( ) exp[ ( ) ( )]

1

m

m m

t DNG

t a
q t q t t D t t

t m

  
    

 
 

Modified Duong Model – 2  

(MDNG – 2) 
 

 1

1

11

1

( )
( ) exp

[1 , ] [1 , ]

m m

DNG DNG

t m

DNG DNG

D t t aDt
q t q

t m D t m D t

   
   

       

 

Modified Logistic Growth Model – 

1 (MLGM – 1)  

ˆ( 1)

ˆ 2

ˆ ˆ
( ) exp[ ]

ˆ( )

n

LGMn

aKnt
q t D t

a t



 


 

Modified Logistic Growth Model – 

2 (MLGM – 2)   

ˆ 1

2
ˆ

ˆ ˆexp[ ] ( )
( )

ˆ (1 )exp[ ]

n

LGM LGM

n

LGM

a D t Kt n D t
q t

a R D t t

 


 

 

First we consider MDNG – 1 and MLGM – 1 cases since these both rely on the D-parameter diagnostic 

plot for their derivation.  First, the linear flow regime is matched by setting the constant decline 

parameters (DDNG and DLGM) to zero.  After matching the observed transient flow regime, the constant 

decline parameters are adjusted to match the boundary-dominated flow regime.  However, this boundary 

characteristic is not available in Duong and logistic growth models. Table 1.3 shows the model match 

parameters for MDNG – 1 and MLGM – 1. 

Table 1.3 — MDNG – 1 and MLGM – 1 model parameters for numerical simulation case (East 

Tx tight gas well). 

 

Modified Duong Model (MDNG – 1) 

qt1=0.0042 day 

(MSCFD)  a  m  

DDng  

(D
-1

) 

49,277  0.72  1.03  0.0004 

Modified Logistic Growth Model (MLGM – 1) 

K 

(MSCF)   ̂   ̂  

DLGM 

 (D
-1

) 

4,075,259  230.24  0.7  0.00015 
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Next we match the data using MDNG – 2 model.  In this analysis, the model parameters are determined on 

a q/Gp versus production time log-log plot.  On this plot, the transient flow regime is indicated by a 

straight line with a negative slope whereas the boundary-dominated flow regime shows a sharper decline 

deviating from the straight line trend. Fig. 1.2 shows q/Gp versus time diagnostic plot.  The transient flow 

regime is matched first by adjusting the "a" and "m" parameters of Duong and MDNG – 2 models. Then, 

the boundary-dominated flow regime is matched by adjusting the "DDNG" parameter of MDNG – 2. As 

mentioned earlier Duong model lacks this boundary characteristic. 

 
Figure 1.2 — (Log-log Plot): q/Gp versus production time. Duong model and Modified Duong 

Model (MDNG – 2) matches for numerical simulation case (East Tx tight gas 

well).  

𝒂𝒕−𝒎𝐞𝐱𝐩 −𝑫𝑫𝑵𝑮𝒕  
Diagnostic Function: 
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Table 1.4 — MDNG – 2 model parameters for numerical simulation case (East Tx tight gas 

well). 

 

Modified Duong Model (MDNG – 2) 

qt1=0.0042 day 

(MSCFD)  a  m  

DDng  

(D
-1

) 

49,277  0.768  1.04  0.00036 

 
Figure 1.3 — (Log-log Plot): K/Gp – 1 versus production time.  Modified Logistic Growth 

Model (MLGM – 2) matches for numerical simulation case (East Tx tight gas 

well).  

𝒂 𝒕−𝒏 𝐞𝐱𝐩 −𝑫𝑳𝑮𝑴𝒕 + 𝑹 

Diagnostic Function: 

MLGM – 2 Least Squares Fit 
Coefficient Values: 

 𝒏  =0.68692 
 𝒂  =153.43 
 R =0.15 

 DLGM =0.00030102 
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The model parameter qt1 is then estimated by fixing the remaining parameters and matching the data 

manually or through regression to obtain a fit to the time-rate data.  In this case qt1 is estimated at 

t1=0.0043 days.  This approach is the simplest way to obtain the model parameters.  It is also possible to 

estimate the model parameters of MDNG – 2 using the time-rate relation shown in Table 1.2, if advanced 

computation tools are available. The model parameters are summarized in Table 1.4. 

Next we match the data using MLGM – 2.  In this case, the model parameters are estimated on plot of K/Q 

– 1 versus time plot. In this case prior estimate of K (initial gas in place) was available from volumetric 

calculations.  Fig. 1.3 shows the diagnostic plot necessary to evaluate the model parameters. 

If the initial gas in place is known with confidence, all the unknown parameters can be estimated from the 

K/Q – 1 versus time diagnostic plot.  The model parameters for MLGM – 2 are summarized in Table 1.5. 

Table 1.5 — MLGM – 2 model parameters for numerical simulation case (East Tx tight gas 

well). 

 

Modified Duong Model (MLGM – 2) 

 K 

MSCF   ̂   ̂  

DLGM 

(D
-1

) 

 2.65E+06  153.4  0.68  0.00030 

Fig. 1.4 shows model matches for all the models on a flowrate, D-, b- parameter and -derivative plot.  

The PLE and the newly derived relations were able to provide a quality match across all flow regimes.  

Duong and logistic growth model failed to match the later flow periods.  The diagnostic functions clearly 

indicate that these models lack the characteristics to model boundary conditions.  
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Figure 1.4 — (Log-log Plot): Flow rate (qg), D-, b-parameter and -derivative versus production 

time. PLE, logistic growth, Duong, MLGM – 1, MLGM – 2, MDNG – 1, and 

MDNG – 2 time-rate model matches for numerical simulation case (East Texas 

tight gas well).  

Fig. 1.5 shows model match on the historical rate and cumulative production data. The modified relations 

were able to match the early time data as well as late time boundary-dominated flow regimes successfully. 

However; both Duong and logistic growth models are not constrained. As a result, reserves are 

overestimated.  
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Figure 1.5 — (Log-log Plot): Rate and cumulative production versus time plot. PLE, logistic 

growth, Duong, MLGM – 1, MLGM – 2, MDNG – 1, and MDNG – 2 time-rate 

models matches for numerical simulation case (East Tx tight gas well). 

Table 1.6 shows the cumulative production calculated at the end of the 6 years of production.  Duong and 

logistic growth models have significantly overestimated the cumulative production.  PLE and the modified 

relations have provided a reliable estimate of the cumulative production at the end of the flow period. 

Table 1.6 — Comparison of calculated cumulative production values for East Texas tight gas 

well numerical simulation model. (Gp,max = 1.82 BSCF from numerical simulation.) 

 

Time-rate models  Gp,max 

Duong model  2.37 BSCF 

Logistic growth model   1.95 BSCF 

Power-law exponential model (PLE)  1.84 BSCF 

Modified Duong Model – 1  

(MDNG – 1) 

 1.80 BSCF 

Modified Duong Model – 2 

(MDNG – 2) 

 1.79 BSCF 

Modified Logistic Growth Model – 1 

(MLGM – 1) 

 1.77 BSCF 

Modified Logistic Growth Model – 2 (MLGM – 2)  1.78 BSCF 
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The performance of the time-rate models in estimating reserves was further investigated using the 

"continuous EUR" approach.  Fig. 1.6 shows results of the calculated EUR values versus production time 

based on the model matches obtained using PLE, Duong and logistic growth models.   The EUR values 

calculated using the PLE model decrease significantly during early time and approach the maximum 

cumulative production faster than the other models.  As expected, the Duong and logistic growth models 

overestimate the cumulative production.  

 
Figure 1.6 — (Cartesian Plot): EUR estimates from PLE, logistic growth, and Duong model 

matches and Gp,max projected from numerical simulation case (East Texas tight gas 

well). 

1.4.2 A Parametric Correlation Study 

Here, we present a theoretical consideration to integrate time-rate model parameters with fundamental 

reservoir properties through parametric correlations.  Our first task is to identify the relationship between 

each of the model parameters with reservoir properties.  In this study, we considered only fracture 
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conductivity (Fc) and 30 year EUR estimates.  Once we identified the relationship between the time-rate 

model parameters and the reservoir properties, we developed a parametric correlation to estimate the 

reservoir properties directly from the time-rate model parameters. Fig. 1.7 shows result of parametric 

correlation study developed to estimate fracture conductivity from time-rate model parameters.  The 

correlating function given by: 

1.7 4 08 1.6ˆ ˆ1 07 E

C i iF E n D q   ............................................................................................................... (1.4) 

Using this correlation, we can estimate fracture conductivity of wells that are producing with similar 

bottomhole pressure and production constrains from the time-rate model parameters obtained after 

matching the production data using the PLE model.  

 
Figure 1.7 — (Log-log Plot): Comparison of fracture conductivity calculated using the fracture 

conductivity correlation using PLE model parameters versus fracture conductivity 

of numerical simulation models.  
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CHAPTER II 

LITERATURE REVIEW 

 

In the past several years, many advances have been made to analyze production data (time-rate-pressure) 

obtained from oil and gas wells. The methods provided engineers important tools with which to 

understand reservoir properties and to estimate reserves of oil and gas reservoirs. Since our aim is to 

investigate modern production analysis tools and their application to unconventional gas reservoirs, we 

present a literature review of important works done to analyze production data from these reservoirs. The 

literature review covers the following: 

● Empirical, semi-analytical, and analytical production data analysis; 

● Production data analysis of unconventional gas reservoirs. 

2.1 Empirical, Semi-Analytical and Analytical Production Data Analysis 

Lewis and Beal (1918) described the production data using percentage decline of rate and cumulative 

percentage curves to project the performance of the well to future time.  The authors have also shown that 

the average percentage rate decline when plotted on a log-log plot exhibits a power-law behavior.  They 

have shown that the straight line behavior on the log-log plot allows a simple and accurate projection of 

future performance. Cutler (1924) presented an overview of oil reserve estimation techniques in the 

1920's.  The author showed that percentage decline of production data is variable, and not constant as 

previously thought, and on a log-log plot the rate shows a hyperbolic behavior.  Johnson and Bollens 

(1927) introduced a new way of visualizing the data using the "loss-ratio" and "loss-ratio" derivatives 

given by Eq. 2.1 and Eq. 2.2 respectively. 

dtdq

q

D g

g

/

1
  ............................................................................................................................... (2.1) 























dtdq

q

dt

d

Ddt

d
b

g

g

/

1
 ....................................................................................................... (2.2) 

Arps (1945) derived the exponential and hyperbolic rate decline empirical relations. The exponential time-

rate relation can be derived directly from the "loss-ratio" relation whereas the hyperbolic time-rate relation 

is derived from the "loss-ratio" derivative term. The hyperbolic rate decline is a generalization of the 

exponential decline behavior observed from wells exhibiting boundary conditions. 
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For reference Arps' exponential and hyperbolic relations are given by: 

]exp[)( Dtqtq i   ......................................................................................................................... (2.3) 

  b

i

i

tbD

q
tq

/1
1

)(


  ......................................................................................................................... (2.4) 

In Arps' definition the b-parameter varies between 0 and 1.  As a result, Arps' exponential and hyperbolic 

relations are only applicable during boundary-dominated flow regimes.  When the b-parameter in Arps' 

hyperbolic model approaches zero we obtain the exponential model (Eq. 2.3).  During transient and 

transition flow regimes, application of Arps' hyperbolic model results in a b-parameter that is greater than 

1 leading to an overestimation of future production. Rushing et al. (2007) have shown that application of 

Arps hyperbolic model during transient and transition flow regimes causes reserve estimate errors 

exceeding 100 percent. 

This is not to say that hyperbolic models cannot be used for wells exhibiting transition and transient flow 

regimes.  The authors have shown that reasonable reserve estimates can be obtained if care is taken to 

apply the Arps' hyperbolic model during transition and boundary-dominated flow regimes.  Maley (1985) 

showed that Arps' hyperbolic model with a b-parameter greater than one can be used to match tight gas 

well data having long transient flow regimes.  Robertson (1988) modified Arps' hyperbolic model by 

applying a constant percentage decline value at a specified time to represent the boundary-dominated flow 

regime with an exponential decline relation, thereby constraining the reserve estimate.  The "modified 

hyperbolic model" matches early transient and transitional flow regimes with b-parameter between 0 and 1 

and switches to exponential decline model with a constant decline parameter during late time boundary-

dominated flow regimes. 

In the past decade, several new time-rate relations have been developed with improvements over 

traditional Arps' rate decline models. This new models result in superior matches for wells flowing in 

transient and transition flow regimes for very long durations.  Ilk et al.(2008b) presented the power-law 

exponential rate decline relation based on the inverse of the "loss-ratio" (D-parameter) behavior of the 

time-rate data.  Through continuous evaluation of the D-parameter of production data, it is observed that 

the D-parameter exhibits a power-law behavior for early time data, characterized by a straight line on a 

log-log plot.  The straight line characteristic is particularly true for wells in low/ultra-low permeability 

reservoirs.  During the late-time period the D-parameter of the power-law exponential model is 

characterized by a constant decline parameter.  As a result this model can match transient, transition and 

boundary-dominated flow regimes. 
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Valko (2009) independently introduced the stretched exponential decline model to describe observed 

decline behavior of a database of rate data obtained from unconventional reservoirs.  Valko's aim was to 

perform a statistical investigation of producing wells in unconventional reservoirs.  The stretched 

exponential model is similar to the power-law exponential model in matching the early time data, but it 

lacks the boundary conditions necessary to match long-time boundary conditions. 

Duong (2011) proposed a time-rate relation to analyze production data obtained from low/ultra-low 

permeability reservoirs where the dominant flow path is through induced hydraulic fractures. The author 

showed that a log-log plot of rate divided by cumulative production (q/Gp) verus time yields a straight line 

trend.  The author indicated that the slope and intercept of the straight line are characteristics of the 

reservoir.  A range of values of the slope and intercept describe the type of rock or fracture stimulation 

practices. 

Clark et al.(2011) adapted a type of logistic growth model to propose a new time-rate model to match 

production data of oil and gas wells. The logistic growth model is capable of modeling long transient 

behaviors of unconventional reservoirs as well as boundary conditions (to some extent).  Ilk et al.(2010) 

have developed a set of new time-rate relations based on PLE, stretched exponential, and Arps' hyperbolic 

and exponential time-rate models to characterize the long transient flow regime and boundary-dominated 

flow regimes. 

The idea of using time-rate relations to forecast future performance assumes prevailing reservoir 

characteristics remain unchanged in the future.  One advantage of time-rate decline analysis technique is 

that we do not need to know values of fundamental reservoir properties that are often not readily available. 

The only data required for analysis is the time-rate data; as a result, the model parameters are purely 

mathematical results.  If current operating conditions are not affecting future performance of the wells; 

then projection of the best fit line through the current data should describe future production trends.  The 

analysis also assumes constant bottomhole flowing pressure (Rushing et al. 2007).  These assumptions 

indicate that time-rate models have purely empirical basis. 

There have been attempts aimed at assigning reservoir properties to rate decline model parameters. 

Fetkovich (1980) showed that analytical transient rate solutions for bounded reservoirs producing at a 

constant bottomhole pressure can be shown on a type curve together with Arps' empirical relations.  The 

author showed that material balance relations can be combined with pseudosteady-state relations to 

provide a rate equation with a form identical to Arps' rate decline relations.  This provides theoretical basis 

to Arps' empirical relations.  Carter (1985) developed new set of type curves for analysis of gas rate data 

by taking into account real gas behaviors.  Camacho and Raghavan (1989) investigated solution-gas drive 
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reservoirs in boundary-dominated flow and showed that Arps' D- and b-parameters depend on rock and 

fluid properties of the reservoir, reservoir dimensions and wellbore conditions. 

Ilk et al.(2011) have shown that it is possible to correlate reservoir/well properties that are estimated using 

model-based production data analysis with parameters of the power-law exponential (PLE) time-rate 

relation.  From that study it was apparent that synthetic data cases are required to obtain a more rigorous 

(perhaps semi-analytical) correlation for the estimation of well/reservoir properties.  Chapter 5 of this 

work provides a theoretical basis using production data generated from numerical simulation cases.  

2.2 Production Data Analysis of Unconventional Gas Resources 

Van Kruysdijk and Dullaert (1989) described the major flow regimes identified during production data 

analysis of unconventional reservoirs.  Freeman et al. (2009) presented a numerical simulation study of 

tight\shale gas reservoirs to determine factors that affects behavior of observed flow regimes.  The major 

flow regimes observed from unconventional reservoirs are: 

● Linear flow regime: occurs during early flow periods when the dominant flow is linear and 

perpendicular to the fracture face.  Extreme pressure gradients cause sharp decline rates.  In this 

flow regime, flow occurs only from fractures.  This flow occurs as long as there is no interference 

to the pressure transients.  This flow regime is characterized by a half-slope on a log-log plot of 

flow rate versus time. 

● Compound formation linear flow: is characterized by a substantial drop in flow rate.  It indicates 

that the pressure transients are experiencing fracture interference.  The matrix contributes to the 

production during this flow regime. 

● Boundary-dominated flow regime: occurs when the pressure transient reach the reservoir 

boundaries.  During this period the entire reservoir has been contacted as a result flow-rate 

declines. 
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CHAPTER III 

ANALYSIS OF TIME-RATE RELATIONS 

 

In this chapter a detailed analysis of Duong and logistic growth model is presented.  We have used the 

power-law exponential model (PLE) as a benchmark from which we can study the match quality and 

reliability of reserve estimates calculated using these models.  We have focused the analysis by 

considering production data obtained from unconventional gas resources.  We have used production data 

generated from a numerical simulation as well as data obtained from a tight gas reservoir. 

We compare the quality of match to specific flow regimes observed from such reservoirs.  The data match 

is conducted by taking full advantage of the characteristics of diagnostic functions including D-, b-, 

parameters, -derivative as well as the flow rate data.  We have used the Bourdet et al. (1989) algorithm to 

perform the numerical differentiation required to calculate the diagnostic functions.  Moreover, we use the 

"continuous EUR" approach, where EUR is estimated dynamically, to investigate the reliability of the 

reserve estimates and rate of convergence of EUR when using these models.  The time–rate empirical 

models considered in this research include: 

● The Power Law Exponential model (PLE) (Ilk et al. 2008b), 

● The Duong model (Duong 2011), and 

● The Logistic Growth Model (LGM)  (Clark et al. 2011). 

Following we provide a short description of the time–rate models. 

3.1 Power Law Exponential Model  

The power–law exponential model was derived by observing the "loss-ratio" behavior of wells producing 

from low/ultra–low permeability reservoirs producing through fracture stimulation.  Ilk et al.(2008b) 

demonstrated that by describing the "loss–ratio" of the data using a power–law function, it is possible to 

match the dominant transient and transition flow regimes observed from unconventional reservoirs.  

Moreover, they showed that boundary-dominated flow regimes are represented by adding a constant 

decline parameter (D∞) to the power law relation.  The PLE model inverse "loss-ratio" relation is given 

by: 

1ˆ)( 

  n

intDDtD  ................................................................................................................................ (3.1) 

During boundary-dominated flow regimes, the power-law term becomes less significant and D(t) 

approaches a constant  term (D∞) similar to the case in Arps exponential decline model.  Furthermore, the 
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authors observed that the derivative of the "loss-ratio" is not constant as was the case in Arps' rate decline 

relations (i.e., exponential, hyperbolic and harmonic equations), but instead it is a function of time.  The 

"loss-ratio" derivative (b-parameter) is given by: 
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And the PLE "" relation is given by: 

n
intDDt ˆ)(    ................................................................................................................................ (3.3) 

And the power-law exponential rate relation is given by: 

]ˆexp[ˆ n

igi tDtDqq  
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As mentioned earlier a diagnostic plot of D(t) ,b(t) and β(t)  vs. time helps diagnose the time-rate data 

matching process. 

The PLE model provides excellent match to the transient, transition and boundary-dominated flow regimes 

and in this study we use the PLE model as a benchmark to study the performance of Duong and logistic 

growth models. 

3.2 Duong Model 

Duong (2011) presented a new empirical rate decline model based on the long-term linear or bilinear flow 

regimes observed in hydraulically fractured low/ultra-low permeability reservoirs.  On a log-log plot of 

rate versus time, the early time data shows half slope for linear flow and quarter slope for bilinear flow 

regimes.  A log-log plot of rate over cumulative production versus time results in a straight line for wells 

producing from unconventional reservoirs.  This straight line behavior is described by a power-law 

relation given by: 

m

p

at
G

q   .......................................................................................................................................... (3.5) 

Where a is the straight line intercept and m is negative slope of straight line on log-log plot of q/Gp vs. 

time. 

The slope and intercept parameters of Duong model show narrow ranges for wells producing from similar 

rock-types and similar fracture stimulation practices and operational conditions (Duong 2011).  The 

parameters can be directly estimated from q/Gp versus time diagnostic plot.  
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The Duong rate and cumulative relations are given by: 












  )1(

1
exp 1

1

mm t
m

a
t

q

q  .............................................................................................................. (3.6) 












  )1(

1
exp 11 m

p t
m

a

a

q
G  .............................................................................................................. (3.7) 

Where q1 is the flow rate estimated during the first day (t=1 day). 

In addition to q/Gp versus time log-log diagnostic plot, we use the "loss-ratio" and the "loss-ratio" 

derivative definitions to estimate the model parameters and guide the data matching process.  The b-, D-

parameters and the β-derivative of Duong model are given by: 
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We can also estimate the Duong m – parameter independently using the following diagnostic relation: 
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3.3 Logistic Growth Model  

Yet another model, the logistic growth model, is adapted to model time-rate data from oil/gas reservoirs.  

The logistic growth model is used to model growth trends of various population sizes in nature.  A form of 

the logistic growth model has been used to model growth of yeast and to study market penetration of new 

products and technologies (Martinez et al. 2008).  Tsoularis and Wallace (2002) have provided a detailed 

study of logistic growth models and they have also presented a summary of different forms of logistic 

growth models. 

Clark (2011) adapted the hyperbolic form of the logistic growth model to match time-rate data of oil/gas 

reservoirs.  The hyperbolic form was suggested by Blumberg (1968) to study regenerative growth in 

nature.  Eq. 3.12 shows the hyperbolic form of the logistic growth model. 
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The model was used to study several oil and gas wells. After modifications the cumulative production 

form of the hyperbolic logistic growth model is given by: 
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The rate relation is given by: 
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Similarly the D-, b-parameters and the -derivative diagnostic functions are used to perform diagnostic 

match of time-rate data.  Logistic growth model b-, D- and β- parameters are given by: 

)ˆ(

)ˆ1(ˆˆˆ
)(

ˆ

ˆ

n

n

tat

tnnaa
tD




  ................................................................................................................. (3.15) 

2ˆ

ˆ2ˆ22

))1ˆ(ˆˆˆ(

)1ˆ()1ˆ(ˆ2)1ˆ(ˆ
)(

n

nn

tnnaa

tntnana
tb




  .................................................................................... (3.16) 

)ˆ(

)ˆ1(ˆˆˆ
)(

ˆ

ˆ

n

n

ta

tnnaa
t




  ................................................................................................................. (3.17) 

The q/Gp formulation of logistic growth model is given by: 
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If the initial gas-in-place is known (K), we can rewrite the rate relation to find a diagnostic relation that 

allows a diagnostic plot estimation of the remaining model parameters (Clark et al. 2011).  
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3.4 Comparison of Time-Rate Models 

In this section, analysis of PLE, logistic growth and Duong models is presented. We perform a quality 

analysis of the resulting model match using D-, b- parameters and derivative of the production data. We 
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also show a "continuous EUR" (Currie et al. 2010) analysis of the models to determine how fast a reliable 

EUR is estimated when production data is available at specific time intervals. 

3.4.1 Numerical Simulation Case  

In this case we consider a multi-fractured horizontal well model with finite conductivity producing from a 

low permeability reservoir. We have modeled a homogeneous reservoir with a rectangular boundary where 

a single phase gas is flowing. Table 3.1 shows reservoir and well parameters used to generate production 

data for this numerical simulation case. 

Table 3.1 — Reservoir and fluid properties for numerical simulation case (multi-fractured 

horizontal well model with multiple fractures). 

 

Reservoir Properties 

Net pay thickness, h = 160 ft 

Formation permeability, k = 2µD 

Wellbore Radius, rw  = 0.66 ft 

Formation compressibility, cf = 3 x 10
-6  

psi
-1

 

Porosity,    = 0.05 (fraction) 

Initial reservoir pressure, pi = 5000 psi 

Gas saturation, sg  = 1.0 fraction 

Skin factor, s   = 0 (dimensionless) 

Reservoir temperature, Tr = 212 °F 

Fluid properties: 

Gas specific gravity, γg = 0.65 (air = 1) 

Hydraulically fractured well model parameters: 

Fracture half-length, xf = 164.0 ft 

Number of fractures  = 15 

Horizontal well length = 6561.7 ft 

Production parameters: 

Flowing pressure, pwf  = 500 psia 

Production time, t  = 10,958 days (30 years) 
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Fig. 3.1 shows a history plot of the resulting rate and cumulative production data. 

 
Figure 3.1 — (Semi-log Plot): Production history plot for numerical simulation case – flow rate 

(qg) and cumulative production (Gp) versus production time (horizontal well model 

with multiple transverse fractures).  

Fig. 3.2 shows the production data along with D-, b-and - parameters.  The production data indicates a 

long transient flow regime lasting for more than 3 years followed by a boundary-dominated flow regime.  

The transient flow is indicated by a constant value of 2 on the b-parameter data.  The -derivative 

indicates a constant value of 0.5 during the transient flow regime.  The D-parameter shows a straight line 

behavior during transient flow periods.  After 3 years we notice beginning of transition and boundary-

dominated flow regimes.  During this period, we notice that the data parameters start deviating from their 

transient behaviors.  When matching the data, we aimed to obtain a quality fit across all flow regimes by 

using these diagnostic parameters.  

When transient and boundary-dominated flow regimes are observed, the transient flow period is matched 

before matching the boundary-dominated flow regime.  In this example, all the model matches show 

excellent fit to the data during transient flow periods.  If EUR is estimated during this flow period, all 
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models result in accurate reserve estimates.  However, we notice that logistic growth and Duong models 

fail to match the boundary-dominated flow regime.  The PLE model excels at matching transient, 

transition and boundary-dominated flow regimes.  The D∞ parameter of PLE model is used to obtain a 

match for the production data profile during this flow period.  Attempts to match the boundary-dominated 

flow regime using the logistic growth and Duong models results in low-quality match across all flow 

regimes.   

 
Figure 3.2 — (Log-log Plot): Flow rate (qg), D-, b-parameter and -derivative versus production 

time. PLE, logistic growth, and Duong model matches for numerical simulation 

case.  
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As a result, logistic growth and Duong models overestimate reserves at the end of the flow period.  The 

reserve estimates obtained from the models are shown in Table 3.2. 

Table 3.2 — 30 year reserve estimate obtained using PLE, Duong and logistic growth models 

for numerical simulation model (Gp,max=14.2 BSCF from numerical simulation.) 

 

Time-rate models  Reserve Estimate 

PLE Model = 14.7 BSCF (3.5%) 

Duong Model = 19.5 BSCF (37.3%) 

Logistic Growth 

Model 

= 17.5 BSCF (23.2%) 

The reserve estimates (Table 3.2) indicate that Duong model overestimated the reserve by 37.3 percent 

while logistic growth model overestimated reserve by 23.2 percent.  The boundary conditions present in 

PLE model result in a more reliable match to transient, transition and boundary-dominated flow regimes 

resulting in a reliable estimate of the EUR.  

Next, we perform a "continuous EUR" analysis to determine the rate of convergence of EUR estimated 

using the time-rate models to the "true" EUR value obtained from the numerical simulation model.  The 

process is automated to evaluate EUR at specified time-steps.  Although the process is automated, we have 

calibrated the matching procedures manually when it was necessary to do so.  In addition to matching the 

production data, the match quality of the diagnostic functions (D-, b-, parameters and -derivative) were 

used to check the quality of match during specific flow periods.  Moreover, we were mindful of when a 

particular flow regime began in order to control the model parameters whenever it was possible to do so. 

First, we perform the "continuous EUR" analysis using the PLE model.  A set of production data extracted 

at successive time steps is matched using the PLE model.  A computer program was created to automate 

the data matching procedure.  Fig. 3.3 show the flow rate, D-, b-, parameters and -derivative of the data 

matched using the PLE model.  The D∞ parameter of the PLE model was initiated only after boundary-

dominated flow regime effects were observed.  The PLE model resulted in excellent matches for all flow 

regimes during each successive time step.  
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Figure 3.3 — (Log-log Plot): Continuous EUR analysis. Flow rate (qg), D-, b-parameter and -

derivative versus production time. PLE model matches for numerical simulation 

case.   

Fig. 3.4 shows the resulting model matches of Duong model plotted on the flow rate, D-, b-, parameters 

and -derivative of the data.  The Duong model shows excellent matches during the long transient flow 

regime.  However, when transition and boundary-dominated flow regime effects are felt, the Duong model 

starts deviating from the match of the transient flow regime.  This implies that the Duong model should 

only be used to match transient flow behavior.  As a criteria, we require that a given model yield an 

excellent match across all observed flow regimes.  We should not compromise the match quality to force a 
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match to the boundary-dominated flow regime.  Since boundary-dominated flow regimes are not modeled, 

Duong model overestimate reserves.   

 
Figure 3.4 — (Log-log Plot): Continuous EUR analysis. Flow rate (qg), D-, b-parameter and -

derivative versus production time. Duong model matches for numerical simulation 

case.   

Fig. 3.5 shows the resulting model matches of logistic growth model imposed on the flow rate, D-, b-, 

parameters and -derivative of the data.  The model shows excellent match during the time steps in the 

transient and transition flow regimes.  However boundary-dominated flow regimes are not modeled very 
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well. We observe a slight deviation from the transient/transitions model match at late times when 

boundary effects begin.  As can be seen in Fig. 3.5, the logistic growth model EUR estimates converges at 

a higher EUR value.  When true boundary-dominated flow regimes are observed, the logistic growth 

model lacks the character to match this flow regime accurately.  

 
Figure 3.5 — (Log-log Plot): Continuous EUR analysis. Flow rate (qg), D-, b-parameter and -

derivative versus production time. Logistic growth model matches for numerical 

simulation case.   
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Fig. 3.6 shows results of the EUR values estimated dynamically at specific time intervals.  In this case 

EUR was estimated every 60 days for 30 years to observe the rate of convergence of the EUR estimates to 

the "true" EUR value obtained from numerical simulation.  As expected the PLE model approaches the 30-

yr EUR estimate at a faster rate and results in a reliable reserve estimate. The Duong and logistic growth 

models stabilize at a higher EUR value overestimating reserves.  The EUR estimation was allowed to 

continue until the end of the 30 years period. However, from Fig. 3.6, we note that after 2000 days the 

quality of match obtained using Duong model starts to decline when the transition and boundary effects 

become dominant features.  If the analysis was stopped at that point, the 30 year reserve estimate would 

have stabilized around 19 BSCF as was estimated using Fig. 3.2 and indicated in Table 3.2. Logistic 

growth model EUR estimate approach the "true" EUR value at a faster rate. The model shows a good 

match during transient/transition flow regimes. However, when boundary effects dominate, the model 

lacks the characteristics to model the flow regime accurately.  As a result, the model finally converges to a 

higher EUR value.  

 
Figure 3.6 — (Cartesian Plot): EUR estimates from PLE, logistic growth, and Duong models 

matches and Gp,max projected from numerical simulation case (horizontal well 

model with multiple transverse fractures). 
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3.4.2 Field Example: East Tx Tight Gas Well (SPE 84287) 

Here we compare the time-rate models using production data obtained from a hydraulically fractured 

vertical well completed in a tight gas reservoir.  The 6 year flow rate and cumulative production historical 

data is presented in Fig. 3.7.  The figure shows the raw data together with the edited data which is used for 

analysis. A data diagnostic is a necessary step, in such cases where the production profile may be affected 

by liquid loading, unstable operating conditions or a change in well completion. 

 
Figure 3.7 — (Semi-log Plot): Production history plot of East Tx tight gas well – flow rate (qg) 

and cumulative production (Gp) versus production time.  

Fig. 3.8 shows a "continuous EUR" analysis using the PLE model.  The figure shows flow rate, D-, b-, 

parameters and -derivative model matches at the successive time steps considered.  In this case the 

diagnostic functions do not indicate boundary-dominated flow conditions. The D- parameter shows 

straight line decline behavior and does not show transition to a constant decline value at late times, which 

we would expect to see if boundary-dominated flow conditions were present.  Similarly, the b-, and -

diagnostic functions do not show boundary characteristics at late times.  Hence, the D∞ parameter of the 

PLE model was not used during this analysis.  The b-parameter trend shown on Fig. 3.8 illustrates 

apparent power-law behavior, and we note a slight upward inflection near the large-time endpoints.  The 
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PLE model shows an excellent match across all observed flow regimes. The model matches seem to have 

stabilized after 800 days for each additional time step. 

 
Figure 3.8 — (Log-log Plot): Continuous EUR analysis. Flow rate (qg), D-, b-parameter and -

derivative versus production time. PLE model matches for East Tx tight gas well.  

Fig. 3.9 shows the Duong model "continuous EUR" analysis. Similar to the PLE model, the Duong model 

results in a quality fit to the data. The model shows excellent match during the transient flow regime 

behavior that was observed. The model matches stabilize after about 1000 days for each additional time 

interval.  
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Figure 3.9 — (Log-log Plot): Continuous EUR analysis. Flow rate (qg), D-, b-parameter and -

derivative versus production time. Duong model matches for East Tx tight gas 

well.  

Fig. 3.10 shows results of "continuous EUR" analysis using logistic growth model. The model matches 

show quality match at successive time intervals to the flow regime observed. The model matches seem to 

have converged after about 800 days for the next successive time intervals. 
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Figure 3.10 — (Log-log Plot): Continuous EUR analysis. Flow rate (qg), D-, b-parameter and -

derivative versus production time. Logistic growth model matches for East Tx 

tight gas well.  

Fig. 3.11 shows the EUR values calculated by the models at each successive time steps plotted against 

time. We can see that when boundary-dominated flow regime is not observed the 30 year EUR value 

converge at a EUR value of 3 BSCF.  Specifically PLE converged at 2.97 BSCF while the Duong model 

converged at 3.14 BSCF and logistic growth model EUR estimates converged at 2.95 BSCF.  The results 

show that in the absence of boundary-dominated flow regime all models converge to EUR value around 3 

BSCF at the end of the 30 year time limit.  The figure shows that PLE model converged after 750 days 

where as logistic growth model converged after about 1000 days and the Duong model converged after 
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about 1200 days.  This shows that PLE model converges faster to a reliable EUR estimate when a limited 

set of data is available for analysis. 

 
Figure 3.11 — (Cartesian Plot): EUR estimates from PLE, logistic growth, and Duong models 

matches and Gp,max of East Tx tight gas well. 

This analysis shows that, in the absence of boundary-dominated flow regime, all the models result in a 

quality match during transient flow regime and all models converge to a similar EUR value although at 

different rates.  This shows that all time-rate relations can be used to model transient flow regimes.  

3.4.3 Numerical Simulation Case: East Tx Tight Gas Well (SPE 84287) 

In this section we consider production data generated from a numerical simulation of the field data case 

considered in the previous section.  A vertical well model with finite conductivity vertical fractures is 

modeled.  The numerical simulation data was generated by (Ilk et al. 2008a).  The model input parameters 

are given in Table 1.1.  Fig. 1.1 shows the historical flow rate and cumulative production data over a 6 

year period. 
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In the previous section, we have seen that the field data did not exhibit the boundary-dominated flow 

regime.  As a result, all of the models yielded a good match for the observed (transient) flow regime.  Fig. 

3.12 shows the PLE model matches obtained from "continuous EUR" analysis of the simulated production 

data.  In this case, the diagnostic functions show boundary-dominated flow regime.  The D-, b-parameters 

and -derivative show deviation from transient flow characteristics to transition/boundary-dominated flow 

regime after about 200 days of production.  The b-parameter shows value greater than 0.5 during the early 

time periods because of dominant finite conductivity behaviors during this period.  

 
Figure 3.12 — (Log-log Plot): Continuous EUR analysis. Flow rate (qg), D-, b-parameter and -

derivative versus production time. PLE model matches for numerical simulation 

case of East Tx tight gas well.  
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In this case the D∞ parameter was used after about 300 days of production.  As a result the model was able 

to match transient and boundary-dominated flow regimes successfully.  

Fig. 3.13 shows the Duong model matches obtained from "continuous EUR" analysis.  We can see that 

during early time period, the model matches the data very well.  However, when boundary conditions 

dominate, the match quality is reduced.  This shows that Duong model cannot match transition/boundary-

dominated flow regimes very well and the model should not be forced to match this flow period. 

 
Figure 3.13 — (Log-log Plot): Continuous EUR analysis. Flow rate (qg), D-, b-parameter and -

derivative versus production time. Duong model matches for numerical simulation 

case of East Tx tight gas well.  
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Fig. 3.14 shows logistic growth model matches obtained from "continuous EUR" analysis. The model was 

able to provide quality match to the data during the transient and transition flow regimes.  

 
Figure 3.14 — (Log-log Plot): Continuous EUR analysis. Flow rate (qg), D-, b-parameter and -

derivative versus production time. Logistic growth model matches for numerical 

simulation case of East Tx tight gas well.  

Fig. 3.15 shows the EUR values calculated from the model matches at each successive time step plotted 

against the production time.  The numerical simulation case was forecasted to a 30 year period to visualize 

the accuracy of the 30 year reserve estimate obtained from the models.  The EUR values estimated for 

each model increase and then decrease significant at early times and stabilize soon after. As mentioned 
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earlier the D∞ parameter of the PLE model was initiated after about 300 days when boundary effects were 

stating to dominate.  The PLE model EUR estimates stabilize faster slightly underestimating reserves by 7 

percent. The Duong model converges slowly in this case.  The model matches of Duong model were 

forced until the EUR estimates converged.  However, the model match results on Fig. 3.13 showed that 

that the quality of match was reduced for model matches obtained after about 300 days when boundary 

effects seem to have dominated the production data profile.  If the "continuous EUR" analysis was stopped 

after the 300 days, the Duong model overestimates reserves by 135 percent.  In this case the "continuous 

EUR" analysis was run until the model converged. Logistic growth model EUR estimates converged after 

about 1000 days with good fits to the data.  The EUR values were overestimated by about 7%. 

 
Figure 3.15 — (Cartesian Plot): EUR estimates from PLE, logistic growth, and Duong models 

matches and Gp,max projected from numerical simulation case (East Texas tight gas 

well).  
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CHAPTER IV 

MODIFIED TIME-RATE RELATIONS 

 

In the previous chapter we demonstrated that the PLE model, logistic growth model, and Duong models 

yield good matches for the long transient flow regimes observed from horizontal multiply-fractured wells 

producing in unconventional reservoirs.  We have shown that the PLE model behaves exceptionally well 

across all flow regimes observed from such reservoirs.  However; the logistic growth model and the 

Duong model do not provide accurate matches to boundary-dominate flow behavior observed after long 

periods of production.  As a result, production forecasting and reserve estimation using these models will 

result in significantly higher reserve estimates. 

In this section we develop new time-rate relations based on the logistic growth model and the Duong 

models. We use diagnostic plots and development schemes to modify these models to take in to account 

the transition and boundary-dominated flow regimes. 

4.1 Modified Duong Model – 1 (MDNG – 1) 

This derivation of this modification of the Duong model is based on the exponential decline behavior that 

is observed when constant compressibility fluids are flowing at boundary-dominated flow conditions, 

where a constant flowing bottomhole pressure is maintained at the well in a closed reservoir system.  The 

loss-ratio derivation of Arps' exponential time-rate relation is characterized by a constant decline 

parameter (1/D).  Eq. 4.1 shows the D-parameter derivation for the Duong model.  The loss-ratio 

derivation of Duong model shows time dependence at all times.  We can re-write the loss-ratio derivation 

by including a constant decline parameter, DDNG, at late times.  This technique parallels the methods used 

in the derivation of the power law exponential model (Ilk et al. 2008a).  The new Duong model loss-ratio 

relation is given by: 

DNG
m DatmttD  1)(  ................................................................................................................ (4.1) 

From the loss-ratio derivation we can derive, the time-rate relation of modified Duong model (MDNG-1).  

The derivation is shown in Appendix A.  The time rate relation of MDNG-1 is given by: 

)]()(
1

exp[)( 1

1

1

11

1
ttDtt

m

a

t

t
qtq DNG

mm

m

t 












  ................................................................... (4.2) 

In this derivation qt1 is the rate estimated at t1.  The b-parameter and -derivative of MDNG-1 are given 

by: 
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It should be noted that MDNG-1 does not allow for the direct development of a cumulative production 

relation.  Hence, numerical methods are used to estimate cumulative production. 

4.2 Modified Duong Model – 2 (MDNG – 2) 

In this case we consider characteristics of production data obtained from unconventional reservoirs when 

plotted on a q/Gp versus time plot.  Fig 4.1 shows q/Gp versus time plot of production data generated from 

three numerical simulation cases with different permeability values.  The input parameters are given in 

Table. 3.1.  

Fig. 4.1 shows a straight line with a negative slope during the early time linear flow period.  However the 

straight-line behavior deviates towards late time periods characterizing the boundary conditions that 

prevail during that time.  

The early time straight-line behavior and the declining characteristics during late time can be characterized 

by power law behavior for the early time linear flow and with an exponential decline relation for the 

observed boundary characteristics.  A new q/Gp relation can be formulated by integrating the early time 

power-law characteristics and late time exponential decline characteristics.  The new q/Gp ratio relation is 

given by: 
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The new time-rate relation can be derived from Eq. 4.5.  The derivation is shown in Appendix B.  Eq. 4.6 

shows the new time rate relation. 
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In this derivation qt1 is the rate estimated at t1. The associated D-, b-, and -parameters are given as 

follows: 
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Figure 4.1 — (Log-log Plot): q/Gp versus production time. Duong model and Modified Duong 

Model – 2 (MDNG – 2) diagnostic plot match for numerical simulation cases. 
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Figure 4.2 — (Log-log Plot): Flow rate (qg), D-, b-parameter and -derivative versus production 

time. Schematic of Duong model, MDNG – 1, and MDNG – 2 time rate models. 

The cumulative production relation can be explicitly derived. It is given by: 
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Fig. 4.2 shows a schematic of the new time rate relations (MDNG-1, MDNG-2) as well as the original 

Duong model showing the time-rate, D-, b- and -derivative behaviors. We can see that the new models do 

accurately characterize the boundary-dominated flow regime.  

4.3 Modified Logistic Growth Model – 1 (MLGM – 1) 

Similar to the derivation method used for MDNG-1, we apply a constant decline parameter to the loss-

ratio derivation of logistic growth model to characterize the exponential decline behavior observed during 

boundary conditions. The inverse "loss-ratio" derivation (D-parameter) of logistic growth model is given 

by Eq. 4.11.  The modified D-parameter is given by: 
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The time-rate relations can be derived from the new D-parameter formulation (Eq. 4.11). The derivation is 

shown in Appendix C. The time-rate relation and b- parameter are given by: 
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Fig. 4.4 shows schematics of the new time-rate relation (MLGM-1). 

4.4 Modified Logistic Growth Model (MLGM – 2)  

This derivation is based on the characteristics of the ratio of gas in place to cumulative production data 

obtained from unconventional reservoirs. (Clark et al. 2011) have shown that the logistic growth model 

can be written as: 
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In Eq. 4.14, K is the initial gas in place determined through volumetric calculations. Fig. 4.3 shows plot of 

K/Q(t) – 1 plotted against time for a data generated from a numerical simulation. Eq. 4.14 suggests that the 

plot should display a straight line behavior with negative slope.  However, investigation of long-term 

production data from unconventional reservoirs shows straight line behavior followed by a fast decline and 

finally converging at a constant value.  This is observed on Fig. 4.3.  Based on this diagnostic plot we can 

suggest a new relation for K/Q(t) – 1 to represent the linear flow regime with a power-law relation, the 
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boundary-dominated flow regime with an exponential decline relation and finally converges at a constant 

value. The new K/Q(t) – 1 formulation is given by: 
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In Eq. 4.15, the parameter "DLGM" characterizes boundary-dominated flow regime.  The parameter R 

describes the percentage of the initial gas-in-place that cannot be produced under the existing completion 

conditions and production constraints. 

The time-rate relation can be derived from Eq. 4.15. The derivation is shown in Appendix D. The time-

rate relation is given by: 
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And the cumulative production relation is given by: 
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The D- and b-parameters are given by: 
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Where is given by: 
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Figure 4.3 — (Log-log Plot): K/Gp – 1 versus production time. Modified Logistic Growth Model 

(MLGM – 2) match for numerical simulation case. 

Fig. 4.4 shows schematic of the modified and original logistic growth model. 
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Figure 4.4 — (Log-log Plot): Flow rate (qg), D-, b-parameter and -derivative versus production 

time. Schematic of logistic growth model, MLGM – 1, and MLGM – 2. 

The diagnostic functions shown in Fig. 4.4 verify that the modified logistic growth model relations do 

correctly characterize the transition and boundary-dominated flow regimes. 
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 𝑎̂ + 𝑡𝑛̂ 2
exp −𝐷𝐿𝐺𝑀𝑡  

𝑞 𝑡 =
𝑎̂𝐾𝑡𝑛̂−1exp 𝐷𝐿𝐺𝑀𝑡  𝑛̂ + 𝐷𝐿𝐺𝑀𝑡 

 𝑎̂ + exp 𝐷𝐿𝐺𝑀 𝑡  𝑅 + 1 𝑡𝑛̂ 2
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We next present application of the new time-rate models using production data obtained from wells 

completed in tight/shale gas reservoirs.  

4.5 Field Example 1 – Mexico Tight Gas Well  

In this case we consider a hydraulically fractured vertical well completed in a tight gas reservoir. The 

reservoir has permeability less than 0.001 md (Blasingame et al. 2007). This well is the only one 

producing in the field.  Fig. 4.5 shows the historical production data over a 40 year period. A data 

diagnostics was conducted to remove irregular data points.  Then the diagnostic functions were evaluated 

using the Bourdet derivative algorithm with the time-rate data.   

In this case, all of the diagnostic functions indicate typical linear flow and boundary-dominated flow 

regimes. The b-parameter has a constant value of 2 during the early time period lasting for about 10 years. 

Similarly the -derivative has a value of 0.5 lasting for the same time period. During late time period, the 

diagnostic functions deviate from the linear flow regime trend.  The -derivative shows a unit slope 

behavior at late times indicating boundary-dominated flow regime.  Similarly the D-and b- parameters 

deviate during the boundary-dominated flow regime.   

 
Figure 4.5 — (Semi-log Plot): Production history plot for field data case – flow rate (qg) and 

cumulative production (Gp) versus time (Mexico tight gas well). 
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The objective when using the modified parameters is to obtain a quality match across all flow regimes.  

First we consider MDNG-1 and MLGM-1 since these both rely on the D-parameter diagnostic plot for 

their derivation.  Since the data shows boundary-dominated flow regime, first the linear flow regime is 

matched by setting the constant decline parameters (DDNG and DLGM) to zero.  First we match the linear 

flow regime. Then, the constant decline parameters are adjusted to match the boundary-dominated flow 

regime.  Table 4.1 shows the model match parameters for MDNG-1 and MLGM-1. 

Table 4.1 — MDNG – 1 and MLGM – 1 time-rate relations model parameters (Mexico tight 

gas well). 

 

Modified Duong Model (MDNG – 1) 

qt1=0.0042 day 

(MSCFD)  a  m  

DDng  

(D
-1

) 

32,460  0.59  0.996  0.0000398 

 

Modified Logistic Growth Model (MLGM – 1) 

K 

(MSCF)   ̂  n̂   

DLGM 

 (D
-1

) 

106,733,955.8  1289.7  0.55  0.0000002 

Next we match the data using MDNG – 2 model.  In this analysis the model parameters (a, m, and DDNG) 

are determined on a plot of q/Gp versus time.  This diagnostic plot is shown in Fig. 4.6.   

Model parameter qt1 is then estimated by fixing the remaining parameters and matching the data manually 

or through regression to obtain a fit to the time-rate data.  In this case qt1 is estimated at t1=1 Days.  This 

approach is probably the simplest way to obtain the model parameters.  It is also possible to estimate the 

model parameters using the time-rate relation of MDNG – 2 (Eq. 4.6) if advanced computational tools are 

available. The model parameters are summarized in Table 4.2. 

Table 4.2 — MDNG – 2 time-rate relation model parameters (Mexico tight gas well). 

 

Modified Duong Model (MDNG – 2) 

qt1=0.0042 day 

(MSCFD)  a  m  

DDng  

(D
-1

) 

32,460.8  0.59  0.996  0.000032 
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Figure 4.6 — (Log-log Plot): q/Gp versus production time. Modified Duong Model – 2 (MDNG 

– 2) diagnostic plot matches for Mexico tight gas well. 

Next we match the data using MLGM – 2 model.  In this case, the model parameters are estimated on plot 

of K/Q – 1 versus time plot. In this case, prior estimate of K (initial gas in place) was available from 

volumetric calculations.  Hence, all the unknown parameters were estimated from the K/Q – 1 versus time 

diagnostic plot.   

𝒂𝒕−𝒎𝐞𝐱𝐩 −𝑫𝑫𝑵𝑮𝒕  
Diagnostic Function: 
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Figure 4.7 — (Log-log Plot): K/Gp – 1 versus production time. Modified Logistic Growth Model 

– 2 (MLGM – 2) diagnostic plot match for Mexico tight gas well. 

Fig. 4.7 shows the diagnostic plot necessary to evaluate the model parameters. The model parameters are 

summarized in Table 4.3.  

Fig 4.8 shows the resulting model match from all the time-rate relations.  The modified relations have 

provided a quality match to the flow rate, D-,b-, parameters and to the -derivative during the transient, 

transition and boundary dominated flow regimes.  Duong and logistic growth model resulted in a poor 

match to the boundary-dominated flow regime. 

 

𝒂 𝒕−𝒏 𝐞𝐱𝐩 −𝑫𝑳𝑮𝑴𝒕 + 𝑹 

Diagnostic Function: 

MLGM – 2 Least Squares Fit 
Coefficient Values: 

 𝒏  =0.6351 

 𝒂  =489.3 
 R =0.3 

 DLGM =0.0000665 
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Table 4.3 — MLGM – 2 time-rate relation model parameters (Mexico tight gas well). 

 

Modified Duong Model (MLGM – 2) 

K 

MSCF   ̂   ̂  

DLGM 

(D
-1

) 

22,959,527  489.3  0.635  0.0000665 

 
Figure 4.8 — (Log-log Plot): Flow rate (qg), D-, b-parameter and -derivative versus production 

time. PLE, logistic growth, Duong model, MLGM – 1, MLGM – 2, MDNG – 1, 

and MDNG – 2 time rate model matches for Mexico tight gas well.  

Fig. 4.9 shows model match on the historical rate and cumulative production data. The modified relations 

successfully matched the early time data as well as late time boundary-dominated flow regimes.  



51 

 

 
Figure 4.9 — (Log-log Plot): Rate and cumulative production versus time plot. PLE, logistic 

growth, Duong , MLGM – 1, MLGM – 2, MDNG – 1, and MDNG – 2 time-rate 

models matches for Mexico tight gas well. 

Table 4.4 shows the cumulative production calculated at the end of the historical production using each of 

the models.  The Duong and logistic growth models have significantly overestimated the cumulative 

production.  The PLE and the modified relations have provided a reliable value of the cumulative 

production (and hence, EUR). 
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Table 4.4 — Comparison of calculated cumulative production values for Mexico tight gas well 

(Gp,max = 13.52 BSCF). 

 

Time-rate models  Gp,max 

Duong model  14.84 BSCF 

Logistic growth model   15.22 BSCF 

Power-law exponential model (PLE)  13.70 BSCF 

Modified Duong Model – 1  

(MDNG – 1) 

 13.50 BSCF 

Modified Duong Model – 2 

(MDNG – 2) 

 13.80 BSCF 

Modified Logistic Growth Model – 1 

(MLGM – 1) 

 13.72 BSCF 

Modified Logistic Growth Model – 2 

(MLGM – 2) 

 13.83 BSCF 

4.6 Field Example 2 – Barnett Shale Gas Well  

This case is a vertical well with a single hydraulically fracture (of infinite conductivity) in a shale gas 

reservoir.  Approximately 10 years of production history is available for analysis.  A data quality control 

process is conducted to remove erroneous data points. The diagnostic functions were evaluated using the 

Bourdet derivative algorithm using the time-rate data.   The historical production data is shown in Fig. 

4.10. 

The diagnostic functions indicate transient linear flow and boundary-dominated flow regimes.  Although, 

the diagnostic function derivations are affected by the erratic time-rate data, the D-parameter (Fig. 4.13) 

shows a straight-line trend during the early time periods and then deviates towards the late time periods 

indicating boundary-dominated flow regime.  Similarly, the -derivative deviates with a unit slope line 

during the late time periods. 
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Figure 4.10 — (Semi-log Plot): Production history plot for numerical simulation case – flow rate 

(qg) and cumulative production (Gp) versus time (Barnett shale gas well). 

The objective when using the modified parameters is to obtain a quality match across all flow regimes.  

First we consider MDNG-1 and MLGM-1 since they both rely on the D-parameter diagnostic plot for their 

derivation.  Since the data shows boundary-dominated flow regime, first the linear flow regime is matched 

by setting the constant decline parameters (DDNG and DLGM) to zero.  Once a quality match is obtained in 

the linear flow regime, the constant decline parameters are adjusted to match the boundary-dominated 

flow regime.  Table 4.5 shows the model match parameters for MDNG-1 and MLGM-1. 

Table 4.5 — MDNG – 1 and MLGM – 1 time-rate relations model parameters (Barnett shale 

gas well). 

 

Modified Duong Model (MDNG – 1) 

qt1=0.001 day 

(MSCFD)  a  m  

DDng  

(D
-1

) 

70100  0.67  1.00005  0.000345 

 

Modified Logistic Growth Model (MLGM – 1) 

K 

(MSCF)   ̂   ̂  

DLGM 

 (D
-1

) 

13,776,210  3210.4  0.7  0.00025 



54 

 

Next we match the data using the MDNG-2 model.  In this analysis the model parameters are determined 

on a plot of q/Gp versus time.  This diagnostic plot is shown in Fig. 4.11. 

 

Figure 4.11 — (Log-log Plot): q/Gp versus production time. Modified Duong Model – 2 (MDNG 

– 2) diagnostic plot matches for Barnett shale gas well.  

The model parameter qt1 is then estimated by fixing the remaining parameters and matching the data 

manually or through regression to obtain a fit to the time-rate data.  In this case qt1 is estimated at t1=1 

days.  This approach is the simplest way to obtain the model parameters.  It is also possible to estimate the 

model parameters using the time-rate relation (Eq. 4.6) if advanced computation tools are available.  The 

model parameters are summarized in Table 4.6 

𝒂𝒕−𝒎𝐞𝐱𝐩 −𝑫𝑫𝑵𝑮𝒕  
Diagnostic Function: 
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Figure 4.12 —  (Log-log Plot): K/Gp – 1 versus production time. Modified Logistic Growth Model 

– 2 (MLGM – 2) diagnostic plot match for Barnett shale gas well. 

Table 4.6 — MDNG – 2 time-rate relation model parameters (Barnett shale gas well). 

 

Modified Duong Model (MDNG – 2) 

qt1=0.0001 day 

(MSCFD)  a  m  

DDng  

(D
-1

) 

50,000  0.7  1.0017  0.000243 

Next we match the data using MLGM-2 model.  In this case, the model parameters are estimated on plot 

of K/Q-1 versus time plot.  Fig. 4.12 shows the diagnostic plot necessary to evaluate the model parameters.  

In this analysis K is the initial gas in place which was available from volumetric estimates. Hence, all the 

𝒂 𝒕−𝒏 𝐞𝐱𝐩 −𝑫𝑳𝑮𝑴𝒕 + 𝑹 

Diagnostic Function: 

MLGM – 2 Least Squares Fit 
Coefficient Values: 
 𝒏  =0.735 

 𝒂  =390 
 R =0.45 
 DLGM =0.000616 



56 

 

unknown parameters were estimated from the K/Q-1 versus time diagnostic plot.  The model parameters 

for MLGM-2 are summarized in Table 4.7.  The resulting model matches are shown in Fig. 4.13. 

Table 4.7 — MLGM – 2 time-rate relation model parameters (Barnett shale gas well). 

 

Modified Logistic Growth Model (MLGM-2) 

K 

MSCF 

  ̂  n̂   R  DLGM 

1,310,000  390  0.735  0.45  0.000616 

 
Figure 4.13 —  (Log-log Plot): Flow rate (qg), D-, b-parameter and -derivative versus production 

time. PLE, logistic growth, Duong, MLGM – 1, MLGM – 2, MDNG – 1, and 

MDNG – 2 time rate model matches for Barnett shale gas well. 
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Fig. 4.14 shows model match on the historical rate and cumulative production data. The modified relations 

were able to match both the early time data and late time boundary-dominated flow regime successfully.  

 
Figure 4.14 — (Log-log Plot): Rate and cumulative production versus time plot. PLE, logistic 

growth, Duong model, MLGM – 1, MLGM – 2, MDNG – 1, and MDNG – 2 time-

rate model matches for Barnett shale gas well. 
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Fig. 4.13 shows that Duong and logistic growth models have failed to match the boundary-dominated flow 

regime.  The modified time-rate relations have provided a quality match to the transient and boundary 

dominated flow regime. Table 4.8 shows the cumulative production calculated using the models at the end 

of the historical production period.  The Duong and logistic growth models have overestimated the 

cumulative production. The PLE and the modified relations have provided a reliable value of the 

cumulative production. 

Table 4.8 — Comparison of calculated cumulative production values for Barnett shale gas well 

(Gp,max = 0.84  BSCF). 

 

Time-rate models  Gp,max 

Duong model  1.20 BSCF 

Logistic growth model   1.10 BSCF 

Power-law exponential model (PLE)  0.79 BSCF 

Modified Duong Model – 1  

(MDNG – 1) 

 0.78 BSCF 

Modified Duong Model – 2 

(MDNG – 2) 

 0.82 BSCF 

Modified logistic growth Model – 1 

(MLGM – 1) 

 0.80 BSCF 

Modified logistic growth Model – 2 

(MLGM – 2) 

 0.78 BSCF 
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CHAPTER V 

INTEGRATION OF PRODUCTION DATA ANALYSIS AND  

TIME-RATE ANALYSIS VIA PARAMETRIC CORRELATION –  

THEORETICAL CONSIDERATION 

 

In this section we demonstrate a methodology to integrate model-based production analysis techniques 

with rate-time analysis techniques using parametric correlations.  We consider the time-rate model 

considered thus far (the PLE, logistic growth, and Duong models).  Here we provide a theoretical 

consideration to the methodology using data generated from a numerical simulation model of a horizontal 

well with multiple transverse fractures in low permeability reservoir.  The methodology demonstrated here 

is based on fracture conductivity and 30 year EUR values, although similar methodology can be followed 

using permeability and fracture half-length. 

This methodology assumes that completion parameters and production constrains are kept fairly constant 

for all cases considered.  Production factors like bottomhole pressure, number of fractures and well-length 

are kept constant in order to narrow the unknown parameter to the fundamental reservoir properties like 

permeability (k) and fracture conductivity (Fc). 

5.1 Methodology 

A horizontal well model in a low permeability reservoir with multiple transverse fractures is modeled (Fig. 

5.1).  Several simulation runs were made keeping all parameters constant except for the fracture 

conductivity.  The model input parameters are given in Table 5.1. 

 

 

  

 

Figure 5.1 — Diagram of the numerical simulation model showing horizontal well and multiple 

transverse fractures.  

Transverse Fractures 

Horizontal well  
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Table 5.1 — Reservoir and fluid properties for numerical simulation case (horizontal well with 

multiple transverse fractures). 

 

Reservoir Properties 

Net pay thickness, h = 160 ft 

Formation permeability, k = 0.5 µD 

Fracture conductivity = 0.005 – 0.7 md-ft 

Wellbore Radius, rw  = 0.1 ft 

Formation compressibility, cf = 3 x 10
-6  

psi
-1

 

Porosity,    = 0.05 (fraction) 

Initial reservoir pressure, pi = 5000 psi 

Gas saturation, sg  = 1.0 fraction 

Skin factor, s   = -5 (dimensionless) 

Reservoir temperature, Tr = 212 °F 

Fluid properties: 

Gas specific gravity, γg = 0.7 (air = 1) 

Hydraulically fractured well model parameters: 

Fracture half-length, xf = 164.0 ft 

Number of fractures  = 15 

Horizontal well length = 6561.7 ft 

Production parameters: 

Flowing pressure, pwf  = 500 psia 

Production time, t  = 10,958 days (30 years) 

We have generated 15 simulation cases with different fracture conductivity values, ranging between 0.005 

– 0.7 md-ft, and keeping all other model parameters constant.  

We performed rate decline analysis of the production data generated from the numerical simulation runs 

using the models we have considered in the previous chapter.  We have used the Bourdet algorithm 

(Bourdet et al. 1989) to calculate the D-, b- and -derivatives to help in matching the production data. A 

log-log plot and a semi-log plot of rate q, D-, b-parameters and -derivative plotted against production 

time is provided to show the model matches.  

Once we match each of the production data, the next step is to study the relationship between the 

parameters of the rate decline models and the reservoir parameters considered here, in this case fracture 

conductivity (Fc) and 30 year EUR (EUR30yr).  We have performed a cross-plot analysis of the individual 

rate decline model parameters and the reservoir parameters to identify a correlating parametric function.  

We intend to right each reservoir parameter in terms of the rate decline model parameters. For example: 

)( pfFc   ............................................................................................................................................ (5.1) 

And 
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)(30 pfEUR yr   .................................................................................................................................. (5.2) 

Here, p is a parameter of one of the models under consideration. 

First, we identify the type of correlating function; then we combine each of the individual correlating 

functions to find an integrating parametric correlation for estimation of the reservoir parameters directly 

from rate decline model parameters.  The integrating parametric correlation can be written as: 

...),,( rqpfFc   ................................................................................................................................. (5.3) 

And 

...),,(30 rqpfEUR yr   ........................................................................................................................ (5.4) 

p, q, and r indicate (sample) parameters for the rate decline model parameters being considered. 

Finally we demonstrate that it is possible to estimate reservoir properties from rate decline model 

parameters when production constraints and completion parameters are kept constant. 

5.2 PLE Model – Parametric Correlations 

We develop integrating parametric correlations using parameters of the PLE model parameters.  The 

flowrate q, D-, b-parameters, and -derivatives plots are given below (Figs. 5.2, 5.3, and 5.4).  The 

diagnostic functions indicates boundary-dominated flow regime.  In this analysis, we focus on the 

behavior of the linear flow regime when fracture conductivity values are changing. 

Earlier we have seen that the b-parameter has a value of 2 in the linear flow regime, when the fracture 

conductivity is large.  Here we have considered fairly low fracture conductivity values and as a result the 

b-parameters range between 3 for the highest conductivity case (0.7 md-ft) to 10 for the lowest 

conductivity case (0.005 md-ft) (Fig. 5.2).  Similarly the -derivative ranges between 0.07 for the lowest 

fracture conductivity case (0.005 md-ft) to 0.3 for the highest fracture conductivity case (0.7 md-ft).  As 

mentioned earlier we not use the D∞ parameter in the development of the parametric correlation. 
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Figure 5.2 — (Log-log Plot): Flow rate (qg) versus production time. PLE model matches of 15 

numerical simulation cases. 

 

Figure 5.3 — (Log-log Plot): b-parameter versus production time. PLE model matches of 15 

numerical simulation cases. 
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Figure 5.4 — (Log-log Plot): -parameter versus production time. PLE model matches of 15 

numerical simulation cases. 

Table 5.2 shows the matching model parameters.  

Table 5.2 — Power Law Exponential model (PLE) parameters. Model matches to 15 numerical 

simulation cases. 

 

Num. Sim. Cases                              PLE Model Parameters 

Fc 

(md-ft) 

 Gp, max (30 yr) 

(BSCF) 

 D∞ 

(D
-1

) 

 n 

(d.less) 

  ̂  
(D

-1
) 

  ̂   

(MSCFD) 

 EURPLE 

(BSCF) 

0.005  2.24  3.2E-06  0.014  5.47  95,974.3  2.24 

0.007  2.59  3.6E-06  0.017  5.25  100,328.9  2.58 

0.010  2.98  2.5E-06  0.020  5.03  105,777.6  2.97 

0.015  3.46  3.0E-07  0.025  4.78  111,222.0  3.46 

0.020  3.82  3.0E-07  0.028  4.61  115,385.6  3.82 

0.030  4.36  0.0E+00  0.033  4.37  120,961.6  4.34 

0.050  5.09  4.0E-06  0.035  4.49  193,018.7  5.09 

0.070  5.60  4.0E-06  0.040  4.31  199,789.8  5.58 

0.100  6.15  4.5E-06  0.044  4.11  207,364.2  6.15 

0.150  6.76  1.1E-05  0.047  4.10  264,901.5  6.78 

0.200  7.16  1.7E-05  0.050  4.00  286,229.0  7.16 

0.300  7.67  2.2E-05  0.054  3.90  330,134.6  7.68 

0.400  7.98  2.2E-05  0.058  3.80  353,264.0  7.97 

0.500  8.18  1.3E-05  0.062  3.70  363,276.7  8.18 

0.700  8.43  5.1E-06  0.067  3.65  413,795.1  8.44 
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19 3.24ˆ0.0023 1.76(10 )c iF q   7 13.8ˆ0.0061 3.7(10 )c iF D     

  
4.30.0024 78,979cF n   6

30
ˆ9.6 11.7exp[ 5.5(10 ) ]yr iEUR q    

  

30
ˆ0.9623 101.7exp[ 0.64 ]yr iEUR D     0.786

30 0.76 80.4yrEUR n    

Figure 5.5 — Cross-plots showing relationship between PLE model parameters and numerical 

simulation case fracture conductivity (Fc) and 30 year EUR estimates. 



65 

 

We next study the relationship between the PLE model parameter and the reservoir parameters (Fc and 

EUR30yr) by plotting the reservoir parameters against each of the model parameters.  We then fit a simple 

parametric function to the data to establish a suitable correlating function.  Fig. 5.5 shows the cross-plots 

along with the correlating function. 

Finally, we propose parametric correlations based on the correlating functions we identified earlier (Fig. 

5.5), to relate the reservoir parameters with PLE model parameters.  From Fig. 5.5 we notice that fracture 

conductivity (Fc) is related to PLE model parameters n, Di and qi with a power-law function. Eq. 5.5 

shows the proposed correlating function. 

040302 ˆˆ
01

a

gi

a

i

a

c qDnaF   ....................................................................................................................... (5.5) 

Here, a01, a02, a03 and a04 are coefficients to be determined through least square regression.  Similarly we 

can propose the following correlating function to estimate the 30 year EUR (EUR30yr). 

]ˆexp[]ˆexp[ 04030130
02

gii

a

yr qaDanaEUR   ................................................................................................. (5.6) 

Fig. 5.6 shows the resulting model fit.  We can see that proposed correlating function provides a reliable 

estimate of the reservoir properties.  This shows that if we obtain a production data from another well 

within the same reservoir system, we can match the production data using PLE model and use the 

correlations shown in Fig 5.6 to estimate the reservoir properties (Fc and EUR30 yr) using the PLE model 

parameters. 
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1.7 4 08 1.61 07 E

C i iF E n D q   1.4

30 70.3 exp[0.46 ]exp[2 07 ]yr i iEUR n d E q   

Figure 5.6 — Comparison of fracture conductivity and 30 year EUR values calculated using 

parametric correlations developed using PLE model parameters versus numerical 

simulation models. 

5.3 Duong Model – Parametric Correlations 

Here, we consider Duong model parameters to develop parametric correlations to integrate reservoir 

properties with the rate decline model parameters.  We have considered the same numerical simulation 

data set that was used in the previous section.  Duong model is used to match only the linear flow-regime. 

No attempt was made to match the boundary-dominated flow regime.  In Chapter 4 we have demonstrated 

the limitations of Duong model at modeling boundary dominated flow-regimes.  The model matches here 

overestimate the 30 year EUR values.  The resulting model matches are shown in Figs. 5.7, 5.8 and 5.9 on 

a log-log plot of flow rate, b- parameter and -derivative plots respectively. 
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Figure 5.7 — (Log-log Plot): Flow rate (qg) versus production time. Duong model matches of 15 

numerical simulation cases. 

 

Figure 5.8 — (Log-log Plot): b-parameter versus production time. Duong model matches of 15 

numerical simulation cases. 
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Figure 5.9 — (Log-log Plot): -parameter versus production time. Duong model matches of 15 

numerical simulation cases. 

The resulting model parameters are given in Table 5.3. 

Table 5.3 — Duong model parameters. Model matches to 15 numerical simulation cases. 

 

Num. Sim. Cases                              Duong Model Parameters 

Fc 

(md-ft) 
 

Gp, max (30 yr) 

(BSCF) 
 

a 

(D
-1

) 
 

m 

(d.less) 
 

 1  

(MSCFD) 
 

EURDNG,30yr 

(BSCF) 

0.005  2.24  0.932  1.0050  565.0  2.0895 

0.007  2.59  0.921  1.0054  781.8  2.4447 

0.010  2.98  0.906  1.0059  1,109.6  2.7957 

0.015  3.46  0.890  1.0064  1,624.1  3.2749 

0.020  3.82  0.880  1.0067  2,110.6  3.6545 

0.030  4.36  0.866  1.0073  3,018.7  4.2444 

0.050  5.09  0.849  1.0081  4,656.5  5.1233 

0.070  5.60  0.838  1.0085  6,142.4  5.8076 

0.100  6.15  0.828  1.0089  8,187.1  6.6362 

0.150  6.76  0.816  1.0098  11,235.4  7.5835 

0.200  7.16  0.807  1.0105  13,975.5  8.2810 

0.300  7.67  0.795  1.0117  18,867.7  9.2248 

0.400  7.98  0.783  1.0125  23,659.3  9.7001 

0.500  8.18  0.774  1.0130  28,132.1  10.0494 

0.700  8.43  0.768  1.0140  34,108.8  10.9947 
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24.80.00116 0.0094cF a    07 1.4

10.0078 2.14(10 )cF q   

  
337.050.04 0.007cF m    0.077

30 436 435.6yrEUR a    

  
0.0924

30 112.04 7.88yrEUR q    147.3

30 11.034 18.9yrEUR m   

Figure 5.10 — Cross-plots showing relationship between Duong model parameters and numerical 

simulation cases fracture conductivity (Fc) and 30 year EUR values. 
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Next we identify the relationship between the model parameters and the reservoir properties by plotting 

the reservoir properties against Duong model parameters.  The cross-plot analysis is shown in Fig. 5.10.  

After considering several parametric correlations, the best fitting correlating function is matched to the 

data. The corresponding correlating function is shown in the figure (Fig. 5.10). 

Finally, we propose parametric correlations based on the correlating functions we identified earlier (Fig. 

5.10), to relate the reservoir parameters with Duong model parameters.  From Fig. 5.10 we notice that 

fracture conductivity (Fc) is related to Duong model parameters m and a with a power-law function. Eq. 

5.7 shows the proposed correlating function. 

02 03

01

a a

cF a m a  ................................................................................................................................ (5.7) 

Here, a01, a02, a03 and a04 are coefficients to be determined through least square regression.  Similarly we 

can propose the following correlating function to estimate the 30 year EUR (EUR30yr). 

02 03

30 01 1

a a

yrEUR a a q  ......................................................................................................................... (5.8) 

  
8.8 0.8536.9CF m a  14.76 1.06

30 10.0074yrEUR a q  

Figure 5.11 — Comparison of fracture conductivity and 30 year EUR values calculated using 

parametric correlations developed using Duong model parameters versus 

numerical simulation models. 
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Fig. 5.11 shows the resulting model fit.  We can see that proposed correlating function provides a 

reliable estimate of the reservoir properties.  This shows that if we obtain a production data from 

another well within the same reservoir system, we can match the production data using Duong model 

and use the correlations shown in Fig. 5.11 to estimate the reservoir properties (Fc and EUR30 yr) using 

the matching Duong model parameters. 

5.4 Logistic Growth Model – Parametric Correlations 

Here, a parametric correlation is developed using logistic growth model parameters.  The flow rate, b-

parameter and -derivatives are shown in Figs. 5.12, 5.13, and 5.14.  As mentioned previously, the K 

parameter of the logistic growth model describes the initial gas in place.  In this case, since we have the 

initial gas in place value available from the numerical model, we have kept the K parameter constant for 

all model matches. 

 
Figure 5.12 — (Log-log Plot): Flow rate (qg) versus production time. Duong model matches of 15 

numerical simulation cases. 
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Figure 5.13 — (Log-log Plot): b-parameter versus production time. Duong model matches of 15 

numerical simulation cases. 

 

Figure 5.14 — (Log-log Plot): -parameter versus production time. Duong model matches of 15 

numerical simulation cases. 

The resulting model parameters are given in Table 5.4. 
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Table 5.4 — Logistic growth model matches to 15 numerical simulation cases. 

 

Num. Sim. Cases                              Logistic Growth Model 

Fc 

(md-ft) 
 

Gp, max (30 yr) 

(BSCF) 
 

K 

(MSCF) 
 

n̂  

(d.less) 
 â   

EURLGM,30yr 

(BSCF) 

0.005  2.24  31,022,140.8  0.9300  72,573.7  2.26 

0.007  2.59  31,022,140.8  0.9181  55,201.1  2.63 

0.010  2.98  31,022,140.8  0.9051  41,659.4  3.04 

0.015  3.46  31,022,140.8  0.8900  30,563.2  3.54 

0.020  3.82  31,022,140.8  0.8794  24,668.6  3.92 

0.030  4.36  31,022,140.8  0.8644  18,360.1  4.48 

0.050  5.09  31,022,140.8  0.8360  12,273.3  5.04 

0.070  5.60  31,022,140.8  0.8248  9,712.7  5.62 

0.100  6.15  31,022,140.8  0.8131  7,618.8  6.26 

0.150  6.76  31,022,140.8  0.7997  5,817.7  7.01 

0.200  7.16  31,022,140.8  0.7896  4,824.5  7.54 

0.300  7.67  31,022,140.8  0.7742  3,728.7  8.21 

0.400  7.98  31,022,140.8  0.7618  3,119.6  8.59 

0.500  8.18  31,022,140.8  0.7514  2,724.9  8.83 

0.700  8.43  31,022,140.8  0.7341  2,234.1  9.07 

Next we identify the relationship between the model parameters and the reservoir properties by plotting 

the reservoir properties with logistic growth model parameters.  The cross-plot analysis is shown in Fig. 

5.15.  After considering several parametric correlations, the best fitting correlating function is matched to 

the data. The corresponding correlating function is shown with the figures (Fig. 5.15). 

Finally, we propose parametric correlations based on the correlating functions we identified earlier (Fig 

5.15), to relate the reservoir parameters with logistic growth model parameters.  From Fig. 5.15 we notice 

that fracture conductivity (Fc) is related to logistic growth model parameters –n and a with a power-law 

function. Eq. 5.9 shows the proposed correlating function. 

02 03

01
ˆ ˆa a

cF a n a  ................................................................................................................................. (5.9) 

Here, a01, a02, and a03 are coefficients to be determined through least square regression.  Similarly we can 

propose the following correlating function to estimate the 30 year EUR (EUR30yr). 

02 03

30 01
ˆ ˆa a

yrEUR a n a  ......................................................................................................................... (5.10) 
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16.46ˆ0.02 0.0046cF n    5 1.653ˆ.0064 2.37(10 )cF a   

  
1.2

30
ˆ29.7 30.0yrEUR n   0.12

30
ˆ10.4 48.13yrEUR a    

Figure 5.15 — Cross-plots showing relationship between logistic growth model parameters and 

numerical simulation cases fracture conductivity (Fc) and 30 year EUR values. 

Fig 5.16 shows the resulting model fit.  We can see that proposed correlating function provides a reliable 

estimate of the reservoir properties.  This shows that if we obtain a production data from another well 

within the same reservoir system, we can match the production data using Duong model and use the 

correlations shown in Fig 5.16 to estimate the reservoir properties (Fc and EUR30 yr) using the matching 

Duong model parameters. 
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8.8 0.85ˆ ˆ36.9CF n a  6.1 0.8

30
ˆ ˆ27473yrEUR n a  

Figure 5.16 — Comparison of fracture conductivity and 30 year EUR values calculated using 

parametric correlations developed using logistic growth model parameters versus 

numerical simulation models.   
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CHAPTER VI 

SUMMARY, CONCLUSIONS, AND  

RECOMMENDATIONS FOR FUTURE WORK 

 

6.1 Summary 

In this work we performed a complete performance analysis study using modern rate decline models (PLE, 

logistic growth, and Duong), where the root of this study is based on diagnostic data and model functions. 

We considered the quality of match and accuracy of reserve estimates using production data obtained from 

unconventional reservoirs.  We showed that our proposed time-rate relations are capable of modeling the 

dominant transient and transition flow regimes observed from production data analysis of hydraulically 

fractured wells in low/ultra-low permeability reservoirs. 

We demonstrated that the PLE model is capable of modeling boundary-dominated flow regimes whereas 

the logistic growth and the Duong models lack the character to model boundary-dominated flow behavior.  

The "continuous EUR" approach was used to study performance of the time-rate models in estimating 

ultimate recovery as a function of time.  Finally, we proposed new time rate-relations to improve the 

reserve estimates and production forecasts for the logistic growth and the Duong models.  The proposed 

time-rate relations do capture boundary-dominated flow behavior, thereby constraining reserve estimates. 

We also developed a methodology to formulate a parametric correlation to integrate reservoir properties 

with rate decline model parameters by analyzing time-rate data generated from a reservoir simulation of a 

multi-fractured horizontal well in low/ultra-low permeability reservoir.  The developed correlation allows 

estimation of reservoir properties using parameters of the time-rate models (obviously one must have 

benchmark results to establish such correlations).  In particular, we focused on the correlation of fracture 

conductivity (FC) and EUR using the results of time-rate analyses. 

6.2 Conclusions 

● We showed that the PLE, Duong and logistic growth models all successfully model transient flow 

regimes.  However, the Duong and the logistic growth models lack the fundamental character to 

model boundary-dominated flow behavior. 

● Our new proposed time-rate relations derived from diagnostic functions provide a quality match to the 

production data across all flow regimes.  

● Diagnostic functions should always be used to establish representative time-rate analyses. 



77 

 

● The parametric correlations of results from model-based production data analyses and time-rate 

(decline) curve analyses do appear to be unique and distinct. 

6.3 Recommendations for Future Work 

● Identification of other diagnostic function which may allow accurate model parameter estimation and 

assist in the derivation of additional time-rate models. 
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NOMENCLATURE 

 

a = Duong model intercept, 1/D 

b = "Loss-ratio" derivative, dimensionless 

â  = LGM time-rate equation model parameter, Days 

a01 = Model parameter for empirical correlation, md-D
2
/MSCF 

a02 = Model parameter for empirical correlation, dimensionless 

a03 = Model parameter for empirical correlation, dimensionless 

a04 = Model parameter for empirical correlation, dimensionless 

a05 = Model parameter for empirical correlation, BSCF 

a06 = Model parameter for empirical correlation, Days 

a07 = Model parameter for empirical correlation, dimensionless 

b̂  = LGM time-rate equation model parameter, D 

D = "Loss-ratio", 1/D 

D∞ = Power-law exponential decline relation at infinite time, 1/D 

DDNG = Modified Duong model decline parameter, 1/D 

iD̂  = Power-law exponential decline relation, 1/D  

DLGM = Modified Duong model decline parameter, 1/D 

EUR = Estimated ultimate recovery, MSCF 

EUR30-Yr = Estimated ultimate recovery after 30 years, MSCF 

FC = Fracture conductivity, md-ft 

k = Model permeability, md 

K = Logistic growth model parameter (Carrying capacity), MSCF 

m = Duong model Slope  

n = Power-law exponential relation time exponent, dimensionless 

n̂  = LGM time-rate relation model parameter  

p = Sample model variable 

q1 = Rate at day 1, MSCF/D 

qt1 = Rate at day t=t1, MSCF/D 

giq̂  = Power-law exponential relation rate intercept, MSCF/D 

r = Sample model variable 

s = Sample model variable 

t = Production time, days  
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APPENDIX A 

MODIFIED DUONG MODEL — 1 (MDNG ‒ 1) 

 

Long term behavior of D-parameter derivation of production data from unconventional reservoirs shows a 

deviation from the straight power law decline behavior during boundary dominated flow regimes. It has 

been observed that long term decline behaviors can be approximated by exponential decline behavior 

which is described by a constant decline parameter during boundary-dominated flow regimes. This is 

similar to the logic behind the derivation of the power law exponential model. The D-parameter of Duong 

model does not show a constant decline characteristic during boundary conditions.  

The D-parameter of the Duong model is given by: 

matmttD   1)(  ......................................................................................................................... (A-1) 

A constant decline parameter, DDNG,  is added to A-1to model boundary conditions. The modified D-

parameter is given by: 

DNG
m DatmttD  1)(  ............................................................................................................... (A-2) 

The new time rete relation can be derived from the new D-parameter relation.  From the loss-ratio relation 

we know that: 

dtdq

q

D g

g

/

1
  ................................................................................................................................... (A-3) 

Substituting A-2 in A-3 we get: 

DNG

m D
t

m
attq

dt

tdq
 )(

)(
 ..................................................................................................... (A-4) 

Integrating both sides of A-4 from t1 to t we get: 

  

t

t

DNG

m

t

t

dtD
t

m
atdt

tq

dt

tdq

11

)(
)(

)(

 ..................................................................................................... (A-5) 

After integration and simplifying we get: 
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Taking the exponential on both sides and solving for q(t) we get: 

  




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qtq DNG
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 ................................................................... (A-7) 

In this derivation qt1 is the rate to be estimated at t1. 

And the b-parameter of the modified Duong model is given by: 

2))((

)(
)(

tDmtat

tatmt
tb

DNG
m

mm




  ......................................................................................................... (A-8) 

Direct integration of the time-rate relations (A-7) to obtain the corresponding cumulative production 

relation is not possible. As a result, cumulative production needs to be calculated using numerical 

methods. 

In this work we have demonstrated that the modified Duong model (MDNG-1) is capable of modeling the 

transient, transition and boundary-dominated flow regimes.  
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APPENDIX B 

MODIFIED DUONG MODEL — 2 (MDNG ‒ 2) 

 

Duong model (Duong 2011) was derived based on characteristics observed when production data from 

unconventional resources  is plotted on a log-log plot of q/Gp versus time. Duong model consider only the 

straight line observed on this plot. However extended flow periods show boundary characteristics that 

deviate from the straight line behavior. The new Duong model uses the same diagnostic plot, but the q/Gp 

relation is modified to accommodate boundary characteristics as well. The modified relation is given by: 

]exp[ tdat
G

q
dng

m

p

   ...................................................................................................................... (B-1) 

Where the boundary characteristics is given by the constant decline parameter, ddng. 

Based on the new q/Gp relation, we can calculate the associated rate and cumulative relations. The 

derivation follows similar steps shown by (Duong 2011). 

Re-writing A-1 we get: 

)(t

q
G p


  .......................................................................................................................................... (B-2) 

Where ]exp[)( tdatt dng
m    

Taking derivative with respect to time, we get: 


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
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)(t

q

dt

d
G

dt

d
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
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Noting that )()( tqtG
dt

d
p   and taking the derivative we get: 
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or 
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Integrating both sides of A-5 from t = t1 to t, we get: 
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After taking the exponential on both sides: 
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Here, qt1 is the rate at t=t1. 

In the modified form ε(t) is given by: 

]exp[)( tdatt dng
m    ............................................................................................................... (B-8) 

After taking the integral and simplifying the time-rate relation is given by: 

  ],1[],1[)(exp)( 1
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11
1 tDmtDmaDttDt
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tq DNGDNG
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 ............................... (B-9) 

A numerical solution of  Eq. B.7 and analytical solution of Eq. B-9 are computed to check the consistency 

of the analytical solution. Fig. B.1 shows results of the numerical and analytical solution of the rate 

relation. Fig. B.1 shows that the analytical solution indicated by Eq. B.9 provides accurate solution.  

And the modified Duong cumulative relation is given by: 

  ]exp[],1[],1[exp)( 11

1

11
1 tDtDmtDmaDtDt
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q
tG DNGDNGDNG

m

DNGDNG

mt

p 
  ............. (B-10) 

The corresponding D- and b- parameters are given by: 

m
DNGDNG ttDa

t

m
DtD  ]exp[)(  .............................................................................................. (B-11) 
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And the - parameter is given by: 

1]exp[)(  m
DNGDNG ttDamtDt  ..................................................................................... (B-13) 

 

 

Figure B.1 ─ (Log-Log Plot): Analytical solution and numerical solution of modified Duong 

model (MDNG – 2) time-rate relation. 
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APPENDIX C 

MODIFIED LOGISTIC GROWTH MODEL — 3 (MLGM ‒ 1) 

 

The exponential decline behavior that is observed during boundary dominated flow regimes of gas wells 

from unconventional reservoirs is not fully modeled in logistic growth model. The exponential decline 

trend observed during boundary dominated flow regimes from production data of gas wells in 

unconventional reservoirs can be modeled more accurately by applying a constant decline parameter to the 

D-parameter derivation of the logistic growth model. This approach is similar to the method used to derive 

the power-law exponential (PLE) model The D- parameter of the logistic growth model is given by: 
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a an n t
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t a t
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Applying the constant decline parameter, DLGM we get: 
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The time-rate relation can be derived from the modified D-parameter relation. The time-rate relation is 

given by: 
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And the b-parameter of the modified logistic growth model (MLGM – 1) is given by: 

ˆ ˆ2 2 2
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It is not possible to integrate the rate relation to obtain the rate form. Numerical methods are necessary to 

determine cumulative production. 

The modified logistic growth model (MLGM-1) can model transient, transition and boundary dominated 

flow regimes. When using this model care should be taken not to use the decline parameter (DLGM) during 

transition regions. The logistic growth model has hyperbolic characteristics which can model transition 

regions very well. The exponential decline parameter should be used only when boundary-dominated flow 

regimes are observed. 
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APPENDIX D 

MODIFIED LOGISTIC GROWTH MODEL ─ 4 (MLGM ─ 2) 

 

The logistic growth model describes the maximum cumulative production that can be obtained if 

production was to continue to a very long period of time. The carrying capacity (K) parameter of the 

model can hence, describe the initial gas in place (Clark et al. 2011). The cumulative form of the logistic 

growth model is given by: 

ˆ

ˆ
( )

ˆ

n

g n

Kt
Q t

a t



 .................................................................................................................................. (D-1) 

The cumulative relation (D-1) can be re-formulated to describe the ratio of the gas in place remaining in 

the reservoir at a given time.  This relation is given as follows: 

ˆˆ1
( )

n

g

K
at

Q t

   ................................................................................................................................ (D-2) 

The relation shown in D-2 indicates that the percentage decline of the gas in place to cumulative 

production ratio (K/Q(t)) can be described by a power-law relation when the data is plotted on a lo-log 

plot. However, long term characteristics of production data from unconventional gas resources indicate 

that during boundary conditions the plot behavior deviates from the straight line characteristics. This 

behavior can be described by an exponential relation. Furthermore, it is observed that because of 

production constraints and completion methods employed, it is not possible to withdraw the gas in place 

completely. If we describe percentage of the remaining gas in place at infinite time by R, relation D-2 can 

be re-formulated by taking in to account the boundary regime exponential decline behavior and the 

constant remaining reserve at infinite time as follows: 
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LGM

g

K
at D t R
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     ................................................................................................... (D-3) 

Relation D-3 can be re-formulated to describe the cumulative production relation as follows: 

ˆ
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 
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The time-rate relation is obtained by taking the derivative of the cumulative production relation with 

respect to time. The time-rate relation is given by: 
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The D- and b-parameters of MLGM-2 are given by Eqs. D-5 and D-6 respectively. 

If ψ is defined by: 
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This approach assumes that there is a prior estimate of the initial gas in place (K).  If initial estimate is not 

available, the straight line fit for Eq. D-3 on a log-log, can be used to obtain the K parameter for 

production data matching purposes. 
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APPENDIX E 

SEMI-LOG PLOTS – PARAMETRIC CORRELATION STUDY 

 

 
Figure E.1 ─ (Semi-log Plot): Flow rate (qg) versus production time. PLE model match. 

 
Figure E.2 ─ (Semi-log Plot): Flow rate (qg) versus production time. Duong model match. 

 



90 

 

 
Figure E.3 ─ (Semi-log Plot): Flow rate (qg) versus production time. Logistic growth model 

match. 

 
Figure E.4 ─ (Semi-log Plot): D-parameter versus production time. PLE model match. 
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Figure E.5 ─ (Semi-log Plot): D-parameter versus production time. Duong model match. 

 
Figure E.6 ─ (Semi-log Plot): D-parameter versus production time. Logistic growth model 

match. 
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Figure E.7 ─ (Semi-log Plot): b-parameter versus production time. PLE model match. 

 

 
Figure E.8 ─ (Semi-log Plot): b-parameter versus production time. Duong model match. 
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Figure E.9 ─ (Semi-log Plot): b-parameter versus production time. Logistic growth model 

match. 

 

 
Figure E.10 ─ (Semi-log Plot): -parameter versus production time. PLE model match. 
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Figure E.11 ─ (Semi-log Plot): -parameter versus production time. PLE model match. 

 

 
Figure E.12 ─ (Semi-log Plot): -parameter versus production time. Logistic growth model 

match. 

 


