
SCALING UP REINFORCEMENT LEARNING WITHOUT SACRIFICING

OPTIMALITY BY CONSTRAINING EXPLORATION

A Dissertation

by

TIMOTHY ARTHUR MANN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Yoonsuck Choe
Committee Members, Robin Murphy

Ricardo Gutierrez-Osuna
John Buchannan
Peter Stone

Department Head, Duncan Walker

December 2012

Major Subject: Computer Science

Copyright 2012 Timothy Arthur Mann

ABSTRACT

The purpose of this dissertation is to understand how algorithms can efficiently

learn to solve new tasks based on previous experience, instead of being explicitly

programmed with a solution for each task that we want it to solve. Here a task is

a series of decisions, such as a robot vacuum deciding which room to clean next or

an intelligent car deciding to stop at a traffic light. In such a case, state-of-the-art

learning algorithms are difficult to employ in practice because they often make thou-

sands of mistakes before reliably solving a task. However, humans learn solutions

to novel tasks, often making fewer than a couple of mistakes, which suggests that

efficient learning algorithms may exist. One advantage that humans have over state-

of-the-art learning algorithms is that, while learning a new task, humans can apply

knowledge gained from previously solved tasks. The central hypothesis investigated

by this dissertation is that learning algorithms can solve new tasks more efficiently

when they take into consideration knowledge learned from solving previous tasks. Al-

though this hypothesis may appear to be obviously true, what knowledge to use and

how to apply that knowledge to new tasks is a challenging, open research problem.

I investigate this hypothesis in three ways. First, I developed a new learning

algorithm that is able to use prior knowledge to constrain the exploration space.

Second, I extended a powerful theoretical framework in machine learning, called

Probably Approximately Correct, so that I can formally compare the efficiency of

algorithms that solve only a single task to algorithms that consider knowledge from

previously solved tasks. With this framework, I found sufficient conditions for using

knowledge from previous tasks to improve efficiency of learning to solve new tasks

and also identified conditions where transferring knowledge may impede learning. I

ii

present situations where transfer learning can be used to intelligently constrain the

exploration space so that optimality loss can be minimized. Finally, I tested the

efficiency of my algorithms in various experimental domains.

These theoretical and empirical results provide support for my central hypothe-

sis. The theory and experiments of this dissertation provide a deeper understanding

of what makes a learning algorithm efficient so that it can be widely used in prac-

tice. Finally, these results also contribute the general goal of creating autonomous

machines that can be reliably employed to solve complex tasks.

iii

DEDICATION

To my wife Laura

iv

ACKNOWLEDGEMENTS

I could not have completed this dissertation without the support of many people,

including my advisor Yoonsuck, my committee, my wife, and my family and friends.

I am grateful for all the help and patience they have shown me throughout my time

as a PhD student (and beyond). My experience as a graduate student would not

have been nearly as fun or complete without their help.

My advisor, Yoonsuck, has guided me through many successful and unsuccessful

ideas and helped to shape my philosophical and research interests. We initially met

when I was a student in the National Science Foundation’s 2006 Research Experi-

ence for Undergraduates summer program at Texas A&M University. He introduced

me to the world of academic research, which later helped me gain admission to the

Computer Science & Engineering graduate program. Yoonsuck allowed me to in-

vestigate so many interesting ideas and we have had many great conversations that

have affected the way that I think about artificial intelligence and consciousness.

Working with him has allowed me to satisfy my interest in philosophy, mathematics,

and engineering. I am grateful for his help and advice.

My wife Laura and my family have given me the love and support needed while

writing my dissertation, which, as any one who has written a dissertation or is

married to someone who has, knows is a lot. I am grateful to my parents for raising

me to be interested in the world’s many mysteries and providing a loving home that

allowed me to grow into the person I am today. My wife Laura has encouraged me

during the whole process, and I am so thankful that she was willing to leave her job

in New York and moved all the way to Texas so that I could pursue a PhD. I am

fortunate to have such a wonderful wife.

v

My committee has been extremely helpful. They have greatly contributed to my

graduate education and provided valuable discussion and comments that have helped

to make this dissertation stronger. Dr. Gutierrez-Osuna’s pattern analysis course was

an extremely helpful introduction to a breadth of machine learning techniques. Dr.

Murphy’s grounded advice and probing questions have helped me to identify some

of the limitations of modern machine learning research. Dr. Buchanan has provided

me with insight about biologically inspired models of motor control. I am grateful

for Dr. Stone’s invaluable insights and discussions on reinforcement learning and

transfer learning, and the constructive comments and help that I have received from

his current and former students.

I have also had many other mentors and professors that have helped me with my

education and research. I am grateful for the many professors at SUNY Potsdam

that helped to provide me with an excellent undergraduate education and experi-

ence. I also benefited greatly by interning at the Naval Research Laboratory where I

worked with David Talmage in the Distributed Computing Group. David’s mentor-

ship helped me to gain confidence and skills that were critical for success in graduate

school.

During my time as a PhD student, I was fortunate to have the opportunity

to work on a research project with Professor Minho Lee at Kyungpook National

University in Daegu, South Korea as part of the National Science Foundation’s East

Asia Pacific Summer Institutes Program. I am extremely grateful for the opportunity

and fun that I had while working with Professor Lee and his students Sungmoon and

Yunjung.

Finally, I would like to acknowledge the financial support that I have been given

by the Department of Computer Science & Engineering as a teaching assistant, the

Texas A&M Dissertation Fellowship, and the National Science Foundation. Without

vi

the support of their programs, I would no have been able to complete this disserta-

tion.

vii

NOMENCLATURE

MBP Multiarmed Bandit Problem

MDP Markov Decision Process

RL Reinforcement Learning

TL Transfer Learning

Ω A Markov Decision Process or Multiarmed Bandit Problem instance

SΩ The set of states in task Ω

NΩ The number of states in task Ω (|SΩ|)

AΩ The set of actions in task Ω

KΩ The number of actions in task Ω (|AΩ|)

TΩ The transition probabilities of task Ω

RΩ The (possibly stochastic) reward function of task Ω

RMAX The maximum possible reward for a single timestep

RMIN The minimum possible reward for a single timestep

VMAX The maximum possible long-term value of a state

π A policy mapping states to actions

π∗Ω The optimal policy for task Ω

V π
Ω The value function for policy π in task Ω

V ∗Ω The optimal value function for task Ω

Qπ
Ω The action-value function for policy π in task Ω

Q∗Ω The optimal action-value function for task Ω

viii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

TABLE OF CONTENTS . ix

LIST OF FIGURES . xiii

LIST OF TABLES . xx

1. INTRODUCTION . 1

1.1 The Problem . 1

1.2 Motivation for Studying Transfer Learning 2

1.3 Approach . 4

1.4 Outline of the Dissertation . 4

2. BACKGROUND . 7

2.1 Multiarmed Bandit Problems (MBPs) 8

2.1.1 Algorithms for MBPs . 9

2.1.2 Evaluation of MBP Algorithms 11

2.1.3 Limitations of the MBP Model 16

2.2 Markov Decision Processes (MDPs) 17

2.2.1 Planning (Dynamic Programming) in MDPs 19

2.2.2 Reinforcement Learning (RL) in MDPs 21

2.2.3 Evaluation of RL Algorithms in MDPs 26

2.2.4 Limitations of the MDP Model 32

2.3 Summary . 32

3. REVIEW OF TRANSFER LEARNING 33

ix

3.1 Supervised Transfer Learning . 35

3.2 Reinforcement Transfer Learning . 37

3.3 Multitask Learning . 38

3.4 Transfer via Intertask Mappings . 38

3.5 Advantages of Transfer Learning . 39

3.6 Challenges . 40

3.6.1 What Knowledge should be Transferred? 41

3.6.2 How can Prior Knowledge be Learned? 42

3.6.3 How can Prior Knowledge be Transferred? 43

3.6.4 How should we Evaluate a Transfer Learning System? 43

3.7 Summary . 45

4. TARGETED EXPLORATION BY PRUNING STATES 46

4.1 Background . 46

4.2 Algorithm: STAR-MAX . 48

4.3 Experiment: Simple Case . 53

4.4 Experiment: Dropping Arbitrary States 56

4.5 Experiment: Learning from Demonstration 58

4.6 Discussion . 58

4.7 Summary . 61

5. ANALYSIS OF PRUNING ACTIONS . 62

5.1 Background . 63

5.2 Explicit Action Pruning . 68

5.2.1 R-MAX . 70

5.2.2 Delayed Q-learning . 75

5.3 Implicit Action Pruning . 85

5.3.1 R-MAX . 91

5.3.2 Delayed Q-learning . 93

5.4 Summary . 95

x

6. ANALYSIS OF ACTION-VALUE TRANSFER 96

6.1 Action-value Transfer Framework . 96

6.2 Analysis of Action-value Transfer . 97

6.2.1 Analysis of Source Task Sample Complexity 98

6.2.2 Analysis of Target Task Sample Complexity 102

6.3 Experiments & Results . 107

6.3.1 Experiment: One State Transfer 112

6.3.2 Experiment: Variable β . 117

6.3.3 Experiment: Scaling Up in a Gridworld Tasks 119

6.3.4 Experiment: Scaling Up in an Inverse Kinematic Task 120

6.4 Discussion . 127

6.5 Summary . 129

7. ANALYSIS OF MULTITASK LEARNING 130

7.1 Background . 131

7.2 Learning Objective and Approach . 134

7.3 Complexity of a Domain of Tasks . 136

7.3.1 Deterministic Measures of Domain Complexity 138

7.3.2 Stochastic Measures of Domain Complexity 141

7.4 Algorithm: Evolving Exploration Tables (EET) 143

7.5 Algorithm: Learning Maximum Values (LMV) 143

7.6 Algorithm: Learning Exploration Tables (LET) 146

7.7 Experiments & Results . 154

7.7.1 Experiment: Evolving an Exploration Table 157

7.7.2 Experiment: Learning an Exploration Table 159

7.8 Discussion . 164

7.9 Summary . 164

8. DISCUSSION . 166

8.1 Action Pruning . 166

8.1.1 Findings & Contributions . 166

xi

8.1.2 Limitations . 166

8.1.3 Future Work & Open Questions 167

8.2 Action-value Transfer . 167

8.2.1 Findings & Contributions . 167

8.2.2 Limitations . 168

8.2.3 Future Work & Open Questions 169

8.3 Multitask Learning . 169

8.3.1 Findings & Contributions . 169

8.3.2 Limitations . 170

8.3.3 Future Work & Open Questions 170

9. CONCLUSIONS . 172

REFERENCES . 174

xii

LIST OF FIGURES

FIGURE Page

1.1 (a) Fetal motor learning problem. (b) Experimental prenatal motor
learning problem. 2

1.2 (a) Agent Centered representation where the origin of the coordinate
system is part of the agent itself. (b) World Centered representation
where the origin is outside of the agent. 3

2.1 A reinforcement learning agent is embedded in an environment. Each
time the agent acts, the agent’s state in the environment changes and
it receives a reward. Adapted from [1]. 7

2.2 An example multiarmed bandit problem withK = 4 actions {a1, a2, a3, a4}.
Each action is associated with a reward distribution. 8

2.3 A simple MDP where every state {s1, s2, s3} cannot be reached in a
single episode. 29

2.4 A simple MDP where reaching state s2 from s1 may take many tries,
if η is very small. 29

3.1 An agent constructs an instance of a source task algorithm to inter-
act with a source task. Interaction with the source task generates
knowledge, which is stored in the agent’s library. The knowledge from
the agent’s library is transferred in a form that is meaningful in the
context of the target task and that information is used to construct
a target algorithm. The target algorithm is biased by the transferred
knowledge, which will hopefully decrease the time needed to learn. . . 34

3.2 The sample complexity of transfer learning is more complex than sam-
ple complexity in a single task setting. The number of samples is
distributed over the source and target task. 44

xiii

4.1 (a) Example gridworld with exploration envelope shaded in gray. The
start state is denoted by a green square, the agent by a blue square,
and the target state is denoted by a red square. (b) Example visitation
table by the STAR-MAX algorithm (lighter cells were visited more
frequently). (c) Comparison of cumulative reward between multiple
RL algorithms as the number of states in the gridworld increases.
Notice that the cumulative rewards are negative because the task gives
negative rewards to encourage the algorithm to move to the target
state as quickly as possible. STAR-MAX scales much better than
Q-learning and R-MAX. Adapted from Mann and Choe [54]. 54

4.2 As the number of states in the STAR-MAX exploration envelope in-
crease, the cumulative reward decreases linearly. Adapted from Mann
and Choe [54]. 55

4.3 The red herring domain introduced by [2]. This gridworld domain
contains two red herring states (denoted by R) with small rewards
and one goal state (denoted by G) that gives a large reward. Learning
algorithms that explore too little may settle on one of the suboptimal
red herring states rather than finding the goal state. 56

4.4 Cumulative reward increases simply by randomly dropping states (or
state-action pairs) from the exploration envelope in the Red Herring
domain [2] up to about 60% of the number of states. Adapted from
Mann and Choe [54]. 57

4.5 (a) Learning to perform a figure-eight from demonstrations by a teacher.
(b) A state visitation table generated by a teacher. (c) The exploration
envelope extracted from (b) by selecting the states visited more fre-
quently than the 95th percentile. (c) Comparison of average reward
at the figure-eight task by Q-learning, R-MAX, and STAR-MAX ini-
tialized with the exploration envelope in (c). Notice that STAR-MAX
quickly achieves high average reward at the task, while R-MAX thor-
oughly explores before settling on a reasonable policy. Q-learning
slowly improves its policy. Adapted from Mann and Choe [54]. 59

xiv

5.1 (a) A full exploration table with no state-action pruning. All state-
action pairs may need to be explored to guarantee learning a near-
optimal policy. (b) The 4-state, 3-action MDP described by the full
exploration table. (c) A sparse exploration table with pruned state-
action pairs. (d) The 4-state, 3-action MDP described by the sparse
exploration table. 68

5.2 The “good” actions at a state are the actions with optimal action-
values that are α-close to the optimal action-value at that state. . . . 86

5.3 Example of poorly estimated action-values at a single state. Notice
that a greedy policy would select the optimal action b1 in this case
despite the fact that the action-value estimates are extremely poor. . 88

5.4 Weak admissible heuristic applied to a one state task with six actions.
The weak admissible heuristic only needs to optimistically initialize
the action-value for a single near-optimal action at each state. 89

6.1 A reset MDP is a chain of N states. Action a∗ transitions the agent
to the next state (or state 1 if the current state is N) with probability
0.8 and stays in the current state with probability 0.2, while all other
actions reset the agent to state 1. The agent only receives a reward
for taking action a∗ in state N . 99

6.2 Transfer from a one-state source task with three actions to a one-state
target task with six actions. Despite the transferred action-values
severely underestimating the optimal action b1 and severely overes-
timating the lowest valued action b6,, and OFU exploration strategy
can still converge to a near-optimal policy (i.e., b2). 103

6.3 A double reset MDP is similar to a reset MDP (Figure 6.1), except
that it has two chains of states. The final state of the first chain (N/2)
gives reward RMAX/2 when action a∗ is executed, while the final state
of the second chain N gives reward RMAX when b∗ is executed. 109

6.4 The Red Herring task (a) [2] contains a goal state G that gives a
reward +20 and two red herring states R that give a reward 0, while
all other states give the reward −1. The Taxi task (b) [3] requires the
agent to pick up a passenger at one of four colored locations and drop
the passenger off at its desired location. 110

xv

6.5 Transfer from a two-joint arm (source task) to a three-joint arm (target
task). 111

6.6 Comparison between three possible intertask mappings in the one
state transfer scenario. (a) A poor intertask mapping, denoted BAD.
The transferred action-values underestimate the near-optimal actions
and overestimate the worst action b6. (b) An intertask mapping that
induces an admissible heuristic, denoted AH. The transferred action-
values are all overestimated. (c) An intertask mapping that induces
a weak admissible heuristic, denoted WAH. The transferred action-
values overestimate one (but not both) near-optimal action. 113

6.7 Comparison of cumulative reward for 100 different runs of each De-
layed Q-learning transfer condition under the one state transfer sce-
nario. Each algorithm was run in the target task for only 45 timesteps.
Whiskers indicate 1.5 times the interquartile range. 114

6.8 Having a reasonable intertask mapping helps to eliminate certain state-
action pairs from consideration. In the target task, TL(DQL)/BAD
and DQL typically explore all six actions, while TL(DQL)/AH and
TL(DQL)/WAH typically explore about half (or fewer) of the actions.
Error bars indicate ±1 standard deviation. 115

6.9 Comparison of cumulative reward for 100 different runs of each Q-
learning transfer condition under the one state transfer scenario. Each
algorithm was run in the target task for only 45 timesteps. Whiskers
indicate 1.5 times the interquartile range. 117

6.10 Varying β influences the cumulative reward achieved at the (reset,
double reset) transfer scenario. Whiskers indicate 1.5 times the in-
terquartile range. (a) When a good intertask mapping is used to
transfer action-values, as β increases the cumulative reward decreases.
(b) If a poor intertask mapping is used, adding a small positive value
improves the cumulative reward. However, adding to large a value
causes the cumulative reward to decrease. Notice that the penalty for
selecting β too small is much worse than selecting a value that is too
large. 118

xvi

6.11 (a) With a nearly optimal intertask mapping, transferring action-
values from the Red Herring domain to the Taxi domain results in
higher cumulative reward for both R-MAX and Delayed Q-learning
than their respective base algorithms without transfer. (b) With an
arbitrarily assigned intertask mapping, the transferred action-values
do not result in much loss for either R-MAX or Delayed Q-learning
compared to their respective base algorithms without transfer. 119

6.12 (a) Average reward achieved with a conservative intertask mapping.
(b) Average reward achieved with an aggressive intertask mapping. . . 121

6.13 Proportion of α-good actions (with α = 0.1) in the final learned policy
for (a) DQL and (b) TL(DQL) and β = 0. 122

6.14 Average proportion of states with transferred action-values (β = 0)
that optimistically initialize an α-good action satisfying the weak ad-
missible heuristic (WAH) criterion and the number of states with
transferred action-values that are optimistic for every action satisfying
the admissible heuristic criterion (which also belongs to WAH). . . . 123

6.15 Comparison between the number of visits made to each state by DQL
(the baseline algorithm) and TL(DQL) with β = 0 averaged over 100
runs. Both DQL and TL(DQL) visit a small fraction of states far
more frequently than all of the other states. However, TL(DQL) is
more concentrated on a few states than DQL. 124

6.16 Proportion of α-good actions selected by the final learned policy of
TL(DQL) over the set of highly visited states. 125

6.17 Average proportion of highly visited states with transferred action-
values (β = 0) that optimistically initialize an α-good action satis-
fying the weak admissible heuristic (WAH) criterion and the number
of states with transferred action-values that are optimistic for every
action satisfying the admissible heuristic criterion (which also belongs
to WAH). 126

xvii

6.18 The percentage of highly visited states conforming to the admissible
heuristic or α-weak admissible heuristic conditions where the learned
policy at that state selects an α-good action. Whiskers indicate 1.5
times the interquartile range. 127

7.1 Under multitask RL an agent, consisting of a library and algorithm
factory, is confronted with a sequence of tasks drawn from the same
domain (or distribution over tasks). For each new task, the agent
constructs an algorithm by combining knowledge from its library with
its algorithm factory to construct a domain specific algorithm. The
domain library is updated with each experienced task. 132

7.2 Depicts the minimal hitting set problem for a state si over four MDPs.
White cells depict α-good actions, while gray depicts actions that are
not in Gα

Ωj
(si) for j = 1, 2, 3, 4. Notice that there are multiple minimal

hitting sets. 139

7.3 A one-state domain with four actions and the optimal action-values
for each task. The red dashes indicate the maximum action-values
across all tasks. Notice that maximum action-values implicitly elimi-
nate actions b and d from each task because either action a or c has a
higher value than the maximum value of b and d. 144

7.4 A one-state domain with four actions and the optimal action-values
for each task. The red dashes indicate the maximum action-values
across all tasks. Task Ω1 has probability mass 0.25 and much higher
action-values than the action-values for every other task. The learned
maximum action-values are only helpful in task Ω1. No actions can
be pruned in tasks Ω2, Ω3, or Ω4, even though only actions a and c
are ever optimal. 146

7.5 Example of one task sampled from a reset domain. 157

7.6 Average of best genomes (with error bars indicating ±1 standard de-
viation) learned over 40 runs EET on domains (a) D1, (b) D2, (c) D3,
(d) D4, (e) D5, and (f) D6. 158

xviii

7.7 Average learned exploration tables (with error bars indicating ±1
standard deviation) by the LET algorithm on domains D1, D2, D3,
and D4. The learned exploration tables accurately determine the min-
imum number of actions that can be explored depending on the domain.159

7.8 Average learned exploration tables (with error bars indicating ±1
standard deviation) by the LET algorithm on domains (a) D1, (b) D2,
(c) D3, and (d) D4 expanded to have ten actions instead of four. The
learned exploration tables accurately determine the minimum number
of actions that can be explored depending on the domain. 160

7.9 Comparison between the cumulative reward earned by LET and MTQL
in D1, D2, D3, and D4 extended to 10 actions rather than 4. Whiskers
indicate 1.5 times the interquartile range. 161

7.10 The number of entries in exploration tables learned by LET for do-
mains R1, R2, R3, and R4. As the number of tasks with different op-
timal actions increases. The number of nonzero entries in the learned
exploration tables increase. Whiskers indicate 1.5 times the interquar-
tile range. 162

7.11 Comparison between the cumulative reward earned by LET and MTQL
in R1, R2, R3, and R4. MTQL is unable to solve the task in a reason-
able amount of time due to relying on undirected exploration. LET
performs well compared to RMAX when there are few potentially op-
timal actions, but it begins to drop important actions as the task
complexity increases. 163

xix

LIST OF TABLES

TABLE Page

2.1 MBP Experimental Questions . 12

2.2 MDP Experimental Questions . 26

2.3 MDP Sampling Models . 30

6.1 Transfer Outcomes . 103

6.2 Algorithm Conditions . 107

6.3 (Source Task, Target Task) Pairs . 107

6.4 One-State Transfer Expected Rewards 108

7.1 Domain Complexity . 137

7.2 D1: Multiarmed Bandit Domain with Four Actions. 154

7.3 D2: Multiarmed Bandit Domain with Four Actions. 155

7.4 D3: Multiarmed Bandit Domain with Four Actions. 155

7.5 D4: Multiarmed Bandit Domain with Four Actions. 155

7.6 D5: Multiarmed Bandit Domain with Four Actions. In Task Ω3 All
Actions are Optimal. 156

7.7 D6: Multiarmed Bandit Domain with Four Actions. 156

xx

1. INTRODUCTION

1.1 The Problem

An important goal of artificial intelligence research and reinforcement learning

(RL) is developing autonomous systems that learn to act optimally in complex real-

world environments. This goal encompasses three requirements. First, the system

should learn a robust solution with few training samples. Second, it should act

autonomously, i.e., operate with little intervention from human engineers. Third,

it should gracefully handle the complexities of real-world problems. The concept of

lifelong learning [4], or learning to learn, supports these requirements by enabling the

agent to build up prior knowledge autonomously and apply that body of knowledge

to learn novel tasks more efficiently. In other words, the agent learns prior knowledge

on its own, instead of relying on human engineers to manually collect and seed the

agent with prior knowledge.

Previous research on lifelong learning and transfer learning [5] has primarily em-

phasized empirical results demonstrating the feasibility of transferring knowledge,

but the literature does not offer a full theoretical justification or guidance for ap-

plying these techniques. An important measure of an algorithm’s efficiency is its

sample complexity. Informally, sample complexity is the number of training samples

needed to ensure that an algorithm has learned. For RL in a single task the Prob-

ably Approximately Correct in Markov Decision Processes framework (PAC-MDP;

[6]) provides theoretical guidance for analyzing sample complexity but extensions to

settings with multiple tasks have not been fully developed.

In this dissertation, I extend the notion of sample complexity to settings with

multiple tasks and use a combination of this theoretical framework with empirical

1

Arm End Point (Fingers)

Target (Mouth)

Elbow

Shoulder

Prenatal Reachable Points

Postnatal Reachable Points

Shoulder

Elbow

End−effector

(a) (b)

Figure 1.1: (a) Fetal motor learning problem. (b) Experimental prenatal motor
learning problem.

experimentation to address the following questions. (1) What kinds of prior knowl-

edge can reduce sample complexity compared to learning from scratch? (2) How

does prior knowledge affect sample complexity of learning a new task? (3) How can

a learning system acquire and transfer useful prior knowledge autonomously?

1.2 Motivation for Studying Transfer Learning

Our motivation to study transfer learning stems from the many successful ap-

plications where transferred knowledge from one task to others has proved useful.

In this section, we will outline several works that motivated the research in this

dissertation. Taylor and Stone [7], Taylor et al. [8], Taylor and Stone [9], Taylor

et al. [10, 11] demonstrated that transferring action-values between two tasks with

different with different states and action spaces using a special structure called an

intertask mapping.

Mann and Choe [12] considered the possibility of motor learning by human fetuses

(Figure 1.1). Fetal motor learning is interesting from a transfer learning perspective

because physical conditions before and after birth are quite different. Due to these

stark difference one might conclude that there is no reason for motor learning to

2

Shoulder

Elbow

Target

Hand

Shoulder

Elbow Hand

φ
H

φ
T

dT

dH

Shoulder

Elbow

Target

Hand

Shoulder

Elbow Hand

xH

yH

xT

yT

(a) (b)

Figure 1.2: (a) Agent Centered representation where the origin of the coordinate
system is part of the agent itself. (b) World Centered representation where the
origin is outside of the agent.

occur as a fetus. However, Zoia et al. [13] provide evidence from four-dimensional

ultrasound that fetuses plan and execute hand movements to targets such as the

mouth and eyes. The main contribution of Mann and Choe [12] was to recognize

the importance of problem representation for transfer from a fetal motor learning

scenario to motor control after being born. It turns out that when a learning system

uses an agent centric coordinate system, like the one shown in Figure 1.2a, it is far

easier to generalize motor programs learned as a fetus to life after birth, than using

a world centered coordinate system Figure 1.2b. Considering the problems faced by

a fetus from a transfer learning perspective helped to understand how a learning

system might overcome some of the changes that occur after being born.

Another interesting example that has motivated us to study transfer learning

is the problem of autonomously improving perceptual knowledge for use in a wide

range of tasks [14]. Raw sensor data is too high dimensional, ambiguous, and noisy

to be used to directly solve most control problems. Instead, sensory data must first

be translated into higher level perceptual information. Learning perceptions from

sensory data can be thought as a task, while the control problems that depend on

those percepts can be thought of as target tasks. Mann et al. [14] considered the

3

problem of autonomously learning accurate binocular depth perception that can be

used in object manipulation tasks.

1.3 Approach

The main approach taken throughout this dissertation is to constrain the space

searched by an RL algorithm without significantly affecting the learned policy. This

can be accomplished through generalization or by reducing the number of states

and actions explored. In the majority of this dissertation, we will focus on reducing

the number of actions that are explored by an RL algorithm. By decreasing the

space searched by an RL algorithm, the time required to learn can be drastically

decreased. The main challenge with constraining the exploration space is that many

constraints will prohibit RL algorithms from finding a sufficiently optimal policy.

Thus constraints must be chosen carefully.

We apply transfer learning to decide which regions of the exploration space can be

ignored. We investigate two different structures for transfer called (1) an exploration

table and (2) a weak admissible heuristic. It turns out that both of these structures

constrain the exploration space by eliminating actions from consideration by an RL

algorithm.

We evaluate TL both empirically and from a sample complexity perspective. To

this end, we apply transferred knowledge to provably sample efficient RL algorithms

R-MAX [15] and Delayed Q-learning [16].

1.4 Outline of the Dissertation

This dissertation is divided into three parts. Sections 1, 2, and 3 introduce and

motivate the problem and relevant background related to reinforcement learning and

transfer learning. Sections 4, 5, 6, and 7 represent the main work and research

contributions of this dissertation. Sections 8 and 9 discuss the main contributions,

4

limitations, and future work and summarizes the significance of the findings with

concluding remarks.

In Section 2, we review details of the reinforcement learning framework including

multiarmed bandit problems, Markov decision processes, relevant algorithms and

evaluation approaches.

In Section 3, we review previous research on transfer learning from a supervised

learning and reinforcement learning perspective. We discuss the advantages of trans-

fer learning, and identify several challenging open questions related to transfer.

In Section 4, we introduce an algorithm, called STAR-MAX, that can restrict its

exploration space to a small set of states. We show through experiments that by

reducing the searched state-space the STAR-MAX is able to scale more gracefully

than other reinforcement learning algorithms that consider the entire state-space.

In Section 5, we develop the theoretical results based on constraining the action-

space that are used throughout the rest of this dissertation.

In Section 6, we analyze a transfer learning approach, called action-value transfer,

based on the theoretical results presented in Section 5 and empirical results. Both

of these results, help to understand when transfer learning will provably succeed at

speeding up reinforcement learning in large scale tasks.

In Section 7, we introduce measures of domain complexity and learning algorithms

for multitask reinforcement learning. We demonstrate the relationship between the

various measures of domain complexity and sample complexity. We determine an

efficient algorithm for learning a domain specific algorithm and demonstrate that it

is able to learn domain specific reinforcement learning algorithms in practice that

outperform general purpose reinforcement learning algorithms.

In Section 8, we discuss the main contributions of our work, its main limitations

and areas of future work. Section 9 summarizes the findings of this dissertation and

5

provides concluding remarks and recommendations.

6

2. BACKGROUND

Reinforcement learning (RL) is a computational framework for trial-and-error

learning [1]. In the RL framework, a learning system or agent, embedded in an

initially unknown environment, is faced with a set of possible actions. Each time the

agent acts, it receives a reward (Figure 2.1). These rewards are represented by scalar

values and may be positive, neutral, or negative (i.e., costs). The objective of the

agent is to learn over time how to act in a way that maximizes long term rewards.

In other words, the RL agent learns to take actions that are good in the long run

instead of actions that offer a payoff now but may lead to poor performance later on.

The critical problem that unifies RL is the exploration/exploitation dilemma.

The exploration/exploitation dilemma is a problem faced by any learning agent that

needs to act when some information about the environment is unknown. The agent

needs to try various actions to find out whether each action is associated with high

or low rewards. This process is called exploration. On the other hand, the agent’s

objective is to maximize long-term rewards, so it needs to use the information that

it already has to select the action that it believes is best. This process is called

exploitation. The main problem faced by the learning agent is that it must balance

Figure 2.1: A reinforcement learning agent is embedded in an environment. Each
time the agent acts, the agent’s state in the environment changes and it receives a
reward. Adapted from [1].

7

a1

a2

a3

a4

Reward

P
rob

.

Reward

P
rob

.

Reward

P
rob

.

Reward

P
rob

.
Figure 2.2: An example multiarmed bandit problem with K = 4 actions
{a1, a2, a3, a4}. Each action is associated with a reward distribution.

exploring actions that may or may not lead to high rewards while at the same time

exploiting the actions that it believes are best given the data the agent has already

collected.

The exploration/exploitation dilemma has primarily been modeled by Multi-

armed Bandit Problems and Markov Decision Processes. In this section, we will

review these models and related algorithms and theory.

2.1 Multiarmed Bandit Problems (MBPs)

A multi-armed bandit problem (e.g. Figure 2.2), first proposed by Robbins [17],

is one of the simplest formulations of the exploration/exploitation dilemma. Multi-

armed bandit problems (MBPs) are repeated decision problems, where the learning

agent is given the opportunity to select one of K ≥ 2 actions at each timestep.

Each action ak for k = 1, 2, . . . , K is associated with a bounded reward distribution

0 ≤ Rk ≤ 1. At each timestep, after the agent selects an action ak, a reward r

distributed by Rk is given to the agent. Typically, the reward distributions are

assumed to be stationary, meaning that they do not change over time. However, in

later sections we will consider generalizations of the MBP that relax this constraint.

If the reward distributions are stationary, then the optimal course of action, called

8

a policy, is to always choose the action

a∗ = arg max
k∈{1,2,...,K}

E[Rk] (2.1)

whose corresponding reward distribution has the highest expected value, where E[·]

denotes the expected value operator.

But the action associated with the highest expected reward is unknown. To learn

the optimal action, an algorithm must sample each reward distribution by trying the

different actions. Once the algorithm has sampled the distributions, it can make an

informed decision about which action has the highest expected reward. However,

because the reward distributions are stochastic, the expected value of each arm

cannot be known with certainty with a finite number of samples. This is where the

exploration/exploitation dilemma comes in. No algorithm can eliminate uncertainty,

so the algorithm must balance exploring uncertain actions and exploiting the action

believed to give the highest expected reward.

2.1.1 Algorithms for MBPs

The literature has explored many algorithms for solving stationary MBPs. These

algorithms can be broadly placed into three categories: (1) probabilistic explorers,

(2) finite-sample, and (3) upper confidence bounded algorithms.

The two most popular probabilistic exploration algorithms are ε-greedy and soft-

max. These algorithms construct a probability distribution to decide when to explore

and when to exploit. Both algorithms start by choosing each of the K actions once.

After that, ε-greedy selects the action with the highest empirical reward with prob-

ability (1 − ε) and randomly selects any other action with probability ε. For this

strategy the parameter ε ∈ [0, 1] controls the tradeoff between exploration and ex-

ploitation. When ε is close to 0, the algorithm rarely explores. In this case, if the

9

algorithm believes that the wrong action has the highest expected reward, then it

may take a long time before it learns to correct its mistake. When ε is close to 1

the algorithm explores most of the time, but rarely uses that information to choose

the best action. The softmax algorithm constructs a probability distribution that

gives actions with higher empirical mean greater probability and controls the explo-

ration/exploitation trade-off with a single parameter T > 0 called the temperature.

When the temperature T is high the probabilities are similar. As T moves close

to zero, the action with highest empirical mean receives more and more probability

mass. One problem with this kind of algorithm is that they continue exploring for-

ever, which is potentially wasteful. However, these simple strategies often work well

in practice.

Finite-sample algorithms stop after a finite number of trials and recommend

an action. These algorithms initially perform exploration for a finite number of

timesteps. One simple algorithm is to try each action m > 1 times and select

the action associated with the highest empirical mean (Algorithm 1). However, a

more sophisticated algorithm, MedianElimination, has been shown to outperform

algorithm 1 by dropping actions from consideration that fall below the empirical

median [18, 19].

Algorithm 1 Näıve Bandit

Require: K, m

1: for k = 1, 2, . . . , K do

2: r(k)← 0

3: for n = 1, 2, . . . ,m do

4: Try action ak
5: r(k)← r(k) + r

6: end for

7: end for

8: return â = arg maxk∈{1,2,...,K} r(k)

10

An alternative to the näıve and MedianEliminiation algorithms are the Upper

Confidence Bound (UCB) algorithms. UCB1 and UCB2 construct an upper confi-

dence bound (which is where they get their names from) on the uncertainty of the

current estimate [20]. The decision rule for the UCB1 algorithm is

â = arg max
k∈{1,2,...,K}

r(k)

n(k)
+ α

√√√√2 ln
(∑K

i=1 n(i)
)

n(k)
(2.2)

where r(k) is the sum of rewards received after selecting the kth arm, n(k) is the

number of times the kth arm has been selected, and α (which is not present in

the theoretically pure version of UCB1) is used in practice to adjust how much the

algorithm explores. The first term on the right hand side is simply the empirical

mean of the reward for the kth arm. The second term serves as an exploration

bonus. When added together these two terms upper bound the confidence interval

for the expected reward of the kth arm. Actions that have high uncertainty receive

a large bonus, while actions with small uncertainty receive a small bonus. This

bonus causes the algorithm to explore uncertain actions unless there is an action

with expected value so much higher than the other actions that their uncertainty

bonuses are dwarfed in comparison.

2.1.2 Evaluation of MBP Algorithms

An important question to ask is: Which MBP algorithm is best? To make an

informed judgment about which algorithm is best for a particular task, we need a

strategy for evaluating and comparing MBP algorithms.

One strategy is to test MBP algorithms on a set of MBP benchmarks. Empirical

testing of algorithms can provide valuable insight about the performance of algo-

rithms. After all, our purpose for inventing algorithms is to apply some of them to

11

Table 2.1: MBP Experimental Questions
Question Options

What algorithms to compare? Powerset of all MBP algorithms
What algorithm parameters to use? Dependent on algorithms
What benchmark problems to compare? Powerset of all MBPs
How many independent trials? Z+

How many decisions to observe? Z+

What statistics to record and compare? Avg. or Cum. Rewards

real-world problems. A useful statistic for comparing MBP algorithms is average,

cumulative reward. Cumulative reward is the sum of all of the reward received by

an algorithm over a finite number of decisions. Initially algorithms are exploring the

different actions and receive small rewards. As the algorithm improves its knowl-

edge of the actions, it should transition to exploiting the action that it believes has

the highest expected reward. Algorithms with high cumulative reward must balance

the trade-off between exploration and exploitation, because algorithms that explore

during the entire finite window will achieve lower cumulative reward than algorithms

that spend some of their time exploiting. On the other hand, algorithms that stop

exploring too early may settle on an action that is suboptimal, which also results in

lower cumulative reward.

One of the main problems with empirical comparison between algorithms is that

exhaustive comparison is not possible. For example, Table 2.1 specifies a few of the

questions that need to be address to implement an experiment. Notice that many of

questions can be answered in infinitely many ways. For this reason, empirical analysis

alone is not enough to understand and compare MBP algorithms. In addition to em-

pirical analysis, which typically compare the average or cumulative rewards received

over a finite number of timesteps, there are two popular theoretical frameworks for

comparing algorithms: regret and sample complexity.

12

2.1.2.1 Regret Measure

The regret formulation measures the expected loss between the optimal policy

and the policy followed by an algorithm. Initially the learning algorithm cannot

follow the optimal policy because it does not know the optimal policy. It has to

try the different actions multiple times to learn the expected reward associated with

each action. Regret is defined by

Rt =
T∑
τ=1

(E[a∗]− E[akτ]) (2.3)

where a∗ is the action with the highest expected reward, and akτ is the action chosen

by the learning algorithm at time τ .

Auer et al. [20] derive upper bounds on regret over a finite time period for sev-

eral algorithms, including a variant of the ε-greedy algorithm and the algorithms

UCB1 and UCB2. This study is important because it demonstrates the existence of

algorithms that achieve the optimal regret bounds in a finite number of decisions.

Although the regret formulation captures the trade-off between exploration and

exploitation in a natural way, it is somewhat unnatural in the sense that it does not

specify any time at which the algorithm can be said to have learned the task. In

fact, despite having an optimal finite-time bound on regret, UCB1 and UCB2 may

act suboptimally no matter how long the algorithm has run [20]. This property of

regret analysis is counter-intuitive and may lead to the development of algorithms

that are unsuitable in contexts where a learning system needs to act near-optimally

after a finite training period.

13

2.1.2.2 Sample Complexity Measure

An alternative theoretical formulation to regret is sample complexity. Sample

complexity measures the the number of actions or timesteps that the learning algo-

rithm needs to try before it can select a near-optimal action with high probability.

More formally, for ε > 0 and δ ∈ (0, 1], the sample complexity of a learning algorithm

for solving any MBP is the minimum number of action samples the algorithm needs

to observe before the algorithm can select an action â such that â ≥ a∗−ε with prob-

ability at least 1 − δ [18]. This notion of sample complexity is similar to Probably

Approximately Correct [21] notion of sample complexity in the supervised learning

setting but differs in the sense that errors are not misclassifications. Instead an error

occurs when an algorithm returns an action with expected reward that is more than

ε below the optimal action. The parameters ε and δ can be chosen to admit any

degree of desired accuracy or certainty, respectively, at the cost of increasing sample

complexity.

Sample complexity analysis is a useful tool for comparing algorithms over all

MBPs. The strategy is to identify upper bounds on the sample complexity of par-

ticular algorithms, while at the same time identifying lower bounds on sample com-

plexity that cannot be beaten by any algorithm. If the upper bound on sample

complexity of an algorithm A matches the lower bound, then A can be said to have

optimal sample complexity.

For MBPs, the parameters that control sample complexity are the number of

arms K, 1
ε
, and 1

δ
. In other words, as the number of actions K increases the sample

complexity also increases. The same is true for the other parameters.

The best reported upper bound on sample complexity for MBPs, due to Even-Dar

14

et al. [18], is

O

(
K

ε2
ln

(
1

δ

))
for the MedianElimination algorithm where ln is the natural logarithm. We can

compare this to

O

(
K

ε2
ln

(
K

δ

))
the upper bound on sample complexity for the NäıveBandit algorithm. Notice that

the MedianElimination algorithm is superior because it shaves off a ln(K) depen-

dence [18]. Finally, the MedianElimination algorithm has optimal sample complexity

because the upper bound established by [18] matches the lower bound

Ω

(
K

ε2
ln

(
1

δ

))

established by [22].

The foundational tools for analyzing sample complexity of MBPs (and later

Markov decision processes) are the Hoeffding bound and the union bound.

Theorem 2.1. (Hoeffding Bound [23]) Let ε ≥ 0 and X1, X2, . . . , Xm be m > 0

independent random variables such that Pr [ai ≤ Xi ≤ bi] = 1 for i = 1, 2, . . . ,m. If

S =
∑m

i=1Xm and µS = E [S], then

Pr

[∣∣∣∣ Sm − µS
m

∣∣∣∣ > ε

]
< 2 exp

(
− 2ε2m2∑m

i=1(bi − ai)2

)
(2.4)

where E[·] is the expected value operator.

The importance of the Hoeffding bound is that it bounds the probability that a

sum of independent random variables is far from its mean. The remarkable thing

about this bound is that the random variables belong to any bounded distribution.

15

This allows the analysis of sample complexity when the reward distributions associ-

ated with each action are unknown. However, tighter bounds may be possible if the

reward distributions are known to belong to a specific family.

One limitation of the Hoeffding bound is that it only applies to a single sum of

random variables. The union bound complements the Hoeffding bound by allowing

us to make claims about the probability of multiple events.

Theorem 2.2. (Union Bound) If B1, B2, . . . , Bm be m > 0 Bernouli random vari-

ables (not necessarily independent) with outcomes in the set {0, 1}, then

Pr

[
m∑
i=1

Bi > 0

]
≤

m∑
i=1

Pr [Bi = 1] (2.5)

which means that the probability that at least one of the m events will occur is bound

by the sum of each variables probability of success.

Combining the Hoeffding bound and union bound, allows us to analyze the sample

complexity upper bound for many MBP algorithms. Application of these theorems

is foundational for sample complexity analysis in general.

2.1.3 Limitations of the MBP Model

The simplicity of the MBP model allows it to capture the essential aspects of

many real world decision problems, but it is limited in the sense that many problems

have a notion of state. That is, the outcome of an action may depend on the current

situation. MBPs traditionally assume that no information about the state of the

environment or problem is known to the agent. The reward distribution is assumed

to depend only on the selected arm. Due to this limitation, a more sophisticated

problem model is needed to describe problems with inherent state dependencies.

16

2.2 Markov Decision Processes (MDPs)

Although the multiarmed bandit problem (MBP) formulation captures many in-

teresting aspects of the exploration/exploitation dilemma, there are many problems

that cannot be fully described as a multiarmed bandit problem. For example, con-

sider the problem faced by an autonomous car traveling from a city A to another

city B. Along the journey the which turns the car will make depend on its current

location. How fast the car will travel will depend on conditions like the speed limit

and how fast other cars are traveling. All of this information can be wrapped up

in the notion of state. Markov decision processes extend the MBP formulation to

capture the notion of states and are the dominant framework used for analyzing

reinforcement learning [1].

A Markov decision process (MDP; [24]) M is typically defined by a 5-tuple M =

〈S,A, T,R, γ〉 where S is a nonempty, finite set of states, A is a nonempty finite set of

actions, T is a set of probability distributions governing state changes, R : S×A→ R

maps state-action pairs to rewards, and γ ∈ [0, 1) is called the discount factor and

determines how preferential high rewards are now compared to high rewards received

in the distant future. At each timestep the agent is in a particular state s ∈ S and

selects an action a ∈ A to be executed. After the selected action is executed the

agent transitions to a new state s′ ∼ T (·|s, a). Throughout this dissertation, we

assume that the reward function R is bounded by the interval [0, 1]. This is a very

minor restriction because bounded reward functions can be scaled and shifted to fit

within this interval.

Given an MDP M , the objective of the agent is to learn a policy π : S → A that

17

maps the current state to an action, such that the policy maximizes

V π
M(st) = E

[
∞∑
τ=t

γτ−tR(st, π(st))

]
(2.6)

where st is the current state at timestep t. Throughout this dissertation most policies

will be deterministic mappings, however, policies can also be expressed as probability

distributions a ∼ π(·|s) over actions. Equation 2.6 is called the value function of

policy π on M with respect to state s (or simply a value function). Due to our

assumption that the reward function is bounded by the interval [0, 1], the value

function is bounded by the interval
[
0, 1

1−γ

]
. The policy π∗ that maximizes (2.6) is

called the optimal policy and we denote the optimal policy’s value function by V ∗(s)

for a state s ∈ S.

An important discovery, due to Bellman [25], is that the value function can be

written recursively as

V π
M(st) = R(st, π(st)) + γEst+1∼T (·|st,a) [V π

M(st+1)] (2.7)

where the expected value is taken with respect to the the next state distribution of

M defined by T (·|s, a). The optimal value function can be written recursively as

V ∗M(st) = max
a∈A

{
R(st, a) + γEst+1∼T (·|st,a) [V ∗M(st+1)]

}
, (2.8)

which has been influential in many dynamic programming and reinforcement learning

algorithms.

Another important differentiation of the value function is the action-value func-

18

tion defined by

Qπ
M(st, at) = R(st, at) + γEst+1∼T (·|st,at) [V π

M(st+1)] (2.9)

where Qπ
M(st, at) is the long-term value of taking action at and thereafter following

the policy π. The notion of the action-value function is useful for defining the optimal

policy

π∗(s) = arg max
a∈A

Q∗M(s, a) (2.10)

where Q∗M denotes the action-value function of the optimal policy.

Algorithms pertaining to MDPs broadly fall into two categories: dynamic pro-

gramming and reinforcement learning. Dynamic programming algorithms plan an

optimal policy based on an MDP. The assumption under dynamic programming is

that the MDP is known completely and the problem is simply planning a policy.

Dynamic programming problems do not need to explore the environment. Rein-

forcement learning algorithms, on the other hand, do not assume that the details

about the MDP are known a priori and must simultaneously learn about the en-

vironment as well as plan a policy that achieves high long-term reward (i.e. the

exploration/exploitation dilemma).

2.2.1 Planning (Dynamic Programming) in MDPs

Dynamic programming algorithms assume a complete model of the MDP is known

a priori. We mention these dynamic programming algorithms here because they are

often used as subroutines in model-based reinforcement learning algorithms. The two

most popular algorithms for dynamic programming are value iteration and policy

iteration.

The most popular algorithm for dynamic programming is value iteration. The

19

Algorithm 2 Value Iteration

Require: S,A, T,R, γ, θ∗

1: for s ∈ S do {Initialize the value function to 0.}
2: V (s)← 0

3: end for

4: while θ > θ∗ do {Run value iteration until the change in V is small.}
5: θ ← 0

6: for s ∈ S do

7: V̂ ← V (s)

8: V (s)← maxa∈A
{
R(s, a) + γ

∑
s′∈S T (s′|s, a)V (s′)

}
9: if |V̂ − V (s)| > θ then

10: θ ← |V̂ − V (s)|
11: end if

12: end for

13: end while

14: for s ∈ S do {Calculate the policy.}
15: π(s)← arg maxa∈A

{
R(s, a) + γ

∑
s′∈S T (s′|s, a)V (s′)

}
16: end for

17: return π

value iteration algorithm (Algorithm 2) is given a fully specified MDPM = 〈S,A, T,R, γ〉

and a threshold parameter θ∗ used to determine a stopping point for the algorithm.

For each iteration, the algorithm loops over all states and computes a new estimate of

the optimal value function using an update rule inspired by equation (2.8). After the

values are sufficiently close to optimal, a policy is computed from the approximate

value function. Using value iteration it is possible to plan a policy that is arbitrarily

close to optimal in time polynomial in the number of states, actions, and accuracy

parameter. In fact, value iteration can be used to plan exact optimal policies in

polynomial time [26]. This means that arbitrarily accurate policies can be planned

efficiently with respect to computation.

Another popular dynamic programming algorithm is policy iteration. Policy

iteration starts with an arbitrary policy and alternates between evaluating the current

20

policy and improving the policy. It can be shown that policy iteration converges to

the optimal policy [24]. Policy iteration is also an attractive algorithm because it

has often been found to converge faster than value iteration in practice [24, 1].

As stated above, dynamic programming algorithms can only be applied if a com-

plete model of the MDP is known a priori. However, in this dissertation we are

primarily concerned with the case where the MDP is not known initially.

2.2.2 Reinforcement Learning (RL) in MDPs

RL algorithms do not assume knowledge about the environments transition prob-

abilities T and (possibly) the reward function R. The algorithm must learn to im-

prove their initial policy despite this lack of knowledge. The RL agent must interact

with its environment by trying out different actions and observing their consequences

to learn to act optimally.

To investigate the exploration/exploitation dilemma, previous research has inves-

tigated a number of strategies or policies for balancing exploration and exploitation.

Several of the most popular exploration policies are:

1. ε-greedy

2. softmax

3. optimism in the face of uncertainty

Given an estimate Q of the optimal action-values Q∗, the ε-greedy exploration

policy selects the action that is believed to be best (i.e., arg maxa∈AQ(s, a)) with

probability (1− ε) and an action chosen uniformly random with probability ε where

ε is typically much smaller than 1
2
. This strategy causes a learning algorithm to

choose the action that it believes to be best most of the time but also to devote a

small amount of effort to exploring other potentially more rewarding actions.

21

The softmax exploration policy assigns probabilities

Pr [a|s] =
exp (Q(s, a)/τ)∑K
i=1 exp (Q(s, ai)/τ)

(2.11)

to actions based on how “good” the learning algorithm believes that each action is.

The parameter τ is called the temperature and controls how extreme the probability

distribution is. If an action is believed to have high value, then the probability that

that action will be selected is high. If, on the other hand, the action is believed to

have low value, then it will be selected with low probability. This strategy allows

the agent to explore what it believes to be the best course of action, but, much like

ε-greedy, other exploratory actions are selected some of the time. This allows the

learning system to explore and exploit.

Optimism in the face of uncertainty is another popular heuristic for handling

the exploration/exploitation dilemma. The idea behind optimism in the face of

uncertainty is to initially assume that all actions offer the best possible reward and

always choose the action that is believed to have the best reward. When actions with

low rewards are chosen, the learning agent will eventually discover that its estimate

is overly optimistic and lower its belief to a more appropriate value. This heuristic

causes the agent to explore thoroughly before settling on a specific policy.

Besides deciding how to explore RL algorithms need to determine what statistics

to maintain about the environment. One approach is to learn the transition prob-

abilities and reward function and then applying one of the dynamic programming

algorithms to plan a policy. These algorithms are known as model-based, because

they construct a complete model of the MDP. Interestingly some algorithms are able

to learn a near-optimal policy without explicitly learning the transition probabilities

or reward function. These algorithms are referred to as model-free.

22

2.2.2.1 Model-Based

Model-based RL algorithms learn the transition probabilities T and reward func-

tion R of an MDP and then use dynamic programming algorithms to solve the model

[27, 15, 28, 29].

Algorithm 3 R-MAX [15]

Require: S,A, γ,m, ε1
1: for (s, a) ∈ S × A do {Initialize the algorithm.}
2: Q(s, a)← 1

1−γ {Initialize action-values optimistically.}
3: n(s, a)← 0 {# visits to (s, a)}
4: R(s, a)← 0 {Records reward at (s, a)}
5: for s′ ∈ S do

6: l(s, a, s′)← 0 {# (s, a)→ s′}
7: end for

8: end for

9: for t = 1, 2, 3, . . . do {Main interaction loop.}
10: Observe the current state s at timestep t

11: Select action a = arg maxa′∈AQ(s, a′)

12: Execute action a and observe the next state s′ and reward r

13: if n(s, a) < m then

14: n(s, a)← n(s, a) + 1 {Increment (s, a) counter.}
15: l(s, a, s′)← l(s, a, s′) + 1

16: R(s, a)← R(s, a) + r

17: if n(s, a) = m then

18: Compute a transition model T̂ from n and l

19: Compute a the reward function R̂ from n and R

20: Use dynamic programming to update Q with ε1-accurate action-values

estimates for the constructed internal model

21: end if

22: end if

23: end for

The R-MAX algorithm [15, 30] is one of the simplest and most popular model-

based algorithms. R-MAX (Algorithm 3) initializes its action-value estimates Q for

each state-action pair to be the largest possible value 1
1−γ . At each state R-MAX

23

selects the action with the largest action-value

π(s) = arg max
a∈A

Q(s, a) (2.12)

which is sometimes called the greedy policy with respect to the action-value estimates

Q. After an action is executed the algorithm observes that it transitioned to some

state s′ ∈ S and receives a reward r ∈ [0, 1]. R-MAX counts the number of times

it has tried an action a in state s using the counter n(s, a). It also counts the

number of times trying (s, a) transitions the agent to state s′ in the counter l(s, a, s′).

Once n(s, a) reaches m, the algorithm can approximate the transition probability

distribution for the state action pair (s, a) by

T̂ (s′|s, a) =
l(s, a, s′)

n(s, a)
(2.13)

where T̂ (s′|s, a) is an approximation of the probability that state s′ will be transi-

tioned to by executing action a in state s. The reward function

R̂(s, a) =
R(s, a)

n(s, a)
(2.14)

where R̂(s, a) is an approximation of the reward function at (s, a).

These two pieces of information (T̂ and R̂) complete the model of the MDP and

a dynamic programming algorithm such as value iteration (Algorithm 2) can be used

to plan a policy.

The main trick behind R-MAX is that the model parameters for state-action pairs

that have not been visited m times are given clever default values. For example, [30]

assigned state-action pairs that have not been visited m times absorbing transition

probabilities (so that the state-action pair transitions to the state it was already in)

24

and the default reward received is RMAX = 1 (which is where the algorithm gets

its name). By assigning these clever defaults, any state-action pair that has not

been visited at least m times will appear to give the highest possible value 1
1−γ in

the model. When dynamic programming is used to solve the model it plans to visit

these high valued but unknown state-action pairs until a suitable policy for the true

MDP is learned.

2.2.2.2 Model-Free

Model-free RL algorithms manage to improve their policy without explicitly learn-

ing the transition probabilities or reward function. The most popular model-free RL

algorithm is Q-learning [31]. The idea behind Q-learining is to use samples of the

reward and next state to accurately approximate the action-value function (or Q-

function) at each state. Q-learning (Algorithm 4) has a simple update rule

Qt+1(s, a) = (1− α)Qt(s, a) + α

(
R(s, a) + γmax

a′∈A
Qt(s

′, a′)

)
(2.15)

based on equation 2.8, where Qt is the action-value estimate before the update, Qt+1

is the action value estimate after the update, s is the current state, a is the current

action, α is the learning rate, and s′ is the next state. It can be shown that Q-learning

converges to the optimal action-values provided that every state-action pair is visited

infinitely often [31]. One immediate problem with the Q-learning algorithm is that

it sidesteps the exploration/exploitation dilemma by not specifying an exploration

policy πe.

Strehl et al. [16] introduces the Delayed Q-learning algorithm (Algorithm 5). De-

layed Q-learning is a model-free RL algorithm in that its per timestep computational

complexity is small and its memory usage is O(NK) where N is the number of states

and K is the number of actions, which is less memory than is needed to specify the

25

Algorithm 4 Q-learning [31]

Require: S,A, γ, πe, α

1: Initialize Q(s, a) arbitrarily for all (s, a) ∈ S × A
2: for t = 1, 2, 3, . . . do

3: Observe the state s at timestep t

4: Select action a = πe(s)

5: Execute action a and observe the next state s′ and reward r

6: Q(s, a)← (1− α)Q(s, a) + α (r + γmaxa′∈AQ(s′, a′))

7: end for

Table 2.2: MDP Experimental Questions
Question Options

What algorithms to compare? Powerset of all MDP algorithms
What algorithm parameters to use? Dependent on algorithms
What benchmark problems to compare? Powerset of all MDPs
How does the algorithm sample? Batch, Exploration, etc.
How many independent trials? Z+

How many decisions to observe? Z+

What statistics to record and compare? Avg. or Cum. Rewards

transition model T of an MDP. The algorithm gets its name from the fact that it does

not use samples to update the action-values immediately. Instead Delayed Q-learning

waits until it has collected m > 1 samples before attempting to update an action-

value. Unlike the Q-learning algorithm, Delayed Q-learning specifies an exploration

strategy. It initializes its action-values to 1
1−γ (the highest possible action-value) and

uses the optimism in the face of uncertainty heuristic to guide exploration.

2.2.3 Evaluation of RL Algorithms in MDPs

An important question to ask about RL algorithms is: which algorithm is best?

Similar to the previous section on MBPs, the options for comparing algorithms are

empirical experiments and theoretical analysis.

Empirical experimentation is critical for comparing algorithms. However, Table 2.2

points out the many questions that needed to be answered while designing an ex-

26

Algorithm 5 Delayed Q-learning [16, 6]

Require: S,A, γ,m, ε1
1: for (s, a) ∈ S × A do {Initialize the algorithm.}
2: Q(s, a)← 1

1−γ {Optimistically initialize action-values.}
3: U(s, a)← 0 {Records value for attempted updates.}
4: n(s, a)← 0 {# visits to (s, a)}
5: b(s, a)← 0 {Beginning timestep of most recent attempted update.}
6: LEARN(s, a)← true {Used to determine when to stop learning.}
7: end for

8: τ ← 0 {Timestep of the most recent successful update.}
9: for t = 1, 2, 3, . . . do {Main interaction loop.}
10: Observe the current state s at timestep t

11: Execute a = arg maxa′∈AQ(s, a′) and observe the next state s′ and reward r

12: if b(s, a) ≤ τ then

13: LEARN(s, a)← true

14: end if

15: if LEARN(s, a) = true then

16: if n(s, a) = 0 then

17: b(s, a)← t

18: end if

19: n(s, a)← n(s, a) + 1 {Increment (s, a) counter.}
20: U(s, a)← U(s, a) + (r + γmaxa′∈AQ(s′, a′))

21: if n(s, a) = m then

22: if Q(s, a)− U(s, a)/m ≥ 2ε1 then

23: Q(s, a)← U(s, a)/m+ ε1
24: τ ← t

25: else if b(s, a) > τ then

26: LEARN(s, a)← false

27: end if

28: U(s, a)← 0;n(s, a)← 0

29: end if

30: end if

31: end for

27

periment. Many of the answers to these questions can take an infinite number of

options, which rules out exhaustive empirical comparison. Again, empirical compar-

ison is important, but theoretical analysis is needed to compare algorithms over the

entire class of MDPs.

2.2.3.1 Convergence

The first and weakest theoretical guarantee is convergence to the optimal policy.

Convergence guarantees say that an algorithm, given access to an infinite number

of samples, will learn the optimal policy. For example, it is well known that the Q-

learning algorithm will converge to the optimal action-value function (and as a con-

sequence the optimal policy) if the algorithm visits every state-action pair infinitely

often [31]. Convergence results offer an important first step towards analyzing an

algorithm. However, no algorithm can ever observe an infinite amount of data in

practice, so we need to take a step further and determine how quickly an algorithm

converges toward the optimal policy.

2.2.3.2 Regret

The notion of regret for MDPs is similar to the notion of regret for MBPs. The

analysis of the regret of RL algorithms in MDPs has so far been restricted to ergodic

MDPs [32], where every state is reachable from every other state in a small number

of timesteps (in expectation). Similar to the case of MBPs, regret seems to capture

our intuitive notion of the exploration/exploitation dilemma, but has the awkward

property that there is no time at which we can say the system has learned a solution.

2.2.3.3 Sample Complexity

Analysis of sample complexity under MDPs is more complicated than analysis

of sample complexity under MBPs. The main problem is exploration. In MBP

28

Unex
plor

ed

s1

s2

s3

(b,0)

(a,0)

(b,0)

(a,0.5)

(a,0)

(b,0)

Figure 2.3: A simple MDP where every state {s1, s2, s3} cannot be reached in a single
episode.

s2(a,0)s1

(a,1)

(b,0) (b,0)
η

1-η

Figure 2.4: A simple MDP where reaching state s2 from s1 may take many tries, if
η is very small.

problems every action could be tried just as easily as any other action. In MDPs,

some states may be difficult or impossible to reach from other states. For example,

in the MDP in Figure 2.3 no algorithm can visit state s2 and s3 in a single episode.

In Figure 2.4 the probability of reaching state s2 from s1 by taking action a may be

very small. It may take many tries to reach s2 if η is very small. Therefore it may

not always be possible to learn an optimal policy from a single stream of experience.

Another difficulty of analyzing sample complexity under MDPs is planning. The

value function is defined over a sequence of actions. When we say that a policy is

optimal we mean that it makes sequences of optimal decisions. Optimality depends

on multiple actions and cannot be easily measured in practice.

By sample we mean that the agent tries an action a in a state s and observes the

next state s′ and reward r. The tuple (s, a, s′, r) can be considered a single sample.

We can imagine a number of ways for an algorithm to gain access to samples. The

29

Table 2.3: MDP Sampling Models
Model What’s Learned? Description

Batch Model Near-Optimal π wrt
Data

Previously recorded samples are given to
the algorithm.

Generative Model π ≈ π∗ The algorithm can observe a transition
and sample a reward from any state-action
pair.

Reset Model π such that

V π(s0) ≥ V ∗(s0)− ε

Learning occurs in episodes. The algo-
rithm must perform a sequence of actions
to transition to any particular state-action
pair. At any time the algorithm may use a
special reset action to return to an initial
state s0.

Explore Model V At(s) ≥ V ∗(s)− ε Learning occurs in one infinite stream of
actions. The algorithm must perform a se-
quence of actions to transition to any par-
ticular state-action pair. The algorithm
cannot reset to an initial state.

interface by which an algorithm gains access to samples is called a sampling model

[30]. There are four popular sampling models:

1. Batch Model

2. Generative Model

3. Reset Model

4. Explore Model

These sampling models are briefly described in Table 2.3.

In the batch model, samples are prerecorded by an oracle. These samples are given

to the algorithm as a single batch and the problem of exploration is avoided. The

main problem with the batch model is that the quality of the output policy depends

on the data collected by the oracle. If the oracle does not collect a representative

data set, then it may be impossible to learn a good policy. Interestingly, [33] have

30

developed generalization bounds that extend to states not sampled by the oracle

under some restrictive settings, but the fundamental problem is that the derived

policy depends on the samples provided by the oracle.

A generative model allows a learning algorithm to directly sample any state-action

pair in the MDP without transitioning to the corresponding state. This sampling

model is the most powerful of the discussed sampling models because it allows the

learning algorithm to observe every state-action pair with little effort. With a gen-

erative model, a learning algorithm can learn a near-optimal policy with at most

Õ(NK) samples where N is the number of states and K is the number of actions

[34], where Õ suppresses log factors. The main problem with the generative model

is that it may not be realistic for a learning algorithm to have this level of access to

many real-world problems.

In the reset model, the algorithm learns in a series of episodes. State-action pairs

can only be sampled by executing a sequence of actions to reach the desired state-

action pair. However, at any time the algorithm can execute a special reset action

that transitions the algorithm to an initial state s0 with probability 1. In this model,

algorithms learn a policy π that is near optimal with respect to the initial state s0.

In the explore model, the algorithm is initialized in an arbitrary state and learns

from an uninterrupted sequence of experiences. The algorithm never resets to an

initial state or initial state distribution. In this setting, optimality must be redefined

because it may not be possible to visit every state-action pair. Kakade [30] states

that an algorithm A executed on an MDP M is acting ε-optimally if the policy At

followed by algorithm A at timestep t satisfies

V At(st) ≥ V ∗(st)− ε (2.16)

31

from the current state st for some selected ε > 0. This means that an algorithm

is acting ε-optimally. Algorithms whose sample complexity is polynomial in the

number of states N , the number of actions K, 1
ε
, and 1

δ
are referred to as Probably

Approximately Correct in Markov Decision Processes (PAC-MDP, [6]).

2.2.4 Limitations of the MDP Model

While MDPs are more realistic than MBPs, they still make simplifying assump-

tions, which limit their ability to appropriately model many real-world problems.

First, the MDP model assumes that the current state is always known with complete

certainty. This is not always true, for example, in a robotics domain where the agent

observes a limited regions of the environment with noisy sensors. Second, the MDP

model assumes that the transition probability distributions depend only on the cur-

rent state and executed action. In many real-world problems, the optimal course of

action may depend on which states have been visited previously.

2.3 Summary

We have defined the two most popular frameworks (MBPs and MDPs) for mod-

eling real-world decision problems. Learning in MBPs and MDPs both requires a

strategy for managing the exploration/exploitation dilemma. If a learning algorithm

always selects the action that it believes to be best (exploiting), then it may miss out

on learning about some better alternative action. On the other hand, if a learning

algorithm executes actions over and over to reduce its uncertainty, it may be wasting

valuable resources.

MBP algorithms and MDP algorithms can be evaluated empirically and theoret-

ically. While empirical evaluation is critical, theoretical analysis is need to generalize

results over a broad class of problems.

32

3. REVIEW OF TRANSFER LEARNING

Transfer learning (TL) is a process by which a learning algorithm can use infor-

mation gathered by working on previously experienced tasks to help the algorithm

learn in novel tasks. The information acquired from previous tasks can bias the al-

gorithm so that it learns more quickly [35]. In this case, the algorithm modifies itself

to improve its quality when learning solutions to novel tasks.

The intuition behind learning to learn [4] and TL (Figure 3.1) is to reuse knowl-

edge acquired while learning a solution to a previous task to speed up learning a

solution to a novel task [36]. The previous tasks are known as source tasks because

they are the source that the learning agent acquires knowledge from. The task that

knowledge is transferred to is called the target task. The process of transfer learning

can be broken down into four steps:

1. Initialize a source task learning algorithm.

2. Acquire knowledge by interacting with the source task.

3. Transfer the acquired knowledge to the target task learning algorithm.

4. Run the target task learning algorithm on the target task (hopefully reducing

learning time compared to learning from scratch).

In the first step, the agent initializes a learning algorithm for the source task. If

the agent’s library of task knowledge is not empty, this information could be used

by the agent to construct a more efficient algorithm for learning in the source task.

Otherwise the agent initializes a learning algorithm without prior knowledge. In the

second step, the agent interacts with one or more source tasks and acquires knowledge

33

Agent
Algorithm
Factory

Library

Source
Algorithm

Step 1

Agent
Algorithm
Factory

Library

Target
AlgorithmStep 3

Transfer

Learning
Source

Algorithm
Source TaskStep 2

Target
Algorithm Target TaskStep 4

Learning

Figure 3.1: An agent constructs an instance of a source task algorithm to interact
with a source task. Interaction with the source task generates knowledge, which is
stored in the agent’s library. The knowledge from the agent’s library is transferred
in a form that is meaningful in the context of the target task and that informa-
tion is used to construct a target algorithm. The target algorithm is biased by the
transferred knowledge, which will hopefully decrease the time needed to learn.

34

about these source tasks. Because the acquired knowledge is not directly from the

target task it may need to be translated into a form that is meaningful for the target

task. For example, the source task and the target task may have different state-action

spaces [5] or different (but possibly overlapping) feature spaces [37]. The third step

translates source task knowledge to a form that is meaningful in the target task and

uses this translated knowledge to initialize a learning algorithm for the target task.

Finally the knowledge is used by the agent to improve its learning performance in

the target task.

TL has been applied to both supervised learning settings and reinforcement learn-

ing settings. It is worth discussing the terminology and ideas developed for the su-

pervised setting because they have been influential in applying TL to the RL setting.

3.1 Supervised Transfer Learning

Most of the literature on TL focuses on the supervised learning setting. In a

simple supervised learning setting, there exists an unknown concept function

c : X → {−1, 1} (3.1)

such that

c(x) =

 1 if x is a member of the concept

−1 otherwise
(3.2)

for all x ∈ X. The concept function represents a high level concept such as “images

containing Y” and “images without Y”. The objective of a learning algorithm is to

select a hypothesis h : X → {−1, 1} from a hypothesis space H to minimize

L(h) =

∫
X

||c(x)− h(x)|| (3.3)

35

which is the loss due to selecting hypothesis h where || · || is a norm function. To

learn the function c, the learning algorithm is given a set containing m ≥ 1 training

examples {xi, c(xi)}mi=1 where xi ∈ X. This setting is called supervised learning

because the algorithm is given a set of training examples with the correct labels by

a teacher.

In a supervised transfer learning setting, the algorithm needs to learn two or more

concept functions. For simplicity, assume that the algorithm is supposed to learn

unknown concepts c1 and c2. If these two concepts are arbitrarily different, then

learning the concepts together will probably not reduce the complexity of learning.

However, if the two concepts share a relationship, then learning them together may

be helpful.

Caruana [38] investigated learning several real-world classification problems si-

multaneously. Artificial neural networks trained with backpropagation and classifi-

cation trees were simultaneously trained on different but related classification tasks.

Caruana [38] found better classification performance when a single learning algo-

rithm was trained on multiple concepts simultaneously, because the algorithms were

able to learn a mutually beneficial internal representation. These experiments also

provide support for the more general hypothesis that many real-world tasks share

common structure that can be exploited when learning multiple concepts together.

Baxter [35] developed a theory of inductive bias. In this paper the author investi-

gates a model for automatically learning inductive bias. The important contribution

of [35] is that the author formalizes inductive bias learning and describes the process

as restricting a hypothesis space. This description fits nicely with other literature on

machine learning that classifies the sample complexity of algorithms based on their

hypothesis class [21, 39].

Ben-David et al. [40] present a theory for combining multiple sources of labeled

36

data sampled from different distributions to minimize loss. Their formulation ex-

presses the trade-off between bias introduced by data sampled from a non-target

distribution and the potential reduction in variance achieved by increasing the size

of the data set.

The main limitation of TL in a supervised setting is that tasks are restricted to

concept learning and regression. In this dissertation, we are interested in learning

without a supervisor providing the answers. Instead we are interested learning poli-

cies for acting optimally in complex environments. To accomplish this goal, we need

to consider transfer applied to RL.

3.2 Reinforcement Transfer Learning

Research on TL in a supervised learning setting set the stage for applying transfer

to RL. However, applying TL to RL is considerably more complex, because policies

are evaluated over a sequence of timesteps, instead of evaluating the class label

assigned to a single input. Task similarity is also more complex due to the notion of

states and actions in RL.

In RL learning tasks are represented by MDPs. Although it is possible to consider

transfer from multiple source tasks to a target task, we consider only a single source

task for clarity and simplicity. Given a source task ΩSRC = 〈SSRC, ASRC, TSRC, RSRC, γ〉

and a target task ΩTRG = 〈STRG, ATRG, TTRG, RTRG, γ〉, it is not difficult to under-

stand why transfer in this setting is more complex than supervised TL. The problem

is that tasks can differ by the number of states they have (i.e. SSRC may not equal

STRG). The action sets may differ (i.e. ASRC may not equal ATRG). The transi-

tion probabilities TSRC and TTRG may differ, and even the reward functions RSRC

and RTRG may differ. What this means is that the source and target tasks may

be completely different. A successful approach to transfer learning must provide

37

mechanisms for dealing with a subset or all of these potential differences.

TL approaches applied to reinforcement learning can be broadly categorized as

either multitask learning or general transfer learning.

3.3 Multitask Learning

The key assumption of multitask learning is that new tasks are sampled from a

distribution over MDPs and that the distribution favors a subset of MDPs that share

exploitable structure [41, 5]. Although not necessary, most research on multitask

learning has assumed that the tasks share the same state-action space and focus on

differences in the transition probabilities or reward functions.

For example, Fernández et al. [42] focused on learning a library of reusable policies

for a set of tasks. The key assumption is that a small subset of policies generally

capture the desired behavior for the set of tasks.

Tanaka and Yamamura [41] examine learning action-value statistics for tasks

sampled from a distribution. They use these values to bias the intial action-values

when learning a novel task.

Multitask learning is a useful subclass of transfer learning because it assumes

that the tasks of interest are distributed according to some distribution, however,

it is limited by the fact that not all tasks with similar structure share the same

state-action space. Next we will discuss general transfer learning methods.

3.4 Transfer via Intertask Mappings

General transfer learning methods attempt to share information between tasks

that do not necessarily share the same state-action space but nevertheless share sim-

ilar underlying structure. In this setting it is not immediately clear how information

from the source task should be related to the target task. Taylor and Stone [43]

38

introduce the concept of an intertask mapping

h : STRG × ATRG → SSRC × ASRC (3.4)

that maps state-action pairs from the target task to state-action pairs from the source

task. An intertask mapping defines a relationship between two tasks even if they do

not share the same state-action space.

3.5 Advantages of Transfer Learning

Learning to learn and lifelong learning offers a number of critical advantages over

learning solutions to each task separately. The main advantages of learning to learn

(compared to learning each task separately) come in three varieties:

1. Learning with fewer samples

2. Learning with less computation

3. Learning more safely

Sample efficient learning is extremely critical for applying algorithms to real world

problems because the exploration that learning algorithms perform is undesirable.

Whenever possible we would rather have an algorithm that already knows how to

act optimally. We only apply learning when the optimal policy is not easy or im-

possible to determined a priori. Increasing sample efficiency reduces the exploration

performed by the learning algorithm. By transferring knowledge from source tasks it

may be possible to learn a near-optimal policy for a target task with fewer samples

(or observations). The reason for this is that prior knowledge may help to constrain

the solution space.

Prior knowledge can also help to improve computational efficiency. Computa-

tional efficiency is related to sample efficiency. If the sample complexity of an algo-

39

rithm is small, then the algorithm can sometimes have lower computational demands.

Information about previous tasks can expose potential computational shortcuts for

planning policies or previously acquired knowledge may be structurally similar to

knowledge about the new task. For example, the action-values between two tasks

may be similar [8] or the policy from a previously solved task may be similar to a

new task [44].

Another interesting advantage of learning to learn that has received considerably

less attention is that learning to learn may enable a learning agent to learn more

safely over time. The basic idea is that the agent could learn about unsafe or dan-

gerous situations in one task that are universally unsafe in future tasks. Under these

conditions the agent could learn to avoid these situations even while it is learning in

a new setting.

These advantages offer powerful motivation for investigating learning to learn.

However, before learning to learn can be applied to real-world problems there are a

number of challenges to overcome.

3.6 Challenges

Despite the motivating advantages behind learning to learn, there are a number

of difficulties associated with implementing the concept successfuly on real-world

systems. Although there are many potential challenges, the main problems that we

focus on in this dissertation are:

1. What knowledge should be transferred?

2. How can prior knowledge be learned?

3. How can prior knowledge be transferred?

4. How should we evaluate a transfer learning system?

40

3.6.1 What Knowledge should be Transferred?

Transfer learning requires learning knowledge from source tasks and then transfer-

ring that knowledge to the target task. What prior knowledge should be learned and

transferred? Previous research has investigated transferring many kinds of knowl-

edge. For example,

1. Action-Values [45, 46, 8]

2. Policies [44, 42]

3. Models [4]

4. Instances [36, 10]

One important lesson discovered by experiments in transfer learning is that some

transferred knowledge is detrimental to learning. This phenomenon is called negative

transfer [5, 43]. The problem is that the same kind of knowledge is sometimes useful

and other times counterproductive. For example, in a TL setting where the source

task and the target task are both maze navigation problems, if the maze in the source

task is completely different than the maze in the target task, knowledge transferred

from the source task to the target task may be misleading. If the target task learning

algorithm makes assumptions about the target task based on its knowledge of the

source task, then it will likely perform worse than if the algorithm ignores source

task knowledge.

The kind of knowledge transferred also affects the kinds of learning algorithms

that can be used [5]. For example, if information about the action-values of the

target task can be learned from source tasks, this information can only be exploited

by learning algorithms that use action-values. On the other hand, if part of the

41

optimal policy is transferred, this information could be exploited by almost any RL

algorithm.

In this dissertation, we look to previous empirical studies of transfer learning

to suggest plausible kinds of knowledge to transfer. The main lessons learned from

experimenting with applying TL to RL is that the kind of knowledge to transfer

depends on the relationship between the tasks and the learning objective.

3.6.2 How can Prior Knowledge be Learned?

Some prior knowledge would be very useful for an agent to have, but if it is

difficult or impossible to learn, then that knowledge may not be practical for TL.

We break this problem down into three questions:

1. How can the knowledge be learned?

2. How does the source task algorithm perform empirically?

3. What is the sample complexity of learning this knowledge?

First off, we need to identify an algorithm for learning the knowledge. If no such

algorithm exists, this kind of knowledge is not a plausible candidate for learning to

learn, no matter how useful it is for learning a novel task.

Once an algorithm for learning knowledge is established, we need to test the

algorithm empirically. This process can help to determine whether or not the knowl-

edge can be learned efficiently. It can also help to generate intuition about what

conditions cause the algorithm to succeed or fail.

However, no number of empirical experiments will identify whether the algorithm

always succeeds. The algorithm should be theoretically analyzed to determine its

sample complexity under a wide range of situations. This analysis can provide precise

situations when the algorithm will succeed or fail.

42

3.6.3 How can Prior Knowledge be Transferred?

How knowledge can be transferred depends on the relationship between the source

tasks and the target task and the kind of knowledge extracted from the source tasks.

Because an agent learns prior knowledge from one or more source tasks, the acquired

knowledge may initially be unsuitable or not meaningful in the target task. The

knowledge may need to be translated into a form that is directly applicable to the

target task. When the source task and target task share the same state-action space

it may be possible to exploit this relationship to transfer knowledge.

A common problem is that the source task and the target task have differ-

ent state-action spaces. Taylor and Stone [43] introduce the concept of an inter-

task mapping for relating two tasks with different state-action spaces. For ex-

ample, given a source task ΩSRC = 〈SSRC, ASRC, TSRC, RSRC, γ〉 and a target task

ΩTRG = 〈STRG, ATRG, TTRG, RTRG, γ〉, an intertask mapping is a function

h : STRG × ATRG → SSRC × ASRC

relating the state-action pairs from the target task to state-action pairs in the source

task. If a state-action pair from the target task (s, a) ∈ STRG × ATRG maps to a

state-action pair in the source task (x, b) ∈ SSRC × ASRC, it signifies that these two

state-action pairs are somehow similar. Most research using intertask mappings has

assumed that a mapping is known a priori, but some progress has been made on

learning intertask mappings from data [47, 48, 11].

3.6.4 How should we Evaluate a Transfer Learning System?

Possibly the most critical question we can ask about a transfer learning system

is how to evaluate it. Even under the standard single task reinforcement learning

43

Target Task
Samples

Total
Samples

S

am
pl

es

T
ra

ns
fe

r
N

o
T

ra
ns

fe
r

T
ra

ns
fe

r

N
o

T
ra

ns
fe

r

Figure 3.2: The sample complexity of transfer learning is more complex than sample
complexity in a single task setting. The number of samples is distributed over the
source and target task.

setting there are many criteria for evaluating and comparing algorithms. In the

transfer learning setting there are even more options. For example, the number of

samples is distributed over the source and target task (Figure 3.2). If acquiring

samples from the source task is somehow less costly than acquiring samples from the

target task we may be tempted to ignore the cost of learning in the source task. On

the other hand we might count the total sample complexity of learning in both the

source and the target task.

In this dissertation we take a two tiered approach to evaluation. We apply em-

pirical evaluation and theoretical evaluation. We use theoretical analysis to motivate

the development of new algorithms. We analyze the sample complexity of learning

the knowledge to be transfered and we analyze how that transferred knowledge af-

fects the sample complexity of learning in the target task. By analyzing both source

and target task sample complexities, we have the potential to consider total sample

complexity or target task sample complexity alone. The theoretical analysis also

provides precise conditions for success and failure. However, the theoretical assump-

tions needed for analysis are often violated in real-world problems. Because of this

problem, we also test our algorithms in complex environments.

44

3.7 Summary

Transfer learning (TL) is learning from source tasks and applying the learned

knowledge to improve performance in a target task. Performance is usually a measure

of how quickly the algorithm learns an acceptable policy in the target task [36, 43].

Transfer learning was first applied to supervised learning settings, which provided the

foundation for applying transfer learning to RL. Transfer is more complex between

RL tasks because RL tasks includes the notion of states and actions, and policies

cannot be evaluated at a single timestep, whereas the error of a regression function

or classifier can be measured for a single instance.

Another difference between applying TL to RL and supervised learning is that

many different kinds of prior knowledge can be transferred between tasks. Previ-

ous research has considered transferring action-values, samples, policy information,

transition models, etc. The kind of prior knowledge that is most useful depends on

the relationship between the source tasks and target task.

When tasks do not share the same state-action space, they can be related using

the concept of an intertask mapping [43]. Multitask RL assumes that tasks are drawn

from a probability distribution.

The main gap in the literature on applying TL to RL is that there is no finite

sample analysis describing how TL affects the sample complexity of RL. Throughout

this dissertation, we will focus on the creation of TL+RL algorithms with provable

bounds on sample complexity.

45

4. TARGETED EXPLORATION BY PRUNING STATES

Previous research has thoroughly established the importance of prior knowledge

in machine learning. Prior knowledge is any kind of true additional information

exploited by a learning algorithm, that the learning algorithm itself did not derive

from data. Prior knowledge can range from partial solutions to low dimensional

representations. The potential benefit depends on the kind of prior knowledge given.

In this section, we consider what kinds of prior knowledge can be used to speed

up reinforcement learning (RL) algorithms.

4.1 Background

Previous research has investigated the application of several kinds of prior knowl-

edge to RL.

One popular way to supply prior knowledge to value-based RL algorithms is to

set the initial action-values [1]. If RMIN is the minimum possible immediate reward

and RMAX is the maximum possible immediate reward, then the value function is

constrained to the interval
[
RMIN

1−γ ,
RMAX

1−γ

]
. Setting all of the action-values to RMIN

1−γ

causes an RL algorithm to avoid exploration unless some exploration strategy is

build into the RL algorithm. If the action-values are set to RMAX

1−γ the RL algorithm

will thoroughly explore the state-action space until settling on a policy. However, if

more information is known about the action-values of the optimal policy they can

be set to bias exploration so that the initial policy can be quickly discovered. Strehl

et al. [6] introduce the concept of an admissible heuristic U , defined by

Q∗(s, a) ≤ U(s, a) ≤ RMAX

1− γ
, (4.1)

46

where Q∗ is the optimal action-value function and prove that the R-MAX and De-

layed Q-learning converge to near-optimal policies. Further, if the admissible heuris-

tic is close to the optimal action-value function, it can greatly reduce the sample

complexity of those algorithms.

Another way to supply prior knowledge is by modifying the reward function to

speed up learning. This idea is known as reward shaping. Mataric [49] demonstrated

that multiple reward functions can be used to speed up learning. The main idea is

that reward functions can be used to specify subtasks that are necessary to accom-

plish the desired objective. Ng et al. [50] present a class of reward transformations

that do not change the optimal policy and prove that all transformations that do

not change the optimal policy belong to this class.

Hierarchy can provide important prior knowledge. Dietterich [3] introduce the hi-

erarchical MAXQ algorithm. Given a hierarchical description of subtasks, the MAXQ

algorithm decomposes the learning problem and is able to learn more efficiently than

“flat” or non-hierarchical learners.

Additional structure can enable faster learning. Sherstov and Stone [51] intro-

duced the concept of Relocatable Action Models (RAMs) for learning efficiently in

environments with many actions. The RAM concept abstracts the result of a state

transition from a particular state by introducing the notion of outcomes. The state

space can then be partitioned into a set of classes where all of the states in the same

class have the same probability distribution with respect to outcomes. Leffler et al.

[52] were the first to use the phrase “Relocatable Action Model” to describe this

structure and they proved that RAM-MDPs are equivalent to MDPs and introduced

an algorithm RAM R-MAX that has sample complexity dependent on the number

of classes and outcomes rather than the number of states and actions.

Dynamic Bayesian Networks also provide valuable structural information that

47

can be used to improve RL. Kearns and Koller [53] demonstrated that the sam-

ple complexity of a modified version of their E3 algorithm can learn with sample

complexity that is polynomial with respect to the number of conditional probability

table parameters that need to be learned, which typically grows logarithmically with

respect to the number of states.

Many researchers have applied function approximation to RL to approximate the

action-value function. To use function approximation, the designer of the algorithm

must make assumptions about the optimal action-value function. This can also be

considered a form of prior knowledge. For example, the kernel or basis functions

used with linear function approximators can be considered important knowledge for

the success of a function approximator.

So far we have not defined what we mean by “speeding up” learning. One po-

tential definition that has been used in many previous works is that the average

cumulative reward of an algorithm with prior knowledge over a finite number of

episodes is less than the average cumulative reward achieved by the base algorithm.

Alternatively we can determine whether or not prior knowledge speeds up a base

RL algorithm by comparing the sample complexity of a based algorithm with the

sample complexity of the same algorithm given the prior knowledge. The advantage

of considering sample complexity is that, as a theoretical result, its analysis holds

over a broad range of tasks. In this section, we consider both of these definitions

of speeding up learning. This gives us a better idea about how a particular kind of

prior knowledge affects learning speed.

4.2 Algorithm: STAR-MAX

One kind of prior knowledge not mentioned in the previous section is specifying

a subset of actions that are valid from each state or specifying a subset of states that

48

should be explored with priority. We describe an algorithm that can make use of

this kind of prior knowledge.

State TArgeted R-MAX (STAR-MAX, Algorithm 6) takes as arguments:

• S : a state set

• A : an action set

• γ : a discount factor

• m : the number of visits to a state-action pair before it is considered known

• ξ : the set of states to actively explore (ξ ⊆ S)

• β : a recovery policy that returns the algorithm to a state ξ

STAR-MAX [54] is a generalization of the popular model-based R-MAX [15]

algorithm. The main difference between STAR-MAX and R-MAX is that STAR-

MAX is given an exploration envelope ξ and a recovery rule β. Together these

additional pieces of information allow STAR-MAX to direct is exploration to the

states in ξ, instead of exploring more exhaustively.

An exploration envelope ξ ⊆ S is the set of states where exploration should be

focused by the learning algorithm. When ξ is small, only a few states need to be

explored and the majority of states can be ignored. This allows an RL algorithm

to settle on a policy without exhaustively (or nearly exhaustively) explore the state

space.

A recovery rule is a partial policy defined on the states S\ξ that “quickly” directs

an RL algorithm back to a state in ξ. In practice, the recovery rule need only direct

an RL algorithm back to a state in ξ in a small number of timesteps (in expectation).

However, in the theoretical analysis the recovery rule can be handled in several ways.

49

Algorithm 6 State TArgeted R-MAX (STAR-MAX)

Require: S,A, γ,m, ξ, β

1: for all (s, a) ∈ S × A do

2: if s ∈ ξ then

3: Q(s, a)← RMAX

1−γ
4: else

5: Q(s, a)← RMIN

1−γ
6: end if

7: n(s, a)← 0 {# visits to (s, a)}
8: r(s, a)← 0 {Cumulative reward at (s, a)}
9: for all s′ ∈ S do

10: l(s, a, s′)← 0 {# transitions (s, a)→ s′}
11: end for

12: end for

13: for t = 1, 2, 3, . . . do

14: Let s denote the state at time t.

15: if s ∈ ξ then

16: Choose action a := arg maxb∈AQ(s, b).

17: else

18: Choose action a := β(s).

19: end if

20: Let r be the immediate reward and s′ be the next state after executing action

a from state s.

21: if n(s, a) < m then

22: n(s, a)← n(s, a) + 1

23: r(s, a)← r(s, a) + r

24: l(s, a, s′)← l(s, a, s′) + 1

25: if s ∈ ξ and n(s, a) = m then

26: Run Value Iteration on model (Algorithm 7).

27: end if

28: end if

29: end for

50

Algorithm 7 Estimate Model (T̂ , R̂)

Require: s, a, s′,m, ξ

1: if s ∈ ξ and n(s, a) ≥ m then

2: return
(
l(s,a,s′)
n(s,a)

, r(s,a)
n(s,a)

)
{Sufficiently explored}

3: else

4: if s ∈ ξ and s = s′ then

5: return (1, RMAX) {Under explored, in ξ}
6: else

7: if s = s′ then

8: return (1, RMIN) {Not in ξ}
9: else

10: return (0, RMIN)

11: end if

12: end if

13: end if

One way is to perform the analysis in the reset sampling model where every state is

augmented with a special action that allows the algorithm to reset itself to an initial

state, which could be thought of as a recovery rule. A second way to handle the

recovery rule is to assume that for all states not in ξ, the optimal policy is given as

the recovery rule. This would allow a straightforward analysis, because the algorithm

can still converge to a near-optimal policy. The main point is that the recovery rule

is mainly a practical consideration, rather than a theoretical one.

When STAR-MAX is initialized (lines 1 through 12), a data structure Q, used to

estimate the optimal action-values, is initialized so that any state action pair with a

state in ξ is initialized optimistically; otherwise it is initialized pessimistically. This

encourages the agent to explore states in ξ and avoid other states. Data structures are

also initialized to count n(s, a) the number of times an agent has visited a particular

state-action pair (s, a) ∈ S×A, l(s, a, s′) the number of times an agent visited state-

action pair (s, a) ∈ S × A and transitioned to s′ ∈ S, and the cumulative reward

r(s, a) received when the agent visited state-action pair (s, a) ∈ S × A.

51

After initialization, the learner enters a loop (line 13) interacting with its envi-

ronment. It receives the current state s (line 14). Then if the current state is in the

exploration envelope the agent will use the estimated Q function to greedily select

what it believes to be the best action (line 16). On the other hand, if the state s is

not in ξ, then the recovery rule selects the action (line 18). This way, if the agent

leaves ξ, then the recovery rule is able to return the agent to a state in ξ. Finally,

if the state-action pair (s, a) is unknown, then each of the counters is updated, and

if a new state action pair becomes known (line 25), then Q is updated by running

value iteration on the estimated model (T̂ and R̂). The estimated model, outlined in

algorithm 7, returns a pair where the first element is the state transition probability

and the second element is the immediate reward.

Now that we have an algorithm that can make use of prior knowledge about where

to explore we would like to understand how prior knowledge affects the algorithms

sample complexity. Because of some of the details of STAR-MAX it is not easy to

provide a sample complexity analysis. However, because the algorithm is similar

to R-MAX, we can provide a rough comparison of sample complexity. When only

considering the number of state N and the number of actions K, the upper bound

on the sample complexity of exploration of R-MAX is

Õ
(
N2K

)
where Õ suppresses log factors [30, 6]. Now the proof of this upper bound depends on

the pidgin hole principle with respect to the number of state-action pairs that need

to become “known” before there are no more possible uknown state-action pairs.

However, STAR-MAX reduces the number of state-action pairs that need to be well

52

modeled by including ξ as prior knowledge. Thus, STAR-MAX only needs

Õ (N |ξ|K)

timesteps before all modeled state-action pairs become known. In other words, the

savings in sample complexity is proportional to the number of states not in ξ. By

eliminating more states from exploration we can learn much faster in the worst case

MDP. However, this depends on the assumption that the given recovery rule β selects

the same actions as the optimal policy. If the recovery rule is arbitrarily bad, then

STAR-MAX may perform poorly. This is the price of targeted exploration. In the

following experiments, we show that for several problems a reasonable recovery rule

can be learned on-line.

4.3 Experiment: Simple Case

Our first question was whether or not the exploration envelope concept resulted

in better empirical performance. To test this we constructed a series of stochastic

gridworld tasks, where the agent always starts in the same state and finds a goal

in the environment by moving up, down, left, or right. An example gridworld task

with an exploration envelope shaded in gray can be seen in Figure 4.1a. The green

square represents the initial state of the agent, the blue square represents the agent’s

current location, and the red square represents the goal state. Figure 4.1b shows

the visitation table derived from running the STAR-MAX algorithm on the task

in Figure 4.1a. The visitation table was constructed by recording the number of

times that the learning algorithm visited each state in the gridworld. States that

were visited many times are brighter than states that were visited infrequently. The

important point to notice about Figure 4.1b is that STAR-MAX explores almost

entirely within the states given by the exploration envelope.

53

(a) (b)

25 49 100 144 225 289

−12000

−10000

−8000

−6000

−4000

−2000

0

States

C
u
m

u
la

ti
v
e
 R

e
w

a
rd

STAR−MAX

Q−learning [with β]

R−MAX

Q−learning [Optimistic]

(c)

Figure 4.1: (a) Example gridworld with exploration envelope shaded in gray. The
start state is denoted by a green square, the agent by a blue square, and the target
state is denoted by a red square. (b) Example visitation table by the STAR-MAX
algorithm (lighter cells were visited more frequently). (c) Comparison of cumulative
reward between multiple RL algorithms as the number of states in the gridworld
increases. Notice that the cumulative rewards are negative because the task gives
negative rewards to encourage the algorithm to move to the target state as quickly
as possible. STAR-MAX scales much better than Q-learning and R-MAX. Adapted
from Mann and Choe [54].

54

0 200 400 600 800 1000
−6000

−5000

−4000

−3000

−2000

−1000

0

1000

States in Envelope

C
um

ul
at

iv
e

R
ew

ar
d

Figure 4.2: As the number of states in the STAR-MAX exploration envelope increase,
the cumulative reward decreases linearly. Adapted from Mann and Choe [54].

To test how STAR-MAX scales compared to other common RL algorithms, we

generated similar gridworld domains with 25, 49, 100, 144, 225, 289 states, with

exploration envelopes similar to the one showed in Figure 4.1a but increased in num-

ber of states as necessary due to the increased size of the underlying gridworld. We

compared STAR-MAX to the R-MAX algorithm, the popular Q-learning algorithm

with ε-greedy exploration and optimistically initialized action-values, and Q-learning

confined to the same exploration envelope as STAR-MAX. We recorded the cumu-

lative reward scored by each of the algorithms. Figure 4.1c shows that STAR-MAX

achieves higher cumulative reward compared to the other algorithms. Further the

gap between STAR-MAX and the other algorithms increases as the number of states

increases. Figure 4.2 shows that the cumulative reward decreases approximately

linearly as the number of states in the exploration envelope increase.

55

Figure 4.3: The red herring domain introduced by [2]. This gridworld domain con-
tains two red herring states (denoted by R) with small rewards and one goal state
(denoted by G) that gives a large reward. Learning algorithms that explore too little
may settle on one of the suboptimal red herring states rather than finding the goal
state.

4.4 Experiment: Dropping Arbitrary States

In many environments, the vast majority of states are irrelevant to the task. Thus,

it makes sense that in those tasks, learning can be sped up by simply dropping

random states. If only a few states are relevant, then the chances of dropping a

relevant state may be very small. Therefore, we may be willing to accept the small

probability of dropping a critical state if it will help to reduce the sample complexity

of exploration.

To test this possibility, we conducted an experiment using the Red Herring do-

main (Figure 4.3) introduced by Hester et al. [2]. The Red Herring domain (see figure

4.3) is a gridworld instance introduced by Hester and Stone [55] to demonstrate a po-

tential weakness of the RL-DT algorithm. The space is partitioned into four rooms.

The initial state is selected randomly from one of the cells in the top left room. All

states produce an immediate reward of −1 except for the two “red herring” states

marked by “R”, which provides a reward of 0 and terminates, and the goal state

marked by “G”, which gives a reward of +25 and terminates. For the Red Herring

domain we used a value of m = 10 to match with experimental results from other

56

0 10 20 30 40 50 60 70
0

2000

4000

6000

8000

10000

12000

14000

C
u

m
u

la
ti
v
e

 R
e

w
a

rd

% States Dropped

Figure 4.4: Cumulative reward increases simply by randomly dropping states (or
state-action pairs) from the exploration envelope in the Red Herring domain [2] up
to about 60% of the number of states. Adapted from Mann and Choe [54].

work. This domain is interesting because learning algorithms that do not explore

enough of the environment may settle on one of the suboptimal red herring states.

The domain is also interesting because many states are conceivably irrelevant. For

example, the states in the upper right corner or the states in the lower right corner

may (under usual circumstances) be completely avoided while traveling to the goal

state.

Provided that ξ contains the goal state “G”, STAR-MAX and R-MAX will both

eventually explore the goal state in favor of the “red herring” states. The main

difference is that STAR-MAX will have fewer states to explore before exploiting.

Figure 4.4 shows that envelopes with more states receive less cumulative reward,

which is expected. What is surprising is that envelopes constructed by randomly

dropping a certain percentage of states improves cumulative rewards (statistically

significant for 10% - 60% with p-values less than 0.02, see figure 4.4). This provides

57

evidence that in practice STAR-MAX can learn more efficiently than R-MAX even

when little is known about the environment.

4.5 Experiment: Learning from Demonstration

Exploration envelopes might be acquired by learning from demonstrations. When

observing an expert perform a task, the expert emphasizes some regions of the state-

action space rather than others. By focusing exploration on the regions of the state

space that the expert emphasized (i.e., the exploration envelope) an RL algorithm

can learn more quickly than focusing more broadly.

To demonstrate how this might work, we implemented a figure-eight tracing task.

In the figure-eight tracing task, an agent must move around the environment in the

shape of a figure-eight (Figure 4.5a). We first trained an imperfect expert using the

Q-learning algorithm with ε-greedy exploration. While the expert was learning the

figure-eight tracing task, we recorded its visitation table (Figure 4.5b). The visitation

table shows that the expert visited some states much more frequently than others.

Thus, we can conclude that some parts of the state space are irrelevant to the task.

To construct an exploration envelope (Figure 4.5c), we added the states to ξ that

were visited very frequently by the expert, where very frequently was defined by the

state being visited more than the 95-percentile state in the visitation table. This

created a sparse exploration envelope for the STAR-MAX algorithm. Figure 4.5d

shows that STAR-MAX was able to learn the figure-eight tracing task much more

quickly than either R-MAX or Q-learning.

4.6 Discussion

Eliminating states from consideration is useful for speeding up RL. STAR-MAX

demonstrates this point both in terms of sample complexity analysis and in exper-

iments. It is not difficult to see why eliminating states from the search space can

58

(a) (b) (c)

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

Episode Number

A
v
e
ra

g
e
 R

e
w

a
rd

Figure−8 Tracing

Q−Learning

STAR−MAX

R−MAX

(d)

Figure 4.5: (a) Learning to perform a figure-eight from demonstrations by a teacher.
(b) A state visitation table generated by a teacher. (c) The exploration envelope
extracted from (b) by selecting the states visited more frequently than the 95th per-
centile. (c) Comparison of average reward at the figure-eight task by Q-learning,
R-MAX, and STAR-MAX initialized with the exploration envelope in (c). Notice
that STAR-MAX quickly achieves high average reward at the task, while R-MAX
thoroughly explores before settling on a reasonable policy. Q-learning slowly im-
proves its policy. Adapted from Mann and Choe [54].

59

speed up learning, and we argue that the fact that this concept is simple to under-

stand is a great advantage compared to other methods of specifying prior knowledge.

For example, Bayesian approaches specify prior knowledge in terms of a prior distri-

bution, which may be difficult to understand or design. In contrast, our approach

simply asks a designer to specify any states they know are probably not relevant to

the task in advance. If the designer cannot eliminate any states, then the algorithm

is equivalent to the R-MAX algorithm, which will solve the problem (albeit slower).

In practice, we can often specify a priori that some states are probably not

relevant to solving a task. We can also often specify a basic policy to use as a

recovery rule or learn a recovery rule using reasonable assumptions. The recovery

rule is a significant drawback from a theoretical perspective because it is domain

specific and may not exist or be difficult to learn in some domains. However, the

recovery rule can be avoided in certain theoretical settings. For example, in the reset

sampling model, it is assumed that every state is augmented with a special action

aRESET that returns the agent to a start state. In this case, the reset action can be

used in stead of a domain specific recovery rule.

In this section, we have eliminated states from exploration. However, in many

scenarios it may make more sense to eliminate some state-action pairs. That is

because in stochastic environments it is often possible that an RL algorithm will

end up in an undesirable state and still have to make intelligent decisions. If we

know that taking a particular action in that state would make things even worse, we

can save the RL algorithm from making a poor decision in advance by eliminating

that state-action pair. This allows the RL algorithm to explore multiple actions in

that state, but avoids taking an action that we already know is a mistake. Another

advantage of eliminating state-action pairs instead of states is that as long as at least

one action is not eliminated at each state, then there is no need for a recovery rule.

60

Therefore, in future sections we will consider elimination of state-action pairs rather

than states.

4.7 Summary

Prior knowledge is information given to a learning algorithm that the learning

algorithm itself does not need to derive from data. It is well established that prior

knowledge can greatly speed up learning. However, this depends on the kind of prior

knowledge used and what is meant by “speed up”. We have considered pruning states

and state-action pairs, and measured “speed up” by the difference between the sample

complexity of the base algorithm and the algorithm exploiting prior knowledge. We

found that the improvement in speed is roughly proportional to the number of state-

action pairs that are eliminated from consideration. In the following sections, we will

use this approach of eliminating state-action pairs to scale RL algorithms to handle

large problems.

61

5. ANALYSIS OF PRUNING ACTIONS

In the previous section, we saw that pruning states can decrease the time needed

to learn a “good” policy for several different tasks. However, pruning states resulted

in an awkward problem. What should the policy do when the learning agent ac-

cidentally enters a pruned state? In stochastic environments this can happen by

chance. State-action pairs that normally transition to another state in the explo-

ration envelope may have some small probability of transitioning to a state outside

of the exploration envelope. To deal with this issue, we introduced the concept of

a recovery rule. However, we then had to face the problem of how a recovery rule

could be known in advance or learned. If we change our focus from pruning states

to pruning state-action pairs, then we can evade the issue of learning a recovery rule

and still achieve many of the same benefits.

In this section, we analyze the sample complexity of pruning actions from an MDP

in two ways: (1) we consider the sample complexity of exploration when some state-

action pairs can be explicitly ignored, and (2) we consider the sample complexity of

exploration when the RL algorithm is initialized with action-values that implicitly

eliminate certain state-action pairs. Although the analysis techniques used in the

section are similar to those used by Kearns and Singh [27], Kakade [30], Strehl et al.

[16, 6], Szita and Szepesvári [29] our results emphasize the impact of prior knowledge

on sample complexity rather than sample complexity in the absolute worst case.

The results derived in this section show how prior knowledge can decrease sample

complexity and are foundational for the remaining sections.

62

5.1 Background

Throughout this section, we will be concerned with the sample complexity of ex-

ploration of an RL algorithm (Inequality (2.16) introduced by Kakade [30]). Recall

that the sample complexity of exploration of an RL algorithm is the maximum num-

ber of timesteps that the algorithm acts according to a sub-ε-optimal policy, with

high probability, where ε is a small positive value. We will use the phrases “sample

complexity” and “sample complexity of exploration” interchangeably, except when

noted otherwise.

For some ε > 0, an MDP Ω, and a timestep t, if an RL algorithm is at state st

and following a policy π, we say that that algorithm is following an ε-optimal policy

provided that V π
Ω (st) ≥ V ∗Ω(st)−ε. We say that a collection of action-value estimates

Q̂ are ε-accurate with respect to the optimal action-values for Ω if

∣∣∣∣∣∣Q∗Ω − Q̂∣∣∣∣∣∣∞ ≤ ε

where ||x||∞ = maxx |x| is the max-norm operator.

Strehl et al. [6] developed a framework for analyzing PAC-MDP algorithms under

the explore sampling model. Before stating any theorems that will help us with our

analysis, we need to explain two important concepts. The first concept is the notion

of a greedy policy. Suppose an RL algorithm estimates the optimal action-values for

an MDP Ω with a structure Q̂. The RL algorithm is said to be acting according to

a greedy policy π, if the action selected by the RL algorithm at a state s ∈ S is

π(s) = arg max
a∈As

Q̂(s, a) (5.1)

where As ⊆ A is the set of all valid actions at state s. The second important concept

63

is the notion of an induced MDP. The induced MDP concept was introduced by ?]

in their analysis of the E3 algorithm. Here we use the definition introduced by Strehl

et al. [6], which has been slightly modified to facilitate the analysis of both R-MAX

and Delayed Q-learning.

Definition 5.1. (Strehl et al. [6]) Let Ω = 〈S,A, T,R, γ〉 be an MDP and κ ⊆ S×A.

The induced MDP (and for reasons that will be made clear below, also known as a

known state-action MDP) with respect to Ω and κ is denoted by Ωκ = 〈S,A, T ′, R′, γ〉

where

T ′(s′|s, a) =


T (s′|s, a) if (s, a) ∈ κ

1 if (s, a) /∈ κ and s′ = s

0 otherwise

and

R′(s, a) =

 R(s, a) if (s, a) ∈ κ

(1− γ)Q̂(s, a) otherwise

where T ′ defines the transitions probabilities and R′ defines the reward function of

Ωκ.

Inside the set κ the induced MDP Ωκ has the exact same transition probabilities

and reward function as the MDP Ω. However, outside of κ, Ωκ has overly optimistic

values compared to Ω. While an RL algorithm is executing in an MDP, it will observe

some state-action pairs more than others. When the RL algorithm has observed a

state-action pair enough times, it has enough samples from that state-action pair

to model it well or to “know” that state-action pair. A known state-action MDP is

an idealized version of what the RL algorithm has learned about the MDP. When

an RL algorithm is exploring an MDP, the value of its policy will be the same in

Ω and Ωκ as long as the RL algorithm remains within κ. However, if the algorithm

64

escapes from κ, then the value of the policy in Ωκ will be greater than or equal to

the value of the policy in Ω. This is due to the definition of Ωκ. If escaping from

κ is very difficult, then the near-optimal policy for Ωκ is also near-optimal for Ω. If

it is easy to escape from κ, then an escape event is likely to occur because the RL

algorithms internal model will overestimate the value of state-action pairs outside of

κ. However, because there are a finite number of state-action pairs, the number of

times escape events occur is bounded. After these escape events occur, then the RL

algorithm must be acting near-optimally in Ω with high probability.

Now we can introduce one of the most important theorems introduced by Strehl

et al. [6], as it will be useful in our analysis of RL algorithms.

Theorem 5.2. (Strehl et al. [56, Proposition 1] and Strehl et al. [6, Theorem 10])

Let ε > 0, δ ∈ (0, 1], and A(ε, δ) be any value-based greedy learning algorithm such

that, for every timestep t, A(ε, δ) maintains action-value estimates Q̂t ≤ 1
1−γ and

there exists a set κt of state-action pairs that depends on the agent’s history up to

timestep t. We denote maxa∈A Q̂t(s, a) by V̂t(s) and assume that the set κ does not

change unless an action-value is updated (i.e., κt = κt+1 unless, Q̂t 6= Q̂t+1). Let Ωκt

be the known state-action MDP with respect to MDP Ω and πt be the current greedy

policy. Suppose that with probability at least 1 − δ the following conditions hold for

all state-action pairs s ∈ S and timesteps t ≥ 1:

Condition 1: V̂t(s) ≥ V ∗Ω(s)− ε (optimism),

Condition 2: V̂t(s)− V AtΩκt
(s) ≤ ε (accuracy), and

Condition 3: the total number of updates of action-value estimates plus the number

of times the escape event from κt can occur is bounded by ζ(ε, δ) (learning

complexity).

65

If A(ε, δ) is executed on Ω it will follow a 4ε-optimal policy on all but

O

(
ζ(ε, δ)

ε2(1− γ)2
ln

1

δ
ln

1

ε(1− γ)

)

timesteps t with probability at least 1− 2δ.

This is a useful theorem for sample complexity analysis because it makes only

minimal assumptions about the RL algorithm. Strehl et al. [6] used Theorem 5.2 to

derive PAC-MDP bounds for R-MAX and Delayed Q-learning. To apply the theorem,

we need to demonstrate that the RL algorithm being analyzed follows a greedy policy

with respect to its action-value estimates Q̂, show that it maintains approximately

optimistic action-values, show that the action-values are an accurate approximation

of the action-values for the known state MDP, and bound the number of times ζ that

an escape events and attempted updates might occur, where ζ is called the learning

complexity. Then we can plug in the learning complexity to the bound provided by

Theorem 5.2. We will use Theorem 5.2 in the next section and most of the bounds

throughout this dissertation will depend implicitly on the theorem.

The lowest known upper bound on sample complexity of exploration for the R-

MAX algorithm is

O

(
NK

ε3(1− γ)6

(
N + ln

NK

δ

)
ln

1

δ
ln

1

ε(1− γ)

)

due to [6, Theorem 11], where ε is the allowable error of the learned policy and δ

is the acceptable probability of failure. If we ignore log factors this upper bound

simplifies to

Õ

(
N2K

ε3(1− γ)6

)
,

where Õ denotes the suppression of log factors. The squared dependence on the

66

number of states (N2) is due to the fact that R-MAX constructs an accurate model

of the MDP, which has N2K parameters, and solves this model for its policy.

Strehl et al. [16, Theorem 1] provides the following upper bound on the sample

complexity of exploration for the Delayed Q-learning algorithm:

O

(
NK

ε4(1− γ)8
ln

1

δ
ln

1

ε(1− γ)
ln

NK

δε(1− γ)

)

where ε is the allowable error of the learned policy at the current state and δ is the

acceptable probability of failure. Again, by ignoring log factors

Õ

(
NK

ε4(1− γ)8

)

we get a simplified version of the bound. This bound has a better dependence on

the number of states and actions than R-MAX. However, it has a slightly worse

dependence on parameters 1
ε

and 1
1−γ that control the policy accuracy and planning

horizon. Interestingly, Szita and Szepesvári [29] have presented a model-based algo-

rithm inspired by both R-MAX and Delayed Q-learning that has sample complexity

that is tighter than both R-MAX and Delayed Q-learning. In this dissertation,

we will analyze R-MAX and Delayed Q-learning because their analyses are more

straightforward than that of Szita and Szepesvári [29].

The bounds on sample complexity provided by [6] and [16] primarily provide worst

case sample complexity bounds over all MDPs. On the other hand, we are interested

in how sample complexity may change as more prior knowledge is available. In the

next two sections, we will derive bounds for R-MAX and Delayed Q-learning when

structures that eliminate actions are given.

67

s1

s2

s3

s4

a1 a2 a3

1 1 1

1 1 1

1 1 1

1 1 1

S1

S2

S3

S4

a1

a1

a2

a2

a2
a3

a3a1

a1

a2

a3

a3

s1

s2

s3

s4

a1 a2 a3

0 1 1

1 1 0

0 0 1

1 1 0

S1

S2

S3

S4

a1

a1

a2

a2

a2
a3

a3

(a) (b) (c) (d)

Figure 5.1: (a) A full exploration table with no state-action pruning. All state-action
pairs may need to be explored to guarantee learning a near-optimal policy. (b) The 4-
state, 3-action MDP described by the full exploration table. (c) A sparse exploration
table with pruned state-action pairs. (d) The 4-state, 3-action MDP described by
the sparse exploration table.

5.2 Explicit Action Pruning

Knowledge about which state-action pairs should be explored and which state-

action pairs should not be explored can be provided in the form of an exploration

table.

Definition 5.3. Given a state set S and an action set A, a function ξ : S × A →

{0, 1} is called an exploration table (Figure 5.1) if (1) it encodes with 1 state-action

pairs that may be explored by an RL algorithm and 0 state-action pairs that are not

considered by an RL algorithm applied to some MDP over S and A and (2) at every

state s ∈ S there exists a ∈ A such that ξ(s, a) = 1. Let Aξ(s) = {a ∈ A|ξ(s, a) = 1}

denote the subset of valid actions that can be selected at state s ∈ S and Ks = |Aξ(s)|.

An exploration table specifies a value of 1 for state-action pairs that may be

explored by an RL algorithm and a value of 0 for state-action pairs that should

never be visited. Using this notion of an exploration table, we can take an MDP Ω

and transform it into a new MDP with fewer state-action pairs (Figure 5.1).

Definition 5.4. Let Ω = 〈S,A, T,R, γ〉 be an MDP and ξ be an exploration table.

We denote by Ωξ the pruned Markov decision process (pruned MDP) with

68

respect to Ω and ξ, such that from each state s ∈ S only the actions Aξ(s) can be

selected by a learning algorithm.

A pruned MDP is similar to the original MDP except that the pruned MDP has

fewer state-action pairs. Unfortunately, this means that if the wrong state-action

pairs are pruned, the optimal policy for the pruned MDP may be suboptimal for the

original MDP. This leads us to the notion of optimality loss.

Definition 5.5. Given MDP Ω and an exploration table ξ, the optimality loss

between Ω and Ωξ is

L(Ω,Ωξ) = max
s∈S

(
V ∗Ω(s)− V π

Ωξ
(s)
)

(5.2)

where π is the optimal policy with respect to the pruned MDP Ωξ.

Optimality loss is a worst case measure defined by the maximum difference be-

tween the optimal value function for the original MDP Ω and the optimal value

function for the pruned MDP Ωξ. Notice that any policy for Ωξ is also defined for

Ω and has the same value in both MDPs. However, there could be policies for Ω

that are not defined for Ωξ because they make use of some pruned state-action pairs.

If the optimal policy for Ω is not defined for Ωξ, then this will result in non-zero

optimality loss. The next lemma allows us to bound the worst case optimality loss

based on which state-action pairs have been pruned by ξ.

Lemma 5.6. Let α > 0, ξ be an exploration table, and Ω be an MDP such that for

every state s ∈ S there exists an action a ∈ A such that (1) ξ(s, a) = 1 and (2)

Q∗Ω(s, a) ≥ V ∗Ω(s)− α, then the optimality loss

L(Ω,Ωξ) ≤
α

1− γ

69

where Ωξ is the pruned MDP with respect to Ω and ξ.

Proof. See the proof of Lemma 5.17 below.

If the specified exploration table leaves behind actions that are α optimal at

each state, then the optimality loss is bounded above by α
1−γ . This suggests an

objective for choosing exploration tables. We want to select an exploration table

that eliminates as many state-action pairs as possible (sparsity) without eliminating

state-action pairs that are close to optimal.

Next we will analyze how the sample complexity of exploration for R-MAX and

Delayed Q-learning are influenced by pruning with an exploration table.

5.2.1 R-MAX

The following theorem states an upper bound on the sample complexity of ex-

ploration of R-MAX (Algorithm 3) in a pruned MDP, with appropriately chosen

parameters m and ε1.

Theorem 5.7. (R-MAX Exploration Table Bound) Suppose that ε > 0 and

δ ∈ [0, 1), Ωξ is a pruned MDP with respect to an exploration table ξ and MDP Ω =

〈S,A, T,R, γ〉. There exists inputs m and ε1, satisfying m = O
(

(ψ+ln(
∑
s∈S Ks/δ))

ε2(1−γ)4

)
and 1

ε1
= O

(
1
ε

)
, such that if R-MAX is executed on Ωξ with inputs m and ε1, then

the following holds. Let At denote R-MAX’s policy at time t and st denote the state

at time t. With probability at least 1− δ, V AtΩ (st) ≥ V ∗Ω(st)− ε is true for all but

O

(∑
s∈SKs

ε3(1− γ)6

(
ψ + ln

∑
s∈SKs

δ

)
ln

1

δ
ln

1

ε(1− γ)

)

timesteps t, where Ks is the number of valid actions for state s ∈ S specified by the

exploration table ξ and ψ is the maximum out-degree of any state-action pair.

70

Notice that even though we are using existing analysis techniques, this bound

on the sample complexity of R-MAX has several improvements and modifications

compared to the bound specified by Strehl et al. [6, Theorem 11].

First, the bound depends on the
∑

s∈SKs rather than NK. In the worst case,

if Ks = K for all s ∈ S, then the bound depends on NK. However, when the

exploration table ξ is sparse, then the sum of state-action pairs can be very small

compared to NK. This explains the key advantage of providing an exploration table.

If the exploration table is sparse, then the sample complexity is decreased.

Second, the bound introduces and exploits the notion of the maximum out-degree

ψ over all state-action pairs to achieve a tighter sample complexity bound in many

MDPs. The out-degree of a state-action pair is the number of states with positive

probability of being transitioned to. For example, if all state-action pairs are deter-

ministic, then ψ = 1. If all state-action pair transition to 5 or fewer different states,

then ψ = 5. If ψ << N , as it is in most previously studied problems (e.g., mountain

car [1], taxi domain [3], Robocup Keepaway [57]), then the sample complexity of

R-MAX is significantly smaller than the worst case where ψ = N . This adjustment

to the theorem is only a minor change, but it helps to explain why R-MAX often

finds near-optimal policies even when the m parameter is set to values that are much

smaller than O(N).

Our approach to the proof of Theorem 5.7 is to apply Theorem 5.2. However,

this theorem has several conditions and concepts that need further explanation.

The first and possibly most important concept in the analysis of the R-MAX

algorithm is the idea of “known” state-action pairs. The R-MAX algorithm takes a

parameter m, which is the number of times it needs to visit a state-action pair before

it is considered well-modeled.

71

Definition 5.8. If an instance of the R-MAX algorithm initialized with m > 0 is

executed on an MDP Ω = 〈S,A, T,R, γ〉, then a state-action pair (s, a) ∈ S × A is

considered m-known (or just known) if and only if (s, a) has been experienced at

least m times.

After visiting an “unknown” state-action pair m times, the R-MAX algorithm

incorporates the reward and transition samples into its internal model and plans a

new policy. We denote the set of m-known state-action pairs at timestep t by

κt = {(s, a) ∈ S × A | n(s, a) ≥ m} (5.3)

where n(s, a) is the number of times that the state-action pair (s, a) has been visited.

If m is large enough then the internal model maintained by R-MAX will be accurate

at the state-action pairs that are m-known. At all other state-action pairs, R-MAX

will overestimate there values with 1
1−γ , which is the highest possible value. This

trick encourages R-MAX to systematically explore unknown regions of the state-

action space. Furthermore, any time that the algorithm visits a state-action pair

outside of κ, we call this an escape event.

The ideal internal model for R-MAX is the induced MDP (Definition 5.1) with

respect to the known state-action pairs. The main significance of the induced MDP is

that when κ is the set of known states, Ωκ represents the ideal internal model, where

every state-action pair transition probability distribution and reward is perfectly

modeled if (s, a) ∈ κ and results in a self-absorbing state with the highest possible

immediate reward if (s, a) /∈ κ.

Theorem 5.2 has several assumptions and conditions. The theorem assumes that

the RL algorithm maintains a set of action-values Q̂t bounded by
[
0, 1

1−γ

]
and that

the algorithm follows a greedy policy πt(s) = arg maxa∈As Q̂t(s, a) at all timesteps

72

t. The conditions are (1) that at each state s ∈ S the RL algorithm’s maximum

action-value estimate is not too much smaller than the optimal action-value for that

state (i.e., maxa∈As Q̂(s, a) ≥ V ∗Ωξ(s)− ε) (2) that the estimated action-values Q̂t are

always close to the action-values associated with running the greedy policy on the

induced MDP Ωξ,κ (i.e., maxa∈As Q̂t(s, a)−V π
Ωξ,κ

(s) ≤ ε), and (3) that the number of

escape events is bounded (since action-value updates can only occur when an escape

event occurs).

The R-MAX algorithm always follows a greedy policy and for any finite m > 0

the number of times that an escape event can occur is bounded by m
(∑

s∈SKs

)
.

So the proof is mainly a matter of selecting values for the parameters m and ε1 that

satisfy the conditions 1 and 2 and plugging these values into the sample complexity

bound given by Theorem 5.2.

Lemma 5.9. If R-MAX is executed on an MDP Ωξ with parameters m and ε1 where

m satisfies

m ≥
C
(
ψ + ln

(∑
s∈SKs/δ

))
ε21(1− γ)4

,

then
∣∣∣V π

Ωξ,κt
(s)− V π

Ω̂
(s)
∣∣∣ ≤ ε1 is true for all stationary policies π and timesteps t with

probability at least 1 − δ, where Ωξ,κt is the induced MDP with respect to Ωξ and κt

and Ω̂ is the MDP specified by the internal model maintained by R-MAX.

Proof. The proof of this lemma follows from [6, Lemma 15] and the fact that our

bound here only needs to hold over
∑

s∈SKs state-action pairs rather than NK

state-action pairs.

Now we are ready to prove Theorem 5.7. Our proof is similar to the proof of

Strehl et al. [6, Theorem 11], however, we emphasize that there are several important

differences.

73

Proof. (of Theorem 5.7) If we select m according to Lemma 5.9 then we have that∣∣∣V π
Ωξ,κt

(s)− V π
Ω̂

(s)
∣∣∣ ≤ ε1 with probability at least 1 − δ. If we choose ε1 = ε/2, then

with probability at least 1− δ we have

maxa∈As Q̂(s, a) ≥ V ∗
Ω̂

(s)− ε1

≥ V ∗Ωξ,κt
(s)− 2ε1

≥ V ∗Ωξ(s)− 2ε1

≥ V ∗Ωξ(s)− ε

where the first inequality is due to the fact that R-MAX computes ε1-accurate action-

values from its internal model Ω̂. The second inequality is due to Lemma 5.9. The

third inequality is due to the fact that the induced MDP Ωξ,κt always has a greater

value (at every state) than Ωξ because the induced MDP has the same rewards and

transition probabilities in ξ and maximum possible values at every other state-action

pair. The last inequality is due to selecting ε1 = ε/2. This satisfies condition 1 of

Theorem 5.2 and condition 2 also follows from our choice of m and Lemma 5.9.

Now, we can obtain our result by setting ε1 ← ε/8 and δ ← δ/4 and plugging

into

m =
C(ψ+ln(

∑
s∈S Ks/δ))

ε21(1−γ)4

=

(
C(ψ+ln(

∑
s∈S Ks/(δ/4)))

(ε/8)2(1−γ)4

)
=

(
64C(ψ+ln(4

∑
s∈S Ks/δ))

ε2(1−γ)4

)
= O

(
ψ+ln(

∑
s∈S Ks/δ)

ε2(1−γ)4

)
and then the bound provided by Theorem 5.2, we have an ε-optimal policy with

probability at least 1− δ (by applying the union bound) on all but

O

(∑
s∈SKs

ε3(1− γ)6

(
ψ + ln

∑
s∈SKs

δ

)
ln

1

δ
ln

1

ε(1− γ)

)

74

timesteps.

5.2.2 Delayed Q-learning

Now we turn our attention to the analysis of the sample complexity of exploration

of Delayed Q-learning (Algorithm 5) with a pruned MDP. Our proof and the lemmas

are similar to those found in Strehl et al. [6], however, several of the proofs require

changes due to the fact that we are proving a slightly different result.

Theorem 5.10. (Delayed Q-learning Exploration Table Bound) Suppose that

ε > 0 and δ ∈ [0, 1), Ωξ is a pruned MDP with respect to an exploration table

ξ and MDP Ω = 〈S,A, T,R, γ〉. There exists inputs m and ε1, satisfying m =

O
(

1
ε1(1−γ)2 ln

(∑
s∈S Ks

ε1δ(1−γ)

))
and 1

ε1
= O

(
1

ε(1−γ)

)
, such that if Delayed Q-learning is

executed on Ωξ, then the following holds. Let At denote Delayed Q-learning’s policy

at time t and st denote the state at time t. With probability at least 1− δ, V AtΩ (st) ≥

V ∗Ω(st)− ε is true for all but

O

(∑
s∈SKs

ε4(1− γ)8
ln

1

δ
ln

1

ε(1− γ)
ln

∑
s∈SKs

δε(1− γ)

)

timesteps t, where Ks is the number of valid actions for state s ∈ S specified by the

exploration table ξ.

The primary importance of the Delayed Q-learning algorithm is that it is a model-

free PAC-MDP algorithm and its sample complexity bound has a smaller dependence

on the number of state-action pairs than the R-MAX algorithm. By model-free it

is meant that the algorithm uses memory that depends linearly on the number of

state-action pairs and has a per-timestep computational complexity that depends

only on the number of actions at the current state. R-MAX, on the other hand, uses

memory that is polynomial in the number of state-action pairs and has a per-timestep

75

computational complexity that is also polynomial in the number of state-action pairs.

If we ignore logarithmic factors the bound for R-MAX (Theorem 5.7) is

Õ

(
ψ
∑

s∈SKs

ε3(1− γ)6

)

while the bound for Delayed Q-learning is

Õ

(∑
s∈SKs

ε4(1− γ)8

)

where Õ indicates that we have suppressed logarithmic factors. Although R-MAX

has better dependence on 1
ε

and 1
(1−γ)

it additionally depends on ψ, the maximum

out-degree over all state-action pairs, whereas Delayed Q-learning avoids this depen-

dence. In practice, however, it is often observed that R-MAX outperforms Delayed

Q-learning in terms of sample efficiency. This is probably due to the fact that R-

MAX makes better use of samples by performing a computationally expensive plan-

ning step and for most interesting RL problems the maximum out-degree ψ is much

smaller than the number of states N . In fact, ψ ≤ ln(N) is common. Nevertheless,

Delayed Q-learning may be more applicable to real-world problems because of its

small per-timestep computational complexity.

The main difference between our analysis of Delayed Q-learning and the analysis

of Delayed Q-learning by Strehl et al. [16] is that the exploration table explicitly

excludes a number of state-action pairs. Thus, in our analysis the learning complexity

depends on
∑

s∈SKs rather than NK. However, if the exploration table does not

eliminate any state-action pairs, we recover the same bound derived by Strehl et al.

[16].

The analysis of Delayed Q-learning mostly consists of finding appropriate values

76

for arguments m > 0 and ε1 > 0. Delayed Q-learning is called “delayed” because it

updates action-value estimates in a series of batches of m samples from a state-action

pair (s, a) before attempting to update (s, a)’s action-value estimate.

Definition 5.11. A batch of m samples

AU(s, a) =
1

m

m∑
i=1

(
Rki(s, a) + γ max

a′∈As′
Q̂ki(s

′, a′)

)
(5.4)

occurring at timesteps k1 < k2 < . . . < km for a state-action pair (s, a) consists of a

sequence of m visits to (s, a) where the first visit occurs at a timestep k1 corresponding

to either the first timestep that (s, a) is visited by the algorithm or during the most

recent prior visit to (s, a) at timestep k′ < k1, LEARNk′(s, a) = true and lk′(s, a) =

m was true. A batch of samples is said to be completed on the first timestep t > k1

such that LEARNt(s, a) = true and lt(s, a) = m.

Delayed Q-learning has three notions of update:

1. Attempted Updates : An attempted update occurs when a batch of m samples

has just been completed.

2. Update (or Successful Updates) : A successful update to a state-action pair

(s, a) occurs when a completed batch of m samples at timestep t causes a

change to the action-value estimates so that Q̂t(s, a) 6= Q̂t+1(s, a).

3. Unsuccessful Updates : An unsuccessful update occurs when a batch of m

samples completes but no change occurs to the action-values.

An attempted update to a state-action pair (s, a) at timestep t is successful if

Q̂t(s, a)− AUt(s, a) ≥ 2ε1 (5.5)

77

the completed batch of samples is significantly lower (< 2ε1) than the current action-

value estimate, and a successful update assigns

Q̂t+1(s, a) = AUt(s, a) + ε1 (5.6)

the completed batch of samples plus a small constant to the new action-value esti-

mate. These rules guarantee that whenever a successful update occurs, the action-

value estimates decrease by at least ε1.

First recall that we have assumed that the immediate rewards are bound to the

interval [0, 1]. The Delayed Q-learning algorithm works by initializing its action-

values to 1
1−γ (the maximum possible action-value) and decreasing these estimates in

a series of updates. Unlike R-MAX, which only uses a single batch of m samples at

each state-action pair, Delayed Q-learning may collect many batches of m samples

from each state-action pair. To know when to stop updating a state-action pair,

Delayed Q-learning maintains a boolean value for each state-action pair. These

boolean values are called the LEARN flags. Due to the fact that every successful

update decreases an action-value by at least ε1, a particular state-action pair (s, a) ∈

S×A cannot be updated more than 1
ε1(1−γ)

times. Because there are at most
∑

s∈SKs

state-action pairs that can be explored, then there can only be a total of
∑
s∈S Ks

ε1(1−γ)

successful updates in an execution of the Delayed Q-learning algorithm.

Lemma 5.12. No more than
∑

s∈SKs

(
1 +

∑
s∈S Ks

ε1(1−γ)

)
attempted updates can occurs

during an execution of Delayed Q-learning on Ωξ.

Proof. When Delayed Q-learning first starts its execution the LEARN flags are true

for every state-action pair. Therefore, an attempted update can occur at least once

at every state-action pair. After an attempted update occurs at a state-action pair

(s, a) at timestep t, another attempted update at (s, a) can only occur if either the

78

attempted update at timestep t was successful or a successful update occurred at

another state-action pair after timestep t. Therefore there are at most (1 +
∑
s∈S Ks

ε1(1−γ)

attempted updates at a state-action pair, and because there are only
∑

s∈SKs state-

action pairs that can be explored in Ωξ, the total number of attempted updates

cannot exceed
∑

s∈SKs

(
1 +

∑
s∈S Ks

ε1(1−γ)

)
.

Lemma 5.12 is very similar to [6, Lemma 19] and is used to determine a value for

m. However, our lemma depends on
∑

s∈SKs rather than NK, so when we choose

a value for m, our value may be smaller than NK if the exploration table is sparse.

The set

κt =

{
(s, a) ∈ D | Q̂t(s, a)−

(
R(s, a)− γ

∑
s′∈S

T (s′|s, a) max
a′∈As′

Q̂t(s
′, a′)

)
≤ 3ε1

}
(5.7)

where D = {(s, a) ∈ S × A | ξ(s, a) = 1} and t is the current timestep, consists of

the set of state-action pairs with small Bellman residual. Because the state-action

pairs in κt have low Bellman error, Szita and Szepesvári [29] has called Eq. (5.7)

the “nice” set. The set κt is somewhat analogous to the known-state MDP used in

the analysis of R-MAX. However, unlike R-MAX, the algorithm cannot determine

which state-action pairs are actually in this set. It is used strictly for the purposes of

analysis. Notice that we have defined κt only over the set D because we do not care

about the accuracy of state-action pairs that are pruned by the exploration table.

Having low Bellman error does not mean that the estimate for a state-action

pair is accurate in an absolute sense. Instead it means that if an attempted update

occurs at a state-action pair in κt, then (if m is large enough) it is unlikely that a

successful update will occur. On the other hand, if an attempted update occurs at

a state-action pair that is not in κt, then (if m is large enough) it is very likely that

79

an attempted update will be successful. Furthermore, if all of the state-action pairs

(or at least all of the likely visited state-action pairs) have low Bellman error, then

we can derive bounds on the absolute accuracy of the action-values.

Let X denote the event that when Delayed Q-learning is executed on Ωξ, then

every time k1 when a new batch of samples for some state-action pair (s, a) begins,

if (s, a) /∈ κk1 and the batch is completed at timestep km, then a successful update

to (s, a) will occur at timestep km.

Lemma 5.13. If Delayed Q-learning is executed on an MDP Ωξ with parameters m

and ε1 where m satisfies

m ≥ 1

2ε21(1− γ)2
ln

(∑
s∈SKs

δ

(
1 +

∑
s∈SKs

ε1(1− γ)

))

then

1. event X will occur, and

2. Q̂t(s, a) ≥ Q∗Ωξ(s, a) for all timesteps t,

with probability at least 1− 2δ.

Proof. First we prove claim 1 and then prove claim 2.

Suppose that Delayed Q-learning has just finished collecting a batch AU(s, a) of

m samples for some state-action pair (s, a) and is about to perform an attempted

update. Due to the Markov property we know that the rewards and next states in

the given batch were sampled independently. Therefore the probability of observing

a sequence of m rewards and next states in the MDP is less than or equal to the

probability of observing those rewards and next states from a m sequence of calls to

a generative model at (s, a). The reason that the probability may be less is because

80

when exploring the MDP the algorithm may not complete the batch because (s, a)

may not be experienced m− 1 more times after k1.

For convenience let V̂ (s′) = maxa′∈Aξ(s) Q̂(s′, a′). By the Hoeffding inequality

with 0 ≤ Rki(ski , aki) + γV̂ki(ski+1
) ≤ 1

1−γ for each i = 1, 2, . . . ,m and our choice of

m we have

AU(s, a)− E [AU(s, a)] < ε1

with probability at least 1− δ/
(∑

s∈SKs

(
1 +

∑
s∈S Ks

ε1(1−γ)

))
.

Now if the accuracy holds, (s, a) /∈ κk1 , and an attempted update occurs at

timestep km, then

Q̂km(s, a)− AU(s, a) > Q̂km(s, a)− E [AU(s, a)]− ε1 > 3ε1 + ε1 > 2ε1

which implies that the attempted update will be successful by Eq. (5.5). Where the

second step is due to the definition of the “nice” set and the fact that V̂k1(s′) ≥ V̂ki(s
′)

for all s′ ∈ S and i = 1, 2, . . . ,m. To prove claim 1, we simply take the union bound

over all the number of attempted updates (see Lemma 5.12) so that the event X

occurs with probability at least 1− δ.

Now to prove the second claim, notice that for a batch of m samples

Q∗Ωξ(s, a)− AU(s, a) = Q∗Ωξ(s, a)− 1
m

(
Rki(s, a) + γV̂ki(s

′)
)

≤ Q∗Ωξ(s, a)− 1
m

(
Rki(s, a) + γV ∗Ωξ(s

′)
)

< Q∗Ωξ(s, a)− E
[

1
m

(
Rki(s, a) + γV ∗Ωξ(s

′)
)]

+ ε1

= ε1

by our choice of m according to the Hoeffding inequality, with probability at least

1− δ/
(∑

s∈SKs

(
1 +

∑
s∈S Ks

ε1(1−γ)

))
. By the union bound this inequality holds over all

81

attempted updates with probability at least 1 − δ/3. Assuming that the previous

inequality holds, we can prove the second claim by induction. First notice that

1
1−γ = Q̂(s, a) ≥ Q∗Ω(s,a)ξ

for all (s, a) ∈ D where D = {(s, a) ∈ S × A | ξ(s, a) = 1}.

Now if claim 2 holds up until timestep t, Q̂t(s, a) ≥ QΩξ(s, a). If no update or an

unsuccessful update occur, then the action-values will not change. However, if a

successful update occurs, then by Eq. (5.6),

Q̂t+1 = AU(s, a) + ε1

≥ 1
m

∑m
i=1

(
Rki(s, a) + γV ∗Ωξ(s

′)
)

+ ε1

= Q∗Ωξ(s, a)

which maintains the optimism of the estimated action-values at state-action pair

(s, a). Thus by the principle of mathematical induction, claim 2 holds with proba-

bility at least 1 − δ. Since both claims hold with probability at least 1 − δ we can

apply the union bound to see that they will jointly hold with probability at least

1− 2δ.

The key importance of Lemma 5.13 is that it specifies a value of m that causes

Delayed Q-learning to have successful updates when it completes a batch of sam-

ples for a state-action pair outside of the “nice” set, and it guarantees that the

action-value estimates will be optimistic with high probability. These properties will

be important for bounding the learning complexity ζ. We also need to determine

conditions when a state-action pair enters the nice set.

Lemma 5.14. ([16, Lemma 3]) If event X occurs and an unsuccessful update at

(s, a) occurs a timestep t and LEARNt+1(s, a) = false, then (s, a) ∈ κt+1.

Now we are ready to bound the learning complexity ζ.

82

Lemma 5.15. If event X occurs and Delayed Q-learning is executed on Ωξ, then the

learning complexity of the algorithm is at most ζ = 2m
(∑

s∈S Ks
ε1(1−γ)

)
.

Proof. In Ωξ there are a total of
∑

s∈SKs state-action pairs. These state-action

pairs can be updated at most 1
ε1(1−γ)

times, so the total number of successful updates

(changes to the action-value estimates) is at most
∑
s∈S Ks

ε1(1−γ)
.

Now we will show that if at a timestep t if (s, a) /∈ κt is experienced, then after

at most 2m more experiences of (s, a) that state-action pair will belong to the “nice”

set. There are two different cases where (s, a) /∈ κt might be experienced.

Case 1: (s, a) /∈ κt and LEARNt(s, a) = false. This can happen if at some

timestep t′ < t, (s, a) ∈ κt′ and an unsuccessful update occurred at timestep t′

(implying that (s, a) ∈ κt′+1 by Lemma 5.14) followed by a successful update at

some other state-action pair between timesteps t′ and t. In this case, the LEARN

flag for (s, a) will be set to true at timestep t by the rules of Delayed Q-learning.

Since event X occurs, the next attempted update will be successful.

Case 2: (s, a) /∈ κt and LEARNt(s, a) = true. An attempted update will

occur after at most m− 1 more experiences of (s, a). If (s, a) was not in the “nice”

set at the beginning of collecting this batch of samples, then the next attempted

update will be successful because we have assumed that event X holds. However,

if (s, a) was in the “nice” set at the beginning of collecting this batch of samples,

then a successful update must have occurred at some other state-action pair. In this

case, LEARNt+1(s, a) = true and (s, a) will not be in the “nice” set when the batch

completes. Again, by event X , the next batch of samples from (s, a) will result in a

successful update.

In both cases, at most 2m experiences of (s, a) will occur before a successful

update occurs. Since the there are
∑

s∈SKs state-action pairs and each state-action

83

pair can only be updated 1
ε1(1−γ)

times, the total number of experiences of some

state-action pair not in the “nice” set is at most 2m
(∑

s∈S Ks
ε1(1−γ)

)
.

The significance of this learning complexity bound is that it is approximately

linear in the number of state-action pairs in Ωξ because our chosen value for m only

depends on the number of state-action pairs within log factors. Now we are ready

to prove the sample complexity bound for Delayed Q-learning executed on Ωξ. This

proof is essentially the same as that of Strehl et al. [6, Theorem 16] but it depends

on the modified versions of the lemmas proved above.

Proof. (of Theorem 5.10) We proceed by applying Theorem 5.2 with ε1 = ε(1− γ)/3

and m selected according to Lemma 5.13. The “nice” set does not change unless

a change has occurred to some action-value. Now we assume that claims 1 and

2 of Lemma 5.13 hold, which occurs with probability at least 1 − 2δ. Claim 2

directly satisfies Condition 1 of Theorem 5.2 that the action-value estimates are

optimistic at all state-action pairs and all timesteps t. Next, we will show that

V̂t(s)− V πt
Ω′ (s) ≤

3ε1
1−γ = ε where πt is the greedy policy of the algorithm at timestep

t and Ω′ denotes Ωξ,κt the induced MDP with respect to Ωξ and κt, which satisfies

Condition 2 of Theorem 5.2. Since Q̂t is identical to Q∗Ω′ for all (s, a) /∈ κt, the only

error is introduced by state-action pairs that are within κt and by the definition of

the “nice” set they only differ by at most 3ε1. Thus the total difference between the

two policies is at most 3ε1
1−γ .

Condition 3 is satisfied by ζ = O
(

2m
∑
s∈S Ks

ε1(1−γ)

)
. By plugging in our chosen values

for m and ε1, we obtain the desired sample complexity bound. To obtain an ε-

optimal policy rather than a 4ε-optimal policy we can simply set ε← ε
4

and similarly

to obtain a probability of failure greater than δ we can substitute δ ← δ
4
, both of

which alter only constant factors in the bound.

84

5.3 Implicit Action Pruning

We have seen that providing an exploration table for an MDP can decrease the

sample complexity of exploration of both R-MAX and Delayed Q-learning. Explo-

ration tables explicitly prune certain state-action pairs from the MDP. Alternatively

it is possible to initialize the action-values in ways that implicitly eliminates state-

action pairs from being explored. In this section, we investigate action-value initial-

izations that eliminate state-action pairs from consideration during learning.

Strehl et al. [6] introduced the concept of an admissible heuristic

Q∗Ω(s, a) ≤ U(s, a) ≤ VMAX (5.8)

where U is an admissible heuristic for all (s, a) ∈ S × A and demonstrated that if

either the Delayed Q-learning algorithm or R-MAX are initialized with an admissible

heuristic the sample complexity of the algorithms can be greatly reduced. This idea

is related to reward shaping [50], where additional rewards are given to the RL

algorithm to decrease learning time.

An admissible heuristic U is a valuable tool for providing prior knowledge to an

RL algorithm that uses the OFU exploration strategy. The most interesting thing

about admissible heuristics is that they do not need to specify any exact information

about the optimal action-values of the task. A range of values can still result in a

valid admissible heuristic. This provides some leniency for guessing or, in our case,

transferring action-values (see Chapter 6).

Admissible heuristics enable algorithms such as R-MAX and Delayed Q-learning

to converge to a near-optimal policy with respect to their current state. However,

it is possible to imagine many action-value initializations that are not admissible

heuristics and yet somehow surreptitiously converge to an optimal policy. In this

85

Action-Values
Optimal
Action-Values

b1 b2 b3 b4 b5 b6

Optimal
Value

α-Optimal
Cutoff

"Good" Actions

Figure 5.2: The “good” actions at a state are the actions with optimal action-values
that are α-close to the optimal action-value at that state.

chapter, we introduce a much weaker condition on initial action-values where the

learned policy is still near-optimal. This weaker condition will be useful for analyzing

action-value transfer in the next chapter.

For one thing, it is not always necessary to select optimal actions. Instead it is

often good enough to select α-optimal or “good” actions (Figure 5.2).

Definition 5.16. Let α ≥ 0 and Ω = 〈S,A, T,R, γ〉 be an MDP. An action a ∈ A

that satisfies

Q∗Ω(s, a) ≥ V ∗Ω(s)− α (5.9)

is called an α-good action (or simply good action) with respect to the state s ∈ S,

and

Gα
Ω(s) = {a ∈ A | Q∗Ω(s, a) ≥ V ∗Ω(s)− α} (5.10)

denotes the set of α-good actions at state s ∈ S.

So good actions at a state s ∈ S are the actions that have action-values very close

to V ∗Ω(s) if the policy is optimal at every other state. These good actions are very

86

important because if the policy always selects good actions, then that policy is at

least
(

α
1−γ

)
-optimal or better. Keep in mind, however, that a policy can occasionally

select good actions and not be acting optimally because the optimality of a policy is

evaluated over a sequence of actions. Nevertheless, the next lemma shows that good

actions have an important relationship with near-optimal policies.

Lemma 5.17. Let α ≥ 0, Ω = 〈S,A, T,R, γ〉 be an MDP, and π : S → A be a policy

satisfying π(s) ∈ Gα
Ω(s), then π is an

(
α

1−γ

)
-optimal policy for Ω.

Proof. At any state s ∈ S, the policy π(s) = ã such that Q∗Ω(s, ã) ≥ V ∗Ω(s)− α. So

V ∗Ω(s)− V π
Ω (s) = V ∗Ω(s)−Qπ

Ω(s, π(s))

= V ∗Ω(s)−Q∗Ω(s, π(s)) +Q∗Ω(s, π(s))−Qπ
Ω(s, π(s))

≤ α +Q∗Ω(s, π(s))−Qπ
Ω(s, π(s))

= α + γEs′∼T (·|s,π(s)) [V ∗Ω(s′)− V π
Ω (s′)]

where the proof follows by recursing on this inequality and the linearity of the ex-

pectation operator E.

This lemma captures the intuitive notion that a policy that makes good decisions

at every state is nearly optimal in the long run. Notice that Lemma 5.17 does

not make any assumptions about the action-value function estimates kept by an

algorithm. The only thing that is required is that the policy itself takes good actions

at each state. So if an RL algorithm follows a greedy policy, it may act near-

optimally even if its action-value estimates are inaccurate. Figure 5.3 provides an

example where the action-values estimates may be far from the optimal action-values

at a state, yet a greedy policy will selects the optimal action. Thus it is possible and

useful to consider even weaker sufficient conditions than those used by the admissible

heuristic.

87

Action-Values
Action-Value
Estimates

Optimal
Action-Values

b1 b2 b3 b4 b5 b6
0

VMAX

Figure 5.3: Example of poorly estimated action-values at a single state. Notice that
a greedy policy would select the optimal action b1 in this case despite the fact that
the action-value estimates are extremely poor.

Definition 5.18. A function W : S ×A→ R is an α-weak admissible heuristic

(or just weak admissible heuristic) for MDP Ω = 〈S,A, T,R, γ〉, if for each

s ∈ S, there exists ã ∈ A such that

V ∗Ω(s)− α ≤ Q∗Ω(s, ã) ≤ W (s, ã) ≤ 1

1− γ

where α is the smallest non-negative value satisfying this inequality.

In other words, a weak admissible heuristic W differs from the admissible heuris-

tic U defined by Strehl et al. [6] in that the weak admissible heuristic only needs

to be optimistic for a single good action a ∈ Gα
Ω(s) at each state s ∈ S. For ex-

ample, Figure 5.4 provides an example of a weak admissible heuristic where the

optimal action b1 is severely underestimated and the lowest valued action is severely

overestimated. Despite the fact that these estimates are very far from the optimal

action-values, a simple algorithm following the OFU admissible heuristic is still likely

to converge on the good action b2 (which is slightly over-estimated). Initially an OFU

algorithm will select the action b6, but after sampling b6 several times the estimated

action-value for b6 will likely decrease dramatically. Once this happens, then b2 will

88

Action-Values
Weak Admissible
Heuristic Values

Optimal
Action-Values b2

b1

b3

b4

b5
b6

b1 b2 b3 b4 b5 b6

s'

Optimal
Value

α-Optimal
Cutoff

Figure 5.4: Weak admissible heuristic applied to a one state task with six actions.
The weak admissible heuristic only needs to optimistically initialize the action-value
for a single near-optimal action at each state.

have the highest estimated value. The estimated value of b2 is unlikely to decrease

very far because the optimal action-value for b2 is not too far from its estimate. Thus

this weak admissible heuristic causes convergence to a near-optimal policy after ex-

amining only one suboptimal policy. This is a much weaker assumption, and yet,

we will demonstrate that various provably efficient RL algorithms that use the OFU

exploration strategy will still converge to a near-optimal policy with respect to its

current state.

The following theorem will help in our analysis of sample complexity with a weak

admissible heuristic.

Theorem 5.19. (State-action Pair Elimination) Let η ≥ 0, W be an α-weak ad-

missible heuristic for an MDP Ω, and A is a value-based RL algorithm with initial

action-value estimates Q̂0 = W such that for all timesteps t ≥ 1,

1. A follows a greedy policy (At(s) = arg maxa∈A Q̂t(s, a)),

2. Updates to Q̂t(s, a) can only occur if (s, a) has been tried, and

3. if W (s, a) ≥ Q∗Ω(s, a), then Q̂t(s, a) ≥ Q∗Ω(s, a)− η,

then for all (s, a) ∈ S × A where W (s, a) < V ∗Ω(s) − (α + η), A will never explore

89

(s, a) (At(s) 6= a at any timestep t ≥ 1, where At denotes the policy of A at timestep

t).

Proof. Since A follows a greedy policy with respect to Q̂t, a state-action pair (s, a)

will only be selected if Q̂t(s, a) = maxa′∈A Q̂t(s, a
′).

Suppose, without loss of generality, that W (s, a) < V ∗Ω(s)− (α+ η), then by the

definition of W there exists ã such that W (s, ã) ≥ Q∗Ω(s, ã) ≥ V ∗Ω(s)− α > W (s, a).

Thus a 6= arg maxa′∈AW (s, a′) = arg maxa′∈A Q̂0(s, a′).

By assumption 3 the action-value estimate for Q̂t(s, ã) ≥ Q∗Ω(s, ã)−η ≥ (V ∗Ω(s)− α)−

η = V ∗Ω(s)− (α + η) > W (s, a). Since (s, a) has not been tried yet no update to its

action-value could have occurred (assumption 2). Therefore, Q̂t(s, a) = W (s, a) <

Q̂t(s, ã). Therefore, (s, a) will never be executed.

Theorem 5.19 states that if a value-based RL algorithm with certain properties is

initialized with a weak admissible heuristic, then the actions with very low estimates

are never explored. In other words, a weak admissible heuristic implicitly eliminates

certain state-action pairs. Supplying a weak admissible heuristic W is similar to

supplying the exploration table

ξ(s, a) =

 1 if W (s, a) ≥ V ∗Ω(s)− (α + η)

0 otherwise
(5.11)

for all (s, a) ∈ S × A. However, we refer to the action pruning as implicit because

the exploration table cannot be explicitly defined without knowing the optimal value

function V ∗Ω , which is generally not known. However, we will use this relationship

between weak admissible heuristics and exploration tables in our analysis of R-MAX

and Delayed Q-learning.

90

5.3.1 R-MAX

The sample complexity of R-MAX is influenced by initializing its action-values

with a weak admissible heuristic. The weak admissible heuristic causes R-MAX

to never try certain state-action pairs (Theorem 5.19). However, this depends on

the given weak admissible heuristic W . If W (s, a) = 1
1−γ at every state-action pair

(s, a) ∈ S × A, then the sample complexity is equivalent to the original R-MAX

algorithm. However, if many state-action pairs can be eliminated from consideration,

this can greatly improve the sample complexity of the algorithm.

Theorem 5.20. Let ε > 0, δ ∈ (0, 1], α > 0 and W be an α-weak admissible heuristic

for the MDP Ω = 〈S,A, T,R, γ〉. Let A be an instance of R-MAX with action-values

Q̂0 initialized by W . There exists a values for ε1 and m such that if A is executed

on Ω, then V AtΩ (s) < V ∗Ω(s)− (ε+ α
1−γ) on all but

O

(
NK −X
ε3(1− γ)6

(
ψ + ln

NK −X
δ

)
ln

1

δ
ln

1

ε(1− γ)

)

timesteps t, with probability at least 1− δ, where

X = |{(s, a) ∈ S × A | W (s, a) < V ∗Ω(s)− (ε/2 + α)}|

is the number of state-action pairs that are never explored and ψ is the maximum

out-degree of any state-action pair.

Theorem 5.20 describes the sample complexity of R-MAX when a weak admissible

heuristic is used to initialize the algorithm. The sample complexity depends on X,

which is the number of state-action pairs that are implicitly pruned by initializing

the action-values with W . If the given weak admissible heuristic is an admissible

heuristic, then this bound reduces to the one given by Strehl et al. [6, Theorem

91

11] with α = 0 (which is true for all admissible heuristics). However, our bound is

more flexible because it allows us to understand the interaction between optimality

loss and sample complexity even when the initial action-values do not optimistically

valuate the best action in every state.

Proof. We will proceed by applying Theorem 5.19.

By its definition, the R-MAX algorithm always follows a greedy policy with re-

spect to its action-value estimates Q̂t (satisfying Condition 1 of Theorem 5.19) and

never alters an action-value estimate unless the corresponding state-action pair has

been visited (satisfying Condition 2 of Theorem 5.19). Thus in order to apply The-

orem 5.19 we only need to ensure that R-MAX will maintain Q̂(s, a) ≥ Q∗Ω(s, a)− η

whenever W (s, a) ≥ Q∗Ω(s, a) for some η.

Suppose that Theorem 5.19 holds with η = ε1 = ε/2. Then this is equivalent to

running R-MAX on the exploration table defined by Eq. (5.11). By Theorem 5.7,

we have that the sample complexity of exploration for the MDP Ωξ is bound by

O

(
NK −X
ε3(1− γ)6

(
ψ + ln

NK −X
δ

)
ln

1

δ
ln

1

ε(1− γ)

)

where X = |{(s, a) ∈ S × A | W (s, a) < V ∗Ω(s)− (ε/2 + α)}| with probability at least

1− δ. Since ξ(s, ã) = 1 for at least one action ã ∈ Gα
Ω(s) at every state s ∈ S, then

the optimality loss between Ω and Ωξ is at most α
1−γ , by Lemma 5.6. Thus the policy

learned by R-MAX is at least
(
ε+ α

1−γ

)
-optimal in Ω.

Now, we claim that η = ε1 = ε/2. To prove Theorem 5.7, we selected m according

to Lemma 5.9, which guarantees that
∣∣∣Q̂t(s, a)−Q∗Ωξ,κt (s, a)

∣∣∣ ≤ ε1 = ε/2 for all

timesteps t and (s, a) ∈ D where D = {(s, a) ∈ S × A | ξ(s, a) = 1}. Since

Q∗Ωξ,κt
(s, a) ≥ Q∗Ωξ(s, a) for all (s, a) ∈ D, then Q̂t(s, a) ≥ Q∗Ωξ(s, a)− ε/2.

92

5.3.2 Delayed Q-learning

Now we will analyze the sample complexity of exploration for the Delayed Q-

learning algorithm with action-values initialized by an α-weak admissible heuristic.

Theorem 5.21. Let ε > 0, δ ∈ (0, 1], α > 0 and W is an α-weak admissible heuristic

for the MDP Ω = 〈S,A, T,R, γ〉. Let At denote the policy of an instance of Delayed

Q-learning at timestep t with action-values Q̂0 initialized by W . There exists values

for ε1 and m such that if A is executed on Ω, then V AtΩ (s) < V ∗Ω(s) − (ε + α
1−γ) on

all but

O

(∑
(s,a)∈D [W (s, a)− (V ∗Ω(s)− α)]+

ε4(1− γ)7
ln

1

δ
ln

1

ε(1− γ)
ln
NK −X
δε(1− γ)

)

timesteps t, with probability at least 1− δ, where [x]+ =

 x if x > 0

0 otherwise
,

X = |{(s, a) ∈ S × A | W (s, a) < V ∗Ω(s)− α}|

is the number of state-action pairs that are never explored, and

D = {(s, a) ∈ S × A | W (s, a) ≥ V ∗Ω(s)− α}

is set state-action pairs that may be explored.

This bound is somewhat different from the bound derived for R-MAX (Theorem

5.20) because the sample complexity depends on [W (s, a)− (V ∗Ω(s)− α)]+. When

W is an admissible heuristic, then the bound is essentially the same as the bound

given by Strehl et al. [6, Theorem 16]. Again, our bound is more flexible though,

because it allows us to understand the interaction between optimality loss and sample

93

complexity even when the initial action-values do not optimistically valuate the best

action in every state.

Proof. We will proceed by applying Theorem 5.19.

By its definition, the Delayed Q-learning algorithm always follows a greedy policy

with respect to its action-value estimates Q̂t (satisfying Condition 1 of Theorem 5.19)

and it never alters an action-value estimate unless the corresponding state-action

pair has been visited (satisfying Condition 2 of Theorem 5.19). Thus in order to

apply Theorem 5.19 we only need to ensure that Delayed Q-learning will maintain

Q̂(s, a) ≥ Q∗Ω(s, a)− η, whenever W (s, a) ≥ Q∗Ω(s, a).

For now, we will assume that this holds with η = 0 (and later show that this is

true with high probability given our choice ofm). By Theorem 5.19 every state-action

pair (s, a) ∈ S × A such that W (s, a) < Q∗Ω(s, a) − α is never explored by Delayed

Q-learning. This is implicitly equivalent to executing Delayed Q-learning with the

exploration table defined by Eq. (5.11). We select m = O
(

1
ε21(1−γ)2 ln

(∑
s∈S Ks

ε1δ(1−γ)

))
according to Lemma 5.13 and ε1 = ε(1−γ)

3
such that the sample complexity bound for

Ωξ is

O

(∑
s∈SKs

ε4(1− γ)8
ln

1

δ
ln

1

ε(1− γ)
ln

∑
s∈SKs

δε(1− γ)

)
where Ks = |{a ∈ A | ξ(s, a) = 1}| = |{a ∈ A | W (s, a) ≤ Q∗Ω(s, a)− α}|, with prob-

ability at least 1− δ. By the definition of the α-weak admissible heuristic, at every

state s ∈ S there exists an action ã ∈ Gα
Ω(s) such that ξ(s, a) = 1. Therefore the

optimality loss between Ω and Ωξ is at most α
1−γ , by Lemma 5.6. Thus, the policy

learned by Delayed Q-learning is at least
(
ε+ α

1−γ

)
-optimal or better in Ω.

Furthermore, the notice that at any state s ∈ S, any action whose value falls below

V ∗Ω(s)−α will never be explored again because there exists an action ã ∈ Gα
Ω(s) such

that W (s, ã) ≥ V ∗Ω(s) − α. Thus the total number of times that a state-action pair

94

outside of the “nice” set can be visited is 2m
[W (s,a)−(V ∗Ω (s)−α)]

+

ε1
(rather than 2m

∑
s∈S Ks

ε1(1−γ)

specified by Lemma 5.15). So Delayed Q-learning will follow an
(
ε+ α

1−γ

)
-optimal

policy in Ω on all but

O

(∑
(s,a)∈D [W (s, a)− (V ∗Ω(s)− α)]+

ε4(1− γ)7
ln

1

δ
ln

1

ε(1− γ)
ln

∑
s∈SKs

δε(1− γ)

)

timesteps t, with probability at least 1− δ.

Finally, by Lemma 5.13, Q̂t(s, a) ≥ Q∗Ωξ,κt
(s, a) ≥ Q∗Ω(s, a) for all timesteps t and

state-action pairs (s, a) ∈ D, satisfying Condition 3 of Theorem 5.19 with η = 0.

5.4 Summary

In this section, we have derived upper bounds on the sample complexity of ex-

ploration for R-MAX and Delayed Q-learning with two different prior knowledge

structures that support action pruning. The first structure, exploration tables, ex-

plicitly specify which state-action pairs can be explored by an algorithm (as well as

which state-action pairs cannot be explored). The second structure, α-weak admis-

sible heuristics, implicitly specify state-action pairs that will never be explored. We

have assumed that either an exploration table or an α-weak admissible heuristic is

given and demonstrated how this structure impacts sample complexity of exploration

with either R-MAX or Delayed Q-learning. However, we have not explained how an

autonomous learning system might acquire either an exploration table or α-weak

admissible heuristic. In the following sections, we will explore potential solutions to

these shortcomings under transfer learning and multitask learning scenarios.

95

6. ANALYSIS OF ACTION-VALUE TRANSFER

In this section, we consider the transfer of action-values from a single source

task MDP ΩSRC = 〈SSRC, ASRC, TSRC, RSRC, γ〉 to a single target task MDP ΩTRG =

〈STRG, ATRG, TTRG, RTRG, γ〉 given an intertask mapping h : STRG×ATRG → SSRC×

ASRC. The intertask mapping provides a relationship from state-action pairs in the

target task to state-action pairs in the source task. Intuitively, action-value transfer

should work, when the target task state-action pairs are mapped to source task state-

action pairs with similar optimal action-values. Surprisingly, our analysis reveals

that action-value transfer often works well, even (in some cases) where the optimal

action-values mapped from the target to the source task are quite different.

Previous research on transferring action-values has primarily focused on directly

initializing target task action-values with source task action-values [45, 58, 46, 7,

8]. While the proof of concept has been established, it is not clear when direct

transfer of action-values reduces the number of timesteps that the base RL algorithm

will act according to a suboptimal policy. In this section, we generalize the notion

of sample complexity to a TL setting and analyze how transferred action-values

influence sample complexity.

6.1 Action-value Transfer Framework

Because of the useful properties of admissible heuristics for the analysis of sam-

ple complexity, we introduced a simple generalization of the direct value transfer

algorithm, called Biased Value Transfer (BVT).

BVT (Algorithm 8) adds a small value

β

(
RMAX −RMIN

1− γ

)

96

Algorithm 8 Biased Value Transfer (BVT)

Require: A, h,QSRC, β

1: for (s, a) ∈ STRG × ATRG do

2: if (s, a) is in domain of h then

3: QTRG(s, a)← min
(
QSRC(h(s, a)) + β

(
RMAX−RMIN

1−γ

)
, RMAX

1−γ

)
4: else

5: QTRG(s, a)← RMAX

1−γ
6: end if

7: end for

8: Initialize(A, QTRG)

to each source task action-value as it is assigned to a target task action-value, where

β ∈ [0, 1] is a user defined constant. This small value biases the transferred action-

values in an attempt to ensure that the initial action-values for the target task are

optimistic. If the initial action-values are optimistic, then we can often guarantee

that provably efficient reinforcement learning algorithms that use these action-values

will converge to near-optimal policies with a small number of suboptimal actions.

The main problem comes from selecting β. If we set β = 0, then we recover the

direct value transfer algorithm. In this case, if any of the target task action-values

are pessimistically initialized the algorithm may not learn to act near-optimally.

However, if β is too large, then there may not be any benefit of transfer. The designer

must specify β so that it initializes the target task action-values optimistically, but

choose β as small as possible to gain the most benefit from transfer.

6.2 Analysis of Action-value Transfer

In this section, we will analyze the sample complexity of the BVT action-value

transfer approach, with value-based, PAC-MDP algorithms serving as the RL algo-

rithms in the target task. First we will analyze the sample complexity of learning

action-values from an MDP. This problem is equivalent to the one faced by the source

97

task algorithm. Next we analyze the sample complexity and potential loss caused by

transferred action-values in the target task.

6.2.1 Analysis of Source Task Sample Complexity

We first turn our attention to the sample complexity of learning source task

action-values. We report negative and positive results. The negative results show

that learning action-values through exploration is, in general, infeasible. The pos-

itive results suggest that if we have a generative model of the source task, we can

learn arbitrarily accurate action-values with only polynomially many samples in the

number of states, actions, and other relevant parameters.

6.2.1.1 Negative Results

For the explore sampling model, we cannot hope to learn accurate action-values

for all state-action pairs in general MDPs because many MDPs have a nonzero proba-

bility of transitioning to a cluster of states where some other states are not reachable.

An alternative to the explore sampling model is to assume the reset sampling

model. In this scenario it is possible to visit all state-action pairs. Fiechter [59]

considered this sampling model and developed a polynomial time algorithm that

learns an ε-optimal policy with respect to the reset state s0, but as we mentioned

before we need ε-optimal action-values for all state-action pairs.

A suitable number of timesteps τ must be chosen for ASRC to be run on the

source task ΩSRC. Unfortunately the worst case sample complexity for obtaining

εSRC-accurate action-values is exponential in the number of states.

Theorem 6.1. For all N > 1, there exists an MDP M with N states, such that the

sample complexity of learning εSRC-accurate action-values for all state-action pairs,

given access to a reset sampling model for M , is exponential in the number of states.

98

...
a* (Rmax)

a* 0.8

0.2

a* 0.8

0.2

a* 0.8

0.2

1 2 N

ai ≠ a*

ai ≠ a*

ai ≠ a*

Figure 6.1: A reset MDP is a chain of N states. Action a∗ transitions the agent to
the next state (or state 1 if the current state is N) with probability 0.8 and stays in
the current state with probability 0.2, while all other actions reset the agent to state
1. The agent only receives a reward for taking action a∗ in state N .

Proof. Since no prior information is assumed to be given about the state-action

pairs of the MDP M , each state-action pair must be visited at least once to learn an

εSRC-accurate action-value for that state-action pair.

Consider the family of combination lock MDPs (e.g. Figure 6.1). If 0 < η < 1 is

the probability of transitioning to the next state when action a∗ is taken, reaching the

final state even once can require Ω

((
1
η

)N)
timesteps, which is exponential w.r.t.

N , where Ω represents the notation for a lower bound (and not an MDP).

In other words, Theorem 6.1 demonstrates that in some MDPs, an RL algorithm

may require an exponential number of timesteps in the number of states to learn

accurate action-values. This seems like a serious problem for action-value transfer,

because without accurate action-values, what good will transfer be? However, later

we will see that requiring all source task action-values to be accurate is too strict in

many practical cases.

6.2.1.2 Positive Results

If we give up on exploring the source task to learn accurate action-values, and

instead, are given a generative model of the source task, then we can learn accurate

action-values with polynomially many samples with respect to the number of states

and actions.

99

Algorithm 9 Phased Q-Learning [34]

Require: S, A, γ, m, and H

1: Set V̂0 and Q̂0 to 0 for all s ∈ S and (s, a) ∈ S × A, respectively

2: for t = 1, 2, . . . , H do

3: Sample every state-action pair (s, a), m times, denoting the ith reward and

next state samples by rt,i(s, a) and s′t,i(s, a), respectively

4: Q̂t(s, a)← 1
m

(∑m
i=1 rt,i(s, a) + γV̂t−1(s′t,i(s, a))

)
5: V̂t(s)← maxa∈A Q̂(s, a)

6: end for

Observation 6.2. For any ε ≥ 0 and δ ∈ (0, 1], and an MDP Ω = 〈S,A, T,R, γ〉

with access to Ω via a generative model, there exists an algorithm that can estimate

optimistic, ε-accurate action-values Q̂, with probability at least 1−δ, and use at most

O

(
NK

ε2(1− γ)3
ln3

(
4

ε

)
ln

(
NK ln

(
4
ε

)
δ(1− γ)

))

calls to the generative model.

Proof. By choosing m = 32H2

ε2
ln
(

2NKH
δ

)
we have that

∣∣∣∣∣Es′∼Pr(·|s,a)

[
V̂t(s

′)
]
− 1

m

m∑
i=1

V̂t(s
′
t,i(s, a))

∣∣∣∣∣ ≤ ε

8H
(6.1)

and ∣∣∣∣∣E [r(s, a)]− 1

m

m∑
i=1

rt,i(s, a)

∣∣∣∣∣ ≤ ε

8H

is true for all states s ∈ S, actions a ∈ A, and times t ∈ {1, 2, . . . , H}, with prob-

ability at least 1 − δ, through application of the Chernoff-Hoeffding inequality and

union bound.

100

It follows that for all (s, a) ∈ S × A

∣∣∣Q∗t (s, a)− Q̂t(s, a)
∣∣∣ ≤ ∣∣∣Es′∼Pr(·|s,a)

[
V ∗t−1(s′)

]
− 1

m

∑m
i=1 V̂t−1(s′t,i(s, a))

∣∣∣+ ε
8H

≤
∣∣∣Es′∼Pr(·|s,a)

[
V ∗t−1(s′)

]
− Es′∼Pr(·|s,a)

[
V̂t−1(s′)

]∣∣∣+ ε
8H

+ ε
8H

≤ maxs∈S

∣∣∣V ∗t−1(s)− V̂t−1(s)
∣∣∣+ ε

4H

≤ max(s,a)∈S×A

∣∣∣Q∗t−1(s, a)− Q̂t−1(s, a)
∣∣∣+ ε

4H

where the first step is due to the fact that the error introduced by the reward estimate

is less then or equal to ε
8H

and the definition of the action-value and action-value esti-

mates, the second step is due to (6.1), the third step simply replaces the expectation

with the state that maximizes the difference between the optimal value function and

the estimate, and the final step states the previous step in terms of action values.

By recursing on
∣∣∣Q∗t (s, a)− Q̂t(s, a)

∣∣∣ ≤ max(s,a)∈S×A

∣∣∣Q∗t−1(s, a)− Q̂t−1(s, a)
∣∣∣+ ε

4H

and remembering that the base case
∣∣∣Q∗0(s, a)− Q̂0(s, a)

∣∣∣ = 0, we have
∣∣∣Q∗H(s, a)− Q̂H(s, a)

∣∣∣ ≤
H · ε

4H
= ε

4
.

Clearly |Q∗H(s, a)−Q∗(s, a)| ≤ γH
(

1
1−γ

)
. Therefore by choosingH = logγ

(
ε(1−γ)

4

)
,

we have
∣∣∣Q∗(s, a)− Q̂H(s, a)

∣∣∣ ≤ ε
4

+ γlogγ(
ε(1−γ)

4)
(

1
1−γ

)
= ε

4
+ ε

4
= ε

2
.

To ensure that the action value estimates optimistic we add ε
2

to each action value

estimate to get ∣∣∣Q∗(s, a)−
(
Q̂H(s, a) +

ε

2

)∣∣∣ ≤ ε

2
+
ε

2

Finally, the bound on sample complexity

O (mNKH)

of the Phased Q-learning algorithm depends on our choice of H and m. By plugging

101

in our choices for H and m, we get

O

(
NK

ε2(1− γ)3
ln3

(
4

ε

)
ln

(
NK ln

(
4
ε

)
δ(1− γ)

))
,

which concludes the proof.

The significance of Observation 6.2 is that we can learn arbitrarily accurate

action-values for for any MDP with only polynomial number of samples with re-

spect to the number of states and actions, given a generative model for that MDP.

6.2.2 Analysis of Target Task Sample Complexity

Transfer learning often results in faster learning in the target task, but this faster

learning often comes at a price. In some cases, the transferred knowledge causes

the target task RL algorithm to converge to a suboptimal policy. We refer to this

situation as optimality loss. Optimality loss occurs because the transferred knowledge

implicitly transforms the original target task into a different task. This new task can

never have a higher valued policy than the original task because it is embedded in

the original task. So we say that the transformed task induces optimality loss if the

value of its optimal policy is less at some states than the value of the optimal policy

in the original task (Definition 5.5).

The goal of TL in the target task is to decrease sample complexity of exploration

without incurring much optimality loss. As we have seen previously, weak admissible

heuristics are an effective mechanism for decreasing sample complexity and when α

is kept small, they do not introduce much error into the learned policy. Therefore

our objective is to determine when transferred action-values will satisfy an α-weak

admissible heuristic.

We use the concept of a weak admissible heuristic to analyze action-value transfer

102

Source Task
Action-Values Target Task Action-Values

Transferred
Estimates
Optimal
Action-Values

a2

a1 a3

a1 a2 a3

b2

b1

b3

b4

b5
b6

b1 b2 b3 b4 b5 b6

VMAX

0 h(s',.)

s'
s

Target TaskSource Task

Figure 6.2: Transfer from a one-state source task with three actions to a one-state
target task with six actions. Despite the transferred action-values severely underes-
timating the optimal action b1 and severely overestimating the lowest valued action
b6,, and OFU exploration strategy can still converge to a near-optimal policy (i.e.,
b2).

with the objective of learning to act near-optimally in the target task with sample

complexity of exploration (Eq. 2.16) that is smaller than R-MAX or Delayed Q-

learning without transferred knowledge. We denote the source task/MDP by ΩSRC

and the target task/MDP by ΩTRG. Consider the situation in Figure 6.2. First the

agent learns action-values for the source task. Next, because the source task and

the target task have a different number of actions, a function h called an intertask

mapping (defined below) is used to relate action-values from the source task to the

target task. Finally, notice that in Figure 6.2 the transferred action-values satisfy a

weak admissible heuristic. In this section, we explore assumptions about the intertask

mapping needed to ensure that the transferred action-values satisfy a weak admissible

heuristic and how transfer influences sample complexity of exploration in the target

task.

Table 6.1: Transfer Outcomes
Sample Complexity

(compared to baseline)
Lower No Change Higher

V AtTRG(st) ≈ V ∗TRG(st) + 0 −
Optimality Loss − − −

Positive Transfer +
Neutral Transfer 0
Negative Transfer −

103

There are two factors that affect positive transfer: (1) sample complexity and (2)

optimality loss. Table 6.1 outlines when positive, negative, and neutral transfer oc-

cur. Positive transfer occurs when the sample complexity of exploration in the target

task is lower than the sample complexity of the base RL algorithm and no optimality

loss has occurred. Optimality loss occurs when transferred knowledge causes an RL

algorithm to converge to a suboptimal policy along its current trajectory.

Typically, access to samples of the source task is less “expensive” than access to

samples from the target task. For the purposes of this section, we assume unrestricted

access to a generative model for ΩSRC. As we have seen in the previous section, this

assumption enables us to learn arbitrarily accurate source task action-values with

arbitrarily high confidence with polynomially many samples. Therefore, we will

assume that the estimated source task action-values Q̂SRC are εSRC-accurate.

If ΩSRC and ΩTRG have different state-action spaces, then an intertask mapping

h : D → SSRC × ASRC is needed, where D ⊆ STRG × ATRG, to relate a subset of

state-action pairs from the target task to state-action pairs in the source task. We

assume that if (s, a) ∈ D, either there exists (s, ã) ∈ D such that

V ∗TRG(s)− α ≤ Q∗TRG(s, ã) ≤ Q∗SRC(h(s, ã)) ≤ 1

1− γ
, (6.2)

which is analogous to our assumption made for weak admissible heuristics with

W (s, a) = Q∗SRC(h(s, a)) or there exists (s, ã) /∈ D such that

V ∗TRG(s)− α ≤ Q∗TRG(s, ã) (6.3)

in which case we can assign the value W (s, ã) = 1
1−γ . To transfer action-values

we use Algorithm 8, which is used to set initial action-value estimates given an

104

intertask mapping h, and εSRC-accurate source task action-value estimates Q̂SRC.

In other words, at every state at least one nearly (α-)optimal action is mapped to

an action-value which overestimates the true action-value or not mapped at all. If

a state-action pair is not in the domain D, then we simply assign the maximum

possible value to ensure it is optimistically initialized. Under these assumptions the

transferred action-values are an α-weak admissible heuristic.

Theorem 6.3. Let ε > 0, εSRC > 0, δ ∈ (0, 1], h : D → SSRC×ASRC be an intertask

mapping from a subset of state-action pairs in ΩTRG to ΩSRC satisfying (6.2) and

(6.3), and Q̂SRC be εSRC-accurate action-value estimates for ΩSRC. If an instance A

of the R-MAX algorithm, with action-value estimates initialized by Algorithm 8, is

executed on ΩTRG with appropriate parameters, then V AtTRG(s) < V ∗TRG(s)− (ε+ α
1−γ)

occurs on at most

O

(
NK − Y
ε4(1− γ)8

ln
1

δ
ln

1

ε(1− γ)
ln
NK − Y
δε(1− γ)

)

timesteps t, with probability at least 1− δ, where

Y =
∣∣∣{(s, a) ∈ D | Q̂SRC(h(s, a)) < V ∗TRG(s)− (α + εSRC)

}∣∣∣
is the number of state-action pairs that are never explored.

Proof. The result follows from Theorem 5.20 and the fact that the transferred action-

values satisfy an α-admissible heuristic.

Theorem 6.4. Let ε > 0, εSRC > 0, δ ∈ (0, 1], h : D → SSRC×ASRC be an intertask

mapping from a subset of state-action pairs in ΩTRG to ΩSRC satisfying (6.2) and

(6.3), and Q̂SRC be εSRC-accurate action-value estimates for ΩSRC. If an instance

A of the Delayed Q-learning algorithm, with action-value estimates W initialized

105

by Algorithm 8, is executed on ΩTRG with appropriate parameters, then V AtTRG(s) <

V ∗TRG(s)− (ε+ α
1−γ) occurs on at most

O

(∑
(s,a)∈STRG×ATRG

[W (s, a) ≥ V ∗TRG(s)− α]+
ε4(1− γ)7

ln
1

δ
ln

1

ε(1− γ)
ln
NK − Y
δε(1− γ)

)

timesteps t, with probability at least 1− δ, where

Y =
∣∣∣{(s, a) ∈ D | Q̂SRC(h(s, a)) < V ∗TRG(s)− (α + εSRC)

}∣∣∣
is the number of state-action pairs that are never explored.

Proof. The result follows from Theorem 5.21 and the fact that the transferred action-

values satisfy an α-admissible heuristic.

The main importance of Theorems 6.3 and 6.4 is that we have reduced the analysis

of action-value transfer in the target task to the analysis of learning with an α-weak

admissible heuristic. Here, α controls optimality loss, and we can think of α (or

α/(1 − γ)) as the error introduced by the intertask mapping h. If α ≈ 0 compared

to ε, then there is little or no optimality loss compared to learning from scratch.

In many, cases α = 0 can be achieved. For example, if W turns out to be an

admissible heuristic [6]. However, if α is large, then the result of TL is likely to

be poor in the worst case. Similar to X in Theorems 5.20 and 5.21, when Y is

large the sample complexity of exploration in the target task decreases significantly

compared to learning from scratch with the base RL algorithm. Notice, however,

that the sample complexity of exploration is never worse than learning from scratch.

Thus, positive transfer is characterized by optimality loss and sample complexity,

and Theorems 6.3 and 6.4 help to clarifies this relationship.

106

Table 6.2: Algorithm Conditions
Abbr. Description
QL Q-learning (ε-greedy exploration) without Transferred

Knowledge
DQL Delayed Q-learning without Transferred Knowledge
RMAX R-MAX without Transferred Knowledge
TL(QL) Q-learning initialized with Transferred Action-Values
TL(DQL) Delayed Q-learning initialized with Transferred Action-

Values
TL(RMAX) R-MAX initialized with Transferred Action-Values

Table 6.3: (Source Task, Target Task) Pairs
Source
Task

Src. Desc. Target
Task

Trg. Desc.

Three-Arm
Bandit

One state task with three
actions (Figure 6.2).

Six-Arm
Bandit

One state task with six
actions (Figure 6.2).

Reset A chain of states with a
single reward at the end
of the chain (Figure 6.1).

Double Re-
set

Two chains of states the
end of one chain has a
higher reward than the
other (Figure 6.3).

Red Herring Gridworld with two ”red
herring” states and one
”goal” state (Figure 6.4a)

Taxi Transport a passenger
two and from one of four
pickup and drop-off loca-
tions (Figure 6.4b)

Two-joint
Reaching

Reach for various target
points with a two-joint
arm (Figure 6.5).

Three-joint
Reaching

Reach for various target
points with a three-joint
arm (Figure 6.5).

6.3 Experiments & Results

In this section, we describe and report the results for several experiments meant

to emphasize several aspects of our analysis. Throughout this section we will refer

to algorithmic conditions by abbreviations documented in Table 6.2.

We use several different (source task, target task) pairs in our experiments to

emphasize different aspects of TL. Table 6.3 summarizes the (source task, target

task) pairs from our experiments.

107

Table 6.4: One-State Transfer Expected Rewards
Source Task Target Task

R(s, a1) = 0.9 R(s′, b1) = 0.8
R(s, a2) = 0.82 R(s′, b2) = 0.78
R(s, a3) = 0.12 R(s′, b3) = 0.15

R(s′, b4) = 0.12
R(s′, b5) = 0.1
R(s′, b6) = 0.08

Our first (source task, target task) pair was chosen for its simplicity. Figure 6.2

shows a simple transfer scenario between a target task with one state and six actions

and a source task with one state and three actions. In both the source and the target

task we assume that the discount factor γ = 0 so that the value of each action is

equivalent to its expected reward. Each actions reward distribution is a Bernouli

distribution, assigning a value of 1 with probability equal to the expected reward

µ and a value of 0 with probability 1 − µ. Table 6.4 shows the expected rewards

assigned to each action in the source task and the target task. We chose this simple

domain to enable comparison between various intertask mappings in simplest tasks

possible.

Our second (source task, target task) pair was designed to demonstrate a flaw

with transferring action-values below the corresponding optimal target task action-

values. In other words, if we simply transfer action-values without adding the β

term this sometimes results in choosing a suboptimal policy. In this scenario, the

source task is the difficult reset task (Figure 6.1), which consists of a single chain of

NSRC = 15 states. From each state, except for the final state in the chain, one action

transitions to the next state in the chain with probability 0.8 and remains at the

same state with probability 0.2. All other actions reset the agent to the first state in

the chain. At the final state in the chain all actions reset the agent to the first state

in the chain. One state-action pair at the final state gives a reward of 1 while all

108

...
a* (Rmax/2)

a*
0.8

0.2

a* 0.8

0.2

a* 0.8

0.2

1 2 N/2

ai ≠ a*

ai ≠ a*

ai ∉
 {

a*
,b

*}

N/2+1

N

...

b*
0.8

0.2

a
i ≠ b*

b*
0.8

0.2

b*
0.8

0.2

b* (R
m

ax)

Figure 6.3: A double reset MDP is similar to a reset MDP (Figure 6.1), except that
it has two chains of states. The final state of the first chain (N/2) gives reward
RMAX/2 when action a∗ is executed, while the final state of the second chain N gives
reward RMAX when b∗ is executed.

other state-action pairs give no reward (i.e., a reward of 0). The target task, on the

other hand, is the double reset task (Figure 6.3) with NTRG = 25 states. The double

reset task consists of two chains of states. Both chains consist of 13 states and have

similar dynamics to the reset task. The difference between the two chains is that the

end of one chain gives a reward of 1 while the end of the other chain gives a reward

of 0.5. If the optimal chain is pessimistically represented, the agent may select the

suboptimal chain.

Our third (source task, target task) pair tests transfer between two gridworld

tasks. The source task is the Red Herring task introduced by Hester et al. [2] with

104 states, and the target task is the Taxi task introduced by Dietterich [3] with

500 states. These tasks were chosen because they have far more states than the

previous transfer scenarios, but not so many states, that we cannot execute R-MAX

on the tasks in a reasonable amount of time. The Red Herring domain (Figure 6.4a)

is an 11 × 11 gridworld domain where the agent is initially placed in one of the 25

cells of the upper left room. The agent can attempt to move in one of four possible

109

→

(a) Source Task: (b) Target Task:
Red Herring domain [2] Taxi domain [3]

Figure 6.4: The Red Herring task (a) [2] contains a goal state G that gives a reward
+20 and two red herring states R that give a reward 0, while all other states give
the reward −1. The Taxi task (b) [3] requires the agent to pick up a passenger at
one of four colored locations and drop the passenger off at its desired location.

directions: up, down, left, and right. However, there is a small probability 0.2 that

the agent will move diagonally instead of its desired direction. There are two “red

herring” states, denoted by the capital letter ’R’, which give a reward of 0, a goal

state, denoted by ’G’, which gives a reward of +25, and all other states give a reward

of −1. An episode ends when the agent enters either red herring state or the goal

state. The significance of the red herring states is that they are much easier to find

than the goal state. Thus if the task’s state space is not sufficiently explored, then

the agent may settle on one of the red herring states rather than the goal state.

The Taxi task has a smaller number of cell locations but a larger overall state-action

space. Four of the cells are marked with different colors: red, green, yellow, and

blue. As in the Red Herring task, the agent can attempt to move up, down, left, and

right. Again there is a probability 0.2 that the agent will move in a diagonal direction

instead of the desired direction. In addition, the agent can attempt to pickup and

drop off a passenger. At the beginning of each episode the agent is initialized to a

random cell in the environment. A passenger is placed at one of the colored cells

110

Reach
Target

Reach
TargetI1

I2

No Mapping

J3

J2

J1

Figure 6.5: Transfer from a two-joint arm (source task) to a three-joint arm (target
task).

and has a desired destination at one of the other colored cells. The agent received

a reward of −1 for moving and a reward of +20 for picking the passenger up and

successfully dropping him off at his desired location. An episode ends when the agent

successfully picks up the passenger and drops him off at his desired location. If the

agent attempts to pickup or drop off the agent at any cell other than one of the four

colored cells, the agent receives a reward of −10. The significance of the Taxi task

is that it has a large state-space and presents an interesting benchmark problem for

RL algorithms. Although both the Red Herring task and the Taxi task are gridworld

tasks the objectives are quite different and it is interesting to see if positive transfer

can occur between such different tasks.

Our last (source task, target task) pair tests transfer between two inverse kine-

matic problems (Figure 6.5). These tasks have a large number of states compared to

the previous transfer scenarios and therefore test how action-value transfer scales as

111

the number of state-action pairs grows large. The state encoding for the two-joint

control task was defined by

〈I1, I2, T I〉

where I1 is one of seven different joint angles for the first joint in the arm, I2 is one

of seven different joint angles for the second joint in the arm, and TI is the index of

one of four different target points.The source task has four possible targets and each

joint can take on one of seven different angle so that the total number of states is

512. The state encoding for the three-joint control task was defined by

〈J1, J2, J3, T I〉

where J1 is one of seven different joint angles for the first joint in the arm, J2 is

one of seven different joint angles for the second joint in the arm, J3 is one of seven

different joint angles for the third joint in the arm, and TI is the index of one of four

different target points. The target task has 8748 states.

6.3.1 Experiment: One State Transfer

We compared three different intertask mappings (Figure 6.6) in the one state

transfer scenario to show how intertask mappings can impact sample complexity of

exploration in the target task. The first intertask mapping (Figure 6.6a), denoted

by BAD, represents a poor intertask mapping because the transferred action-values

underestimate the near-optimal actions. The only actions that are overestimated

have much lower expected reward than the optimal action. The second intertask

mapping (Figure 6.6b), denoted by AH, induces an admissible heuristic, because

the transferred action-values are overestimates at every state-action pair. Notice

however, that several of the action-values are well below the optimal action-value

112

Source Task
Action-Values Target Task Action-Values

Transferred
Estimates

Optimal
Action-Valuesa2

a1 a3

a1 a2 a3

b2

b1

b3

b4

b5
b6

b1 b2 b3 b4 b5 b6

VMAX

0 h(s',.)

s'
s

Target TaskSource Task

(a)
Source Task

Action-Values Target Task Action-Values
Transferred
Estimates

Optimal
Action-Valuesa2

a1 a3

a1 a2 a3

b2

b1

b3

b4

b5
b6

b1 b2 b3 b4 b5 b6

VMAX

0 h(s',.)

s'
s

Target TaskSource Task

(b)
Source Task

Action-Values Target Task Action-Values
Transferred
Estimates
Optimal
Action-Values

a2

a1 a3

a1 a2 a3

b2

b1

b3

b4

b5
b6

b1 b2 b3 b4 b5 b6

VMAX

0 h(s',.)

s'
s

Target TaskSource Task

(c)

Figure 6.6: Comparison between three possible intertask mappings in the one state
transfer scenario. (a) A poor intertask mapping, denoted BAD. The transferred
action-values underestimate the near-optimal actions and overestimate the worst
action b6. (b) An intertask mapping that induces an admissible heuristic, denoted
AH. The transferred action-values are all overestimated. (c) An intertask mapping
that induces a weak admissible heuristic, denoted WAH. The transferred action-
values overestimate one (but not both) near-optimal action.

113

TL(DQL)/BAD DQL TL(DQL)/AH TL(DQL)/WAH0

5

10

15

20

Cu
m

ul
at

iv
e

Re
w

ar
d

Figure 6.7: Comparison of cumulative reward for 100 different runs of each Delayed
Q-learning transfer condition under the one state transfer scenario. Each algorithm
was run in the target task for only 45 timesteps. Whiskers indicate 1.5 times the
interquartile range.

and may therefore never be executed. The third intertask mapping (Figure 6.6c),

denoted by WAH, induces an α-weak admissible heuristic in the target task, with

α = 0.02. This is because the action b2, which has expected reward that is 0.02

smaller than the optimal action b1 is overestimated.

Figure 6.7 shows the cumulative reward achieved in the one state transfer sce-

nario’s target task by each of the three intertask mappings and the baseline De-

layed Q-learning algorithm over 20 timesteps. Using a poor intertask mapping

TL(DQL)/BAD results in the lowest cumulative reward. This is lower than if we had

applied the baseline algorithm Delayed Q-learning (DQL) without transferred action-

values. However, the conditions with intertask mappings that induce an admissible

heuristic TL(DQL)/AH or induce a weak admissible heuristic TL(DQL)/WAH both

achieve higher cumulative reward than the baseline DQL.

114

TL(DQL)/BAD DQL TL(DQL)/AH TL(DQL)/WAH0

1

2

3

4

5

6

#
 E

xp
lo

re
d

Ac
tio

ns

Figure 6.8: Having a reasonable intertask mapping helps to eliminate certain state-
action pairs from consideration. In the target task, TL(DQL)/BAD and DQL typ-
ically explore all six actions, while TL(DQL)/AH and TL(DQL)/WAH typically
explore about half (or fewer) of the actions. Error bars indicate ±1 standard devia-
tion.

115

Figure 6.8 shows the number of different actions explored in the target task

by each of the different learning conditions. The two transfer learning conditions

TL(DQL)/AH and TL(DQL)/WAH with reasonable intertask mappings typically

explore half of the action space, while TL(DQL)/BAD and DQL explore all six

actions. This demonstrates how transferred action-values implicitly eliminate state-

action pairs.

Keep in mind that all admissible heuristics as defined by Strehl et al. [6] are

also weak admissible heuristics with α = 0. The critical point is that when the

transferred action-values satisfy the conditions of an α-weak admissible heuristic,

positive transfer is likely to occur. This provides a simple example of positive transfer.

If we take a closer look at the three intertask mappings presented in Figure 6.6,

we can see that all of the intertask mappings are actually weak admissible heuristics

with different α values. The BAD intertask mapping transfers action-values that are

optimistic for action b4. Since its true value is 0.12 and the optimal action-value is

0.8 the value of α = 0.8− 0.12 = 0.68. This large value of α explains why the BAD

intertask mapping performs so poorly. The AH intertask mapping has an α value

of 0 because the value of the optimal action b1 is overestimated, and as mentioned

above the WAH intertask mapping is a weak admissible heuristic with α = 0.02. So

we can see that restricting the intertask mappings to the set of intertask mappings

that induce weak admissible heuristics allows us to explain TL performance for a

very general set of intertask mappings.

We also investigated using Q-learning as the target task algorithm, instead of

Delayed Q-learning. Figure 6.9 shows the cumulative reward achieved in the one

state transfer scenario’s target task by each of the three intertask mappings and the

baseline Q-learning algorithm with randomly initialized action-values. The initial

action-values made little difference, with respect to achieved cumulative reward. This

116

TL(QL)/BAD QL TL(QL)/AH TL(QL)/WAH0

5

10

15

20

Cu
m

ul
at

iv
e

Re
w

ar
d

Figure 6.9: Comparison of cumulative reward for 100 different runs of each Q-learning
transfer condition under the one state transfer scenario. Each algorithm was run in
the target task for only 45 timesteps. Whiskers indicate 1.5 times the interquartile
range.

is in contrast to what we saw for Delayed Q-learning (Figure 6.7) where the AH and

WAH intertask mappings induced higher cumulative reward than the baseline. The

reason for this difference is probably due to the fact that the action-value estimates

maintained by Delayed Q-learning either decrease or stay the same (i.e., action-value

estimates never increase) and therefore Delayed Q-learning is better able to utilize

overestimated action-values than Q-learning.

6.3.2 Experiment: Variable β

Algorithm 8 requires a parameter β that biases the transferred action-values. The

importance of the parameter β is that when β is large enough it can transform an

intertask mapping that does not induce a weak admissible heuristic into an intertask

mapping that does.

Figure 6.10 demonstrates the impact of the choice of β on cumulative reward when

117

0.0 0.01 0.05 0.1 0.15 0.2
β

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

Cu
m

ul
at

iv
e

Re
w

ar
d

0.0 0.01 0.05 0.1 0.15 0.2
β

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

Cu
m

ul
at

iv
e

Re
w

ar
d

(a) (b)

Figure 6.10: Varying β influences the cumulative reward achieved at the (reset,
double reset) transfer scenario. Whiskers indicate 1.5 times the interquartile range.
(a) When a good intertask mapping is used to transfer action-values, as β increases
the cumulative reward decreases. (b) If a poor intertask mapping is used, adding
a small positive value improves the cumulative reward. However, adding to large a
value causes the cumulative reward to decrease. Notice that the penalty for selecting
β too small is much worse than selecting a value that is too large.

transferring from an instance of the reset task to an instance of the double reset task

with two different intertask mappings. Figure 6.10a shows the impact of β when

the chosen intertask mapping closely matches action-values in the source and target

task. Under this “good” intertask mapping the cumulative reward decreases as β

increases. This is due to the fact that the Delayed Q-learning algorithm potentially

requires more updates to converge to a near-optimal policy when the transferred

action-values are greater. However, Figure 6.10b shows that always selecting β = 0

can have strong negative consequences. In this scenario, transfer of action-values was

performed with a “poor” intertask mapping that arbitrarily mapped state-action

pairs from the target task to the source task. When β is too small (< 0.05) the

transferred action-values often result in the TL agent selecting the suboptimal path

in the double reset task. However, if β is large enough, the TL agent almost always

converges to the optimal path in the double reset task.

118

0 50 100 150 200 250 300 350 400 450 500
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

5

Episode #

R
ew

ar
d

TL(R−MAX)
TL(DQL)
R−MAX
DQL

0 50 100 150 200 250 300 350 400 450 500
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

5

Episode #

R
ew

ar
d

TL(R−MAX)
TL(DQL)
R−MAX
DQL

(a) (b)

Figure 6.11: (a) With a nearly optimal intertask mapping, transferring action-values
from the Red Herring domain to the Taxi domain results in higher cumulative reward
for both R-MAX and Delayed Q-learning than their respective base algorithms with-
out transfer. (b) With an arbitrarily assigned intertask mapping, the transferred
action-values do not result in much loss for either R-MAX or Delayed Q-learning
compared to their respective base algorithms without transfer.

We want to select β as small as possible, so that the resulting transferred action-

values are small, but, on the other hand, we want to ensure that the transferred

action-values satisfy the constraints for a weak admissible heuristic with small α.

6.3.3 Experiment: Scaling Up in a Gridworld Tasks

In this experiment, we compared the use of R-MAX and Delayed Q-learning as

target task learning algorithms in the Red Herring/Taxi transfer scenario. Again we

compared results using two different intertask mappings. The first intertask mapping

was a “good” intertask mapping chosen by pairing state-action pairs from the target

task to state-action pairs from the source task with similar optimal action-values.

The second intertask mapping was a “poor” intertask mapping, with state-action

pairs mapped arbitrarily.

Figure 6.11a compares cumulative reward when transferring action-values with

the “good” intertask mapping. Transferring action-values improves both DQL and

119

RMAX. Notice that there is a large difference between the performance of the base

RL algorithm RMAX and DQL. RMAX without action-value transfer learns a good

solution to the Taxi task in far fewer episodes than the DQL. On the other hand, the

improvement caused by transferring action-values compared to the base RL algorithm

is much larger for DQL than RMAX. This is an important finding because RMAX

uses a very computationally expensive planning phase, which may make learning

with RMAX infeasible in problems with large state-action spaces.

Figure 6.11b compares cumulative reward when transferring action-values with

the “poor” intertask mapping. In this case, transferring action-values does not im-

prove performance. However, it is important to notice that TL(RMAX) does not per-

form worse than RMAX and TL(DQL) performs only marginally worse than DQL.

This is an interesting finding because we would expect to see significant negative

transfer when arbitrary action-values are transferred.

6.3.4 Experiment: Scaling Up in an Inverse Kinematic Task

In this experiment, we attempted to decrease the time needed to learn to control

the end-effector of a three-joint mechanical arm by transferring control knowledge

learned for a two-joint mechanical arm. Unlike the previous experiments, we hand

coded two different intertask mappings. For both intertask mappings, we defined h

by

h(〈J1, J2, J3, T I〉, 〈a1, a2, a3〉) = (〈J1, J3, T I〉, 〈a1, a3〉) (6.4)

where 〈J1, J3, T I〉 is the state in the source task and 〈a1, a3〉 is the action in the source

task. The difference between the two intertask mappings is that the conservative

intertask mapping had a smaller domain than the more aggressive intertask mapping.

The conservative intertask mapping only mapped state-action pairs when the second

joint J2 was straight and the second component of the action a2 = 0 did not change

120

0 500 1000 1500 2000 2500 3000
Episode #

10

20

30

40

50

60

70

80

90

100

Av
er

ag
e

Re
w

ar
d

TL(DQL)
DQL
QL

0 500 1000 1500 2000 2500 3000
Episode #

10

20

30

40

50

60

70

80

90

100

Av
er

ag
e

Re
w

ar
d

TL(DQL)
DQL
TL(QL)
QL

(a) (b)

Figure 6.12: (a) Average reward achieved with a conservative intertask mapping. (b)
Average reward achieved with an aggressive intertask mapping.

the J2. The aggressive intertask mapping was defined over the entire state-action

space of the target task.

Figure 6.12 shows the average reward received per episode with the conservative

and aggressive intertask mappings. Notice that both intertask mappings provide

some advantage compared to learning from scratch. However, the improvement due

to transfer with the aggressive intertask mapping is much more dramatic than using

the conservative intertask mapping. Notice that transferred knowledge does not seem

to help QL. This is most likely because the transferred action-values are not accurate

approximations of the target task’s optimal action-value function Q∗TRG.

We further investigated transfer with the aggressive intertask mapping to better

understand the factors influencing transfer. To help with our investigation we gener-

ated the optimal action-values for the source task and the optimal action-values for

the target task. This enabled us to look at the final action-values learned by DQL

and TL(DQL) to determine the proportion of states where the greedy policy selects

α-good actions. Figure 6.13 shows the proportion of α-good actions for the final

learned policies of DQL and TL(DQL), where we selected α = 0.1. Other values of

121

α-Good

61.58

α-Bad

38.42

α-Good

53.10

α-Bad

46.90

(a) (b)

Figure 6.13: Proportion of α-good actions (with α = 0.1) in the final learned policy
for (a) DQL and (b) TL(DQL) and β = 0.

α around 0.1 provided similar results. Notice that neither policy comes anywhere

near the theoretical demand that the policy select α-good actions at every state, and

what may be more surprising is that TL(DQL) has even fewer α-good actions despite

performing just as well as the policy learned by DQL in terms of average reward.

Even more confusing is the fact that the transferred action-values only satisfied

the α-weak admissible heuristic conditions at a few states (Figure 6.14). This seems

to suggest that weak admissible heuristics have little to do with the efficacy of action-

value transfer. However, it turns out that the learned policies only need to be good

at a few states.

To help understand why the policy learned by TL(DQL) performs as well as DQL

even though it uses less α-good actions we looked at how frequently different states

were visited. Figure 6.15 shows that both DQL and TL(DQL) spend the vast major-

ity of timesteps in a small number of the total number of states. However, TL(DQL)

is even more concentrated on a few states than DQL. Figure 6.15 demonstrates the

important ability of action-value transfer to focus exploration on fewer but poten-

122

AH3.55

α-WAH

24.61

Other

71.84

Figure 6.14: Average proportion of states with transferred action-values (β = 0) that
optimistically initialize an α-good action satisfying the weak admissible heuristic
(WAH) criterion and the number of states with transferred action-values that are
optimistic for every action satisfying the admissible heuristic criterion (which also
belongs to WAH).

123

0 200 400 600 800 1000 1200 1400
State (Sorted by # Visits)

100

101

102

103

104

105

#
 V

is
its

DQL
TL(DQL)

Figure 6.15: Comparison between the number of visits made to each state by DQL
(the baseline algorithm) and TL(DQL) with β = 0 averaged over 100 runs. Both
DQL and TL(DQL) visit a small fraction of states far more frequently than all of the
other states. However, TL(DQL) is more concentrated on a few states than DQL.

tially more important state-action pairs. This figures is also important because it

suggests that the target task has a small number of critical states, where accuracy

of the policy is most important.

If we only consider the set of highly visited states (in this case states that were

visited more than mK times), then Figure 6.16 shows a very different story for the

final policy learned by TL(DQL). In this case, the policy selects an α-good action at

almost all of the highly visited states.

Figure 6.17 shows that a large proportion of the highly visited states satisfy the

α-weak admissible heuristic condition (although not all hightly visited states). This

suggests that the α-weak admissible heuristic concept may significantly contribute

to the efficacy of action-value transfer after all. To further confirm the importance

of α-weak admissible heuristic, we looked at the proportion of highly visited states

124

α-Good

α-Bad

Figure 6.16: Proportion of α-good actions selected by the final learned policy of
TL(DQL) over the set of highly visited states.

where the transferred action-values satisfied the admissible heuristic conditions (i.e.,

all action-value estimates are optimistic for that state) and where the transferred

action-values satisfied the α-weak admissible heuristic conditions (i.e., at least one

α-good action has an optimistic action-value estimate for that state). We measured

the proportion of highly visited states where the learned policy at that state selects

an α-good action. Figure 6.18 shows the results of this test. Practically every

time the transferred action-values for a state conformed to the conditions of a weak

admissible heuristic, the learned policy selects an α-good action at that state. This

confirms that the weak admissible heuristic concept is important for the efficacy of

action-value transfer.

125

AH4.03

α-WAH

66.00

Other

29.98

Figure 6.17: Average proportion of highly visited states with transferred action-
values (β = 0) that optimistically initialize an α-good action satisfying the weak ad-
missible heuristic (WAH) criterion and the number of states with transferred action-
values that are optimistic for every action satisfying the admissible heuristic criterion
(which also belongs to WAH).

126

AH WAH
0

20

40

60

80

100

%
 α

-G
oo

d
Ac

tio
ns

 in
 L

ea
rn

ed
 P

ol
ic

y

Figure 6.18: The percentage of highly visited states conforming to the admissible
heuristic or α-weak admissible heuristic conditions where the learned policy at that
state selects an α-good action. Whiskers indicate 1.5 times the interquartile range.

6.4 Discussion

Because action-value transfer depends on learning accurate action-values for the

source task, we can only realistically expect to apply action-value transfer in scenar-

ios where the dynamics and reward function of the source task are well-known. If we

don’t have a model or a generative model for the source task, we may not be able to

estimate accurate action-values for the source task. However, in practice, if we use

Delayed Q-learning or Modified R-MAX, these algorithms guarantee (with appro-

priate parameter values) that their action-value estimates are optimistic. Therefore

if the intertask mapping induces an α-weak admissible heuristic with εSRC-accurate

action-values, then the if the source task action-values are optimistic, the result-

ing transferred action-values will still induce an α-weak admissible heuristic. Thus

we will not incur additional optimality loss under by applying transfer with these

potentially less accurate action-values.

127

However, we cannot expect to apply action-value transfer in a cascade, treating

the target task from a previous application of action-value transfer as a source task

for a second action-value transfer. In this case, many of the action-values may have

been pessimistically mapped and therefore may result in significant optimality loss

in the next target task.

Another issue with the application of action-value transfer is obtaining an inter-

task mapping. As we have seen, the intertask mapping plays an important role in

learning performance in the target task. There are two potential options. The first

is to expect a domain expert to provide an intertask mapping. The second is that we

can attempt to learn an intertask mapping. In this section, we have assumed that

intertask mappings were provided by a domain expert. There has, on the other hand,

been some work towards learning an intertask mapping [47, 11]. Learning intertask

mappings would go a long way toward deploying TL autonomously. However, the

best intertask mapping cannot in general be resolved without knowing the optimal

action-values in the source and target task. To solve this problem, it may be possible

to consider learning algorithms with regularization to limit the choice of intertask

mappings.

Finally, action-value transfer often seems to improve performance even in some

situations where the transferred action-values do not satisfy an α-weak admissible

heuristic. We have observed in several experiments that when some critical action-

values are initially underestimated by the target task RL algorithm, the algorithm

will still converge to a near-optimal policy because the estimated action-values cap-

ture the overall structure of the optimal action-values, but they are lower than the

optimal action-values. This suggests that, although we have a good idea of when

action-value transfer will successfully result in positive transfer in a broad sense there

are many additional idiosyncratic circumstances where action-value transfer may still

128

work.

6.5 Summary

Previous research has established the potential value of transferring action-values

[45, 58, 46, 7, 8], however, these works have been primarily heuristic. We approached

the study of action-value transfer from a theoretical perspective. First, we noted that

some single task RL algorithms are provably efficient in terms of sample complexity.

Then we developed a structure called a weak admissible heuristic that influences

the sample complexity of exploration without introducing much optimality loss. We

developed a method for transferring action-value transfer that uses weak admissible

heuristics, and analyzed the sample complexity of learning accurate action-values

from a source task. Unfortunately, learning accurate action-values is a difficult prob-

lem and can only be done in a provably sample-efficient manner when it is possible

to fully explore the source task. Then we analyzed the sample complexity of explo-

ration in the target task with the assumption that the given intertask mapping can

be manipulated to produce action-values that satisfy a weak admissible heuristic.

Our experiments provide further support that combining action-value transfer with

directed exploration has important benefits. We believe that these findings provide

strong support for pairing action-value transfer with directed exploration.

129

7. ANALYSIS OF MULTITASK LEARNING

General purpose RL algorithms such as R-MAX and Delayed Q-learning achieve

polynomial sample complexity bounds over all MDPs. In a restricted set of MDPs, it

may be possible to find much more sample efficient, domain specific RL algorithms.

For example, controlling the same robot arm to manipulate different objects can be

thought of as a set of different but related tasks. After solving a few control tasks,

it may be possible to discover sequences of actions that are almost never useful. By

eliminating these sequences of actions from consideration, solutions for new tasks in

the same domain can be found more quickly.

Multitask RL (MTRL) is a special case of TL, where the learning system interacts

with a sequence of tasks that are distributed by a probability distribution. As the

learning system interacts with tasks it ought to be able to improve its ability to learn

within the domain. By making this assumption it may be easier to prove benefits of

TL than in the more general TL setting. In this section, we consider the following

questions:

1. How can the notion of sample complexity of exploration be generalized to the

MTRL setting?

2. Given a domain of tasks, how much better might a domain specific learning

algorithm be compared to a base RL algorithm?

3. How can a domain specific RL algorithm be learned automatically?

In this section, we extend the notion of sample complexity of exploration to the

MTRL setting by considering the sample complexity of the RL algorithm in the next

task drawn from the domain.

130

To answer the second question, we develop several notions of the complexity of a

domain based on the number of state-action pairs that need to be explored to achieve

our generalized sample complexity criterion. All of the measures of complexity of

a domain are valid, but each notion take advantage of different properties of the

domain of tasks.

To answer the third question, we continue our general theme of trying to eliminate

state-action pairs from consideration while still preserving optimality guarantees. As

we saw with Theorems 5.7 and 5.10 having an exploration table can significantly

decrease sample complexity of exploration, but a domain specific exploration table

must also attempt to minimize optimality loss. We show how an exploration table

can be learned by sampling tasks from a domain.

7.1 Background

A domain of MDPs D is a probability distribution over a finite or infinite set D

of MDPs. Figure 7.1 depicts the general MTRL setting, where a learning agent faces

a sequence of tasks over time. Each time a task is sampled, the agent constructs

a domain specific RL algorithm using its (initially empty) library of knowledge and

interacts with the current task. When finished learning in the current task, the

agent’s library is updated with the statistics acquired by the learning algorithm.

Although not strictly necessary, we assume that all of the MDPs in a domain share

the same state-action space but not necessarily the same transition probabilities or

reward functions. Throughout this section we make the assumption that every MDP

Ω ∈ D has state set S with N = |S| states and action set A with K = |A| actions.

Tanaka and Yamamura [41] considered MTRL and introduced algorithms that

learn statistics about the the action-values, such as the mean and standard devi-

ation. They used these statistics to speed up learning in new tasks sampled from

131

Domain

Agent

Library

Algorithm
Factory

Task 1

Alg. 1

Task 2

Alg. 2

Task j

Alg. j

... Time

Figure 7.1: Under multitask RL an agent, consisting of a library and algorithm
factory, is confronted with a sequence of tasks drawn from the same domain (or
distribution over tasks). For each new task, the agent constructs an algorithm by
combining knowledge from its library with its algorithm factory to construct a do-
main specific algorithm. The domain library is updated with each experienced task.

Algorithm 10 Multitask Q-learning (MTQL)

Require: D, S, A, γ, α, ε, τ
1: Initialize Q0 for all (s, a) ∈ S × A with values from

[
RMIN

1−γ ,
RMAX

1−γ

]
2: for n = 1, 2, . . . do

3: Ωn ∼ D {Sample a new task.}
4: if n ≤ τ then {Training Phase}
5: Learn action-value estimates Q̂n for Ωn

6: Q0 ← Q0 + Q̂n

7: else {Domain Specific Learning}
8: A ← Q-learning(S,A, α, γ, ε, Q0

τ
)

9: Execute A on Ωn

10: end if

11: end for

132

the distribution. Algorithm 10 is a simple algorithm that uses the learned mean

action-value estimates to initialize the Q-learning algorithm before learning in each

new task. If most tasks in the domain have similar action-values, then this approach

can considerably improve learning speed in novel tasks. However, if there is high

variance in the action-values, then this approach may lead Q-learning to settle on a

suboptimal policy. Tanaka and Yamamura [41] used information about the standard

deviation to add exploration bonuses to state-action pairs where the action-values

tend to deviate significantly from the average. Tanaka and Yamamura [41] assumed

that the action-values of each task are distributed independently.

Definition 7.1. The Independent Action-Value (IAV) Assumption hypoth-

esizes that during construction of each task in a domain the action-value for some

state-action pair (s, a) ∈ S×A is generated independently of every other action-value.

This is a useful assumption because it allows us to learn about the distribution

used to generate the action-value at each state-action pair with every sampled task.

If the action-values were dependent in an unknown way, then we could only learn

about a single state-action pair from each sampled task. The main limitation with

the IAV assumption is that it is restrictive and unrealistic, since action-values depend

on each other. Alternatively, we can make a slightly less restrictive assumption.

Definition 7.2. The Independent State (IS) Assumption hypothesizes that dur-

ing construction of each task in a domain the set of α-good actions at each state are

chosen independently of the set of α-good actions at every other state.

This assumption is more flexible than the IAV assumption, because every distribu-

tion that satisfies the IAV assumption also satisfies the IS assumption. Furthermore,

the IS assumption allows for more flexible ways of generating tasks. For example,

133

consider a state s with two actions a and b, in one task Ω the value Q∗Ω(s, a) = 1 and

Q∗Ω(s, b) = 0.9 while in another task Ω′ the value Q∗Ω′(s, a) = 0.2 and Q∗Ω′(s, b) = 0.05.

Despite the fact that the values are quite different in the two tasks, the action a is

optimal in both. This situation can be accounted for by the IS assumption but is

difficult to account for with the IAV assumption. In our analysis, we will make the

IS assumption about the domain.

Wilson et al. [60] and Lazaric and Ghavamzadeh [61] consider MTRL from a

Bayesian perspective and attempt to identify hierarchies of tasks based on task sim-

ilarities. Modeling Bayesian hierarchies of tasks is potentially useful but beyond the

scope of this section. Wilson et al. [60] considers tasks to be related if they share sim-

ilar reward functions and transition probabilities. Lazaric and Ghavamzadeh [61], on

the other hand, assume that two tasks are related if they have similar action-values.

Our approach measures the similarity between tasks by the number of α-good actions

that two tasks share in common. This has the advantage that two tasks can have

arbitrarily different transition probabilities and rewards but, in some cases, share the

same α-good actions.

To the authors knowledge, no prior work, has analyzed the sample complexity of

exploration with respect to a domain of tasks. In this section, we extend the concept

of sample complexity to the MTRL setting and propose and analyze algorithms for

learning domain specific RL algorithms.

7.2 Learning Objective and Approach

To analyze learning algorithms for MTRL, we need to define a learning objective.

The single task RL objectives used by [27, 30, 6] cannot be straightforwardly applied

to MTRL because, like the TL setting, in MTRL the agent interacts with multiple

tasks. In MTRL, we are interested in learning a domain specific RL algorithm. Thus

134

we need a notion of sample complexity that takes the domain into consideration.

Definition 7.3. Let ε > 0, δ ∈ (0, 1], and D is a probability distribution over a

set of MDPs D. If Ω is drawn from D and an instance of an RL algorithm A is

executed on Ω, then the domain sample complexity of exploration (or DSCE)

is the number of timesteps t ≥ 1 such that

V AtΩ (st) < V ∗Ω(st)− ε

with probability at least 1− δ.

Definition 7.3 defines sample complexity of exploration with respect to a prob-

ability distribution over a set of MDPs rather than the entire set of MDPs with N

states and K actions. It is important to notice that the algorithm A may perform

very poorly on some tasks in D, if their probability of being drawn from the domain

is sufficiently small. This small change in the definition of sample complexity allows

us to examine the sample complexity of an RL algorithm in a particular domain

rather than the set of all MDPs. For many domains, existing lower bounds on sam-

ple complexity no longer apply because the tricky MDPs used to prove these lower

bounds are either not in the set of tasks D or have an extremely small probability

associated with them (and can effectively be ignored). Thus there is a potential to

develop domain specific RL algorithms that have lower sample complexity of explo-

ration with respect to the domain D than is possible to develop over the set of all

MDPs.

In the MTRL setting, our algorithm initially starts with a full exploration table

(Figure 5.1a). After sampling some tasks used for training, the multitask algorithm

determines which state-action pairs are safe to prune resulting in a more sparse

domain specific exploration table (Figure 5.1b). For very sparse exploration tables,

135

the sample complexity of the resulting PAC-MDP algorithm may be much smaller

than a general purpose PAC-MDP algorithm. However, if the exploration table is

too sparse, this may result in optimality loss (Definition 5.5). Therefore we are faced

with a trade-off. We would like to learn as sparse an exploration table as possible,

while at the same time, not pruning state-action pairs that are likely to prevent a

PAC-MDP algorithm from learning to act ε-optimally on the next task sampled from

the domain D.

7.3 Complexity of a Domain of Tasks

In supervised learning the complexity of the hypothesis class plays an important

role in finite sample analysis. More complex classes require more samples to achieve

low error. However, the advantage of more complex classes is that they can accurately

describe more problem settings. The same general principle is true for MTRL. Some

multitask domains are simpler than others. In the extreme case, a domain with a

single task is very simple because only one policy needs to be learned, whereas some

domains may contain an infinite number of tasks that require radically different

policies. To create a meaningful finite sample analysis of MTRL we need to develop

a notion of the complexity of a domain of tasks.

One notion of complexity that is already included in RL sample complexity

bounds is the number of states N and the number of actions K. As N and K

increase the sample complexity grows at least linearly. However, there is a wide

range of tasks that have N states and K actions. Some collections of tasks may

be very simple to learn a good policy for even though they have a large number of

states and actions. For example, there is always the degenerate MDP where every

action in every state provides a maximum reward. Nevertheless, we believe that the

number of state-action pairs that need to be explored is a critical measure of the

136

Table 7.1: Domain Complexity
Deterministic Stochastic

C1(D) # of tasks in D times the
number of states

C4(D, ω) # of tasks in D with
probability mass 1 −
ω times the number of
states

C2(D, α) Size of the union of α-
“good” state-action pairs

C5(D, α, ω) Size of the union of α-
“good” state-action pairs
over tasks with probabil-
ity mass 1− ω

C3(D, α) # of α-“good” state-
action pairs in the min-
imal hitting set of each
state over all tasks

C6(D, α, ω) # of α-“good” state-
action pairs in the min-
imal hitting set of each
state over tasks with
probability mass 1− ω

complexity of a set of MDPs. As we develop measures of complexity, we will express

complexity based on the number of state-action pairs that may need to be explored.

Framing complexity in terms of a number of state-action pairs that may need to be

explored allows us to directly compare different notions of complexity and provides

a straightforward interpretation of a complexity measure’s meaning.

These measures of complexity help to answer the question: Given a domain of

tasks, how much better might a domain specific learning algorithm be compared

to a base RL algorithm? If the complexity of a domain is small, then a domain

specific RL algorithm can learn to act near-optimally on the next sampled task

with high probability after exploring only a small number state-action pairs. If the

complexity of a domain is denoted by C and we knew an exploration table ξC that

selected actions appropriately, then the domain sample complexity of exploration for

R-MAX initialized with ξC would be

Õ

(
ψC

ε3(1− γ)3

)

137

by Theorem 5.7, where Õ suppresses log factors, ψ is the maximum out-degree over

all state-action pairs, ε controls the acceptable sub-optimality of the learned policy.

The corresponding domain sample complexity of exploration for Delayed Q-learning

initialized with ξC would be

Õ

(
C

ε4(1− γ)8

)
by Theorem 5.10. So learning a domain specific exploration table can significantly

improve domain sample complexity of exploration.

We explore two kinds of measures of complexity: (1) deterministic, and (2)

stochastic. Deterministic measures of complexity do not take into consideration

any information about the probability distribution over tasks in the domain, while

stochastic measures of complexity weight the influence of different tasks based on

their probability to achieve a tighter fit of complexity. Table 7.1 provides an overview

of the different measures of complexity considered throughout this section.

7.3.1 Deterministic Measures of Domain Complexity

Possibly the simplest measure of complexity is related to the number of tasks in

a domain |D|, where D is the set of tasks in a domain. Intuitively, if there are only

a few tasks in a domain, then at most a few policies need to be considered. If there

are fewer tasks in the domain than the number of actions, then there cannot be more

than

C1(D) = N min (|D|, K) (7.1)

state-action pairs that are ever optimal across all of the tasks. This is because, in

the worst case, each task may have a different optimal action at each of the N states.

Although C1 is a reasonable first attempt at measuring the complexity of domains,

it is possible to define a more flexible measure of domain complexity. One way

138

si

a1 a2 a3 a4 a5

si

a1 a2 a3 a4 a5

si

a1 a2 a3 a4 a5

M
in

im
al

 H
itt

in
g

Se
tssi

a1 a2 a3 a4 a5

si

a1 a2 a3 a4 a5

si

a1 a2 a3 a4 a5

si

a1 a2 a3 a4 a5

Ω1

Ω2

Ω3

Ω4

Sa
m

pl
ed

 T
as

ks

Figure 7.2: Depicts the minimal hitting set problem for a state si over four MDPs.
White cells depict α-good actions, while gray depicts actions that are not in Gα

Ωj
(si)

for j = 1, 2, 3, 4. Notice that there are multiple minimal hitting sets.

of improving on C1 is to consider the properties of tasks within the domain. For

example, at a state s ∈ S, each task Ω in the domain has a set of α-“good” actions

Gα
Ω(s). If the union of these sets is smaller than the total number of actions, then

the actions that are never α-“good” can be pruned without any optimality loss. This

leads to our next measure of domain complexity defined by

C2(D, α) =
∑
s∈S

|∪Ω∈DG
α
Ω(s)| (7.2)

where α ≥ 0 determines how suboptimal the “good” actions are allowed to be (see

Definition 5.16).

However, the complexity measure Eq. (7.2) may, in some cases, be too conserva-

tive. To understand why consider a collection of two MBPs with 6 actions. In Ω1

the actions {a1, a2, a3, a4, a5, a6} are all optimal (all give the same expected reward)

and in Ω2 only the action a1 is optimal. In this case, the best response would be

to always select action a1 regardless of which task is selected because a1 is always

optimal. However, Eq. (7.2) labels this simple domain with maximal complexity.

To avoid this problem, we can sum up the size of minimal hitting sets (Figure 7.2)

139

instead of the size of the union

C3(D, α) =
∑
s∈S

|H(s,D, α)| (7.3)

where H(s,D, α) finds a minimum hitting set over all of the sets of “good” actions

for state s over all tasks in D.

Definition 7.4. (Reiter [62]) Given a set A = {1, 2, . . . , K} called the universe and

a collection of subsets B = {η1, η2, . . . , ητ} such that ηi ⊆ A for all i = 1, 2, . . . , τ , a

hitting set H is a subset of A and H ∩ ηi 6= ∅ for all i = 1, 2, . . . , τ . For all hitting

sets H a minimal hitting set H∗ has the additional property that |H∗| ≤ |H|.

Notice that under Eq. (7.6) the complexity of a set containing Ω1 and Ω2 is 1,

which is as small as possible. This is because the minimal hitting set picks out the

one action a1 from both tasks instead of selecting the union.

Algorithm 11 Find a Minimal Hitting Set

Require: A,B = {η1, η2, . . . , ητ}
1: K ← |A|
2: for k = 1, 2, . . . , K do

3: for H ∈ enum(A, k) do {For all sets of size k}
4: if H is a hitting set wrt B (Algorithm 12) then

5: return H

6: end if

7: end for

8: end for

Algorithm 12 takes a set A called the universe, a collection of subsets B =

{η1, η2, . . . , ητ}, and H ⊆ A. This algorithm determines whether or not H is a

hitting set with respect to A and B. Algorithm 11 enumerates all possible subsets

of A and returns a minimal hitting set. Unfortunately, finding minimal hitting sets

is known to be NP-complete as it is reducible to the vertex set cover problem ([63]

140

Algorithm 12 Is H a Hitting Set?

Require: A,B = {η1, η2, . . . , ητ}, H
1: for i = 1, 2, . . . , τ do

2: if H ∩ ηi = ∅ then

3: return false

4: end if

5: end for

6: return true

citing [64]) and therefore there is no known polynomial time solution. However, when

the number of actions is small, Algorithm 11 is computationally feasible. Even when

the number of actions is large there exist approximate algorithms that can be used

in practice to find nearly minimal hitting sets [63].

Next we will introduce several measures of complexity that take into account the

probability mass assigned to different tasks in the domain.

7.3.2 Stochastic Measures of Domain Complexity

Stochastic measures of domain complexity enable further improvement over de-

terministic measures by taking the probability mass assigned to each task in the

domain into consideration. This can affect the complexity of a task compared to de-

terministic measures if some tasks have extremely small probability of being drawn

from the domain. For example, if D is a domain with 500 tasks each having one

state and 500 actions (i.e., N = 1 and K = 500), then the deterministic complexity

measure C1(D) = 500. However, it may be the case that 300 of the tasks in D have a

combined probability mass of 0.00001. In this case, it seems reasonable to judge D’s

complexity based on the 200 tasks that are much more likely to occur. This suggests

our first stochastic measure of domain complexity

C4(D, ω) = N min (|X (ω)| , K) (7.4)

141

where X (ω) is the smallest subset of D such that
∑

Ω∈X PrD [Ω] ≥ 1 − ω. The

parameter ω ∈ (0, 1) allows control over the amount of probability mass to that can

be ignored. The main difference between C1 and C4 is that C4 does not count tasks

with very small probability of being drawn. When ω is selected appropriately C4 can

be a more accurate measure of a domain’s complexity because it ignores tasks that

rarely occur.

The main problem with C4 is that the number of tasks is not very descriptive of a

domains complexity. Our second stochastic measure of domain complexity is based

on C2. We define

C5(D, α, ω) =
∑
s∈S

∣∣∪Ω∈X (ω)G
α
Ω(s)

∣∣ (7.5)

where α determines which actions are considered “good” and ω determines the

amount of probability mass we are willing to ignore. Again X (ω) is the smallest

subset of D such that
∑

Ω∈X PrD [Ω] ≥ 1− ω.

As with the deterministic measures of complexity, we can push the stochastic

measures of complexity even further by considering the minimal hitting set concept.

We define this measure of domain complexity by

C6(D, α) =
∑
s∈S

|H(s,X (ω), α)| (7.6)

where H(s,X , α) finds a minimum hitting set over all of the sets of “good” actions

for state s over all tasks in X (ω).

These stochastic measures of complexity add additional probability of failure

to the domain specific RL algorithm. In a typical, sample complexity bound we

select δ ∈ (0, 1] and produce algorithms that succeed with a probability of at least

1− δ. Given an exploration table ξ tuned for a stochastic measure of complexity, the

142

additional probability of failure introduced is at most ω. So the total probability of

failure is bound by (δ + ω).

So far, we have introduced six measures of domain complexity. If we are given

the task set D and the probability mass for each task in D, then we can compute

exploration tables for a domain that exactly matches their complexity. However, we

are more interested in the case where we do not know the tasks probabilities of each

task or even which tasks are in D. Next, we will present two different approaches

for learning exploration tables under these conditions.

7.4 Algorithm: Evolving Exploration Tables (EET)

One method for MTRL is to evolve a structure that encodes which state-action

pairs to explore and those state-action pairs that can be ignored without jeopar-

dizing optimality guarantees. Algorithm 13 outlines the pseudo-code for Evolving

Exploration Tables (EET). This algorithm is a simple genetic algorithm that searches

through the space of exploration tables to find tables that when paired with a PAC-

MDP RL algorithm achieve high cumulative reward on the next n tasks sampled

from D.

The genome of EET is an array of {0, 1}NK , which encodes a 0 or a 1 for each

state-action pair. However, in tasks with large state spaces, we have found that

partitioning table so that a set of K entries in the genome control the resulting

exploration table entries for multiple states.

7.5 Algorithm: Learning Maximum Values (LMV)

The main disadvantage of the EET algorithm is that evolution is extremely slow.

More precisely, the number of tasks that need to be sampled to evaluate even one

generation of exploration tables seems large. This problem increases dramatically

as the complexity of the genome increases (i.e., the number of states and actions

143

Algorithm 13 Evolving Exploration Tables (EET)

1: Generate a random population of exploration tables P

2: while Termination criteria hasn’t been achieved do

3: for p ∈ P do

4: F (p)← 0

5: for i = 1, 2, ..., n do

6: Ωi ∼ D
7: Record sum of cumulative reward c for p wrt Ωi

8: F (p)← F (p) + c {Update fitness of p}
9: end for

10: end for

11: Generate new generation P ′ using mutation and crossover

12: P ← P ′

13: end while

a b c d0

VMAX
P[Ω1] = 0.25

a b c d

P[Ω2] = 0.25

a b c d

P[Ω3] = 0.25

a b c d

P[Ω4] = 0.25

a

b

c

d

s

Figure 7.3: A one-state domain with four actions and the optimal action-values for
each task. The red dashes indicate the maximum action-values across all tasks.
Notice that maximum action-values implicitly eliminate actions b and d from each
task because either action a or c has a higher value than the maximum value of b
and d.

increase).

Alternatively, we could attempt to learn a weak admissible heuristic, like we did

in the previous section, to decrease the sample complexity of exploration in the next

task. Learning average action-values, as is done by Algorithm 10, does not ensure

that the learned action-values are a weak admissible heuristic for the next sampled

task. One way to ensure that a set of action-values are a weak admissible heuristic

is to ensure that every action-value is greater than the true optimal action-value for

every task. This leads to the Learning Maximum Values (LMV) algorithm outlined

in Algorithm 14.

144

Algorithm 14 Learning Maximum Values (LMV)

Require: S, A, and τ

1: for (s, a) ∈ S × A do {Initialize}
2: W (s, a)← 0 {Max. observed action-value for (s, a).}
3: end for

4: for n = 1, 2, . . . do

5: Ωn ∼ D {Sample a new task.}
6: if n ≤ τ then {Training Phase}
7: Learn accurate action-values Q̂∗

8: for (s, a) ∈ S × A do {Update Library}
9: W (s, a)← max

(
W (s, a), Q̂∗(s, a)

)
10: end for

11: else {Domain Specific Learning}
12: Initialize a compatible PACMDP algorithm A with action-values W

13: Execute A on Ωn

14: end if

15: end for

The LMV algorithm has a training phase and a domain specific learning phase.

During the training phase, LMV samples τ ≥ 1 tasks from a domain D and records

the maximum observed action-value for each state-action pair (s, a). During the do-

main specific phase, the LVM algorithm initializes a compatible PACMDP algorithm

(such as R-MAX or Delayed Q-learning) using the action-values learned during the

training phase. If the learned action-values are all 1
1−γ , then the sample complexity of

exploration is no better than the base RL algorithm. However, if some of the action-

values are consistently smaller than others, then their corresponding state-action

pairs can be eliminated. For example, Figure 7.3 shows a simple one-state domain

with four actions where using the maximum action-values implicitly eliminates two

of the four actions (b and d).

The main problem with LMV is that it can easily be tricked resulting in better

performance with only a small probability. For example, consider the domain speci-

145

a b c d0

VMAX
P[Ω1] = 0.25

a b c d

P[Ω2] = 0.25

a b c d

P[Ω3] = 0.25

a b c d

P[Ω4] = 0.25

a

b

c

d

s

Figure 7.4: A one-state domain with four actions and the optimal action-values for
each task. The red dashes indicate the maximum action-values across all tasks. Task
Ω1 has probability mass 0.25 and much higher action-values than the action-values
for every other task. The learned maximum action-values are only helpful in task
Ω1. No actions can be pruned in tasks Ω2, Ω3, or Ω4, even though only actions a and
c are ever optimal.

fied by Figure 7.4. In this domain, one task Ω1 has much higher action-values than

all of the other tasks. These maximum action-values do not allow any actions to

be pruned from the other tasks, even though the complexity C2(D, α = 0) = 2. In

other words, even if we new the maximum action-values over all tasks, LMV may not

improve performance in domains where C2(D, α) ≤ NK. This is a serious problem

for LVM because we would like to develop a learning algorithm that tightly fits the

domains complexity according to C2 or C3.

7.6 Algorithm: Learning Exploration Tables (LET)

Instead of learning good initial action-values, we could attempt to learn an ex-

ploration table by sampling and analyzing a small number of tasks. The main idea

is to record the α-good actions at each state for a collection of sampled tasks. If

enough tasks are sampled, we can accurately determine, which state-action pairs can

be ignored with only a small probability of incurring significant optimality loss.

Pseudo-code for the Learning Exploration Tables 1 (LET1) algorithm is shown

in Algorithm 15. This algorithm samples and explores exhaustively τ tasks, which

it uses to construct an exploration table. For all following tasks LET1 constructs a

domain specific RL algorithm using the learned exploration table.

146

Algorithm 15 Learning Exploration Tables 1 (LET1)

Require: S, A, τ , and α

1: for (s, a) ∈ S × A do {Initialize}
2: c(s, a)← 0 {Counter for important (s, a).}
3: end for

4: for n = 1, 2, . . . do

5: Ωn ∼ D {Sample a new task.}
6: if n ≤ τ then {Training Phase}
7: Learn accurate action-values Q̂∗

8: for (s, a) ∈ S × A do {Update Library}
9: if Q̂∗(s, a) ≥ V̂ ∗Ωn(s)− α then

10: c(s, a)← c(s, a) + 1

11: end if

12: end for

13: else {Domain Specific Learning}
14: for (s, a) ∈ S × A do

15: if c(s, a) ≥ 1 then

16: ξ(s, a) = 1

17: else

18: ξ(s, a) = 0

19: end if

20: end for

21: Initialize a compatible PACMDP algorithm A with exploration table ξ

22: Execute A on Ωn

23: end if

24: end for

147

The exploration table learned by LET1 is defined by

ξ(s, a) =

 1 if c(s, a) > 0

0 otherwise
(7.7)

where c(s, a) is the number of sampled tasks where Q∗(s, a) > V ∗(s) − α. In other

words, LET1 attempts to learn the union of α-good actions in the domain at each

state. This corresponds with learning the optimal exploration table for domain

complexity measure C2. The following theorem specifies the number of tasks that

need to be observed by LET1 to learn an exploration table, assuming that the optimal

action-values of each sampled task during the training phase are given.

Theorem 7.5. Let α ≥ 0, ω ∈ (0, 1], and D be a domain of tasks. Assuming that

we are given access to the optimal action-values Q∗Ω for each task Ω that we sample

from D, there exists τ = O
(
NK
ω

ln
(
N
ω

))
such that after sampling τ tasks from D

with complexity C2(D, α), LET1 (Algorithm 15) produces an exploration table ξ that

satisfies

1.
∑

(s,a)∈S×A ξ(s, a) ≤ C2(D, α) and

2. L(Ω,Ωξ) ≤ α
1−γ

with probability at least 1− ω.

Theorem 7.5 formalizes the number of tasks that need to be observed before an

acceptable exploration table is learned with high probability. This theorem holds for

the IS assumption, which is more general than the IAV assumption. The dependence

is approximately linear with respect to the number of states and actions. This is

somewhat disappointing because it will not be reasonable to sample such a large

number of tasks when the state-action space is large. However, this bound makes

148

sense because we have assumed that each state is generated according to a separate

distribution. Keep in mind that this is a worst-case upper bound on the number of

tasks that need to be sampled. In many special cases the number of tasks needed may

be much smaller without sacrificing optimality. The main significance here is that

combined with Theorems 5.7 and 5.10, Theorem 7.5 provides a complete solution for

analyzing the sample complexity of exploration on the next sampled task. This allows

us to compare the sample complexity of domain specific RL algorithms with general

RL algorithms, such as R-MAX and Delayed Q-learning without prior knowledge.

To prove this theorem it will be useful to refer to a well-known lemma.

Lemma 7.6. (Strehl et al. [6, Lemma 8]) Let δ ∈ (0, 1] and X1, X2, X3, . . . , Xτ

be a sequence of Bernoulli random variables with Pr [Xi = 1] ≥ p of a success for

i = 1, 2, 3, . . . , τ , then there exists τ = O
(
k
p

ln
(

1
δ

))
such that after observing τ

experiments, we will observe at least k successes with probability at least 1− δ.

Proof. (of Theorem 7.5) The first claim is true due to the fact that LET1 only assigns

ξ(s, a) = 1 if the algorithm has observed some task from the domain where (s, a) is

α-good and C2(D, α) is the sum of all state-action pairs that are α-good in any task

in D.

Now we will argue that the second claim is also true. If ξ contains at least one

α-good action per state, then by Lemma 5.6 the optimality loss L(Ω,Ωξ) ≤ α
1−γ . We

want to show that for some τ = O
(
NK
ω

ln
(
N
δ

))
, the exploration table learned by

LET1 includes at least one α-good action at every state of the next sampled task Ω

with probability at least 1− ω.

Because the domain is stochastic, we cannot expect LET1 to observe a collection

of tasks during the training phase that reveals every state-action pair that is α-good

in some task in the domain. Instead, our strategy is to select τ large enough so that

149

LET1 samples enough tasks to guarantee that at every state s ∈ S all actions that

are α-good with probability at least ω1 are observed, with probability at least 1−ω2.

This strategy suggests two distinct ways that LET1 can fail:

• Failure Event A: the probability that (s, a) is α-good is greater than or equal

to ω1 but LET1 does not observe any task during the training phase where

(s, a) is α-good, or

• Failure Event B: the probability that (s, a) is α-good is less than ω1 but (s, a)

is α-good in the next sampled task during the domain specific phase.

The value ω1 represents the probability of failure event B for a single state s, while

the value ω2 represents the probability of failure event A for a single state s. If failure

event A and failure event B do not occur at a state s ∈ S, then ξ(s, a) = 1 for some

α-good state-action pair (s, a). Furthermore if failure event A and failure event B do

not occur at any state, then L(Ω,Ωξ) ≤ α
1−γ where Ω is the next task sampled from

the domain during the domain specific phase.

Since there areK actions, for a single state s ∈ S, after sampling τ = O
(
K
ω1

ln
(

1
ω2

))
tasks from the domain we will observe every action a at s where the probability of

being α-good is greater than or equal to ω1, with probability at least 1 − ω2, by

Lemma 7.6. If we select ω2 ← ω
2N

, then the probability of failure event A for the

state s is at most ω
2N

. By the union bound (Theorem 2.2) over all N states the

probability of failure event A is at most Nω2 = N ω
2N

= ω
2
.

Now, if we set the probability of failure event B to ω1 ← ω
2N

for each state,

then the probability of failure event B over all N states is at most Nω1 = N ω
2N

= ω
2
.

Therefore the total probability that LET1 will fail is at most N(ω1+ω2) = ω
2

+ ω
2

= ω.

By plugging in our values for ω1 and ω2 into τ we obtain our result.

150

The main limitation of LET1 is that it takes the union over the sets of α-good

actions at each state. This results in learning an exploration table that approxi-

mately matches C2(D, α), which in some cases is larger than C3(D, α). To learn an

exploration that approximately matches the tighter domain complexity of C3(D, α)

we need to select a minimal hitting set over the sets of α-good actions at each state.

The algorithm LET2 (Algorithm 16) does precisely that.

Similar to the LET1 algorithm, LET2 has two phases: (1) a training phase,

and (2) a domain specific phase. For the first τ sampled tasks, LET2 updates its

library of state-action pairs that have been observed to be α-good. For each state,

LET2 builds up a collection of α-good action sets. At the end of the training phase,

minimal hitting sets are found for each state and only the actions in the minimal

hitting set are included in the exploration table. During the domain specific phase

a compatible PACMDP algorithm is initialized with the learned exploration table

and executed on the next sampled task. The only real difference between LET1 and

LET2 is that LET2 eliminates state-action pairs from the learned exploration table

more aggressively. However, this raises the question: does LET2 need to sample more

tasks than LET1 to learn an acceptable exploration table? The following theorem

suggests that LET1 and LET2 need to sample approximately the same number of

tasks.

Theorem 7.7. Let α ≥ 0, ω ∈ (0, 1], and D be a domain of tasks. Assuming that

we are given access to the optimal action-values Q∗Ω for each task Ω that we sample

from D, there exists τ = O
(
NK
ω

ln
(
N
ω

))
such that after sampling τ tasks from D

with complexity C3(D, α), LET2 (Algorithm 16) produces an exploration table ξ that

satisfies

1.
∑

(s,a)∈S×A ξ(s, a) ≤ C3(D, α) and

151

Algorithm 16 Learning Exploration Tables 2 (LET2)

Require: S, A, τ , and α

1: for s ∈ S do {Initialize}
2: B(s)← ∅
3: for a ∈ A do

4: ξ(s, a) = 0

5: end for

6: end for

7: for n = 1, 2, . . . do

8: Ωn ∼ D {Sample a new task.}
9: if n ≤ τ then {Training Phase}
10: Learn accurate action-values Q̂∗

11: for s ∈ S do {Update Library}
12: G← ∅
13: for a ∈ A do

14: if Q̂∗(s, a) ≥ V̂ ∗Ωn(s)− α then

15: G← G ∪ {a} {Add α-good actions to G.}
16: end if

17: end for

18: Append the set G to B(s)

19: end for

20: if n = τ then {End of Training Phase}
21: for s ∈ S do

22: hs ← H(s, B(s)) {Compute a minimal hitting set.}
23: for a ∈ hs do

24: ξ(s, a) = 1

25: end for

26: end for

27: end if

28: else {Domain Specific Learning}
29: Initialize a compatible PACMDP algorithm A with exploration table ξ

30: Execute A on Ωn

31: end if

32: end for

152

2. L(Ω,Ωξ) ≤ α
1−γ

with probability at least 1− ω.

Proof. The first claim is true due to the fact that LET2 selects a minimal hitting set

of α-good actions at each state for a subset of the total task space.

By an argument similar to the one used to prove claim 2 of Theorem 7.5, if

τ = O
(
NK
ω

ln
(
N
ω

))
, we have for each state a collection of sets of α-good actions

with probability mass greater 1 − ω/2, with probability at least 1 − ω/2 after the

training phase is complete. A minimal hitting set can only eliminate an action if

that action always occurs in a set with some other α-good action that is included

in the hitting set. Thus the probability mass of the hitting sets is still greater than

1−ω/2. By the union bound (Theorem 2.2), claim 2 occurs with probability at least

1− (ω/2 + ω/2) = 1− ω.

The significance of Theorem 7.7 is that it shows that LET2 can learn an accept-

able exploration table with approximately the same number of samples as LET1,

even though the exploration table learned by LET2 is potentially sparser than the

exploration table learned by LET1. The trade-off is that LET2 employs the compu-

tationally expensive step of finding a minimal hitting set for each state at the end

of the training phase. If the number of actions K is small, then this may not be

much of a penalty. However, for domains with large action spaces, LET2 may be

computationally intractable.

In practice, LET1 and LET2 are practically equivalent when α = 0 because the

set of α-good actions will typically only contain a single action. Therefore, in our

experiments, we will assume α = 0 and simply refer to LET rather than LET1 and

LET2.

153

Table 7.2: D1: Multiarmed Bandit Domain with Four Actions.
Ω1 Ω2 Ω3 Ω4

Task Probability 1
4

1
4

1
4

1
4

E[R(a1)] 0.9 0.9 0.9 0.9
E[R(a2)] 0.1 0.4 0.6 0.7
E[R(a3)] 0.1 0.4 0.6 0.4
E[R(a4)] 0.1 0.4 0.6 0.1

7.7 Experiments & Results

In this section, most of our experiments will be with multiarmed bandit domains.

This is because many of the important aspects of MTRL can be highlighted without

some of the additional complexities of exploring an MDP with many states. We

created six of multiarmed bandit domains that highlight different issues in MTRL.

Our first domain D1 (Table 7.2) contains a collection of four equally probable

tasks. Each task has four actions. In D1 the action a1 has the highest expected

reward in every task in the domain. The purpose of D is to determine whether

learning algorithms are able to learn exploration tables that eliminate all but action

a1.

Domain D2 (Table 7.3) contains a collection of four equally probable tasks. Each

task has four actions. In D2 the action a1 is optimal in half of the tasks while the

action a2 is optimal in the other tasks. The purpose of D2 is to determine whether

learning algorithms are able to learn exploration tables that eliminate actions a3 and

a4 but keep the optimal actions a1 and a2. Domain D3 (Table 7.4) is similar to D2

except that actions {a1, a2, a3} are optimal in different tasks in the domain.

Domain D4 (Table 7.5) contains four equally probable tasks. However, each task

has a different optimal action. The purpose of D4 is to determine whether learning

algorithms eliminate any actions in the exploration table in this case. When a new

task is sampled the algorithm must explore every action to determine, which action

154

Table 7.3: D2: Multiarmed Bandit Domain with Four Actions.
Ω1 Ω2 Ω3 Ω4

Task Probability 1
4

1
4

1
4

1
4

E[R(a1)] 0.9 0.9 0.6 0.7
E[R(a2)] 0.1 0.4 0.9 0.9
E[R(a3)] 0.1 0.4 0.6 0.4
E[R(a4)] 0.1 0.4 0.6 0.1

Table 7.4: D3: Multiarmed Bandit Domain with Four Actions.
Ω1 Ω2 Ω3 Ω4

Task Probability 1
4

1
4

1
4

1
4

E[R(a1)] 0.9 0.9 0.6 0.7
E[R(a2)] 0.1 0.4 0.9 0.4
E[R(a3)] 0.1 0.4 0.6 0.9
E[R(a4)] 0.1 0.4 0.6 0.1

gives the highest expected reward. A reasonable domain specific learning algorithm

should recognize that there is no better domain specific RL algorithm in a domain

like D4.

Domain D5 (Table 7.6) contains four equally probable tasks. In Ω3 every action

is optimal, but only actions a1 or a2 are optimal in all the other tasks. The min-

imal hitting set notion is useful in this domain because a domain specific learning

algorithm only needs to explore actions a1 and a2 to find an optimal policy. Taking

the union of actions that are optimal in some task results in a set containing all four

actions.

Domain D6 (Table 7.7) contains seven tasks. The first four tasks divide up most

Table 7.5: D4: Multiarmed Bandit Domain with Four Actions.
Ω1 Ω2 Ω3 Ω4

Task Probability 1
4

1
4

1
4

1
4

E[R(a1)] 0.9 0.4 0.6 0.7
E[R(a2)] 0.1 0.9 0.6 0.4
E[R(a3)] 0.1 0.4 0.9 0.1
E[R(a4)] 0.1 0.4 0.6 0.9

155

Table 7.6: D5: Multiarmed Bandit Domain with Four Actions. In Task Ω3 All
Actions are Optimal.

Ω1 Ω2 Ω3 Ω4

Task Probability 1
4

1
4

1
4

1
4

E[R(a1)] 0.9 0.4 0.9 0.9
E[R(a2)] 0.1 0.9 0.9 0.7
E[R(a3)] 0.1 0.4 0.9 0.4
E[R(a4)] 0.1 0.4 0.9 0.1

Table 7.7: D6: Multiarmed Bandit Domain with Four Actions.
Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7

Task Probability 25
100

25
100

25
100

22
100

1
100

1
100

1
100

E[R(a1)] 0.9 0.4 0.9 0.9 0.0 0.1 0.1
E[R(a2)] 0.1 0.9 0.9 0.7 0.3 0.9 0.1
E[R(a3)] 0.1 0.4 0.9 0.4 0.9 0.1 0.1
E[R(a4)] 0.1 0.4 0.9 0.1 0.1 0.1 0.9

of the probability mass, while the last three tasks each have probability 1
100

. This

domain explores what happens when a few tasks have most of the probability mass.

Notice that in the first four tasks either action a1 is optimal or action a2, while in the

remaining three tasks one of a2, a3, or a4 are optimal. The probability that action a3

or a4 is only 2
100

, so if the learned exploration table did not contain those actions, the

domain specific RL algorithm would still be able to find an optimal policy almost all

the time.

Finally, we introduce four domains over Markov decision processes called reset

domains. In each of the reset domains all of the tasks have a similar structure

(Figure 7.5) as a chain of states. The only way that the tasks differ is which actions

propel the agent further up the chain of states, and which actions reset the agent to

state 1. In reset domain R1, the action a1 is always the optimal action in every task.

In reset domain R2, either action a1 or action a2 (but not both at the same time)

is the optimal action in sampled tasks. In reset domain R3, either action a1, a2, or

a3 (but only one at a time) is the optimal action in sampled tasks. In reset domain

156

...
a* (Rmax)

a* 0.8

0.2

a* 0.8

0.2

a* 0.8

0.2

1 2 N

ai ≠ a*

ai ≠ a*

ai ≠ a*

Figure 7.5: Example of one task sampled from a reset domain.

R4, any action (but only one at a time) is the optimal action in sampled tasks. The

significance of the reset domains is that each task is a difficult RL problem, but the

results of learning are easy to understand because the same action is optimal in every

state (although the RL algorithm does not know that).

7.7.1 Experiment: Evolving an Exploration Table

We ran EET on several domains to determine whether or not EET learns an

appropriately domain specific exploration table. Figure 7.6 shows the average of the

best genomes evolved by EET for domains 1 through 6. In the first domain D1, we

can see that most of the genomes learned that the first action a1 is optimal and that

the other actions are never optimal. The results for D2 show similarly that EET was

able to determine that actions a1 and a2 are worth exploring, while actions a3 and

a4 are not. In domains D3 and D4, the results are less impressive. This is most likely

because the evaluation window was too short to make it worth while to explore three

or four actions before settling on an optimal action. However, the average of the best

genomes match the number of potentially optimal actions in domains 1 through 4.

The results for D5 (Figure 7.6e) show that despite the fact that every action is

optimal in Ω3 the best exploration table only explored the first two actions. This

makes sense because one of the first two actions is always optimal in every task in

the domain.

157

1.0 2.0 3.0 4.00.0

0.2

0.4

0.6

0.8

1.0

1.0 2.0 3.0 4.00.0

0.2

0.4

0.6

0.8

1.0

(a) D1 (b) D2

1.0 2.0 3.0 4.00.0

0.2

0.4

0.6

0.8

1.0

1.0 2.0 3.0 4.00.0

0.2

0.4

0.6

0.8

1.0

(c) D3 (d) D4

1.0 2.0 3.0 4.00.0

0.2

0.4

0.6

0.8

1.0

1.0 2.0 3.0 4.00.0

0.2

0.4

0.6

0.8

1.0

(e) D5 (f) D6

Figure 7.6: Average of best genomes (with error bars indicating ±1 standard devia-
tion) learned over 40 runs EET on domains (a) D1, (b) D2, (c) D3, (d) D4, (e) D5,
and (f) D6.

158

1 2 3 40

1

D1

1 2 3 40

1

D2

1 2 3 40

1

D3

1 2 3 40

1

D4

Figure 7.7: Average learned exploration tables (with error bars indicating ±1 stan-
dard deviation) by the LET algorithm on domains D1, D2, D3, and D4. The learned
exploration tables accurately determine the minimum number of actions that can be
explored depending on the domain.

In D6 (Figure 7.6f) the action a1 was always included in the evolved exploration

table because it had a 72% chance of being optimal. Action a2 was included surpris-

ingly infrequently. However, this may have been due to evaluating genomes on only

10 sampled tasks.

What we found from these experiments is that EET can learn domain specific

exploration tables that tightly fit the domains complexity. However, the approach is

impractical because every genome needs to be evaluated on a large number of tasks.

Too few tasks results in noisy evaluation signals that make it difficult to determine

the best exploration tables. Next we will consider learning an exploration table.

7.7.2 Experiment: Learning an Exploration Table

We executed LET on domains D1, D2, D3, and D4. Figure 7.7 shows that LET is

able to learn good exploration tables for each of the four domains. If we expand do-

mains D1, D2, D3, and D4 to have 10 actions, the problem may be more challenging.

159

1 2 3 4 5 6 7 8 9 100

1

D1 /10

1 2 3 4 5 6 7 8 9 100

1

D2 /10

(a) (b)

1 2 3 4 5 6 7 8 9 100

1

D3 /10

1 2 3 4 5 6 7 8 9 100

1

D4 /10

(c) (d)

Figure 7.8: Average learned exploration tables (with error bars indicating ±1 stan-
dard deviation) by the LET algorithm on domains (a) D1, (b) D2, (c) D3, and (d)
D4 expanded to have ten actions instead of four. The learned exploration tables ac-
curately determine the minimum number of actions that can be explored depending
on the domain.

160

LET MTQL1400

1450

1500

1550

1600

1650

1700

1750

1800

1850

Cu
m

ul
at

iv
e

Re
w

ar
d

D1 /10

LET MTQL1400

1450

1500

1550

1600

1650

1700

1750

1800

1850

Cu
m

ul
at

iv
e

Re
w

ar
d

D2 /10

(a) (b)

LET MTQL1400

1450

1500

1550

1600

1650

1700

1750

1800

1850

Cu
m

ul
at

iv
e

Re
w

ar
d

D3 /10

LET MTQL1400

1450

1500

1550

1600

1650

1700

1750

1800

1850

Cu
m

ul
at

iv
e

Re
w

ar
d

D4 /10

(c) (d)

Figure 7.9: Comparison between the cumulative reward earned by LET and MTQL
in D1, D2, D3, and D4 extended to 10 actions rather than 4. Whiskers indicate 1.5
times the interquartile range.

Figure 7.8 shows the learned exploration tables for this scenario. Again we see that

LET is able to learn reasonable exploration tables. We compared the performance

of LET with MTQL (Algorithm 10) on these four domains. As the number of poten-

tially optimal actions increases, LET performs better than MTQL because MTQL

relies on undirected exploration to decide when to try different actions (Figure 7.9).

LET, on the other hand, tries each of the candidate actions m times and then selects

the action with highest empirical reward.

We also tried LET on the reset domains. Figure 7.10 shows that as the number

of potentially optimal actions increases, LET finds exploration tables that contain

161

R1 R2 R3 R40

10

20

30

40

50

60

Su
m

 o
f N

on
ze

ro
 E

xp
lo

re
 T

ab
le

 E
nt

rie
s

Figure 7.10: The number of entries in exploration tables learned by LET for domains
R1, R2, R3, and R4. As the number of tasks with different optimal actions increases.
The number of nonzero entries in the learned exploration tables increase. Whiskers
indicate 1.5 times the interquartile range.

more entries. Figure 7.11 compares the average reward achieved on the final sampled

reset task between RMAX, LET (using RMAX with learned exploration table) and

MTQL. MTQL is unable to solve the difficult reset task in a reasonable amount of

time due to the fact that it uses undirected exploration. LET learns more quickly

than RMAX in domains R1 and R2. However, as the number of potentially optimal

actions increases, LET is more likely to eliminate these actions. This problem can

be solved in two ways. One way is to sample more tasks before applying the domain

specific exploration table. This will give LET more opportunities to observe actions

that are α-optimal in only a few states. Another possibility is to partition the states

so that if an action is observed to be α-optimal at any state in a partition it is

included in the exploration table for all states in that partition.

The results of our experiments suggest that LET is able to find reasonable explo-

ration tables with fewer samples than EET. This is especially important for domains

with many states and actions. Our results also suggest that LET has some advan-

162

0 5 10 15 20 25 30
Episode #

0

5

10

15

20

25

30

35

Re
w

ar
d

RMAX
LET
MTQL

0 5 10 15 20 25 30
Episode #

0

5

10

15

20

25

30

35

Re
w

ar
d

RMAX
LET
MTQL

(a) (b)

0 5 10 15 20 25 30
Episode #

0

5

10

15

20

25

30

35

Re
w

ar
d

RMAX
LET
MTQL

0 5 10 15 20 25 30
Episode #

0

5

10

15

20

25

30

35

Re
w

ar
d

RMAX
LET
MTQL

(c) (d)

Figure 7.11: Comparison between the cumulative reward earned by LET and MTQL
in R1, R2, R3, and R4. MTQL is unable to solve the task in a reasonable amount
of time due to relying on undirected exploration. LET performs well compared
to RMAX when there are few potentially optimal actions, but it begins to drop
important actions as the task complexity increases.

163

tages over MTQL, which does not perform as well as LET (using RMAX) when the

number of potentially optimal actions is large (but only a small number are optimal

at any one time). MTQL was also unable to solve reset tasks in a reasonable amount

of time because of its use of undirected exploration.

7.8 Discussion

Using EET to evolve exploration tables necessarily samples a large number of

tasks, because each table needs to be evaluated. LET partially alleviates this problem

by learning an exploration table based on information from a set of sampled tasks.

Unfortunately, the analysis for the LET algorithm depends on the ability to access

the tasks optimal action-values or at least generative models for sampled tasks. The

generative models are necessary to allow the algorithm to learn accurate action-values

so that the sets of “good” state-action pairs are accurate. In practice, we observed

that for tasks with large state-action spaces it may be difficult to learn accurate

action-values for all state-action pairs. This can often result in poor exploration

tables. One potential remedy for this problem is to provide a partition on the state

space so that if an action is observed to be α-good at one state in a class, then the

resulting exploration table will include that action at every state in the equivalence

class. This would allow a learning algorithm to include α-good state-action pairs

from difficult to reach states in the exploration table.

7.9 Summary

In this section, we have introduced and analyzed algorithms for learning domain

specific exploration strategies. We developed deterministic and stochastic measures

of the complexity of a domain of MDPs. Using an evolutionary algorithm, we were

able to demonstrate how tightly the various measures fit a domain’s difficulty. We

presented an algorithm for learning an exploration table that matches our determin-

164

istic measures of domain complexity with a bounded number of tasks sampled from

the domain. This algorithm is able to learn a good exploration table for the domain

with high probability. After the initial training phase, the Delayed Q-learning algo-

rithm paired with the learned exploration table has a high probability of learning a

near-optimal policy for any task sampled from the domain after exploring far fewer

state-action pairs. By framing these complexity measures in terms of the number of

state-action pairs that may need to be explored to learn a near-optimal policy on the

next sample task, we were able to reuse our analysis of exploration tables to analyze

sample complexity and compare the various complexity measures. To the author’s

knowledge these results are the first attempt to analyze multitask RL from a sample

complexity perspective.

165

8. DISCUSSION

In this section, we discuss the findings, main contributions, and limitations of

the results developed throughout this dissertation. First, we discuss action pruning,

followed by action-value transfer, and finally multitask learning.

8.1 Action Pruning

Our theoretical analysis of action pruning was foundational for our analysis of

action-value transfer and multitask learning. We introduced two structures for prun-

ing actions. Exploration tables enabled explicit action pruning, while weak admissi-

ble heuristics implicitly pruned actions.

8.1.1 Findings & Contributions

The main findings related action pruning are Theorems 5.7, 5.10, 5.20, and 5.21,

which establish sample complexity bounds for R-MAX and Delayed Q-learning when

initialized with an exploration table or weak admissible heuristic. These theorems

formalized the intuition that constraining the action space leads to more sample-

efficient reinforcement learning. We also introduced the notion of optimality loss

and provided a lemma for bounding that loss (i.e., Lemma 5.6).

The main contribution of Section 5 is the development of key theorems that are

used for analyzing action-value transfer and multitask learning. These theorems

establish that sample complexity decreases proportionally to the number of state-

action pairs that can be ignored while learning.

8.1.2 Limitations

The main limitation of this analysis is that exploration tables and weak admissible

heuristics that decrease sample complexity but also result in small optimality loss

166

may be difficult to acquire. The section on action-value transfer and the section on

multitask learning show how these transfer learning mechanisms could be used to

learn weak admissible heuristics or exploration tables that result in small optimality

loss.

8.1.3 Future Work & Open Questions

The most promising directions of future work are to continue exploring various

structures that explicitly or implicitly prune state-action pairs. Weak admissible

heuristics are more general than the admissible heuristics presented by [6], however,

weak admissible heuristics only provide sufficient conditions for converging to a near-

optimal policy (when α is very small). One promising direction of future work is

to consider ways of further weakening the assumptions placed on weak admissible

heuristics. This would enable us to understand even more conditions where transfer

learning succeeds with high probability.

8.2 Action-value Transfer

Action-value transfer has been found to work well in many experiments [45, 58, 8,

12]. We have provided a deeper theoretical and experimental analysis of action-value

transfer using PAC-MDP algorithms in the target task.

8.2.1 Findings & Contributions

First, we found that learning action-values through exploration is a difficult prob-

lem. It can require a number of samples that is exponential with respect to the num-

ber of states. However, if a generative model for an MDP is known, then it is possible

to obtain arbitrarily accurate action-values with polynomially many samples. This is

an important finding because learning action-values is a critical step for generating

source task knowledge. This suggests that when applying action-value transfer the

167

source task should be well known or easy to explore the most significant regions of

the state-action space.

Second, we found that when the intertask mapping transfers action-values that

satisfy a weak admissible heuristic (with small α) for the target task, then negative

transfer will not occur, with high probability. Furthermore, if the transferred weak

admissible heuristic eliminates some state-action pairs, then positive transfer will

occur, with high probability.

8.2.2 Limitations

The main limitations of action-value transfer are obtaining action-values from

the source task and an intertask mapping that relates action-values from the target

task to action-values from the source task. In practice, learning action-values from

the source task tends not to be much of a problem. Furthermore, if the Delayed Q-

learning algorithm is used to acquire action-values from the source task, its estimates

will be optimistic and therefore even if they are inaccurate, they will not cause

optimality loss in the target task.

Acquiring an intertask mapping relating target task state-action pairs to source

task state-action pairs may be more problematic. In many settings, where the source

and target task share the same state-action space, the identity intertask mapping can

be used. In our experiments, we either supplied intertask mappings designed by hand

or generated intertask mappings using perfect knowledge of the source and target

task for experimental purposes. In practice, it is often possible for human engineers

to design reasonable intertask mappings between two domains that share important

structure. Liu and Stone [47] and Taylor et al. [11] have considered the problem

of learning intertask mappings. However, it is an open question whether or not

intertask mappings can be autonomously learned in practice.

168

8.2.3 Future Work & Open Questions

The main open question is how reasonable intertask mappings can be acquired

autonomously. Liu and Stone [47] consider selecting from a small set of useful inter-

task mappings to relate different types of games. Their method requires knowledge

of the high-level structure shared between tasks. Taylor et al. [11] introduce the

MASTER algorithm, which uses samples from the source and target task to learn

an intertask mapping through an exhaustive search. This approach is a good first

step, but it is probably too computationally expensive to apply to tasks with large

state-action spaces. Furthermore, the number of samples needed to select the best

intertask mapping is probably enough to select a near-optimal policy for the target

task. Future work should consider selecting an intertask mapping under heavy regu-

larization. This may allow a learning system to select a reasonable intertask mapping

with fewer samples and lower computational costs.

8.3 Multitask Learning

We considered learning a domain specific RL algorithm for a domain of tasks.

The multitask scenario matches the intuition that intelligent agents are often faced

with related but not identical tasks.

8.3.1 Findings & Contributions

Our main contribution is our attempt to develop a measure of the complexity of a

domain of tasks. We developed six different domain complexity measures, all based

on the number of state-action pairs that need to be explored to learn a near-optimal

policy with high probability. Our first three measures do not take into account

the probability mass assigned to tasks in the domain, while our last three use this

information to describe the domain’s complexity more tightly.

169

Evolutionary algorithms allowed us to find exploration tables that closely matched

the tightest measures of domain complexity, however, these algorithms sample a large

number of tasks in order to evaluate different exploration tables. In response, we

developed a more sensible algorithm for learning domain specific exploration tables.

Although the learned exploration tables do not match the tightest measure of domain

complexity, they provide a good trade-off.

8.3.2 Limitations

Similar to the problem pointed out for action-value transfer. Learning any mean-

ingful statistics about sampled tasks depends on the learning algorithms ability to

explore the tasks. If the tasks are highly stochastic and the algorithm is given only a

single chain of experience through the task, then it would be unreasonable to guar-

antee the algorithm will learn any statistics of interest about the task. However, in

practice this tends to be less of a concern. Typically, useful information is learned

from each task sampled from the domain. Unfortunately, we do not have a good way

of quantifying this learned information. In our analysis, we ignored this problem

assuming that the learning system had complete knowledge of sampled tasks.

The main limitation of our multitask approach is that our algorithm for learning

an exploration table does not learn the most aggressive exploration table suggested

by our more aggressive notions of domain complexity C3 and C6. However, we argued

that learning exploration tables that select a minimal hitting set at each state would

require sampling an unreasonable number of tasks from the domain.

8.3.3 Future Work & Open Questions

We have only considered learning exploration tables. It may be possible to learn

about other relationships between tasks in a domain that constrain the state-action

space. Future work should explore other structures and relationships that are useful

170

for multitask learning.

Another important area of future work is to scale up the methods explored here

to multitask domains with larger state spaces. This will almost certainly require par-

titioning the state space to decrease the number of tasks sampled before discovering

an improved domain specific exploration strategy.

171

9. CONCLUSIONS

The goal of this dissertation was to understand how transfer learning (TL) can be

used to scale up reinforcement learning (RL) algorithms to solve problems with large

state-action spaces. Although many works have demonstrated experimentally that

TL can be successfully applied to speed up RL, there has been a lack of theoretical

analysis explaining when TL will succeed in speeding up RL and when it will fail. The

main contributions of this dissertation are (1) the development of new algorithms

for using prior knowledge, (2) the development of new algorithms and structures

for transfer and multitask learning, and (3) the theoretical analysis of transfer and

multitask learning from a sample complexity perspective.

We introduced the STAR-MAX algorithm that is able to use prior knowledge

about which states of a task are irrelevant to constrain the search space. This method

suggested the alternative idea of constraining state-action pairs. We introduced two

structures, (1) exploration tables and (2) weak admissible heuristics, as forms of

prior knowledge that both turn out to constrain the number of state-action pairs.

We analyzed sample complexity and optimality loss when R-MAX and Delayed Q-

learning are paired with either exploration tables or weak admissible heuristics. Using

the weak admissible heuristic concept we were able to analyze action-value transfer

from a sample complexity perspective, finding that positive transfer can occur under

a general range of circumstances. Experiments with action-value transfer suggested

that action-value transfer is even more robust in practice. We analyzed multitask

learning from the perspective of learning an exploration table by sampling tasks from

a domain. We developed measures of domain complexity that describe how many

state-action pairs can be eliminated from exploration given a perfect exploration

172

table and developed a learning algorithm that learns an exploration table efficiently.

Together, these results demonstrate the importance of viewing transfer learning as

a mechanism for intelligently constraining the exploration space.

173

REFERENCES

[1] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT Press,

1998.

[2] T. Hester, M. Quinlan, and P. Stone, “Generalized model learning for rein-

forcement learning on a humanoid robot,” in IEEE International Conference on

Robotics and Automation, 2010.

[3] T. G. Dietterich, “The MAXQ method for hierarchical reinforcement learning,”

in International Conference on Machine Learning, 1998, pp. 118–126.

[4] S. Thrun and T. M. Mitchell, “Lifelong robot learning,” Robotics and Au-

tonomous Systems, vol. 15, pp. 25–46, 1995.

[5] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning do-

mains: A survey,” Journal of Machine Learning Research, vol. 10, no. 1, pp.

1633–1685, 2009.

[6] A. L. Strehl, L. Li, and M. Littman, “Reinforcement learning in finite MDPs:

PAC analysis,” Journal of Machine Learning Research, vol. 10, pp. 2413–2444,

2009.

[7] M. E. Taylor and P. Stone, “Behavior transfer for value-function-based

reinforcement learning,” in Proceedings of the Fourth International Joint

Conference on Autonomous Agents and Multiagent Systems, ser. AAMAS

’05. New York, NY, USA: ACM, 2005, pp. 53–59. [Online]. Available:

http://doi.acm.org/10.1145/1082473.1082482

174

[8] M. E. Taylor, P. Stone, and Y. Liu, “Transfer learning via inter-task mappings

for temporal difference learning,” Journal of Machine Learning Research, vol. 8,

pp. 2125–2167, 2007.

[9] M. E. Taylor and P. Stone, “Cross-domain transfer for reinforcement learning,”

in Proceedings of the Twenty-Fourth International Conference on Machine

Learning, ser. ICML ’07. New York, NY, USA: ACM, 2007, pp. 879–886.

[Online]. Available: http://doi.acm.org/10.1145/1273496.1273607

[10] M. E. Taylor, N. K. Jong, and P. Stone, “Transferring instances for model-

based reinforcement learning,” in Machine Learning and Knowledge Discovery

in Databases, ser. Lecture Notes in Artificial Intelligence, vol. 5212, September

2008, pp. 488–505.

[11] M. E. Taylor, G. Kuhlmann, and P. Stone, “Autonomous transfer for reinforce-

ment learning,” in The Seventh International Joint Conference on Autonomous

Agents and Multiagent Systems, May 2008.

[12] T. A. Mann and Y. Choe, “Prenatal to postnatal transfer of motor skills through

motor-compatible sensory representations,” in IEEE Ninth International Con-

ference on Development and Learning (ICDL), aug. 2010, pp. 185 –190.

[13] S. Zoia, L. Blason, G. D’Ottavio, M. Bulgheroni, E. Pezzetta, A. Scabar, and

U. Castiello, “Evidence of early development of action planning in the human

foetus: a kinematic study,” Experimental Brain Research, vol. 176, pp. 217–226,

2007.

[14] T. A. Mann, Y. Park, S. Jeong, M. Lee, and Y. Choe, “Autonomously improving

binocular depth estimation,” in Proceedings of the Japanese Neural Networks

Society, 2011.

175

[15] R. I. Brafman and M. Tennenholtz, “R-MAX - a general polynomial time al-

gorithm for near-optimal reinforcement learning,” Journal of Machine Learning

Research, vol. 3, pp. 213–231, 2002.

[16] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman, “PAC model-

free reinforcement learning,” in Proceedings of the Twenty-Third International

Conference on Machine Learning (ICML-06), 2006.

[17] H. Robbins, “Some aspects of the sequential design of experiments,” Bulletin

American Mathematical Society, vol. 55, pp. 527–535, 1952.

[18] E. Even-Dar, S. Mannor, and Y. Mansour, “PAC bounds for multi-armed bandit

and markov decision processes,” in Fifteenth Annual Conference on Computa-

tional Learning Theory (COLT), 2002, pp. 255–270.

[19] ——, “Action elimination and stopping conditions for the multi-armed bandit

and reinforcement learning problems,” Journal of Machine Learning Research,

vol. 7, pp. 1079–1105, 2006.

[20] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multi-

armed bandit problem,” Machine Learning, vol. 47, pp. 235–256, 2002.

[21] L. G. Valiant, “A theory of the learnable,” in STOC ’84: Proceedings of the

Sixteenth Annual ACM Symposium on Theory of Computing. New York, NY,

USA: ACM, 1984, pp. 436–445.

[22] S. Mannor and J. N. Tsitsiklis, “The sample complexity of exploration in the

multi-armed bandit problem,” Journal of Machine Learning Research, vol. 5,

pp. 623–648, 2004.

176

[23] W. Hoeffding, “Probability inequalities for sums of bounded random variables,”

Journal of the American Statistical Association, vol. 58, no. 301, pp. pp. 13–30,

1963. [Online]. Available: http://www.jstor.org/stable/2282952

[24] M. L. Puterman, Markov Decision Processes - Discrete Stochastic Dynamic Pro-

gramming. John Wiley & Sons, Inc., 1994.

[25] R. E. Bellman, “The theory of dynamic programming,” Rand Corp., Tech. Rep.,

1954.

[26] M. L. Littman, T. L. Dean, and L. P. Kaelbling, “On the complexity of solving

markov decision problems,” in Proceedings of the Eleventh Conference on

Uncertainty in Artificial Intelligence, ser. UAI’95. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 1995, pp. 394–402. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2074158.2074203

[27] M. Kearns and S. Singh, “Near-optimal reinforcement learning in polynomial

time,” Machine Learning, vol. 49, pp. 209–232, 2002, 10.1023/A:1017984413808.

[Online]. Available: http://dx.doi.org/10.1023/A:1017984413808

[28] A. L. Strehl and M. L. Littman, “A theoretical analysis of model-based interval

estimation,” in Proceedings of the Twenty-Second International Conference on

Machine Learning, 2005.

[29] I. Szita and C. Szepesvári, “Model-based reinforcement learning with nearly

tight exploration complexity bounds,” in Proceedings of the Twenty-Seventh

International Conference on Machine Learning, 2010.

[30] S. M. Kakade, “On the sample complexity of reinforcement learning,” Ph.D.

dissertation, University College London, March 2003.

177

[31] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, University of

Cambridge, 1989.

[32] T. Jaksch, R. Ortner, and P. Auer, “Near-optimal regret bounds

for reinforcement learning,” Journal of Machine Learning Re-

search, vol. 11, pp. 1563–1600, Aug. 2010. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1756006.1859902

[33] A. Lazaric, M. Ghavamzadeh, and R. Munos, “Finite-sample analysis of lstd,” in

Proceedings of the Twenty-Seventh International Conference on Machine Learn-

ing (ICML-10), 2010, pp. 615–622.

[34] M. J. Kearns and S. P. Singh, “Finite-sample convergence rates for q-learning

and indirect algorithms,” in Advances in Neural Information Processing Systems

11. The MIT Press, 1999, pp. 996–1002.

[35] J. Baxter, “A model of inductive bias learning,” Journal of Artificial Intelligence

Research, vol. 12, pp. 149–198, 2000.

[36] A. Lazaric, “Knowledge transfer in reinforcement learning,” Ph.D. dissertation,

Politecnico Di Milano, 2008.

[37] G. Konidaris, I. Scheidwasser, and A. Barto, “Transfer in reinforcement learning

via shared features,” Journal of Machine Learning Research, vol. 13, pp. 1333–

1371, 2012.

[38] R. Caruana, “Multitask learning,” Machine Learning, vol. 28, no. 1, pp. 41–75,

July 1997.

[39] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, “Learnability and

178

the vapnik-chervonenkis dimension,” Journal of the Association for Computing

Machinery, vol. 36, pp. 929–965, 1989.

[40] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W.

Vaughan, “A theory of learning from different domains,” Machine Learning,

vol. 79, pp. 151–175, 2010.

[41] F. Tanaka and M. Yamamura, “Multitask reinforcement learning on the dis-

tribution of MDPs,” in Proceedings of the IEEE International Symposium on

Computational Intelligence in Robotics and Automation, July 2003.

[42] F. Fernández, J. Garcá, and M. Veloso, “Probabilistic policy reuse for inter-task

transfer learning,” Robotics and Autonomous Systems, vol. 58, pp. 866–871,

2010.

[43] M. E. Taylor and P. Stone, “An introduction to inter-task transfer for reinforce-

ment learning,” AI Magazine, vol. 32, no. 1, pp. 15–34, 2011.

[44] F. Fernández and M. Veloso, “Probabilistic policy reuse in a reinforce-

ment learning agent,” in Proceedings of the Fifth International Joint

Conference on Autonomous Agents and Multiagent Systems, ser. AAMAS

’06. New York, NY, USA: ACM, 2006, pp. 720–727. [Online]. Available:

http://doi.acm.org/10.1145/1160633.1160762

[45] O. G. Selfridge, R. Sutton, and A. Barto, “Training and tracking in robotics,”

in Proceedings of the Ninth International Joint Conference on Artificial Intelli-

gence, 1985, pp. 670–672.

[46] C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia, “Generalizing plans to

179

new environments in relational mdps,” in International Joint Conference on

Artificial Intelligence, 2003.

[47] Y. Liu and P. Stone, “Value-function-based transfer for reinforcement learning

using structure,” in Proceedings of the Twenty-First National Conference on

Artificial Intelligence, 2006.

[48] G. Kuhlmann and P. Stone, “Graph-based domain mapping for transfer learn-

ing in general games,” in Proceedings of the European Conference on Machine

Learning, 2007.

[49] M. Mataric, “Reward functions for accelerated learning,” in Proceedings of the

Eleventh International Conference on Machine Learning, 1994.

[50] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward trans-

formations: Theory and application to reward shaping,” in Proceedings of the

Sixteenth International Conference on Machine Learning, 1999.

[51] A. A. Sherstov and P. Stone, “Improving action selection in MDP’s via knowl-

edge transfer,” in Proceedings of the Twentieth National Conference on Artificial

Intelligence, July 2005.

[52] B. R. Leffler, M. L. Littman, and T. Edmunds, “Efficient rein-

forcement learning with relocatable action models,” in Proceedings

of the Twenty-Second National Conference on Artificial Intelligence

- Volume 1. AAAI Press, 2007, pp. 572–577. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1619645.1619737

[53] M. Kearns and D. Koller, “Efficient reinforcement learning in factored mdps,”

180

in Proceedings of the Sixteenth International Joint Conference on Artificial In-

telligence, 1999, pp. 740–747.

[54] T. A. Mann and Y. Choe, “Scaling up reinforcement learning through targeted

exploration,” in Proceedings of the Twenty-Fifth AAAI Conference on Artificial

Intelligence, 2011.

[55] T. Hester and P. Stone, “Generalized model learning for reinforcement learning

in factored domains,” in The Eighth International Conference on Autonomous

Agents and Multiagent Systems (AAMAS), May 2009.

[56] A. L. Strehl, L. Li, and M. L. Littman, “Incremental model-based learners with

formal learning-time guarantees,” in Uncertainty in Artificial Intelligence, 2006.

[57] P. Stone, G. Kuhlmann, M. E. Taylor, and Y. Liu, RoboCup-2005: Robot Soccer

World Cup IX. Springer Verlag, 2006, ch. Keepaway Soccer: From Machine

Learning Testbed to Benchmark, pp. 93–105.

[58] S. P. Singh, “Transfer of learning by composing solutions of elemental sequential

tasks,” Machine Learning, vol. 8, pp. 323–339, 1992.

[59] C.-N. Fiechter, “Efficient reinforcement learning,” in Proceedings of the

Seventh Annual Conference on Computational Learning Theory, ser. COLT

’94. New York, NY, USA: ACM, 1994, pp. 88–97. [Online]. Available:

http://doi.acm.org/10.1145/180139.181019

[60] A. Wilson, A. Fern, S. Ray, and P. Tadepalli, “Multi-task reinforcement learn-

ing: A hierarchical bayesian approach,” in Proceedings of the 24th International

Conference on Machine Learning, 2007.

181

[61] A. Lazaric and M. Ghavamzadeh, “Bayesian multi-task reinforcement learn-

ing,” in Proceedings of the Twenty-Seventh International Conference on Ma-

chine Learning, 2010.

[62] R. Reiter, “A theory of diagnosis from first principles,” Artificial Intelligence,

vol. 32, pp. 57–95, 1987.

[63] S. Vinterbo and A. Øhrn, “Minimal approximate hitting sets and rule tem-

plates,” International Journal of Approximate Reasoning, vol. 25, pp. 123–143,

2000.

[64] R. Karp, Reducibility Among Combinatorial Problems, R. Miller and

J. Thatcher, Eds. Plenum Press, 1972.

182

