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ABSTRACT 

 

Three kinds of propagating waves physically admissible in a tubular section are 

derived to establish their dispersion characteristics in response to the presence of multi-

layered viscoelastic coatings.  One is the longitudinal wave that propagates in the axial 

direction.  The other two are shear and longitudinal waves along the circumferential 

direction.  To characterize the hollow cylinder with coating layers, wave dispersion and 

attenuation are studied using the “global matrix” technique.  Since each layer is 

considered to be perfectly bonded to each other, displacement and strain continuity are 

imposed as the interfacial boundary conditions.  Viscoelastic coating materials such as 

bitumen and epoxy serve to improve pipeline reliability, but they also dampen and 

dissipate wave energy.  The viscoelastic materials are studied as well.  By replacing the 

real material constants with complex material constants in the characteristic equation, 

the impact of the viscoelastic coatings on wave dispersion is established.  Bisection 

method is followed to find the real and complex roots of the three characteristic 

equations derived.  Roots thus obtained are manipulated to allow the phase velocity and 

attenuation dispersion to be plotted against frequency.  The dispersion of phase velocity 

and wave attenuation for coated pipes are evaluated against a baseline model which is 

the bare, uncoated tubing to establish the propagation characteristics of the guided shear 

and longitudinal waves in the presence of multiple coating layers.  The effects of 

increasing attenuation parameter and coating thickness are also investigated. 
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1. INTRODUCTION  

 

1.1 Overview 

Pipelines are found everywhere transporting fluid, gas, water, and all sorts of by-

products from one place to another. It is common that pipelines are run either 

underground or inside a host device where they are not exposed or easily accessible. 

Pipelines are oftentimes subject to conditions that could compromise their operational 

reliability.  Tubular rupture induced by corrosion, for example, can be both costly and 

environmentally disastrous.  Large scale catastrophic failure to pipelines can also be 

inflicted by flaws and defects that are of small geometric scale.  In general it is preferred 

that flaws and defects are identified and resolved before they compromise pipeline 

reliability.  Such a preference is what drives the quest for better, cost-effective tubular 

inspection technologies that are of higher resolution and low false positive. 

Defect detection methods of the old days were invasive.  They could damage the 

pipeline, rendering it too costly to justify replacement or repair.  Nowadays most 

pipelines are buried under the surface or submerged subsea, making it even costly to 

replace if damaged.  Non-destructive evaluation is therefore called for.  The discovery of 

ultrasonic evaluation makes it possible to implement NDE technology. The primary 

benefit of ultrasonic NDE is that the probing ultrasounds are less dissipative than the low 

frequency waves.  Furthermore, it can be used to detect minor defects because the wave 

length employed is short enough to resolve the small defects.  The smaller defect can be 
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detected, the earlier viable remedial action can be taken to effectively offset the ultimate 

failure.  

Stress wave propagation in finite structures consisting of a single isotropic 

material has been investigated for decades.  Gazis [1] studied harmonic waves 

propagating in a hollow cylinder.  He used the linear theory of elasticity and Helmholtz 

potential to derive the characteristic equation for the axial symmetric waves and then 

compared the results to the data generated by the shell theory [2].  Liu and Qu [3] 

derived the characteristic equation to determine the frequency dispersion curve for the 

guided circumferential waves in a two-dimensional circular annulus.  Valle et al. [4] 

employed the circumferential guided wave information extracted using Fast Fourier 

Transform (FFT) to identify the location of a crack along with its length by comparing 

the results with the model built by the commercial FEA software.  Piezoelectric 

transducers are commonly used to excite ultrasonic guided waves.  Hirao and Ogi [5] 

developed a circumferential SH-wave Electromagnetic Acoustic Transducer (EMAT) 

technique for the detection of corrosion defects on the outer surface of steel pipelines 

with or without protective resin coating.  However, these transducer-generated waves are 

of very narrow bandwidth of frequencies, thus having rather limited resolution in making 

out flaw and defect of different configurations.  

Laser induced broadband ultrasonic waves, on the other hand, do not have such a 

limitation.  Gao et al. [6] employed a line-source laser to generate broadband waves to 

identify an artificially simulated crack along the circumferential direction of a tube.  The 

wave was modeled as a cylindrical shell and the information carried by the waves was 
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extracted using Fourier Transform.  Waves in hollow tubes can be physically acquired 

using broadband optical technique such as TAP-NDE (thermo-acoustic-photonic non-

destructive evaluation) [7].  Propagating waves are generated by a laser pulse in the 

target tube, and fiber-optical interferometers are used to acquire the wave at a measured 

distance away from the excitation location.  Using time-frequency analysis tools to 

process the experimental waveform, the information carried by the wave can be 

extracted.  Theoretical model can then be employed to reveal the physical conditions the 

test tube is in.  Through exploring these conditions, the configuration and location of the 

defect can be established.  

There are frequency extracting tools that serve different purposes.  Niethammer 

et al. [8] demonstrated the effectiveness of four different time-frequency analysis tools 

sufficient for processing dispersive Lamb waves.  Liew and Wang [9] were among the 

first to use wavelet analysis for crack identification in structure.  Hem and Melhem [10] 

used FFT and Continuous Wavelet Transform (CWT) to identify defects in a pre-

stressed simply-supported beam.  They concluded that CWT was preferred over FFT as 

the choice feature extraction tool for flaw detection.  Gabor wavelet transform was found 

to provide the resolution needed for resolving fine features indicative of the presence of 

flaw and defect.  

 

1.2 Literature Review 

Pipeline reliability and service life time can be significantly improved using 

coating materials.  Coating materials such as bitumen and epoxy are widely applied to 
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pipelines for corrosion protection.  These materials are viscoelastic and they serve to 

dampen and dissipate wave energy.  For the very reason it is difficult to perform wave 

generation and acquisition in tubulars with viscoelastic coatings.  However, certain types 

of waves can be initiated in coated pipes and they do not dissipate or attenuate as 

prominently as others.  Therefore, it is considered an important task by many researchers 

to find the right type of waves to be propagated in coated pipes.  While literature on 

coated or layered pipes is relatively abundant, there are only a handful of studies on 

wave propagation in viscoelastically coated pipes.   

Building a multi-layered tubular model is oftentimes the first step taken to study 

wave propagation in pipes with viscoelastic coating.  Kley et al. [11] studied a two-

layered cylindrical component.  They used lasers to optically generate circumferential 

guided waves and then applied FFT to extract the corresponding dispersion curve for 

comparison with the theoretical results [12].  Jones [13] and Laperre [14] considered the 

propagation of Lamb waves in bi-layered elastic plates.  But they did not explore the 

effect of internal loss due to viscoelastic damping. 

Simonetti [15] studied the attenuation effect of viscoelastic coating on the guided 

wave in a plate.  The internal loss of the guided Lamb wave in response to the coating 

was modeled using the theory of linear viscoelasticity.  The coating material was 

investigated for its viscoelastic characteristics modeled as a Newtonian viscous fluid by 

Zhu [16] and by Nayfeh [17].  Luo et al. [18] studied the circumferential guided wave 

propagation in a viscoelastic multi-layered hollow pipe.  Characteristic equations were 

derived to determine wave dispersion and wave attenuation.  They identified the wave 
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undergoing less energy dissipation and used the finding to develop a protocol for the 

detection of defects in the coated pipe.  Not only were the circumferential guided waves 

explored.  Guided waves along the axial direction have also been studied.  Barshinger 

and Rose [19] studied the longitudinal guided mode in an elastic hollow cylinder with 

viscoelastic coatings.  The characteristic equations for the coated pipe were developed 

assuming axis-symmetry and by using the global matrix method they were able to study 

wave dispersion and attenuation imparted by the viscoelastic coating.  They also studied 

the effect of coating thickness on wave characteristics for different coatings.  

Little is available on wave propagation in multi-layered coated pipes.  In 

addition, no previous works have considered or modeled perfectly bounded layers using 

strain continuity boundary conditions between interfacing layers.  These two specifics 

are comprehensively addressed in the thesis. 

 

1.3 Objectives 

The primary objective of this study is to explore propagating waves that are 

physically admissible in a tubular section, so as to establish their dispersion 

characteristics in response to the presence of multi-layered viscoelastic coatings.  The 

longitudinal guided waves propagating in both the axial and circumferential directions 

are investigated along with the shear waves that move along the circumferential 

direction. All the waves are derived from the Navier’s equation and their corresponding 

dispersion curves are established as functions of frequency.  It should be mentioned that 

since each layer is considered to be perfectly bonded to each other, strain continuity is 
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imposed as the boundary condition.  This is in contrast to the stress continuity boundary 

condition that is followed in some research [19].  The outer and inner surfaces of the 

tubing are subjected to traction-free forcing conditions.  Using these conditions in a 

hollow cylinder model with two layers of dissimilar viscoelastic coating materials, wave 

dispersion and the corresponding attenuation effect are established.  Results documented 

in the later part of the thesis are expected to be of practical usefulness to those who 

practice NDE for pipeline inspection.  The roots of the characteristic equation to be 

derived in the sections that follow are numerically determined using the bisection 

method. 
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2. WAVE DISPERSION IN LAYERED HOLLOW CYLINDER 

 

Guided waves initiated in coated pipes are both dispersive and attentuative.  

Considered characteristically fundamental, dispersion and attenuation are commonly 

explored to characterize the pipe in which a guided wave propagates for mechanical 

flaws.  Thus it is essential that these wave characteristics are understood at the 

fundamental level.  In the current section several characteristics equations, each 

corresponds to a particular mode of wave propagation, are derived for a layered, hollow 

cylinder following the global matrix approach by Knopoff [20] and the notations by 

Lowe [21].  A general strategy is followed to formulate the characteristics equations.  

First the governing equation of the propagation mode of interest is derived for a pipe of a 

single elastic layer.  The associated stress, strain, and displacement equations are then 

developed, followed by applying boundary and interfacial continuity conditions.  By 

expressing these equations in matrices, the system of the multi-layer tubular is 

represented by assembling the matrices into a “global matrix.”  The corresponding 

characteristic equation is then emerged through solving the determinant of the global 

matrix. 

The longitudinal wave propagating along the axial direction in an elastic hollow 

cylinder is first developed.  Since stress waves propagate in both the axial and 

circumferential directions, it is necessary to also establish the dispersion and attenuation 

characteristics for the modes that propagate along the circumferential direction.  Two 

circumferential modes, namely longitudinal and shear, are studied.  By replacing the 
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material elastic constants with the complex viscoelastic constants for the layers above 

the base cylindrical section, the various characteristics of the three types of guided wave 

modes in the multi-layered tubular can be established.   

Fig. 2.1 gives the configuration of a pipe section, while Fig. 2.2 shows the multi-

layered cross-section of the pipe.  The layer between radii r1 and r2 is elastic.  The outer 

layer between radii r2 and r3 is the viscoelastic coating material.  The axial direction of 

the cylinder is along the z-axis.  The circumferential direction is defined by the θ-axis. 

 

 

Fig. 2.1  Pipe model 

 

 

Fig. 2.2  Pipe cross-section  

 

2.1. Longitudinal Wave along Axial Direction 

The Lame-Navier equation of motion for isotropic materials is   

 
2 2 2( ) ( ) ( / )µ λ µ ρ∇ + + ∇ ∇⋅ = ∂ ∂ tu u u  (2.1) 

r3 

r2 

r1 

θ 
z 
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The Helmholtz theorem dictates that the gradient of a scalar potential function, φ , and 

the curl of a vector potential function, Ψ , can be combined to define the displacement 

field, u , as 

 φ= ∇ +∇×u Ψ  (2.2) 

with 0∇⋅ =Ψ  being an additional constraint.  Substituting Eq. (2.2) into Eq. (2.1), one 

has  

( ) ( ) ( )2 2 2( ) ( ) ( / )µ λφ φ φµ ρ∇ +∇× ∇ +∇ + + ∇× ∇ +∇∇ ∇ = ∂×⋅ ∂ tΨ Ψ Ψ  (2.3) 

Eq. (2.3) can be further simplified by uncoupling the scalar term from the vector 

function 

 
2 2 2( / )

2
tρ

λ µ
φ φ∇ = ∂ ∂

+  
(2.4) 

 2 2 2( / )tρ
µ

∇ = ∂ ∂Ψ Ψ  (2.5) 

Using Eqs. (2.4) and (2.5), the longitudinal wave velocity 1c  and the shear wave velocity 

2c  can be defined as follows 

 
1

2c λ µ
ρ
+

=  (2.6) 

 2c µ
ρ

=  (2.7) 

Eq. (2.4) and Eq. (2.5) can then be rewritten to represent, respectively, the longitudinal 

and shear wave equations 

 2 2 2

1

1 ( / )t
c

φ φ∇ = ∂ ∂   (2.8) 
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 2 2 2

2

1 ( / )t
c

∇ = ∂ ∂Ψ Ψ    (2.9) 

In the cylindrical coordinate system, the vector potential Ψ  can be defined as the 

combination of the scalar components ( ), ,r zθψ ψ ψ  and the unit base vector ( ), ,r zθ


  , 

 r zr zθ θψ ψ ψ= + +Ψ


 

  (2.10) 

The corresponding Laplacian of the vector potential Ψ  is 

 2 2 2
2 2

2
2 2

2 2r r
r z zr r r

r
r

θ θ
θ θ

ψ ψ ψ ψψ ψ ψ
θ θ

∂ ∂
− − − +

∂ ∂
   ∇ = ∇ + ∇ +∇      

Ψ




 (2.11) 

When the symmetrical wave running along the axial direction is considered, all terms 

associated with θ  are dropped and rψ  and zψ  are set to be zero.  Additionally, the 

remaining components φ  and θψ  must only be functions of r  and z.  Eq. (2.9) is now of 

the following form as a result. 

 ( )2
2 2 2

2
2

1 t
r c
θ

θθ
ψψ ψ∇ = ∂ ∂−   (2.12) 

Assuming a harmonic wave that propagates in the axial, z-direction, the solutions 

for the two scalar waves defined in Eqs. (2.8) and (2.12) can be 

 ( ) ( )i kz tg r e ωφ −=  (2.13) 

 ( ) ( )i kz th r e ω
θψ

−=   (2.14) 

Substituting Eq. (2.13) into Eq. (2.8) and rearranging, Eq. (2.15) results 

 ( ) ( ) ( )2 2 2 0r g r rg r r g rα′′ ′+ + =   (2.15) 

with 



 

 

11 

 

 
2

2 2
2

1

k
c
ωα = −   (2.16) 

Similarly, substituting Eq. (2.14) into Eq. (2.12), the differential equation becomes 

 ( ) ( ) ( ) ( )2 2 2 1 0r h r rh r r h rβ′′ ′+ + − =   (2.17) 

with 

 
2

2 2
2

2

k
c
ωβ = −   (2.18) 

Using the zeroth-order type 1 and zeroth-order type 2 Hankel functions defined 

by the Bessel functions of the first kind and second kind 

 ( ) ( ) ( )1, 2
n n nH z J z iY z= ±   (2.19) 

the solution for Eq. (2.15) can be expressed as 

 ( ) ( ) ( )1 2
1 0 2 0g r A H r A H rα α= +  (2.20) 

Similarly the solution for Eq. (2.17) can be expressed using Hankel functions of 

the first order type 1 and the first order type 2 as 

 ( ) ( ) ( )1 2
1 1 2 1h r B H r B H rβ β= +  (2.21) 

Substituting Eqs. (2.20) and (2.21) into Eqs. (2.13) and (2.14), the scalar potential φ  and 

vector potential component θψ  are now 

 ( ) ( ) ( )1 2
1 0 2 0

i kz tA H r A H r e ωφ α α − = +   (2.22) 

 ( ) ( ) ( )1 2
1 1 2 1

i kz tB H r B H r e ω
θψ β β − = +   (2.23) 

The divergence of the scalar potential and the curl of the vector potential are 
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1r z

r r z
θ

φ φ φφ
θ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂


    (2.24) 

 ( )1 1z r z rr r z
r z z r r r

θ
θθ

ψ ψ ψ ψ ψψ
θ θ

∂ ∂ ∂ ∂ ∂ ∂     ∇× = − + − + −     ∂ ∂ ∂ ∂ ∂ ∂     
Ψ



 

 (2.25) 

With the scalar and vector potential functions properly defined, the components of the 

displacement vector u  can be formulated as 

 

( ) ( )

( ) ( )

0
1 1

i kz t
r

i kz t
z

u g ikh e
r z

u

u r ikg h h e
z r r r

ωθ

θ

ω
θ

ψφ

φ ψ

−

−

 ∂∂ ′= − = −
∂ ∂ =

 ∂ ∂   ′= + = + + ∂ ∂  

 (2.26) 

Substituting Eqs. (2.20) and (2.21) into Eq. (2.26), the non-zero displacement 

components take up the following forms with unknown coefficients 1A , 2A , 1B , and 2B  

 ( )

( )
( )
( )
( )

1
1 1
2

1 2
1
1 1
2

1 2

i kz t
r

H r A
H r A

u e
ikH r B
ikH r B

ω

α α
α α

β
β

−

−
−= ⋅−
−

 (2.27) 

 ( )

( )
( )
( )
( )

1
0 1
2
0 2
1
0 1
2
0 2

i kz t
z

ikH r A
ikH r A

u e
H r
H r

ω

α
α

β β β
β β β

−



= ⋅



 (2.28) 

Using the strain-displacement relation, the strains in the cylindrical coordinates 

are  

 ( )1 i kz tr
rr

u ikg h e
r r r

ωε −∂  ′= = − ∂  
 (2.29) 



 

 

13 

 

 ( ) ( )1 i kz tru u g ikh e
r r

ωθ
θθε

θ
−∂ ′′ ′= + = −

∂
 (2.30) 

 ( )2
2

1 1 1 12
2 2

i kz tz r
rz

u u ikg h h k h e
r z r r

ωε −∂ ∂     ′ ′′ ′= + = + + + −    ∂ ∂    
 (2.31) 

Substituting Eqs. (2.20) and (2.21) into Eqs. (2.29) and (2.31), the following strain 

components emerged as a result 

 ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 1 1
0 1 1

2 2 2
0 1 2

1 1
0 1 1

2 2
0 1 2

i kz t
rr

H r H r A
r

H r H r A
r

e
kik H r i H r B
r
kik H r i H r B
r

ω

αα α α

αα α α
ε

β β β

β β β

−

  − +   
  − +  
  = ⋅
  − +   


  − +  

 (2.32) 

 ( )

( )
( )

( ) ( )

( ) ( )

1
1 1
2

1 2

2 2 1
1 1

2 2 2
1 2

1
2
1
2

i kz t
rz

i kH r A
i kH r A

e k H r

k H r

ω

α α
α α

ε β β β

β β β

−

 −
 −
= ⋅ −



−


 (2.33) 

By substituting Eqs. (2.29), (2.30), and (2.31) into the Hooke’s law below  

 2ij kk ij ijσ λε δ µε= +  (2.34) 

and invoking   

 kk rr zzθθε ε ε ε= + +  (2.35) 

we have 

 ( ) ( ) ( )2 2 i kz t
kk k g r e ωε α −= − +  (2.36) 
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Finally, using Eqs. (2.32), (2.33) and (2.36), stress components rrσ  and rzσ  can 

be shown to be 

 ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

2 2 1 1
0 1 1

2 2 2 2
0 1 2

1 1
0 1 1

2 2
0 1 2

2

2

2

2

i kz t
rr

k H r H r A
r

k H r H r A
r

e
kik H r i H r B
r
kik H r i H r B
r

ω

µαµ β α α

µαµ β α α
σ

µ β β β

µ β β β

−

  − − + ⋅   
 − − + ⋅ 
 = ⋅ 

  − + ⋅   


  − + ⋅   

 (2.37) 

 ( )

( )
( )

( ) ( )
( ) ( )

1
1 1
2

1 2

2 2 1
1 1

2 2 2
1 2

2
2

i kz t
rz

i kH r A
i kH r A

e k H r

k H r

ω

µα α
µα α

σ µ β β β

µ β β β

−

 − ⋅
 − ⋅

= ⋅  − ⋅
 − ⋅

 (2.38) 

Next, boundary conditions are applied to construct the global matrix.  For the 

present problem the exposed inner and outer layers are both traction-free.  Interfacial 

continuity condition requires that the strains and displacements along the two interfacial 

layers to be continuous for a perfect bond.  The stress-free surface boundary conditions 

are therefore 
 

 0rr

rz surface

σ
σ
 

= 
 

 (2.39)

  

The stress components for a single layer are  
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 [ ]
1

2
1

1

2

rr

rz

A
A

D
B
B

σ
σ

 
    =   

   
  

 (2.40) 

And the corresponding interfacial boundary condition is
 

 

 p  p+1
Interface p+1 Interface p+1

r r

z z

rr rr

layer layerrz rz

u u
u u
ε ε
ε ε

   
   
   =   
   
      

 (2.41)

  

thus defining the continuity of the displacement and strain fields at the interface.  The 

corresponding vector form for a single layer is therefore  

 [ ]

1

2
2

1

2

r

z

rr

rz

u A
u A

D
B
B

ε
ε

   
   
   =   
   
      

 (2.42) 

The layer matrix [D1] can be defined as Eq. (2.43); the layer matrix [D2] can be 

defined separately by inner layer matrix [D2,i] and outer layer matrix [D2,o] which are 

shown in Eqs. (2.44) and (2.45).  Note that the subscript “i” denotes the inner position of 

each layer while the subscript “o” denotes the outer position of each layer. 
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[ ]
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 1 1 2 2 2 2 1 1 2 2

0 1 0 1 0 1 0 1

1

1 2 2 2 1 2 2 2

1 1 1 1

2 2
2 2

2 2

k k
k H r H r k H r H r i k H r H r i k H r H r

D r r r r

i kH r i kH r k H r k H r

µα µα
µ β α α µ β α α µ β β β µ β β β

µα α µα α µ β β µ β β

− − ⋅ + − − ⋅ + − + − +
=

− − − −

 
 
  

  

 (2.43) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 1 2
1 1 1 1
1 2 1 2
0 0 0 0

2 1 1 2 2 2 1 1 2 2
2, 0 1 0 1 0 1 0 1

1 2 2 2
1 1 1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1
2

i i i i

i i i i

i i i i i i i i i
i i i i

i i

H r H r ikH r ikH r
ikH r ikH r H r H r

k kD H r H r H r H r ik H r i H r ik H r i H r
r r r r

i kH r i kH r k H

α α α α β β
α α β β β β
α αα α α α α α β β β β β β

α α α α β

− − − −
− −

  = − + − + − + − + 

− − − ( ) ( ) ( )1 2 2 2
1

1
2i ir k H rβ β β

 
 
 
 
 
 
 

− 
   

(2.44) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 1 2
1 1 1 1
1 2 1 2
0 0 0 0

2 1 1 2 2 2 1 1 2 2
2, 0 1 0 1 0 1 0 1

1 2 2 2
1 1 1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1
2

o o o o

o o o o

o o o o o o o o o
o o o o

o o

H r H r ikH r ikH r
ikH r ikH r H r H r

k kD H r H r H r H r ik H r i H r ik H r i H r
r r r r

i kH r i kH r k H

α α α α β β
α α β β β β
α αα α α α α α β β β β β β

α α α α β

− − − −
− −

  = − + − + − + − + 

− − − ( ) ( ) ( )1 2 2 2
1

1
2o or k H rβ β β

 
 
 
 
 
 
 

− 
 

 (2.45) 
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Once the layer matrices [D1], [D2,i], and [D2,o] are developed,
 
the global matrix 

can be constructed by assembling each matrix.  The traction-free boundary conditions 

mandate the followings,  

 [ ]

1

2
1

1

2

0
0i

A
A

D
B
B

 
     =   

  
  

              (2.46) 

 [ ]

1

2
1

1

2

0
0o

A
A

D
B
B

 
     =   

  
  

 (2.47) 

with “i” and “o” referring to the inner and outer surfaces, respectively.  Furthermore, the 

boundary conditions for the perfectly bounded interface are,
 

 

1,

2,

1,

2,
2, 2, 1

1, 1

2, 1

1, 1

2, 1

0
0
0
0
0
0
0
0

p

p

p

p
o ilayer p layer p

p

p

p

p

A
A
B
B

D D
A
A
B
B

= = +
+

+

+

+

   
   
   
   
   
       − =           
   
   
   
     

 (2.48) 

Combining Eqs. (2.46)-(2.48), and using a two-layer model as an example, the global 

matrix equation is then
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[ ]

[ ]

{ }
{ }

1,1

2,1

1,1
1

2,1
2, 2,1 2

1,2

1 2,2

1,2

2,2

0
0

0
0

i

o ilayer layer

o

A
A
B

D
B

D D
A

D A
B
B

= =

 
 
 
              − =            

    
 
 
  

           (2.49) 

The characteristic dispersion equation for the longitudinal wave running along 

the axial direction can therefore be determined by finding the non-trivial solutions of Eq. 

(2.49), 

  
[ ]

[ ]

1

2, 2,1 2

1

0
det( ) 0

0
= =

− =      
i

o ilayer layer

o

D
D D

D

  (2.50) 

Using Eq. (2.50), the dispersion of the axial wave can be determined by plotting the 

phase velocity as a function of the frequency.  A numerical scheme is adopted in Sec. 4 

to perform this particular task.  Using the dispersion equation but replacing the real 

material constants with complex material constants, the impact of the viscoelasticity of 

the layer materials can be established.  In the followings, the characteristic equation for 

the shear wave propagating along the circumferential direction is derived. 

 

2.2. Shear Wave along Circumferential Direction 

The Lame-Navier equation of motion for isotropic materials that support shear 

wave propagation is 



 

19 

 

 ( )2 2 2
z zu u tµ ρ∇ = ∂ ∂   (2.51) 

where the corresponding shear velocity is  

 2c µ
ρ

=   (2.52) 

Substituting Eqs. (2.2) and (2.52) into Eq. (2.51), and applying the 2∇  operator in the 

cylindrical coordinates, one has 

 ( )
2 2

2 2
2 2 2 2

2

1 1 1z z z
z

u u u u t
r r r r cθ

 ∂ ∂ ∂
+ + = ∂ ∂ ∂ ∂ ∂ 

 (2.53) 

For a harmonic wave moving in the z-direction, the following solution to Eq. (2.53) can 

be assumed 

 ( ) ( )i kb t
zu h r e θ ω−=  (2.54) 

where b  is the radius of the entire tubular.  Use the solution to expand the wave 

equation Eq. (2.53) and the following emerges 

 ( ) ( ) ( )
22

2
2

1 0kbh r h r h r
r c r

ω  ′′ ′+ + − =  
   

 (2.55) 

whose solution is of the Bessel’s type as follows 

 ( ) 3 4
2 2

kb kb
r rh r A J A Y

c c
ω ω   

= +   
   

 (2.56) 

The displacement zu then becomes  

 ( )
3 4

2 2

i kb t
z kb kb

r ru A J A Y e
c c

θ ωω ω −    
= +    

    
 (2.57) 
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Using the displacement function, all strain components can be obtained as 

follows by considering the strain-displacement constitutive relationships in the 

cylindrical coordinate system, 

 0r
rr

u
r

ε ∂
= =
∂

 (2.58) 

 1 0ru u
r r

θ
θθε

θ
∂

= + =
∂

 (2.59) 

 0z
zz

u
z

ε ∂
= =
∂

 (2.60) 

 
1 1 0
2

r
r

u u u
r r r

θ θ
θε θ

∂ ∂ = + − = ∂ ∂ 
 (2.61) 

 ( ) ( )1 1 1
2 2 2

i kb tz r z
rz

u u u h r e
r z r

θ ωε −∂ ∂ ∂  ′= + = = ∂ ∂ ∂ 
 (2.62) 

 ( ) ( )1 1
2 2

i kb tz
z

u u ikb h r e
z r r

θ ωθ
θε θ

−∂ ∂ = + = ∂ ∂ 
 (2.63) 

The strain component rzε  is obtained by substituting Eq. (2.56) into Eq. (2.62),  

 

( )
1 1 3

2 2

2
1 1 4

2 2

2

i i
kb kb

i kb t
rz

i i
kb kb

r rJ J A
c c

e
C r rY Y A

c c

θ ω

ω ω

ωε
ω ω

− +

−

− +

     
−     

     =       + −          

 (2.64)
 

where 3A  and 4A  are coefficients.   Applying the Hooke’s law, the corresponding stress 

component is then
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 ( )
1 1 3

2 2

2
1 1 4

2 2

kb kb
i kb t

rz

kb kb

r rJ J A
c c

e
c r rY Y A

c c

θ ω

ω ω

µωσ
ω ω

− +

−

− +

     
− ⋅     

     = ⋅  
     + − ⋅          

 (2.65) 

Now that the displacement, stress, and strain components are determined, the 

next is to apply boundary conditions to get the global matrix needed for deriving the 

dispersion equation.  The boundary conditions at traction-free surface is  

 { } 0rz surface
σ =   (2.66) 

Substitute Eq. (2.65) into Eq. (2.66) and the stress is expressed in the matrix form as  

 { } [ ] 3
3

4
rz

A
D

A
σ

 
=  

 
 (2.67) 

where  

 [ ]3 1 1 1 1
2 2 2 2

kb kb kb kb
r r r rD J J Y Y

c c c c
ω ω ω ω

− + − +

        
= − −        

        
 (2.68) 

The boundary condition for a perfectly bonded interface is  

 
 p  p+1

Interface p+1 Interface p+1

z z

layer layerrz rz

u u
ε ε
   

=   
   

 (2.69) 

which again indicates that the displacement and strain fields are continuous.  Substitute 

Eqs. (2.57) and (2.64) into Eq. (2.69), the boundary conditions become 

 [ ] 3
4

4

z

rz

Au
D

Aε
  

=   
   

 (2.70) 
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The layer matrix [D4] can be defined separately by the inner layer matrix [D4,i] and the 

outer layer matrix [D4,o] given below, where the subscripts “i” and “o” follow from the 

same definitions found in Eqs. (2.44) and (2.45) . 

         [ ] 2 2
4.

1 1 1 1
2 2 2 2 2 22 2

i i
kb kb

i

i i i i
kb kb kb kb

r rJ Y
c c

D
r r r rJ J Y Y

C c c C c c

ω ω

ω ω ω ω ω ω
− + − +

    
    

    =             − −                      

 (2.71) 

         [ ] 2 2
4.

1 1 1 1
2 2 2 2 2 22 2

o o
kb kb

o

o o o o
kb kb kb kb

r rJ Y
c c

D
r r r rJ J Y Y

C c c C c c

ω ω

ω ω ω ω ω ω
− + − +

    
    

    =             − −                      

 (2.72) 

With the availability of [D3], [D4,i], and [D4,o],
 

the global matrix can be 

constructed.  The boundary conditions for the inner and outer traction-free surfaces are 

 [ ] 3
3

4

0
0i

A
D

A
   

=   
  

            (2.73) 

 [ ] 3
3

4

0
0o

A
D

A
   

=   
  

 (2.74) 

Furthermore, along the perfectly bonded interface, the boundary conditions are 
 

 

3,

4,
4, 4, 1

3, 1

4, 1

0
0
0
0

p

p
o ilayer p layer p

p

p

A
A

D D
A
A

= = +
+

+

   
       − =               
     

 (2.75) 

Applying Eq. (2.73)-(2.75) to a two-layer hollow cylinder model, the global 

matrix equation becomes
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[ ]

[ ]

{ }
{ }

3,1
3

4,1
4, 4,1 2

3,2

3 4,2

0
0

0
0

i

o ilayer layer

o

A
D

A
D D

A
D A

= =

  
           − =            

      

   (2.76) 

The corresponding characteristic dispersion equation for the circumferential shear wave 

can be obtained by setting the following determinant to zero: 

 
[ ]

[ ]

3

4, 4,1 2

3

0
det( ) 0

0
= =

− =      
i

o ilayer layer

o

D
D D

D

  (2.77) 

Using Eq. (2.77), the dispersion of the circumferential shear wave can be determined by 

plotting the phase velocity as a function of the frequency.  A numerical scheme is 

adopted in Sec. 4 to perform this particular task.  Using the dispersion equation but 

replacing the real material constants with complex material constants, the impact of the 

viscoelasticity of the layer materials can be established.  Next, the characteristic equation 

for the longitudinal wave propagating along the circumferential direction is derived. 

 

2.3. Longitudinal Wave along Circumferential Direction 

The Lame-Navier equation of motion for isotropic materials is 

 ( ) ( ) ( )2 2 2tµ λ µ ρ∇ + + ∇ ∇⋅ = ∂ ∂u u u  (2.78) 

The Helmholtz theorem dictates that the corresponding displacement solution is a 

function of a scalar potential φ  and a vector potential Ψ , 

 φ= ∇ +∇×u Ψ  (2.79) 
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with 0∇⋅ =Ψ as an additional constraint condition.  Substituting Eq. (2.79) into Eq. 

(2.78), the equation of motion becomes 

          ( ) ( ) ( )( ) ( )( )2 2 2tµ φ λ π φ ρ φ∇ ∇ +∇× + + ∇ ∇⋅ ∇ +∇× = ∂ ∇ +∇× ∂Ψ Ψ Ψ  (2.80) 

The scalar term can be decoupled from the vector term to obtain the followings 

 2 2 2 2 2

1

1( / ) ( / )
2

φ
λ µ

φ φρ
∇ = ∂ ∂ = ∂ ∂

+
t t

c  (2.81) 

 2 2 2 2 2

2

1( / ) ( / )t t
c

ρ
µ

∇ = ∂ ∂ = ∂ ∂Ψ Ψ Ψ  (2.82) 

where 1c  and 2c  are longitudinal and shear wave velocities, respectively, as also 

previously found in Eqs. (2.6) and (2.7).   

In the cylindrical coordinate system, the vector potential Ψ can be defined using 

the scalar components ( ), ,r zθψ ψ ψ  and unit base vector ( ), ,r zθ


   as  

 r zr zθθψ ψ ψ= + +Ψ


 

 (2.83) 

The Laplacian of Ψ  is therefore 

 2 2 2
2 2

2
2 2

2 2r r
r z zr r r

r
r

θ θ
θ θ

ψ ψ ψ ψψ ψ ψ
θ θ

∂ ∂
− − − +

∂ ∂
   ∇ = ∇ + ∇ +∇      

Ψ




 (2.84) 

To study the axially symmetric wave behaviors along the circumferential 

direction, rψ and θψ  are set to zero as they are functions of the spatial variable z . 

Additionally, the remaining components φ  and zψ  must only be functions of r  and θ . 

Eq. (2.84) now takes up the form 

 2 2 2

2

1 ( / )z z t
c

ψ ψ∇ = ∂ ∂  (2.85) 
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Since the wave is assumed to be harmonic and propagate along the 

circumferential θ -direction, the following solutions of Eqs. (2.81) and (2.85) are 

assumed 

 ( ) ( )i kb tg r e θ ωφ −=  (2.86) 

 ( ) ( )i kb t
z h r e θ ωψ −=  (2.87) 

where b  is the total thickness of the tubular section including the coating layers.  

Substituting Eq. (2.86) into Eq. (2.81), the scalar function becomes  

 ( ) ( ) ( )
22

2
1

1 0kbg r g r g r
r c r

ω  ′′ ′+ + − =  
   

 (2.88) 

Similarly, substituting Eq. (2.87) into Eq. (2.85), the vector function becomes 

 ( ) ( ) ( )
22

2
2

1 0kbh r h r h r
r c r

ω  ′′ ′+ + − =  
   

 (2.89) 

It can be shown that ( )g r  and ( )h r  are both functions of the Bessel functions 

 ( ) 5 6
1 1

kb kb
r rg r A J A Y

c c
ω ω   

= +   
   

 (2.90) 

 ( ) 5 6
2 2

kb kb
r rh r B J B Y

c c
ω ω   

= +   
   

 (2.91) 

 Using Eqs. (2.90) and (2.91), the scalar potential φ  and the vector potential component 

zψ  are now 

 ( )
5 6

1 1

i kb t
kb kb

r rA J A Y e
c c

θ ωω ωφ −    
= +    

    
 (2.92) 
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 ( )
5 6

2 2

i kb t
z kb kb

r rB J B Y e
c c

θ ωω ωψ −    
= +    

    
 (2.93) 

 The divergence of the scalar potential φ∇  and the curl of the vector potential ∇×Ψ  are 

utilized 

 
1r z

r r z
θ

φ φ φφ
θ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂


   (2.94) 

 ( )1 1z r z rr r z
r z z r r r

θ
θθ

ψ ψ ψ ψ ψψ
θ θ

∂ ∂ ∂ ∂ ∂ ∂     ∇× = − + − + −     ∂ ∂ ∂ ∂ ∂ ∂     
Ψ



 

 (2.95) 

to determine the components of the displacement vector u , as follows:   

 ( )1 i kb tz
r

ikbu g h e
r r r

θ ωφ ψ
θ

−∂ ∂  ′= + = + ∂ ∂  
 (2.96) 

 ( )1 i kb tz ikbu g h e
r r r

θ ω
θ

φ ψ
θ

−∂ ∂  ′= − = − ∂ ∂  
 (2.97) 

 0zu =  (2.98) 

Substituting the scalar potential φ  in Eq. (2.92) and the vector potential 

component zψ in Eq. (2.93) into Eqs. (2.96) and (2.97), the displacement components 

are expressed as follows, where 5A 6A , 5B , and 6B  are coefficients, 
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1 1 5
1 1 1

1 1 6
1 1 1

5
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6
2

2

2

kb kb

kb kb
i kb t

r

kb
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r rJ J A
c c c

r rY Y A
c c c

u e
ikb rJ B
r c

ikb rY B
r c

θ ω

ω ω ω

ω ω ω

ω

ω

− +

− +
−

     
−     

     
      −         = ⋅ 

 
 
 

  
  
  

 (2.99) 

 ( )

5
1

6
1

1 1 5
2 2 2

1 1 6
2 2 2

2

2

kb

kb

i kb t

kb kb

kb kb

ikb rJ A
r c

ikb rY A
r c

u e
r rJ J B

c c c

r rY Y B
c c c

θ ω
θ

ω

ω

ω ω ω

ω ω ω

−

− +

− +

  
  

 
    
  = ⋅      − −         
     
− −     

     

 (2.100) 

The strain components in the cylindrical coordinates can then be found using the strain 

and displacement relations. 
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 ( )
2

i kb tr
rr

u ikb ikbg h h e
r r r

θ ωε −∂  ′′ ′= = + − ∂  
 (2.101) 

 ( )
2 2

2 2

1 1 i kb tru u k b ikb ikbg g h h e
r r r r r r

θ ωθ
θθε θ

− ∂ − ′ ′= + = + + − ∂  
 (2.102) 

 0z
zz

u
z

ε ∂
= =
∂

 (2.103) 

 
( )

2 2

2 2

1 1
2

1 2 2 1
2

r
r

i kb t

u uu
r r r

ikb ikb k bg g h h h e
r r r r

θ θ
θ

θ ω

ε
θ

−

∂∂ = + − ∂ ∂ 
 

′ ′′ ′= − − + − 
 

 (2.104) 

 
1 0
2

z r
rz

u u
r z

ε ∂ ∂ = + = ∂ ∂ 
 (2.105) 

 
1 1 0
2

z
z

u u
z r
θ

θε θ
∂ ∂ = + = ∂ ∂ 

 (2.106) 

Substituting Eqs. (2.99) and (2.100) into Eqs. (2.101) and (2.104), the strain 

components rrε  and rθε  can be defined using coefficients 5A 6A , 5B , and 6B ,  
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 ( )

( )

( )

( )
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1 1 1 1
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c r c c c
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θ ω

ω ω ω ω
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ω ω ω ω

ε
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ω ω
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+

−

−

+

−

 −    
−    

    
 +   +  
   
 −    

−    
    

= ⋅  +   +  
   




1 52

2 2

1 1 62
2 2 2 22

kb kb

kb kb kb

r ikb rJ J B
c r c

ikb r r ikb rY Y Y B
c r c c r c

ω ω

ω ω ω ω

+

− +















       

− −        
       

         − −                 

 (2.107) 
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1 1 1 1

1 1 62
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2 2 2

1 2 2
2 2 2
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2

2
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kb kb kb

kb kb kb
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ikb r r ikb rJ J J A
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ikb r r ikb rY Y Y A
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kb r k bJ
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ω ω ω ω

ω ω ω ω

ω ω ω

ε
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−
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       
− −       

        
       

− −       
        

−  
+ − 

 = ⋅
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2
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1
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2 2 2

1 2 2
2 2 2 2
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1
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2
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2
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kb rJ
c r c

kb r k b rY Y
c r c c r c

B
kb rY
c r c

ω
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ω ω ω ω

ω ω

+

−

+








                  +   −      
  −       + −               +    −       

 (2.108) 
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Finally, using the Hooke’s law defined in Eqs. (2.34) and (2.35) along with the 

stress-strain relation, the stress components rrσ  and rθσ  can be found as Eqs. (2.109) 

and (2.110). 

 ( )

( )

( )

( )

( )

( )

1
1 1

2 2 2

52 2
1 1

1
1 1

1
1 1

2 2 2

2 2
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k b rJ A
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kb rJ
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θ ω

ω λ µ µ ω

ω ωλ µ λ

ω λ µ µ ω

ω λ µ µ ω
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+

−

−

 + −  
  

  
     + − + −       
 

+ +   +     

+ −  
 
 
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   

+ − + −   
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2 2 2 2

2 2
2

2
2

2
2

kb

kb kb kb

kb kb kb

A

kb rY
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ikb r r ikb rJ J J B
c r c c r c

ikb r r ikb rY Y Y
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+
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 
 
 
 
 
 
 

+ +   
    

       
− −       

        
       

− −       
        

6B


















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
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





 (2.109) 
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
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  −       + −               +    −       

 (2.110) 

 

Boundary conditions are applied next to construct the global matrix.  For the 

present problem the exposed inner and outer layers are both traction-free.  Interfacial 

continuity condition requires that the strains and displacements along the two interfacial 

layers to be continuous for a perfect bond.   

The stress-free surface boundary conditions are therefore
 

 0rr

r surfaceθ

σ
σ
 

= 
 

 (2.111) 

In vector form the stress for a single layer is  

 [ ]
5

6
5

5

6

rr

r

A
A

D
B
B

θ

σ
σ

 
    =   

   
  

 (2.112) 
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The interfacial boundary condition requires that the displacement and strain 

fields are continuous at the interface of the two bonding materials, thus the followings
 

 

 p  p+1
Interface p+1 Interface p+1

r r

rr rr

layer layerr r

u u
u uθ θ

θ θ

ε ε
ε ε

   
   
   =   
   
      

 (2.113) 

In vector form the strain and displacement for a single layer are 

 [ ]

5

6
6

5

6

r

rr

r

Au
u A

D
B
B

θ

θ

ε
ε

  
  

   =   
   
      

 (2.114) 

The layer matrix [D5] is given in Eq. (2.115).  The layer matrix [D6] is defined 

using the inner layer matrix [D6,i] and outer layer matrix [D6,o] as shown in Eqs. (2.116) 

and (2.117).  It is again noted that the subscript “i” denotes the inner position of each 

layer while the subscript “o” denotes the outer position of each layer. 
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With the layer matrices [D5], [D6,i], and [D6,o],
 
the corresponding global matrix 

can be constructed.  The traction-free boundary conditions require the followings to be 

satisfied:   
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            (2.118) 
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              (2.119) 

with “i” and “o” referring to the inner and outer surfaces, respectively.  Furthermore, 

perfectly bonded interface boundary conditions are defined as 
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Combining Eqs. (2.118)-(2.120), and using a two-layer model as an example, the 

global matrix equation is then
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            (2.121) 

The corresponding characteristic dispersion equation for the circumferential 

longitudinal wave can be obtained by setting the following determinant to zero: 
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Using Eq. (2.122), the dispersion of the circumferentially running longitudinal 

wave can be determined by plotting the phase velocity as a function of the frequency.  A 

numerical scheme is adopted in Sec. 4 to perform this particular task.  Using the 

dispersion equation but replacing the real material constants with complex material 

constants, the impact of the viscoelasticity of the layer materials can be established.  
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3. CONSTITUTIVE EQUATION FOR VISCOELASTIC LAYER 

 

Viscoelastic materials store energy when deformed and dissipate energy as time 

transpires.  They also undergo stress relaxation and creep.  Stress relaxation is a process 

in which the stress decreases over time while the strain remains constant.  The opposite 

is true for creep where the strain increases while the applied stress stays constant.  The 

Maxwell model [22] describes how stresses relax for viscoelastic materials but it does 

not describe creep.  The Kelvin-Voight model [22] imparts viscoelastic materials with 

creep characteristics but falls short of explaining stress relaxation.   

The viscoelastic constitutive model developed by Boltzmann [22] is more 

general.  It begins with considering a simple bar that is subjected to a stress ( )tσ  that is 

continuous and differential in time.  The increment of the stress ( )tσ  over a small time 

interval dτ  is 

 
dd d
d
σσ τ
τ

=  (3.1) 

Boltzmann argued that the stress increment through time t  depends on the strain 

increment dε  at time τ .  Furthermore, the stress relaxes over the time ( )τ−t  as  

 ( ) ( )d
d G t d

dα

ε τ
σ τ τ

τ
= −  (3.2) 

where αG  is the modulus of the viscoelastic material with 1α =  corresponding to the 

case of extensional stress and 2α =  the case of shear stress.  By integrating the stress 
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increment from time −∞  to time t , over all increments dτ , the complete stress at time 

t  can be obtained as 

 ( ) ( )
α

ε τ
σ τ τ

τ−∞

 
= − 

 
∫

t d
G t d

d
 (3.3) 

It was assumed in the previous section that the guided wave motions are time-

harmonic motion and in steady state.  The motions of the corresponding stress and strain 

fields will therefore be considered to be time harmonic in the derivation that follows.  

The strain that is harmonic in time is 

 0
i te ωε ε=  (3.4) 

where 0ε  is the oscillation amplitude and ω  is the frequency.  In Eq. (3.5), αG is 

separated into two parts.  One is a constant ,cGα  and the other is a time-varying ( ),tG tα . 

 ( ) ( ), ,c tG t G G tα α α= +  (3.5) 

Substituting Eqs. (3.4) and (3.5) into (3.3), we have 

 ( ) , 0 0 , ( )
ti t i

c tt G e i G t e dω ωτ
α ασ ε ωε τ τ

−∞
= + −∫  (3.6) 

Using t τ η− =  and decomposing the exponential function into the corresponding sine 

and cosine functions, Eq. (3.6) can be recast into  

( ) ( ) ( ), , , 0( ) sin ( ) cos
t t i t

c t tt G G d i G d e ω
α α ασ ω η ωη τ ω η ωη τ ε

−∞ −∞

 = + ⋅ + ⋅  ∫ ∫  (3.7) 

Letting  

 ( ) ( ) ( ), , ,( ) sin ( ) cos
t t

c t tG G d i G d G iα α α αω η ωη τ ω η ωη τ ω
−∞ −∞

+ ⋅ + ⋅ = ∗∫ ∫  (3.8) 

Eq. (3.7) can be simplified using Eqs. (3.8) and (3.4) 
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 ( ) ( ) ( ) ( )0
ω

α ασ ω ε ω ε= ∗ = ∗i tt G i e G i t  (3.9) 

Eq. (3.9) suggests that the stress-strain constitutive relationship for viscoelastic materials 

can be formulated by employing complex viscoelastic moduli that are frequency 

dependent.  In other words, material viscoelasticity can be addressed simply by 

considering complex material constitutive law. The correspondence principle [23] 

describes this substitution of real material property with the complex one to account for 

viscoelastic response for the time harmonic case.  In the Section that follows, the elastic 

constants of the coating layers for the time harmonic elastic solution are replaced by 

their viscoelastic counterparts to investigate the effect of the coating materials on wave 

dispersion and attenuation.  Specifically the harmonic wave propagation in the tubular 

section with viscoelastic coatings are explored by replacing the real Lame constants with 

complex, viscoelastic Lame constants µ∗  and λ∗  in the Navier equation of motion as, 

 2 2 2( ) ( ) ( / )u u u tµ λ µ ρ∗ ∗ ∗∇ + + ∇ ∇⋅ = ∂ ∂  (3.10) 

The same derivations detailed in the previous sections can be followed and the same 

boundary conditions can be applied to generate the dispersion equations for the guided 

modes in tubing coated with viscoelastic thin layers. 
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4. NUMERICAL RESULTS AND DISCUSSION 

 

 Since analytical solutions are not available for the dispersion equations derived 

for the viscoelastically coated tubing, numerical solutions have to be sought.  Material 

constants to be employed are determined by the materials used for the tubular and 

coating.  The objective of the numerical procedure is therefore to determine the 

frequency, ω , as a function of the wavenumber, k .  Roots thus obtained can be 

manipulated to allow phase velocity and attenuation dispersion to be plotted against 

frequency – the two fundamental characteristics of any propagating wave. 

 The presence of viscoelastic coatings necessarily renders the roots of the 

dispersion equation complex.  When the roots of a wave solution are real, the wave 

propagates with no attenuation.  Waves whose dispersion roots are complex will be 

attenuated in time and space.  As such it is expected that guided waves are both 

dispersive and attenuative as they propagate in elastic tubing with viscoelastic coatings.  

Furthermore, the number of roots at each frequency is not constant.  Generally the 

number increases as the frequency goes higher.   

 The numerical routine formulated to find the complex roots is described below.    

Numerical results associated with the three guided modes considered, namely, the 

longitudinal wave along the axial direction, and the shear and longitudinal waves along 

the circumferential direction are then presented.   
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4.1. Bisection Method and Numerical Routine for Finding Complex Roots 

There are many numerical methods available to solve for roots of an equation. 

Few of the popular methods are Newton-Raphson method, Bisection method and Secant 

Method.  Newton-Raphson method and Secant method have the disadvantage that they 

need a good initial guess to approach the roots which are not suitable for the study at 

hand.   Since the system for the elastic cylinder have only real roots and the solution of 

the dispersion equation is multi-valued, bisection method is adopted to solve for the 

roots of the wave dispersion.  The bisection method is also known as the interval having 

method.  In bisection method, for a particular frequency, ω , the signs of the 

determinants related to two different phase velocities, a and b, are opposite.  There must 

exist at least one root between a and b.  To make sure there is only one root inside the 

range of (a, b), the interval must be chosen to be small enough.  After inserting an e 

which is the mid-value of a and b, the sign of the determinant of e is then determined.  If 

the sign of the determinant of a is different from the sign of the determinant of e, then a 

and e are considered as the new interval for search.  Otherwise, b and e are the new 

interval.  This iteration process continues until the interval or the determinant become 

small enough to indicate the convergence to a root. 

If the model is composed of only elastic materials, the wave number solution will 

be in the real domain.  By using the bisection method all the roots of the characteristic 

dispersion equation for the elastic model can be found since the behaviors of the waves 

are harmonic [24].  Thus, the phase velocity dispersion curve can be plotted for the 

tubing models of guided wave generation introduced in Sec. 2.  
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Now that the root-search routine for elastic models is developed, the next is to 

modify the search routine to find the roots for the wave dispersion equation of an elastic 

tubular with multiple viscoelastic coatings.  As the roots are complex, a complex root 

finding algorithm will be needed.  The wave number now has a real part and an 

imaginary part as follows  

 ( ) ( )Re Imk k i k= +  (4.1) 

The imaginary part of the wave number defines the attenuation while the real part along 

with the frequency describes the phase velocity as 

 ( )Rephc
k

ω
=  (4.2) 

 ( )Im kα =  (4.3) 

Thus giving the wave number an alternative expression  

 
ph

k i
c
ω α= +  (4.4) 

Using Eq. (4.4), the phase velocity and attenuation dispersion curves can be 

generated directly.  To use the search routine efficiently to find complex roots, good 

initial guesses are required.  The real part of the initial guess must be sufficiently close to 

where the value of the dispersion equation function is minimal.  The hypothesis that the 

phase velocity of the elastic dispersion equation is close to its complex counterpart in the 

viscoelastic case is utilized.  The real roots found in the bare (without viscoelastic 

coating layer) tubing case are employed as the initial guesses to search for the admissible 

complex roots that give the minimal norms of the determinant equation.  In other words, 



 

44 

 

the search algorithm performs simultaneous search for the phase velocity and attenuation 

pairs as the roots of the viscoelastic dispersion equation.   

Once the roots are found for all frequencies of interest, the phase velocity and 

attenuation dispersion curves can be plotted.  Since the order of magnitude of the 

attenuation α varies, it is common to express α in decibels per meter as follows 

 ( ) ( )1000
10/ 20 logAttenuation dB m e α−=  (4.5) 

Using the above, the fundamental propagation characteristics of the three kinds 

of guided waves can be found for the elastic tubular section coated with thin viscoelastic 

layers.  However, to demonstrate that the effect of the viscoelastic coatings on wave 

attenuation is significant, it is required that the solutions to the wave equations be 

obtained by solving Bessel functions of complex order – a task that is computationally 

demanding and numerically intensive. 

  

4.2. Numerical Results of Longitudinal Guided Wave along Axial Direction 

A schedule 40 elastic steel pipe with viscoelastic coatings is considered in the 

followings.  The radius and thickness of the pipe are 2.25” and 0.1185”, respectively.  

The thickness of the viscoelastic material is 0.02”.  The properties of the elastic tubular 

and the viscoelastic material can be found in [19] and [25].  The steel tubular has a 

density of 7.8 3gm cm  and the longitudinal and shear wave velocities it supports are 1c  

= 5.9 km/sec and 2c  = 3.19 km/sec, respectively.  Complex viscoelastic material 

constants that are also frequency dependent [26], on the other hand, are not readily 

available.   
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Below is the one dimensional wave propagation equation [27] 

 
2 2

2 2 2

1d u d u
dx C dtβ

=  (4.6) 

where subscript β  is either 1 for longitudinal velocity or 2 for shear velocity.  The 

correspondence principle ensures that Eq. (4.6) also works for viscoelastic materials in 

which the viscoelastic constants *λ  and *µ are the complex counterparts of the Lame 

constants λ  and µ .  Velocity Cβ  is therefore necessarily complex as below 

 
1 1 1Re Imi

C C Cβ β β

   
= +      

   
 (4.7) 

where the real and imaginary parts are recast using two more parameters: 

 
1

1( ) Rec
Cβ

β

ω
−

  
=       

 (4.8) 

 
1( ) Im

Cβ
β

α ω ω
 

=   
 

 (4.9) 

Substitute Eqs. (4.8) and (4.9) into Eq. (4.7), the complex wave velocity Cβ  is 

 ( ) ( )
( )

1
1*C i i

c
β

β
β

α ω
ω

ω ω

−
 

= + 
  

 (4.10) 

Table 4.1 tabulates the experimentally determined 1c , 2c , 1α  and 2α  for a type of E&C 

2057 Epoxy coating [19], whose density is 1.6 3gm cm .   
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Table 4.1  Material Properties of E&C 2057 Epoxy [19] 

 

 

 

 Over the frequency range of interest, the velocity cβ  is constant.  In other words, 

the material properties are independent of the frequency.  Furthermore, the attenuation 

constants βα will be constant over the frequency range of interest if they are divided by 

the frequency.  These conditions render the root search less demanding.   

Following the steps described above and incorporating relevant material 

properties, the phase velocity dispersion of the longitudinal wave propagated in the bare 

tubular along the axial direction is obtained and shown in Fig. 4.1.  

1c  2c  1α
ω  2α

ω  

2.96  

(km/sec) 

1.45 

(km/sec) 

94.7 10−×  

(sec/m) 

96.9 10−×  

(sec/m) 
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Fig. 4.1  Phase velocity dispersion curve of axial longitudinal wave in bare tubing 

 

 The phase velocity dispersion curve agrees well with the experimental results 

found in [19].  Specifically there are only two admissible modes in the low frequency 

range.  More modes are admissible at higher frequency.  Although more modes can be 

excited at higher frequency, the fundamental modes 1 and 2 are considered the most 

important for applications involving lower frequency generation.  Furthermore, at higher 

frequency, all phase velocities of the different modes are seen to converge to a mode 

where the phase velocity becomes independent of the frequency.  This marks the most 
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prominent difference between the pure elastic hollow cylinder model and models with 

viscoelastic layers. 

 Figs. 4.2 and 4.3 show the phase velocity and attenuation dispersion curves of the 

axial longitudinal wave propagated in a tubular with a single layer of epoxy coating. 

 

 

Fig. 4.2  Phase velocity dispersion curve of axial longitudinal wave in tubular with 1 

epoxy layer 
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Fig. 4.3  Attenuation dispersion curve of axial longitudinal wave in tubular with 1 

layer of epoxy coating 

 

 There are prominent differences between the phase velocity dispersion curves in 

Fig. 4.2 for the single coated layer tubular and the one corresponds to the bare tubular in 

Fig. 4.1.  Two additional modes within the 0-0.7MHz frequency range are present in Fig. 

4.2.  The phase velocities associated with the 3rd and high order modes are seen to 

decrease much faster at frequency higher than 0.4MHz.  Except for the 1st and 2nd mode, 

all modes converge to the same asymptotic phase velocity at 3km/s as the bare tubing 

case.  The drastic drop of the first two modes in phase velocity is affirmed by the 
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corresponding attenuation dispersion curves in Fig. 4.3, in which the modes attenuate 

significantly at higher frequency.  With such a high level of energy dissipation, the 

modes would not have been able to propagate far, thus explaining the deviation from the   

asymptotic phase velocity in Fig. 4.2.  The highest three modes demonstrate negligible 

attenuation within the frequency range considered.  This is interesting because as Eq. 4.9 

indicates, the attenuation constant should increase with wave frequency.  As their phase 

velocity resolutions would fast deteriorate at higher frequency, they may have limited 

engineering applications.    

 

 

Fig. 4.4  Phase velocity dispersion curve of axial longitudinal wave in tubular with 2 

epoxy layers 
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 Wave dispersion and attenuation of the axial longitudinal wave correspond to 2 

and 3 layers of viscoelastic coatings are given in Figs. 4.4-4.7.  Two additional modes 

are seen in Fig. 4.4., in which the 3rd, 4th, and 5th mode are seen fast approaching the 

non-dispersive asymptotic phase velocity with poor resolution in differentiating them at 

frequency higher than 1.0MHz.  Of all the admissible modes in Fig. 4.5, the 3rd mode 

demonstrates the least attenuation between 0.2 and 1.0MHz, making it a potential 

candidate for charactering tubing with 2 epoxy coatings.  Attenuation of the first 2 

modes is worse than the single coating case in Fig. 4.3   

 

 
Fig. 4.5  attenuation dispersion curve of axial longitudinal wave of tubular with 2 

epoxy layers 
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Fig. 4.6  Phase velocity dispersion curve of axial longitudinal wave in tubular with 3 

epoxy layers  

 

Observations made with Figs. 4.4 and 4.5 can be readily applied to Figs. 4.6 and 

4.7.  With the addition of one more epoxy layer, the wave dispersion is seen with one 

additional mode, and the differentiation of phase velocity at frequency higher than 

1.0MHz among the highest seven modes is becoming even more difficult.  Again, the 3rd 

mode suffers the least attenuation in the 0.4-0.8MHz frequency range.   
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Fig. 4.7  Attenuation dispersion curve of axial longitudinal wave in tubular with 3 

epoxy layers 

 

4.3. Numerical Results of Shear Wave along Circumferential Direction 

Using the same material properties and tubing parameters, the phase velocity 

dispersion of the shear wave propagated in a bare tubular section along the 

circumferential direction is considered in Fig. 4.8.  There is only one mode at low 

frequency.  More modes become admissible at higher frequency, and the resolution 

needed to differentiate them deteriorates as frequency increases.    
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Fig. 4.8  Phase velocity dispersion curve of circumferential shear wave in bare 

tubing 

 

The phase velocity and attenuation dispersion curves of the circumferential shear 

wave in the tubular with 1 layer of epoxy coating are shown in Figs. 4.9 and 4.10.  

Comparing the phase velocity dispersion for the single coating layer tubing to the 

baseline’s (bare), several observations can be made: 1) there is an additional higher order 

mode; 2) the highest 5 modes rapidly converge to an asymptotic phase velocity at 

approximately 3.5km/sec; 3) the differentiation of the highest 5 modes at frequency 

higher than 1.6MHz becomes demanding; 4) the 1st mode has a cutoff frequency at about 
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0.52MHz; and 5) the 2nd mode demonstrates that it would fast attenuate.  The attenuation 

dispersion curves in Fig. 4.10 further affirms observations 4) and 5) with the indications 

that the first 2 modes would soon dissipate upon initiation.  Except for the 3rd mode 

which displays relatively low attenuation between 0.5-1.0MHz, all the higher order 

modes see significant attenuations at high frequency.   

 

 

Fig. 4.9  Phase velocity dispersion curve of circumferential shear wave in tubular 

with 1 epoxy layer  
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Fig. 4.10  Attenuation dispersion curve of circumferential shear wave in tubular 

with 1 epoxy layer  
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Fig. 4.11  Phase velocity dispersion curve of circumferential shear wave in tubular 

with 2 epoxy layers 

 

Wave dispersion and attenuation of the circumferential shear wave correspond to 

2 and 3 layers of viscoelastic coatings are plotted in Figs. 4.11-4.14.  One additional 

mode is seen in Fig. 4.11 where the case of 2-layer coating is considered.  The 4th, 5th, 6th, 

and 7th mode are seen fast approaching the non-dispersive asymptotic phase velocity 

with poor resolution in differentiating them at frequency higher than 1.6MHz.  In 

addition to the 2nd mode, the 3rd mode is also fast dissipating.  All admissible modes 



 

58 

 

suffer from significant attenuation, with the exception of the 2nd mode which 

demonstrates relatively low attenuation between 0.2 and 0.6MHz.   

 

 

Fig. 4.12  Attenuation dispersion curve of circumferential shear wave in tubular 

with 2 epoxy layers 
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Fig. 4.13  Phase velocity dispersion curve of circumferential shear wave in tubular 

with 3 epoxy layers 

 

Observations made for Figs. 4.11 and 4.12 can be readily applied to Figs. 4.13 

and 4.14.  With the addition of one more epoxy layer, the shear wave dispersion is seen 

with one additional mode in the 3 coated layers tubing model, and the differentiation of 

phase velocity at frequency higher than 1.6MHz among the highest four modes is 

becoming difficult.  Now the 4th mode is also fast dissipating.  Again, the 3rd mode 

suffers the least attenuation in the 0.4-0.8MHz frequency range.  All admissible modes 
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suffer from significant attenuation, suggesting a probable physical scenario of short-

lived propagation for all of them.  

 

 

Fig. 4.14  Attenuation dispersion curve of circumferential shear wave in tubular 

with 3 epoxy layers 

 

4.4. Numerical Results of Longitudinal Wave along Circumferential Direction 

Using the same material properties and tubing parameters along with the 

numerical routine developed for finding real and complex roots, the phase velocity 

dispersion of the longitudinal wave propagated in a bare tubular section along the 
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circumferential direction is shown in Fig. 4.15.  There are 2 modes at frequency 0-

0.3MHz.  More modes become admissible at higher frequency, and the various modes 

can be readily differentiated at a wide range of frequency with satisfactory resolution. 

 

 

Fig. 4.15 Phase velocity dispersion curve of circumferential longitudinal wave in 

bare tubular 

 

As oppose to Fig. 4.9, the 1st mode of the circumferential longitudinal wave in 

tubing coated with 1 layer of epoxy coating in Fig. 4.16 does not demonstrate a cutoff 

frequency.  However, the mode along with the 2 mode does not converge to the non-



 

62 

 

dispersive phase velocity but rather quickly dissipate with increasing frequency.  This 

observation is also supported by the corresponding wave dispersion in Fig. 4.17 in which 

the 2nd mode is seen to be the only mode that displays low attenuation among all the 

admissible modes when the excitation/propagation frequency is lower than 0.18MHz.  

The most interesting feature in Fig. 4.16 is the overlapping of the two highest order 

modes.  The two modes cannot be differentiated between the 0.71-0.74MHz frequency 

range.  In addition, their corresponding high attenuations in Fig. 4.17 also suggest fast 

dissipation and, therefore, short life span.   

 

 

Fig. 4.16  Phase velocity dispersion curve of circumferential longitudinal wave in 

tubular with 1 epoxy layer 
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Fig. 4.17 Attenuation dispersion curve of circumferential longitudinal wave in 

tubular with 1 epoxy layer 

 

 Wave dispersion and attenuation of the circumferential longitudinal wave in 

tubing with 2 and 3 layers of viscoelastic coatings are plotted in Figs. 4.18-4.21.  One 

additional mode is seen in Fig. 4.18 where the case of 2-layer coating is considered.  The 

3rd and 4th modes are fast approaching the non-dispersive asymptotic phase velocity with 

poor resolution in differentiating them at frequency higher than 0.8MHz.  The 

dissipation of the first 2 modes is notably worse than the 1-layer case.  All admissible 
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modes as seen in Fig. 4.19 suffer from significant attenuation, rendering the propagation 

of them all extremely brief and short-lived. 

 

 

Fig. 4.18 Phase velocity dispersion curve of circumferential longitudinal wave in 

tubular with 2 epoxy layers 
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Fig. 4.19 Attenuation dispersion curve of circumferential longitudinal wave in 

tubular with 2 epoxy layers 
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Fig. 4.20  Phase velocity dispersion curve of circumferential longitudinal wave in 

tubular with 3 epoxy layers 

 

Observations made with Figs. 4.18 and 4.19 can be readily applied to Figs. 4.20 

and 4.21.  With the addition of one more epoxy layer, the circumferential longitudinal 

wave dispersion has one additional mode in the 3 coating layers tubing, and 

differentiating phase velocities at 0.8MHz or higher among the highest four modes 

becomes difficult.  The 3rd mode is now also fast dissipating.  Again, all admissible 

modes seen in Fig. 4.21 suffer from significant attenuation, a scenario substantially 
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worse than Fig. 4.19.  This suggests that longitudinal wave propagation along the 

circumferential direction is not probable with the presence of 3 viscoelastic coatings.  

 

 

Fig. 4.21 Attenuation dispersion curve of circumferential longitudinal wave in 

tubular with 3 epoxy layers 
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4.5. Discussions 

It was seen that in general the wider the frequency window considered the more 

modes were admissible.  The number of admissible modes also increased with increasing 

number of viscoelastic coating layers.  It was also observed using all the attenuation 

dispersion curves that attenuation became large at the frequency where the 

corresponding phase velocity precipitated.  As the coating number increased, wave 

motions along both the axial and circumferential directions were characterized by 

substantial attenuation and effectively suppressed.  The study showed that no mode 

could be propagated in steel tubing coated with more than 3 layers of epoxy coating. 

From the practical point of view, it is essential to identify the proper mode that is 

the least attenuative at certain frequency range.  In order to better understand the nature 

of attenuation dispersion, the effect of increasing α value is examined.  Figs. 4.22 and 

4.23 show the results correspond to increasing α  by 20% from its original value for the 

case of axial longitudinal wave in tubing coated with 1 layer of epoxy.  
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Fig. 4.22  Phase velocity dispersion curve of axial longitudinal wave in tubular with 

1 epoxy layer coating with α  being increased by 20% 
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Fig. 4.23 Attenuation Dispersion Curve of Axial Longitudinal Wave of Tubular 

with 1 Layer Epoxy Coating which Increased α  20% 

 

 Comparing Fig. 4.22 with Fig. 4.2, it is evident that the greater α  value does not 

impose an effect on the phase velocity dispersion.  However, all the modes in the 

corresponding attenuation dispersion in Fig. 4.23 are seen to increase in attenuation 

magnitude.  The proper interpretation of these results would be that once a particular 

mode is excited at a specific frequency, it is the attenuation of the coating material that 

dictates the propagation and termination of the mode.  
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Next is to examine the effect of increasing coating thickness.  The thickness is 

increased by 20% from its original value.   

 

 
Fig. 4.24  Phase velocity dispersion curve of axial longitudinal wave in tubular with 

1 epoxy layer coating with coating thickness being increased 20% 
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Fig. 4.25  Attenuation dispersion curve of axial longitudinal wave in tubular with 1 

epoxy layer coating with coating thickness being increased 20% 

 

 Comparing Figs. 4.24 and 4.25 with Figs. 4.2 and 4.3, it is seen that the phase 

velocity dispersion is affected by having an additional higher order mode – a scenario 

comparable to adding another coating layer characteristically similar to Fig. 4.4 where a 

2-layer epoxy coating was considered.  While the phase velocity dispersion is visibly 

affected, however, the attenuation dispersion is not.  Therefore, it is concluded that the 

selection of viscoelastic coating materials and the application of them as protective 

layers to tubular have a substantial impact on the propagation and attenuation of various 
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wave modes.  The implications are broad and significant in engineering applications in 

that improper choice of coating materials could result in high cost, low efficiency, and 

poor resolution.  
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5. SUMMARY AND FUTURE WORK 

 

5.1. Summary 

In Sec. 2 the Navier’s governing equation of motion for a tubular section was 

derived in the cylindrical coordinates.  Longitudinal wave motions in the axial direction 

and shear and longitudinal wave motions in the circumferential direction were 

considered.  After the layer matrices for each of the propagation mode were developed, 

proper boundary conditions corresponding to perfectly bonded layers were then applied. 

The condition imposed was the continuity of displacement and strain between the 

interfacial layers and stress-free for the exposed layers.  The global matrices of each of 

the model were first assembled with the imposed boundary conditions for a coated 

hollow pipe with multiple elastic layers.  

In Sec. 3 the general stress-strain relationship for viscoelastic materials was 

described in which the correspondence principle was applied to show how viscoelastic 

material properties can be incorporated into the constitutive law to model the 

propagation of harmonic waves in epoxy-coated pipes.  The bisection numerical routine 

for finding both the real and complex roots of the three characteristic dispersion 

equations was also introduced.  In particular the wave dispersion solution of the bare 

elastic tubing was employed as the initial guess for finding the complex roots for the 

system of equations of the viscoelastically-coated tubing.  It was assumed that the 

complex wavenumbers of the viscoelastic solutions had their real parts close to the real 

wavenumbers associated with the elastic solutions.  
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Phase velocity and attenuation corresponding to each mode of propagation were 

established as functions of frequency in Sec. 4.  The dispersion of phase velocity and 

wave attenuation for coated pipes were evaluated against a baseline model which was 

the bare, uncoated tube to establish the propagation characteristics of guided shear and 

longitudinal waves in the presence of multiple coating layers.  It was observed that 1) the 

number of modes increases with increasing number of viscoelastic layers, 2) while more 

admissible modes can be excited; however, the resolution in phase velocity in terms of 

differentiating them becomes poor, 3) the first few lower order modes all suffer from 

significant attenuation, thus rendering the employment of them not feasible for practical 

purpose, and 4) higher order modes would attenuate almost negligibly at high 

frequencies.   In the last part of the presentation, the effects of increasing attenuation 

parameter α  and coating thickness were investigated.  It was found that the attenuation 

dispersion curves were highly sensitive to the parameter α  but relatively insensitive to 

the coating thickness.  In other words, the larger the attenuation parameter, the more 

effective the viscoelastic coated layers in dissipating the wave energy.  Both the phase 

velocity dispersion and attenuation curves were sensitive to increasing coating thickness.  

However, the effect of thickness on wave attenuation was considered secondary as it was 

not as prominent as the attenuation parameter α .  

 

5.2. Future Work 

The research has generated in-depth understanding of the fundamental 

propagation characteristics of three types of guided waves in the elastic tubing coated 
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with layers of thin viscoelastic materials.  The derivation and modeling presented in the 

thesis are expected to have significant implications in employing the circumferential 

shear and longitudinal waves for characterizing coated pipe.  In addition, the presented 

results on wave dispersion and attenuation would help develop a viable ultrasonic 

technology that is of high time and frequency resolutions and optimal in resolving 

mechanical defects and coating flaws simultaneously. 

 As a theoretical endeavor, the thesis is comprehensive and complete.  However, 

efforts are still needed to promote its applicability and to realize broader impact.  The 

first would be to validate the theory along with the guided wave models through 

performing physical testing.  A carefully developed experimental test plan with proper 

instrumentation would be required.  The second would be to optimize the root-search 

algorithm to allow more modes of higher orders at still higher frequencies to be explored 

with improved computational efficiency. 
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