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ABSTRACT 

 

 Process variations and circuit aging continue to be main challenges to the power-

efficiency of VLSI circuits, as considerable power budget must be allocated at design 

time to mitigate timing variations. Modern designs incorporate adaptive techniques for 

variation compensation to reduce the extra power consumption. The efficiency of 

existing adaptive approaches, however, is often significantly attenuated by the fine-

grained nature of variations in nanometer technology such as random dopant fluctuation, 

litho-variation, and different rates of transistor degradation due to non-uniform activity 

factors. This dissertation addresses the limitations from existing adaptation techniques, 

and proposes new adaptive approaches to effectively compensate the fine-grained 

variations. 

Adaptive supply voltage (ASV) is one of the effective adaptation approaches for 

power-performance tuning. ASV has advantages on controlling dynamic and leakage 

power, while voltage generation and delivery overheads from conventional ASV systems 

make their application to mitigate fine-grained variations demanding. This dissertation 

presents a dual-level ASV system which provides ASV at both coarse-grained and fine-

grained level, and has limited power routing overhead. Significant power reduction from 

our dual-ASV system demonstrates its superiority over existing approaches. 

Another novel technique on supply voltage adaptation for variation resilience in 

VLSI interconnects is proposed. A programmable boostable repeater design boosts 

switching speed by raising its internal voltage rail transiently and autonomously, and 
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achieves fine-grained voltage adaptation without stand-alone voltage regulators or 

additional power grid. Since interconnect is a widely recognized bottleneck to chip 

performance and tremendous repeaters are employed on chip designs, boostable repeater 

has plenty of chances to improve system robustness. 

A low cost scheme for delay variation detection is essential to compose an 

efficient adaptation system. This dissertation presents an area-efficient built-in delay 

testing scheme which exploits BIST SCAN architecture and dynamic clock skew 

control. Using this built-in delay testing scheme, a fine-grained adaptation system 

composed of the proposed boostable repeater design and adaptive clock skew control is 

proposed, and demonstrated to mitigate process variation and aging induced timing 

degradations in a power as well as area efficient manner. 
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NOMENCLATURE 

 

ABB    Adaptive Body Bias 

ASV    Adaptive Supply Voltage  

BIST    Built-In Self Test 

CMOS    Complementary Metal Oxide Semiconductor 

DFT    Design For Testability 

DVFS    Dynamic Voltage Frequency Scaling 

HCI    Hot Carrier Injection 

LFSR    Linear Feedback Shift Register 

MPR    Mini Programmable linear voltage Regulator 

NBTI    Negative Bias Temperature Instability 

OAB    Online Adjustable Buffer 

PTM    Predictive Technology Model 

VLSI    Very Large Scale Integration 
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I. INTRODUCTION OF RESEARCH 

 

1. Introduction 

In nanometer regime, process variations and circuit aging [1] cause remarkable, 

and often unwanted, uncertainty in circuit system characteristics. How to efficiently 

harness the variation effects remains a major challenge to be solved. A straightforward 

approach for variation tolerance is over-design. If guard-bands are large enough, they 

can ensure that performance specifications are satisfied in presence of the worst case 

variations. However, they often entail large design overhead and waste substantial 

resources, especially power, in typical cases, especially during initial lifetime of circuits. 

Statistical techniques are primarily to reduce the pessimism of guard-bands, but cannot 

reduce the variations therefore they do not solve the fundamental inefficiency of the 

over-design. A more fundamental strategy is to equip circuits with the capability of 

tuning themselves and thereby compensating the variations, i.e., adaptive circuit design.  

This thesis presents efforts on adaptive system designs for power-efficient 

resilience to process and aging induced timing variations. In general, an adaptive circuit 

contains two major components: variation detection and variation compensation. We 

will focus on developing both variation detection and compensation techniques in order 

to provide a complete adaptive system. Various existing adaptive approaches will be 

reviewed, and their limitations to fine-grained variation compensation will be analyzed 

as well. To effectively address the limitations, we will propose voltage and frequency 

adaptation techniques, and an area-efficient delay variation detection scheme.   
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2. Existing Methods and Their Limitations 

 

A. Adaptive Body Bias vs. Adaptive Supply Voltage 

There are two main approaches for variation compensation: adaptive body bias 

(ABB) [2, 3] and supply voltage adaptation [4, 5]. Adaptive body bias (ABB) is a well-

known adaptive technique which tunes body voltage to control transistor threshold 

voltage. If variation effect is strong, ABB can either lower transistor threshold voltage to 

restore performance or increase the threshold voltage to reduce leakage power. Supply 

voltage adaptation, a.k.a. adaptive supply voltage (ASV), can compensate variations by 

changing supply voltage. ASV has several advantages over ABB. First, ASV can be 

applied to almost any kind of circuits while ABB is difficult be applied on SOI (Silicon-

On-Insulator) circuits. Second, the tuning range of ABB is limited because of junction 

leakage current [6]. Third, ABB affects only leakage power while ASV can change both 

leakage and dynamic power. The leakage power (PLEAK) and dynamic (switching) power 

(PD) can be expressed as, 

2

LEAK LEAK DD

D DD

P I V

P fCV

 


 

[7], where ILEAK stands for the cumulative leakage current through circuit, ɑ is activity 

factor, f is operating frequency, and C is for load capacitance. ASV reduces PD as well as 

PLEAK by tuning VDD. Overall, ASV is a stronger and more sustainable leverage than 

ABB.  
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On the other hand, the implementation of ASV is more difficult than ABB. In 

ABB, once a body voltage reaches the desired level, it experiences only small 

perturbation from leakage current. Thus, the power supply for the body bias does not 

need to be strong. People can use simple and small circuit, like voltage divider, to 

achieve ABB at fine granularity of individual wells [3]. In contrast, ASV needs to 

accommodate large and quick current withdraw from transistors. Hence, the 

implementation of ASV usually requires voltage regulators, which are either complex or 

bulky, and is restricted to coarse granularity of chip-level or large-block-level [4, 5]. 

 

B. Granularity of ASV  

The process variations in nanometer technology are often fine-grained. Two 

transistors a few microns apart may have different litho-variations and random doping 

fluctuations. Likewise, two neighboring transistors may have different degree of aging 

due to different switching activities. In typical designs, circuit optimizations are 

performed and result in many equally critical paths. Due to their probabilistic nature, the 

variations may manifest strongly on either a few or most of the critical paths.  

The fine-grained variations together with the large number of critical paths 

present a dilemma for deciding the granularity of conventional ASV. If ASV is applied 

at a coarse-grained level, it is likely that the supply voltage is raised due to variations on 

a few paths. Then, the extra power spent on those paths without strong variations is 

largely wasted. If one uses fine-grained ASV, i.e., many small ASV domains, there 
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could be large overhead on supply voltage generation, which will be further discussed in 

Section I.2.D.       

 

C. Dual Static Supply Voltage 

Recently, dual static supply voltage based adaptation techniques are reported [8, 

9, 10]. They assume that two power supply (VDD) lines are available to a circuit block. 

The circuit block can be adaptively connected to either high or low VDD through sleep 

transistors. The difference between the two supply voltages is small so that there is no 

need to use level shifters as for voltage islands [11]. These works did not show details on 

how to obtain the two different power supply lines at the same place, which is a difficult 

task. When the block sizes are small, i.e., in fine granularity, this approach implies 

nearly doubling of power grid wires. Power grid in modern chip designs is already huge, 

complex and has very limited room for additional overhead. 

 

D. Overhead on Supply Voltage Generation 

Both fine-grained ASV and dual static supply voltage require more than one 

supply voltages. Conceivably, there are only two options to obtain a supply voltage:  

 Option 1: generate it from an off-chip voltage regulator and delivery it to on-chip 

destinations;  

 Option 2: generate it locally using on-chip voltage regulator.   

Both involve voltage regulator which has two categories: switching regulator and linear 

regulator. Linear regulator is compact, relatively easy to be integrated on-chip and has 
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fast response [12, 13]. However, its energy-efficiency can be low compared to switching 

regulators, especially when voltage difference between input supply and regulated output 

is large [14]. Switching regulator can be divided into two categories, switched-mode 

regulator [15] and switched-capacitor converter [16]. Both types have better energy-

efficiency [15], but usually entail very large passive elements such as inductors or 

capacitors, which make them very difficult to be integrated on-chip. 

For dual static supply voltage, if one obtains the additional voltage through 

option 1, there would be a large power delivery network overhead due to duplicated 

supply lines. For example, if a half of the entire circuit is powered by the dual static 

supply voltage, the size of power delivery network would increase by 50%. In current 

chip designs, the power supply network for even single voltage level is already very 

complex and heavily loaded. Hence, the room for additional power delivery lines is very 

small. If one chooses option 2, there are also problems. Switching regulator is difficult to 

implement on-chip. For linear regulators, small ones with limited output load current 

capacity are not sufficient to compensate large scale variations while large ones 

supporting high output load current cause too much power waste as well as stability 

issues which in turn increase complexity of regulator design. 

For fine-grained ASV, there is no obvious good solution either. If one goes with 

option 1, the overhead on off-chip regulators would be huge. Consider a chip with a half 

million gates. If each block of 5k gates has its own ASV, then the chip needs 100 

regulators each of which should supply all the 5k gates in each block. Option 2 is far 

from being practical as well since a large number of on-chip regulators each of which 
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powers 5k gates cause either huge area overhead (from switching regulators) or large 

power waste (from linear regulators). 

 

E. Online Adjustable Buffer 

Online adjustable buffer (OAB) [17] is a static CMOS buffer augmented by a tri-

state buffer in parallel. The tri-state buffer is turned on (off) when the OAB operates for 

high-speed (low power). In order to significantly reduce delay at high-speed-mode, the 

size of the tri-state buffer needs to be close to that of the static CMOS buffer. This 

means that an OAB at low-power-mode has intrinsic load of twice as much as that of a 

single static CMOS buffer. In other words, this technique improves one mode at the cost 

of degrading another mode. Another related work is dual-VDD buffer [18]. However, it 

requires two VDD lines like [10]. 

 

3. Proposed Adaptation Techniques 

 

A. A Dual-Level Adaptive Supply Voltage (ASV) System 

In this work, we propose a new Adaptive Supply Voltage (ASV) system for 

circuits with many timing critical paths. In typical design flows, circuits are optimized to 

suppress the delay of timing critical paths and reduce the power on non-critical paths. 

Consequently, path delays tend to be equalized and there are many paths with similar 

timing criticality. This phenomenon implies a wide range of possibilities for variation-

induced timing degradation: from a few paths to many paths. This wide range makes 
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ASV very difficult to implement. If one adopts coarse-grained ASV, there could be 

considerable power waste when the degradation actually occurs only on a few paths. If 

one chooses fine-grained ASV and prepares for degradations on many paths, a large 

overhead on power routing or voltage regulators is usually incurred. 

Our system solves the aforementioned difficulty by simultaneously providing 

coarse-grained and fine-grained ASV. In this dual-level ASV (dual-ASV) system, power 

routing overhead is largely avoided by a new technique of voltage tapping in the context 

of voltage island based designs [11, 19]. A progressive voltage enhancement method is 

suggested to further improve the efficiency of this system. In experiments, we compared 

the dual-ASV system with the over-design and conventional ASV method [4, 5]. SPICE 

simulations are performed on benchmark circuits with consideration of process 

variations and NBTI (Negative Bias Temperature Instability) induced aging effect [1]. 

We also considered the impact of the variations on the dual-ASV system embedded in 

the circuits. The results indicate that our approach can achieve similar performance and 

robustness with significantly less power dissipation. The average power reductions are 

40% and 21% compared to over-design and conventional ASV, respectively. A 

weakness of our approach is that it is limited to voltage island based designs. However, 

multi-supply-voltage designs become increasingly popular for the sake of power 

management. Therefore, the limitation of our approach will become less severe. 

Overview and detailed implementation of the proposed dual-ASV system, and its 

corresponding analysis and verification will be presented in chapter II. 
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B. Boostable Repeater for Variation Tolerance in Interconnects 

In this work, we propose a new approach for fine-grained voltage adaptation – 

boostable repeater, which can boost its switching speed through transiently and 

autonomously enhancing its internal voltage rail. The boosting feature can be turned on 

and off at runtime and therefore can adaptively compensate delay variations. It does not 

require voltage regulator or additional power grid. Since its adaptivity is per repeater, it 

is inherently fine-grained. A previous technique in the same direction is online 

adjustable buffer (OAB) [17]. Roughly speaking, an OAB is a static CMOS buffer 

augmented by a tri-state buffer in parallel. The tri-state buffer is turned on (off) when the 

OAB operates for high-speed (low power). In order to significantly reduce delay at high-

speed-mode, the size of the tri-state buffer needs to be close to that of the static CMOS 

buffer. This means that an OAB at low-power-mode has intrinsic load of twice as much 

as that of a single static CMOS buffer. In other words, this technique improves one mode 

at the cost of degrading another mode. Unlike OAB, which relies on dynamic device 

sizing, our boostable repeater exploits transiently higher voltage rail for speed 

improvement. Therefore, the extra load presented to timing path from a boostable 

repeater is significantly smaller. Another related work is dual-VDD buffer [18]. However, 

it requires two VDD lines like [10]. 

The boostable repeater design enables fine-grained circuit adaptation and 

therefore power-efficient resilience to variations. It presents limited load overhead to 

timing paths and thus has small timing penalty in low power mode. The weakness is that 

it has significant device area overhead. However, this overhead can be largely alleviated 
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through careful applications. That is, boostable repeaters are placed in only a small 

number of judiciously selected nets so as to limit the area overhead. When the variations 

on a fabricated circuit are widespread, a global supply voltage tuning will be more 

effective. Hence, the boostable repeater design is a complement rather than a 

replacement to coarse-grained adaptation. Since interconnect is a well-known bottleneck 

for chip performance and a modern chip design may contain hundreds of thousands of 

repeaters [20], there are plenty of opportunities for boostable repeaters to find critical 

places and exert significant impact. 

Besides variation resilience, boostable repeaters can be applied for dynamic 

power management due to its online programmability. By turning on/off the boosting, 

one can tune circuits to work in high performance or low power mode. 

We composed an adaptive system which combines the proposed boostable 

repeaters with global ASV system. This is because we propose boostable repeater to 

compensate fine-grained variations, in other words, severe degradations on a limited 

number of critical paths. In conjunction with ASV, we maintain global VDD low while 

significantly degraded paths can still meet their timing constraints with the boostable 

repeaters. 

The proposed adaptive system with boostable repeaters integrated with global 

ASV system is validated through SPICE simulations on various test cases. Compared to 

ASV alone, our approach achieves an average of more than 25% power reduction with 

the same performance and robustness. When applied in a logic circuit, the device area 

overhead of our approach is about 4~5% which takes all the additional devices from the 
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proposed approach into account. Our approach also significantly outperforms online 

adjustable buffer [17]. Main idea of implementing the proposed boostable buffer, and 

detailed analysis and verification of its benefits will be provided in chapter III. 

 

C. Built-in Delay Testing Scheme 

This work presents an area-efficient built-in delay testing scheme utilizing BIST 

SCAN architecture [21] and dynamic clock skew control. A low cost scheme for delay 

fault detection is essential to provide an efficient adaptive circuit design for mitigating 

fine-grained variation, since the granularity of adaptive components critically depends 

on the number of variation detection components to be deployed throughout circuit 

blocks. To meet the stringent area as well as power constraints of modern circuit design, 

the built-in testing components are expected to consume as small amount of circuit 

resources as possible, especially die area.  

Previous works provided various schemes of on-chip delay measurement to 

detect circuit variations. Vernier Delay Line presented in [22] senses delay perturbation 

by digitizing a path delay through chains of FFs and buffers. Although this type of 

measurement yields a fine resolution of delay value of each path, it induces huge area 

overhead and is not adequate for fine-grained variation detection. Razor, a double-

sampling flip-flop, presented in [23] is a well known and simple technique which 

compares output value from master latch against one from shadow latch fed by delayed 

clock to detect delay error. This approach, however, doubles the size of regular FF in 

order to embed shadow latch which is not a trivial overhead as well. The shadow latch 
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even significantly entails extra capacitive load to the timing path. Another approach to 

predict delay fault is proposed by [24] which senses signal transitions within a guard-

band. This technique also requires a huge area overhead due to its complex structure of 

stability checker and delay element.  

Adjusting system clocks with tunable delay buffers [25] is a well studied 

approach to adapt clock periods for system tuning.  K. Nagaraj [26] proposed a clock 

tuning technique to compensate process variations through adjusting clock arriving times 

to each FF. They addressed methodologies to select FFs to be tuned and to determine 

their required clock tuning range in accordance with a faulty system response from 

SCAN chain output. However, they focused merely on clock period reductions, and 

omitted discussions over any achievable power gains or extra resource overheads 

necessitated by their system. Dynamic clock retiming approach utilizing Razor FF is 

presented in [27]. In their work, Razor FF detects timing error, and local clock controller 

tunes clock skews between pipeline stages to minimize clock period. Their discussion, 

however, does not cover circuit variation handling, and they applied Razor FF which 

may also cause significant area overhead and capacitive extra load as discussed above. A 

pipeline adaptation technique to mitigate process variation is proposed by [28], but they 

also presume overheads from variation sensors are negligible which may not be true in 

fine-grained variation compensation. 

In this work, we propose an adaptive system with very low overheads on area as 

well as power. Main idea of our system to minimize the overheads is to multi-use its 

components as much as possible. The proposed built-in delay testing scheme exploits 
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SCAN chain system which is a standard testing component in modern VLSI 

architectures, therefore we can reuse it for delay fault detection circuitry as well. Unlike 

the error detection scheme through SCAN BIST architecture which needs complex 

procedure to shift the SCAN results out and post-process the results, the proposed 

approach flags error signal indicating delay fault directly from each testing module. This 

error signals are directly connected to the compensation circuitry to handle variations 

easily. We also embed dynamic clock skew control in the proposed system to conduct 

two distinctive roles simultaneously: detection operation and compensation function to 

mitigate delay fault. Through these multiple use of adaptive components, circuit designs 

utilizing the proposed system can significantly reduce extra resources required by the 

adaptive circuitry. 

We demonstrates test bench circuits equipped with the proposed built-in delay 

testing scheme combined with boostable repeater design and adaptive clock skew control. 

According to the results from SPICE simulations, the proposed adaptive system detects 

and mitigates process and aging induced timing degradations in a power as well as area 

efficient manner. When applied in a logic circuit, the proposed adaptive system causes 

7.2% of extra area overhead from the adaptive circuitries, while an adaptive design with 

Razor FF induces 12.7% of area overhead. When it comes to compensating the 

variations in both fresh circuit and aged circuit, the proposed system achieves 26% less 

power consumptions in comparison with circuit design with global adaptive supply 

voltage (ASV) system alone. 
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II. A DUAL-LEVEL ADAPTIVE SUPPLY VOLTAGE (ASV) SYSTEM 

 

1. Rationale and Overview of Dual-ASV System 

The proposed solution addresses the two aforementioned problems:  

1) How to handle the granularity uncertainty in variations? 

2) How to reduce the supply voltage generation overhead? 

We propose a dual-ASV system to solve the problems. In this system, each selected 

circuit block has two power supply lines – one belongs to a global and coarse-grained 

ASV and the other is a local and fine-grained ASV. This system has the following two 

advantages: 

1) A few paths of variations can be handled by the fine-grained ASV and 

widespread variations can be taken care of by the coarse-grained ASV. 

Thus, this system can solve the granularity uncertainty problem. 

2) The overhead of the coarse-grained ASV is no greater than conventional 

ASV. With the help from the coarse-grained ASV, the fine-grained ASV 

can be focused on a small number of gates and therefore allows low 

overhead of power and delivery network for supply voltage generation. 

In a dual-ASV system, usually one supply voltage is higher than the other. Then, 

which one is delivered at global (coarse-grained) level? We choose to use the lower 

supply voltage at global level and the higher voltage at local level. The main reason is 

that local voltage generation is mostly obtained on-chip and difficult to have high 

energy-efficiency. If low supply voltage is applied locally, the power savings from the 
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low supply voltage is largely cancelled by the waste in the supply voltage generation. In 

contrast, if high voltage is applied locally, its power waste can be overshadowed by the 

power savings from global application of low voltage. 

The proposed system is illustrated in Figure II.1. It is in the context of voltage 

island based designs [11, 19]. In the low VDD island, an additional power supply is 

obtained by tapping off an intermediate voltage level Vf from VDD,H of its neighboring 

high VDD island. The level of Vf is somewhere between VDD,H and VDD,L. Vf is supplied 

only to the critical paths in the low VDD island. In a rare but possible case when our 

VDD,LOW ISLAND

Logic Gates

FF

FF

FF

Variation

Detection

VDD,HIGH ISLAND

VDD,GATES

Vf
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VDD,LOW

MPR
VDD,LOW

VDD,HIGH

 
 

Figure II.1.    Overview of dual-ASV system. MPR is the proposed mini 

programmable linear voltage regulator. 
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proposed dual-

ASV system is temporarily unable to find a nearby VDD,H island for tapping Vf due to 

dynamic voltage control of each voltage island, our system can simply utilize global 

ASV to raise VDD,L. 

The difference of Vf – VDD,L is small so that Vf and VDD,L can be applied to the 

same circuit block without using level shifters. This voltage difference is critical because 

it determines the efficiency of the dual-ASV system. Larger difference will allow more 

power room for the overhead of generating Vf. The difference, however, will also 

increase the static current leakage at a gate supplied by Vf whose logical input ‘1’ from 

VDD,L cannot turn the pMOS of the gate off completely. Figure II.2 exhibits that static 

power leakage exponentially ascends in accordance with the increase of the difference of 

supply voltages, Vf – VDD,L, between two inverters. Based on the graph, we can 

 
Figure II.2.    Static power leakage due to the increase of Vf – VDD,L. 
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determine that the voltage difference, Vf – VDD,L, acceptable in our system considering 

static power leakage should be less than 150mV. In case of strong variations where Vf 

needs to be raised higher than VDD,L + 150mV,  we increase VDD,L through the global 

ASV system as depicted in Figure II.1 in order to maintain Vf – VDD,L less than 150 mV. 

Similar issues of static leakage current due to multiple supply rails in a circuit block are 

discussed and addressed in previous researches regarding voltage interpolation [10]. 

A delay variation prediction circuit [24] is employed. It can generate a warning 

signal if a delay variation is large and close to timing error. With the warning signal, we 

can efficiently use Vf to save overall power consumption as well as to minimize load to 

Vf so as to restrict overhead from generating Vf. Suppose Vf is designed to deliver power 

to totally up to N critical paths in a circuit block. When less than N critical paths flag 

variation warnings, these paths are switched from VDD,L to Vf. If more than N critical 

paths have warnings, VDD,L is raised like in conventional ASV. Therefore, we can 

achieve ASV at two levels: VDD,L at coarse-grained level and Vf at fine-grained level. 

Detailed descriptions about how we efficiently control Vf in conjunction with variation 

warning signals are discussed in Section V. In our experiment circuits presented in 

Section VI, we adjust VDD,L through course-grained ASV if more than 10~15% of paths 

flag warning. 

When tap Vf from VDD,H, we use linear regulators [12]. Since Vf is generated 

locally, there is no significant overhead on power delivery. Although the energy-

efficiency of linear regulators is can be low, the overall power overhead is small as they 

are applied in a restricted manner. The small power waste at the linear regulators is 
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exchanged for a large power reduction at the rest of the circuits which operate at a lower 

supply voltage. Overall, the power-efficiency is improved compared to conventional 

methods. 

We focus on process variations and circuit aging. Since the former is static and 

the latter is a very slow change, the voltage adaptation can be performed offline either at 

power-on or periodically. For the offline tuning, a test pattern generator is needed. One 

can either employ LFSR (Linear Feedback Shift Register) to generate test vectors or use 

test vectors saved in memory.  

 

2. Voltage Tapping 

Voltage tapping is to obtain an intermediate voltage level from a high voltage 

island and supply it to its neighboring low voltage islands. Then, the low voltage islands 

have dual voltage supplies. The voltage tapping is achieved by voltage down converting 

using a voltage regulator. We choose to use linear regulator since it is easy to be 

integrated on-chip and has fast response. Since it is applied locally and at small scale, the 

inefficiency of linear regulator does not reverse the global efficiency of the entire dual-

ASV system. There are various designs for on-chip linear regulator [13]. Most of them 

are complex since they aim to accommodate very large current (about 100mA). Since 

our application is at local supply voltage powering small current load of few milli-

amperes with assistance from a global ASV, we prefer a simple design. 

We choose a design similar to [12] and propose a Mini Programmable linear 

voltage Regulator (MPR) for a relatively small load current. The transistor level 
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schematic of MPR is depicted in Figure II.3. This circuit consists of 3 stages. The first 

stage is a voltage divider which generates the reference voltage. Compared to [12], the 

reference voltage generator is greatly simplified. In Figure II.3, a single voltage is 

generated. In practice, one can easily extend it for generating multiple reference voltages 

by parallelizing or cascading the voltage divider. By switching among different 

reference voltages, the output Vf level can be dynamically changed and therefore 

provides more options on variation compensation. Certainly the voltage divider is 

composed of transistors which are also vulnerable to the variations we are now 

considering. Table II.1 shows Vref and Vf variations of test cases caused by process 

variations and aging effects. The deviations of Vref and Vf with respect to averages are 

maximum 3.41% and 3.02% respectively, and those are reasonably acceptable. For more 

reliability against variations, one can easily replace this voltage divider circuit with a 

bandgap reference [29, 30] which generates a temperature as well as process variation 

 
 

Figure II.3.    Circuit of mini programmable linear voltage regulator (MPR). 
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Table II.1.    Vref and Vf variations due to process variations and aging effects. 

 

Vth 

degra- 

dation  

VDD,L VDD,H 
designed 

Vref 

Vref Vf 

Average Max +Δ (%) Min -Δ (%) Average Max +Δ (%) Min -Δ (%) 

Fresh 

Circuit 

0.75 

1.1 

0.85 0.852 0.880 3.24 0.829 2.70 0.849 0.869 2.41 0.832 1.94 

0.8 0.9 0.896 0.920 2.68 0.877 2.18 0.894 0.910 1.88 0.880 1.51 

0.85 0.95 0.949 0.968 1.99 0.934 1.59 0.943 0.954 1.14 0.934 0.94 

0.9 1 1.014 1.026 1.13 1.005 0.92 0.993 0.995 0.26 0.989 0.35 

Aged 

Circuit 

0.75 

1.1 

0.85 0.866 0.896 3.41 0.840 3.02 0.858 0.878 2.34 0.840 2.03 

0.8 0.9 0.908 0.934 2.83 0.885 2.51 0.900 0.915 1.66 0.886 1.51 

0.85 0.95 0.958 0.978 2.10 0.940 1.87 0.945 0.952 0.73 0.938 0.79 

0.9 1 1.019 1.031 1.20 1.008 1.07 0.990 0.994 0.35 0.985 0.55 
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independent reference voltage. The middle stage of MPR is an opamp-based voltage 

follower. The last stage includes an output driver Mdr and a decap. The driver provides 

current to load and the decap is to reduce supply voltage noise. 

A main change compared to [12] is that we make it programmable. This is 

achieved by the EN signal and a control transistor P in Figure II.3. MPR is turned off 

when EN is low. By applying the EN signal, one does not need to worry about the 

standby current like in the conventional regulator designs [12]. The standby power of 

MPR when it is turned off is presented in Table II.2. The column ‘Off’ is for the standby 

power, and it is almost negligible compared to the whole circuit power. This is one 

reason that we use such simple design. In the dual-ASV system, the EN signal is not an 

Table II.2.    Power consumption of MPR vs. whole circuit power in dual-ASV 

system. 

 

Vth 

degra- 

dation 

Vf 
Total 

(mW) 

MPR 

On (mW) Overhead (%) Off (µW) Overhead (%) 

Fresh 

Circuit 

0.85 4.137 0.191 4.60 0.127 0.003 

0.9 4.502 0.194 4.31 0.126 0.003 

0.95 5.272 0.198 3.75 0.124 0.002 

1 6.197 0.204 3.29 0.122 0.002 

Aged 

Circuit 

0.85 4.137 0.191 4.60 0.127 0.003 

0.9 4.502 0.194 4.31 0.126 0.003 

0.95 5.272 0.198 3.75 0.124 0.002 

1 6.197 0.204 3.29 0.122 0.002 
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overhead since we need to have it to control the power supply switching between Vf and 

VDD,L anyway. In other words, the EN signal is already in our system regardless of the 

design of the regulator. Additional benefit of the EN signal is that the switch between V f 

and the logic circuit in Figure II.1 can be skipped. Usually such switch is implemented 

by pMOS sleep transistors. Removing the sleep transistors not only reduces area/power 

overhead but also allows performance improvement. This is because the voltage drop 

across the sleep transistor is avoided and the logic circuit can be powered by V f directly 

instead of degraded Vf. 

Despite the inefficiency of each MPR, the global efficiency of the entire dual-

ASV system can be achieved through the supply voltage difference, Vf – VDD,L. In 

accordance with the equations given in the section I.2.A from [7], PTOTAL (= PLEAK + PD) 

reduces if we lower down VDD. Supplying a whole circuit block with VDD,L (< Vf), and 

powering Vf only to the degraded critical paths in the block will naturally consume less 

power than supplying Vf (> VDD,L) throughout a whole circuit block, provided that the 

power difference allows room for MPR operating power. (Please note that, without 

adaptive technique, this circuit block requires Vf supply in order for all the degraded 

paths to meet timing constraint.) In addition, the efficiency of each MPR can be 

enhanced if we choose the level of VDD,H as close to Vf as possible among nearby 

voltage island, since the efficiency of linear regulator raises with low-dropout voltage 

[14]. The power overhead of one MPR vs. whole circuit power in dual-ASV system is 

given in Table II.2. When it is turned on, MPR itself consumes around 0.2mW, 3~5% of 

power overhead, which is not negligible. However, the global power saving from 
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lowering down VDD,L can overshadow the power overhead. Figure II.4 shows the 

tendency of power consumption in conventional ASV system in accordance with 

adjusting VDD level. In the slopes, if we decrease VDD level by 100mV, the circuit 

consumes almost 2mW less than when it is supplied by higher voltage. Though the 2mW 

of power saving is not totally what we can solely use for our purpose only, we can still 

say that lowering VDD,L of the majority of circuit by 100~150mV will allow enough 

power budget to generate few but sufficient number of Vf rails through several MPRs. 

This is the main idea of our dual-ASV system to achieve global efficiency. 

Although the design of the regulator MPR here is simple, it works very well for 

the voltage tapping where the typical current is around 1mA. In Figure II.5, we show 

transient waveforms from SPICE simulations. In this case, VDD,L=0.8V, VDD,H=1.1V and 

Vf=0.95V. One can see that the logic signal powered by Vf switches very well, not 

 
Figure II.4.    Whole circuit power consumption at multiple VDD levels of 

conventional ASV system. Dual-ASV system is not applied here. 
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Figure II.5.    Waveforms of signals at different voltage levels. 

 

 

 
Figure II.6.    Vf variation vs. the size of driver transistor Mdr. 
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much different from the signal powered by VDD,L. A key role of linear regulator is to 

stabilize Vf while supplying power to dynamic load. In considering this point, we 

investigated the impact of the size of driver transistor Mdr of MPR design given in Figure 

II.3. The results are depicted in Figure II.6. We observe the effect on the voltage drop of 

Vf, which is very important to the performance and predictability of the logic circuits. 

The Vf drops decrease exponentially with the increase of the size of Mdr. In order to 

safely guarantee that all the circuits under the variations have Vf drops less than 5%, the 

transistor width of Mdr is set as 20 µm. Figure II.7 shows bode plots of the regulator 

MPR where we considered both process variations (gate length variation: 3σ=15%, Vth 

variation: 3σ=20%) and aging effects (additional Vth variation: µ=10% 3σ=10%) 

through 30 Monte-Carlo iterations. The worst case phase margin of 71° confirms that 

our proposed MPR design is stable. A load transient response from MPR for a transient 

load current of 50µA ~ 1 mA with 50ps of rising and falling times is given in Figure II.8, 

and MPR shows 3.5% of load regulation and 16mV of undershoot. Table II.3 shows 

actual Vf voltage drops (Vdrop) in our test cases with S526 and S1423 ISCAS’89 

benchmark circuits, considering both process variation (gate length variation: 3σ=15%, 

Vth variation: 3σ=20%) and aging effects (additional Vth variation: µ=10% 3σ=10%). In 

those cases, MPR regulates Vf for dynamic loads varying from 50µA to 500 µA range. 

In consideration of circuit variations, the worst case drop is less than 4% compared to 

average which is smaller than the typical specification of 5%. 

An alternative approach to supply Vf to an individual circuit block is to power it 

directly through VDD,H and attach level shifters at the inputs and outputs of the block. 
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Figure II.7. Bode plots of MPR considering process variation and aging effect. In all 

cases, phase margin is higher than 71° which confirms the stability of MPR. 

 

 

 

Figure II.8. Load transient response of Vf (Iload = 50µA ~ 1 mA). 
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This approach, however, inevitably wastes extra power if it boosts up the block 

performance faster than its target timing constraints. Figure II.9 shows design topologies 

to supply Vf from VDD,H, a high voltage rail from a neighboring voltage island: one is 

powering Vf through MPR so that Vf < VDD,H, and the other topologies are attaching 

VDD,H directly to Vf, therefore Vf = VDD,H. For the second case of attaching VDD,H 

directly to Vf, the effects from level shifters on the circuit performances are also 

examined and compared. Table II.4 analyzes power consumptions from each block as 

well as from total circuit, and power dissipations from MPR and level shifters are taken 

into account. According to Table II.4, power consumption reduces if a block is powered 

by MPR which lowers Vf voltage level down to 0.9V, even though MPR extracts power 

from VDD,H as well. This is because lowering down Vf reduces voltage swings at the 

Table II.3.    Vf fluctuation while powering dynamic load of S526 and S1423 

ISCAS’89 circuits with process variation and aging effects. Vf is regulated voltage 

output from proposed Mini Programmable linear voltage Regulator (MPR). 

 

Vth 

degradation 

designed 

Vref 

Vf 

Average Vpeak Δ (%) Vdrop Δ (%) 

Fresh 

Circuit 

0.85 0.849 0.875 3.11 0.817 -3.76 

0.9 0.894 0.916 2.56 0.862 -3.51 

0.95 0.943 0.960 1.76 0.914 -3.12 

1 0.993 1.001 0.88 0.967 -2.59 

Aged 

Circuit 

0.85 0.858 0.883 2.97 0.824 -3.87 

0.9 0.900 0.920 2.27 0.869 -3.46 

0.95 0.945 0.958 1.31 0.919 -2.81 

1 0.990 1.000 0.97 0.964 -2.72 
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MPR

VDD,H = 1.1V

Circuit Block

(50 gates)

Vf = 0.9V

(a) Vf is powered by MPR

 

Circuit Block

(50 gates)

Vf = 1.1V

Circuit Block

(50 gates)

Level

Shifter

Level

Shifter

(b) Vf is directly 

powered by VDD,H

(c) Vf is directly powered 

by VDD,H with level shifters

VDD,H = 1.1V VDD,H = 1.1V

Vf = 1.1V

 

Figure II.9.    Design topologies to supply a circuit block from a neighboring high 

VDD,H island. The top topology (a) shows that MPR reduces Vf down below VDD,H so 

that block power consumption can decrease. Power dissipations from MPR and level 

shifters are all considered in the power comparison presented in Table II.4. 

 

Table II.4.    Circuit performance comparison between design topologies to power a 

circuit block (VDD,H = 1.1V). 

Circuit 
Vf is 

powered by 

Vf 

(V) 

Delay 

(ps) 

Power consumption 

Block (µW) Total (mW) 

S1423 

MPR 0.9 182.0 459.8 4.50 

VDD,H 1.1 163.4 760.8 4.83 

VDD,H 

+ level shifters 
1.1 172.2 794.9 4.85 

S5378 

MPR 0.9 183.7 554.9 11.25 

VDD,H 1.1 179.9 891.4 14.44 

VDD,H 

+ level shifters 
1.1 182.5 909.6 14.46 
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logic gates in the circuit block which in turn consumes less power. This proves that, in 

terms of fine-grained adaptation, power can be further saved by using MPR if we only 

need to meet a certain timing constraint (e.g., 182ps for S1423, and 184ps for S5378), 

since attaching VDD,H directly as a supply source will waste extra power. Besides, due to 

power overhead and intrinsic delay from level shifters, inserting level shifters slightly 

degrades performance as well, according to the rows for “+ level shifters” in Table II.4. 

 

3. Progressive Voltage Enhancement 

This section introduces how to utilize the two dynamic voltage levels for 

variation resilience in different scenarios: from a few paths to many paths of variation 

assertions. We propose two different ways of connections with the voltage tapping 

output Vf. 

1) Selective connection with single-path block. A single-path block is a set 

of logic gates which are on one or only a few (e.g., less than 3) critical 

paths. One MPR is connected to multiple single-path blocks through 

switches (sleep transistors). But, only the connections to one or two 

blocks can be turned on at the same time due to the limited power 

supplying capacity of MPR. Through this connection, an MPR can 

selectively focus its capacity on 1 or 2 paths to supply extra power for 

variation compensation. 

2) Direct connection with multi-path block. A multi-path block is a group of 

logic gates which are shared by many (e.g., more than or equal to 3) 
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critical paths. One MPR is directly connected with a multi path block 

without using switches. Please note that the direct connection does not 

necessarily mean that the multi-path block is powered by the MPR since 

it can be turned off by the EN signal. This connection is to widely provide 

all the shared paths with additional power for compensation. 

Every block consists of the same number of gates, regardless of whether it is a 

single-path block or a multi-path block. In our case of experiment, around 50 gates are 

allocated in one block. 

In terms of powering each one path, a single-path block can supply one path with 

more power than a multi-path block can provide, since every block supplies the same 

number of gates. In other words, a single-path block is to focus power from MPR on a 

few paths when variation is sparse, while a multi-path block is to share the power with 

many paths, therefore to handle widespread variation.  

For example, in Figure II.10, the three circles of block B, C, and D on right 

correspond to single-path blocks and they are connected with one voltage regulator 

MPR2 through sleep transistors. MPR2 can drive at most one block at a time. The tall 

circle of block A on the left indicates a multi-path block and is connected with MPR1 

directly. As mentioned above, every block is composed of the same number of gates. 

These two kinds of connections to MPR, together with global ASV of VDD,L, handle 

variations in a progressive enhancement manner: 
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1) When variation is scattered so that the paths with large delay degradations 

do not share MPR through single-path blocks, their corresponding single-

path blocks are switched from VDD,L to voltage tapping output Vf (MPR2). 

2) If degradation spreads out, and the number of single-path blocks requiring 

Vf exceeds the capacity of MPR2, the multi-path block involving these 

paths is switched from VDD,L to Vf of MPR1. This is to assist single-path 
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block B
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Figure II.10.    Illustration for progressive voltage enhancement. The circles are blocks 

of logic gates and FF is a flip-flop. Every block consists of the same number of gates. 

MPR is the proposed mini programmable linear voltage regulator. All blocks are 

powered by VDD,L from global ASV system by default. 
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blocks with a multi-path block so as not to overuse the MPR2 shared by 

single-path blocks. 

3) When variation extremely intensifies, and 2) is eventually insufficient to 

handle the number of critical paths with strong delay variations, VDD,L is 

raised according to conventional ASV method. MPRs are now turned off 

again. 

For the example in Figure II.10, all logic circuits are powered by VDD,L by default. 

If only the path 1 has strong variation, its corresponding single-path block B is switched 

to MPR2, while the other blocks C and D are still powered by VDD,L. If the path 2 as well 

as the path 1 has large variations simultaneously, the multi-path block A is switched to 

MPR1 in addition. If all three paths 1, 2, and 3 have strong variations, then VDD,L is 

raised by global ASV to compensate for the widespread variations, and all the MPRs are 

turned off. This approach provides a large flexibility to accommodate different delay 

variation scenarios with the regulator MPR of limited capacity (and therefore with small 

overhead). 

The delay variation prediction at each path is implemented by a sensor circuit 

proposed in [24]. Although it is originally designed for predicting circuit aging, it 

actually works for general delay variations including process variations. Its main idea is 

to add a transition edge detector to a flip-flop. A data switching in a small time window 

before the setup time constraint implies that the delay variation is large and close to the 

point of setup time violation. The sensor circuit [24] can detect such switching and 

generate a warning signal. Alternatively, the sensor circuit of [24] can be replaced by a 
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double-sampling flip-flop [31]. The sensors from feedback loops to a control block 

which tunes Vf and VDD,L in accordance with our proposed progressive voltage 

enhancement scheme described in this section. The block counts the number of warning 

signals flagged, and determine whether to activate single-path block, multi-path block, 

or disable them and raise VDD,L. 

The proposed dual-ASV system exploits voltage island design which is a very 

common practice and has been well studied in the context of a standard VLSI-CAD 

design flow [32, 33]. With partitioning and cuts on sets of logic gates in accordance with 

their delays, and assigning the regulator MPR as one type of power supply pads in 

placement [34], our proposed dual-ASV system will be well incorporated with standard 

VLSI processes, i.e., auto placement and route. 

 

4. Experimental Results 

We tested the proposed dual-ASV system by SPICE simulations on benchmark 

circuits and compared with conventional methods. The benchmark circuits are S526, 

S1423, and S5378 from ISCAS 89 suite in 45nm technology. The device models of 

45nm technology are from PTM [35]. The characteristics of the three circuits are shown 

in Table II.5. The 4th column of Table II.5 tells the number of gates which have dual 

power supply lines in the dual-ASV system. The 5th column indicates the number of 

flip-flops monitored by the variation sensor circuit [24]. The rightmost column lists the 

number of MPRs employed. 

 



 

 

33 

 

 

Two kinds of variations are considered in the experiment: manufacturing process 

variations and NBTI-induced pMOS performance degradation. All these variations are 

assumed to follow Gaussian distribution. For the process variations, we focus on gate 

length variation and threshold voltage variation. The standard deviations of gate length 

variation and threshold voltage variation are 5% and 6.7% of their nominal values, 

respectively. For an aged circuit, additional threshold voltage degradation on pMOS 

transistors is considered. The mean and standard deviation of the degradation are 10% 

and 3.3% of the nominal values, respectively. The process variations and threshold 

voltage degradations are also applied to all the components of the dual-ASV system 

including MPR during simulation. Due to overly long simulation time, we ran 10 

random Monte-Carlo iterations considering process variation (gate length variation: 

Gaussian µ=45nm, 3σ=15% of mean; Vth variation: Gaussian µNMOS=0.3423V µPMOS=-

0.23122V, 3σ=20% of mean) and aging effects (additional Vth variation: Gaussian µ=10% 

of µNMOS or µPMOS, 3σ=10% of mean), instead of full-fledged Monte Carlo test on each 

circuit. 

Table II.5.    Circuit characteristics and experimental setup for dual-ASV system. 

Circuit #gates #FF #gates D-ASV #FF monitored #MPR 

S526 193 21 52 12 4 

S1423 657 74 144 23 3 

S5378 2779 179 600 24 12 
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An important parameter to determine the number of MPRs deployed in circuit is 

the number of gates supplied by one MPR. A finer granularity of dual-ASV system 

requires more MPRs each of which supplies fewer gates. Due to intrinsic overheads 

from each MPR, deploying more MPRs in a circuit consumes larger die area as well as 

power. On the contrary, the more gates one MPR supplies, the larger area the MPR 

 

 

 

 

Figure II.11.    Effects from the granularity of MPRs on circuit resources. All cases are 

adjusted to yield an equal circuit delay. 
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Table II.6.    Voltage configurations and average results on power dissipation. All cases have the same worst case delay. 

 

Over-design ASV Dual-ASV 

VDD 

(V) 

Power 

(mW) 
VDD (V) 

Power 

(mW) 
VDD,L (V) Vf (V) Vf – VDD,L 

Power 

(mW) 

Reduction 

vs. 

over-design 

Reduction 

vs. 

ASV 

S526 
Fresh 1.00 4.05 0.78 - 0.98 2.88 0.70 - 0.90 0.80 - 1.00 100mV 2.50 38.3% 12.8% 

Aged 1.00 4.25 0.81 - 1.00 3.12 0.725 - 0.925 0.825 - 1.025 100mV 2.72 36.0% 13.0% 

S1423 
Fresh 0.99 7.37 0.83 - 0.93 6.20 0.725 - 0.825 0.875 - 0.975 150mV 4.94 33.0% 20.4% 

Aged 0.99 8.68 0.86 - 0.99 7.02 0.75 - 0.85 0.90 - 1.00 150mV 5.35 38.4% 23.8% 

S5378 
Fresh 1.02 17.30 0.80 - 0.95 10.56 0.85 - 0.95 0.7 - 0.80 150mV 7.94 54.1% 24.2% 

Aged 1.02 17.18 0.83 - 1.02 11.96 0.85 - 1.00 0.7 - 0.85 150mV 8.46 50.8% 29.0% 
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occupies since its pass transistor size is proportional to load current demand from the 

gates. The curves in Figure II.11 show how the granularity of MPRs affects major circuit 

resources: power and die area. The dashed lines represent power overhead increase 

according to finer granularity of MPR deployment where each MPR supplies fewer gates. 

The solid lines show that supplying more gates incurs increase in die area overhead from 

MPRs due to larger pass transistors. The solid lines for area overhead also tell that area 

overhead would not ever decrease even though each MPR supplies fewer gates. Not only 

pass transistor in each MPR, but also its amplifier circuit contributes area overhead 

which does not ever shrink while current demand decreases. Area overhead is, therefore, 

dependent on the number of MPRs deployed in circuit as well as the number of gates 

each MPR supplies. 

The main experimental results are obtained from SPICE simulations and 

summarized in Table II.6. For each circuit, we report results on both fresh circuits where 

only process variations are considered, and aged circuits where NBTI induced threshold 

voltage degradation is considered additionally. The power dissipations in Table II.6 are 

the average results over the 10 random instances of each design. The 4
th

 column of Table 

II.6 includes the power dissipation from over-design method. The power estimation here 

is also from SPICE simulations and includes both dynamic and leakage power. In over-

design method, all instances of a design are applied with the same supply voltage for 

both fresh and aged cases. The VDD level is 1.0V for S526, 0.99V for S1423, and 1.02V 

for S5378. This level is chosen such that the worst case delay satisfies timing constraint. 

The 5th and 6th columns are the results of conventional ASV. There is a single supply 
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(a) Total circuit power consumptions are compared. 

 

 

(b) Total circuit powers are normalized to over-design circuit. Significant power 

reductions are achieved by dual-ASV system throughout all the cases 

examined. 

 

Figure II.12.    Power consumption comparison for the dual-ASV system. 
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voltage in this system and the VDD level can be finely tuned with the step size of 0.01V. 

The ASV tuning is performed such that the power is minimized while the delay target 

same as that of over-design is reached. The VDD tuning ranges are in the 5th column and 

the power dissipations are in the 6th column. One can see that ASV uses less power than 

over-design. 

The results from the proposed dual-ASV system are in the rightmost 6 columns 

of Table II.6. The 7th column shows the tuning range of VDD,L, which is the global  

(coarse-grained) supply voltage. The 8th column indicates the range of Vf, which is the 

local (fine-grained) supply voltage. The 9th column shows the difference of voltages 

between the dual supply lines Vf and VDD,L which should be less than 150mV in order 

not to use level shifter. The power dissipations including the power overhead of all the 

components of dual-ASV system are listed on the 10th column. Here, the dual-ASV also 

achieves the same delay as that of over-design and conventional ASV cases. The power 

reductions from the dual-ASV are summarized in the right-most two columns. On the 

average, the dual-ASV system can reduce power consumption by 42% and 21% 

compared to over-design and conventional ASV, respectively. 

The bars of Figure II.12 show more clear comparison in power consumptions 

between three systems. The leftmost bar is for the power consumed in over-design 

system, the middle is for conventional ASV, and the rightmost bar is for the dual-ASV 

system. The proposed dual-ASV system shows the best power efficiency among all the 

systems. 
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Figure II.13.    Power-delay curves for the dual-ASV system. 
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We further compared the power-delay tradeoff curves of the conventional ASV 

and the dual-ASV in Figure II.13. The solid curves are for the fresh circuits while the 

dashed curves are for the aged circuits. The triangles indicate results from the 

conventional ASV and the diamonds represent results from the dual-ASV system. One 

can see that solutions from the dual-ASV are superior to those from conventional ASV 

in terms of the entire power-delay tradeoff. 

The dual-ASV system causes area overhead due to the regulator MPR including 

decap and sleep transistors, and the other control circuits. For S526, S1423, and S5378 

circuits, the area overheads are about 14.6%, 16.4%, and 6.9% of the conventional 

circuits, respectively. Since the dual-ASV implementation here is manually designed 

without optimizations, we believe the area overhead can be reduced if the design is 

performed in an optimized manner. Delay sensors [24] used in our benchmark circuits 

incur additional 10~20% of area overhead. The sensors, however, are simply adopted in 

our system only for delay sensing functionality, and can be easily replaced with other 

types of techniques to reduce overhead, e.g., SCAN chain which is a standard 

component of modern architecture so that we can even ignore area overheads from delay 

variation sensing. 

 

5. Conclusions 

In order to handle different scale of variations in an efficient manner, we propose 

a dual-level adaptive supply voltage (dual-ASV) system. This system allows fine-

grained adaptive supply voltage with simple regulator designs and low power routing 
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overhead. This system includes a progressive voltage enhancement scheme, which has 

large flexibility for accommodating different scenarios of variations. The effectiveness 

of this system is validated by SPICE simulations on benchmark circuits.  

In the future, we will continue the study of the dual-ASV system to further 

reduce area overhead and remove the dependence on voltage-island based designs. 

Future work will also include extended experiments to cover more complex 

configurations of dynamic voltage and frequency scaling (DVFS) over multiple voltage 

islands, stable reference voltage generation with band-gap reference for enhancing 

reliability of MPR design, and further discussions on design automation approaches to 

incorporate our proposed dual-ASV system with standard digital design process. 
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III. BOOSTABLE REPEATER DESIGN FOR VLSI INTERCONNECT 

 

1. Boostable Repeater Design 

 

A. Main Idea and Overview 

I attempted to achieve fine-grained circuit adaptation by making repeaters 

adaptable. Adaptability means that a repeater can be controlled to operate in either high 

performance or low power mode. The proposed boostable repeater design is to use a 

transiently high voltage rail to assist the VDD in high performance mode and simply turn 

off the high voltage in low power mode. In other words, the low power mode is the same 

as conventional static CMOS circuits. Since we do not want to incur stand-alone voltage 

regulator or additional power grid, the transiently high voltage must be somehow 

obtained from the existing VDD. Perhaps the only well-known solution for voltage up-

conversion is charge pump. The main drawback of charge pump is that it usually 

requires a large area of capacitor. Since the high voltage is needed transiently, the 

demand on the charge pump capacitor size is reduced. Since the high voltage here plays 

an auxiliary role on pulling-up signals, instead of being the sole supply voltage, the 

demand for the pump capacitor size is further reduced.  

Using transiently high voltage has another advantage. In fine-grained voltage 

adaptation, logic gates with different supply voltages are mingled together [10]. 

Specifically, a gate with low VDD may drive another gate with high VDD. Then, the 

PMOS transistor of the high VDD gate cannot be completely turned off and leakage 



 

 

43 

 

current consequently increases. Since our high voltage is enforced transiently, such 

leakage increase does not exist and no level shifter is needed in our case. 

An overview of our boostable repeater design is depicted in Figure III.1. It is 

composed by three parts: a conventional repeater, booster and control circuit. The core 

part is the booster, which is a capacitive charge pump. When the repeater is in steady 

state, the pump is charged. When the repeater has a rising switching, the pump 

discharges and provides a transiently voltage that is higher than VDD. This high voltage 

is applied together with the VDD to the repeater and therefore boosts the switching speed. 

Although capacitive charge pump is also employed in voltage regulator designs, our 

design has a key difference from that of stand-alone regulator. A stand-alone regulator 

needs to provide a steady voltage output and its design is much more complex and its 

 

Figure III.1. Overview of the proposed boostable repeater. 
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on-chip implementation causes huge overhead. In contrast, our charge pump only needs 

to provide a transiently high voltage.  Therefore, the design can be greatly simplified and 

the overhead can be largely reduced. The control circuit activates or disables this 

boosting function according to an “enable” signal, which is usually obtained from 

variation detection circuit. The implementation of variation detection can be any among 

[2, 24, 22, 23]. 

The booster adds extra load capacitance to the input and output node. Since 

boostable repeaters are usually inserted at timing-critical paths, we do not want the low 

power mode to be slower than conventional repeaters. As such, it is important to restrict 

the size of the extra load. Here, the boosting is applied to reduce only the rising delay. 

We focus on rising edge of signal since NBTI (Negative Bias Temperature Instability) 

effect [1] on pMOS device is severe than HCI (Hot Carrier Injection) [1] on nMOS 

device. However, the falling delay can also be reduced in the same manner with 

additional design and area cost only from another booster for falling edge. In our design, 

since the load presented to timing paths is limited, the rising delay reduction 

overshadows the small falling delay increase. 

In circuit design, one can judiciously select repeaters on timing critical paths and 

replace them with boostable repeaters. Since only a small portion of repeaters are 

replaced, the overall area overhead to an entire chip is very limited. The area overheads 

induced by the boostable repeaters will be further discussed in section III.2.F. 
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B. Design and Operations 

This section will first introduce the design and operations of the boostable 

repeater when the boosting feature is always on. Then, it will show the design on how to 

turn it off. 

 

1) Boosting On 

If the boosting feature is always on and cannot be turned off, i.e., not 

programmable, the design is a simplified version shown in Figure III.2(a). Transistor P2 

is the pass transistor that delivers current from Cpump to the output node. Transistor P1, 

N1 and the inverter between the output and node 2 coordinate the operations. The 

operations mainly include two phases: charging and boosting. 

a. Charging Phase 

Charging to the capacitor Cpump takes place when both the input and the output 

are stabilized to high, or VDD. Figure III.3(a) shows the waveforms in this phase. When 

the input and the output are high, P1 is off, N1 is on and V3 (voltage at node 3) is low. 

Since N1 is on, V1 (voltage at node 1) is at VDD – Vth,N1, where Vth,N1 is the threshold 

voltage of N1. Then, the pass transistor P2 is partially on and VDD at the output charges 

node 2 through P2. In other words, Cpump is charged. In Figure III.3(a), the voltage across 

Cpump is indicated by the difference between V2 and V3, which increases during the 

charging.  
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(a) Simplified schematic 
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(b) Complete schematic 

Figure III.2. Schematics of boostable repeater design. 
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(a) Charging phase 

 

 

(b) Boosting phase 

Figure III.3. Charging and boosting operations of boostable repeater. Figure (b) is an 

expended view of a region in (a) where input switches from low to high. 
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Voltage V2 at Cpump is raised higher than VDD when the input and the output 

switched to low. When the output is low, V3 goes to high due to the inverter. While the 

voltage difference across Cpump remains, V2 is raised beyond VDD. In Figure III.3(a), V2 

is raised to about 1.25V which is higher than 0.9V of VDD. When the input is low, N1 is 

turned off and P1 is turned on. Then, node 1 is connected with node 2 through P1, and 

V1 also reaches the same level as V2. Consequently, P2 is turned off and node is not 

connected with the output node any more. In Figure III.3(a), one can clearly see that 

both V1 and V2 reach 1.25V at time of 10.4ns. 

b. Boosting Phase 

The boosting occurs when there is a rising switching at the input. The 

corresponding waveforms are shown in Figure III.3(b). Due to the gate delays between 

the input and the output, there is a short time period when the output is still low even the 

input goes high. During this period, N1 is turned on and pulls V1 toward low. The low 

voltage at node 1 turns on pass transistor P2 and Cpump starts to discharge and pull up the 

output voltage, i.e., the boosting starts. At the same time, the input rising is propagated 

to the output and the output is pulled up by VDD as well. Evidently, the boosting 

accelerates the rising transition of the output and therefore improves switching speed. 

The main area overhead is due to pass transistor P2 and capacitor Cpump. Cpump can be 

implemented using trench cap [36], which is very area-efficient. The sizes of P1, N1 and 

the inverter between the output and Cpump are small. Thus, the extra capacitive load 

presented to the timing path is limited. Further discussions on the area overheads from 

pass transistor P2 and Cpump will be presented in section III.2.F. 
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In view of output load, boosting operation naturally demands extra strength from 

repeater output which may, if not properly addressed, hamper timing advantages from 

the proposed boostable repeater. According to Figure III.2(a), at the rising edge of the 

repeater output, the inverter driving Cpump contributes output load of repeater, whereas 

charges to the output are supplied by P2 and N1 (gate charge from node 1) as well. The 

inverter supports V3 (voltage at node 3) while Cpump is providing extra charges to the 

output for boosting. The inverter, therefore, needs to be sized wide sufficient to supply 

the current drain through Cpump, which in turn entails output load increase. When sizing 

the inverter, however, its switching speed is not a concern since the switching is only for 

raising V2 (voltage at node 2) up in charging phase which is not a timing critical 

operation. Accordingly, to minimize the extra output load from the inverter, we compose 

the inverter with three inverter gates where the 1st inverter driven by the repeater output 

can be size as small as possible, and the 3rd inverter driving Cpump is large enough to 

support V3. 

While rising transition gains speed-up from boosting, falling transition from the 

repeater output in Figure III.2(a) can be negatively affected by the extra components of 

the proposed boostable repeater design attached to its output. Figure III.4 provides 

falling transition as well as rising transition waveforms from the boostable repeater and a 

conventional repeater. Figure III.4(b) shows that 1.92ps of rising edge speed-up is 

achieved through boosting operation. According to Figure III.4(a), however, the 

boostable repeater slows down falling transition of its output by 0.39ps compared to a 

conventional repeater output which is reasonably small timing penalty with respect to 
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the timing gain of 1.92ps in rising transition. The rising timing benefit (1.92ps) from 

boosting operation which is 5 times larger than falling timing loss (0.39ps) can 

sufficiently diminish extra resources needed for addressing the falling transition timing 

penalty. 

 

(a) Falling edge waves. Switching from boostable repeater is 0.39ps slower than 

switching from a conventional repeater. 

 

 

(b) Rising edge waves. Switching from boostable repeater is 1.92ps faster than 

switching from a conventional repeater. 

 

Figure III.4. Transition waveforms from the proposed boostable repeater compared to 

a conventional repeater.  
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In order to further clearly compare accumulated timing benefits in rising 

transition as well as timing losses in falling transition due to the boostable repeaters, we 

constructed chains of 9 repeaters composed of either the proposed boostable repeaters 

only or conventional repeaters only. In rising transition through 9 repeaters, the 

boostable repeater boosts signal edge by 28.12ps, while it lags falling transition 5.65ps 

slower than a chain of 9 conventional repeaters. One can easily see that the accumulated 

timing gain in rising edge is about 5 times larger than timing loss in falling edge, just 

like the timing benefit from individual boostable repeater as discussed in the above 

paragraph. In the chain of 9 buffers, each one boostable repeater consumes 3.69µW 

more power compared to one conventional repeater. Simulation results conducted on 

logic circuits given in section 3.5, power reductions achieved through the proposed 

boostable repeaters are around 2~5mW which tells that the 3.69µW of power overhead 

from one boostable repeater is well overshadowed by significant global power savings. 

 

2) Boosting Off 

In Figure III.2(a), the boosting function cannot be turned off, i.e., not 

programmable. In order to allow it to be turned off, additional transistors must be added. 

The complete design with programmability is shown in Figure III.2(b). When the 

“Enable” signal is high, the circuit operates in the same way as that in Figure III.2(a). 

When “Enable” is low, the NAND2 gate outputs constant high. At the same time, 

transistor N2 is off and P3 is on. Therefore, pass transistor P2 is turned off. The booster 

part is disconnected from the output node.  
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Figure III.5 displays the waveforms of rising transitions at the output when the 

boosting is on and off. Additionally, the waveform from a conventional repeater is 

included. The conventional repeater is a couple of cascaded inverters, which are 

identical to the two inverters in Figure III.3(b). One can see that turning the boosting on 

can significantly reduce the rising delay. When the boosting is off, the rising delay has a 

small degradation compared to conventional repeater. 

 

2. Experimental Validation 

 

A. Experiment Setup 

The boostable repeater design was validated by various SPICE simulation-based 

experiments. In these experiments, Predictive Technology Model [35] of 45nm was 

Input Boostable Repeater, 

boosting ON 

Conventional Repeater 

Boostable Repeater, 

boosting OFF 

 

Figure III.5. Waveforms from boostable repeater when it is turned on and off. 
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employed for the transistor models in the SPICE simulations. When variation resilience 

was tested, process variations and NBTI-induced pMOS aging are considered and both 

of them are assumed to follow Gaussian distribution. For the process variations, we 

focus on gate length variation and threshold voltage variation. The standard deviations of 

gate length variation and threshold voltage variation are 5% and 6.7% of their nominal 

values, respectively (gate length variation: Gaussian µ=45nm, 3σ=15% of mean; Vth 

variation: Gaussian µNMOS=0.3423V µPMOS=-0.23122V, 3σ=20% of mean). For an aged 

circuit, additional threshold voltage degradation on pMOS transistors is considered and 

added on top of process variation. The mean and standard deviation of the degradation 

are 10% and 3.3% of the nominal values (additional Vth variation: Gaussian µ=10% of 

µPMOS, 3σ=10% of mean). We added the additional Vth degradation due to circuit aging 

to the Vth of each device which is already determined for process variation of the device. 

The process variations and threshold voltage degradations are also applied to all the 

components of boostable repeaters during simulation.  

 

B. Impacts of Design Parameters 

We investigated the impacts of two major design parameters, the size of pass 

transistor P2 and the capacitance Cpump. The simulation results are presented in Figure 

III.6. One can see that when either of P2 width or Cpump increases, the signal speed-up 

boosted through boostable repeater (the dotted line) also increases. This speed-up is 

achieved with the increase of voltage V2 (voltage at node 2) change (the solid line). 

Figure III.6(c) indicates that the V2 change and the speed-up gain naturally induce more 
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(a) V2 boost and signal speed-up w.r.t. Cpump size 

 

 

(b) V2 boost and signal speed-up w.r.t. P2 width (Cload = 70fF) 

 

 

(c) Signal speed-up and power consumption increase w.r.t. V2 boost 

 

Figure III.6. Increased voltage at node 2 beyond VDD (V2 - VDD) and signal speed-

up acquired through boosting w.r.t. major design parameters.  
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power consumption. These curves provide guidelines to choose the sizes of P2 and Cpump. 

Typically, we use 1.7µm width for P2 and 10fF for Cpump. 

Variations in the parasitic capacitances of devices in boostable repeater design 

may affect its boosting operations thereby cause variations in performance enhancement 

from signal boosting. We investigated effects from variations of source and drain 

parasitic capacitances of the pass transistor P2 which is the biggest and critical device in 

 

 

Figure III.7. Power and signal delay variations due to parasitic capacitance. Source 

and drain parasitic capacitance variations (Gaussian µ=100pF, 3σ=15% of mean) of 

P2 transistor are considered. 
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boostable repeater design. The variations of parasitic capacitances are assumed to follow 

Gaussian distribution (µ=100pF, 3σ=15% of mean). Boostable repeaters with parasitic 

capacitance variations are deployed in a interconnect network circuit, and Figure III.7 

presents corresponding power and critical path delay variations from 30 Monte-Carlo 

runs. Mean of power consumption is 352.8µW, and 3σ of power variation is 0.98 µW 

which is merely 0.28% of its mean. Distributions of signal delay variation also show 

very small deviations (3σ=1.28ps) from its mean (287.5ps) which is only 0.45% of the 

mean. This implies that effects from the parasitic capacitance variations on the overall 

performance of the proposed boostable repeater design are limited. 

 

 

Figure III.8. Signal speed-up w.r.t. the rising time (Trise) of input signal. The dotted 

line and dashed line show repeaters slow down as Trise increases. 
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The rising time of input signal also determines signal delay through a repeater. 

The dotted line and dashed line in Figure III.8 show how the signal rising time affects 

the signal delays from both repeater designs. One can see that the speed-up acquired 

through boostable repeater also rises as the delays increase. This speed-up gain in 

accordance with the extended input rising time occurs since the more charges in Cpump 

can be supplied to output before repeater in Figure 1 begins to pull the output up. Along 

with the speed-up, compared to circuit design with conventional repeaters, overall power 

overhead from the proposed boostable repeaters is maintained around 4% increase which 

can be overshadowed by 13~20ps of speed-up. This implies that boostable repeater 

design is more advantageous under situations with slow rising time of input, e.g., 

interconnects with larger loads. 

 

C. Simulations on Global Interconnect 

We tested the boostable repeater design in the context of global interconnect, 

which usually has long wires and a significant number of repeaters. The experiments 

were conducted on 4 global nets. Each net is tested for two different delay specifications 

and with/without aging. Hence, totally 16 cases are used. Table III.1(a) presents circuit 

configuration of each net informing the number of total repeaters in each net and the 

number of the proposed boostable repeaters replacing conventional repeaters. 

Our approach is compared with over-design and ASV (Adaptive Supply Voltage) 

[4] on variation/aging resilience. We conducted 15 runs of random test for each method 

on each case. Each run emulates a post-silicon instance.  We compared the proposed 
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boostable repeater design with over-design and conventional adaptive supply voltage 

(ASV). Conventional repeaters were employed in both the over-design and ASV. The 

over-design applied the same VDD level in all runs according to the worst case variations. 

For ASV, each run found its own VDD level that minimized the power and satisfied the 

delay specification. In our approach, a part of the repeaters were replaced by the 

boostable repeaters. The boosting function was turned on/off depending on the variations 

of each run. The boostable repeater design is applied jointly with ASV, since widespread 

variation can be covered by ASV while fine-grained variations on critical paths are 

handled with the proposed boostable repeaters.  

Table III.1. Benchmark circuit configurations with deployment of the proposed 

boostable repeaters. 

 

(a) Global interconnects 

# 

sinks 

# total 

repeaters 

# boostable 

repeaters 

10 34 7 

13 44 10 

16 73 15 

19 85 18 

 

(b) ISCAS ’89 sequential benchmark circuits 

Circuit 

# 

logic 

gates 

#FF 
# total 

repeaters 

# 

boostable 

repeaters 

S526 141 21 68 9 

S1423 490 74 168 23 

S5378 1004 179 1779 101 
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Table III.2. Voltage configurations and average results on power dissipation from simulations on interconnect networks. 

# 

sinks 

# total 

repeaters 

Maximum 

Delay (ps) 

Circuit 

Aging 

Over-design ASV Boostable Repeater + ASV 

VDD 
Power 

(µW) 
VDD 

Power 

(µW) 

# 

boostable 

repeaters 

VDD 
Power 

(µW) 

Power Reduction (%) 

vs. 

Over-design 

vs. 

ASV 

10 34 

300 
fresh 

0.9 
616 0.73-0.89 358 

7 

0.68-0.77 244 60.2 29.4 

aged 526 0.74-0.9 346 0.7-0.78 242 53.9 27.9 

333 
fresh 

0.75 
279 0.63-0.73 179 0.61-0.67 144 48.1 18.0 

aged 248 0.66-0.75 181 0.63-0.69 146 40.9 18.0 

13 44 

320 
fresh 

0.9 
652 0.74-0.88 387 

10 

0.69-0.78 298 54.5 21.3 

aged 587 0.76-0.9 392 0.71-0.78 291 50.5 23.0 

350 
fresh 

0.77 
337 0.64-0.74 211 0.62-0.68 188 44.4 10.3 

aged 302 0.68-0.77 222 0.64-0.7 191 36.9 12.6 

16 73 

400 
fresh 

0.92 
836 0.72-0.89 417 

15 

0.64-0.73 288 65.6 29.3 

aged 760 0.75-0.92 443 0.66-0.75 300 60.5 30.5 

435 
fresh 

0.81 
498 0.66-0.78 285 0.6-0.68 225 54.8 19.5 

aged 453 0.69-0.81 300 0.62-0.7 232 48.7 21.1 

19 85 

400 
fresh 

0.98 
1147 0.75-0.95 555 

18 

0.67-0.77 371 67.7 31.0 

aged 1045 0.79-0.98 591 0.68-0.79 390 62.7 32.0 

455 
fresh 

0.8 
509 0.65-0.77 299 0.6-0.68 250 50.9 15.4 

aged 465 0.68-0.8 311 0.61-0.7 258 44.4 15.9 
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The results are listed in Table III.2. For all methods, we compared power 

dissipation for the same maximum sink delay. The average power dissipations are the 

average results over the 15 random instances of each design. The power estimation here 

is from SPICE simulations and includes both dynamic and leakage power. On the 

average, the boostable repeater design combined with ASV can reduce power by 52.8% 

and 22.2% compared to over-design and conventional ASV, respectively. We further 

compared the power-delay tradeoff curves of our approach with the conventional ASV. 

The curves are depicted in Figure III.9. One can see that solutions of our approach are 

superior to those from conventional ASV in terms of the entire power-delay tradeoff.  

   

 

Figure III.9. Power-delay curves for interconnect networks. Boostable repeater 

design is compared with adaptive supply voltage (ASV) when circuit is fresh or aged. 
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D. Comparison with Online Adjustable Buffer 

We also compared the proposed boostable repeater design with online adjustable 

buffer (OAB) [17]. The results are depicted in Figure III.10. Simulations were performed 

on the global net with 10 sinks. The OAB is implemented to have the same area 

overhead as the boostable repeater design. In Figure III.10, the power-delay curves from 

different repeaters are presented. The dashed lines represent results from OAB, and the 

solid lines with x markers indicate results from the boostable repeater. The performance 

of conventional repeater design is given through the dotted lines. In all cases when the 

repeaters and buffers are ON or OFF, the proposed boostable repeater design exhibits 

better power efficiency than OAB. Boosting off for OAB means its tri-state buffer is 

turned off. One can see that the performance-power of boostable repeater in off mode is 

 

     

 

Figure III.10. Power-delay curves to compare the proposed boostable repeater with 

online adjustable buffer (OAB). 
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very close to the conventional repeater. This means its extra load to timing path is 

significantly less than that of OAB.  

 

E. Simulations on Logic Circuit 

The boostable repeater design is also tested in logic circuit. We employed 

ISCAS’89 benchmark circuits S526, S1423, and S5378 as test beds. Similar to the 

experiment of global interconnect, which is described in Section III.2.3, we compared 

methods of over-design and ASV only system against the proposed approach which 

integrates boostable repeater with ASV system. Table III.1(b) describes the number of 

repeaters and boostable repeaters deployed in each circuit. The results on the testbeds are 

summarized in Table III.3. The 6th and 8th columns show power dissipations from over-

designed and conventional ASV system respectively. The power dissipation from our 

approach is presented in the 11th column. The power reductions achieved with the 

boostable repeater are listed on the 12th and 13th columns of Table III.3, and the average 

of reductions are 45.9% and 25.8% compared to over-design and conventional ASV, 

respectively.  

The bars of Figure III.11 show more clear comparison in power consumptions 

between three systems. The leftmost bar is for the power consumed in over-design 

system, the middle is for conventional ASV, and the rightmost bar is for our approach 

with boostable repeaters. Our proposed system shows the best power efficiency among 

all the systems. Figure III.12 depicts the power-delay curves comparing ASV and our 
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Table III.3. Voltage configurations and average results on power dissipation from simulations on ISCAS’89 benchmark circuits. 

 

# total 

repeaters 

Max. 

Delay 

(ps) 

Circuit 

Aging 

Over-design ASV Boostable Repeater + ASV 

 

VDD 
Power 

(mW) 
VDD 

Power 

(mW) 

# 

boostable 

repeaters 

VDD 
Power 

(mW) 

Power Reduction (%) Area 

over- 

head 
 

vs. 

Over-design 

vs. 

ASV 

S526 68 

165 
fresh 

0.93 
12.70 0.74-0.89 8.48 

9 

0.7-0.78 5.88 53.6 % 29.2 % 

4.4% 
aged 11.80 0.78-0.93 9.27 0.73-0.8 6.25 47.2 % 31.2 % 

176 
fresh 

0.86 
9.70 0.7-0.82 6.33 0.66-0.73 4.70 51.6 % 24.8 % 

aged 9.06 0.73-0.86 6.86 0.68-0.76 4.98 45.1 % 26.2 % 

S1423 168 89 
fresh 

1.06 
14.19 0.84-1.04 10.00 

23 
0.79-0.89 7.52 47.0 % 23.4 % 

5.3% 
aged 13.84 0.88-1.06 10.69 0.81-0.95 7.98 42.4 % 23.5 % 

S5378 1779 216 
fresh 

1.07 
33.96 0.90-1.01 24.71 

101 
0.83-0.91 19.15 43.6 % 22.0 % 

4.7% 
aged 32.74 0.94-1.07 28.29 0.86-0.94 20.80 36.5 % 25.7 % 

                    

(a) Total circuit power consumptions are compared.              (b) Circuit powers are normalized to over-design circuit. 

Figure III.11.    Power consumption comparison for boostable repeater design. Significant power reductions are achieved 

through boostable repeater design throughout all the cases examined. 
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Figure III.12.    Power-delay curves for boostable repeater design. Boostable 

repeater design is compared with adaptive supply voltage (ASV) when circuit is 

fresh or aged. 
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approach. One can see that our approach outperforms conventional ASV only system in 

all cases. Figure III.13 presents iso-delay power reductions of our approach versus ASV 

only system when VDD varies. One can see that the power reduction is more when the 

circuit runs in high performance mode. 

 

F. Peak Current and Leakage 

We also examined the impacts of the boostable repeater design on peak current 

and leakage current. The peak current drawn from repeaters are critical since it 

exaggerates power supply noise. More decaps, hence larger area overhead, are required 

if the noise worsens. The peak currents demands from repeater designs are given in 

Figure III.14(a). The boostable repeater design shows up to 26% reduction in peak 

current flow compared to conventional repeaters in ASV system with similar signal 

speeds. Leakage current from repeaters is also one of the most significant issues due to 

 

Figure III.13. Power reduction vs. VDD levels from boostable repeater compared to 

adaptive supply voltage (ASV). 
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the vast number of repeaters and their huge current demands in modern circuits. 

According to Figure III.14(b), the leakage current also reduces from 32% up to 48% if 

boostable repeater design is applied. The reductions on both peak and leakage current 

are mostly achieved by lowering down the global VDD levels while providing equal 

signal speed through boostable repeaters. Actually, each boostable repeater flows 

leakage current 45% ~ 80% more than a conventional repeater. However, the boostable 

 

(a) Peak current demands from repeaters 

 

(b)  Leakage current through repeaters 

Figure III.14. Peak current / leakage current vs. delay. 
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repeaters replace only a small portion (up to 22% in our cases) of all repeaters in a 

circuit so that their contribution on whole circuit current flow is limited. In our cases, all 

boostable repeaters in a circuit draw current from 2.8% up to 4.5% among whole leakage 

current flow throughout a circuit. In accordance with the curves in Figure III.14, the 

extra current demand from individual boostable repeater is well overshadowed by huge 

reduction on overall current flow due to the lowered VDD level. 

The highly raised voltage level V2 at net 2 in Figure III.2(a) causes forward 

junction bias at the transistors attached to the net, since V2 increases over VDD level. 

Forward biased source-body junction induces leakage current from source to substrate. 

We observed that, when V2 is higher than VDD, the leakage current to substrate terminal 

from source connected to V2 is around 1nA while leakage from the source to its drain is 

around 0.7µA. Since substrate leakage is merely 0.15% of drain leakage, the forward 

junction bias does not seriously affect and/or worsen current leakage issues caused by 

the proposed boostable repeater design. 

  When both input and output are low, the charges in Cpump leaks through P2 

transistor in Figure III.2(a), and this leakage finally causes depletion of Cpump. If Cpump is 

fully depleted, therefore the voltage level V2 at net 2 in Figure III.2(a) is not higher than 

VDD any longer, the boosting capability of the proposed boostable repeater disappears. In 

our experiments of interconnect networks and logic circuits presented in section III.2.C 

and III.2.E, one boostable repeater maintains its boosting capability up to around 100ns 

on average. This means, in giga-hertz system, tens of clock cycles with low input status 

are permitted for the proposed boostable repeater to wait for a rising edge to boost.   
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Figure III.15 presents further analysis on how performance enhancement from the 

proposed boostable repeater degrades when input low status lengthens. If input stays low 

logic level longer than 90ns, then Cpump is depleted so that boostable repeater cannot 

boost its output. Due to the charge leakage from Cpump, average power consumption also 

slightly increases as low input status extends. This leakage phenomenon may limit 

applicability of the proposed boostable repeaters, while it achieves significant 

performance enhancement in critical paths with frequent switching activities, i.e., high 

activity factors. The higher activity factor in turn aggravates circuit aging effect so that 

the proposed boostable repeater can more effectively handles the variation. 

 

Figure III.15. Performance enhancement degradation due to leakage. Performance 

enhancement from the proposed boostable repeater degrades in accordance with 

longer duration of low input state due to charge leakage from Cpump. 
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(a) Propagated noise output peak for low to high rising glitch noise input seed 

when input is low 

 

(b) Propagated noise output peak for high to low falling glitch noise input seed 

when input is high 

 

Figure III.16. Noise characteristics of the proposed boostable repeater and 

conventional repeater. 
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G. Impacts on Noise Immunity 

As discussed in section III.2.F, each individual boostable repeater causes larger 

leakage current than conventional repeater which may induce noise immunity 

degradation, even though the leakage is well compensated by significant block-wide 

benefits. Figure III.16 compares propagated noise peaks of the proposed boostable 

repeater against noise propagations of conventional repeater. A triangular noise seed 

determined by its peak voltage level with fixed 200ps duration is given into each 

repeater input, and the peak voltage of its corresponding propagated output noise is 

observed. Two types of noise seeds are simulated, one is for rising glitch noise when 

input is low, and the other is for falling glitch noise when input is high. According to 

Figure III.16(a), the proposed boostable repeater worsens noise propagation of rising 

glitch noise because of leakage current through P2 in Figure III.2(a). However, noise 

propagation of falling glitch noise is reduced from boostable repeater output as given in 

Figure III.16(b), due to the extra output load from boostable repeater design. In all cases, 

VDD = 0.8V. 

Although the proposed boostable repeater degrades noise immunity for rising 

glitch noise, the noise propagation can be well addressed on account of CMOS noise 

immunity. Figure III.17 reports noise margins of CMOS inverter implemented on 45nm 

Predictive Technology Model [35] utilized in our experiments. In accordance with the 

noise margins of CMOS inverter, the maximum allowed input low noise VIL is 0.347V. 

As given in Figure III.16(a), even with noise seeds with significantly high peak values, 

the peaks of propagated noise from boostable repeater are well lower than VIL. 
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H. Temperature Variations 

Circuit performance degrades with temperature increase. We analyzed 

temperature dependency of the proposed boostable repeater design in comparison with 

conventional repeaters. Although this work mainly focuses on threshold voltage 

variation and gate length variation, temperature dependency of boostable repeater design 

needs to be also addressed to propose a predictable device design approach. If device 

performance degrades irregularly and unpredictably with respect to temperature, the 

device may not be easily applicable to standard design processes.  

Figure III.18 presents performance (power and signal delay) variations of circuit 

designs with boostable repeaters or conventional repeaters in accordance with 

temperature increase. VDD of each type of circuit design is initially adjusted to meet the 

same timing constraints at 25°C. Simulation linearly sweeps temperature from 25°C to 

 

Figure III.17. CMOS inverter noise margins on 45nm PTM [35]. VOH=0.725V, 

VOL=0.067V, VIL=0.347V, and VIH=0.493V. NML=VIL - VOL=0.28V, 

NMH=VOH – VIH=0.232V 
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125°C. According to Figure III.18 (a) and (b), both power and signal delay from the 

circuit design with the proposed boostable repeaters degrade linearly and predictably, 

very similar to the circuit design with conventional repeaters. 

 

(a) Power consumption variation w.r.t. temperature 

 

(b) Signal delay variation w.r.t. temperature 

 

Figure III.18. Circuit performance variations w.r.t. temperature increase. VDD of 

circuits are initially configured to show the same signal delay at 25°C.  
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I. Area Overhead 

Compared to conventional repeater design, the boostable repeater design has 

overhead on both device area and metal area. The device area overhead is due to the 

extra transistors employed in the design. The experimental results on the global 

interconnect show that the boostable repeaters cause about 20% additional device area in 

these global nets. Since boostable repeaters are needed only in timing critical nets, which 

is usually a small portion of entire netlist, the overall device area overhead for a chip is 

very limited. According to [20], typically 5-10% of all nets are timing critical in 

industrial designs. Hence, the chip-wise device area overhead is expected to be around 

2%. When boostable repeaters are applied in logic circuits, S526, S1423, and S5378, the 

device area overheads are only 4.4%, 5.3%, and 4.7% respectively, according to Table 

III.3. 

Cpump is one of the major components of boostable repeater design which 

dominates area overhead as well as determines performance enhancement. A larger 

capacitance allows faster rising edge, while it incurs increased die area overhead as well. 

Figure III.19 shows how Cpump sizing impacts circuit resources, power and area. The 

curves are all aligned to meet a certain delay constraints. The dotted curves with 

rectangles represent the whole circuit power consumption trends in accordance with the 

size of Cpump capacitance. Tendency of area overheads (%) compared to the circuits with 

conventional repeaters are shown with the solid curves with triangles. Through the solid 

curves, one can easily see that enlarging charge pump keeps linearly adding extra area 
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overhead which comes from resizing internal devices of boostable repeaters as well as 

resizing Cpump itself.  

However, ever enlarging the capacitance does not mean that circuit performance 

keeps enhancing, according to the dotted curves in Figure III.19. One can see that the 

power efficiency touches its maximum at around 10fF of capacitance, and it begins to 

degrade. This is because of limitations such as saturated boosting of internal high 

 

 

Figure III.19.    Effects from the sizing of Cpump on circuit resources. All cases are 

adjusted to yield an equal circuit delay. 
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voltage rail (voltage at node 2 in Figure III.2(b)), high leakage from the boosted rail, etc. 

Furthermore, the larger a Cpump is sized, the bigger other internal devices of boostable 

repeater grow as well to support current through Cpump, and this induces extra load on the 

signal path.  

In order to further minimize area overheads from Cpump in the boostable repeater 

design, capacitor Cpump is implemented by trench cap [36], which is very area-efficient 

and has low leakage. Trench cap has been employed as decap in industrial designs [36]. 

Capacitor Cpump of 10-20fF can be easily implemented by a single trench decap. Instead 

of the trench capacitor technique which is available in several processes [37], one can 

implement Cpump with metal-insulator-metal (MIM) capacitor [38] which can be 

integrated in standard CMOS technologies, and has high capacitance density as well. 

Since a chip design typically includes a tremendous number of decaps, the overall area 

overhead from Cpump is negligible. 

 

3. Conclusions 

In this work, we proposed a new technique of boostable repeater design, which 

can transiently boost its switching speed. This technique can be applied to achieve 

variation and aging resilience in a power efficient manner. Experimental results show 

that when the boostable repeater design is integrated with ASV, the same performance 

and robustness with over 25% less power than using ASV alone. Our approach also 

significantly outperforms the previous work on online adjustable buffer. In future 
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research, we will further investigate the application of boostable repeaters in dynamic 

power management.  
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IV. BUILT-IN DELAY TESTING SCHEME 

 

1. Adaptive System Design 

This work presents an adaptive variation handling system composed of delay 

error detection and variation compensation. The proposed system is illustrated in Figure 

IV.1(a). A built-in delay testing scheme runs to monitor process variation or circuit 

aging induced delay faults. The proposed testing scheme uses dynamic clock skew 

control which manipulates timing constraints of a critical path so as to gauge the actual 

signal delay of the path. If a delay fault is detected, the dynamic clock skew control is 

now applied again to tune clock periods in order to mitigate the fault.  

The proposed built-in delay testing scheme is initiated in a similar way that a 

BIST system checks circuit blocks. When circuit is fresh, and it shows variations due to 

process variations only, testing procedure runs once after chip fabrication. In the course 

of normal circuit operations, circuit aging proceeds slowly as transistors are switching 

for a long period of time. To monitor aging induced timing variations, testing procedure 

regularly runs according to scheduled intervals which are short enough to catch delay 

fault in advance, and long as well enough not to interrupt normal operation of the circuit. 

Since we exploits SCAN architecture as shown in Figure IV.1(a), the proposed delay 

testing scheme can share the testing vectors generated through ATPG (automatic test 

pattern generator) which perform other BIST procedures for fault detections at the same 

time. 
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(a) Proposed adaptive system with area-efficient built-in delay testing scheme 
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(b) Dynamic clock skew control block 

 

Figure IV.1. Overview of the proposed built-in delay testing scheme with SCAN 

chain architecture. Dynamic clock skew control is applied to diagnose delay variation 

as well as to compensate the variation. 
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We propose a built-in delay testing scheme which is area-efficient and consumes 

low average testing power. Design and operation of the proposed built-in delay testing 

scheme is provided in section IV.1.A. In compensation procedure after variation is 

detected, the proposed system exploits dynamic clock skew control which is already 

embedded in the built-in delay testing system. In combination with dynamic skew 

control, boostable repeaters proposed in chapter III are limitedly deployed to focus on 

NBTI induced circuit aging effect. Section IV.1.B describes the proposed variation 

handling approach further in detail. 

 

A. Area-Efficient Built-In Delay Testing Scheme 

The overview of the proposed built-in delay testing scheme is given in Figure 

IV.1(a). The system can be divided into two major tasks, clock skew control and circuit 

response comparison. The skew control block in Figure IV.1(a) tunes clock period 

(TCLOCK) to the combinational logic block under test in order to diagnose delay variation 

from the block. If a response from the block with TCLOCK,SHORT (reduced TCLOCK through 

clock tuning) is different from TCLOCK,LONG (extended TCLOCK), then we can presume that 

the circuit block cause delay fault with TCLOCK,SHORT. Circuit responses from the block 

under test with variable TCLOCK are checked through comparison system which is based 

on SCAN chain as shown in Figure IV.1.(a), and it flags delay fault signal if necessary. 

Dynamic clock skew tuning allows flexible clock period (TCLOCK) borrowing and 

lending between adjacent logic blocks connected through flip-flops. Figure IV.1.(b) 

presents a simple implementation of the skew control block whose MUX selects clock 
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arriving time to each flip-flop. If a block delay (TBLOCK,FAST) is faster than TCLOCK, the 

block can lend a portion of its clock period to adjacent blocks whose TBLOCK,SLOW is 

closer to TCLOCK than TBLOCK,FAST. This flexible clock tuning functionality is employed in 

the proposed built-in delay testing scheme in order to diagnose delay variation as well as 

to mitigate the variation. The skew control block given in Figure IV.1(b) tunes clock 

arrival time with δ resolution. Suppose T is the global clock period without dynamic 

clock skew control. The maximum available clock period to the circuit block under test 

(TCLOCK,MAX) is T + 2δ through skew tuning, and the minimum (TCLOCK,MIN) is T - 2δ. The 

proposed built-in delay testing scheme assumes that a circuit response from TCLOCK,MAX is 

the correct response from the block. Then we iteratively subtract δ from TCLOCK,MAX 

through skew tuning (from TCLOCK,MAX – δ down to TCLOCK,MIN), and observe 

corresponding circuit responses to check if current response with reduced TCLOCK differs 

with the correct response with TCLOCK,MAX. If current response is different from the 

correct response, variation compensation system takes an action to mitigate the situation. 

If the circuit is fresh, and its variation is induced only by process variation, then the 

dynamic clock skew control has already determined a proper clock skew to handle the 

variation. For example, if TCLOCK = TCLOCK,MAX - 3δ yields a different response compared 

to the correct response with TCLOCK,MAX, then TCLOCK = TCLOCK,MAX - 2δ is the shortest 

tuned clock period (TCLOCK,TUNED) to the block for compensating process variation effect. 

Under the circuit aging effect, we begin the built-in delay testing procedure from 

TCLOCK,TUNED, not from TCLOCK,MAX - δ. If, due to circuit aging effect, TCLOCK,TUNED yields 
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a response which differs with the correct response from TCLOCK,MAX, a delay fault is 

flagged, and circuit aging compensation procedure operates. 

The proposed built-in delay testing scheme exploits SCAN chain architecture to 

implement circuit response comparison part of testing procedure. SCAN chain is a well 

known and widely applied BIST DFT (Design for Testability) technique in VLSI circuit 

design. BIST system allows a fabricated chip by itself to diagnose any defects and 

degradations of its internal circuit blocks after production. SCAN chain in BIST is to 
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Figure IV.2. A common structure of built-in self test (BIST) SCAN chain architecture 

(a) with muxed-D SCAN cells (b). Figure (b) is the simplest SCAN cell design. 
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deliver testing vectors from pattern generator to logic block under test, to inject the 

vectors into the block, to capture response from the block, and finally to shift out the 

responses for diagnosis of the block’s current status. Figure IV.2 depicts a basic structure 

of SCAN chain architecture with Muxed-D SCAN cell. Flip-flops in circuit design are 

selectively replaced with the SCAN cells to form multiple shift registers named SCAN 

chains as described in Figure IV.2(a). The Muxed-D SCAN cell in Figure IV.2(b) is the 

simplest design of SCAN cell which is composed of a regular D type flip-flop and a 

MUX. The MUX selects its input signal to the D flip-flop between data input (DI) from 

combinational logic circuit or scan input (SI) from SCAN chain in accordance with scan 

enable (SE) signal. The scan out (SO) of the SCAN cell drives scan input (SI) of its next 

SCAN cell, and this connection forms a shift register of SCAN chain architecture. BIST 

system with SCAN chain is a generally used component in modern VSLI design, and 

well supported by various CAD tools. 

In the proposed built-in delay testing scheme, we implement response 

comparison part with the SCAN chain connection from SO to SI between adjacent 

SCAN cells. In the overview of the proposed system shown in Figure IV.1(a), the SCAN 

cell A is monitoring the critical path from the combinational logic block, and the cell A 

is connected to the next SCAN cell B through SCAN chain connection from SO to SI. In 

the proposed testing scheme, the cell B is working as a storage to save the correct 

response from the combinational logic block with TCLOCK,MAX as described in the clock 

skew tuning procedure above. The correct response captured by the cell A is transferred 

to the cell B through SCAN chain between them. The SCAN chain is separated by a tri-
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state buffer to retain the correct response saved in the cell B through testing procedure. 

With the reduced clock period (TCLOCK,MAX – iδ, where i =1,2,3,4 ), the circuit block 

yields responses, and the XOR compares them against the correct response saved in the 

cell B. 

Figure IV.3 depicts control signals and internal waves of the proposed built-in 

delay testing scheme described above. The waves show how our system adjusts clock 

skews until it detects delay fault. At first, the combinational circuit is tested with the 

maximum clock skews (TCLOCK,MAX) which is known to be fault-free, and the correct 

 

 

Figure IV.3. Control signals and internal waves of the proposed built-in delay testing 

scheme. 
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circuit response is saved into the next SCAN cell connected through SCAN chain. Then, 

the same vector is given with reduced clock skew which may cause delay fault due to 

tighter timing constraint. The circuit response from the second case is compared with the 

saved correct response, and the error signal is flagged if the two responses are different. 

The proposed built-in delay testing scheme is very area efficient, since most of 

its components are designed to be shared by multiple functionality.  In the common 

SCAN chain architecture, we simply added a tri-state buffer in the chain. Dynamic clock 

skew control block contributes to delay variation testing procedure as well as to the 

variation compensation system. Testing signal generation block given in Figure IV.1 (a) 

is implemented as a globally shared module so as to give the control signals to all testing 

modules simultaneously. Detailed analysis on area overhead from our approach 

compared to existing pervious testing techniques will be given in section IV.2.B. 

 

B. Variation Compensation Procedures 

We present a combined variation handling system to handle both process 

variation and NBTI induced circuit aging effect. The proposed system employs dynamic 

clock skew control to mitigate process variation. The skew control block is already 

embedded in the delay testing scheme described in section IV.2.A. As discussed above, 

tuning clock skews against process variation is performed and determined 

simultaneously with the proposed delay testing procedure. On top of process variation, 

when circuit aging effect degrades performance, we activate boostable repeaters 

proposed in chapter III. In this variation compensation system, boostable repeaters are 
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(b) TCLOCK with dynamic clock skew control 

 

Figure IV.4. Variation mitigation through dynamic clock skew control. Both 
1D̂  and 

2D̂ may have variations with respect to their nominal values. When 
1 2

ˆ ˆD D , 

dynamic clock skew control (b) can maintain TCLOCK under the variation with 

borrowed skews, while zero skew clocking (a) needs to add 1D  to TCLOCK to evade 

delay fault due to 
1D̂  variation. 
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secondary modules which assist dynamic clock skew control to efficiently mitigate aging 

effects. This approach is to maximize usage of dynamic clock skew control because it is 

a basic component of the proposed built-in delay testing module. In this reason, 

boostable repeaters are deployed in a restricted manner enough only to assist circuit 

aging mitigation. 

Figure IV.4 presents how dynamic clock skew control in the proposed adaptive 

system handles variation. Each combinational logic block in the Figure IV.4 takes delay 

of D (D1 or D2) for signals to pass its critical path, and the delay may also be affected by 

circuit variation, δD. 
1D̂  and 

2D̂ are degraded delays from the circuit blocks with respect 

to their nominal values. Suppose 
1 2

ˆ ˆD D  so that global clock period (TCLOCK) is 

determined by 
1D̂ . According to Figure IV.4(a), conventional clocking system with zero 

skew requires to increase TCLOCK by δD1 ( 1, 1CLOCK SETUP NOMINAL DT T D    ) to avoid any 

delay fault induced by δD1 variation. However, in the proposed adaptive system with 

dynamic clock skew control given in Figure IV.4(b), δD1 variation can be compensated 

without increasing TCLOCK. Suppose we control the clock skew at 
,2CKT , and 

2D̂ has room 

for 1D such that 
1, 2 1

ˆ
NOMINAL DD D   . Now, we can borrow 1D from 

,2CKT through 

dynamic skew control while 
2D̂ cause no delay fault. Therefore, in the proposed adaptive 

system, we do not need to increase TCLOCK to mitigate δD1 variation, and still 

1,CLOCK SETUP NOMINALT T D   which is 1D smaller than the zero-skew clocking case in 

Figure IV.4(a). 
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Table IV.1. Signal delay variations of sequential benchmark circuits due to process 

variation. Through Monte-Carlo simulations, each row represents one case of process 

variation, i.e., one individual fabricated chip.
 

 0.5 max( ) min( )D delay delay    . 

The maximum delay and the minimum delay of each circuit are highlighted. 

 

  S526 circuit S1423 circuit  S5378 circuit  

#chip 

VDD 
Power 

(mW) 

Path 

delay 

(ps) 

VDD 
Power 

(mW) 

Path 

delay 

(ps) 

VDD 
Power 

(mW) 

Path 

delay 

(ps) 

1 

0.9 

3.245 68.5 

0.9 

8.88 92.4 

0.9 

20.32 214.4 

2 3.244 74.1 8.85 87.4 20.51 213.2 

3 3.25 74.8 8.91 86.5 20.76 212.8 

4 3.251 70.8 8.96 94.4 20.46 225.2 

5 3.245 68.9 8.91 88.4 20.85 225.5 

6 3.25 70.6 8.89 85.0 20.73 223.2 

7 3.243 72.3 8.91 87.0 20.46 223.3 

8 3.25 73.9 8.87 91.0 20.72 226.1 

9 3.257 77.5 8.98 93.7 20.29 225.4 

10 3.243 70.4 8.88 90.0 20.49 220.1 

   δD = 4.5 ps   δD = 4.7 ps   δD = 6.6 ps 

 

 

Table IV.2. Estimated maximum power reduction achievable through δD gain in 

TCLOCK through dynamic clock skew control. One chip (one process variation case) 

per circuit is examined, and power reduction is measured through lowering VDD 

down until the relaxed timing constraints by δD are still satisfied. 

 

 S526 circuit S1423 circuit S5378 circuit 

VDD 
Power 

(mW) 

Path 

delay 

(ps) 

VDD 
Power 

(mW) 

Path 

delay 

(ps) 

VDD 
Power 

(mW) 

Path 

delay 

(ps) 

1 4.27 65.2 0.98 11.3 85.6 0.96 24.53 213.3 

0.87 2.975 69.9 0.9 8.88 90.0 0.9 20.49 220.1 

Power reduction 

= 30.3% 
δD=4.7ps  

Power reduction 

= 21.4% 
 δD=4.4ps  

Power reduction 

= 16.5% 
δD=6.8ps   
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In terms of power consumption, the proposed adaptive system with dynamic 

clock skew control can tune logic circuit blocks to consume less power while providing 

the same circuit performance thanks to the relaxed timing constraints compared to 

conventional zero-skew clocking as discussed above. The 1D difference in TCLOCK 

between conventional zero-skew clocking and dynamic clock skew control can be 

converted to power reduction through reducing VDD. The actual D variation under 

process variation is analyzed through simulations on sequential benchmark circuits, and 

their delay variations ( D ) are given in Table IV.1. S526, S1423, and S5378 ISCAS’89 

benchmark circuits are simulated with process variation (gate length variation: Gaussian 

µ=45nm, 3σ=15% of mean; Vth variation: Gaussian µNMOS=0.3423V µPMOS=-0.23122V, 

3σ=20% of mean). Monte-Carlo iterations yielded 10 random cases which imply 10 

fabricated chips, and their critical path delay are measured.  Their path delay varies in 

accordance with process variation, and δD of each circuit is one half of the maximum 

variation,  0.5 max( ) min( )D delay delay    . Table IV.2 estimates the maximum 

achievable power reduction through the relaxed timing constraints by δD. In each circuit, 

VDD is lowered down until it still satisfies the relaxed timing constraints. For example, in 

S526 circuit, when VDD = 1V, the critical path delay is 65.2 ps. Suppose we can give 

δD=4.7ps of relaxed timing constraint to the path through dynamic skew control, then 

VDD can be reduced down to 0.87V only to meet 69.9 ps (65.2ps + δD), thereby 30.3% 

less power consumption is achieved. Theoretically, this is the maximum estimation of 

power reduction where we assumed that δD can be certainly borrowed in total. If 
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adjacent blocks have not enough timing margins, adaptive system merely borrows skews 

less than δD which in turn yields power reduction less than the maximum estimation. 

 

2. Experimental Validation 

 

A. Simulation Configurations 

The proposed built-in delay test scheme in conjunction with dynamic skew 

control and boostable repeater is tested by SPICE simulations on benchmark circuits and 

compared with conventional methods. The benchmark circuits are S526 and S1423 from 

ISCAS 89 suite in 45nm technology. The device models of 45nm technology from PTM 

[35] are employed. The characteristics of the two benchmark circuits are shown in Table 

IV.3. The 5th column of Table IV.3 tells the number of critical paths as well as the 

number of built-in delay testing modules monitoring the paths. The number of FFs with 

dynamic clock skew control is given in the 6
th

 column. The 7th column indicates the 

number of repeaters in each circuit, and the rightmost column lists the number of 

repeaters which are replaced with boostable repeaters. In this configuration, process 

Table IV.3.    Circuit characteristics and experimental setup for the proposed adaptive 

system. 

 

circuit #gates #FF 

Built-in delay test module 
#FF  with 

dynamic clock 

skew control 

Boostable-repeater 

#SCAN 

FF 

# critical paths 

monitored with 

test module 

# 

total 

repeaters 

# 

boostable 

repeaters 

S526 193 21 14 4 8 68 4 

S1423 657 74 50 13 26 168 14 
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variation is compensated by dynamic clock skew control, and circuit aging effect is 

handled by both boostable repeaters and dynamic clock skew control. 

Two kinds of variations are considered in the experiment: manufacturing process 

variations and NBTI-induced pMOS performance degradation. All these variations are 

assumed to follow Gaussian distribution. For the process variations, we focus on gate 

length variation and threshold voltage variation. The standard deviations of gate length 

variation and threshold voltage variation are 5% and 6.7% of their nominal values, 

respectively (gate length variation: Gaussian µ=45nm, 3σ=15% of mean; Vth variation: 

Gaussian µNMOS=0.3423V µPMOS=-0.23122V, 3σ=20% of mean). For an aged circuit, 

additional threshold voltage degradation on pMOS transistors is considered. The mean 

and standard deviation of the degradation are 10% and 3.3% of the nominal values, 

respectively (additional Vth variation: Gaussian µ=10% of µNMOS or µPMOS, 3σ=10% of 

mean). The process variations and threshold voltage degradations are also applied to all 

the components of the proposed built-in delay testing scheme, dynamic clock skew 

control, as well as boostable repeaters. Due to overly long simulation time, we ran 10 

random Monte-Carlo iterations considering process variation and aging effects, instead 

of full-fledged Monte Carlo test on each circuit. 

 

B. Overheads from Delay Fault Detection Modules 

Area overhead from delay error detection system is an important factor to 

compose adaptive design to mitigate fine-grained variation. Compensation components 

can effectively focus extra resources on severely degraded paths only if sensors are 
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deployed in a widespread way so as to monitor as many critical paths as possible. If 

delay fault detection system occupies large die area, adaptive approach loses its 

advantage against over-design approach which simply enlarges devices. In Figure IV.5 

(a), area overhead from our proposed built-in delay testing scheme is compared with two 

other techniques, one is a well-known double-sampling flip-flop design of Razor [23], 

and the other is a built-in aging sensor presented in [24] which sets a guard-band to 

detect/prevent delay error. We deployed sensors in ISCAS89 benchmark circuits, and in 

each case, the sensors are monitoring the same number of critical paths for fair 

comparison. According to Figure IV.5 (a), the proposed built-in delay testing scheme 

 

 

(a) Area overhead comparison               (b) Power overhead comparison 

Figure IV.5. Area and power overhead comparison between the three delay fault 

detection approaches. The rightmost bars represent overheads from the proposed built-

in delay testing scheme, and show clear benefits against the other two approaches. 
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represented by the rightmost bars shows significantly low area overhead compared to the 

other two techniques. This considerably low overhead can be achieved since, in the 

proposed approach, each individual module watching one path delay does not consist of 

any duplicated component or complex structure to detect error, while the Razor FF needs 

a duplicated latch and the aging sensor [24] has elaborate circuitries for sensing. Table 

IV.4 compares die areas occupied by each of delay testing modules. When calculating 

one module area of our approach, we considered area for shared control block as well 

which generates testing control signals to multiple modules. According to Table IV.4, 

each one module of Razor is 2.1 times larger than one module of the proposed approach 

due to its shadow latch and control logics, and the aging sensor [24] is even 3.2 times 

larger than ours. 

Average power consumption is a critical factor in testing strategy in terms of 

circuit reliability. Increase in average power during testing incurs additional thermal load 

Table IV.4. Die area occupied by one individual testing module of three delay fault 

detection approaches (normalized by the summation of width of all transistors in one 

module). 

 

 

Razor Aging sensor 
Built-in delay 

testing module 

Area 

(µm) 

Area 

vs. 

built-in 

delay test 

Area 

(µm) 

Area 

vs. 

built-in 

delay test 

Area 

(µm) 

Area of 

one testing module 

 

16.24 2.1× 25.04 3.2× 7.84 (1×) 
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and hot spot which may cause structural damage to the silicon [21]. In terms of average 

power consumption during testing operation period, the proposed approach also incurs 

less power overhead than the other two techniques, as presented in Figure IV.5 (b) and 

Table IV.5. In Table IV.5, each case with delay fault testing system is compared with a 

conventional whole circuit power without testing modules. The proposed built-in delay 

testing scheme consumes around 40% less average power than other two techniques. 

However, since the proposed approach takes multiple clock periods for detecting 

Table IV.5. Average power consumption during testing operation period.  

 

Conventional 

whole circuit 
(w/o testing module) 

 

Aging sensor 
(+Dynamic 

skew control) 

Razor 
(+ Dynamic 

skew control) 

Built-in delay test 

module 
(+ Dynamic skew 

control) 

Power 

(mW) 

Power 

(mW) 
overhead 

Power 

(mW) 
overhead 

Power 

(mW) 
overhead 

S526 12.85 13.63 6.1% 13.60 5.9% 13.32 3.6% 

S1423 27.99 31.20 11.5% 31.09 11.1% 29.91 6.9% 

 

Table IV.6. Energy consumption during testing operation period.  

 

Conventional 

whole circuit 
(w/o testing module) 

 

Aging sensor 
(+Dynamic skew 

control) 

Operation takes 1 clock 
 

Razor 
(+ Dynamic skew control) 

Operation takes 1 clock 

 

Built-in delay test 

module 
(+ Dynamic skew 

control) 

Operation takes 3 clocks 

 

Energy 

(pico J) 

Energy 

(pico J) 
overhead 

Energy 

(pico J) 
overhead 

Energy 

(pico J) 
overhead 

S526 2.25 (in 1 clock) 2.39 6.1% 2.38 5.9%   

 
6.75 (in 3 clocks) 

    
6.99 3.6% 

S1423 4.48 (in 1 clock) 4.99 11.5% 4.97 11.1%   

 
13.44 (in 3 clocks) 

    
14.36 6.9% 
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operation, total energy consumption from the proposed systems becomes larger than 

other two approaches both of which detect error in one clock cycle, as given in Table 

IV.6. Higher energy consumption, however, has limited effects only on the battery-

operated devices where battery life will be impacted [21]. Even in the case with battery-

operated systems, we can easily evade the high energy consumption issue simply by 

conducting testing procedures when external power is available for charging their battery. 

Since the proposed approach exploits BIST SCAN architecture, the testing vectors 

generated through ATPG (automatic test pattern generator) can perform other BIST 

procedures for fault detections as well as the proposed built-in delay testing scheme 

simultaneously, therefore the vectors can make the best use of its energy usage. 

 

C. Simulations on Sequential Logic Circuits 

The proposed built-in delay testing scheme in conjunction with variation 

compensation systems, dynamic clock skew control and boostable repeater, is tested in 

ISCAS’89 sequential benchmark circuits S526 and S1423, as described in section 

IV.2.A. In fresh circuits with process variation only, dynamic clock skew system handles 

delay fluctuations. Under the circuit degradations due to aging effect in addition to 

process variation, boostable repeater as well as dynamic clock skew cooperates to 

mitigate circuit aging. In the proposed adaptation system, boostable repeater is a 

supplemental module to help dynamic clock skew efficiently compensate circuit 

variation, in order to maximize usage of dynamic clock skew control which is a basic 

component of the proposed built-in delay testing module as well. In this reason, 
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boostable repeaters are deployed in a restricted manner solely enough to handle circuit 

aging. 

The results are listed in Table IV.7. For all circuit configurations, clock periods 

are tunes to meet the same timing constraint in each benchmark circuit. TCLOCK in S526 

circuit is 175ps, and TCLOCK in S1423 circuit is 160ps. The power dissipations are the 

average results over the 10 random instances of each design. The power estimation here 

is from SPICE simulations and includes both dynamic power and leakage power from 

logic circuit, the proposed built-in delay testing module, and compensation system as 

well. The power reductions from the proposed adaptive system in fresh circuit 

considering process variation are compared with overly-designed circuit and 

conventional ASV only system, and the reductions are listed on 9
th

 and 10
th

 columns of 

Table IV.7 (a). For fresh circuits under processing variations, our system with dynamic 

skew control achieves 47.5% average power reduction compared to over-design, and 

17.9% average power reduction compared to conventional ASV only system.  To 

mitigate circuit aging effect as well as process variation in aged circuits, the proposed 

adaptive system turns on boostable repeaters and tunes clock skews simultaneously. In 

Table IV.7 (b), we compared power consumptions from circuits with the proposed 

adaptive system against conventional systems, and we separately analyzed power 

reduction capability from each combination of the two techniques applied in the 

proposed system: dynamic clock skew control and boostable repeaters. Listed in Table 

IV.7 (b) are the three combinations: dynamic clock skew control only system, boostable 

repeaters only system, and the proposed system which cooperatively uses two techniques 
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Table IV.7. Power reduction acquired though the proposed adaptive system. The proposed system is compared to over-

design and conventional global ASV system only. 

 

Circuit 

Over-design Conventional ASV Dynamic skew control only 

VDD 
Power 

(mW) 
VDD 

Power 

(mW) 
VDD 

Power 

(mW) 

Power reduction 

(%) 

vs. over-design vs. ASV 

S526 1.08 25.90 0.87-1.01 15.73 0.82-0.93 12.89 50.2% 17.8% 

S1423 1.16 57.04 0.93-1.09 38.72 0.88-0.99 31.49 44.8% 17.9% 

(a) Power consumptions and achieved power reductions when circuit is fresh. Delay variations due to process variation 

are only considered. The proposed adaptive system uses dynamic skew control to mitigate process variation in 

fresh circuit. Boostable buffers are turned off.  

 

 

Over-design 
Conventional 

ASV 
Dynamic skew control only Boostable repeater only 

Dynamic skew control 

+ Boostable repeater 

VDD 
Power 

(mW) 
VDD 

Power 

(mW) 
VDD 

Power 

(mW) 

Power 

reduction (%) 

VDD 
Power 

(mW) 

Power 

reduction (%) 

VDD 
Power 

(mW) 

Power 

reduction (%) 

vs. 

over-

design 

vs. 

ASV 

vs. 

over- 

design 

vs. 

ASV 

vs. 

over- 

design 

vs. 

ASV 

S526 1.08 24.73 0.92-1.08 17.73 0.87-1.02 15.30 38.1% 13.6% 0.85-0.91 14.24 42.4% 19.5% 0.82-0.92 12.15 50.8% 31.1% 

S1423 1.16 56.31 0.95-1.16 44.81 0.91-1.06 35.93 36.2% 18.6% 0.88-1.02 32.49 42.3% 26.4% 0.86-0.92 27.28 51.6% 37.3% 

(b) Power consumptions and achieved power reductions when circuit is aged. Both process variation and circuit aging 

are considered in delay variations in the benchmark circuits. The proposed adaptive system turns on boostable 

repeaters as well as tunes clock skews when handling circuit aging. 
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(a) Total circuit power consumptions in fresh circuits.            (b) Percentages of circuit powers are compared. 

    

(c) Total circuit power consumptions in aged circuits.            (d) Percentages of circuit powers are compared 

Figure IV.6. Power consumption comparison for the proposed adaptive system. Power consumptions in fresh circuits 

and aged circuits are compared against conventional systems. 
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at the same time. Among the three combinations, the proposed combined approach 

achieves the best power reductions against conventional systems, according to the 

rightmost 4 columns in Table IV.7 (b). On the average, in aged circuits, the power 

reductions from the proposed adaptive approach are 51.2% and 34.2% compared to 

over-design and conventional ASV system only, respectively. 

The bars of Figure IV.6 show more clear comparison in power consumptions 

from the proposed adaptive system against other systems. The leftmost bars are for the 

power consumed in overly-designed circuits, and the second bars represent circuits with 

conventional ASV only system. The rightmost bars are for the power consumption from 

circuits equipped with the proposed approach with dynamic clock skew in fresh circuits, 

and combined with boostable repeaters in aged circuits. The proposed system shows the 

best power efficiency among all the systems. 

 

3. Conclusions 

In this work, we proposed a built-in delay testing scheme which significantly 

reduces area overhead from delay variation detection system, and consumes low average 

testing power. This testing scheme is applied to the proposed adaptive system combined 

with dynamic clock skew control and boostable repeater design in order to mitigate 

delay fluctuations due to process variation and circuit aging effect. The proposed system 

is validated with experimental results which show that, compared to conventional 

approaches, over 26% less power consumption is achieved through the proposed 

adaptive system.  
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V. CONCLUSIONS AND FUTURE WORK 

 

1. Conclusions 

As technology scales down in modern VLSI design, mitigating circuit variations 

becomes increasingly challenging due to fine-grained nature of process variations and 

circuit aging effects. In this dissertation, we studied critical issues and considerations to 

be addressed for building a fine-grained variation adaptation system, and discussed 

about limitations of existing technologies which hinder effectively handling the 

variations. Several contributions in voltage adaptation approaches as well as efficient 

variation sensing system have been proposed in this dissertation to solve the problems. 

A dual-level Adaptive Supply Voltage (ASV) system based on voltage islands 

design is presented to handle the fine-grained variations in circuits with many timing 

critical paths. In conjunction with conventional global ASV in voltage islands, the 

proposed system generates a lightweight local supply with limited load capacity. Only 

the logic gates on severely degraded paths are selectively powered by the local supply, 

while all the remaining gates of the island still consume less power with global supply 

whose voltage level is lower than the local supply. A tiny and effective voltage regulator, 

Mini Programmable linear voltage Regulator (MPR), is proposed to provide the local 

supply voltage whose efficiency can be further enhanced through the proposed 

progressive voltage enhancement method. Compared to over-design and conventional 

ASV only system, the proposed system achieves significant power saving while 

satisfying equal timing constraints. 
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A novel boostable repeater design is proposed to efficiently compensate fine-

grained variations in VLSI interconnects which are critical bottlenecks in modern circuit 

design. The proposed boostable repeater internally raises its switching speed by itself 

without need of external source for boosting. The boosting feature of the proposed 

repeater can be turned off for low power operation. Combined with global ASV system 

which provides coarse-grained variation adaptation, the proposed boostable repeaters 

deployed in interconnects selectively enhance strongly degraded critical paths due to 

fine-grained variations. We validated the proposed adaptive system equipped with 

boostable repeaters through experiments which compare the proposed adaptive system 

against existing techniques including over-design, conventional ASV only system, and 

online programmable finger design. Experimental results show that significant power 

reductions are achieved through the proposed adaptive system with boostable repeaters. 

An area-efficient built-in delay testing scheme is suggested to construct a 

complete system of fine-grained variation adaptation. Mitigating fine-grained variation 

inevitably needs to monitor a large number of signal paths, therefore requires sensing 

system to be minute in size. The proposed scheme minimizes its area overhead in virtue 

of sharing most of its components between multiple functionalities and common 

architectures in modern VLSI circuit. A variation adaptation system composed of the 

proposed testing scheme and dynamic skew control is proposed, and tested through 

simulations.  Compared to conventional approaches, the same performance and 

robustness with less power consumption are achieved through the proposed system. In 

terms of testing power and energy, while the proposed scheme consumes more testing 
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energy than counterparts, average testing power consumption is less in the proposed 

scheme which is more critical issue in system testing strategy. 

 

2. Future Work 

In modern processors, numerous configurations of dynamic voltage frequency 

scaling (DVFS) are already activated. Combining nowadays complex coarse-grained 

adaptive system with fine-grained variation compensation inevitably requires efficient 

adaptation architectures and procedures as well as feasibility to incorporate the 

compensation system with existing standard digital design process. Power saving 

capability of the proposed voltage adaptation techniques which tunes circuit 

performance per critical path resolution can be further applicable to implement enhanced 

dynamic power management systems. 
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