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ABSTRACT

Firewalls are an integral part of network security. They are pervasive throughout

networks and can be found in mobile phones, workstations, servers, switches, routers,

and standalone network devices. Their primary responsibility is to track and discard

unauthorized network traffic, and may be implemented using costly special purpose

hardware to flexible inexpensive software running on commodity hardware. The most

basic action of a firewall is to match packets against a set of rules in an Access Control

List (ACL) to determine whether they should be allowed or denied access to a network

or resource.

By design, traditional firewalls must sequentially search through the ACL table,

leading to increasing latencies as the number of entries in the table increase. This

is particularly true for software firewalls implemented in commodity server hard-

ware. Reducing latency in software firewalls may enable them to replace hardware

firewalls in certain applications. In this thesis, we propose a software firewall archi-

tecture which removes the sequential ACL lookup from the critical path and thus

decreases the latency per packet in the common case. To accomplish this we imple-

ment a Bloom filter-based, stochastic pre-classification stage, enabling the bifurcation

of the predicted good and predicted bad packet code paths, greatly improving perfor-

mance. Our proposed architecture improves firewall performance 67% to 92% under

anonymized trace based workloads from CAIDA servers. While our approach has the

possibility of incorrectly classifying a small subset of bad packets as good, we show

that these holes are neither predictable nor permanent, leading to a vanishingly small

probability of firewall penetration.
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CHAPTER I

INTRODUCTION

Network security is an increasingly critical part of network design and implementa-

tion. Network security involves the planning of an organization’s network infrastruc-

ture to protect applications, sensitive data and resources from unauthorized accesses.

Network attacks are constantly increasing, with browser based attacks hitting nearly

1 billion incidents in 2011 [1]. These growing attacks make it imperative to have bet-

ter and faster security mechanisms which can perform at line speed while preventing

attackers’ view into the protected system. Network firewalls are a basic component

of any network security implementation which attempt to address the problem of

malicious network traffic. In this thesis we present a novel approach to rearchitecting

software firewalls on commodity hardware, with the aim of making software firewalls

competitive with custom hardware firewalls.

There are many different ways in which a device in a network can be attacked

by malicious devices, but they can be broken down into the following three main

categories:

1. Intrusion - This occurs when someone tries to use a device posing as a legitimate

user.

2. Denial of Service - An attack aimed to prevent the availability of resources.

3. Information theft - The exposure of confidential information or personal infor-

mation to unauthorized persons.

Denial of service(DoS) attacks are one of the most common attacks and every year

sees an increase in the number. During the fourth quarter of 2011, the number of
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distributed DoS attacks increased by 45% compared to the similar period in 2010 and

more than twice the number of attacks in the third quarter of 2011 [2].

Network

Router Switch

Workstation

Server

Network

Firewall

Firewall Instances

Fig. I.1. An example of firewall instances

As illustrated in Figure I.1, firewalls regulate and validate the flow of network

traffic between hosts and clients in wide-area networks (WANs) or the Internet and a

given private local area network (LAN). A firewall may be implemented as a custom

hardware device, or as software running on commodity compute hardware. Firewalls

form part of the gateway to the devices/computers inside the private LAN, ensuring

the LAN’s security from malicious external attacks. It examines all incoming packets

from the Internet and depending on the various fields identifying the packet, it decides

whether to allow the packet or discard it.

In order to ensure packets are not dropped arbitrarily, an effective firewall must be

fast enough to process incoming packets at their arrival rate. At present, commodity

hardware systems function significantly slower than the line speed of current, top of

the line, 10Gbps ethernet cards. Where full line speed processing is required, fast,

custom hardware solutions are often used. These hardware solutions, however, are
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power hungry and extremely expensive.

We propose a firewall architecture which is implemented as a part of a standard

Linux kernel and which significantly closes the performance gap between software

and custom hardware-based firewalls. The architecture makes use of a Bloom filter,

a highly efficient, low-complexity, probabilistic data structure, as a preclassifier to

divide the stream of incoming packets into-

• Probably known good packets

• Bad packets or Previously unseen good packets

While the data structure is stochastic, i.e. yielding a small percentage falsely classified

“good” packets, we will show that this percentage is both vanishingly small and

unpredictable to an attacker in our setup. After the preclassifier, cache-like data

structures are used to ensure that a slow ACL throughput will not limit firewall

performance. Only the packets which are not found in the caches, are sent to the

ACL, the result from which updates either the preclassifier or one of the caches.

The proposed firewall architecture has the following properties:

• Remove the ACL from the critical path - The main sequential ACL lookup

is removed from the critical path. Instead a constant time search through a

stochastic data structure (a Bloom filter) of order O(1) is used. The ACL search

is placed on a non-critical path to update the data structure. This approach

speeds the critical path (allowed packets path), preventing some types of Denial

of Service attacks.

• Decoupled the Allow and Deny paths - The packets on the allowed path can

proceed irrespective of the packets on the deny path.

3



The rest of the thesis is as organized as follows: Chapter II goes over the pre-

vious work in this area, Chapter III gives some background on ACLs, Bloom filters

and motivation of our work, the proposed idea is explained in Chapter IV, followed

by Chapter V containing the methodology and evaluation. Finally, Chapter VII con-

cludes.
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CHAPTER II

PREVIOUS WORK

Firewalls are a crucial part of network security. Since their advent, researchers have

explored on the various aspects of firewalls, which we divide into three main sections:

1. Firewall Policy - the design of firewall rules in the ACL and making them more

robust, accurate and easy to design.

2. Search Algorithm - much research focuses on speeding the ACL search using

various data structures and algorithms.

3. Custom hardware firewalls - custom hardware based firewalls have included

caches and hardware based solutions like TCAMs.

Each of these topics are explored in details below.

II-A. Firewall Policy

Firewall policy involves the design on the firewall rules. Gouda and Lui examine the

structure of firewall rules with an aim towards improving accuracy [3]. Others have

studied how conflicting rules can be detected and presented to the firewall designer

for removal or rearrangement [4, 5, 6]. To analyze the functionality of the firewall,

the firewall policies can be queried like a database [7]. High level languages to specify

firewall rules which increase the level of abstraction have also been proposed [8, 9, 10,

11].

These approaches are orthogonal, and potentially complementary to our work.

Even with optimal ACL rules, search algorithm complexity will limit performance of

software firewalls on commodity hardware.
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II-B. Search Algorithm

An important body of research examines specialized data structures to improve fire-

wall performance. This encompasses not only firewalls, but also route classification

(e.g. routing of outgoing packets) and other network applications. The generic prob-

lem is known as packet classification. Packet classification can be defined as a mecha-

nism to categorize packets based on one or more fields in the packet header. Increasing

network bandwidth has given rise to a requirement of fast packet classification which

can keep up processing with line speed in the order of Gbps.

In typical software firewalls, classification throughput is directly related to the

complexity of the ACL. A naive, linear algorithm will perform very poorly on large,

complex ACLs due to sequential matching required.

Gupta and McKeown define a taxonomy of packet classification algorithms which

has the following categories [12].

• Basic Data Structures:

– Linear search - The simplest implementation is a linked list of rules in

order of decreasing priority. The rules are checked one by one till there

is a match. This is simple and storage efficient but the time taken grows

linearly with the number of rules. This is the baseline search algorithm

used in the standard Linux kernel.

– Hierarchical tries - A D dimensional hierarchical trie is composed as fol-

lows, the first trie is built based on one of the fields in the packet header,

the nodes of this trie gives rise to individual tries based on different fields in

the packet header recursively. For example, one trie can be formed based

on the source address, and each node may give rise to a trie based on the
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destination address. Each rule is stored exactly once [12].

– Set Pruning tries - This is similar to a hierarchical trie but rules are repli-

cated to reduce the latency of traversal [13].

• Geometry-based Structures:

– Grid of tries - Srinivasan et al. proposed a grid of tries data structure for

2D packet classification [14]. This is similar to the Hierarchial trie in that

each rule is stored only once. To reduce the latency of search in some of

the trie nodes, a switch pointer is stored to guide the search process.

– Cross-Producting - Cross-producting is done by classifying packets based

on separate 1 dimensional lookups and then combining the results to get

the final decision. This can be used for an arbitrary number of dimen-

sions [14].

• Heuristic Approaches:

– Tuple space search - The search space is broken up into tuples based on

the number of specified bits in the rules (leaving the don’t care bits [15]).

The search then takes place inside a tuple using hashing.

– Hierarchial Intelligent Cutting (HiCuts) - The algorithm divides up the

search space in each dimension (that is for each field in the header over

which search is performed) [16]. The final search is performed over a small

number of rules.
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II-C. Custom Hardware-based Firewalls

Software based firewall architectures include caching to prevent all requests from

going to the ACL. Chang et al. use a Bloom filter as a cache before sending the

packets to the ACL [17]. Chvets et al. proposed a cache architecture which takes

advantage of the type of locality that is present in the network packets [18]. Li et

al. examined various packet classification cache designs with different associativities,

hash functions and replacement policies to detect the effect on the performance [19].

Typical custom hardware approaches utilize Ternary CAM-s (TCAM) for packet

classification purpose [20]. TCAMs store the rules in decreasing priority order and

leverage “don’t care” bits to enable ACL-like rules matching in hardware. All the

rows in the TCAM are matched in parallel with the incoming key. At the output a

priority encoder ensures that the highest priority match is the output match. TCAMs

are fast and simple, however, there are a few drawbacks to TCAMs:

• TCAMs have very low storage density because of the following reasons:

– One bit in TCAM requires 14-16 transistors [20, 21, 22].

– Range specifications need to be split up into multiple entries.

• Limited scalability to long input keys due to the usage of exhaustive search

approach.

• TCAM is much more expensive than SRAM [12].

• TCAM-s are very power hungry due to two main reasons:

– The parallel comparisons in TCAM give rise to huge capacitive loads,

resulting in access times three times longer than SRAM [23].
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– Power consumption per bit of storage is around 150 times more than

SRAM [23].

We propose a software firewall which uses a probabilistic data structure as a

preclassifier and a cache type data structure after that to filter even more of the

requests before they reach the ACL. The ACL lookup is done only in case the packet

is absent in both the preclassifier and the cache. The critical path does not go through

the ACL and is fast. The non critical path checks the ACL and updates the required

data structure.
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CHAPTER III

BACKGROUND AND MOTIVATION

Figure III.1 shows an example of a small network including a firewall. There are

three receiver devices Dev1, Dev2 and Dev3. There are two hosts - Good host and

Malicious host. Packets from Good host are good packets and should not be stopped

from reaching the devices. Packets from the Malicious host are harmful packets and

should be discarded before they can reach the devices. To protect the devices, a

Firewall is placed just between the Internet and the devices in the network.

Internet

Network

Firewall
Malicious

Host

Good

Host

Dev 2

Dev 1

Dev 3

Fig. III.1. An example of a small network including a firewall
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III-A. Access Control Lists (ACLs)

The firewall in Figure III.1 protects Dev1, Dev2 and Dev3 from harmful packet flows

from the Internet. Firewalls are configured according to a set of rules called the Access

Control List or ACL. A rule in an ACL is of the following form:

predicate→ decision (3.1)

The predicate is a boolean expression over the different fields in the packet header,

which are - source address, destination address, source port, destination port and the

packet type. Decision can refer to either “a” for Allow or “d” for Deny. The packet

is matched against the rules and if the predicate of a rule matches the packet, the

decision of that rule is applied.

Rule no. Src address Dest address Src Port Dest Port Type Predicate Decision
r0 Any Dev1 Any 25 Any (Dest==Dev1) & (Dport==25) Allow
r1 Good Host Dev2 Any Any Any (Src==Good Host) & (Dest==Dev2) Allow
r2 Malicious Host Any Any Any Any (Src==Malicious Host) Deny

Table III.1. Firewall rules for the network in Figure III.1

Rule no. Src address Dest address Src Port Dest Port Type Predicate Decision
r1 Good Host Dev2 Any Any Any (Src==Good Host) & (Dest==Dev2) Allow
r2 Malicious Host Any Any Any Any (Src==Malicious Host) Deny
r0 Any Dev1 Any 25 Any (Dest==Dev1) & (Dport==25) Allow

Table III.2. Modified order of firewall rules

Table III.1 shows an example of an ACL for the network shown in Figure III.1.

The 1st column gives the rule number - there are 3 rules in this ACL. The next 5

columns - source address, destination address, source port, destination port and type

make up the predicate. The predicate is shown in the next column. The fields in the

header which are non-specific are not used in the predicate as they are don’t care.
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The decision is the last column - Allow or Deny. Rule r0 in Table III.1 states that

a packet from any source, to destination Dev1, from any source port, to destination

port 25 will be Allowed. Rule r1 states that a packet from good host going to Dev2

will be allowed. Rule r2 states that any packet from source - malicious host should

be dropped.

Let’s take a simple case to explain a firewall’s operation and a possible compli-

cation. Suppose a packet X arrives from malicious host for Dev1 to port 25. The

packet is matched against firewall rules in Table III.1 to see if it should be Allowed

or Dropped. X is for destination Dev1 and destination port is 25, which matches the

predicate of rule r0 as shown in Table III.1. Therefore Rule r0 matches the packet.

Rule r1 does not match the packet as source for rule r1 is Good Host but X is from

the source Malicious Host. Rule r2 again matches the packet as rule r2 only mentions

that the source should be Malicious Host. Thus X matches both the rules r0 and

r2. But the rules are contradictory in their decisions - r0 Allows the packet whereas

r1 Denies it. In such cases when there is a conflict, the first rule that the packet

matches is the deciding rule. Because rule r0 is the first matching rule and it Allows

the packet, this packet will go through the firewall.

The ACL in this case is not designed well as a packet from the malicious host

was allowed into the protected network. This shows that the order in which the rules

are setup will have a great impact on the functionality of the firewall.

If the order of the rules is changed to the one as shows in Table III.2 by inserting

r0 from Table III.1 at the end in Table III.2 , and pushing up r1 and r2, then the

scenario becomes quite different. Considering the same example of packet X from

malicious host, again rules r2 and r0 match the packet but in this case the topmost

matching rule is r2 which Denies the packet. Thus the final decision of the firewall

12



would be to drop the packet.

This example shows there is a linear dependency introduced among the rules of

the firewall. The fact that the ith rule matches a packet, does not have any value,

until we know that rules 0 to i− 1 did not match the packet. This puts a constraint

on the search algorithm of the ACL. Just finding a match would not be the end

of the algorithm. A naive way to search the ACL is a simple linear search. This

algorithm checks each rule before it checks the next rule. If there are N rules in the

ACL, the worst case time taken for the search will be of the order O(N). Previous

research regarding the search algorithm has been discussed in Chapter II.

Generally there is a single ACL for all the rules, good and bad packets go through

the same path. If there are a lot of new packets waiting to go through the firewall, a

packet X needs to wait for a decision to be made for each packet in queue previous

to X. This happens irrespective of whether X is a good or a bad packet and whether

the previous packets were good or bad.

Let us go back to the network in Figure III.1. Let the ACL be set up as in

Table III.2. The Malicious Host wants to attack the firewall, and it sends a flood of

packets. Each packet is first compared against r0, which does not match because the

source is different. It is then checked against r1 and the packet is dropped. But due

to the high volume of packets sent by the malicious host, more number of packets

arrive in a time interval than the ACL table is able to process. This causes the input

queue to the ACL table to get filled up. Suppose there is a new packet G from Good

Host. G gets queued at the end of the queue, and it has to wait for all the bad packets

before G in the queue to get denied before G is allowed to proceed forward. This is

because the paths for allowed packets and denied packets are the same. If the total

input bandwidth is higher than the speed at which the firewall is able to process the
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ACL rules for each packet, the queues will continue to grow. Eventually, the queue

data structures become too big for the system to maintain. When this occurs, typical

firewalls begin dropping packets, arbitrarily, without first processing them through

the ACL. At this point, packets from Good Hosts may be dropped along with those

from the Malicious Hosts, a form of Denial of Service (DoS) attack. Thus, firewall

performance, i.e. the speed at which the ACL can be processed, is critical to the

functionality of the firewall.

III-B. Bloom Filters

Our approach speeds ACL processing by removing the ACL from the main critical

path, substituting it with a stochastic data structure as a pre-classifier for the packets.

For this purpose, we use a Bloom filter [24].

A Bloom filter is a data structure which can be used to check if an element is

present in a set or not. It was invented by Burton Bloom in 1970. Searching the

Bloom filter can be accomplished in constant time, irrespective of the number of

elements stored in it or the size of the Bloom filter. The Bloom filter utilizes very

little space. The price paid for the memory and time efficiency is a probabilistic

answer from the Bloom filter. The Bloom filter returns one of the two answers:

1. Definitely not present

2. Probably present

Though the Bloom filter can give a definite negative, the positive is probabilistic.

There is a small probability that the Present answer can be false. This is why Bloom

filters are said to have false positives but can never have false negatives.

The Bloom filter is made up of an array of bits or a bit vector. Initially all the

14



bits are set to 0. To store an element say A, some bits at indices, calculated using a

function f(A), are set to 1. To check for an element B, the bits at indices f(B) are

checked. If any of the bits is 0, B is definitely not present. If all the bits are set to

1, then the element B might be present in the Bloom filter.

We can see that the search time taken is constant comprising the time taken to

compute the indices using the function f(x), and then the time taken to look up the

actual bits at those indices. The same thing applies to updating Bloom filter.

The function used to compute the index is generally a hash function. This

function takes the input and converts into a different random number. The simplest

hash function is built by xor-ing bytes of the data together to get a smaller compact

value. The quality of the hash function is measured by how well the output values are

randomized over the entire output range. The drawback of a hash function is that,

since we lose some information during the hash, more than one input value might

give the same output value, thus giving rise to aliasing. This is the cause for having

a probabilistic answer from the Bloom filter.

A Bloom filter generally uses more than one hash function. This means that

each element gives rise to more than one index in the Bloom filter. This helps to

reduce the effect of aliasing as the chances of all indices for a particular element being

aliased with indices of different elements would be significantly lower.

While inserting an element into the Bloom filter, all the hash functions (say k)

are computed using that particular element to get k indices. These k indices are set

to 1. While checking for an element, k indices are again computed, and the values

at these indices are checked. As explained earlier, the k values have to be 1 for a

possibility of the element being present in the Bloom filter.

The false probability of Bloom filters can be calculated analytically [25]. After
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inserting n keys into the bloomfilter of size m, the probability that a bit is still 0 is

(

1−
1

m

)kn

(3.2)

The probability of false probability in this situation is

(

1−
(

1−
1

m

)kn
)k

≈ (1− ekn/m)k (3.3)

The RHS is minimized in the condition

k = ln(2)
m

n
(3.4)

False positive rates for a few combinations of m to n ratios and k are given in

Table III.3. From the table it can be seen that the false probability rate decreases

with increase in k for a particular m/n ratio, but after a minimum value it increases

again. For example, when m/n = 8 the optimal value of k is 5.55 and the false

probability rate is minimum for k = 5 and k = 6. For a particular value of k though,

the false probability rate decreases with increase in m/n.

m/n k k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

2 1.39 0.393 0.400

3 2.08 0.283 0.237 0.253

4 2.77 0.221 0.155 0.147 0.160

5 3.46 0.181 0.109 0.092 0.092 0.101

6 4.16 0.154 0.0804 0.0609 0.0561 0.0578 0.0638

7 4.85 0.133 0.0618 0.0423 0.0359 0.0347 0.0364

8 5.55 0.118 0.0489 0.0306 0.024 0.0217 0.0216 0.0229

9 6.24 0.105 0.0397 0.0228 0.0166 0.0141 0.0133 0.0135 0.0145

10 6.93 0.0952 0.0329 0.0174 0.0118 0.00943 0.00844 0.00819 0.00846

Table III.3. False probability rates in a bloomfilter

Bloom Filters have been used in various network applications. For example,

Bloom Filters were used in resource routing for resource discovery service [26] or in

routing a file request efficiently in a peer to peer network to get a probabilistic routing
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algorithm [27]. They have been used in packet routing to detect forwarding loops

early [28] or for multicast routing [29]. A survey of different network applications can

be found in [30]. We present the first work we are aware of, which utilizes a Bloom

filter in a high performance software firewall for commodity hardware.
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CHAPTER IV

OUR APPROACH

In this thesis we propose an architecture for the firewall to fulfill the following two

properties:

• The paths for allowed packets and denied packets are separated.

• The ACL lookup is removed from the critical path, ACL lookup is used for

learning, but for known packets the ACL lookup is bypassed.
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5-tuple

hit
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unauthorized

Fig. IV.1. Proposed design of the firewall

These two properties help to protect against Denial of Service attacks and also speed

up the functioning of the firewall.
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The proposed architecture is shown in Figure IV.1. It consists of the following

parts, they are described in detail below after the description of the overall architec-

ture.

• Bloom Filter

• Cache

• ACL

IV-A. Overall Architecture

Algorithm 1 corresponds to Figure IV.1. The incoming packets flow through the

Bloom filter and if they are present in the Bloom filter, they go through the hit path.

Algorithm 1 Firewall Algorithm

index←skb index(skb)

bloomfilter verdict←check bloomfilter(index)

if bloomfilter verdict = 1 then

bloomfilter present path(index,skb)

else

bloomfilter absent path(index,skb)

end if
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Algorithm 2 Bloomfilter Present Path

procedure Bloomfilter present path(index,skb)

allow verdict←check allow cache(index)

if allow verdict = 1 then

Drop Packet

else

if Packet should be sampled then

iptable verdict←check iptable(skb)

if iptable verdict = Deny then

Update allow cache(index)

Drop Packet

else

Allow Packet

end if

else

Allow Packet

end if

end if

end procedure

The hit path of the algorithm is shown in Algorithm 2. These packets then go

through the Allow cache, the presence in which (hit) denotes that the packet is false

positive and needs to be dropped. If the packet is not present, it is allowed into the

system by the miss path. Even if the packet is allowed, a few of the packets are sent

to the ACL for reclassification. In the event reclassification shows the packet should

have been allowed, nothing is done. If, however, the packet should have been denied,

20



the Allow Cache is updated through the insert path.

Algorithm 3 Bloomfilter Absent Path

procedure Bloomfilter absent path(index,skb)

deny verdict←check deny cache(index)

if deny verdict = 1 then

Drop Packet

else

iptable verdict←check iptable(skb)

if iptable verdict = Allow then

Update bloomfilter(index)

Allow Packet

else

Update deny cache(index)

Deny Packet

end if

end if

end procedure

As shown in Algorithm 3, if the packet is not present in the Bloom filter, it goes

on the miss path. The packet is matched in the Deny Cache to see if it should be

discarded via the hit path as a known bad packet. In case it does not match any of

the previous cases, then it is a new packet, and the ACL is checked. Depending on

the output of the ACL, if the packet is a good packet the bloom filter is updated and

the packet is allowed into the system. If the packet turns out to be a bad packet after

checking the ACL, the Deny Cache is updated and the packet is dropped.
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IV-B. Bloom Filter

In our proposed architecture, we use the Bloom filter to initially divide the traffic into

two paths - likely allowed and likely denied. The Bloom filter contains the packets

which are known good packets, and if the packet matches in the Bloom filter it goes

to the hit path. If the packet does not match in the Bloom filter, it goes to the miss

path.

Byte# Description Entropy

0 Source byte 1 3.809915

1 Source byte 2 4.767318

2 Source byte 3 5.024942

3 Source byte 4 5.465738

4 Destination byte 1 3.945233

5 Destination byte 2 4.552347

6 Destination byte 3 5.026454

7 Destination byte 4 5.468756

8 Source port byte 1 3.722121

9 Source port byte 2 3.815076

10 Dest port byte 1 4.264202

11 Dest port byte 2 4.470557

12 Protocol 0.444688

Table IV.1. Entropy of each byte in a sample trace

In our implementation, we used a Bloom filter with 65536 entries. The index

into the Bloom filter is 16 bits. We used five different hash functions to index into
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Byte# Description Entropy

7 Destination byte 4 5.468756

3 Source byte 4 5.465738

6 Destination byte 3 5.026454

2 Source byte 3 5.024942

1 Source byte 2 4.767318

5 Destination byte 2 4.552347

11 Dest port byte 2 4.470557

10 Dest port byte 1 4.264202

4 Destination byte 1 3.945233

9 Source port byte 2 3.815076

0 Source byte 1 3.809915

8 Source port byte 1 3.722121

12 Protocol 0.444688

Table IV.2. Entropy of each byte in a sample trace in descending order

the filter. When designing the hash functions, we first measured byte entropy of all

the bytes in the header fields in a network trace using the following equation

entropy(x) = −ln(prob(x)) ∗ prob(x) (4.1)

The byte entropies of the sample trace is shown in Table IV.1 and they are ar-

ranged in descending order in Table IV.2. The entropy values match the expectations.

The lower two bytes of the source address and the destination address have a higher

value of entropy than the higher bytes which are set for the organization. Entropy
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values for the ports are in between. The protocol field has the least entropy again as

expected, as it can hold only very few specific values like TCP , UDP , ICMP etc.

To have a high degree of entropy in our hash functions, we ensure that the two

highest entropy bytes are not XORed together when making our hash index. To this

end, we combined the byte with the most entropy with the byte with third highest

entropy and so on to get the first byte in the index. For the second byte in the index,

we started with the byte with the second highest entropy and combined with the

fourth highest entropy and so on as shown in the following equations. We have not

used the protocol field in our calculation but it should be used as the protocol is a

deciding field in a lot of the rules. Therefore it will be added in the future work.

byte1 = entropy(byte7) ∗ entropy(byte6) ∗ entropy(byte1)

∗ entropy(byte11) ∗ entropy(byte4) ∗ entropy(byte0) (4.2)

byte2 = entropy(byte3) ∗ entropy(byte2) ∗ entropy(byte5)

∗ entropy(byte10) ∗ entropy(byte9) ∗ entropy(byte8) (4.3)

After getting the different indices from one trace, we plotted the probability

distribution function (pdf) of indices shown in Figure IV.2. As can be seen, the

pdf of the index is almost flat with no very prominent spikes. While higher entropy

could be maintained by ensuring that the 16 highest entropy bits in the 5-tuple were

not XORed with each other, we find that this technique would require substantially

higher complexity, lowering performance without reducing collisions significantly.

This baseline index value was then XORed with five random values to come up
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with the five hash functions needed by the Bloom filter.

As the bloomfilter gets filled by adding more and more elements, the percentage

of false positive goes higher. Therefore the bloomfilter needs to be aged gracefully

such that the percentage of false positives stay within a fixed limit. Two methods

have been implemented for aging the bloomfilter.

• Cold Clear - The bloomfilter is cleared completely after a certain number of

elements have been added to it.

This has the drawback that the simulation starts from a clean slate after every

cycle.

• Random bit clear - After a certain number of elements have been added to the

bloomfilter, for every additional update a few random bits are cleared. This
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keeps the number of bits set in the bloomfilter at an approximately constant

level.

In this case, the bloomfilter never gets completely cleared and always has a

number of elements in it. The disadvantage is that the bloomfilter might get

polluted, that is some of the elements which had been added would not be

present any more because of the clearing of one or more bits. If the pollution

increases a lot, it will affect performance where most of the elements do not hit

in the bloomfilter because at least one of their bits have been set to 0.

As we saw in Table III.3, with k = 5 and m/n = 10 the false probability rate

should be around 0.00943. We note, because the indexes are XORed with random

numbers which are regenerated once every hour, a prospective attacker must guess

all five random numbers in order to produce a packet which would be guaranteed to

produce a false positive. Furthermore, as we will discuss in the next section, these

false positive packets are further filtered by the allow cache, so only the first packet

of a false-positive flow would be allowed to penetrate the firewall.

IV-C. Cache

We use a cache like data structure in our design, which helps us to filter out some of

the packets before sending to the actual ACL table. Generally, a cache is a small, fast

storage structure which maintains data that has high temporal locality. In a firewall

implementation, caches can keep a few of the latest used rules for future packets to

be used directly instead of going through the ACL again. This helps in speeding up

the path of the packets through the firewall or the packet filter.

In our architecture, we use two caches - one on the allow path and one on the

deny path. Both of them store packets which are known bad packets. Therefore if

26



any of the caches contain the incoming packet, the packet is dropped instantly and

not processed any further. On the allowed path, the cache stores the packets which

are false positives that is they should not be allowed into the system but because of

the probabilistic nature of the Bloom filter they are allowed. The cache on the deny

path functions as a simple cache so that for every packet the main table does not

need to be looked up, if the packet has been seen before and is a known bad packet,

it can be dropped instantly.

Our architecture utilizes a Bloom fliter preclassifier as well as two caches. Näıvely

one might design an architecture with a single cache without a preclassifier stage. If

only a single cache is used, it would only store a small subset of the last few packets

and the decisions. This would include allow decisions as well as deny decisions. In

our proposed architecture, the Bloom filter preclassifies the packets by storing only

the allow packets. The cache on the hit path stores only the false positive packets,

therefore the time taken to search through this cache is relatively very less. The cache

space is thus much more efficiently utilised due to the presence of the Bloom filter.

Even the cache on the miss path stores only the packets which should be dropped,

therefore decreasing the cache size requirement. The sizes of the caches used are

shown in Table IV.3.

Our cache design is direct mapped but the cache is indexed by hashing the

incoming data. The cache is hashed with the base hash value that was combined

with random numbers in the case of the Bloom filter. The Allow Cache can be made

much smaller than the Deny Cache.
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Allow Cache Deny Cache

Index size 8 bit 16 bit

Entries 256 65536

Size(bytes) 8k 2M

Table IV.3. Cache specifications

IV-D. ACL

The ACL in our architecture is referenced when we receive a new packet for the first

time, that is, it does not exist in either the Bloom filter or the cache on the denied

path. Depending on the outcome of the ACL, the Bloom filter or the denied cache is

updated. We also use the ACL at some regular intervals in the allowed path to detect

false positives. The outcome of the ACL in this case is used only if it is negative and

the cache on the allowed path is updated.

In our implementation we use the default ACL present in the linux kernel - the

xtable and the user implementable part of it - iptable. The setup consists of chains

to which rules are added. There are five predefined chains:

• Prerouting - Packets enter this chain before routing decisions are made.

• Input - Packets enter this chain if they are meant for this cpu.

• Forward - Packets enter this chain if they have to be forwarded on to a different

network.

• Output - This chain is for outgoing packets.

• Postrouting - This chain is entered just before handing the packets to the
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hardware.

Rules can be added to each chain, and these chains are accessed via netfilter

hooks from within the linux kernel networking stack. User defined chains can be

added which can be reached from one of these predefined chains by adding a rule to

jump to the beginning of the user defined chain. A rule in the chain can also have

a decision like Accept or Deny. Each packet goes through each chain in turn until

it reaches a decision by a matching rule, or it reaches the end of the chain or it is

rerouted to another chain. When the end of the user defined chain is reached, the

packet comes back to the original location in the chain it was traversing earlier.

We add all our rules to the Forward chain to set up the ACL.

IV-E. Stateful Firewall

The firewall that has been implemented is a stateless firewall, but it can be converted

into a stateful firewall with a few additions. A stateful firewall is one which tracks

outgoing requests from the trusted interface and modifies the behaviour of the firewall.

This allows responses through the firewall for outgoing requests from the trusted

interface. For implementing statefulness, rules should be added to the ACL once there

is a outgoing packet from the trusted interface. That rule would be the complement

of the outgoing packet, that is the source in the rule should be the destination of

the outgoing packet and vice-versa. This rule will be deleted after a specific amount

of time of no activity related to that rule. This prevents malicious packets being

accepted after the response is received.

The addition of the rule does not pose any problem as the bloomfilter gets trained

once the rule is in the ACL. When the rule is removed though, the bloomfilter and

the deny cache needs to be cleared. This is needed so that packets from that source

29



is not allowed in after the rule has expired in the ACL.
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CHAPTER V

METHODOLOGY

We implemented our proposed firewall architecture as a kernel module. The kernel

module receives incoming packets from the network interface card - eth0 and passes

it through the firewall to the linux networking stack as shown in Figure V.1.

Eth1

Packet trace

Networking

Linux

Stack

GEM5

Kernel

Transmitted
Packets

Firewall

Eth0

Fig. V.1. Block diagram for simulation setup

The linux kernel that is used is version 2.6.27, running on the GEM5 multicore

processor simulator [31]. This simulator simulates a full system including network

interface cards (NIC) and IO connections. Two network interfaces are instantiated in

GEM5 in the hardware part of the simulator as shown in Figure V.1. These interfaces

have a hardware component as well as a software device driver component. One NIC

is used as the trusted interface, which points towards the private network (eth1) and

the other one is the untrusted interface, that is the interface pointing towards the rest
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of the network (eth0). The traffic comes in through the untrusted interface eth0. The

firewall, which is instantiated as a virtual device driver, grabs the packets and passes

them through the firewall. Only the packets which are allowed by the firewall are

sent on to the ip routines in the Linux Networking Stack. The denied packets are just

dropped here and no further actions are taken for them. The performance metrics

are observed in the GEM5 portion of eth1 for the packets that are transmitted out

of the system.

The details of the system setup for GEM5 is given in Table V.1.

To evaluate the performance of our design, we need a network trace to feed into

the simulator. For this purpose, we used anonymized traces from CAIDA servers [32].

For generating the iptable, we fix a percentage of unique traffic from the traces

as bad traffic. We have 10, 20 and 30% of bad traffic and generate an iptable from

this which can be used in the kernel using the command ’iptable restore’. from the

bad traffic flows. There is a correlation between the number of rules in the iptable

and the percentage of bad traffic which is shown in Table V.2. The number of rules

increases with the increase in the bad percentage of traffic.

We could also make an iptable with some common rules like Drop all udp packets

or allow all packets to port 80. This would make the iptable more similar to the com-

monly used iptables. Also we had each rule explicitly mentioning the ip addresses.

Instead of this, multiple rules could be condensed to make a single rule, thus de-

creasing the number of rules in the iptable and increasing the processing speed of the

firewall. We will work on these on the ongoing project.

The performance of the proposed firewall architectre is measured against a base-

line case. The simulation topology remains the same even for the baseline case, the

only difference being that in the baseline case, the firewall comprises only the iptable.
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Name Value

Architecture Alpha

CPU model Out of order

Frequency 4GHz

L1 ICache 32kB

L1 DCache 64kB

L2 Cache 2MB

Bus Frequency 4GHz

IO Bus Frequency 4GHz

Memory Model Simple

Kernel version 2.6.27

NIC Card IGbE e1000(i8254x)

Driver version 7.3.21-k3-NAPI

Rx Desc Ring 4096

Tx Desc Ring 256

Table V.1. Setup for simulation

A packet trace is used as the source of incoming packets at eth0. In the original kernel

setup, the iptable is invoked only from the ip routines which is at a higher layer in

the networking stack than the location of our firewall. For this purpose we needed to

modify the linux kernel slightly. The netfilter hooks which had been earlier embedded

in the networking stack have been commented out as they are called separately as an

iptable call for the baseline case as well as the proposed case. The modification was

done even for the baseline case to prevent the two simulation setups being different.
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Percentage of Bad traffic Rules in iptable

10 2678

20 5357

30 8928

Table V.2. Number of rules in iptable for percentage of bad traffic

For performance evaluation, we measure the following metrics for both the aging

mechanisms:

• Latency per packet

• Bandwidth

• Number of dropped packets

• False positive rate

We read the trace file and inject the packets into the system through the un-

trusted NIC according to the timestamps in the traces. While injecting the packets

we add the insertion time into the packet data. When the packet is ejected out of

the system we measure the difference between the ejection time and the injection

time saved in the packet buffer. We calculate an average of this difference over a

number of packets. We do not take into account the packets which were dropped by

the firewall. The bandwidth is also measured here. In case the packet was discarded

in the receiving stage due to memory buffers being full, it is counted as a dropped

packet. The dropped packet numbers are also reported to show a reduction in this

number from the baseline to the proposed case.
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The simulation outputs an unique id per packet for all the packets that are

forwarded through the firewall. This list of unique id-s is matched with the iptable

using a script to count the number of bad packets which should not have been allowed

into the system but are actually being allowed. This number gives the false positive

rate.
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Fig. V.2. Transient to steady state latency per packet

The latency is reported in the number of cycles taken by a packet from the

time it entered the system through an ingress network interface till the time it was

forwarded through an egress network. The latency and bandwidth are only measured

in the steady state after a warm up phase, as shown in Figure V.2. This is because

for the initial packets, the latency per packet will be lower as can be seen from the

graph. If the packets come at a steady rate which is higher than the rate at which
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packets are being processed, the following packets would have to wait in queue till

the previous packets have been processed. Therefore the initial packets go through

the system at a faster rate whereas the following packets have a higher latency due to

the added waiting period. In the steady state, all the packets have the waiting period

before they are processed, and therefore the latency remains the same from this time

onwards as long as the steady input rate is maintained.

We can also measure the latency for each part of the code, i.e. the time taken by

the bloomfilter, the time taken by the caches, and the time taken by the ACL. This

we would do in future work.

We run the simulation for 150, 000 packets, among which it is made sure that

steady state was achieved for all cases within the first 50, 000 packets. The latency

and bandwidth are measured in the next 100, 000 packets. The number of dropped

packets and the false positive rate are measured over all the 150, 000 packets.

Since we use Alpha architecture and kernel version 2.6.27, we cannot keep up with

a line speed (10Gbps) for the baseline or the fastest case in our proposed approach.

2.6.27 version is old, and is not optimized for Alpha architecture as well. At this

speed almost all the packets get dropped due to a huge difference in the receiving

bandwidth and the transmission bandwidth. For this reason we inject packets into

the system at the rate of 1Gbps.

We have packets dropped even at the lower speed of 1Gbps, and we could run

simulations at such a low speed as to not drop any packets. We have maintained a

higher speed for simulating a more realistic scenario where packets get dropped in

steady state. In further works we will also simulate a slower scenario.

36



CHAPTER VI

RESULTS

We present the results for the Incremental cleared bloom filter first followed by the

results for the Cold cleared bloom filter case. After that we compare the two cases.

VI-A. Incremental Cleared Bloom Filter

First we report the results for the Incremental Clear case. In this case, after a

cutoff in the number of elements present in the bloom filter is reached, the occupancy

is maintained at the same level by clearing bits. This cutoff is also referred to as

Clearing interval in the rest of the chapter.

Next we analyze each of the performance metrics in turn - latency, bandwidth,

reduction in dropped packets and the false positive rate.

VI-A.1. Latency

In Figure VI.1, the percentage improvement for latency in cycles per packets for the

proposed system over the baseline system, is shown.

The improvement is negative in two cases

• 10% bad traffic with a cutoff of 3000

• 10% bad traffic with a cutoff of 5000

In these cases, the time taken to check the bloom filter and the caches add up with

the time taken to just check the ACL. These cases have a very low clearing cutoff as

well as a low percentage of bad traffic. With this configuration most of the packets

do not match in the bloom filter and go to the longer path which has the ACL check

in place. Therefore the improvement is not seen in these cases.
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Fig. VI.1. Percentage improvement in latency for varying percentages of bad traffic

The percentage improvement in latency decreases as the clearing cutoff decreases

for the same bad traffic percentage. If the clearing cutoff is low, for each packets that

is added to the bloom filter after that, some bits are cleared in the bloom filter. This

adds an additional time to the packet processing time. This also pollutes the bloom

filter to an extent, removing good entries. This causes the packets to follow the

non-critical path through the ACL, thus increasing the average latency per packet.

The percentage improvement also increases with increase in the percentage of bad

traffic. This is because the percentage of good traffic is highest in the case of 10% and

to maintain a level of occupancy, we kick out good packets every time we add a packet

into the bloom filter, which happens very often. This gives rise to false negatives.

In the case of 30% we have a better working set already present in the bloom filter,
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Fig. VI.2. Percentage improvement in bandwidth for varying percentages of bad traffic

and lesser number of packets are classified as good. This causes a reduction in the

frequency of clearing bits from the bloom filter, reducing false negatives and therefore

performance improves.

VI-A.2. Bandwidth

In Figure VI.2, the improvement for bandwidth for the proposed case is shown, as a

factor of the baseline case. This is the transmission bandwidth which also reflects the

bandwidth of packet processing in the packet firewalls.

The trend seen here is exactly the same as the latency shown in Figure VI.1.

The improvement is in factors instead of a percentage, that is because the bandwidth

is in bits per second which takes into account the size of the packets, not only the

number of packets. The packet length extends to a maximum of 1500 bits.
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For verification purposes, it can be seen that for the two cases that had negative

improvement in latency, the normalized bandwidth has a value lower than 1, that is

the bandwidth is lesser than the bandwidth seen for baseline.

VI-A.3. Reduction in Dropped Packets
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Fig. VI.3. Percentage improvement in reduction of dropped packets for varying per-

centages of bad traffic

Figure VI.3 shows the percentage reduction in the number of dropped packets.

The percentage is calculated using the difference of the number of packets dropped

in the proposed case and the baseline case over the number of packets dropped in the
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baseline case.

Packets are dropped due to scarcity of resources. While the kernel processed the

packets which have already arrived, the memory space and queues allocated for this

process is full. This causes new incoming packets to be dropped due to lack of queue

space.

For the case where the steady state latency had negative improvement also, there

is a small improvement in the number of dropped packets. The latency for processing

packets is lesser before the steady state is reached. Even though the bandwidth and

latency are measured in the steady state, the number of dropped packets is measured

throughout the simulation. Therefore in this case a small percentage improvement is

seen even though the steady state latency and bandwidth show no improvement.

For a particular percentage of bad traffic, the percentage increases with higher

clearing intervals. With higher intervals, the latency to process each packet reduces,

and therefore the resources are emptied faster. This decreases the number of dropped

packets.

With increase in the percentage of bad traffic however, the number of dropped

packets increase. Even though the latency decreases for increasing bad traffic as

shown in Figure VI.1, the latency does not take into account all the packets received

by the system. The latency is calculated only for the packets which make it through,

and even though the other packets get dropped, the resources that those packets use

remain in use till they are dropped. With increase in percentage of bad traffic, the

resources utilized by the bad traffic increases, which causes an increase in the number

of dropped packets, reducing the percentage benefit.
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Fig. VI.4. False positive rates with different percentages of bad traffic

VI-A.4. False Positive Rate

Figure VI.4 shows the change in false positive rate with varying bad traffic percentage

and clearing intervals. False positive rate is calculated as the percentage ratio of the

number of bad packets which made it through the firewall to the number of total

packets which made through the firewall.

The false positive rate is lower for lower clearing intervals. This is because the

lower clearing cutoffs maintains the occupancy of the bloom filter to a very low number

of elements. Lower occupancy reduces the number of false positives. But the false

positive has a steep increase with increase in the clearing cutoff. That is because

the occupancy is maintained at a higher value, therefore the chances of false positive

increases.
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With increase in the percentage of bad traffic as well, the percentages of false

positive increases. This is because more number of packets have the probability to

get classified as bad packets.

VI-B. Cold Cleared Bloom Filter

Now we discuss the simulation results for the cold cleared bloom filter case. In the

cold clear, the bloom filter is totally cleared after a fixed interval, referred to as the

clearing interval. This is the number of elements that are added to the bloom filter

before the bloom filter is taken back to its initial state with all bits reset to 0.

VI-B.1. Latency

In Figure VI.5, the percentage improvement in latency for the cold cleared bloom

filter setup over the baseline is shown. Similar to the Incremental clear case, the

latency reduces for increasing clearing intervals. But the trend is not the same in the

case of increasing percentage of bad traffic.

With increase in bad traffic, latency increases in this case. This is because number

of good packets decrease, and it takes more time for the bloom filter to re-learn and

get back to its useful state. This reduces the number of packets which pass through

the bloom filter and more number of packets are rerouted through the ACL.

VI-B.2. Bandwidth

The normalized bandwidth is shown in Figure VI.6. The bandwidth follows the exact

trend of latency as in the case of Incremental clear.
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Fig. VI.5. Percentage improvement in latency for varying percentages of bad traffic

VI-B.3. Reduction in Dropped Packets

The percentage improvement in dropped packets is shown in Figure VI.7. The per-

centage improves with increasing clearing interval, as the latency reduction decreases

the resource usage.

But the percentage of dropped packets reduces for increasing percentage of bad

traffic. This is for a two-fold reason. Firstly, the latency improvement decreases, as

shown in Figure VI.5, the increasing latency increases the time for which resources

are utilized. The second reason is similar to the Incremental clear case, that is the

number of bad packets, even though they do not affect the latency, do affect the
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Fig. VI.6. Percentage improvement in bandwidth for varying percentages of bad traffic

resource usage. With increasing bad packets going through the ACL, which takes a

longer time, the queues and memory spaces are not freed up sooner for new packets

to utilize.

VI-B.4. False Positive Rate

The false positive rates for different percentages of bad traffic and clearing intervals

are shown in Figure VI.8. The false positive rates are low in the case of lower clearing

intervals, as the occupancy is very low before the bloom filter is cleared off again.

As the occupancy increases, the false positive rate increases. With increase in bad
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Fig. VI.7. Percentage improvement in reduction of dropped packets for varying per-

centages of bad traffic

traffic, the false positive rate increases. This is again because, with increase in bad

traffic, the probability of a packet being classified as a bad packet increases.

VI-C. Comparison of Cold Clear and Incremental Clear Cases

Next we compare the cold clear bloom filter with the incremental clear bloom filter

system. We compare the latency and the false positive rates. The bandwidth im-

provement follows a similar trend as shown in latency and the reduction in dropped

packets is similar in both cases.
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Fig. VI.8. False positive rates with different percentages of bad traffic

VI-C.1. Latency
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Fig. VI.9. Comparison of latency
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The latencies per packet in cycles have been shown in Figure VI.9. The cold clear

setup has a lower latency for most of the cases. But for 30% bad traffic at higher

clearing intervals, the incremental clear performs better. This is because the cold

clear is completely emptied after the interval and it takes time to re-learn and get

back to its previous state before it can be useful. The incremental clear has a static

level of occupancy, and therefore the bloom filter is always in a working condition.

This allows packets to go through always and therefore latency is slightly lower than

in the case of cold clear.

VI-C.2. False Positive
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Fig. VI.10. Comparison of false positive rates

The false positive rates have been compared in the Figure VI.10. The false positive

rates are lower in the case of incremental clear for most of the cases. This is because

the cold clear clears once in a while and fills up till the limit again before clearing it.

But in case of incremental clear, the bits are cleared for every update of the bloom

filter. But for higher values of cutoff, it has worse false positive rates than the cold

clear. That is because it maintains a very high occupancy rate for the entire time
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and therefore the chances of false positive rate is high for the entire simulation.

From the results, we decide that cold clear with clearing interval of 7000 is

an optimal solution for the firewall system architecture. Here we see a percentage

improvement in latency ranging from 67% to 92% with a false positive rate ranging

from 0.5% to 3.1%.
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CHAPTER VII

CONCLUSIONS

Firewalls are an integral part of network security. Traditional firewalls must sequen-

tially search through the ACL table, leading to increasing latencies as the number

of entries in the table increase. These high latencies ultimately make firewalls vul-

nerable to denial of service attacks because floods of bad packets can lead to good

packets being dropped because of an inability to keep up with the incoming packet

bandwidth. This is particularly true for software firewalls implemented in commod-

ity server hardware. In this thesis, we propose a software firewall architecture which

removes the sequential ACL lookup from the critical path and thus decreases the

latency per packet in the common case. To accomplish this we implement a Bloom

filter-based, stochastic pre-classification stage, enabling the bifurcation of the pre-

dicted good and predicted bad packet code paths, greatly improving performance.

We simulate two different aging mechanisms for the bloomfilter, as well as various

intervals for clearing. We run simulations for various percentages of bad traffic. We

show that for the optimal case with a cold clear bloomfilter at the interval of 7000

elements, our proposed architecture improves firewall performance 67% to 92% under

anonymized trace-based workloads from CAIDA servers. While our approach has the

possibility of incorrectly classifying a small subset of bad packets as good, we show

that these holes are neither predictable nor permanent, leading to a small, 0.5% to

3.1% of first-time seen, bad packets penetrating the firewall (subsequent packets from

the same flows would be filtered out by the access cache).
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