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ABSTRACT 

 

Understanding how protein sequence, structure and function coevolve is at the 

core of functional genome annotation and protein engineering. The fundamental problem 

is to determine whether sequence variation contributes to functional differences or if it is 

a consequence of evolutionary divergence that is unrelated to functional specificity. To 

address this problem, we cannot merely analyze sequence variation between homologous 

proteins that have different functions. For comparison, we need to understand the factors 

that determine sequence variation in proteins that have the same function, such as a set 

of orthologous enzymes.  

Here, we address this problem by analyzing the evolution of functionally 

important residues in the o-succinylbenzoate synthase (OSBS) family. The OSBS family 

consists of several hundred enzymes that catalyze a step in menaquinone (Vit. K2) 

synthesis. Based on phylogeny, the OSBS family can be divided into eight major 

subfamilies. We assayed wild-type OSBS enzyme activities. The results show that the 

enzymes from γ-Proteobacteria subfamily 1 and Bacteroidetes have relatively low 

values, the enzyme from Cyanobacteria subfamily 1 is intermediate, and the values for 

the proteins from the Actinobacteria and Firmicutes subfamilies are relatively high. We 

are using computational and experimental methods to identify functionally important 

amino acids in each subfamily. Our data suggest that each subfamily has a different set 

of functionally important residues, even though the enzymes catalyze the same reaction. 

These differences may have accumulated because different mutations were required in 
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each subfamily to compensate for deleterious mutations or to adapt to changing 

environments. We assessed the roles of these amino acids in enzyme structure and 

function. Our method achieved 70% successful rate to identify positions that play 

important roles in one family but not another. The residues P119 and A329 play 

important role in D. psychrophila but not in T.fusca OSBS. We also observed two class 

switch mutations in T.fusca, P11 and P22. The mutations at these two position have a 

similar kinetic parameters as wild-type D. psychrophila OSBS. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Evolution of Protein Functions  

 

Homologous proteins can have different functions, but some aspect of that 

function is typically conserved. In enzymes, this conserved feature is usually an aspect 

of catalysis, such as a partial chemical reaction or intermediate (1-3). For example, all 

proteins in the enolase superfamily use a set of conserved active site residues to catalyze 

a common partial reaction in which a base abstracts a proton alpha to a carboxylate to 

form a metal-stabilized enolate anion intermediate (Figure 1) (4). Using this conserved 

partial reaction, proteins in the enolase superfamily catalyze at least 20 chemically 

diverse reactions, including dehydration, racemization, and cycloisomerization (4, 5).  

Specificity is determined by additional catalytic, ligand binding, and other 

residues (4, 6-9). New protein functions arise from divergence of these specificity 

determinants (the subset of functionally important residues that are responsible for 

conferring different functions on homologous proteins).  
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Figure 1 The enolase superfamily. Catalytic residues and a partial chemical reaction 
are conserved in homologous proteins that have different functions. A) The catalytic 
residues of o-succinylbenzoate synthase (OSBS; green; PDB entry 1FHV) and dipeptide 
epimerase (blue; PDB entry 1JPD) from E. coli are conserved (10, 11). B) OSBS, 
dipeptide epimerase and >18 other families in the enolase superfamily utilize the same 
partial chemical reaction. C) Different chemical reactions catalyzed by OSBS, dipeptide 
epimerase, and N-succinylamino acid racemase (NSAR). 
 

 

The Misannotation Problem 

 

Realizing the full potential of genome sequencing technology requires accurate 

functional annotation. Often, functional divergence cannot be predicted from global 

sequence similarity, because closely related proteins can have different functions, and 

distantly related proteins can have the same function. However, sequence similarity is 

still the primary criterion for functional annotation (12). As a result, misannotation levels 

are unacceptably high, with estimates ranging from 8%-30% (13-16). Alarmingly, 

misannotation rates have apparently increased sharply in recent years (16). 



 

3 

 

 

Many groups are trying to improve functional annotation methods using 

combinations of local or global sequence similarity, phylogeny, and genome context (17-

19). These methods primarily transfer annotations of known functions, so their accuracy 

hinges on the quality and quantity of available data (20, 21). Indeed, inappropriate 

transfer of annotations to related proteins that have different functions is the main source 

of misannotation (16). A critical problem is that a miniscule fraction of sequenced 

proteins have been experimentally characterized. In the absence of sufficient data, the 

boundaries between protein families that have different functions are nebulous. 

Improving the accuracy of functional annotation will require both more sophisticated 

function prediction methods and experimental characterization to define family 

boundaries (Figure 2). 

 

Predicting Functional Differences by Identifying Specificity Determinants 

 

One solution to the misannotation problem is to use methods that predict 

functional differences. These methods would target proteins with novel functions for 

experimental characterization. Annotation of related proteins using this additional data 

would improve initial annotation accuracy and correct misannotation (Figure 2). 

Methods that identify specificity determinants are ideally suited for this application. 

They compare different protein families to identif y specific amino acids whose 

evolutionary divergence is expected to correspond to functional divergence. In addition 

to identifying misannotation, predicting specificity determinants can also be used to 
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guide experimental characterization of novel protein functions. In particular, this data 

will be valuable for selecting libraries of compounds to use in high throughput screening 

or computational ligand docking (22-24). 

 

 

 

Figure 2 Correcting misannotation by characterizing new protein functions. Circles 
represent proteins, and the lines represent criteria for transferring functional annotations 
(sequence similarity, conserved motifs, operon context, etc.). Dashed lines indicate 
weaker associations. A) The red protein has a known function, and its annotation has 
been transferred to uncharacterized proteins (pink circles), often through many steps and 
via weak connections. B) Reannotation after discovering the function of the blue protein 
defines boundaries between two families that have different functions (black lines). 
Some proteins that are weakly connected to both families (light grey) might have a third 
function. 

 

 

The main focus of research to develop methods that predict specificity 

determinants or functionally important amino acids revolves around algorithm design 

(25-31). However, the most critical question is whether the identified amino acids truly 

determine specificity. Homologous proteins that have the same function also exhibit 
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sequence variation. Some variation is neutral, but functionally important amino acids 

also vary due to coevolution with adjacent amino acids or adaptation to new 

environments. These functionally important amino acids are not specificity determinants, 

but they would be identified as such by existing methods, leading them to predict that 

these proteins have different functions.  

Existing methods for predicting specificity determinants have two other 

weaknesses that need to be addressed. First, some of the existing methods assume that 

specificity determinants are in the same location in all compared proteins (25, 26). As 

discussed below, results from our lab demonstrate that this is a faulty assumption. 

Second, sequence diversity of the input data is likely to affect the ability of these 

methods to predict specificity determinants. For example, expanding the LacI/GalR data 

set to include a larger number and more diverse sequences increased the number of 

known functionally important residues that were identified (32). In contrast, using 

Evolutionary Trace to predict specificity determinants in our model system, the o-

succinylbenzoate synthase (OSBS) family, returned no results, suggesting that the 

sequences were too divergent (the average sequence identity is 28%) (28, 33).  

 

Model System: the o-Succinylbenzoate Synthase Family 

 

The experiments in this thesis utilize the o-succinylbenzoate synthase (OSBS) 

family as a model system. The OSBS family belongs to the enolase superfamily. OSBS 

catalyzes the conversion of 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate 
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(SHCHC) to o-succinylbenzoate (OSB) (Figure 1C). This reaction is required for 

menaquinone synthesis in a wide variety of bacteria, a few Archaea, and plants.(33, 34) 

OSBS enzymes can share as little as 15% sequence identity, even though they have a 

single evolutionary origin and a conserved function (33). As a result, they are frequently 

misannotated as other members of the enolase superfamily (28, 33). Based on the 

phylogeny, the OSBS family was originally divided into five subfamilies. One subfamily 

includes proteins that catalyze a second reaction, N-succinylamino acid racemization 

(NSAR). NSAR is utilized in a pathway for converting D-amino acids to L-amino acids 

(35). All characterized enzymes with NSAR activity also have OSBS activity (A. Sakai 

and J. Gerlt, personal communication) (35, 36). Operon context indicates that some of 

these proteins are bifunctional in vivo, while the biological function of others is either 

OSBS or NSAR. Due to high levels of sequence similarity and the bifunctionality of 

some enzymes, the NSARs cannot be easily segregated into a separate family from the 

OSBS family. The discovery that both NSAR and OSBS are biologically relevant 

activities supports the hypothesis that new enzyme activities evolve through 

promiscuous intermediates (33). 

Like all members of the enolase superfamily, OSBS enzymes are composed of a 

C-terminal catalytic (β/α)7β-barrel domain and an N-terminal capping domain with an α 

+ β fold that is unique to the enolase superfamily. Two loops from the capping domain, 

one that is around position 20 (the 20s loop) and one that is around position 50 (the 50s 

loop) form the top of the active site and help determine specificity in some members of 

the enolase superfamily (37, 38). In the barrel domain, the second lysine found in a KxK 



 

7 

 

 

motif at the end of the second beta strand is the catalytic base. The first acidic residue in 

the motifs DxN, ExP, and DEx on beta strands 3, 4, and 5 bind the divalent metal ion, 

and a lysine or arginine on beta strand 6 helps stabilize the transition state (39).  

The catalytic motifs on strands 2-5 are the only absolutely conserved residues in 

the whole OSBS family. The lysine on beta strand 6 is also highly conserved, but it is 

replaced by arginine in one OSBS subfamily. All of these catalytic amino acids are also 

conserved in other members of the enolase superfamily, including the muconate 

lactonizing enzyme (MLE) family, the dipeptide epimerase (DE) family and a number of 

uncharacterized proteins. Thus, these conserved residues do not determine specificity for 

the OSBS reaction (33). 

 

Specificity Determinants in the OSBS Family 

 

The extreme sequence divergence of the OSBS suggested that the residues that 

determine specificity for the OSBS reaction are not conserved in the OSBS family. 

Support for this hypothesis comes from comparing the crystal structures of E. coli OSBS 

(EcOSBS) and the promiscuous OSBS/NSAR from Amycolatopsis sp. T-1-60 

(AmyOSBS/NSAR). The relative orientation of the barrel and capping domains differs 

by 18°, which shifts the position of the 20s loop so that it cannot contact the product or 

the barrel domain the same way in the two structures (10, 33, 40). In addition, the 

conformation of the ligand is different, with the succinyl tail of OSB bent down in 

EcOSBS and extended in AmyOSBS/NSAR.  
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Two residues in EcOSBS determine this difference (41). Mutations at G288 of 

EcOSBS instroduce a steric clash that reduces catalytic efficiency >500-fold. However, 

Most OSBS enzymes also have glycine at this position, but the subfamily that 

AmyOSBS/NSAR belongs to has an aspartate at this position. Two other families in the 

enolase superfamily, muconate lactonizing enzyme and dipeptide epimerase, also have 

acidic residues at this position. Muting this residue to glycine in L-Ala-D/L-Glu 

epimerase from Escherichia coli or MLE II from Pseudomonas sp. P51, allows them to 

catalyze the OSBS reaction (42). Thus, G288 is a specificity determinant in some, but 

not all OSBS family members.  

The other residue that determines substrate orientation  in EcOSBS is R159, 

which interacts with the succinyl carboxylate of the substrate via an intervening water 

molecule. Mutating this position to methionine reduced efficiency 200-fold. This residue 

is conserved in all OSBS family enzymes except the subfamily to which 

AmyNSAR/OSBS belongs. In AmyOSBS/NSAR, an arginine enters the active site from 

a different location, which corresponds to a buried leucine in EcOSBS. Thus, R159 helps 

confer specificity in OSBS enzymes that bind the substrate in the “bent” conformation. 

However, arginine is also found at this position in the MLE family and the Firmicutes 

DE subfamily. In the MLE family, it is > 10 Å from the ligand, and its primary role 

might be to plug the bottom of the barrel. In the Firmicutes DE subfamily, this arginine 

has no active site accessibility, but it forms a hydrogen bond to an aspartate at the 

position corresponding to A107, which also contacts the amino terminus of the dipeptide 

substrate. Because this arginine is conserved in proteins that are not in the OSBS family, 
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R159 would not be detected as a specificity determinant by bioinformatic sequence 

comparison methods. However, the observation that arginines at different positions help 

determine substrate binding in EcOSBS and AmyOSBS/NSAR illustrates the faultiness 

of the assumption that the positions of specificity determinants are conserved. 

 

Goal of Thesis Research 

 

The goal of the work discussed in this thesis is to address the weaknesses in 

current approaches to specificity determinant prediction using the OSBS family as a 

model system. Chapter 1 lays the groundwork for determining the optimal sequence 

diversity for specificity determinant prediction algorithms by redefining subfamily 

assignments in the OSBS family and evaluating mechanistic diversity of OSBS 

enzymes. Chapter 2 begins to develop a method for identifying specificity determinants 

that does not assume that positions of specificity determinants are conserved. 
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CHAPTER II 

SEQUENCE AND MECHANISTIC DIVERSITY OF THE OSBS FAMILY 

 

The initial analysis of the OSBS family determined that, in spite of sequence 

identities of <15%, all members have a common evolutionary origin (33). The OSBS 

family phylogeny was very similar to species trees constructed using ribosomal RNA or 

other proteins. To facilitate comparisons within the family, it was divided into five major 

subfamilies by grouping proteins from the deepest branches where the posterior 

probability was >0.95, as calculated using a tree constructed with MrBayes (43). Many 

new sequences have become available since the original trees were constructed (23, 33). 

The work described in this chapter updates the OSBS family phylogeny with additional 

sequences, reevaluates the subfamily divisions, and determines the kinetic parameters of 

representative OSBS enzymes. Expanding the data set was vital for developing the 

method in Chapter 2, and the experimental data put the results of the computational 

analysis into evolutionary and mechanistic perspective. 

 

Methods 

 

Data set 

 

 The data set was compiled by Eric Hobbs, Robert Koenig, and Dr. Glasner. 

Starting with our manually curated alignment from 2006, we expanded our original data 
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set by downloading all sequences annotated as OSBS from the Structure-Function 

Linkage Database, which uses Hidden Markov Models (HMMs) to divide superfamilies 

into families of proteins that are expected to have the same function (33) (44).  Because 

the extreme divergence of the OSBS family increases the likelihood of misannotation, 

we retained only proteins that share > 40% amino acid sequence identity to OSBSs that 

had been verified based on phylogeny and operon context (33). Previous results 

demonstrated that all proteins with > 40% sequence identity to known OSBSs fall into a 

monophyletic clade in the phylogeny of the MLE subgroup. This data set includes both 

OSBS and NSAR enzymes. NSAR enzymes cannot be segregated out on the basis of 

sequence similarity.  

The data set was divided into clusters in which proteins share > 40% identity 

with at least one other protein. New sequences in each cluster were aligned to the 

previously aligned sequences using the profile option in MUSCLE (45). The resulting 

alignment was manually adjusted according to a structural alignment of the OSBS 

enzymes from E. coli (1FHV), Thermosynechococcus elongatus (2OZT), Desulfotalea 

psychrophila (2PGE), Thermobifida fusca (2QVH), Staphylococcus aureus (2OKT), and 

Amycolatopsis sp. T-1-60 (1SJB). Structural alignments and all structural images were 

produced using the University of California, San Francisco Chimera Package from the 

Resource for Biocomputing, Visualization and Informatics at UCSF (supported by 

National Institutes of Health 2P41RR001081) (46). The final data set consisted of 408 

sequences. 
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Phylogeny 

 

The phylogeny of the whole OSBS family was determined for a representative 

set of 198 proteins in which no two proteins share > 70% identity. This set was selected 

using CD-HIT (47, 48). Trees were constructed using MrBayes 3.1.2 under the WAG 

substitution matrix and a gamma distribution to approximate rate variation among sites 

(43, 49). MrBayes was run on the CIPRES-Portal 2.0 (50). The results were analyzed 

using Tracer to evaluate tree convergence and burn-in (51). Trees were also constructed 

by maximum likelihood using the RaxML BlackBox web server 

(http://phylobench.vital-it.ch/raxml-bb/) with a WAG substitution matrix and a gamma 

distribution to approximate rate variation among sites (52, 53).  

 

Protein purification 

 

OSBS enzymes were expressed in E. coli strain BL21 (DE3) or E. coli strain 

BW25113 (menC::kan) (a gift from J.A. Gerlt, University of Illinois at Urbana-

Champaign). This strain was converted to a DE3 strain to express T7 RNA polymerase 

using the λDE3 lysogenization kit from Novagen. Expressing the mutants in the menC– 

strain ensured that the purified proteins would not be contaminated with wild-type 

OSBS.  Cultures were grown overnight at 37 ºC without induction in 300 mL of Luria-

Bertani broth supplemented with carbenicillin and kanamycin. Cells were harvested by 

centrifugation at 1700xg for 15 minutes at 4 ºC. They were resuspended in buffer 
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containing 20 mM Tris, pH. 8.0, 500 mM NaCl, and 5 mM imidazole. Resuspended 

pellets were lysed using a Microfluidizer (Microfluidics Corporation) at 1800 psi. After 

centrifugation at 18,000xg for 30 minutes at 4 ºC, the filtered lysate was applied to a 5 

mL HisTrap FF column charged with Ni2+ (GE Healthcare). The protein was eluted with 

a buffer containing 20 mM Tris, pH. 8.0, 500 mM NaCl and 500 mM imidazole using a 

step to 15% elution buffer followed by a linear gradient to 100% elution buffer. 

Fractions containing apparently homogenous protein were identified by SDS-PAGE and 

pooled. Amicon Ultra-15 centrifugal filters (30 kD cutoff) (Millipore) were used to 

exchange the buffer and concentrate the pooled fractions. Purified proteins were stored 

in 10 mM Tris, pH. 8.0 and 5 mM MgCl2 supplemented with 25% glycerol for storage at 

-80 °C. The His-tag was cleaved by Thrombin. The protein was incubated with 

Thrombin (2 units/mg) on ice for at least 24 hours. Keep some uncleaved proteins as 

control. Separate the cleaved proteins from any uncleaved protein by running the whole 

mixture through another Ni-NTA column under the same condition as previous 

purification. The cleaved proteins should be in just flow through and uncleaved protein 

will bind to the column and can be eluted with imidazole. Run the collected fraction via 

SDS-PAGE to look for a gel shift. 

 

OSBS activity assay 

 

Wild-type and mutant OSBS enzymes were assayed with varying concentrations 

of SHCHC in 50 mM Tris, pH 8.0, 0.1 mM MnCl2 at 25 °C. The assays were performed 
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by quantifying the decrease in absorbance at 310 nm (∆ε = -2400 M-1 cm-1), as 

previously described (36, 54).  The SHCHC was synthesized by Lance Ferguson. 

Proteins were assayed before and after cleavage of the His-tag to determine if it affected 

activity. Initial rates were calculated using VisionPro (Thermo Scientific) and were fit to 

the Michaelis-Menten equation using Kaleidagraph (Synergy Software). 

 

Circular dichroism 

 

Thermal denaturation circular dichroism spectroscopy was performed on wild-

type E. coli OSBS and several of its mutants to determine thermodynamic constants 

using an Aviv spectropolarimeter in the far-UV region.  Samples were prepared with a 

concentration of 0.1 mg/mL in 50 mM inorganic potassium phosphate, 200 mM KCl, 

and 20% ethylene glycol buffer, pH 8.0 in one cm pathlength cuvettes.  A wavelength 

scan was performed to determine the wavelength at which our proteins had the greatest 

ellipticity and to elucidate some of the structural properties of the enzyme.  The 

wavelength of the largest peak (where ellipticity is greatest) was used as the wavelength 

to measure unfolding as each protein is thermally denatured. Thermal denaturation scans 

were conducted from 5-95 °C at 221 nm.  A temperature equilibration time of three 

minutes was used for each increase in temperature.  Temperature was increased at a rate 

of two degrees per interval and each measurement was averaged for 30 seconds 

following equilibration.  Data was analyzed using Origin 6.1 software. Thermodynamic 
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constants were estimated by fitting the data of the thermal denaturation curve to the 

equation: 

∫ ((YN+MN*x)+(YD+MD*x)*exp(-ΔH*(1/(x+273.15)-1/(Tm+273.15))/R))/(1+exp(-

ΔH*(1/(x+273.15)-1/(Tm+273.15))/R)) 

In the equation, YN is the intercept of the y axis for the lower flat part of the 

curve and MN is the slope of this section.  YD is the intercept of the y axis for the upper 

flat part of the curve and MD is the slope of this section.  X is the temperature in degrees 

C that was reported in each thermal denaturation curve at each point in the curve.  R is 

the gas constant 0.001987 Kcal K-1mol-1. 

 

Results and Discussion 

 

Phylogeny of the OSBS family 

 

A phylogenetic tree of the OSBS family was constructed to determine if adding 

new sequences altered the previously defined subfamilies, in which sequences belonging 

to the same bacterial phylum were grouped together. Due to the large number of 

sequences, the OSBS family was filtered to a nonredundant set of 198 proteins in which 

no two proteins share > 70% identity. The previously defined subfamilies are still well-

supported (Figures 3 and 4). The smallest subfamily from our previous analysis, the 

Bacteroidetes subfamily, grew from 4 to 36 sequences, and expansion of the Chlorobi 

subfamily from one to 11 sequences defined another major subfamily.  



 

16 

 

 

 

 

 

Figure 3 Division of the OSBS family into 8 subfamilies. Width of the wedges is 
proportional to the number of sequences, and wedge radius corresponds to the longest 
branch length. Proteins represented by individual branches share too little similarity to 
be included in the major subfamilies and are therefore left unassigned. Maximum 
likelihood bootstrap values and Bayesian posterior probabilities are shown for each 
designated subfamily. The tree is rooted based on the phylogeny of the MLE subgroup 
(41).  
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Figure 4 Full phylogenetic tree of the OSBS family constructed using MrBayes. 198 
sequences sharing < 70% identity were used to build the tree. The maximum likelihood 
tree constructed by RaxML was in agreement concerning the subfamily divisions, 
although there were minor differences in topology within some subfamilies (data not 
shown). Branches are colored as in Figure 3 (γ-Proteobacteria are blue, Chlorobi are 
cyan, Bacteroidetes are orange, Cyanobacteria are magenta, Actinobacteria are green, 
and Firmicutes OSBS/NSAR are red). The tree is rooted based on the phylogeny of the 
MLE subgroup. The names of the sequences are their gi numbers followed by an 
abbreviated species name consisting of the first three letters of the genus and the first 
two letters of the species (if available). Sequences listed as “env” are from 
environmental sequencing projects. 
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However, adding more sequences made deep divisions in the previously defined 

subfamilies very obvious. There are two deeply branching Cyanobacteria groups, and the 

γ-Proteobacteria subfamily has several small groups that branch deeply. The original 

Firmicutes OSBS/NSAR subfamily (including the red wedge and other red branches) is 

also more diverse than most other subfamilies, but divergence of the basal branches does 

not correlate with NSAR activity. Thus, we redefined subfamilies by restricting 

membership to sequences that share > 40% sequence identity with at least one other 

subfamily member. Phylogenetic support for the redefined Firmicutes OSBS/NSAR 

subfamily is weak using this cutoff. However, the sequence diversity is more uniform 

between the redefined families, so sequence differences between subfamilies are less 

likely to be due to differences in evolutionary rate or divergence time.  

 

Mechanistic differences among divergent OSBS enzymes 

 

Prior to this research, members of only two of the eight subfamilies had been 

enzymatically characterized. It was noted that the kcat and KM of EcOSBS were much 

lower than those of AmyNSAR/OSBS, although kcat/KM was 10-fold higher for EcOSBS 

(36). Because the genome of Amycolatopsis ap. T-1-60 has not been sequenced and the 

NSAR/OSBS catalyzes the NSAR and OSBS reactions with similar efficiency, the 

biological function of AmyOSBS/NSAR is unknown. The kinetic parameters of 

AmyOSBS/NSAR are similar to those of the OSBS from Bacillus subtilis, which is 

known to have OSBS activity as its biological function because the gene is encoded in 
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the menaquinone synthesis operon. Thus, the lower efficiency of AmyNSAR/OSBS for 

the OSBS reaction relative to EcOSBS is probably not due to the degerneration of an 

activity that is no longer biologically relevant. Instead, the change in mechanism 

represented by the differences in kcat and KM could have been an important factor in the 

evolution of NSAR activity in the Firmicutes OSBS/NSAR subfamily. 
 

To begin addressing this possibility, representatives of five OSBS subfamilies 

were purified and assayed. These proteins came from the γ-Proteobacteria 1, 

Bacteroidetes, Cyanobacteria 1, Actinobacteria , and Firmicutes OSBS/NSAR 

subfamilies. In addition, the OSBS from S. aureus, which belongs to the Firmicutes 

phylum but which was too divergent to include in the Firmicutes OSBS/NSAR 

subfamily, was assayed. The kinetic parameters are shown in Table 1.  

 

Table 1 OSBS wild-type activity assay 
 Subfamily kcat (s-1) KM  (µM) kcat/KM  (M-1s-1) 

E. coli a γ-Proteobacteria 1 24±0.8 12±1.8 2.0 x 106 

D. psychrophila Bacteroidetes 17±1.1 15±3.4 1.2 x 106 

T. elongatus Cyanobacteria 1 6±0.2 362±23 1.7 x 104 

T. fusca Actinobacteria 188±15 464±72 4.1 x 105 

Amycolatopsis b Firmicutes 120 480 2.5 x 105 

S.aureus Unassigned n.d. n.d. 1.8 x 106  

a Assayed by Wan Wen Zhu (41). b Assayed in reference (36). The other assays were 

performed by Mr.Wang. 
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 Although removing the His-Tag from EcOSBS did not affect its activity, 

AmyNSAR/OSBS was inactive when purified with a His-tag. Thus, the affect of the His-

Tag on the four proteins assayed in this work needed to be determined. The kinetic 

parameters are shown in Table 2. Removing the His-Tag from T. fusca did not change its 

activity. However, removing the His-tag from D. psychrophila appeared to reduce 

activity. The loss of activity was correlated with the length of time the protein was kept 

at 4 °C for cleavage and purification and was not dependent on the presence of thrombin. 

We also noted that the yields of this protein were significantly less than the other OSBS 

enzymes. This protein is probably less stable than the other OSBS enzymes because D. 

psychrophila was isolated from Arctic sediments that are ~10 °C. 

It is intriguing that the magnitude of kcat and KM correlate with the phylogenetic 

relationships among the subfamilies. The enzymes from γ-Proteobacteria subfamily 1 

and Bacteroidetes have relatively low values, the enzyme from Cyanobacteria subfamily 

1 is intermediate, and the values for the proteins from the Actinobacteria and Firmicutes 

subfamilies are relatively high. This probably reflects a change in the rate-limiting step. 

Kinetic isotoped effects of EcOSBS and AmyNSAR/OSBS indicate that proton 

abstraction is at least partially rate-limiting for both of them (E.A. Taylor, personal 

communication) (55). It is possible that product release or other catalytic effects relating 

to substrate orientation are partially rate-limiting for EcOSBS, but not for the 

Actinobacteria and Firmicutes proteins. Future experiments will determine whether the 
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mechanistic differences among these proteins was critical for the evolution of NSAR 

activity. 

 

Table 2 OSBS wild-type(w His-tag and w/o His-tag) activity assay 
 Subfamily His-tag kcat (s-1) KM  (µM) kcat/KM  (M-1s-1) 

D. psychrophila Bacteroidetes with His-Tag 17±1.1 15±3.4 1.2 x 106 

  after cleavage 9±0.7 60±12 1.5 x 105 

T. fusca Actinobacteria with His-Tag 188±15 464±72 4.1 x 105 

  after cleavage 228±5.6 375±31 6.0 x 105 

 

 

Effects of mutating active site residues of E.coli OSBS on stability 

 

Because the OSBS family is so divergent and the only conserved amino acids are 

also conserved in homologous enzymes that have different functions, we hypothesized 

that the subset of functionally important amino acids that determine OSBS activity have 

diverged, so that the locations and identities of the important non-catalytic amino acids 

are different in each subfamily  (33). Structural differences between E. coli OSBS (γ-

Proteobacteria subfamily) and Amycolatopsis OSBS/NSAR (Firmicutes OSBS/NSAR 

subfamily) support this hypothesis. The product is bound in different conformations, and 

the axis of orientation between the two domains in the structure is rotated by ~20 

degrees relative to each other.  
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Mutating the active site residues of E. coli OSBS identified several residues that 

were important for activity, some of which were conserved in only a subset of the OSBS 

family (41). We are also evaluating the effects of these mutations on protein stability 

using circular dichroism. Previous work determined that mutating some of the charged 

catalytic residues stabilized the protein by relieving electrostatic repulsion (56). We are 

determining how mutating non-charged and polar amino acids in the active site affect 

stability (Table 3). 

 

Table 3 E.coli OSBS mutants stabilities 
Variants kcat (s-1)a KM (µM) kcat/KM (M-1 s-1) Tmelt(oC) 

WT 24 ± 0.8 12 ± 1.8 2.0 x 106 50.9 

L48M/F51Y 27 ± 0.5 73 ± 6 3.7 x 105   48.3 

S262G 10 ± 0.5 21 ± 4 4.8 x 105 51 

S263G 73 ± 6 158 ± 33 4.6 x 105 48.4 

S264A 12 ± 0.5 29 ± 4.7 4.1 x 105 50 

a Kinetics were performed by Wan Wen Zhu. Circular dichroism was performed by Mr. 

Wang. 
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Two mutations were slightly destabilizing. L48M/F51Y change two residues in a 

loop around position 50 that form a hydrophobic substrate binding pocket to the residues 

found at those positions in Amycolatopsis OSBS/NSAR. Most mutations on these loops 

in both EcOSBS and AmyOSBS/NSAR decreased the yield of soluble protein (M. 

Hicks, S. Lucas, L. Ferguson, M. Glasner, data not shown). However, these mutations 

had a relatively mild effect on catalytic efficiency, reducing it ~10-fold. The other 

mutation that decreases stability, S263G, actually increases kcat and KM without changing 

catalytic efficiency. Several other mutations in E. coli OSBS also increase kcat and KM 

without changing catalytic efficiency (41). If they also decrease stability, that would 

explain why the lower kcat and KM of the wild-type enzyme are preferred. 
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CHAPTER III 

DEVELOPING A METHOD TO IDENTIFY DIFFERENCES IN 

FUNCTIONALLY IMPORTANT AMINO ACIDS 

 

The OSBS family is a good model system for developing new methods to 

identify specificity determinants because divergence of the subfamilies that have the 

same activity can be compared to the divergence of sequences that have evolved a new 

activity (in the Firmicutes OSBS/NSAR subfamily). This will promote the development 

of models to distinguish between types of amino acids that determine differences in 

specificity versus those that vary due to neutral mutations or covariation to maintain the 

structure. For example, differences in polar and charged residues in the active site would 

be expected to indicate a change in specificity. Current methods for identifying 

specificity determinants do not take this into account. 

Another the weakness of existing methods for identifying specificity 

determinants is that they assume that the positions of specificity determinants are 

conserved (25, 26, 57). The highest scoring residues will be conserved in both groups of 

proteins, but the identity of the amino acid would be different. This criterion would have 

missed one of the critical residue differences between the γ-Proteobacteria subfamily 

(represented by EcOSBS) and the Firmicutes OSBS/NSAR subfamily (represented by 

AmyOSBS/NSAR): R159 is conserved in the γ-Protobacteria, but it is variable in the 

Firmicutes OSBS/NSAR subfamily (41). 
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The work in this chapter discusses the development of an algorithm that avoids 

this pitfall. In our description of this method, we use the word “function” to include the 

roles of amino acids in catalysis, binding, folding, and stability. This method is based on 

the observation that functionally important residues evolve at slower rates than other 

residues. If the residue is more important for function in one subfamily versus another, 

its evolutionary rate will be significantly slower in that subfamily. Although calculating 

evolutionary rates is computationally intensive because it requires a phylogenetic tree, it 

outperforms many other methods (29). This method will initially be validated by 

comparing two OSBS subfamilies that have the same function, but the algorithm is 

expected to be generalizable for comparing proteins that have different functions, in 

which differences in functionally important amino acids reflect changes in specificity as 

well as covariation and neutral mutations that accumulate to maintain the structure or 

shared aspects of function.  

 

Methods 

 

Phylogeny 

 

OSBS subfamilies were defined according to the results of Chapter 1. The 

sequence alignment of the γ-Proteobacteria 1, γ-Proteobacteria 2, Bacteroidetes, 

Cyanobacteria 1, Cyanobacteria 2, Actinobacteria and Firmicutes OSBS/NSAR 

subfamilies were extracted from the data set described in Chapter 1. Phylogenies of each 
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OSBS subfamily were determined for a representative set of proteins in which no two 

proteins share > 95% identity using MrBayes 3.1.2 (43). These sets were selected using 

CD-HIT (47, 48). The parameters for MrBayes 3.1.2 were the as same as for the whole 

OSBS family in Chapter 1, except that the number of categories for the gamma 

distribution was set to eight, in order to calculate the evolutionary rates more accurately. 

 

Calculation of evolutionary rate ratios 

 

Raw evolutionary rates for each subfamily were calculated in MrBayes during 

tree construction. For each pair of subfamilies, the ratio of evolutionary rates for each 

aligned residue was calculated. Evolutionary rate ratios were treated as continuous 

distributions. Boxplots were derived to describe the distribution using the software JMP 

by SAS institute.  

 

Determination of mutations to construct 

 

After selecting sites for mutagenesis based on the boxplots, we created sequence 

logos of each site for the Bacteroidetes and Actinobacteria subfamilies (58). Sites that 

were predicted to be functionally important in one subfamily were changed to the most 

common amino acid found in the other subfamily. As a control, the same site in the other 

subfamily was mutated to the residue that was predicted to be important in the first 



 

27 

 

 

subfamily. The faster-evolving sites in the other subfamily were predicted to be more 

tolerant of mutation. 

 

Mutagenesis 

 

Site-directed mutagenesis was performed by the QuickChange Mutagenesis 

protocol using a 2-stage PCR reaction and the primers listed in Table 4 (59). The 

templates were the T. fusca (GI 158430463) and D. psychrophila OSBSs (GI 

146387140) subcloned into a pET15b vector (Novagen).  For each mutagenesis 

experiment, two reactions were set up, each containing either the forward or reverse 

primer. Each reaction contained 2.5 µL 10X Pfu buffer, 200 µM of each dNTP, 1 µM 

forward or reverse primer, 75 ng plasmid template, and 0.5 µL Pfu Turbo polymerase 

(Strategene) in a total of 25 µL. Following an initial 30” denaturation step at 94 ºC, four 

cycles of dentaturation at 94 ºC for 30”, annealing at 55 ºC for 1’, and extension at 68 ºC 

for 12 minutes were performed. 20 µL of the forward and reverse reactions were 

combined, and 25 more cycles of PCR were carried out on the combined 40 µL reaction 

using the cycling conditions above. One µL of DpnI was added to the PCR reaction to 

digest the template plasmid at 37 ºC for a minimum of 3 hours. The reactions were 

purified using a QIAquick PCR purification kit (Qiagen), and 2 µL were transformed 

into electrocompetent DH5α cells. Mutations in plasmids isolated from colonies were 

confirmed by sequencing in both directions (Eton Bioscience, Inc.). Christopher 

Gajwesky designed and constructed mutations of T. fusca OSBS. 
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Table 4 A list of mutations created for each residue in 2QVH and 2PGE as well as 
forward and reverse primer sequences. 
 
Mutation	
   Forward	
  Primer	
  Sequence	
  (5’-­‐3’)	
   Reverse	
  Primer	
  Sequence	
  (5’-­‐3’)	
  

2PGE	
   	
   	
  

P119A	
   CCGATGGGCGATTTGCAGCATTGCGTTTCGC	
   GCGAAACGCAATGCTGCAAATCGCCCATCGG	
  

P119R	
   CCGATGGGCGATTTCGCGCATTGCGTTTCGC	
   GCGAAACGCAATGCGCGAAATCGCCCATCGG	
  

G348L	
   CCACAGGGACTGGGCACGCTGCAGCTCTATACCAAC	
   GTTGGTATAGAGCTGCAGCGTGCCCAGTCCCTGTGG	
  

G348V	
   GGGACTGGGCACGGTTCAGCTCTATACC	
   GGTATAGAGCTGAACCGTGCCCAGTCCC	
  

G217A	
   GTGTCGATGCCAACGCGGCATTTTCACCC	
   GGGTGAAAATGCCGCGTTGGCATCGACAC	
  

G217R	
   GTGTCGATGCCAACCGCGCATTTTCACCCGC	
   GCGGGTGAAAATGCGCGGTTGGCATCGACAC	
  

A329M	
   GCAATCTTGGTTTAGCCATGATTGCGCAGTGGACAGCTC	
   GAGCTGTCCACTGCGCAATCATGGCTAAACCAAGATTGC	
  

L228I	
   CGAATGCTCCGCAGCGCATCAAGAGACTTTCCCAG	
   CTGGGAAAGTCTCTTGATGCGCTGCGGAGCATTCG	
  

S29E	
   CACGGGGGGTGTTGACGGAAAAGCCAACTTGGTTCG	
   CGAACCAAGTTGGCTTTTCCGTCAACACCCCCCGTG	
  

R284A	
   GAGTGCGATGCTTGATGCTATTGCTCCGCAGTACATAATC	
   GATTATGTACTGCGGAGCAATAGCATCAAGCATCGCACTC	
  

I15P	
   CGTCGCAGTGATTTACTGTTTAAACGTCCGGCGGG	
   CCCGCCGGACGTTTAAACAGTAAATCACTGCGACG	
  

Q45W	
   GGACATGGCGGTTGGGGGGAGGTCTCGC	
   GCGAGACCTCCCCCCAACCGCCATGTCC	
  

2QVH	
   	
   	
  

R49A	
   CGGGAATGCGCTGCTTGGTGGGCAGCTTG	
   CAAGCTGCCCACCAAGCAGCGCATTCCCG	
  

R49P	
   CGGGAATGCGCTCCGTGGTGGGCAGCTTG	
   CAAGCTGCCCACCACGGAGCGCATTCCCG	
  

L258G	
   GCTTGTGGTCTGGCAACTGGCCGTCTGCTGCATGC	
   GCATGCAGCAGACGGCCAGTTGCCAGACCACAAGC	
  

G133R	
   CGTATCGATGTTAATCGCGCGTGGGATGTTGAC	
   GTCAACATCCCACGCGCGATTAACATCGATACG	
  

A238M	
   CGAGCGTCGGTCTGGCTATGGGTGTAGCTCTGGC	
   GCCAGAGCTACACCCATAGCCAGACCGACGCTCG	
  

I144A	
   CAGCCGTACGCATGGCTCGCTTGCTTGACCG	
   CGGTCAAGCAAGCGAGCCATGCGTACGGCTG	
  

R22E	
   CCGTGGTATCACTGTGGAAGAAGGTATGTTAGTTCGCGGTG	
   CACCGCGAACTAACATACCTTCTTCCACAGTGATACCACGG	
  

R22S	
   CCGTGGTATCACTGTGAGCGAAGGTATGTTAGTTCGC	
   GCGAACTAACATACCTTCGCTCACAGTGATACCACGG	
  

A196R	
   GTGCGCGATGCAGAACGCGCTGATGTTGTGG	
   CCACAACATCAGCGCGTTCTGCATCGCGCAC	
  

P11I	
   GGCAGAGCGTTTGCCATTATCCTGCGCACGCGTTTC	
   GAAACGCGTGCGCAGGATAATGGCAAACGCTCTGCC	
  

P11H	
   GAGCGTTTGCCATTCACCTGCGCACGCGTTTC	
   GAAACGCGTGCGCAGGTGAATGGCAAACGCTC	
  

W33I	
   CGCGGTGCAGCTGGTATCGGTGAGTTTAGCCCATTC	
   GAATGGGCTAAACTCACCGATACCAGCTGCACCGCG	
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Protein purification 

 

Wild-type EcOSBS was expressed in E. coli strain BL21 (DE3). Mutant EcOSBS 

enzymes were expressed in E. coli strain BW25113 (menC::kan) (a gift from J.A. Gerlt, 

University of Illinois at Urbana-Champaign). This strain was converted to a DE3 strain 

to express T7 RNA polymerase using the λDE3 lysogenization kit from Novagen. 

Expressing the mutants in the menC– strain ensured that the purified proteins would not 

be contaminated with wild-type OSBS. All other procedures were that same as for 

Chapter 1. 

 

OSBS activity assay 

 

OSBS activity was assayed as described in Chapter 2. 

 

Results and Discussion  

 

We constructed phylogenetic trees of each subfamily and calculated the 

evolutionary rate at each aligned residue using two methods (MrBayes and Consurf) (43, 

53, 60). Statistical tests show that the distributions of evolutionary rates calculated by 

these two methods are similar (Table 5). P value (Sig.) is below the critical point that the 

differences between two methods are not significant. For each pair of subfamilies, the 

ratio of the evolutionary rates for each residue was calculated. We set the significance 



 

30 

 

 

threshold by using boxplots of the rate ratios to identify outliers whose ratio is 1.5 x the 

interquartile distance and whose evolutionary rates are among the slowest 5% (Fig. 5). 

This is a relatively stringent threshold and may require revision as we experimentally 

test the predictions. Pairwise comparisons of the seven main OSBS subfamilies 

identified ~30 residues in each one that evolve more slowly in one subfamily versus 

another. In most subfamilies, a majority of these are not in the active site. This is not 

unexpected, because the proteins have the same activity.  

 

Table 5 Distributions of evolutionary rates calculated by MrBayes and Consurf are 
similar 

 

Paired Differences 

df 
Sig. (2-
tailed) Mean 

Std. 
Deviation 

Std. Error 
Mean 

95% Confidence Interval 
of the Difference 

Lower Upper 
Pair 
1 

MrBayes - 
CONSURF 

-.07130 .2496 .01420 -.0992 -.0434 308 .000 
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Figure 5 Identifying differences in functionally important amino acids by comparing evolutionary rates. A) Plot of the 
evolutionary rates calculated for the Bacteroidetes and Actinobacteria subfamilies. Highlighted regions are in the active site. B) 
Plot of the evolutionary rates calculated for the Bacteroidetes and Actinobacteria subfamilies. The segment between beta-
strand 7 and beta-strand 8 of the C-terminal domain is shown. Highlighted regions are in the active site. Asterisks indicate 
residues that are outliers. C) Boxplot of the ratio of evolutionary rates between the Bacteroidetes and Actinobacteria 
subfamilies. The outliers evolve at least 5-fold more slowly in Bacteroidetes. 



 

32 

  

 

We also compared evolutionary rates among all the subfamilies individually. 

Calculating evolutionary rates produces a continuous distribution. Evolutionary rates are 

measured in substitutions per site, so the rate should correlate with the tolerance to 

amino acid substitutions at that site. Thus, the distribution of evolutionary rates ranks 

amino acids according to their expected functional importance. The statistical analysis of 

evolutionary rates individually are shown in Figure 6.  There are differences in the 

subfamilies’ evolutionary rates distributions. The sequence diversity and average 

sequence identity might cause the difference. Those might also affect the performance of 

bioinformatic functional prediction methods.  

 

 

Figure 6 Descriptive statistics analysis of subfamilies raw evolutionary rates. The 
maximum, median, mean and minimum values of individual distributions are as shown. 
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Roles of functionally important amino acid in the Actinobacteria and Bacteroidetes 

Subfamilies 

 

  In order to determine the functional roles of the identified amino acids and to 

verify predictions of the evolutionary rate ratio method, the predictions from the 

comparison of the Bacteroidetes and Actinobacteria subfamilies were experimentally 

tested. These subfamilies were chosen because they have similar numbers of sequences 

(36 versus 42, respectively) and similar sequence diversity (54% versus 51% average 

sequence identity, respectively). Outliers determined from boxplots of the evolutionary 

ratio between the Actinobacteria and Bacteroidetes subfamilies are listed in Tables 6 and 

7. 
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Table 6 Residues that are predicted to be more important for function in the 
Bacteroidetes subfamily than the Actinobacteria subfamily. 
residues in 

T. fusca 
OSBS 

Evolutionary 
Rate 

2QVH 
residue # 

residues in 
D. 

psychrophila 
OSBS 

Evolutionary 
Rate 

2PGE 
residue # 

evRate in 
Actinobacteria

/ evRate in 
Bacteroidetes 

OSBS 
G 2.63 43 S 0.05 55 50.80 
R 1.84 49 P 0.10 119 17.63 
G 1.58 133 G 0.12 217 12.78 
L 1.58 258 G 0.12 348 12.75 
G 0.69 239 I 0.06 330 12.03 
T 1.35 95 C 0.13 180 10.79 
I 0.93 144 L 0.09 228 10.36 
A 1.95 263 N 0.19 353 10.15 
A 1.12 241 Q 0.11 332 9.89 
L 0.88 236 L 0.09 327 9.81 
A 1.11 237 A 0.12 328 9.62 
A 1.11 238 A 0.12 329 9.62 
E 0.84 107 F 0.09 190 9.18 
G 1.05 92 G 0.12 177 8.47 
V 0.97 225 W 0.13 316 7.47 
G 0.92 34 G 0.12 46 7.45 
E 0.41 56 E 0.06 126 7.25 
L 1.54 147 L 0.21 231 7.20 
T 0.37 232 S 0.05 323 7.20 
L 0.93 216 W 0.13 304 7.10 
E 0.40 231 E 0.06 322 6.97 
L 0.37 165 M 0.05 251 6.86 
S 0.39 181 E 0.06 267 6.85 
V 0.61 230 L 0.09 321 6.77 
A 0.95 134 A 0.14 218 6.70 
E 0.45 153 H 0.07 237 6.53 
V 0.88 200 I 0.14 288 6.44 
V 0.88 201 I 0.14 289 6.44 
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Table 7 Residues that are predicted to be more important for function in the 
Actinobacteria subfamily than the Bacteroidetes subfamily. 
residues in 

D. 
psychrophila 

OSBS 

Evolutionary 
Rate 

2PGE 
residue # 

residues in 
T. fusca 
OSBS 

Evolutionary 
Rate 

2QVH 
residue # 

evRate in 
Bacteroidetes
/ evRate in 

Actinobacteria 

N 3.41 257 R 0.11 171 30.74 
G 3.04 272 R 0.11 184 27.35 
A 2.08 256 R 0.11 170 18.69 
 1.44  R 0.11 183 12.98 

Q 1.90 275 D 0.15 187 12.52 
R 1.53 284 A 0.20 196 7.59 
R 3.20 11 A 0.43 7 7.49 
G 3.59 43 A 0.49 31 7.32 
F 1.16 34 L 0.16 26 7.10 
A 3.59 273 A 0.52 185 6.88 
L 1.14 336 A 0.17 245 6.86 
C 0.75 255 R 0.11 169 6.77 
A 1.12 335 A 0.17 244 6.76 
G 3.59 44 G 0.56 32 6.46 
G 2.61 199 A 0.42 116 6.28 
G 1.48 364 G 0.24 275 6.08 
Q 3.43 338 P 0.61 247 5.66 
P 0.97 31 E 0.17 23 5.60 
L 3.29 366 L 0.61 277 5.38 
Q 1.42 167 A 0.28 85 5.08 
G 1.97 53 E 0.39 41 5.05 
I 2.29 15 P 0.46 11 4.97 
G 3.54 302 L 0.72 214 4.94 
Q 1.27 45 W 0.26 33 4.79 
L 0.75 196 R 0.16 113 4.77 
D 2.28 38 A 0.49 30 4.65 
L 1.83 355 V 0.40 265 4.63 
L 1.91 37 G 0.43 29 4.49 
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 We designed mutations at several of the predicted positions. Looking at 

Sequence Logos of the sites predicted to be more important for function in one 

subfamily, we designed mutations at the highly conserved positions in one subfamily by 

swapping them for the most common amino acid found at the corresponding weakly 

conserved position in the alignment of the compared subfamily (Figure 7).  

Mutations made at respectively larger evolutionary rate residues were considered 

negative controls, as according to our hypothesis, they should have little effect on the 

protein.  At some positions, we designed additional mutations to alanine or mutations 

that caused side chain changes that could affect interactions (polar to non-polar, negative 

to positive and vice versa). A complete list of the mutations can be found in Table 4.  

Effects of these mutations on protein solubility and kinetics data are listed in 

Table 8 and Table 9. Using UCSF Chimera, we analyzed the structures of these proteins 

to understand effects of the mutations we made (Figure 8).  
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Figure 7 Weblogos used for each aligned residue studied in T. fusca OSBS (2QVH) 
and its aligned residue in D. psychrophila OSBS (2PGE). The numbers at the bottom 
of each picture correspond to the position in PDB structure. A.) Predicted important 
resides in D. psychrophila OSBS are showed at the top row. The corresponding residues 
in T. fusca OSBS are shown at the bottom.  B.) Predicted important resides in T. fusca 
OSBS are showed at the top row. The corresponding residues in D. psychrophila OSBS 
are shown at the bottom. 
 



 

38 

 

 

 

Table 8 Experimental validation of evolutionary rate ratio method: effect of mutating positions that are expected to be 
more important for function in D. psychrophila (Bacteroidetes) 

 kcat    

(s-1) 

KM   

(µM) 

kcat/KM             

(M-1s-1) 

Actino. evRate/ 

Bacter. evRate 

 kcat       

(s-1) 

KM    (µM) kcat/KM          

(M-1s-1) 

D. psych. WT  17±1.1 14±3.4 1.2 x 106 --  T. fus. WT  188±15 464±72 4.1 x 105 

            

P119A  insoluble 18  R49A  32±2.5 96±16.0 3.3 x 105 

P119R  insoluble   R49P  n.d. n.d. 2.0 x 103 

          

A329M  insoluble 10  A238M  219±25 367±96 6.0 x 105 

          

G348L        5±0.2            10 ±2.2                 5.0 x 105    13  L258G  109±10 352±64 3.1 x 105 

G348V        6±0.5            31 ±8.2                 1.9 x 105        

          

G217R  0.5±0 579±111 8.6 x 102 13  G133R  insoluble 

G217A  0.08±0 176±49 4.6 x 102      

          

L228A  insoluble 10  I144A  insoluble 

L321A   9.8±1.3          96.3±28                    1.0 x 105 7     
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Table 9 Experimental validation of evolutionary rate ratio method: effect of mutating positions that are expected to be 
more important for function in T. fusca (Actinobacteria) 

 kcat   

(s-1) 

KM  (µM) kcat/KM            

(M-1s-1) 

Bacter. evRate/ 

Actino. evRate 

 kcat      

(s-1) 

KM  (µM) kcat/KM        

(M-1s-1) 

T. fus. WT 188±15 464±72 4.1 x 105 -- D. psych. WT 17±1.1 15±3.4 1.2 x 106 

A196R  insoluble  8 R284A 1.6±01 60±7.4 2.6 x 104 

P11I   49±4.5          43±14                    1.2 x 106 5 I15P    

P11H   29±4.3          93±35                     3.2 x 105              

W33I      n.d.             n.d.                        7.0 x 104 5 Q45W    

R22S  13±3.7 195±91 6.7 x 104    

R22E  insoluble     
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Figure 8 Structure analysis. A.) A ribbon structural depiction of T. fusca OSBS 
(2QVH) with OSB bound in the active site.  Residues highlighted in red are predicted to 
be more important for function in Actinobacteria than Bacteroidetes based on our 
predictions.  Residues highlighted in green are the “unimportant” residues that will be 
mutated.  Orange residues are active site residues and are bound to OSB (yellow). B.) A 
depiction of T. fusca OSBS only showing residues that were mutated. C.) The structure 
of D. psychrophila OSBS (2PGE).   Residues highlighted in red are predicted to be more 
important for function in Bacteroidetes than Actinobacteria based on our predictions.  
Residues highlighted in green are the “unimportant” residues that will be mutated.  D.) 
The residues that will be mutated in 2PGE after hiding the rest of the structure shown in 
C. 
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In D. psychrophila OSBS, residues P119, L228, G217, L321 and A329 are 

predicted to be more important for function in the Bacteroidetes subfamily than the 

Actinobacteria subfamily by our method, while the aligned residues R49, A238, G133R 

and I144A in T. fusca OSBS are predicted to be negative controls. P119, L228, G217, 

L321 and A329 In D. psychrophila OSBS all have small evolutionary rates so that they 

evolve slower than R49, A238, G133R and I144A in T. fusca OSBS, which have much 

higher evolutionary rates. P119 and A329 fit our predictions. When we mutated P119 to 

alanine and arginine in D. psychrophila, the mutants result in insolubility. The R49A 

mutation in T. fusca OSBS does not change the OSBS efficiency, and worked as 

negative control as expected. A329 in D. psychrophila also fits our predictions. The 

variant A329M is insoluble while the corresponding A238M in T. fusca has similar 

OSBS efficiency as wild-type T.fusca.  

The variants G217R and G217A in D. psychrophila decrease OSBS efficiency by 

10,000-fold compared to wild-type, which agrees with our prediction, but G133 in T. 

fusca does not fit our prediction as a negative control. When we mutated G133 to 

arginine, it results in insolubility. One explanation might be that although this position 

tolerates mutations, an arginine adjacent to the conserved active site residue, N132 

disrupts the structure. In the sequence alignment of the Actinobacteria subfamily, 

alanine, cysteine and threonine occur at positions aligned with G133. More conservative 

mutations at this site, such as G133A, might show that this site can tolerate some 

mutations that G217 in D. psychrophila cannot.  
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The variants G348L and G348V in D. psychrophila decrease OSBS efficiency by 

2.5-fold and 6.3-fold, respectively. Considering the error bar, we concluded that G348L 

does not provide a strong evidence to support our prediction. However, the assigned 

residues L258 in T. fusca fits our prediction as a negative control.  

L228 in D. psychrophila fits our prediction, as the variant L228A is insoluble. 

However the aligned residue I144 in T. fusca does not fit our prediction as negative 

control. The variant I144A is also insoluble. In the sequence alignment of the 

Actinobacteria subfamily, we find alanine, valine, isoleucine, and leucine at positions 

aligned to I144. Further conservative muations at this position in D. psychrophila and T. 

fusca OSBS enzymes will be required to determine if L288 in D. psychrophila is more 

tolerant of mutations. The variant L321A in D.psychrophila decreases OSBS efficiency 

by 10-fold, but we have not investigated the aligned residues in T. fusca OSBS. 

In T .fusca OSBS, A196, P11 and W33 are predicted to be more important for 

function in the Actinobacteria subfamily than the Bacteroidetes subfamily by our 

evolutionary rate-ratio method. The residue A196 in T. fusca OSBS fits our prediction 

because mutating A196 to arginine leads to insolubility. This is not surprising, because 

A196 is buried. However the aligned residue R284 in D. psychrophila does not fit our 

prediction as a negative control very well, because variant R284A decreases OSBS 

efficiency by 50-fold. It is not clear why the activity of R284A should decrease, because 

R284 is a surface residue that does not appear to interact with anything other than water. 

The residue P11 in T. fusca does not appear to fit our predictions. The variant 

P11I increases OSBS efficiency by 2-fold while P11H decreases it by ~1.3-fold, which 
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are not significantly different from wild-type. However, both kcat and KM decrease 5-10-

fold, indicating a change in the rate-limiting step that appears to convert the enzyme to 

the slow kcat-class, like D. psychrophila and E. coli OSBS enzymes. Without knowing 

whether kcat and KM are under selective pressure or if only the efficiency matters, it is 

difficult to evaluate the success of our predictions. 

It is also not clear whether W33 fits our predictions. Efficiency of the W33I 

mutant was ~5.8-fold lower. This is not a large drop in efficiency, but this effect was 

mostly due to an increase in KM. Depending on substrate concentrations in vivo, this 

decrease could be significant. We have not investigated the aligned residues in D. 

psychrophila. 

 

Performance evaluation of our evolutionary rate-ratio method 

 

We evaluated the performance two ways. First, we applied an accounting method 

on the data in Table 8 to see how well the effects of the mutations matched our 

expectations. We excluded the experiments that still lack experiments for negative 

controls. In D. psychrophila, we predicted and verified five functionally important and 

corresponding negative control pairs of residues, excluding the duplicate mutations at 

position P119 of D. psychrophila. If the experimental result fits our prediction for 

residues predicted to be more important in one subfamily, we assign two credits. If the 

experimental result fits our prediction for the corresponding negative control, we assign 

one credit. If both mutations fit both our predictions, we assign 3 credits. According to 
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this analysis, our method performance on D. psychrophila OSBS has a 73.3% successful 

rate (11/15). Second, we considered the pair of mutations at each predicted site as one 

entity to determine how well our method identified positions that appear more tolerant of 

mutations in one subfamily than another. By this metric, the success rate was 40% out of 

five pairs of residues. 

The low success rate could be due to several factors. First, we tested a very small 

number of positions. Second, we selected residues to mutate that were at various ranks in 

Tables 6 and 7, instead of selecting only the top-ranked residues. Third, we only tested 

one or two amino acids at each position. Fourth, we measured success by changes to 

enzyme efficiency, which might not be the correct parameter. We noted above that some 

mutations affect kcat and KM without significantly changing kcat/KM, and we do not know 

if this is important in vivo. Also, we have not determined how these mutations affect 

stability, which could be important since most of them are not in the active site.  

Full evaluation of this method will require testing additional sites and correlating 

the results with the rank of the predicted residue pair to identify an appropriate scoring 

cutoff. We also need to determine if different scoring schemes, such as normalizing the 

evolutionary rate, improve performance. Testing a library of amino acids at the 

identified positions would determine the tolerance of each site to mutations in a more 

systematic way than selecting one or two individual mutations. Finally, experiments to 

test the effects of the mutations on stability and determining the extent to which kcat and 

KM, as opposed to kcat/KM are under natural selection will be necessary in order to 

determine which parameters are relevant. 



 

45 

  

CHAPTER IV 

SUMMARY 

 

The OSBS family consists of several hundred enzymes that catalyze a step in 

menaquinone (Vit. K2) synthesis. Based on phylogeny, the OSBS family can be divided 

into eight major subfamilies. We assayed wild-type OSBS enzyme activities. The results 

show that the enzymes from γ-Proteobacteria subfamily 1 and Bacteroidetes have 

relatively low values, the enzyme from Cyanobacteria subfamily 1 is intermediate, and 

the values for the proteins from the Actinobacteria and Firmicutes subfamilies are 

relatively high. We apply computational and experimental methods to identify 

functionally important amino acids in each subfamily. Our data suggest that each 

subfamily has a different set of functionally important residues. These differences may 

have accumulated because different mutations were required in each subfamily to 

compensate for deleterious mutations or to adapt to changing environments. We assessed 

the roles of these amino acids in enzyme structure and function. Our method achieved 

70% successful rate to identify positions that play important roles in one family but not 

another. The residues P119 and A329 play important role in D. psychrophila but not in 

T.fusca OSBS. We also observed two class switch mutations in T.fusca, P11 and P22. 

The mutations at these two position have a similar kinetic parameters as wild-type D. 

psychrophila OSBS. We will test additional sites and correlate the results with the rank 

of the predicted residue pair to identify an appropriate scoring cutoff in future. 
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