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ABSTRACT 

 

Permeability estimation in tight and shale reservoirs is challenging because little 

or no flow will occur without hydraulic fracture stimulation. In the pressure falloff 

following a fracture calibration test (FCT), radial flow after the fracture closure can be 

used to estimate the reservoir permeability. However, for very low permeability, the time 

to reach radial flow can exceed any practical duration. This study shows how to use the 

reservoir pressure to estimate the maximum reservoir permeability when radial flow is 

missing in the after-closure response. The approach is straightforward and can also be 

used for buildup tests. It applies whenever the well completion geometry permits radial 

flow before the pressure response encounters a real well drainage limits.  

Recent developments have blurred the boundary between fracture calibration test 

analysis and classic pressure transient analysis. Adapting the log-log diagnostic plot 

representation to the FCT analysis has made it possible to perform before and after 

closure analysis on the same diagnostic plot. This paper also proposes a method for 

diagnosing abnormal leakoff behavior using the log-log diagnostic plot as an alternative 

method for the traditional G-function plot. 

The results show the relationship between reservoir permeability and pressure 

can be used effectively for both estimation of the permeability upper bound when there 

is no apparent radial flow and for confirming the permeability estimated from apparent 

late time radial flow. Numerous field examples illustrate this simple and powerful 

insight.  
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NOMENCLATURE 

 

Af   =fracture area, L2, ft2 

B  =formation volume factor, L3/L3, RB/STB 

br  =p-intercept on log-log plot  

bN  =intercept, Nolte-Shlyapobersky method , ML-1T-2 

bM =intercept, slope, method of Mayerhofer, Economides and Ehlig- 

Economides,  dimensionless 

sf  =compressibility of fluid in fracture, Lt2/m, psi-1 

ct  =total compressibility, Lt2/m, psi-1 

Ca  =adjusted wellbore storage L4t2/m, bbl/psi 

Cf  =fracture conductivity, m3, md-ft 

Cac  =after-closure storage, L4t2/m, bbl/psi 

Cpf  =propagating-fracture storage, L4t2/m, bbl/psi 

Cfbc  =before-closure fracture storage, L4t2/m, bbl/psi 

E’  =plane-strain modulus, m/Lt2, psi 

E  =Young’s modulus, ML-1T-2, psi 

F  =F-function, dimensionless 

FL  =linear flow time function, dimensionless  

FR  =radial flow time function, dimensionless  

FCT  =Fracture Calibration Test 

g  =loss-volume function, dimensionless 
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G  =G-function, dimensionless 

h  = formation thickness, L, ft 

hf  =fracture height, L, ft 

ISIP   =instantaneous shut-in pressure 

k  =permeability, L2, md 

kfw  =fracture conductivity, md-ft 

Lf  =fracture half-length, L, ft 

m’  =constant derivative level in a log-log plot 

mH  =slope of data on Horner plot, m/Lt2, psia 

mL  =slope of data on pseudo-linear flow plot, m/Lt2psia 

mN  =slope, Nolte-Shlyapobersky method , ML-1T-2 

mM =slope, slope, method of Mayerhofer, Economides and Ehlig-    

Economides,  dimensionless 

mR  =slope of data on pseudo-radial flow  plot, m/Lt2, psia 

p  =pressure, m/Lt2, psia 

fop   =falloff pressure, m/Lt2, psia 

Qi  =injection rate into one wing of the fracture, bbl/min 

Rw  =wellbore radius, ft 

Rf  =fracture radius, L, ft 

rp  =ratio of permeable to gross fracture area, dimensionless 

s  =Laplace transform variable, dimensionless 

sf  =fracture stiffness, m/L2t2, psi/ft 
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Sp  =spurt loss coefficient, L, m 

pt   =production time, hr 

et   =equivalent time, hr 

ebft    =end of bi-linear flow time, hr 

VL  =leakoff volume in one wing, L3, bbl 

Vw  =wellbore volume, L3, bbl 

wL  =Fracture lost width, L, ft 

X  =rigorous superposition time for variable rate, dimensionless 

x  =before-closure pressure transient coordinate, dimensionless 

xf  =fracture half-length, ft 

y  =before closure pressure transient coordinate, dimensionless 

z  =real gas deviation factor, dimensionless 

Greek 

  =difference, dimensionless 

  viscosity, m/Lt, cp 

N  =fracture growth exponent, dimensionless 

  superposition time, dimensionless 

  porosity, dimensionless

υ      =Poisson’s ratio, dimensionless

η  =fracture fluid efficiency, % 
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Subscript 

bf  =bilinear flow 

c  =closure 

D  =dimensionless 

e  =end of pumping 

ebf  =end of bilinear flow 

hf  =hydraulic fracture 

r  =reservoir 

lf  =linear flow 

i  =initial 

n  =time step 

ne  =time step at the end of the injection 
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CHAPTER I  

INTRODUCTION  

The fracture calibration test (FCT), otherwise known as a minifrac, an injection/falloff 

test (IFOT) or a diagnostic fracture injection test (DFIT) has become a standard practice 

before hydraulic fracture main treatment especially in tight gas and shale. Important 

parameters for hydraulic fracture design and expectation of post-frac production can be 

estimated from an FCT.   

Traditional specialized plot analysis techniques for before- and after- closure 

replies on finding a straight-line for a portion of data on a straight line for a certain 

portion of the data, from which parameters such are estimated either from slope of the 

line or end point values.  As such there is a high risk that an apparent straight line on a 

specialized plot leads to erroneous results.  Also, the dependability of the commonly 

unknown parameters such as closure pressure in constructing these specialized plots 

causes circular logic which is inefficient since it requires trial and error for the input 

parameter. Another challenge prevails in After-Closure-Analysis (ACA) of fracture 

calibration test is the inability to estimate formation permeability when the after closure 

pseudo-radial flow regime is absent. 

Mohamed et al. (2011) introduced using log-log diagnostic plot to perform 

before and after closure analysis in a unified manner which to some extends eliminates 

the necessity of multiple piecewise specialized plots. However the diagnosis of abnormal 

leakoff type was not described.  
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 The objective of this work is to propose method for diagnosing abnormal leakoff 

using the Log-log diagnostic plot as an alternative method for the traditional G-function 

plot and to propose an approach for estimating the upper-limit of formation permeability 

using the permeability-reservoir pressure relationship when radial flow is absent.  

The main masks of this work are two-fold. The first is to show how features that 

impact before and after closure behavior in the falloff data from an FCT appear in the 

log-log diagnostic plot. Specifically, to   

1. Use the 3/2 slope derivative trend to perform before closure analysis to 

estimate formation minimum stress, leakoff coefficient,  and fluid 

efficiency; 

2. Show how to identify and distinguish variable leakoff and  storage effects 

that appear before closure, and  

3. Use ¼, ½, and constant derivative trends appearing  after closure to 

estimate formation permeability, fracture conductivity and half-length,  

and reservoir average pressure; 

The second task is to use the relationship between permeability and formation 

pressure estimation as a way to bound the permeability estimate when radial flow is 

absent in the falloff response and to validate a permeability estimate from an apparent 

radial flow response.  

This study mainly expands on the Mohamed et al. (2011) log-log diagnostic plot 

to perform before and after closure analysis. Log-log diagnostic plots of FCT data from 

representative tight gas and shale formations are used to illustrate before-closure and 
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after-closure anomalies that have been described using specialized plots in the literature. 

Each example is shown both on the log-log diagnostic plot and on the specialized plot to 

illustrate the advantages in using a single universally- applicable log-log plot. In cases 

when after-closure radial flow is absent, we propose a simple method using the 

relationship between permeability and reservoir pressure for estimating an upper limit 

for the reservoir permeability.  

In order to enable better data handling and standardized procedure, an Excel 

Spreadsheet program has been prepared to perform fracture calibration test data 

diagnosis and analysis. The main functions of the program will be: 1. Data filtering and 

quality control; 2. Generation of diagnostic and specialized plots; 3. Parameter and 

estimation. In addition, the Ecrin software by Kappa Engineering will be used for 

comparison purposes.  
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CHAPTER II  

LITERATURE REVIEW 

This chapter reviews information from the literature on fracture calibration test (FCT) 

analysis. The subsections explain the FCT pressure response chronology and review 

existing before- and after- closure analysis approaches.   

2. 1 Fracture Calibration Test Pressure Response Chronology 

Nolte et al. (1997) described several types of tests that may be included in a fracture 

calibration test. A “mini-falloff “test with a short, low rate-injection in the undisturbed 

reservoir before a prolonged falloff period for formation transmissibility estimation may 

precede a second calibration test performed with much higher injection rate and more 

viscous fluid to characterize fracture behavior. In addition to these two tests, a step-rate 

test is sometimes conducted before a mini-fracture test to determine fracture extension 

pressure. (Figure 2. 1) In tight gas or shale gas formation the short and low rate 

injection-fall off test using slick water as injection fluid is favored because slick water is 

the injection fluid for the main fracture treatment and because the closure time increases 

with increased injection volume (Marongiu-Porcu et al. 2011). Sometimes, a step rate 

test is performed for a prior estimation of the closure pressure, pc, which can be used to 

ensure that shut-in period following injection is monitored longer than the complete time 

of fracture closure. (Gulrajani and Nolte 2000). In this thesis, Fracture Calibration Test 

(FCT) refers to the mini-falloff test that described in Nolte et al. (1997).  
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Figure 2.1 Formation Calibration Testing Sequence (Nolte 1997) 

 

 

In a constant rate fracture calibration test, fracture growth occurring before the end of 

pumping is followed by a pressure decline that ultimately approaches reservoir pressure. 

The possible late time pseudo-radial can be analyzed in a manner similar to traditional 

well testing methods to provide transmissibility and initial reservoir pressure estimation.  

2. 2 Before Closure Analysis   

A synopsis of Carter (1957) and Nolte (1979) leakoff models is provided in the 

following sections. The method by Mayerhofer and Economides (1993) and Mayerhofer 

and Economides (1997) is summarized as an alternative approach. 

2. 2. 1 Carter-Nolte Leakoff Model 

Early fracture diagnostics techniques were aimed at determination of fracture closure 

pressure and leakoff coefficient. The first formulation describing fracture fluid leakoff 

was given by the Carter (1957) equation in which the leakoff coefficient with a unit of 
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ft/min0.5 was developed to quantify the fluid leakoff rate at fracture face. Carter 

postulated that the fracture fluid loss after shut-in is the summation effect of fluid leakoff 

and the spurt loss. Nolte (1979) made a simple assumption that during injection, fracture 

fluid is contributing to the fracture propagation in the reservoir and that the fracture 

surface area increases according to a power law. He assumed that the fracture area 

remains constant after the end of pumping. The fracture fluid material balance after shut-

in is thus reduced to the following: 

eLDpeppeitt tCtgrASrAVV
e

),(22    , where 
e

D
t

t
t


 ……. (2.2.1.1)

 

The equation is based on simple material balance, which allocates the injected fracture 

fluid either to the initial spurt loss or leakoff through the fracture walls.  The average 

fracture width can be computed from the fracture fluid material balance equation by 

dividing both sides of the fracture material balance equation by fracture face area. Linear 

elastic theory indicates that net pressure is proportion to average width as 

cwffnet ppwsp                                                                                     …… (2.2.1.2) 

where fs is fracture stiffness. Combining the above equations yields 

),(),()2()2( DNNDeLfppfp

E

if

c tgmbtgtCsrSsr
A

Vs
pp   …..... (2.2.1.3)

 

This equation is the basis of Nolte’s pressure decline analysis. The pressure 

falloff model indicates a linear relation between bottom hole treating pressure and the g-

function,  
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  ),( Dtg  , later reformulated by ValkoÂ´ and Economides (1999) as a hyper-

geometric function which can only be computed numerically. Two extreme cases for 

),( Dtg   are shown in Eq. 2.2.1.4 and are widely used to approximate the g-function.  

The simplified g-function formulation using upper bound values for  = 1and  = ½ 

corresponds to negligible leakoff and about 100% fluid efficiency and is widely applied 

in low permeability formations. In most tight gas and shale cases, the choice for this g-

function representation is valid.  

 

















1))1((3/4

2/11sin)1(
)(

2/32/3

2/12/11

2/1





DD

DDD

D

tt

ttt
tg …..………….... (2.2.1.4)

 

When non-Newtonian filtrate occurs for fracturing fluids exhibiting a power-law-based 

rheology,   would deviate from ½ and the following exact form of g-function should be 

used: 

  



 dttg DD  

1

0

/111),,( …..……………………………………... (2.2.1.5)
 

When Dt =0, 
   
 









1
11),(0g , where  x is the gamma function. (Gulrajani 

and Nolte 2000) 

2. 2. 2 G-function Diagnostic Method for Fracture Closure  

The G-function is a representation of the elapsed time after shut-in normalized to the 

duration of fracture extension. (Barree et al, 2009) The G-function is defined as  
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  ])([4
0

gtgtG DD 


……………………………………….....… (2.2.2.1)
 

Barree et al. (2009) presented a consistent analysis of the G-function and its derivative 

with respect to G-function. He demonstrated through field cases the diagnostic approach 

for 4 different leakoff types, namely normal leakoff, pressure-dependent leakoff, tip 

extension as well as transverse storage (or height recession).  A straight trend passing 

through the origin of the G-function plot corresponds to normal leakoff behavior. Barree 

et al. (2009) summarized four types of leakoff behavior and their signature 

characteristics on the G-function semi-logarithmic derivative as the following. 

1. Normal leakoff  

a. During normal leakoff, the fracture surface area and reservoir system 

permeability are constant.   

b. Closure diagnosis on G-function plot-- Fracture closure is identified by the 

departure of the semi-log derivative of pressure with respect to the G-

function from the straight line through the origin. The leak-off coefficient is 

determined from the slope of the line.  

2. Pressure-Dependent leakoff  

a. Pressure-dependent leakoff (PDL) can significantly affect the behavior of 

wells during fracture treating. Pre-frac identification of pressure dependent 

leakoff enables adjustment of the main fracture treatment design to 

compensate for this effect. (Baree et al. 1998) 
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b. PDL occurs when the fluid loss rate changes with pore pressure or net 

effective stress in the rock surrounding the fracture. This may be caused by a 

change in the transmissibility of a reservoir fissure or fracture system that 

dominates the fluid loss rate. PDL may occur when there is substantial stress 

dependent permeability in a composite dual permeability reservoir. Baree et 

al (1998) suggest that when fluid is injected at pressures above the minimum 

in-situ stress either a hydraulic fracture will be induced or a suitably oriented 

set of pre-existing fissures or weakness planes will open (dilate). As the 

injected fluid pressure raises further above the minimum principal stress 

other fissure sets may be activated. Which fissure sets open depends on their 

orientation with respect to the minimum and maximum stress direction and 

the fluid pressure applied. 

 

Figure 2.2 Schematic fracture system in hard, fissured rock (Baree et al. 1998) 
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c. Barree et al.2009 have applied a stress ratio term (R), which relates the 

available fluid pressure to the minimum and maximum horizontal stress 

magnitudes to determine the orientation of fractures opening during hydraulic 

fracturing. For fissure dilation to occur, the stress ratio must exceed a 

function of the angle between the primary hydraulic fracture (maximum 

stress direction) and the fissure orientation.  

   
)2cos( 




R

SS

SPSP

hH

hfHf

…….………………..……… (2.2.2.2)
 

The plot of R against the angle () indicates four regimes (Figure 2.2). For 

the minimum R value of -1 only fractures orientated in the maximum stress 

direction with magnitude SH can open. This includes the primary hydraulic 

fracture. As the fluid injection pressure rises (increasing R) the orientation 

angle range for open fissure ranges from 0 to 90 degrees. For R > 1 any 

fissure, including those perpendicular to the primary fracture, can be dilated 

and invaded by the injection fluid (Figure 2.3). This analysis is consistent 

with observed fracture treating behavior in fissured reservoirs which suggests 

that fissure opening, presumably at some specific orientation, can be 

associated with a critical open pressure (Pfo) that is greater than the fracture 

closure pressure. In these systems higher treating pressure tends to aggravate 

any problems associated with fissure reopening, including leakoff, poor 

proppant mobility and early screen out.  
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Figure 2.3 Stress ratio plot defines orientation of open fissure. (Barree et al. 1998) 

 

 

d. Closure Diagnostics on the G-function plot— same with normal leakoff. 

However, during PDL, Semilog derivative exhibits the characteristic “hump” 

above the straight line extrapolated to the derivative origin. The end of PDL 

and critical fissure opening pressure corresponds to the end of hump and 

beginning of straight line representing matrix dominated leakoff.  

3. Fracture Tip Extension  

a. Occurs in very low permeability reservoirs. As the pressure declines the 

fracture width decreases while displacing fluid to the fracture tip, resulting in 

fracture length extension. When fracture tip extension occurs, the fracture 

cannot close during the entire falloff. 

b. Diagnostics on G-function plot—the G-function derivative fails to develop 

any straight-line trend. The semi-log derivative starts with large positive 
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slope, and the slope continues to decrease with shut-in time, giving a concave 

downward curvature. In this case the closure pressure cannot be determined.  

4. Transverse Storage.  

a. Transverse storage occurs when the fluid pressure exceeds the critical fissure-

opening pressure and opens a secondary fracture set. As the secondary 

fractures dilate they create a storage volume for fluid lost from the primary 

hydraulic fracture. As the fracture storage volume increases, leakoff can also 

accelerate. As such, PDL and transverse storage are aspects of the same 

coupled mechanism of fissure dilation. The relative magnitudes of the 

enhanced leakoff and transverse storage mechanisms determine whether the 

G-function derivative show PDL or transverse storage. At shut-in the 

secondary fractures will close before the primary fracture because they are 

held open against a stress higher than the minimum in-situ horizontal stress. 

As they close fluid is expelled from the transverse storage volume back into 

the main fracture, decreasing the normal rate of pressure decline and, in 

effect, supporting the observed shut-in pressure by re-injection of stored 

fluid. Accelerated leakoff can still occur at the same time, but if the storage 

and expulsion exceeds the enhanced leakoff rate, then transverse storage will 

dominate the response behavior. In many cases a period of linear, constant 

area, leakoff dominated by constant matrix permeability will occur after the 

end of transverse storage.  
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b. Characteristic G-function derivative signature is a “belly” below the straight 

line through the origin and tangent to the semilog derivative of pw vs. G at the 

point of fracture closure.  

The transverse storage model requires that a larger volume of fluid must be leaked-off to 

reach fracture closure than is expected for a single planar constant-height fracture. The 

time to reach fracture closure is delayed by the excess fluid volume that must be 

compressed.  

 

2. 2. 3 Before Closure Permeability Estimation 

Because leak-off represents flow into the formation, it is logical to consider relating 

closure behavior to the formation permeability. This approach is complicated when the 

fracture fluid creates a filter cake designed to minimize leak-off. This section briefly 

describes the Modified Mayerhofer methods (Valko et al. 1999) for before closure 

permeability estimation. The Mayerhofer and Economides (1993) method uses an 

analytical model that accounts for the filter cake created by some fracture fluids to 

minimize leak-off. Barree et al. (2009) presented an empirical function for permeability 

estimation derived from numerous simulations of fracture closure 

Mayerhofer and Economides Permeability Estimation 

The original Mayerhofer and Economides (1993) method to estimate permeability and 

fracture face resistance from a specialized plot requires a history match of pressure drop 

and pressure derivative versus time during the shut-in period. The history match 

algorithm requires varying permeability, fracture face resistance and fracture area until 
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pressure decline and pressure derivative can be satisfactorily simulated. The modified 

Mayerhofer method determines the fracture geometry with fracture height and extent 

from Nolte analysis of the fracture calibration test data. As result, a history match of the 

pressure falloff is not required to determine fracture extent and the estimated 

permeability and fracture face resistance is representative, provided the fracture 

dimensions are realistic.  

One of the assumptions and the major limitation of Nolte analysis is that the 

model assumes a constant leakoff coefficient – which is not always the case in reality. 

The Mayerhofer et al. (1995) model overcomes Nolte’s constant leadoff assumption. It 

represents the leakoff rate by introducing reference resistance R0 of the filter cake and 

the reservoir permeability kr. Another contribution of Mayerhofer et al. (1995) is that it 

showed that the pressure drop between the fracture face and the formation is largely 

reservoir dominated, challenging the then prevalent claim that the pressure response 

during the FCT is almost totally at the fracture face.   

The Mayerhofer et al. (1995) model for pressure decline analysis uses rate 

convolution to account for pressure dependent fluid loss and couples the resulting rate- 

and time- dependent skin effect with a transient solution for an infinite-conductivity 

fracture analogous to the transient pressure behavior for fractured wells in the Cinco-Ley 

and Samaniego-V. (1981) formulation.   

Mayerhofer et al. (1995) demonstrated their method for estimating formation 

permeability and filter cake resistivity by analyzing the pressure decline following the 

injection test in a fracture calibration test. The method is intended for a reservoir 
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containing a slightly compressible fluid such as oil and requires preparing a graph of yn 

vs. xn  from the equations shown in Table 2.1. To accommodate compressible fluid such 

as natural gas Craig and Blasingame (2006) reformulated the before-closure pressure-

transient analysis in terms of adjusted pseudo-pressure and adjusted pseudo-time.  

 

Table 2.1 Equations for before-closure pressure transient analyisis -- Mayerhofer 

Method(Craig and Blasingame 

2006)
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After creating the graph, permeability is calculated from the slope, mM, of the resulting 

straight line using the following equation:  

2
1

615.5
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Fracture-face resistance is calculated from the intercept, bM, as 
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)24)(2.141(
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…………………………………………………... (2.2.3.2) 

G-Function Permeability Estimate 

The Barree et al. (2009) empirical correlation is based on the observed G-function time 

at fracture closure:  

  96.1038.0/
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In order to account for abnormal leak-off behavior Eq. 2.2.2.3 the observed closure time 

must be corrected by multiplying by the storage ratio, rp. Under transverse storage 

Barree et al. 2009 indicated that the magnitude of rp can be determined by taking the 

ratio of the area under the G-function semilog derivative up to the closure time, divided 

by the area of the right-triangle formed by the tangent line through the origin at closure. 

For normal leakoff and PDL the value of rp is set to 1 even though the ratio of the areas 

will be greater than 1 for the PDL case. It is possible that closure time for PDL leakoff is 

proportional to the composite system permeability including both the matrix and 

fractures. For severe case storage rp can be as low as 0.5 or less.  
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2. 3. After Closure Analysis  

A summary of the most accepted after-closure analysis method is provided in this 

chapter.  For after-closure radial flow analysis, most of the analysis is based on Gu et al. 

(1993) impulse test analysis, from which reservoir transmissibility can be estimated. The 

period following fracture closure and preceding the onset of pseudo-radial flow can 

exhibit reservoir pseudo-linear flow. Nolte (1997) established the analytical solution for 

linear flow adapting the heat transfer formulation. Numerous after-closure analysis 

specialize plots were created based on this two theories.  

The sections also dedicates to the most recently development in which Mohamed 

et al. (2001) implemented the conventional well test method in after-closure analysis.  

 

2. 3. 1 Gu et al. Impulse Test Solution for Describing After Closure Behavior 

The theory and analysis of the impulse-fracture test are based on the instantaneous point-

source solution to the diffusivity equation. For the case of injection or withdrawal of 

fluid from a reservoir with a finite thickness h, the pressure response is given by  
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When injection duration is short compared to the shut-in time, t, the injection can be 

approximated as the instantaneous point sauce.   
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The after-closure analysis first developed by Gu et al.(1993) suggests applying impulse 

test analysis to FCT data in the same manner it applies for instantaneous injection times-

- provided that the duration of injection is much shorter than the falloff period. The 

permeability estimation depends only on the injected volume and does not depend on the 

pumping schedule or the properties of the injected fluids.  In particular, they used the 

following approximation for Horner time: 

 c
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where t is the total time of the falloff plus the injection time, and noting that  
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permeability is estimated from is the slope, mH, of a straight trend on the graph of p 

versus tc/t: 
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2. 3. 2 Benelkadi Method –F-function Plot for Closure Pressure Determination 

Benelkadi and Tiab (2004) concluded that the pressure first derivative with respect to 

total time of the falloff duration for after closure analysis from Gu et al. (1993) has an 

exponential form that characterizes the pressure response within the reservoir and that 

the onset of the exponential occurs at the closure time.  

The late –time pressure decline evolves a radial flow, thus allowing the reservoir 

pressure to be determined with Cartesian plot. The after-closure radial flow regime is a 
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function of injected volume, reservoir pressure, formation transmissibility, and closure 

time. Their relationship is provided in the following equations.  

2),()( FmttFmptp RcRRr  ………………………………………………….. (2.3.2.1)
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Modified method for permeability determination by use of after-closure radial flow 

analysis 
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For the pressure difference vs. F2, the above equations indicate that the radial flow is 

characterized by a unit-slop line. The intercept with p-axis is mR at F2=1. Therefore, the 

reservoir transmissibility is determined from 
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Since only one unit-slope line can across the Δp-axis at point mR, to determine the 

reservoir pressure, the value of the assumed reservoir pressure is varied until the 
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pressure difference curve overlies the drawn unit-slope line. Note that the time zero is set 

at the beginning of pumping.  

The main limitation of the proposed method is that the unit slope straight line can be 

observed only if the exponential term in Eq. 2.3.1.1 is equal to unity; that is 
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4

2

=1………………………………………………………………...…….. (2.3.2.8)
 

At long time t and/or very low permeability k, or very large values of radius r Eq. 2.3.1.2 

is a good approximation of Eq. 2.3.1.1, with less than 1% error. However, if the 

exponential term is closer to 0.1, the approximation can introduce up to 10% error in 

permeability estimation. (Benelkadi and Tiab 2004) 

2. 3. 3 Nolte (1997) Time Function Diagnostics  

Nolte et al. (1997) focused on the description of after-closure pseudo-linear flow regime. 

The period following fracture closure and preceding the onset of pseudo-radial flow can 

exhibit reservoir pseudo-linear flow. Assuming the pressure in the fracture is essentially 

constant during injection, the pressure decline after closure behaves as the thermal 

decay. A linear-flow Cartesian plot is developed as a counterpart of the Horner plot. The 

linear flow time-function was then expressed in equivalent forms in Talley et al. 

(1999).The reservoir linear flow gives insight on fracture geometry and can be used to 

validate or question the before-closure analysis. Closure time and leakoff coefficient 

should be predetermined from before closure analysis to apply this method. Pressure 

decline for pseudo-radial flow is provided in the following equation expressed using the 

radial flow time function, FR.  
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After-Closure Pseudo-Radial Flow 
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A Cartesian plot of pressure versus the radial flow time function yields reservoir 

pressure from the y-intercept and its slope mR permits reservoir transmissibility 

estimation. 
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Where k, h, m expressed in oil field units, tc in minutes and Vi is injected volume.   

After-Closure Pseudo-Linear Flow 

In the absence of spurt loss, it resembles a heat transfer problem. The pressure difference 

can be expressed similarly as: 

),()( cLLr ttFmptp 
……………………………..……………………….….. (2.3.3.4)

 

c
c

cL tt
t

t
ttF   ,sin2),( 1

 ………………………………………………….….. (2.3.3.5)
 

t

TL
ck

Cm





…………………………………….…………………...…….….. (2.3.3.6)
 

c
c

t

Tr tt
t

t

ck
Cptp   ,sin2)( 1





…………………………….………..….. (2.3.3.7)
 



 

22 

 

where CT is the total leakoff coefficient.  

Fracture half-length is determined from the time of transition from linear to radial-flow. 

The fracture length determined from this method can be compared to that determined 

from the conventional, pre-closure analysis. (Talley et al. 1999) 

One of the drawbacks of pseudo-linear flow analysis is that the guess of reservoir 

pressure, pr, used in construction of the flow regime plot severely influences the slope 

and magnitude of the pressure difference curves. The pressure first order derivative with 

respect to after closure falloff duration, because of the difference function used to 

generate it, is not affected by the initial guess of reservoir pressure.  

2. 3. 4 Soliman et al. (2005) Formulation  

Soliman et al. (2005) developed the after-closure analysis technique using analogous 

technique for conventional well test analysis. They postulated three types of the possible 

after closure flow regimes—pseudo-radial flow, pseudo-bilinear flow or/and pseudo-

linear flow. The parameters that are sensitive to each respected flow regime are 

quantified if possible.  

Pseudo-radial Regime. 

After-closure pressure follows pseudo-radial flow behavior when the created fracture is 

fairly short and no, or little, residual fracture conductivity remains. In addition to the 

short fracture, this would require a higher formation permeability and lower formation 

compressibility. The area affected by pseudo-radial flow is far enough such that the 

fracture appears almost as a cylinder. For low permeability formation, if the pumping 

rate is low and well is shut-in for a sufficient long period, pseudo-radial flow regime will 
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probably be observed if the fracture eventually close. To reach the pseudo-radial flow, 

the dimensionless time should exceed 1. Time in hours is determined from Eq. 2.3.4.1  

hr
k

Lc
t

ft

2310792.3 
 ……………………….………………………….….. (2.3.4.1)

 

 

Eq. 2.3.4.2 describes the behavior of pressure during pseudo-radial flow.  
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The equation implied that the specialized plot of 
)log( ifo pp 
vs. 

)log( tt p 
would 

render a straight line trend with slope of -1.0.  Furthermore, given injection volume, 

fluid viscosity and fracture height, the permeability can be estimated from the intercept, 

br of the log-log plot.  (Soliman et al. 2005) 
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Bilinear Flow Regime 

If the created fracture is long, or if it did not completely close, thereby maintaining some 

residual conductivity, it is possible that to observe a bilinear flow regime instead. The 

bilinear flow regime is controlled by the pressure drop caused by the linear flow inside 

fracture as well as the formation just surrounding the fracture. The relation governs 

bilinear flow of this particular condition are presented in Eq. 2.3.4.4 
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The equation implied that the specialized plot of 
)log( ifo pp 
vs. 

)log( tt p 
would render a straight line trend with slope of -3/4.  The last point on the 

straight line may be used to calculate an upper bound of formation permeability.  
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Linear Flow Regime 

If the fracture stays open with a high dimensionless conductivity, a linear flow regime 

may be observed. This is a fairly rare occasion. However, it may happen if the formation 

permeability is low. Another condition would be the fracture staying open for a fairly 

long time. 
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To sum up, Soliman’s analysis method for After-closure analysis is the 

following: First, create derivative graph by plotting log ( pp fo  ) vs. log ( tt p  ) and 

its semilog Derivative. Then, observe slope of the derivative straight line that data 

eventually follow. If the slope is -1, the fracture was properly closed at closure, and 

pseudo-radial flow regime will dominate the fluid flow behavior during the shut-in 
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period. If the slope is -0.75 or -0.25, the fracture stayed open during the falloff period, 

and bilinear flow or linear flow regime is expected.  

A specialized plot method provided by Soliman et al. (2005) is to plot log-log 

graph of pressure difference, pwf-pi, vs. the reciprocal of elapsed time, 1/ (te+t).  The 

characteristic slope would be the absolute value as in log ( pp fo  ) vs. log ( tt p  ) for 

respective flow regime1.  

Table 2.2 Flow Regime Identification from semi-log derivative curve. Soliman et al (2005) 

Log-log Graph Pre-closure Post Closure 

tdp/dt vs. t 
Bilinear linear Bilinear Pseudo-linear Pseudo-radial 

1/4 1/2 -3/4 -1/2 -1 

2. 3. 5 Horner Analysis for Permeability Estimation in Buildup/Falloff Analysis 

The conventional Horner analysis for buildup and falloff uses a semi-logarithmic plot of 

observed pressure vs. Horner time, (tp+Δt)/ Δt with all times in consistent units. The 

Horner plot is not a diagnostic plot, but can be used to estimate reservoir pressure and 

reservoir permeability if radial flow presents. The formation permeability can be 

estimated from the corresponding assumed radial flow period on the straight line trend. 

The extrapolated reservoir pressure can be estimated from the extrapolated straight line 

trend to the pressure for Horner time of 1 for an infinite acting system. 
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The permeability can be estimated as  
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in which m’ is the value of semi-log slope.  

If variable rate production history or injection scheme precedes a shut-in period, the 

substitution of the production/injection time tp for the material balance time, te is 

necessary to account for the variable rate convolution. The material balance time is the 

total production/injection at the end of injection or production history normalized by the 

last rate Eq. (2.3.5.3). 
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In case that last production/injection rate is abnormal, the actual superposition time 

function, Eq. (2.3.5.4) should be used for x-variable on Horner Plot instead of the 

simplified equivalent time. The data should be graphed in Cartesian scale instead of 

semilog scale.  
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2. 3. 6 Formation Pressure Estimation from the FCT 

After closure the FCT behavior is like that of any injection falloff transient. Whenever 

the FCT is conducted in an undepleted formation, extrapolation of a late-time trend to 

infinite time provides estimation for the formation pressure. For example, the 

extrapolation of the radial flow line on a Horner plot yields the extrapolated pressure, p*, 

which will approximate pi in new wells in never-produced reservoirs. Marongiu-Porcu et 
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al. (2011) estimated the extrapolated pressure directly from the FCT logarithmic 

derivative on the log-log diagnostic plot as 
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 Rock mechanics dictates that the poroelastic equation for estimating in-situ 

horizontal minimum stress is the following 
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Where σz = overburden stress, psi 

υ=Posson’s ratio  

αv=vertical Biot’s parameter =1 

αh=horizontal Biot’s parameter =1 

σt= external tectonic stress, psi 

min =formation minimum stress  

Assuming that external tectonic stress is zero, rearrange the relation, Equation 

(2.3.6.3) is obtained. This relationship indicated that the reservoir average pressure can 

be roughly estimated from the relationship between closure stress and a uniaxial strain 

given by 
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Nolte et al. (1997) postulated that after closure linear flow resembles heat transfer and 

pressure difference can be expressed as: 

),()( cLLr ttFmptp  ………………….……………….…………………..…. (2.3.6.4) 

where the time function FL is given by Eq. (2.3.3.5) 

With this relation, the most convenient way to estimate reservoir pressure given linear 

flow regime is simply compose a Cartesian plot of BHP vs. FL and extrapolate the 

pressure data corresponding to the linear flow time frame to FL =0. 

2. 4 Craig and Blasingame New Fracture Injection/Falloff Model and Type Curve 

Matching  

Craig and Blasingame (2006) presented a new single-phase fracture injection/falloff 

model accounting for fracture creation, closure and after-closure diffusion. The model 

accounts for fracture propagation as time-dependent storage, and the rigorous fracture-

injection/falloff dimensionless pressure solution for a case with a propagating fracture, 

constant before-closure storage, and constant after-closure storage are derived.  

Especially, Craig and Blasingame (2006) presented two limiting case solutions when a 

fracture propagates, or an existing fracture dilates, during an injection with a short 

dimensionless injection time. Before-closure reservoir pressure solutions in the Laplace 

domain as 
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where Dimensionless before –closure storage is defined as  
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in which Cbc [bbl/psi] is the before-closure storage coefficient written as  
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PfD is the finite- or infinite-conductivity fracture solution. 

The after-closure limiting case solution is also a slug test solution, but including 

variable storage. The Laplace solution is written as 
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where Dimensionless after –closure storage is defined as  
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in which Cac [bbl/psi] is the after closure storage coefficient written as  

frfwwac VcVcC 2
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Craig and Blasingame (2006) proposed a type-curve analysis method for 

analyzing all falloff data from the end of the injection through fracture closure, pseudo-

linear flow, and pseudo-radial flow. This quantitative type-curve method requires that 

both initial reservoir pressure and fracture half-length are known. When pseudo-linear or 

pseudo-radial flow periods are observed, the initial reservoir pressure can be definitively 
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determined. Estimates of fracture half-length, however, will have more uncertainty, 

which can create errors in the calculated transmissibility.  

2. 5. Log-Log Diagnostic Method for Before and After Closure Analysis  

In modern well-test interpretation, log-log diagnostic plots of the pressure change and 

the semilog superposition derivative function are used identify flow regimes from 

straight derivative trends with characteristic slopes and levels from which important well 

or reservoir parameters can be directly computed.  

 Mohamed et al. (2011) showed that the pressure derivative trend just before 

closure has slope 3/2, and Marongiu-Porcu et al. (2011) gave a rationale for why this 

occurs and used the diagnostic plot introduced by Mohamed et al. (2011) to identify 

closure pressure, quantify the leak-off coefficient, and estimate permeability and the 

fracture geometry.  

The Marongiu-Porcu et al. (2011) interpretation consists of the following steps: 

1. Initial assumption of fracture geometry (PKN or radial) based on height 

containment analysis from a gamma ray log.  

2. The point (pc’, tc  ) at the end of the 3/2 slope trend in the derivative defines 

the closure time, and closure stress is given by the pressure at that time. 

3. Values for mN and bN are computed using a derivative value (t, p’)pc found 

on the 3/2 slope trend.  
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………………………………………. (2.5.0.1 b) 

Then the leakoff coefficient, fracture area, fracture width, and fluid efficiency are 

estimated from Table 2.3. 

Table 2.3 Fracture Calibration Test analysis model based on the Nolte (1979) 

 

4. Permeability is estimated from a constant derivative level, m’,  characteristic 

of pseudo-radial flow: 
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5. The fracture half-length can be estimated when a ½ slope derivative trend 

occurs between the closure time and the onset of pseudo-radial flow using the 

equation 
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      with mlf = tp  /'2  for a point (t, p)lf on the ½ slope derivative trend.  

6. Fracture conductivity estimation from bilinear flow using Cinco-Ley finite 

conductivity fracture model 

The bilinear flow to hydraulic fracture the pressure difference is proportional to 

the fourth root of shut-in time, and the log-log semi-log superposition will 

present a ¼ slope. With a known permeability, the fracture conductivity wk f (can 

be obtained using Equation (2.5.0.6).  

4 tmp bf  ………...……….……………….…………...……….…… (2.5.0.4)
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       with mlf = tp  /'4  for a point (t, p)lf on the 1/4 slope derivative trend.  

 

7. Initial reservoir pressure can be estimated from the constant derivative level 

in the pseudo-radial flow regime and a value of p and t during pseudo-

radial flow, using  
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where the instantaneous shut in pressure, ISIP, is located on a Cartesian plot 

of falloff pressure just after the end of injection.  
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2.6 Chapter Summary  

Numerous existing approaches for FCT analysis use specialized plots each 

featuring a specific flow regime to analyze various elements of the falloff behavior. The 

exception is the approach by Marongiu-Porcu et al. (2011) that uses the same log-log 

diagnostic plot used for standard pressure transient analysis. The next chapter will show 

how the same plot reveals the behavior described in this chapter and displays the 

important trends in a global context that avoids erroneous parameter estimations based 

on apparent straight lines on specialized plots.  
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 CHAPTER III  

DIAGNOSTIC DERIVATIVE EXAMPLES 

Chapter II explained before- and after- closure theories and their respective analysis 

methods. For before-closure analysis, Barree et al. (2009) investigated the existing 

fracture injection/falloff diagnostic methods categorized by three leakoff models, i.e. 

normal leakoff (Constant-area and constant-permeability leakoff), pressure dependent 

leakoff and transverse storage on well-known diagnostic plots such as the G-function 

plot.  

This chapter begins with a simplified math proof and visualization of why a 3/2 

slope on the pressure superposition derivative represents normal leakoff behavior on the 

log-log diagnostic plot. Then, the second section showcases field case examples to 

demonstrate how the three types of leakoff behavior can be distinguished on the log-log 

diagnostic plot. Specifically, the characteristic slope patterns on the superposition 

derivative for the three leakoff types are explained. The final section illustrates how the 

relationship between permeability and formation pressure can be used to determine an 

upper bound for the formation permeability when an independent estimate for the 

formation pressure is available.  
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3.1 Log-Log Diagnostic for Constant Area Poroelastic Fracture Closure  

The advantage of graphing the pressure superposition derivative on the log-log plot for 

flow regime study is that the slope of the derivative curve reflects the exponent of the 

time term in a pressure response model. Or in mathematical terms: 

m

DD tp ~  =>
m

DDDDDD mttddpttddp ~)(/))(ln(/  ,…………………….…….... (3.1.0.1)
 

As mentioned in Chapter II, Valko and Economides (1995) reformulated and 

popularized the analytical expression for the g-function that was introduced by Nolte 

(1979) in his well-known power law fracture surface growth postulation.  Equation 

(2.2.1.3) shows the Nolte (1979) pressure decline model for fracture poro-elastic closure 

suggesting that the bottom-hole pressure decreases linearly with the g-function until the 

fracture finally closes, after which the pressure falloff will depart from this linear trend. 

The pressure profile with respect to ),( Dtg   is as in Equation (2.2.1.3)
 

The g-function that was reformulated by Valko and Economides (1999) involves 

a hyper-geometric function which can only be computed numerically. The formulation is 

given by Equation (2.2.1.5). When Dt  = 0, 
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the gamma function. (Gulrajani. N. S. and Nolte 2000)  

Two extreme case for ),( Dtg  can be written as Eq. (2.2.1.4) and are widely 

used to approximate the g-function:  
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The simplified formulation of the g-function for  = 1and  = ½ given by the second 

Equation 2.2.1.4 represents the upper bound behavior corresponding to negligible 

leakoff and about 100% fluid efficiency and is appropriate for low permeability 

formation applications including most tight gas and shale slick-water cases..   

Noting that this g-function expression has a term of dimensionless time with a power 

raised to 3/2 case makes it intuitive that the log-log representation of Carter leakoff will 

appear as a straight trent with slope 3/2 on the pressure superposition derivative 

To demonstrate the above comment we note that the semilog derivative of the second 

equation is given by  
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Figure 3.1 is a graph of Eq. 3.1.3. For 0.1 < t < 100,  
d
dp


  1.46 2
3

t ,
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Figure 3.1 Pressure derivative vs. Δt for poro-elastic closure-low leakoff 

 
Similarly, for high leakoff, or low fluid efficiency scenario given by the first equation 
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For the same range of t, Figure 3.2 shows a line with  
d
dp


  1.509 for 0.1 < t < 100. 

In both cases, the derivative trend has a slope of about 3/2.  
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Figure 3.2 Pressure derivative vs. Δt for poro-elastic closure-high leakoff 

 

Under non-Newtonian filtration occuring for fracturing fluids exhibiting a power-law-

based rheology,   deviates from ½ and the exact form of g-function should be used. 

However, since the exact g-function is bounded by the two equations, its semilog 

derivative will also follow a 3/2 slope trend.  

Figure 3.3 shows the comparison of two diagnostic plots for normal leakoff 

(constant-area and constant-permeability leakoff) behavior. The graph on the left of 

Figure 3.3 shows the field data plotted on G-function plot whereas the log-log plot of 

pressure change from Instantaneous Shut-in Pressure (ISIP) and pressure superposition 

derivative vs. shut-in time for the same data set is shown on the right of Figure 3.3.  

The created hydraulic fracture closure on G-function plot is diagnosed by 

identifying the departure of the semi-log derivative of pressure with respect to G-

function from the straight line through the origin. In this case, the closure time is 
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identified at G=19.42 hr, which correspond to shut-in time at fracture closure, Δtc= 7.95 

hr. The corresponding bottomhole pressure value determines closure pressure or the 

value of formation minimum stress. In this case pc = 11,830 psi. There are many 

techniques commonly used to determine pc such as step rate test and flow back test. The 

method for determining closure pressure used in this work is focused on shut-in pressure 

decline after the fracture calibration test.  

Following the technique described in the previous section,  on the log-log plot, 

hydraulic fracture closure diagnosis is identified at the end of the 3/2 slope and the 

corresponding pressure, in this case of value 11,830 psi is the closure stress for the main 

fracture. The two diagnostic plots exhibit exactly same diagnosis for fracture closure. In 

addition to the before closure information, for this particular case, the log-log plot also 

shows the pressure response eventually goes to radial indicated when derivative becomes 

level at shut-in time of around 25 hours, and the derivative level of which can be used to 

estimate reservoir transmissibility. Such after-closure information is not possible to 

obtain from G-function plot only. Other specialized plots are required for after-closure 

analysis using traditional methods.  
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Figure 3.3 Normal leakoff behavior--G-function, log-log pressure superposition 

derivative 

 

3.2 Diagnostic Examples for Three leakoff Modes 

When the data no longer follow pressure poro-elastic closure model, the pressure 

superposition derivative would no longer follow the 3/2 trend. Thus the deviation from 

the characteristic 3/2 slope on derivative curve is the indication of fracture closure. 

However, the following three situations could compromise or obscure the characteristic 

3/2 slope for fracture closure identification:  

 Pressure dependent leak-off; 

 Transverse storage from natural fracture/induced fracture dilation or 

existing fracture reopening;  and/or 

 Height recession from bounding layers (does not apply to shale). 

In this section, two field examples are shown to demonstrate how abnormal leakoff 

behavior impacts the standard logarithmic derivative slope on the log-log scale. 
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3.2.1 Pressure-dependent Leakoff Behavior on Diagnostic Plots 

Pressure dependent leakoff (PDL) could greatly influence the behavior of wells during 

main hydraulic fracture treatment. To make informed decisions regarding stimulation 

design, fracture calibration test is needed to indicate the presence of pressure dependent 

leakoff. As briefly described in Chapter II, PDL occurs when the fluid loss rate changes 

with pore pressure or net effective stress in the rock surrounding the fracture. When fluid 

is injected at pressures above the minimum in-situ stress either a hydraulic fracture will 

be induced or a suitably oriented set of pre-existing fissures or weakness planes will 

open (dilate). As the injected fluid pressure rises further above the minimum principal 

stress other fissure sets may be activated. Which fissure sets open depends on their 

orientation with respect to the minimum and maximum stress direction and the fluid 

pressure available. 

Figure 3.4 shows the comparison of two diagnostic plots for case of pressure 

dependent leakoff. On the left it shows the G-function plot representation, and the log-

log plot for the same example is shown on right.  

As for normal leakoff, the hydraulic fracture closure during PDL is diagnosed on 

the G-function plot by the departure from a straight line through the origin in the semi-

log G-function derivative. However, in this case the derivative exhibits a characteristic 

“hump” above the straight line. The end of PDL corresponds to critical fissure opening 

pressure and appears at the end of hump, which is also the beginning of straight line that 

represents matrix dominated leakoff.  
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In Figure 3.4 the fissure closure time is diagnosed on the G-function plot is at 

Gc,fissure = 12.9, which correspond to 4.47 hr and a fissure closure stress value of 11350 

psi. The hydraulic fracture closure time is diagnosed on G-function plot is at Gc,hf = 

13.33, which correspond to closure time = 5.15 hr and a closure stress value of 11313 

psi. The difference between the two stress values, 37 psi, is the value of the stress 

contrast.  

The log-log plot, on the right of Figure 3.4  shows an approximate 3/2 slope for 

the time ranging from about 0.7 to 1.1 hr after which the slope drops slightly. The 

pressure derivative trend eventually returns to 3/2 slope for a very short duration of time 

before bending toward a relatively long ½ slope trend at the hydraulic fracture closure 

time. The fissure closure timing is identified at the beginning of the 3/2 slope trend at 

Δt= 4.47 hr that ends in fracture closure. This diagnosis is consistent with that from the 

G-function plot.  

An alternative analysis is suggested by Figure 3.5. Instead of indicating fissure 

closure at the start of the G-function straight line, it may be more logical to identify it at 

the end of an earlier G-function line drawn with a dashed line in both figures. This 

interpretation implies that PDP behavior is a transition between 2 closure events and 

indicates a higher fissure closure pressure of 11,598 psi. With this interpretation the 

signature PDP behavior is defined on the G-function plot by identification of 2 lines and 

on the log-log diagnostic plot as a succession of two 3/2 slope trends. 
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Figure 3.4 Pressure dependent leakoff behavior--G-function, log-log pressure 

superposition derivative 

 

 

Figure 3.5 Alternative interpretation -- multiple closure--G-function, log-log 

pressure superposition derivative 

 

3.2.2 Transverse Storage Behavior on Diagnostic Plots 

Figure 3.6 shows the comparison of two diagnostic plots for case of transverse storage 

behavior. On G-function plot, the G-function derivative exhibits a characteristic “belly” 
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below the straight line extrapolated from origin to the derivative which is a strong 

indication of the transverse storage effect. The end of the storage effect is at the tangent 

to the G-function derivative and is normally interpreted as the closure time. In this case 

Gc = 9.89, which corresponds to closure shut-in time = 3.03 hr and closure pressure of 

11,823 psi.  

Because there is no identifiable poroelastic closure trend, neither the G-function 

nor the log-log diagnostic plot shows a line. Instead, closure pressure is found at the 

tangent to the bending behavior seen just after a steeply climbing G-function derivative 

trend. On the log-log plot on the right of Figure 3.6 the logarithmic derivative shows a 

steep upward trend, and closure time and pressure can be picked when the tangent to the 

derivative has a slope of 3/2. As such, in this case the closure shut-in time is identified at 

Δt= 3h and the hydraulic fracture closure pressure, pc=11,822 psi.  

 

 

Figure 3.6 Transverse storage leakoff behavior--G-Function, log-log pressure 

superposition derivative 
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3.3 Permeability Estimation from Formation Pressure 

From the review of existing after-closure analysis, it can be concluded that no matter 

what specialized plot is used, permeability is estimated from late time bilinear (Soliman 

et al. 2005), linear (Nolte 1997) or, in most cases, radial flow.  Ways to estimate 

reservoir pressure provided in many of the specialized plot techniques were discussed in 

Section 2.3.5 of Chapter II.  

When radial flow is absent, which is a common problem in many FCTs in shale, 

the conventional approaches for permeability estimation would not be applicable. 

Likewise, an approach using bilinear flow requires an independent estimate for the 

fracture conductivity or meeting the condition that the end of bilinear flow is known 

(Soliman et al. 2005), and an approach using linear flow requires an independent 

estimate for the fracture half-length, and these, as well, only apply when the bilinear or 

linear flow regime appears.  

The above simple observations inspire an idea to use a known reservoir pressure 

value to estimate an upper bound for the formation permeability using the radial time 

function extrapolation on which the Horner plot is based.  

The procedure to implement pi-k relation for permeability estimation from assumed 

formation pressure  

1. Estimate formation pressure.  

a. From external source such as pore pressure gradient. 

b. From Eq 2.3.6.2 using vertical stress, Poisson ratio, and closure stress 

estimated from the FCT 
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c. From Linear Flow extrapolation 

From Eq. 2.3.6.3 using after closure linear flow if present in the FCT 

response. The slope of the Nolte (1997) linear flow function specialized 

plot can be determined directly from the slope of the straight line mlf from 

two points (FL1, p1) and (FL2, p2)

   

 

Then formation pressure can be estimated using the point p(tlf) as 
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d. From Linear Flow pressure difference and semi-log derivative  

Using Soliman et al. 2005 method, after-closure analysis requires a 

log-log graph of the pressure difference, pi-pws, and the well testing pressure 

derivative versus the total shut-in time. During pseudo-linear flow, both 

curve should be parallel and exhibit negative ½ slope. Further more, pressure 

difference curve should double the value of the derivatie curve during this 

timeframe. This determination of initial reservoir pressure is an iterative 

process, and the pressure difference value would not double the derivative 

curves during linear flow until the initial reservoir pressure is correct.  

2. Estimate an upper bound for the formation permeability using the last recorded 

falloff pressure. One way to do this is to plot the FCT falloff data on a Horner 

plot. If radial flow was present, the end of the falloff data would show a line with 

Horner slope, m that extrapolates to the formation pressure pi. Instead, we 
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construct this line using the externally-determined value for formation pressure 

and use the slope of this line to estimate the formation permeability.  Figure 3.7 

illustrates the procedure. On the left is a Horner plot of falloff data. Highlighted 

on the plot are 2 red points: the last recorded falloff pressure and the externally 

determined value for formation pressure. The equation for the line between the 2 

red points is shown on the plot. On the right is a zoom on the end of the plot. The 

slope of the line gives m’ = 2.303m. In reality, the slope, m’, can be determined 

without actually constructing the Horner plot as  
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The upper bound permeability is computed as  
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where m’ is the slope of the straight-line connecting last falloff pressure and the 

assumed pressure.  
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Figure 3.7 Horner plot and zoom to demonstrate pi-k relationship method for 

permeability estimation 

 

In case that last production/injection rate is abnormal, the actual superposition time 

function, Eq. 3.1.0.9 should be used for x-variable on Horner Plot instead of the 

simplified equivalent time. (Figure 3.8)The data should be graphed in Cartesian scale 

instead of semilog scale.  
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From this plot, permeability can still be estimated using the k-pi relation, (3.1.8) only the 

m’ is calculated with the following formula: 
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Figure 3.8 Bottomhole pressure vs. superposition plotting function 

 

3.4 Chapter Summary 

Three field data examples were shown to illustrate how common closure 

behaviors appear on the log-log diagnostic plot. These demonstrate that the log-log 

analysis method provides a closure pressure value consistent with what would be 
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estimated with the well-known G-function plot. The cases included are normal constant-

area and constant permeability leakoff, pressure dependent leakoff and transverse 

storage. An alternative estimate is provided for fissure closure pressure from pressure 

dependent leakoff. 

The key original contribution of this work is the estimation of an upper bound 

formation permeability using an external estimate for the initial formation pressure that 

applies even when no evidence of radial flow is found in the FCT response. The next 

chapter will demonstrate application of this method on field data. 
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CHAPTER IV  

FIELD DATA APPLICATIONS  

Chapter III briefly described the diagnosis of three leakoff behaviors, i.e. normal 

leakoff, pressure dependent leakoff, and transverse storage, on the log-log diagnostic 

plot. The characteristic slope signatures on the superposition derivative were illustrated 

using field examples.   

This chapter elaborates on the before- and after- closure analysis on 5 field cases. 

In Particular, the utility of the relationship between permeability and formation pressure 

estimation as a way to bound the permeability estimate is explained and demonstrated in 

cases when radial flow is absent in the falloff response. The field case study of one well 

from Mesaverde Sandstone formation will include a buildup test analysis. With both a 

fracture calibration test and drawdown/buildup completed sequentially, a direct 

comparison of the buildup and falloff interpretation is possible.  

Field Cases shown are 3 from Haynesville Shale, 1 from Horn River Shale, and 1 

from Mesaverde Sandstone. 

4.1 Haynesville Shale Formation Characterization 

This section begins with background information on the Haynesville shale 

providing shale properties and typical well completion and the baseline parameters 

required for the FCT analysis.  

Then FCT field data from three cased horizontal wells in Haynesville shale will 

be used to demonstrate the unified before- and after-closure analysis on the log-log plot.  
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4.1.1 Field Background 

The Haynesville is an organic-rich shale, Upper Jurassic in age, and located in 

the North Louisiana Salt Basin, and East Texas. The Haynesville Shale is overlain by the 

Bossier Shale, which in turn is overlain by the Cotton Valley Sandstone. It is underlain 

by the Cotton Valley limestone in Texas and the Smackover limestone in Louisiana 

(Thompson 2010). Figure 4.1 shows the Type log and stratigraphic column for the 

Haynesville shale and adjacent formations. Abnormal high pressure and great thickness 

make the Haynesville shale a prolific formation.  The Haynesville shale play has true 

vertical depth (TVD) greater than 11,000 ft, and the productive interval of the 

Haynesville shale can have a gross thickness between 75 and 400 ft, temperature greater 

than 300 F, and extraordinarily high pore pressure gradient, up to 0.95 psi/ft.  Average 

porosity in the formation is 0.07; water saturation is approximately 30%.  

 

Figure 4.1 Haynesville shale and adjacent formation (Thompson, 2010) 
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The early conjecture about the natural fracture network in Haynesville analogous 

to the Barnett shale has been proved to be unrealistic. In fact, evidence shows that even 

if fractures are present in the Haynesville-Bossier shale system, they are typically 

cemented and cannot directly contribute to the productivity of the well, unless 

reactivated during stimulation. The reactivated fractures are typically limited to the 

vicinity of the stimulated fracs and do not extend far (Younes et al. 2010). 

The baseline parameters for Haynesville shale FCT analysis are summarized in 

Table 4.1 based on information found in the literature and an available data set.  

 

Table 4.1 Input parameters for Haynesville shale fracture calibration Test 

Properties Value Unit 

Gas Specific Gravity, sgg 0.70  

Gas Viscosity, g  0.038 cp 

Formation Total 

Compressibility, ct  

2.98×10-05 psi-1 

Formation Porosity,  7 % 

Water Saturation, Sw  30 % 

Young’s Modulus, E' 6.00×106  

Poisson's ratio,  0.33  

Formation Height, h   150 ft 

Formation Temperature  320 F 
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4.1.2 Haynesville Shale Well A  

A fracture calibration test was conducted at the toe of the cased horizontal well. 

The FCT perforation interval is between 15,833 to 15,838 feet (measured depth, MD) 

with a perforation density of 6 short per foot (SPF) and perforation phasing of 1, which 

yields 30 perforation holes in one single cluster.   

The injection was performed by pumping fresh water, at an average rate of 5 

bbl/min for 0.22 hours. The initial pressure on the wellhead was 5364 psi. The formation 

initially broke down at pressure and rate of 15,078 psi and 5.2 bpm (barrel per minute). 

The instantaneous shut-in pressure (ISIP) is observed at 12,686 psi which yields a 

fracture gradient of 1.09 psi/ft. The bottomhole pressure decline was monitored for 0.5 

hours.  

 

Figure 4.2 Bottomhole pressure and injection profile for Haynesville Well A 
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Before Closure Analysis 

Figure 4.3 shows the log-log diagnostic plot for Well A. The prominent 3/2 slope 

trend is visible for more than a logarithmic cycle, and a clear departure from this trend is 

identified at Δtc = 0.0156 hour, yielding closure pressure of 12102 psia. The closure 

pressure value is also the value for the formation minimum stress.  

The G-function plot diagnosis yields coherent estimation of closure time and 

pressure, indicated at the end of the signature straight-line of pressure semi-logarithic  

derivative with respect to G-function. The characteristic 3/2 slope on the log-log plot and 

the straght line trend through origin on the G-function plot until to the point of fracture 

closure indicates classic normal leakoff mode. Duirng normal leakoff, the fracture area is 

constant and the reservoir rock appears homogeneous.  

The small injected volume may not have been sufficient for the fracture to grow 

in height to the shale thickness, in this case, 150 ft. Thus we assume radial fracture 

geometry for this case.  

Initial reservoir pressure can be estimated from the closure stress and the uniaxial strain 

relationship 

Assuming Poisson’s ratio,   = 0.2, and an overburden stress, σz = 12686 psi 

(1.06 psi/ft overburden stress). From before-closure analysis, it is known that 

min =12102 psi. From Eq. (2.3.6.2) the initial reservoir pressure estimate is pi = 11908 

psi.  
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Figure 4.3 log-log diagnostic plot for data of Haynesville Well A FCT test 

 

Fracture geometry and leakoff coefficient estimation from Before-closure analysis 

The Nolte (1979) method for before-closure analysis requires an estimate of 

fracture half-length and lost fracture width because of fluid leakoff, wL. Fracture half-

length and lost width can be estimated from a graph of bottomhole pressure versus the 

loss-volume function, ),( Dtg   provided the fracture geometry is homogeneous and the 

“no spurtloss” assumption is met. The slope of the line through the before-closure data is 

mN=-71.6 psi and the intercept is bN = 12834 psi.    
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With the log-log plot, the calculation of mN and bN can be directly obtained from 

the log-log plot using the method described by Marongiu-Porcu et al. (2011), thus 

eliminating the necessity of constructing the BHP vs. ),( Dtg  plot. The method was 

described in Section 2.5.  

In order to estimate fracture geometry by the time of the fracture closure, 

substitute mN  = -71.6 psi and bN = 12834 psi in the equations for radial geometry 

provided in Table 2.3,The fracture radius Rf  is obtained as 14 ft. The leakoff coefficient 

can be subsequently evaluated to be CL = 0.0057 min/ft  and fracture average width at 

the end of pumping is 0.0025 ft (0.03 inch) with fluid efficiency, ƞ, of 86.5%. 

 For mere comparison purpose, if PKN fracture geometry is assumed, then the 

fracture half-length from before-closure analysis is obtained as 0.11ft. 

 

Permeability Estimation from Before Closure analysis 

The Barree, et al. (2009) empirical correlation in Eq. (2.2.2.2) provides a permeability 

estimate of 0.0042 md. The storage ratio rp in normal leakoff cases is 1. This particular 

permeability estimation is color-coded in orange in Figure 4.4 along with the logarithmic 

derivative level it represents.  

After Closure Analysis 

The after-closure pressure response is dominated by the final fracture geometry existing 

at the closure time. The purpose of the after-closure analysis is to determine reservoir 

permeability, fracture geometry, and pressure from the late time FCT response. The after 
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closure analysis theory is presented in Chapter II. As illustrated in Figure 4.4, 

Haynesville Shale Well A has both linear and radial occurs after closure, indicated by a 

½ slope derivative trend followed by a flat trend. 

Radial Flow Regime Analysis 

The presence of the radial flow regime allows direct estimation of reservoir 

transmissibility, kh, from Equation (3.3.0.3).  

In this case, the late time apparent derivative level m’ = 17828 psi. By substituting the 

values for the known parameters, the value of the kh product is obtained as 0.5904 md-

ft. 

If the radial fracture geometry is assumed as in previous discussion, permeability 

should be estimated with h =2 Rf, and the formation effective permeability to gas is 

estimated to be 0.0213 md. This estimation is very high for shale. If PKN fracture 

geometry is assumed and fracture height is same as the formation height, then the 

permeability is estimated to be 0.004 md, which is a more reasonable estimation.  

The initial reservoir pressure estimated from the derivative level in the pseudo-radial 

flow regime m’ and corresponding values of Δp and Δt, using Equation (2.5.0.4) is 

11660 psi independent of the fracture geometry. 
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Figure 4.4 Log-log diagnostic plot with ACA for data of Haynesville Well A FCT 

 

Linear Flow Regime Analysis 

Selecting the point (0.0356, 15493) from the ½ slope derivative trend in Figure 4.1.2.5, 

the fracture radius is computed using Eq. (2.5.0.3) as 1.8 ft. Then directly from the same 

derivative point Eq. (3.3.0.2) provides an estimate for formation pressure of 11491psi.  

 
Reservoir permeability and average pressure estimation from radial flow using other 

methods 
For mere comparison purpose, the radial flow period is analyzed with the 

Soliman et al. 2006 radial flow specialized plot shown in the Appendix. With given 

injection volume, fluid viscosity and fracture height, the permeability is estimated from 
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the y-axis intercept, br. The formation pressure is obtained by trial and error until the 

pressure difference, p(t)- pi  overlaps the derivative curve on a single negative unit 

slope for the portion of the data that correspond to radial flow. The resulting estimates 

are pi = 11563 psi and permeability k = 0.006 md (PKN geometry) k=0.032 md (Radial 

geometry). 

Reservoir Pressure Estimation from Linear Flow 

Nolte 1997 method for linear flow analysis was described by Eqs. (2.3.6.3) and (2.3.6.4). 

The linear extrapolation to FL= 0 yields an extrapolated pressure value of 11491 psi.   

Nolte 1997 did not explain how to estimate permeability from this relation.  

However the pressure value estimated from linear flow allows the estimation of 

permeability using the reservoir pressure and permeability relation. The details of this 

method will be explained in the next field example.  

Observation and Discussion 

This example compares closure pressure, permeability, and formation pressure 

estimations directly determined from the log-log diagnostic plot to those determined 

from specialized plot analyses. As long as the specialized lines correspond to correct 

flow regime trends identified on the diagnostic plot, the results will be quite similar.  

 

4.1.3 Haynesville Shale Well B 

A fracture calibration test was conducted on the toe of the cased horizontal well 

at an average true vertical depth of 12500 ft. The injection was performed by pumping 
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20 bbl of fresh water, at an average rate of 2.2 bbl/min in a time interval of 7 minutes 

(Figure 4.5). The ISIP is observed at 13738 psi. The bottomhole pressure decline was 

monitored for 350 hours.  

 

Figure 4.5 Bottomhole pressure and injection profile for Haynesville Well B 

 

Before Closure Analysis 

The log-log diagnostic plot for this example is shown in Figure 4.6. In this case 

the behavior shows a steep derivative trend with greater than 3/2 slope characteristic of 

transverse storage.  The hydraulic fracture closure time is identified at the interception of 

the derivative curve with a 3/2 slope straight-line that is tangent to the derivative curve. 

As such, in this case the closure shut-in time is identified at Δt = 3hr and the hydraulic 

fracture closure pressure, pc = 11822 psi. On G-function plot, the semi-log derivative 

curve exhibits the characteristic “belly” below the straight line extrapolated from origin 
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to the derivative which is a strong indication of transverse storage effect. The end of the 

storage effect is indicated by the departure of the tangent line on the semilog derivative 

curve. In this case Gc = 9.89, which corresponds to closure shut-in time = 3.03 hr. The 

closure pressure is 11823 psi. The two analysis methods show consistent estimates. 

Another feature that distinguishes the case from the previous example is that the 

after-closure behavior does not show a flat level trend on semi-log derivative curve. 

Instead, soon after closure it shows a long duration bilinear flow period with derivative 

slope 1/4 followed by linear flow with derivative slope 1/2. In this case, the initial 

formation pressure can be estimated from the closure pressure using Eq. (2.3.6.2) or 

from the linear flow period using Eq. (3.3.2). This case is actually quite challenging due 

to lack of radial flow after closure which means that there is no definitive indication of 

the permeability. The permeability estimation from permeability-reservoir pressure 

relationship becomes crucial.  
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Figure 4.6 log-log diagnostic plot for data of Haynesville Well B FCT test 

 

Nolte’s pressure decline model for before-closure analysis (2.2.1.3) requires 

constant-fracture geometry and constant-permeability leakoff. Only with normal leakoff 

there exists the linear relation between bottom hole treating pressure and g-function.  

Since this case presents abnormal leakoff for which the total permeability is changing 

with the closure of the natural fracture/induced fracture, it is not surprising that the plot 

of bottom-hole pressure versus the loss-volume function, ),( Dtg   does not yield a 

straight-line trend. Thus the Nolte before closure analysis is inapplicable in this case. As 

a result fracture geometry cannot be estimated from before-closure analysis.  Thus we 

have to count on after-closure analysis for fracture geometry estimation.  
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Permeability Estimation from Before Closure analysis 

Using the Baree et al. (2009) G-function construction, rp is estimated as 0.9. Then 

using Eq. (2.2.2.2) the estimated permeability is 0.0427 md. 

Formation Pressure Estimation from Closure Pressure 

Apply equation (2.6.3.2) with assumed Poisson’s ratio  = 0.2, assuming 

overburden stress 1 psi/ft; it yields an estimate for formation pressure of 11597 psi.  

After-Closure Analysis 

As mentioned previously the Haynesville Shale Well B shows bilinear flow after closure 

followed by linear flow. The absence of radial flow prevents direct estimation of 

permeability, but an upper bound permeability estimate is possible using the Horner line 

approach explained in Section 3.3.  

The Horner line approach requires an estimate for the formation pressure. The 

before closure estimate using the closure pressure was 9906 psi. Alternatively, using Eq. 

(3.3.0.2) the linear flow regime allows estimation of the reservoir pressure as 11243 psi.  

With an estimate for the formation pressure, Eq. (3.3.0.3) enables estimation of 

the Horner line slope, m’, and permeability is calculated from Eq. (3.1.0.8) as 0.0000178 

md from the before closure pressure estimate and 0.00068 md from the after closure 

pressure estimate. The permeability estimation and the derivative level represent the 

permeability level from k-pi relation are labeled and color coded in green in Figure 4.7. 
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Figure 4.7 Log-log diagnostic plot with ACA for data of Haynesville Shale Well B 
 

Formation linear flow can be used to determine fracture half-length if PKN 

geometry is assumed. Also, extrapolated reservoir pressure can be obtained from Nolte 

plot. With the permeability (k=0.00068 md from PKN model) known, the fracture half-

length, fx can be estimated from Marongiu-Porcu (2011) method to be 91 ft. 

The standard logarithmic derivative data point, (81, 22127) on ½ slope is used to 

compute the fracture half-length.  

Bilinear Flow Regime Analysis 

According to Soliman et al. (1995), the cause of bilinear flow regime could be when 

created fracture is long, or if it did not completely close, thereby maintaining some 

residual conductivity. From the before closure analysis, there is indication of possible 
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induced fracture that could potentially cause finite-conductivity fracture as fluid in the 

surrounding induced fracture/reopened natural fracture flows linearly into the fracture. 

The presence of bilinear flow indicates that the flow regime is controlled by the pressure 

drop caused by the linear flow inside fracture and the pressure drop caused by the linear 

flow in the induced fracture/reopened natural fracture  just surrounding the fracture. 

Compared to a more conventional interpretation, that bilinear is caused by the effect of 

linear flow to formation besides the linear flow inside of hydraulic fracture, natural 

fractures/induced fractures feeding hydraulic fracture would be a more feasible 

explanation in comparison in this case, since a well usually does not flow without 

fracture in Shale. With the permeability value estimated from k-pi relation, the fracture 

conductivity can be solved. The value of fracture conductivity wk f is labeled in  

Figure 4.7.  

Formation Permeability Estimation from Bilinear Flow Using Soliman et al. 2005 

Impulse Solution  

If assuming the fracture falloff period follows the impulse test solution, relation governs 

bilinear flow of this particular condition is presented Eq. (2.3.4.4) according to Soliman 

et al. (2005).The equation implied that the specialized plot of )log( ifo pp  vs. 

)log( tt p  would render a straight line trend with slope of -3/4.  The last point (end of 

bilinear flow) on the straight line may be used to calculate an upper bound of formation 

permeability. rb is the intercept of pressure difference with the y-axis (on log-log 

corresponding to t=1). Here rb =1600 and end of bi-linear flow time, ebft  =17.87 hr. rb  is 

a function of permeability, the relation is expressed in Equation (2.3.4.5). With Equation 
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(2.3.4.6), k = 0.00032 md. The estimation and its representative derivative level are 

color-coded in orange and label in Figure 4.7.  

Discussion  

This field case shows feature of before closure transverse storage effect, after closure 

bilinear-linear flow.  

The transverse storage effect could potentially relate to induced fracture or 

reopening existing natural fracture. The storage effect would delay the fracture closure 

timing and thus necessitate that all of the relation depending on closure time as input be 

adjusted by the storage ratio rp. The lack of radial flow makes it crucial to utilize the 

permeability-formation average pressure relation.   

The existence of bilinear flow facilitates the estimation of not only fracture 

conductivity, wk f , using Cinco-Ley finite conductivity fracture model, but the 

alternative estimation of reservoir permeability can be obtained using bilinear flow as 

well.  

 

4.1.4 Haynesville Shale Well C 

The fracture calibration test was performed on the toe stage of a cased horizontal 

well at TVD of 12296 ft. A set of three perforation clusters of respectively 4ft, 4 ft and 2 

ft was opened via TCP guns. The perforation density is 12-SPF resulting 120 

(48+48+24) holes open to flow. The FCT was performed by pumping 20 bbl of fresh 

water, at a constant rate of 3.3 bbl/min for 6.6 minutes. (Figure 4.8) The bottomhole 

pressure decline was monitored for 67 hours.  
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Figure 4.8 Bottom-hole pressure and Injection Scheme profile for Haynesville  

Well C 

Before Closure Analysis 

Figure 4.9 shows the log-log diagnostic plot for the pressure falloff data. The 

characteristic 3/2 slope indicate nomal leakoff. A clear departure from this trend is 

identified at Δt = 7.95 hour, yielding closure pressure/formation minimum stress at the 

time of 11830 psia. The feature that distinguishes the case from the previous example is 

that the linear flow is absent. A steep valley appears on the semi-log superposition 

derivative for half a cycle and in late time the derivative gets flat indicating reaching the 

radial flow.  The lack of linear flow make it imperative to make use of the before closure 

analysis to obtain fracture half-length (or fracture radius assuming radial fracture 

geometry). The normal leakoff diagnosis is coherent with the G-function plot diagnosis.  
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Figure 4.9 log-log diagnostic plot for data of Haynesville well C FCT  

 

Initial reservoir pressure can be estimated from the closure stress and the uniaxial strain 

relationship 

Assuming Poisson’s ratio,   = 0.25, and an overburden stress, σz = 12296 psi 

(assuming 1.0 psi/ft overburden stress). From before-closure analysis, it is known that 

min =10952 psi. From Eq. (2.3.6.2) the initial reservoir pressure estimate is pi = 11597 

psi.  

Fracture geometry and leakoff coefficient estimation from Before-closure analysis 

The Nolte (1979) method for before-closure analysis requires an estimate of 

fracture half-length and lost fracture width because of fluid leakoff, wL. Fracture half-
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length and lost width can be estimated from a graph of bottomhole pressure versus the 

loss-volume function, ),( Dtg   provided the fracture geometry is homogeneous and the 

Shlyapobersky assumption is met. The slope of the line through the before-closure data 

is mN=-22 psi and the intercept is bN = 12198 psi.    

With the log-log plot, the calculation of mN and bN can be directly obtained from the log-

log plot using the method described by Marongiu-Porcu et al. (2011), thus eliminating 

the necessity of constructing the BHP vs. ),( Dtg  plot. The method was described in 

Section 2.5.  

In order to estimate fracture geometry by the time of the fracture closure, 

substitute mN  = -22 psi and bN = 12198 psi in the equations for radial geometry provided 

in Table 4.1. 

This example is complicated by the fact that there were 3 perforation clusters that 

possibility creates more than one fracture. The before-closure modeling has been 

performed for two simplified schematic configurations: 

a) Only one radial fracture has been created by the total diversion of the 

injected fluid throughout only one of the three clusters of 

perforations: 

The fracture radius Rf is obtained as 66 ft assuming Young’s modulus, 

E’=6×106 psi. Leakoff coefficient can be subsequently evaluated to be 

CL=0.000915 min/ft  and fracture average width, ew =0.08 inches 

with fluid efficiency,  =92% 
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b) The injected fluid has been equally diverted among the three clusters, 

corresponding in three identical radial fracture s with the same 

fracture fluid efficiency and same leak-off coefficient.  

The fracture radius Rf is obtained as 46 ft assuming Young’s modulus, 

E’=6×106 psi. Leakoff coefficient can be subsequently evaluated to be 

CL=0.000635 min/ft  and fracture average width, ew =0.06 inches 

with fluid efficiency,  =92% 

Permeability Estimation from Before Closure analysis 

The Barree, et al. (2009) empirical correlation in Eq. 2.2.2.2 provides a permeability 

estimate of 0.00236 md. 

In Equation (2.2.2.2),  pz is the invaded zone pressure, which is the same value of the 

pressure difference at the time of closure; rp, is the storage ratio, represents the amount of 

excess fluid that must be leaked off to reach fracture closure when the fracture geometry 

deviates from the normally assumed constant-height planar fracture. The storage ratio in 

normal leakoff cases is 1. This particular permeability estimation is color-coded in 

orange in Figure 4.10 along with the logarithmic derivative level it represents.  

After-Closure Analysis 

Haynesville Shale Well C only has both radial flow occurs after closure, 

indicated by a horizontal level on derivative. 

Radial Flow Regime Analysis 
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The presence of the radial flow regime allows direct estimation of reservoir 

transmissibility, kh, from Equation (3.3.0.3).  

In this case, the late time apparent derivative level m’ = 382533 psi. By substituting the 

values for the known parameters, the value of the kh product is obtained as 0.5193 md-

ft. 

If the radial fracture geometry is assumed as in previous discussion, we estimate 

the shale permeability as k= 0.00415 md assuming one created fracture and k= 0.0022 

md for three created fracture suing the previously-determined value for kRf divided by 3 

to account for only 1/3 of the injected volume for each fractures.  

Permeability Estimation from Horner Plot 

Assumed formation pressure from Before Closure 

The Horner line approach requires an estimate for the formation pressure. The 

before closure estimate using the closure pressure was 11,597 psi. With an estimate for 

the formation pressure, Eq. (3.3.0.3) enables estimation of the Horner line slope, m’, and 

permeability is calculated from Eq. (3.1.0.8) as 0.0034 md from the before closure 

pressure estimate. The permeability estimation and the derivative level represent the 

permeability level from k-pave relation are labeled and color coded in blue in Figure 4.10.  
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Figure 4.10 log-log diagnostic plot with ACA for data of Haynesville Shale Well C 

 

Reservoir permeability and average pressure estimation from radial flow using Impulse 

solution methods 

For mere comparison purpose, the radial flow period is analyzed with the radial 

flow specialized plot shown in the appendix. Assuming the fracture injection/falloff 

follows impulse solution, a specialized plot of )log( ifo pp  vs. )log( tt p   renders a 

straight line trend with slope of -1.0 in late time for radial flow regime, which is a 

signature for radial flow (Soliman et al. 2006). With given injection volume, fluid 

viscosity and fracture height, the permeability is estimated from the y-axis intercept, br, 

in this case is 2500 psi. (Equation 2.3.4.3) Pi is obtained by adjusting its own value until 
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pressure difference overlaps the derivative curve on a single negative unit slope. The pi 

estimated by trial and error using compose the plot is 11608 psi and permeability k = 

0.004 md. This estimation is in good agreement with the one estimated using the 

conventional well testing method.  

Discussion 

This field case study demonstrates the power of combining before and after 

closure analysis. With the absence of after-closure linear flow, the geometry can be 

estimated from before closure analysis if before closure analysis conforms to the 

Shlyapobersky assumptions. The multiple-perforation complicates the case in terms of 

the distribution of fracture fluid, which subsequently influences the estimation of 

individual fracture dimension as well as permeability.  
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4.2 Horn River Shale Field Case Example 

In this section, one well with FCT performed in Horn River Shale is used to 

demonstrate the not uncommon multiple closure effect and its representation on the log-

log diagnostic plot.  

The section begins by providing the background information on the Horn River 

shale from the geologic aspect, and then the baseline parameters for Horn River shale 

will be specified based on information found in the literature and an available data set.  

4.2.1 Horn River Basin Background 

Horn River Basin is the biggest shale gas field in Canada located between British 

Columbia and the North Western Territories. The shale in Horn River Basin is in Middle 

and Upper Devonian ages and is comparable to the Barnett shale in aspects of depth, 

porosities, productivity, and shale qualities. However, the basin contains multiple 

potential shales including the Carboniferous- Devonian Muskwa, Otter Park, Klua and 

Evie formations. The Horn River formations were deposited on a continental shelf 

during a period of rapid sea level rise. Generally the deposits are described as grey to 

black, organic rich, pyritic, variably calcareous to siliceous shale. Low sedimentation 

rates and increased subsidence resulted in a starved, anoxic basin, creating favorable 

conditions for preserving the organic rich shale sediments of the Horn River. The basin 

has been developed extensively since 2006 using multi-traverse fractured horizontal 

wells. (Reynolds et al. 2010) 
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Figure 4.11 Horn River in the Devonian Age, showing the different source rocks 

that compose it (Reynolds et al. 2010) 

 

      

Shale formation properties 

The Horn River Basin shale is considered as high temperature and over pressured 

with an average temperature of 350°F and initial pressure of around 5500-7250 psi 

(Reynolds et al. 2010) or 0.6-0.8 psi/ft equivalent pressure gradient. Average porosity in 

the Muskwa formation is 0.058. The formation properties are summarized in Table 4.2 
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Table 4.2 Input parameter for Horn River shale well Z FCT analysis 

Properties Value Unit 

Gas Viscosity, g 0.027 cp 

Formation Total Compressibility, ct 1.06×10-04 psi-1 

Formation Porosity, 5.8 % 

Water Saturation, Sw 25 % 

Young’s Modulus, E' 6.00×106  

Formation Height, h 360 ft 

Formation Temperature 320 F 

 

4.2.2 Horn River Shale Well Z 

The fracture calibration test was performed on the toe stage with a single 

perforation at 9264 ftTVD in Klua formation at a cased horizontal well. The FCT was 

performed by pumping 77.15 bbl of slickwater for 3.7 minutes (Figure 4.12). The ISIP is 

observed at 11236 psi, which yielded a fracture gradient of 1.21 psi/ft of. The 

bottomhole pressure decline was monitored for 400 hours.  
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Figure 4.12 Bottom-hole pressure and Injection Scheme profile -- Well Z 

Before Closure Analysis 

The log-log diagnostic plot (Figure 4.13) shows the pronounce 3/2 slope trend on 

the pressure derivative curve for more than a logarithmic cycle, and a clear departure 

from this trend is identified at Δt = 5.32 hour, yielding closure pressure at the time of 

5834 psia. The G-function plot shows coherent diagnosis of closure time and pressure, 

indicated at the end of the signature straightline following pressure semi-logarithic  

derivative with respect to G-function. The characteristic 3/2 slope on the log-log plot and 

the straght line trend through origin on the G-function plot indicate classic constant 

fracture geometry and constant permeability normal leakoff model. Duirng normal 

leakoff, the fracture area is constant and the reservoir rock appears homogeneous.  
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Figure 4.13 log-log diagnostic plot for data of Horn River Well Z FCT  

 

Table 4.2 shows reservoir and fluid properties used for the analysis. In this case, 

it is known that Poisson’s ratio, 


=0.2, and an overburden stress, σz=11234 psi. From 

before-closure analysis, it is known that 
min

=5654 psi. Use the relationship between 

initial reservoir pressure and closure stress, the initial reservoir pressure is estimated to 

be pi = 3654. The estimated initial reservoir pressure from closure stress should be 

considered as a guide only.  

Apply Equation (4.1.2.1), the initial reservoir pressure is estimate to be pi = 3654 

psi. The estimated initial reservoir pressure from closure stress should be considered as a 

guide only.  

With the log-log plot, the calculation of mN (slope of the bottom-hole pressure 

decline with respect to the loss-volume function ),( Dtg   during poro-elastic closure) 
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and bN (intercept) are obtained by applying the Equations at fracture closure, thus 

eliminates the necessity of constructing the BHP vs. ),( Dtg  plot.  The estimation in 

this case are mN = -88.35 psi and the intercept bN = 6909.3 psi.    

To estimate fracture geometry by the time of the fracture closure, substitute mN=-

88.35 psi and the intercept is bN = 6909 psi in the equations for radial flow provided in 

Table 4.2, the fracture geometry and fluid efficiency etc. can be obtained.  

a) Assuming Radial Fracture geometry 

The fracture radius Rf is obtained to be 92 ft assuming Young’s modulus, 

E’=6×106 psi. Leakoff coefficient can be subsequently evaluated to be 

CL=0.0046 min/ft  and fracture average width, ew =0.35 inches with fluid 

efficiency,  =90% 

b) Assuming PKN Fracture geometry. The fracture height, hf is obtained as 

221.85 ft. Leakoff coefficient can be subsequently evaluated to be CL=0.002 

min/ft  and fracture average width, ew =0.97 inches with fluid efficiency, 

 =88% 

Permeability Estimation from Before Closure analysis 

By applying the empirical correlation described in previous sections, using the 

input in Table 4.2, the permeability is estimated to be 0.0023 md for pz= 5581 psi and 

rp=1.  

  96.1038.0/
01.00086.0

pct

zf

ErGc

p
k




 …….……………………………………… (4.1.2.4) 
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After Closure Analysis 

Radial Flow Analysis 

The level of the derivative during pseudo-radial flow gives an estimate for 

kh=2kRf=0.8162 md-ft. The permeability estimation assuming PKN geometry is k= 

0.0023 md. The permeability estimation (PKN Geometry) from pressure derivative is 

color-coded red and labeled on Figure 4.14. From the before closure analysis, the Rf= 92 

ft and the permeability estimation is k= 0.0044 md. The permeability estimation (Radial 

Geometry) is color-coded red and labeled on Figure 4.15.  

Reservoir permeability and average pressure estimation from radial flow using Impulse 

solution methods 

For mere comparison purpose, the radial flow period is analyzed with the radial 

flow specialized plot shown in the Appendix. Assuming the fracture injection/falloff 

follows impulse solution, . The permeability estimation for radial geometry is k = 0.004 

md and k = 0.0016 md for PNK geometry. These estimations are in good agreement with 

the one estimated using the conventional well testing method. The pi estimated by trial 

and error using compose the plot is 4400 psi. 

Linear Flow Regime Analysis 

Formation linear flow can be used to determine fracture half-length. Also, 

extrapolated reservoir pressure can be obtained from linear flow using Nolte plot. With 

the permeability (k=0.0023 md from PKN model) known, the fracture half-length can be 

conveniently estimated in this case since the linear flow is present.  
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Where tpmlf  /'2  =26813 and 'p represents the value of the logarithmic 

derivative at a time which in this case is 35554 at t =7.03 when the derivative slope is 

½ . fx can be obtained from this relation and in this case is estimated to be 17.36 ft.  

Reservoir Pressure estimation from Linear Flow Nolte 1997 ACA Plot 

With the linear extrapolation using Nolte 1997 linear flow model, the reservoir 

pressure estimated from Nolte linear flow is 4268 psi.  

Permeability Estimation from Horner Plot 

The extrapolated average formation pressure from Nolte (1997) linear flow 

function plot is 4268 psi. A permeability estimation can be obtained from slope of the 

line connecting the last recorded falloff pressure to the estimated reservoir pressure on 

buildup test analysis. The permeability estimation is 0.0004 md and is labeled and color 

coded in green Figure 4.14 and Figure 4.15.  
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Figure 4.14 log-log plot with permeability estimation (PKN) HR well Z 

 

Figure 4.15 log-log plot with permeability estimation (Radial) HR well Z 
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Observations  

The most apparent feature of this case is the advent of multiple closures. Though there 

are many possibilities that could potentially cause the effect, it is not well studies yet. Of 

all four wells that performed FCT on the same pad with well Z, all of them exhibit 

multiple closure effect.  

4.3 Mesaverde Tight Gas Well  

The Mesaverde formation is a late Cretaceous formation. Well GM produced 

from 20 low-permeability Mesaverde sands in Piceance Basin that separated from an 

adjacent sandstone reservoir by impermeable and high stress shale and mudstone 

formations (Craig et al. 2006). Some formation properties are summarized in Table 4.3.  

Table 4.3 Input parameter for the Mesaverde well GM FCT 

sgg 0.63 

g (cp) 0.0175 

ct (psi
-1

) 0.0002 

 (%) 10 

Sw (%) 50 

hnet (ft) 12 

Plane Strain Modulus, E’ 5208333.3 

Formation  

Temperature (F) 160 

 

A fracture calibration test (FCT) was completed in a relatively thin sandstone 

reservoir with gross thickness of 14 ft. The sandstone reservoir was perforated at 4954 

feet, and the FCT was executed in the target zone with compatible 1% KCl treated water. 

17.69 bbl of water was injected at an average rate of 3.3bbl/min for 5.3 minute. The 

entire fracture-injection/falloff sequence is shown in Figure 4.16. Injection was stopped 
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at 0.086 hour and the instantaneous shut-in pressure is estimated at corresponding BHP 

at 3143 psi. The falloff period shown in Figure 4.16 extended for 16.10 hours beyond the 

end of pumping.  

 

Figure 4.16 Injection Rate and Pressure Falloff Profile - Well GM 

 

Following the falloff period, the plug was removed, and all 20 layers produced 

for 168 hours prior to a 15 day pressure buildup. With both an FCT and a 

drawdown/buildup sequence completed sequentially, direct comparison of the buildup 

and falloff interpretations is possible. 
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Log-log diagnostic plot 

The fact that the injection scheme for this case is a variable rate injection with 

significantly lower last injection rate which renders the Horner approximation 

inapplicable, it is imperative to use the rigorous superposition time function given by  

 

)...ln()ln()ln(
3

2

1

3

2

1

1

2

11

1

tt

tt

q

q

tt

tt

q

q

tt

t

q

q
X

nnn 













.………………………….. (4.3.1)

 

The log-log diagnostic plot for this case consists of a pressure difference vs. shut-

in time Δt curve and the superposition derivative curve, dp/dX vs. Δt is equivalent to 

τdp/dτ vs. Δt when the Horner equivalent time approximation is applicable.  

Before Closure Analysis 

As in the previous cases, the first step is to identify the leakoff type and hydraulic 

fracture closure. It is observed from Figure 4.18 that following the before closure linear 

flow (1/2 slope on the superposition derivative curve) is a period in which the derivative 

curve exhibits slightly less than 3/2 slope. As explained in the second field example in 

Chapter III, it is a characteristic of Pressure dependent leakoff behavior. The end of the 

less than 3/2 slope trend or the beginning of the 3/2 trend is the indication of fissures 

closure, the fissure closure time is Δt= 0.33 with fissures closure stress =2836 psi. 

Hydraulic Fracture closure is observed at Δt= 0.46 hour and the closure stress is 2790 

psi. Figure 4.17 contains the G-function plot for the fracture injection/falloff sequence. 

Pressure dependent leakoff is diagnosed through the characteristic hump on the semi-log 

derivative trend.  The closure is diagnosed at the end of the linear trend on the semi-log 

derivative curve at Gc=4.45. The closure timing is consistent with the log-log diagnostic.  



 

87 

 

 

Figure 4.17 G-function diagnostic plot for data of Mesaverde Well GM FCT 

 

 

Figure 4.18 Log-log diagnostic plot for data of Mesaverde Well GM 
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The initial reservoir pressure can be estimated from the closure stress and the 

uniaxial strain relationship, Equation (2.6.3.2). Assuming an overburden stress, z 

=4954, with poisson’s ratio and plane strain modulus given as υ=0.15, the initial 

reservoir pressure estimate is pi= 2326.3 psi.  

Lithology suggests the PKN fracture geometry model. In a similar manner as in 

the previous cases, fracture half-length and width are estimated using a point on the 

second 3/2 slope trend as indicated by Marongiu-Porcu et al. 2011. The slope of the line 

through the before-closure data is mN=-91 psi and the intercept is bN = 3100 psi. Fracture 

half-length is calculated from the intercept assuming Young’s modulus, E=5×106 psi, 

and fracture height hf =14 ft assuming the fracture has PKN geometry. The estimated 

fracture half-length, xf = 122 ft. The width at the end of pumping is 0.06 inch. The 

leakoff coefficient is estimated as CL=0.00011 ft/min0.5 and fluid efficiency η = 81.6%. 

Permeability Estimation from Before Closure analysis 

Apply the empirical correlation, Equation (2.2.2.2). With storage ratio rp estimated to be 

1.1 due to slight pressure dependent leakoff. The permeability estimate is k = 0.0032 md. 

After Closure Analysis 

The absence of radial flow prevents direct estimation of permeability, but an upper 

bound permeability estimate is possible using the Superposition plot line approach 

explained in Section 3.3  

 

 

 



 

89 

 

Permeability Estimation from BHP vs. Superposition Time Function Plot 

The Superposition plot line requires an estimate for the formation pressure. The before 

closure estimate using the closure pressure was 2326.3 psi. Alternatively, using Eq. 

(3.3.0.2) the linear flow regime allows estimation of the reservoir pressure as 2356.6 psi. 

The reservoir pressure estimated from the Soliman et al. (2005)  linear flow analysis 

method is pi=2360 psi.  

With an estimate for the formation pressure, Eq. (3.3.0.10) enables estimation of 

the Superposition Function line slope, m’, and permeability is calculated from Eq. 

(3.1.0.8) as 0.026 md from the before closure pressure estimate and 0.035 md from the 

after closure pressure estimate. Figure 4.18 shows the BHP vs. Superposition Time 

Function Plot for the falloff period. The last falloff pressure is connected with a straight-

line with the assumed pressure value on Superposition plotting function X=0. The 

estimate for the upper bound for the formation permeability for assumed pressures from 

before closure is color-coded in blue and the permeability estimation from linear flow 

extrapolated pressure is color-coded in green and labeled in Figure 4.20. 

In comparison, if the Horner approximation is used, Eq. (3.3.0.3) would give the 

value of Horner line slope m’, and permeability is calculated from Eq. (3.1.0.8) as 0.026 

md from before closure pressure estimation and 0.034 md from the after closure pressure 

estimate. The results are very coherent with previous estimation using the Superposition 

Function line slope.  
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Figure 4.19 BHP vs. Superposition Time function - falloff, Well GM 

 

 

Linear Flow Regime Analysis 

Formation linear flow can be used to determine fracture half-length assuming 

PKN fracture geometry. Also, extrapolated reservoir pressure can be obtained from 

Nolte plot. With the permeability (k=0.034 md from k-pi relation using PKN model) 

known, the fracture half-length can be conveniently estimated in this case since the 

linear flow present right after fracture closed. The formation linear Flow in the reservoir 

dominated by flow to an effectively infinitely conductivity fracture is characterized by 

(2.5.0.3). Where tpmlf  /'2  and 'p represents the value of the logarithmic 

derivative at a time t when the derivative slope is ½. fx can be obtained from this 
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relation. Using the data point on ½ after closure trend on the derivative curve (5, 2212), 

the fracture half-length assuming PKN geometry can be estimated to be 88.7 ft (with 

permeability estimation with assume pressure from Linear Flow extrapolation) and 107 

ft (with permeability estimation with assumed pressure from before closure) 

 

Figure 4.20 Log-log diagnostic plot with permeability estimation -- well GM 
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Buildup Test Analysis 

Following the falloff period, the well was flowed at 100Mscf/D for141.7 hrs, then 

lowered at 98 Mscf/D for the next 24.3 hrs, then lowered at 60 Mscf/D for the next 0.6 

hrs and finally lowered at 50 Mscf/D for the final 0.1 hrs before shutting the well in for a 

pressure buildup test lasting 14.95 days.  (Figure 4.21) 

 

Figure 4.21 Production history and buildup sequence (zoom) 

 

Craig and Blasingame (2006) used their type-curve method to match this 

buildup, which provided a reservoir permeability of 0.012 md, a fracture half-length of 

121 ft and a fracture conductivity of 18 md-ft. 

Log-log diagnostic plot 

Similar to the FCT test, due to the fact that last production rate is much lower 

than the average production rate, it is imperative to use rigorous superposition time 
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function instead of the equivalent time approximation in creating the pressure derivative 

curve.  

Figure 4.22 shows the FCT diagnostic plot and pressure buildup pressure 

difference and derivative curves on the same log-log plot. It is observed that in between 

4 hr <Δt <10hr, the two derivative curves appear almost parallel.  After adjusting the 

buildup pressure derivative curve with the rate history, the two curves overlay quite 

compellingly upon the pressure falloff derivative curve during after-closure pseudo-

linear flow (Figure 4.23). Marongiu-Porcu et al. 2011 indicated that this provided an 

empirical proof of the validity of the analysis method for fracture calibration test based 

on the use of the log-log diagnostic plot.  

 

Figure 4.22 Log-log diagnostic plot with falloff and buildup data 
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Figure 4.23 Log-log diagnostic plot with falloff and shifted buildup data, well GM 

 

New method for estimating initial reservoir pressure for buildup test adapting FCT 

conventional method--Adjusted Nolte et al. 1997 method 

Benelkadi reviewed Nolte’s method for after-closure linear flow and he pointed 

out that the permeability and reservoir pressure values were insensitive to changes of a 

seemingly important input which was the closure pressure i.e. for different assumptions 

on closure pressure the derived k and Pi were practically constant. This was due to the 

fact that radial flow started a significant amount of time after closure had occurred. 

(Benelkadi et al., 2003) In the new ACA method that Benenkadi proposed, the F 

function (or FL function, they are effectively the same) is applied from shut in (start of 
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fall off assuming that the reference time, which is supposed to be the closure  time in the 

original Nolte’s after closure method, is now the shut in time.  

If we adapt Benenkadi’s philosophy that Pi is insensitive to the input of tc when 

using the extrapolation on FL plot to estimation formation permeability as long as the 

range of data used are far enough from the closure time, then we can use shut-in time as 

the reference time to create a “Nolte Linear Flow” plot for linear flow period shut-in 

period the reservoir average pressure can be extracted from the linear flow plot. The 

method can not only be used in pressure falloff, but also in buildup. In this manner, the 

pi extrapolated from the linear flow Plot is 2385 psi.  

Permeability Estimation from k-pi relation 

The extrapolated formation pressure from Nolte (1997) linear flow function plot is 

2385.3 psi. A permeability estimate can be obtained from Equation (3.1.0.10) assuming 

that the production prior to the buildup is mostly contributed from the sand layer that has 

been fractured from the FCT. Figure 4.23 illustrate the straight-line connecting the last 

buildup pressure with the assume initial reservoir pressure. The upper limit estimation 

using this method is k=4.95 md. The permeability estimation and the derivative level 

represent the permeability level are labeled and color coded in blue in Figure 4.24.  

In comparison, if the Horner approximation is used, Eq. (3.3.0.3) would give the 

value of Horner line slope m’, and permeability upper-limit is calculated from Eq. 

(3.1.0.8) as 4.28 md using the linear flow extrapolated pressure. The effect of rate 

history before the buildup test is significant. Therefore, in this case, using rigorous 

superposition function for analysis is necessary. 
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Figure 4.24 BHP vs. superposition time function - buildup, well GM 
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Figure 4.25 log-log diagnostic plot buildup data with analysis– Mesaverde Well GM 

 

Figure 4.26 illustrates the portion of Figure 4.24 showing the slope connecting 

last buildup pressure with the assumed initial reservoir pressure. In figure 4.26, It is clear 

that the buildup is not long enough to be closely approaching radial flow for the 

“derivative level” method for permeability-thickness estimation to be applicable. The 

superposition function value for the last buidup data is 0.7, which is very far away 

superposition function X=0. Recall that the last data on FCT falloff period is located on 

X=0.01 (Figure 4.19). The relative large value of X results a relative small slope which 

leads to high upper-limit of permeability estimation. If the buildup is longer so that 

superposition plotting function X is close to 0, as seen in Figure 4.26, then the slope used 
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to estimate upper bound of permeability would be higher, so that the upper bound 

permeability would be much lower. Figure 4.26 shows the potential pressure profile on 

the superposition function plot indicated by the dashed red line. The maroon colored 

slope is the slope for permeability upper limit estimation if the buildup is longer for to 

the scenario shown on the plot. As it clearly shows in Figure 4.26, the longer the 

buildup, the lower the upper limit of permeability estimation or the narrow the range of 

the uncertainty in permeability estimation. The fact that the buildup is too short causes 

the overestimation of permeability. The other reason that contributes to the 

overestimation of permeability can be that the gas productions are taken place in all 20 

sand layers and the production from the unfractured layers cannot be ignored. The 

properties for other layers beside the one that performed FCT are unknown. These k-h 

estimations are based on assumption that other layers of formation possess effectively 

same properties.   
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Figure 4.26 Pressure buildup data on superposition function plot 

 

A curve match using Ecrin software is shown in Figure 4.27. The model match results in 

a permeability of 0.0126 md and a fracture half-length of 125 ft. The other model 

parameters are summarized in Table 4.4. This solution is a non-unique.  
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Figure 4. 27 Log-log diagnostic plot of buildup data with model generated by 

Ecrin–well GM 

 

Table 4.4 Parameters match for buildup 

Model Parameters 

Well & Wellbore parameters (Tested well) 

C 0.0126 bbl/psi 
Skin 0.023 -- 
Xf 125 ft 
Fc 1710 md.ft 

Reservoir & Boundary parameters 

Pi 2366.31 psia 
k.h 0.151 md.ft 
k 0.0126 md 
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Table 4.5 Summary of fracture calibration  

test and buildup interpretations 

 

Discussion 

With both a FCT and a drawdown/buildup sequences completed sequentially, 

direct comparison of the buildup and falloff interpretations is possible. 

The FCT analysis provides a set of values of formation effective permeability 

and initial reservoir pressure estimation.  More importantly, before-closure analysis 

provides a means to investigate the homogeneity of the formation. From log-log plot, it 

indicates the pressure dependent leakoff which is related to the prediction of natural 

fracture dilation or reopening. The identification of a dual-porosity reservoir is crucial in 

productivity estimation.   

In comparison, the subsequent drawdown-buildup sequence provides very few 

knowledge about the reservoir. In this case, even though the well is shut-in for more than 

half a month, the pressure buildup still hasn’t nearly reached radial flow. The reason for 

the permeability overestimation is that the buildup using the pi-k relation is that the shut-

in time is not long enough to give a more precise permeability upper-limit estimation.   

  

Falloff 
Buildup 

 

Before Closure, (k 

from empirical 

correlation with Gc) 

After-Closure 

pi-k relation 

(p from Nolte 

linear Flow) 

pi-k relation 

 (p from before 

closure) Modeling pi-k relation 

pi, psi 2326.3 2355 2326.3 2366 2385 

k, md 0.004 
0.030 

(upper limit) 
0.026 

(upper limit) 0.013 
4.95  

(upper limit) 

kh, md-ft 0.056 0.42 0.49 0.156 69.36 
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This case greatly demonstrates the efficacy and efficiency of a fracture 

calibration test in formation evaluation in low permeability reservoir.  
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CHAPTER V  

CONCLUSIONS  

• Fracture calibration test is a more effective and efficient way for formation 

permeability estimation than a drawdown-buildup sequence, especially in a low 

permeability formations.  

• The log-log diagnostic plot offers a powerful, unified approach for before- and 

after- closure analysis, thus eliminating the necessity of multiple piecewise plots.  

• The two common abnormal leakoff types in shale and tight gas (pressure 

dependent leakoff and transverse storage) can be diagnosed on the log-log 

diagnostic plot, thus eliminating the necessity of G-function plot.  

• The characteristics manifested on the pressure semi-log derivative curve that 

traditionally being interpreted as pressure dependent leakoff can sometimes be 

interpreted as two closures.  

• The utility of relation of pi-k on Horner Plot or Superposition function plot 

enables a better estimate of upper-limit of permeability than assuming an 

apparent radial flow when radial flow is absent. This approach can be applied 

both on fracture calibration test analysis and on conventional buildup test. The 

longer the falloff/buildup period (or the more approach to radial flow), the more 

accurate the estimation. 
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APPENDIX 

 

Figure Appendix 1--G-function diagnostic plot for data of Haynesville Well A  
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Figure Appendix 2--BHP vs. g-function Plot Well A 

 

Figure Appendix 3--Bottom-hole Pressure vs. Nolte FL Plot, Well A 
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Figure Appendix 4--Pressure change and the semi-log derivative vs. time plot,  

Well A 
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Figure Appendix 5--G-function diagnostic plot for data of Haynesville Well B  

 

 

Figure Appendix 6--BHP vs. g-function Plot Well B 
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Figure Appendix 7--Pressure change and the semi-log derivative vs. time Plot for 

Bilinear Flow, Well B 

 

Figure Appendix 8--G-function diagnostic plot for data of Haynesville Well C FCT 

test 
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Figure Appendix 9--Pressure difference and the semi-log derivative vs. time plot, 

Well C 

 

Figure Appendix 10--BHP vs. g-function plot, Well C 
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Figure Appendix 11--G-function diagnostic plot for data of HornRiver WellX FCT 

test 

 

Figure Appendix 12--Pressure change and the semi-log derivative vs. time Plot for 

HornRiver Well Z 
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Figure Appendix 13--Bottom-hole Pressure vs. Nolte FL Plot, HornRiver Well Z 

 

 

Figure Appendix 14--BHP vs. g-function plot Well GM 
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Figure Appendix 15--Bottom-hole pressure vs. Nolte FL plot, Well GM 

 

Figure Appendix 16--Pressure change and the semi-log derivative vs. time Plot- 

buildup, Well GM 
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Figure Appendix 17--Bottom-hole Pressure vs. Nolte FL Plot, Well GM 

 

Figure Appendix 18--Pressure change and the semi-log derivative vs. time plot- 

buildup, Well GM 
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Figure Appendix 19--Bottom-hole pressure vs. Nolte FL plot, buildup, Well GM 

 




