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ABSTRACT 

 

High turbine inlet temperature becomes necessary for increasing thermal 

efficiency of modern gas turbines. To prevent failure of turbine components, advance 

cooling technologies have been applied to different portions of turbine blades. 

The detailed film cooling effectiveness distributions along a rotor blade has been 

studied under combined effects of upstream trailing edge unsteady wake with coolant 

ejection by the pressure sensitive paint (PSP). The experiment is conducted in a low 

speed wind tunnel with a five blade linear cascade and exit Reynolds number is 370,000. 

The density ratios for both blade and trailing edge coolant ejection range from 1.5 to 2.0. 

Blade blowing ratios are 0.5 and 1.0 on suction surface and 1.0 and 2.0 on pressure 

surface. Trailing edge jet blowing ratio and Strouhal number are 1.0 and 0.12, 

respectively. Results show the unsteady wake reduces overall effectiveness. However, 

the unsteady wake with trailing edge coolant ejection enhances overall effectiveness. 

Results also show that the overall effectiveness increases by using heavier coolant for 

ejection and blade film cooling. 

Leading edge film cooling has been investigated using PSP. There are two test 

models: seven and three-row of film holes for simulating vane and blade, respectively. 

Four film holes’ configurations are used for both models: radial angle cylindrical holes, 

compound angle cylindrical holes, radial angle shaped holes, and compound angle 

shaped holes. Density ratios are 1.0 to 2.0 while blowing ratios are 0.5 to 1.5. 

Experiments were conducted in a low speed wind tunnel with Reynolds number 
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100,900. The turbulence intensity near test model is about 7%. The results show the 

shaped holes have overall higher effectiveness than cylindrical holes for both designs. 

As increasing density ratio, density effect on shaped holes becomes evident. Radial 

angle holes perform better than compound angle holes as increasing blowing and density 

ratios. Increasing density ratio generally increases overall effectiveness for all 

configurations and blowing ratios. One exception occurs for compound angle and radial 

angle shaped hole of three-row design at lower blowing ratio. Effectiveness along 

stagnation row reduces as increasing density ratio due to coolant jet with insufficient 

momentum caused by heavier density coolant, shaped hole, and stagnation row.   
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NOMENCLATURE 

 

C Oxygen concentration 

CD Discharge coefficient 

CX  Axial chord of blade = 17cm 

D Diameter of the leading edge model (semi-cylinder)  

DR Blade surface coolant to mainstream density ratio 

DRt Trailing edge coolant to mainstream density ratio 

d  Film cooling hole diameter 

dr Wake rod diameter 

dt  Ejection hole diameter 

I Coolant to mainstream momentum flux ratio 

L Length of film coolant hole 

M Film cooling mass flux (blowing) ratio =ρc Vc/ρM VM 

Mt Trailing edge coolant ejection mass flux (blowing) ratio =ρt Vt/ρM VM 

N Rotating speed of spoke wheel, rpm 

n Number of spoke wheel rods, 16 

P Spacing between consecutive holes on same film cooling row  

PL Length of blade on pressure side along curved surface = 25.4cm  

PO2  Partial pressure of oxygen  

PT  Total pressure 

Ps  Static pressure 
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Pt  Spacing between consecutive ejection holes  

S Strouhal Number = 2πNndr/60V1  

SL Length of blade on suction side along curved surface = 33cm 

s Distance from the stagnation line  

Tu Turbulence intensity 

Tc  Coolant temperature 

Tf  Film temperature 

Tm Mainstream temperature  

VM  Local mainstream velocity, m/s  

Vc  Coolant velocity, m/s 

Vm Mainstream temperature 

V1 Cascade inlet velocity, m/s 

V2  Cascade exit velocity, m/s 

Wair  Molecular weight of air 

Wf g  Molecular weight of foreign gas  

z Distance along the blade span measured from the bottom of the measure area 

α film cooling hole incline angle to the surface 

β film cooling hole incline angle to the stream-wise direction  

γ film cooling hole forward expansion angle 

δ  film cooling hole lateral expansion angle  

θ angle to stagnation line 

η  Film cooling effectiveness 
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η   Span-wise averaged film cooling effectiveness 

ρc Coolant density, kg/m3   

ρM  Mainstream density, kg/m3  

cm  Coolant mass flow rate 
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1. INTRODUCTION  

 

Raising emphasis on efficiency in the gas turbine industry has led to a demand 

for turbine blades to withstand higher temperatures. Reliable cooling of the turbine blade 

is therefore imperative to increase the efficiency of the gas-turbine.  

There are vast amount of literature discussing various methods of cooling the 

blade internally and externally over the past few decades [1, 2]. The aim of internal 

cooling is to increase heat transfer between blade internal passages and cooling air as 

shown in Fig. 1.1. A certain amount of cooling air is from compressor and goes through 

the channel inside the blade for internal cooling. There are several heat transfer 

techniques used to augment heat transfer between blade inner wall and coolant for 

different portions the gas turbine blade. Jet impingement is commonly used at blade 

leading edge inner channel. In the middle portion of the blade, angled ribs has been used 

to break the boundary layer and create secondary flow for heat transfer enhancement. 

Pin fins and dimples are usually put at trailing edge for enhancement. 

The well known method for external cooling is the film cooling as shown in Fig. 

1.2. Film cooling has been widely used as an active method to protect high temperature 

and high pressure blades. Relatively cooler air from compressor is injected through 

discrete holes on blade to from a protective thin film between the hot mainstream and the 

blade called film cooling. Turbine blade film cooling has been studied extensively in 

literature over the past few decades in the following categories.  

 



 

 

 

2 

 

Fig. 1.1 Gas turbine blade internal cooling techniques 
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Fig. 1.2 Gas turbine blade film cooling techniques 
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1.1 Literature Review on Hole Shape  

Film holes’ configurations changed flow filed and influenced film cooling 

effectiveness. Goldstein et al. [3] concluded that shaped holes appreciably increased film 

cooling effectiveness laterally because of increasing the spreading of the secondary flow. 

Another reason is that the mean velocity of the secondary flow is decreased with the 

larger exit area of shaped hole. Goldstein et al. also [4] obtained results for film holes 

with compound angle which was contributed to reduce lift-off effect at higher blowing 

ratios. Rallabandi et al. [5] investigated flat plate film cooling with a step positioned 

upstream of a row of film cooling holes. They concluded step had a positive effect on 

film cooling for simple angled and compound angled cylindrical holes near the holes but 

had a negative effect for either simple angled or compound angled fan-shaped holes. 

Gritsch et al. [6] studied three holes’ configurations on film cooling. It showed that laid-

back fan-shaped holes had best film cooling compared with cylindrical, fan-shaped holes, 

particularly at higher blowing ratios. However, this study is limited to lower density 

ratios. Guo et al. [7] performed four film-hole shapes on showerhead film cooling on 

leading edge model for density ratio equal to unity. It showed shaped hole performed 

better that cylindrical holes at higher blowing ratios. Waye et al. [8] investigated film 

cooling effectiveness of axial holes embedded in various trench configurations. They 

concluded narrow trench provided best film cooling due to coolant with better lateral 

spreading.   
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1.2 Literature Review on Blowing Ratio and Density Ratio Effects  

Blowing ratio (M) is defined as the coolant to mainstream mass flux ratio. 

Density ratio (DR) has been defined as the coolant to mainstream density ratio. Sinha et 

al. [9] studied both blowing ratio effect and density ratio effect on film cooling 

effectiveness using a plate with simple angled holes. At lower blowing ratios, the film 

coolant was found to adhere to the surface of the plate. On increasing the blowing ratios, 

the film coolant tended to lift-off from the blade surface, owing to the larger inertia due 

to the higher momentum of the coolant. Other studies [4, 10, 11] also had reached the 

similar conclusions using different methods. Furthermore, blowing ratio had been 

extensively studied to determine optimum film cooling effectiveness. The optimum 

blowing ratio is different for different film-hole shapes. Goldstein et al. [12] and Jubran 

et al. [13] reached the same conclusion that the optimum blowing ratio is around 0.5 for 

cylindrical holes. Typical coolant to mainstream density ratios in gas turbine engines are 

around 2.0. However, simulating this density ratio in the laboratory is difficult, because 

it requires cooling the secondary air to temperatures much lower than the ambient [9, 14] 

and heating mainstream air. Instead, foreign gases have been used to simulate the effect 

of density ratio [3, 15]. Sinha et al. [9] observed a significant improvement in film 

cooling effectiveness at higher density ratios due to the suppression of lift-off at higher 

blowing ratios. Wright et al. [16] experimentally studied density ratio effect of the flat 

plate film cooling. They concluded that increasing density ratio decreased centerline film 

cooling effectiveness but increased laterally averaged film cooling effectiveness due to 

enhance the spreading of the jets.     
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1.3 Literature Review on Free Stream Turbulence Effect 

The flow condition on film cooling and heat transfer frequently studied is 

turbulence intensity. Choi et al. [17] reported that heat transfer on blade surface 

increased by increasing Reynolds number and free-stream turbulence due to suppress 

separation and promote boundary layer transition for low Re flow. Ekkad et al. [18] 

studied free-stream turbulence on leading edge film cooling and reported that turbulence 

reduced film cooling significantly at lower blowing ratio for density ratio 1 and 1.5. 

Bons et al. [19] presented high free-stream turbulence results on film cooling with 

turbulent intensity (Tu) up to 17% and density ratio close to unity. They found that 

effectiveness dramatically reduced right behind the holes at low to moderate blowing 

ratios. However, high turbulence helped reduce extent of coolant lift-off and result in 

higher effectiveness for higher blowing ratios. Also, high Tu created a more uniform 

film between adjacent holes and had higher effectiveness. Saumweber et al. [20] 

concluded effectiveness reduced at lower blowing ratios but slightly increased at higher 

blowing ratios as increasing turbulence intensity for cylindrical holes. For shaped holes, 

increasing turbulence level had a detrimental effect on effectiveness even for higher 

blowing ratio. Ethridge et al. [21] investigated film cooling performance under strong 

curvature on suction side of first-stage turbine vane. They found effectiveness for these 

holes was much higher than holes with a similar injection angle on a flat plate.    

1.4 Literature Review on Leading Edge Film Cooling  

There are several film cooling investigations focusing on leading edge region. El-

Gabry et al. [22] provided that film cooling effectiveness with a pulsing film is lower 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DChoi,%2520Jungho%26authorID%3D7501394702%26md5%3D209416dba4fc6fb559c4761a2f0d19e9&_acct=C000049198&_version=1&_userid=952835&md5=90ecd8a99010f8afcad883cc5f5d8afc
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than that with a continue film at the same blowing ratio for a cylindrical leading edge 

model. Maikell et al. [23] simulated leading edge model constructed of a high 

conductive material to represent actually engine conditions with and without thermal 

barrier coating (TBC). They found that film cooling effectiveness had increased in the 

interface between the model and the TBC. However, effectiveness decreased on the 

external surface of TBC compared with the models without TBC. Rozati et al. [24] 

simulated Syngas ash particles in film cooled leading edge region. They concluded the 

percentage of particles deposited decreased with increasing blowing ratios and erosive 

wear was highest with 5μm and 7 μm particles in the film holes. Gue et al. [25] presents 

a three-dimensional conjugate heat transfer prediction on a cylindrical leading edge 

model with film cooling. This conjugate analysis considered both the internal convective 

heat transfer and external film cooling including heat conduction in the solid. The results 

clearly showed the leading edge overall cooling performance significantly affected by 

heat conduction through the cylinder solid wall. 

1.5 Literature Review on Unsteady Wake   

Rotor blades in a gas turbine engine experience intermittent wakes typically 

around S=0.1~0.4 and shocks due to the stator vanes located immediately upstream of 

the blades. These unsteady phenomena will trigger the laminar-turbulent transition along 

the blade surface [26]. An intermittency based model has been developed by Mayle et al. 

[27] to predict transitional heat transfer along the blade surface and this model has been 

shown to be fairly accurate in by Han et al. [28] and Zhang et al. [29]. Moreover, flow 
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transition to turbulence is further hastened due to film cooling holes on blades surface 

[30]. 

Spoke wheel type wake generators have been widely used in literature to 

simulate transition on rotor blades [29-33]. LDV and traversing hot-wires have been 

used to measure the phase averaged structure of the wake with better spatial resolution. 

Data of Stieger et al. [34] and Bijak-Bartosik et al. [35] show wake inside the passage 

between two rotor blades. Because of the wake, an increase in turbulent kinetic energy 

along the suction surface is measured. This also further confirms the picture of laminar-

turbulent transition built in the literature. 

Several studies on a linear cascade with rotating a spoke-wheel wake generator 

installed upstream of a typical high pressure film cooled model turbine blade have been 

conducted in the Turbine Heat Transfer Lab at Texas A&M University to study heat 

transfer coefficient and film cooling effectiveness. A reduction in film cooling 

effectiveness due to the unsteady wake is observed across the blade shown by 

Mehendale et al. [36] and Du et al [37]. Rallabandi et al. [38] provides a comprehensive 

parametric study such as blowing ratio, density ratio under different wake strength 

conditions. Teng et al. [39] used cold-wire anemometry to measure the mean and 

fluctuating temperature profiles within the film cooling jet. Increased turbulence in the 

boundary layer can be clearly observed in the unsteady wake case which reveals shorter 

coolant traces. A significant Strouhal number effect in a cascade characterizing the 

unsteady wake effect on leading edge film cooling was identified by the researchers [35, 

40]. 



 

 

 

9 

1.6 Literature Review on Unsteady Wake with Trailing Edge Coolant Ejection  

Film cooling effectiveness and heat transfer along blade under unsteady wake 

with trailing edge coolant ejection had been investigated by Du et al. [41, 42] and Li et al. 

[43]. Du et al. acquired heat transfer coefficient distributions and film cooling 

effectiveness using thermochromic liquid crystals. However, the ejection blowing ratio 

was only 0.5 which did not match with engine conditions. Li et al. extended ejection 

blowing ratio to 1.0 which was close to engine conditions. They concluded adding 

coolant ejection increased turbulence intensity, and the ejection coolant was carried by 

unsteady wake toward blade surface to protect it. Therefore, the overall effectiveness 

slightly increased.  

1.7 Literature Review on Measurement Techniques 

Several experimental techniques have been used to determine film cooling 

effectiveness. For almost identical conditions, the thermal methods (IR [44, 45] and 

liquid crystal [46]) show a higher film cooling effectiveness than mass-transfer analogy 

method discussed in detail by [4, 11, 47]. When comparing film cooling effectiveness 

measured by the naphthalene sublimation [4, 48] mass transfer analogy and the transient 

liquid crystal methodology [10] on a flat plate, Goldstein et al. [4] found that a consistent 

10-20% lower values measured by mass transfer method compared values with by heat 

transfer method. The reason is that data from heat transfer method already includes 

lateral conduction effect. A similar conclusion was arrived by Wright et al. [11] using 

the Pressure Sensitive Paint (PSP) mass transfer analogy. The validity of the heat-mass 

transfer analogy for film cooling effectiveness measurement requires the reasonable 
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approximation that the turbulent Lewis number be equal to unity, based on works by 

Nicoll et al. [49] and Jones [15]. More recently, the PSP analogy has made it possible to 

present high resolution conduction error free contours of film cooling effectiveness [50, 

51, 52]. Therefore, we choose this method to obtain film cooling effectiveness and get 

high resolution results.  
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2. PRESSURE SENSITIVE PAINT MEASURMENT THEORY AND DATA 

ANALYSIS * 

 

Foreign gas film-cooling effectiveness measurements are based on the reasonable 

approximation that the turbulent Lewis number (ratio of eddy thermal diffusivity to eddy 

mass diffusivity) is equal to 1, according to an analysis by Jones [15]. 

This work uses the Pressure Sensitive Paint (PSP) mass transfer analogy. The 

PSP (UniFIB UF405 from ISSI Inc.) is applied to the area of interest on the blade 

(shown in Fig. 2.1). When excited with light of wavelength of around 430nm (in the blue 

range of the visible spectrum), the paint emits a light at a higher wavelength (around 

600nm). The intensity of the light emitted by the paint is proportional to the absolute 

partial pressure of oxygen. The principle is explained in Fig. 2.1). For the current case, 

the lighting source is a narrow range continuous blue LED light. The emitted light is 

recorded using a Cooke Sensicam CCD camera equipped with a low-pass filter 

(transmitting wavelengths above 550nm only). This filter is provided to ensure that the 

camera does not capture any of the incident blue light. 

A calibration is performed Fig. 2.1(b) correlating the intensity of the light 

emitted to the partial pressure of oxygen. To compensate for non-uniformities in the 

lighting, the ordinate in the plot is normalized with reference (wind-off) intensity. 

Further, in the calibration, it is noted that the intensity of the light emitted by the PSP is  

____________________________ 
*Reprinted with permission from “Influence of Unsteady Wake with Trailing Edge Coolant Ejection on 
Turbine Blade Film Cooling” by Li, S.J., Rallabandi, A.P., and Han, J.C., 2012. Journal of 
Turbomachinery, Vol. 134(6), 061026-1~061026-9, Copyright [2012] by Journal of Turbomachinery.  
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also a function of temperature. Since our tests are conducted in a low speed wind tunnel 

with incompressible flow (located inside a room maintained at 22C by a central air 

conditioning system), this issue is not expected to play a role for the case under 

consideration.  

 

 

 

Fig. 2.1 (a) Principle of measurement using PSP (b) Calibration curve for PSP at three 

different temperatures 
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In this study, two kinds of foreign gas are used to simulate required density ratio. 

CO2 is used as coolant to obtain density ratio of 1.5; a mixture of 15% SF6 and 85% Ar 

(by volume), from Praxair Inc. is used to obtain an effective density ratio of 2.0. The 

coolant flow rates are controlled by rotameters. 

To determine film cooling effectiveness for a given configuration, four tests are 

required. 200 images are averaged for each test to reduce random noise contamination. 

Test 1(black image) involves switching off the LED light and capturing an image in a 

dark room to determine the background noise intensity. The corresponding intensity 

field is called Ib. Test 2 (reference image) involves switching on the LED light, focusing 

the camera on the region of interest and acquiring a set of images without turning on the 

mainstream (Ir). Test 3 (air image) involves establishing mainstream and coolant flow 

rates at the appropriate blowing ratio using air as a coolant and acquiring a set of images 

(Iair). Finally, test 4 (coolant image) is conducted, establishing the desired blowing ratio 

using a coolant (either CO2 or the 15% SF6 and 85% Ar mixture), recorded as (Ifg).  

These recorded intensities can be converted into pressures using the calibration in 

Fig. 2.1(b). In determining Pwind-on= (PO2)air the corresponding measured intensity is 

Iwind-on=Iair–Ib . Corresponding with the Pwind-on= (PO2)fg case, Iwind-on=Ifg–Ib. For both 

cases, Iwind-off=Ir–Ib and Pwind-off =1 bar. Knowing (PO2)air  and (PO2)fg , the film cooling 

effectiveness can be estimated by using Eq.(1). 

                                               11 ( )
2( 1) 1

( )
2

P WairO fg
P WairO fg

η = −

− +

                                          (1) 
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The term Wfg/ Wair  is the molecular ratio (or density ratio) of the foreign gas to 

air - and arises because the partial pressure of oxygen (measured by the PSP) is 

proportional to the molar concentration of oxygen. The turbulent Lewis number 

(assumed to be equal to unity) is the ratio of the turbulent thermal diffusivity to the 

turbulent mass diffusivity. The molecular weight ratio term arises because mass fraction 

of oxygen does not equal its mole fraction when a high density foreign gas is injected. 

All effectiveness values reported in this work are time averaged values (200 

images), and not phase-averaged values. As the flow field surround the blade is unsteady, 

the effectiveness distribution along the blade would also be expected to vary with the 

phase of the upstream wake rod. However, the response time of the currently used PSP is 

not quick enough to resolve this time-variation. 
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3. EXPERIMENTAL SETUP * 

 

3.1 Blade, Rotating Rods, and Wind Tunnel Geometry  

Firstly, introducing unsteady wake test wind tunnel. Tests are conducted in a five 

passage low speed wind tunnel setup (shown in Fig. 3.1(a)) with five blades. The inlet 

velocity, measured by a Pitot-static probe is maintained at 12m/s, resulting in an exit 

velocity of around 32.7 m/s, corresponding to an exit Reynolds number, 

V2Cx/ν=3.7×105. The upstream vane-generated unsteady wake and coolant ejection 

impinging on the downstream rotor are simulated by a rotating spoke-wheel type wake 

generator containing hollow rods equipped with coolant ejection holes. A total of 16 

rods are used. The inside and outside diameter of each hollow rod are 3.2mm and 6.3mm, 

correspondingly. Each hollow rod contains 32 holes, the diameter of each hole is 1.6 mm, 

distributing uniformly with 3d spacing in the middle portion of the rod. The location of 

the wake generator plane is 8cm upstream of the blade row. The wake generator and 

hole direction is arranged such that the wake rod and coolant ejection are aligned along 

the flow streamline upstream of the leading edge of the instrumented blade. The tested 

rotating speed of the wake generator is fixed at 140rpm, corresponding with values of 

Strouhal number of 0.12 for all tests. In this study, the Strouhal number is defined as: 

                                                             
1

2
60
NndrS

V
π

=                                                         (2)       

 
____________________________ 
*Reprinted with permission from “Influence of Unsteady Wake with Trailing Edge Coolant Ejection on 
Turbine Blade Film Cooling” by Li, S.J., Rallabandi, A.P., and Han, J.C., 2012. Journal of 
Turbomachinery, Vol. 134(6), 061026-1~061026-9, Copyright [2012] by Journal of Turbomachinery.  
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Fig. 3.1 (a), (b): 3D view of suction type wind tunnel with spoke wheel wake generator; 

(c), (d): Trailing edge coolant ejection configuration 
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Blades studied are five-times scaled versions of a typical high pressure blade, 

with a turn angle of 107.49 degrees. The axial chord of the blade is 17cm and the radial 

span is 25.2cm. The blade pitch is 17cm. The blade (Fig. 3.2) has 7 rows of film cooling 

holes – three at the leading edge, and two each on both the pressure and suction surfaces. 

Detailed specifications of the film cooling holes are available in Table 1. In Table 1, the 

axial angle is the angle made by the center-line of the film cooling hole with the axis of 

rotation of the blade. The radial angle is the angle that the hole makes with the span 

(radius) of the blade. The simple angled holes on the suction side (SS1 and SS2) 

therefore have a radial angle of 90 deg. The tangential angle is the angle the axis of the 

hole makes with the mainstream. Flow can be controlled separately to each row on the 

suction and the pressure sides, but flow to the three rows on the leading edge is supplied 

by the same supply line, as detailed in Fig. 3.2. 

 

 

 

 

 

 

 

 

 

 



 18 

 

Fig. 3.2 View of blade showing arrangement of cooling holes, coolant supply channels 

and area painted with PSP 
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Table 1 Film cooling hole specification 

 d(mm) P/d L/d Axial 

Angle 

Radial 

angle 

Tang. 

Angle 

LE 1.65 7.31 2.7 90° 27°      - 

SS1 1.9 4.13 7.6   - 90° 45° 

SS2 1.78 5.71 12.8   - 90° 30° 

PS1 1.78 6.79 4.2   - 32° 55° 

PS2 1.78 5.00 6.7   - 35° 50° 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 20 

3.2 Wind Tunnel Characterization  

The velocity distribution of the blade has been measured using a specifically 

fabricated blade with a total 24 pressure taps along the blade in Fig. 3.3(a). On the 

suction side, the flow experiences acceleration until 80% of the chord length, after which 

the velocity stays approximately constant until the exit. On the pressure side, the velocity 

stays constant at around 16% of the exit velocity until 50% of the blade chord, after 

which the flow accelerates quickly to reach V2. The effect of using radial spoke wheels 

on a linear cascade is not anticipated to be significant in the region of interest, as per a 

discussion in Han et al. [28] and Ou et al. [30]. Under the test condition of Strouhal 

number of 0.1, Renolds number of 5.3×105, phase averaged measurements of turbulence 

within the wake based on 100 samples (Fig. 3.3 (b-d)) and show highest intensities 

reaching 20% as shown in Fig. 3.3 (d). For our test consideration, mainstream without 

the wake and coolant ejection experiences a time averaged turbulence intensity of 0.7%. 

With the wake (S=0.12) and no coolant ejection (Mt=0) experiences a turbulence 

intensity around 13%. With both wake (S=0.12) and coolant ejection  (Mt=1) turbulence 

intensity works out to around 12.7% which a little lower compared no coolant ejection 

case because addition of ejection to unsteady wake profile increases mainstream velocity 

and produces more uniformly distributed turbulence intensity profile, which slightly 

reduces turbulence intensity. The detailed test conditions can be found in Table 2. 
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Fig. 3.3 (a) Velocity distribution around model blade (b) Instantaneous hot-wire velocity 

signal (c) Ensemble averaged velocity (d) Ensemble averaged turbulence intensity 
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Table 2 Test conditions for unsteady flow 

Case S DRt DR Mt M 

1 0 0 1.5 0 SS:0.5,1.0; PS:1.0,2.0 

2 0.12 0 1.5 0 SS:0.5,1.0; PS:1.0,2.0 

3 0.12 1.5 1.5 1 SS:0.5,1.0; PS:1.0,2.0 

4 0.12 2.0 2.0 1 SS:0.5,1.0; PS:1.0,2.0 
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3.3 Experimental Uncertainty for Unsteady Flow Film Cooling 

The mainstream velocity is measured using a micro-manometer connected to a 

pitot-static tube located in the cascade upstream of the wake rods. An error analysis 

based on the Kline-McClintock [53] scheme shows a maximum 2% error in the 

mainstream velocity. The coolant flows through each coolant passage (shown in the 

figure on p.18) and rods for coolant ejection are both controlled by individual rotameters. 

A maximum 6% error (for lowest blowing ratios) and much lower values for higher 

blowing ratios is anticipated in the coolant flow rate. Uncertainty in measured film 

cooling effectiveness is also dependent on the intensity of illumination in the regions 

covered by the PSP. Due to the relative insensitivity of PSP at close-to-atmospheric 

oxygen pressures, the film cooling effectiveness has a larger uncertainty around 9% at 

lower effectiveness values, and lower uncertainty at higher effectiveness value. 

3.4 Experimental Facilities of Leading Edge Film Cooling 

Experimental setup for leading edge film cooling is as shown in Fig. 3.4. The 

facility is a suction type low speed wind tunnel. The mainstream flow is fixed to 

maintain a Reynolds number of 100,900 based on the cylinder’s diameter. Inlet velocity 

measured by Pitot-static probe is around 20.4 m/s. Mainstream flow travels through a 

nozzle before it enters the test tunnel.  Leading edge model is a blunt body with semi-

cylinder called test section and an after-body.  The test section is placed in the wind 

tunnel, and the center of the cylinder is at 73.7 cm downstream of the nozzle exit. 

Coolant plenum is right inside the hollow semi-cylinder. Coolant flow from compressor 

(air) or coolant bottle travels through rotameters and enters semi-cylinder from the 



 24 

bottom. The coolant inside plenum is discharged to mainstream through the seven-rows 

or three-rows film cooling holes. To simulate realistic engine condition, a turbulent grid 

is put at the exit of the nozzle to increase the free stream turbulence of the mainstream 

flow. Turbulence intensity increases to around 7% with the grid, and turbulence integral 

length scale is about 1.5cm measured near the cylinder. For PSP measurement, the 

position of excitation light (LED light) is located at the top of test section and CCD 

camera position is also shown in Fig. 3.4.   
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Fig. 3.4 Leading edge film cooling test facility 
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3.5 Semi-Cylinder Test Section 

Leading edge model as show in Fig. 3.5 contains a fix after-body and detachable 

semi-cylinder which is made of Stereolithography (SLA). The semi-cylinder test 

sections include two designs: seven-row film cooled model (Fig. 3.6) for simulating 

rotor and three row film cooled model (Fig. 3.7) for simulating vane. There are four 

kinds of holes configurations such as radial angle cylindrical holes, compound angle 

cylindrical holes, radial angle shaped holes, and compound angle shaped holes for each 

set. Also, all holes’ arrangement are in-line pattern. There are eight leading edge film 

cooled models in total are studied. The dimensions of semi-cylinder are 7.62 cm in 

diameter, 25.4 cm in height, and 0.64 cm in thickness. For seven-row film holes design, 

holes’ location are at θ=0° (stagnation line), ±15°, ±30° and ±45° as shown in Fig. 3.6.  

Either radial angle cylindrical holes (a) or radial angle shaped holes (c), the holes 

are oriented in the radial (span-wise) direction which is orthogonal to the local 

mainstream direction. As for compound angle cylindrical holes (b) or shaped holes (d), 

each row oriented at different angles with respect to the local mainstream because of the 

constraint of space. The holes’ from stagnation row to downstream are orientated at β= 

90°, 75°, 67.5°, and 60° to the local mainstream direction as shown in Fig. 3.6 (b) or (d). 

The three-row film-hole design can be shown in Fig. 3.7. The holes’ location are at θ=0° 

(stagnation line), ±30° on both side of cylinder. The orientation of holes at ±30° is 67.5° 

(β) to the local mainstream direction for compound angle cylindrical holes (b) or shaped 

holes (d) in Fig. 3.7. The stagnation row for four holes’ configuration is always in radial 

(span-wise) direction. There  are  fifteen holes per row with a  p/d  of 4 for  either  seven- 
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θ 
Mainstream

Coolant  

Fig. 3.5 Leading edge film cooling model with semi-cylinder test section and an after-

body  
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Fig. 3.6 Seven-row film cooled leading edge models (a) Radial angle cylindrical holes 

(b) Compound angle cylindrical holes (c) Radial angle shaped holes (d) Compound 

angle shaped holes 
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Fig. 3.7 Three-row film cooled leading edge models (a) Radial angle cylindrical holes 

(b) Compound angle cylindrical holes (c) Radial angle shaped holes (d) Compound 

angle shaped holes 
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row or three-row for semi-cylinder test section. For economic purpose, both the top and 

bottom four rows has been blocked for each row, which means no coolant coming out 

from these holes. In other words, only middle seven holes are open per row as running 

experiment. Due to geometric symmetry of semi-cylinder, the flow behavior is similar 

for both right and left hand side of stagnation line so that data taken are only on right 

hand side. Because of the edge effect, the reported data only focus on middle five holes 

per row ever if middle seven holes open as indicated in Fig. 3.6 or 3.7.    

The detailed holes orientations of both cylinder holes and shaped hole are shown 

in Fig. 3.8. For cylindrical holes, the holes’ inclined angle (α) is 25° to the model surface 

and compound angle β is mentioned above. As for shaped holes, laidback fan-shaped 

holes are used. This means holes with lateral expansion (γ) of 5° from the holes’ 

centerline, and additional 5° (δ) forward expansion to the surface starting in the middle 

of hole (1/2L). For all four configurations, the metering part (hole inlet) has the same 

diameter (d=0.3715 cm). However, due to lateral expansion (γ) for shaped holes 

configuration, an area ratio is about 2 between the expanded cross section at the hole’ 

exit and the metering part. Detailed specifications and dimensions of the film cooling 

holes are available in Table 3 and 4. The test conditions for both seven-row and three-

row designs are as Table 5 and 6.  
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Fig. 3.8 Definition of orientations and hole shape (a) Cylindrical hole (b) Shaped hole 
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Table 3 Film cooling hole specification for seven-row design 

 Design 1  (Seven-row) 

 

Hole configurations 

cylindrical holes shaped holes 

radial 

angle 

compound 

angle 

radial 

angle 

compound 

angle 

Hole diameter (d, cm) 0.3715 0.3715 0.3715 0.3715 

Diameter ratio (D/d) 24 24 24 24 

Hole to hole spacing (p/d) 4d 4d 4d 4d 

Ratio of hole length to  

diameter (L/d) 
4.73 

4.73~ 

    5.46 
4.73 

4.73~ 

     5.46 

Lateral expansion angle (γ)(deg) 0 0 5 5 

Forward expansion  

angle (δ) (deg) 
0 0 5 5 

Angle to surface (α ) (deg) 25 25 25 25 

Stream-wise angles (β) (deg) 
90 

90/75/ 

67.5/60 
90 

90/75/  

67.5/60 

Ratio of hole breakout area to 

metering cross-section area 
1.0 1.0 1.9 

1.9/1.94/ 

1.98/2.1 
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Table 4 Film cooling hole specification for three-row design 

 Design 2  (Three-row) 

 

Hole configurations 

cylindrical holes shaped holes 

radial 

angle 

compound 

angle 

radial 

angle 

compound 

angle 

Hole diameter (d, cm) 0.3715 0.3715 0.3715 0.3715 

Diameter ratio (D/d) 24 24 24 24 

Hole to hole spacing (p/d) 4d 4d 4d 4d 

Ratio of hole length to  

diameter (L/d) 
4.73 

 4.73~ 

     5.46 
4.73 

 4.73~ 

      5.46 

Lateral expansion angle 

(γ)(deg) 
0 0 5 5 

Forward expansion  

angle (δ) (deg) 
0 0 5 5 

Angle to surface (α ) (deg) 25 25 25 25 

Stream-wise angles (β) (deg) 90 90/ 67.5 90 90/67.5 

Ratio of hole breakout area to 

metering cross-section area 
1.0 1.0 1.9 1.9/1.98 
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Table 5 Leading edge seven-row design test conditions 

Case Configuration DR M 

1 Radial angle 

cylindrical hole 

 

 

 

 

1, 1.5 

 

 

 

 

 

0.5, 1.0, 1.5 

2 Compound angle 

cylindrical hole 

3 Radial angle 

shaped hole 

4 Compound angle 

shaped hole 
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Table 6 Leading edge three-row design test conditions 

Case Configuration DR M 

1 Radial angle 

cylindrical hole 

 

 

 

 

1, 1.5, 2 

 

 

 

 

 

0.5, 1.0, 1.5 

2 Compound angle 

cylindrical hole 

3 Radial angle 

shaped hole 

4 Compound angle 

shaped hole 
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3.6 Experimental Uncertainty for Leading Edge Film Cooling 

The mainstream velocity is measured by a micro-manometer connected to a 

pitot-static tube upstream the test section. From an error analysis of the Kline-

McClintock [53] scheme shows a maximum 2% error in the mainstream velocity. The 

coolant flows (air, foreign gas) is controlled by rotameters. A maximum 7% error is for 

lowest blowing ratio but lower values are for higher blowing ratios. Uncertainty of 

measured film cooling effectiveness also comes from the intensity of illumination 

regions covered by the PSP. The film cooling effectiveness has a larger uncertainty 

about 9% at lower effectiveness values but a lower uncertainty at higher effectiveness 

value. 

3.7 Objectives of the Present Studies 

There are two main topics in this study and each with several effects to 

investigate. The general aim of these two topics is to obtain film cooling effectiveness. 

For heat transfer measurement, there is conduction error near film cooling hole. Heat 

transfer can be analogy to mass transfer, using Pressure Sensitive Paint (PSP) which is 

no conduction error to determine film cooling effectiveness.  

The objectives of unsteady flow on film cooling are: (1) use PSP measurement 

technique to obtain the detailed film cooling effectiveness distribution data, (2) 

document film cooling effectiveness data under unsteady wake condition with and 

without trailing edge coolant ejection, and (3) compare film cooling effectiveness data 

with unsteady wake and trailing edge coolant ejection for two coolant-to-mainstream 

density ratios (DR=1.5, 2.0).     
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The objectives of leading edge film cooling are: (1) Use PSP measurement 

technique to obtain the detailed film cooling effectiveness distribution (2) Study leading 

edge film cooling modeled with a semi-cylinder and two designs of film cooling holes 

with seven-row and three-row to simulate blade and vane, separately (3) Four film holes 

configurations are tested for both designs with density ratio from DR = 1.0, 1.5, to 2.0 

and blowing ratio from 0.5, 1.0, to 1.5.     
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4. UNSTEADY FLOW ON FILM COOLING * 

 

In this chapter, the cases (Table 2, shown in p.22) are presented through contour 

plots, span-wise averaged plots, momentum flux ratio plots for detailed discussion. Two 

camera angles are used for suction side and one camera angle is used for pressure side to 

compose these plots. The x-axes on contour plots correspond with the distance along the 

axial chord (Cx), whereas the x-axes on span-wise averaged line plots correspond with 

the distance along the curved surface of the blade. Also, the span-wise averaged 

effectiveness includes the value within the hole row which shows a much higher 

effectiveness value. Flow conditions can be divided into three types for detailed 

discussion such as no wake condition (case1), wake condition (case2), and combined 

wake and coolant ejection condition using CO2 as coolant (case3) Furthermore, realistic 

engine condition - high density ratio case (DR=2) with combined wake and coolant 

ejection condition (case 4) is included to compare with CO2 case (DR=1.5). 

4.1 Critical Parameters Determination 

Table 2 presents the test cases for mass transfer measurements using PSP 

technique in this study. Prior experimental results [41], suggest that the film cooling 

effectiveness measurements are insensitive of the Mainstream Reynolds number for the 

range tested (Re = 5.3×105 to 7.6×105). Based on the economic concerns, it is feasible for 

____________________________ 
*Reprinted with permission from “Influence of Unsteady Wake with Trailing Edge Coolant Ejection on 
Turbine Blade Film Cooling” by Li, S.J., Rallabandi, A.P., and Han, J.C., 2012. Journal of 
Turbomachinery, Vol. 134(6), 061026-1~061026-9, Copyright [2012] by Journal of Turbomachinery.  
*Reprinted with permission from “Unsteady Wake and Coolant Density Effects on Turbine Blade Film 
Cooling Using PSP Technique” by Rallabandi, A.P., Li, S.J., and Han, J.C., 2012. Journal of Heat 
Transfer, Vol. 134, 081701-1~081701-10, Copyright [2012] by Journal of Heat Transfer.  
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us  to  pick  up  exit  Reynolds  number of  3.7×105  for conducting all tests. The no wake 

condition data (case1) will be used as reference. The unsteady wake strength is defined 

by wake Strouhal number which is usually above 0.1 for the real engine conditions. It 

can be achieved in the test set up by a combination of wake rotation speed (N), the 

number of rod (n), outer diameter of the hollow rod (dr), and cascade inlet velocity (V1). 

First, we choose CO2 (DR=1.5) as coolant to discuss effects of wake (case2) and trailing 

edge coolant ejection (case3). Density ratio for modern engine condition is around 2.0 

simulated using mixture coolant of 15% SF6 and 85 % Ar in this paper (case4). Mass 

flux for mainstream (ρMVM) and trailing edge coolant ejection (ρtVt) should be similar 

in real engine situation. Therefore, we choose coolant ejection blowing ratio Mt = 1, 

corresponding to 0.53% of mainstream flow. From previous study by Rallabandi, et al. 

[38], we choose two typical blowing ratios for suction side, M=0.5 and 1.0, with leading 

edge simultaneously at same corresponding blowing ratios of 0.5 and 1.0. However, due 

to concave surface effect, we choose two different blowing ratios for pressure side, 

M=1.0 and 2.0, with leading edge simultaneously at same corresponding blowing ratios 

of 1.0 and 2.0. 

4.2 Wake Strength Determination 

The unsteady wake increases the turbulence in the flow-field. It is also well 

established in literature that turbulence has a detrimental effect on film cooling 

effectiveness, by inducing mixing between the mainstream and coolant jet. It is 

important to select reasonable Strouhal number to simulate realistic unsteady wake under 

the modern engine conditions.                                                              
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There are three Strouhal number such as S=0, 0.18, and 0.36 selected to see 

unsteady wake effect on film cooling effectiveness. There is no wake generator installed 

(the clean wind tunnel) for S=0 case. By increasing the rotation speed of the wake rods, 

Strouhal number can increase from 0 to 0.18 and from 0.18 to 0.36. Contour plots for 

showing Strouhal number effect are shown in Fig. 4.1 and 4.2. Carbon dioxide has been 

used to simulated higher density ratio (DR=1.5). The difference between these two 

figures is blowing ratio. Results of lower blowing ratio cases on both suction and 

pressure sides are presented in Fig. 4.1 and higher blowing ratio cases on both sides are 

shown in Fig. 4.2. On both the suction and pressure sides, the clean wind tunnel case 

shows a much thicker and longer film cooling effectiveness trace than the S=0.18 case. 

This implied no wake (S=0) situation providing higher film cooling effectiveness. Under 

unsteady wake condition, a very significant reduction in film cooling effectiveness due 

to the increased intermittency and turbulence in the free-stream is noticed, especially at 

lower blowing ratios. The effect of the unsteady wake on the pressure side is less 

pronounced. The relatively minor difference between the S=0.18 and S=0.36 on both the 

suction and pressure side cases indicates that, at high enough Strouhal numbers, film 

cooling effectiveness becomes relatively independent of Strouhal number. This possible 

reason is that because the turbulence level corresponding to the S=0.36 case is 15% and 

the S=0.18 case is 10%. This difference in turbulence level does not result in a large 

increase in the turbulent diffusivity, therefore, not weakening the film coolng jet.  

The span-wise averaged film cooling effectiveness line plots (Fig. 4.3 and 4.4) 

more clearly and directly show that wake causes reduction in effectiveness. No wake 
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case (S=0) has much higher effectiveness (black line) than wake cases (S=0.18 and 0.36). 

Also, the results for S=0.18 and S=0.36 are close to each other due to similar turbulent 

diffusivity.  The unsteady wake effect can be seen as Strouhal numbers is larger than 0.1. 

Therefore, it is reasonable to pick up S=0.12 to simulate effects of unsteady wake, and 

trailing edge coolant ejection in the following sections. 

 

 

 

Fig. 4.1 Effect of Strouhal number on film cooling effectiveness, and M=0.5 on both 

suction side and pressure side for all cases 
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Fig. 4.2 Effect of Strouhal number on film cooling effectiveness, and M=0.75 on suction 

side and M=2.0 on pressure side for all cases 
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Fig. 4.3 Effect of Strouhal number on film cooling effectiveness for three separate 

blowing ratios at DR=1.0 
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Fig. 4.4 Effect of Strouhal number on film cooling effectiveness for three separate 

blowing ratios at DR=1.5 
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4.3 Film Cooling Effectiveness Distribution 

Film cooling effectiveness contour plots are shown in Fig. 4.5 and 4.6; span-wise 

averaged effectiveness line plots are shown in Fig 4.7, 4.8, and 4.9. There are three rows 

of shower-head radial- angled holes in the leading edge portion of blade, one row each 

on suction and pressure side, and center-row, or stagnation line of row, (Fig. 4.5, x/Cx=0) 

discharges coolant on to both pressure and suction side. Two rows of simple angle holes 

on suction side result in a coolant trace aligned with mainstream flow; two rows of 

compound angle holes on pressure side are result in an inclined coolant effectiveness 

trace.  

4.4 Blowing Ratio Effect  

General Trend: At lower blowing ratio (mass flux ratio), low percentage of 

coolant mixes with mainstream flow. Therefore, coolant remains near blade surface to 

protect it. As blowing ratio increases, coolant mixes more with mainstream flow, 

resulting in lower effectiveness. This result can be shown by comparing case 1 at lower 

blowing ratio (Fig. 4.5) and at higher blowing ratio (Fig. 4.6). The lower blowing ratio is 

more effective than the higher blowing ratio. The contour plots (Fig. 4.5 and 4.6) also 

show a coolant accumulation effect, especially at higher blowing ratios. Downstream 

film cooling rows (SS1, SS2, PS1, PS2) experience finite film cooling effectiveness in 

the spacing between two holes in the same row due to traces originating from upstream 

rows. Span-wise averaged effectiveness (Fig. 4.7) also shows the trend mentioned above. 

Higher blowing ratio (blue dashed line) shows lower effectiveness due to more mixing 

compared with lower blowing ratio (red dashed line) for both suction and pressure side. 
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However, higher blowing ratio (blue dashed line) has more coolant accumulation 

downstream (X/SL>0.3 and X/PL>0.2) than lower blowing ratio (red dashed line), 

resulting in higher effectiveness. 

Suction side: Effectiveness at suction side is high due to convex surface. Best 

effectiveness is at blowing ratio 0.5. On increasing blowing ratio to 1.0, effectiveness 

reduces due to more mixing (film cooling lift-off).  

Pressure side: Effectiveness levels on pressure side are low due to concave surface on 

which coolant is easier to mix with mainstream. The coolant jet reattaches with the blade 

surface at higher blowing ratios downstream of the second row (X/PL>0.2). 

 

 

 

Fig. 4.5 Film cooling effectiveness contour plot for lower blowing ratio cases 
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Fig. 4.6 Film cooling effectiveness contour plot for higher blowing ratio cases 
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Fig. 4.7 Effect of unsteady wake on span-wise averaged effectiveness, DR=1.5 
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4.5 Unsteady Wake Effect  

Intermittently passing wakes disturb the oncoming mainstream. This unsteady 

wake (S=0.12) increases the turbulence intensity up to 20% in the flow field, inducing 

mixing between mainstream and coolant jet. The wake condition (Fig. 4.5 and 4.6, case 

2) shows overall lower level effectiveness for all blowing ratios in comparison with the 

no wake condition (Fig. 4.5 and 4.6, case 1). This implies wake has a detrimental effect 

on film cooling effectiveness due to extra mixing. The same physics is also 

demonstrated by the span-wise plots (Fig. 4.7). The wake condition (solid line) shows an 

overall lower effectiveness value compared with the no wake (dash line).  

4.6 Trailing Edge Coolant Ejection Effect  

Ejected coolant from upstream rotating rods is carried by unsteady wake and 

approached on blade surface. Unsteady wake brings more coolant from trailing edge 

ejection towards blade surface and has an overall small amount increase of effectiveness 

compared with only wake condition. Comparing conditions of wake (case 2) and wake 

with jet (case 3) in Fig. 4.5 or 4.6, wake with coolant ejection shows a slightly higher 

effectiveness level. This result is also presented in Fig 4.8: wake with trailing edge 

coolant ejection (solid line) shows a slightly higher span-wise averaged effectiveness 

than the only wake condition (dash line). 

 

 

 

 



 49 

 

Fig.4.8 Effect of trailing edge coolant ejection on span-wise averaged effectiveness, 

DR=1.5 
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4.7 High Density Coolant Effect  

Increase the coolant density reduces the velocity of coolant jet, momentum, and 

jet tendency to lift-off at a given blowing ratio. Density ratio 1.5 and 2.0 are typically 

encountered for advanced gas turbine engine rotor blade. These ratios are chosen for 

simulating combined wake and coolant ejection effect. By comparison of Fig. 4.5 case 3 

(DR=1.5) and case 4 (DR=2.0), coolant ejection from rods and film coolant from blade 

at higher density shows higher effectiveness level, especially from leading edge to first 

row of holes on both side. As indicated in Fig. 4.9, all high blowing ratio cases (blue 

lines) display lower effectiveness level due to more coolant mixing with mainstream, but 

show more coolant accumulation downstream (X/SL>0.3 and X/PL>0.2). For all 

blowing ratios, increasing density ratio from 1.5 (case 3) to 2.0 (case 4) shows overall 

higher span-wise averaged effectiveness. This is due to two reasons: heavier density 

coolant to better protect blade surface, and heavier density coolant carried over to the 

blade surface by upstream wake flow. However, the location after second row on suction 

side (X/SL>0.3) shows a reverse trend, in which effectiveness of case 3 is larger than 

case 4. The possible reason is that heavier coolant at blowing ratio 1.0 does not have 

high enough momentum to carry coolant downstream. This trend also can be shown 

from case 4 in Fig. 4.5, and 4.6: the effectiveness traces after SS2 for case 4 are shorter 

than that for case 3. 
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Fig. 4.9 Effect of density ratio on span-wise averaged effectiveness with trailing edge 

coolant ejection 
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4.8 Momentum Flux Ratio Effect  

Ratio of coolant momentum flux to mainstream momentum flux is defined as 

momentum flux ratio (I). Momentum flux ratio is a combination of blowing ratio and 

density ratio. High blowing ratio with heavier density ratio gives similar momentum flux 

ratio as lower blowing ratio with lower density ratio. This implied film cooling 

effectiveness can be determined by momentum flux ratio instead of blowing ratio and 

density ratio. The purpose of presenting results by momentum flux ratio in the paper is 

to maximum the scale of span-wise averaged effectiveness with momentum flux ratio in 

selected locations. The momentum flux ratio (I) is defined as follow. 

                                              
2 2 2

2

( / )

( / )
c c c c M M

M M c M

V V V M
I

V DR

ρ ρ ρ

ρ ρ ρ
= = =                                         (3) 

We pick up six locations to discuss the momentum flux ratio effect as indicated 

in Figure 4.7, 4.8, or 4.9. Locations A, B, D, and E are right after showerhead or first 

row on the pressure or suction side. Locations C, and F are at downstream of the second 

row on pressure or suction side. The results can be seen from Fig. 4.10: effectiveness 

decreased with increasing momentum flux ratio due to mixing as shown in A, B, D, and 

E locations. Also, effectiveness further increases with trailing edge jet (case 3) and high 

coolant density with jet (case 4). However, downstream portion (location C and F) 

presents a reverse trend. Effectiveness increases with increasing momentum flux ratio 

due to more coolant accumulation.   
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Fig. 4.10 Effect of momentum ratio on film cooling effectiveness at six selected location 

(A,B,C) for pressure side, (D,E,F) for suction side 
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5. LEADING EDGE FILM COOLING 

 

5.1 Local Blowing Ratio Distribution    

Film cooling effectiveness investigated at three blowing ratios is M= 0.5, 1.0, 

and 1.5 for all film cooling holes configurations, all density ratios. The blowing ratio is 

defined as M=ρcVc/ρmVm indicating the coolant mass flux to the mainstream mass flux 

ratio. According to the above definition, the coolant mass flow rate for a given blowing 

ratio can be determined from equation as follows and supply to the coolant plenum of 

semi-cylinder (leading edge test model). 

                                                      2( / 4)c m mm nM V dρ π=                                               (4)                             

The pressure differential between the total pressure inside the leading edge semi-

cylinder coolant plenum and external static pressure on the semi-cylinder surface is the 

actual driving force to let coolant eject out through the film cooling holes. As the 

pressure difference is higher, there is more coolant coming out through the holes. The 

real coolant velocity from the film cooling holes (Vc) is subject to both the span-wise 

variation in internal total pressure and circumferential variation in outer static pressure. 

To determine the real coolant mass flow rate through each hole, the discharge coefficient 

(CD) is calculated at the first step based on given total coolant mass flow rate ( cm ), and 

related pressure (PT, total pressure inside plenum; P, outer pressure on semi-cylinder 

surface) as the following equation.   

                                        2

1
( / 4) 2( ) /

n

c D c T c
i

m C d P Pρ π ρ
=

= ⋅ ⋅ ⋅ −∑                                (5)            
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There are three pressure taps placed along the middle five-hole along span-wise 

direction to measure the total pressure inside the coolant plenum. The result shows that 

uniform pressure inside plenum so that the effect of span-wise variation in internal 

pressure on coolant ejection flow can be eliminated in the area of interest. Pressure 

sensitive paint has been used to measure the outer pressure on the semi-cylinder surface. 

A constant discharge coefficient CD is assumed for all the holes at a given blowing ratio. 

This assumption is based on that the deviation in the discharge coefficients from hole to 

hole is not significant, and using an average value without introducing significant error. 

The discharge coefficient CD can be determined by solving equation (4) and (5) for a 

given blowing ratio. The coolant velocity from the holes in a row can be calculated by 

the following equation once obtaining discharge coefficient (CD).  

                                                    , 2( ) /c local D T cV C P P ρ= ⋅ −                                          (6) 

Because the higher outer pressure prohibits the coolant ejecting through film 

holes from the stagnation row, coolant mass flow rate at stagnation row of holes is lower 

compared with film holes at downstream rows. The outer static pressure is relatively 

lower for rows of holes at downstream, and more coolant comes out from these film 

holes. To better understand the effect of blowing ratio, the local blowing ratio at 15 deg, 

30 deg, and 45 deg along leading edge curve surface has been examined. The local 

blowing ratio is defined as , ,/local c c local m m localM V Vρ ρ= . Local mainstream velocity 

,( )m localV  is determined from the local static pressure on the leading edge surface by 

pressure sensitive paint. Because the local mainstream velocity is zero along stagnation 

row, the free stream velocity is used to normalize the coolant velocity for the stagnation 
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row. Although a different denominator is used for the stagnation row, the same notation 

localM  is used to present the local blowing ratios. Because the local blowing ratio 

distribution for cylindrical hole is similar to that of shaped hole, only results of 

cylindrical hole is presented in Fig. 5.1 to show local blowing ratio. The higher local 

mainstream velocity ,( )m localV  results in a lower local blowing ratio ( )localM in the 

downstream rows according to the definition in local blowing ratio formula. For the 

seven-row design, local blowing ratios for the stagnation row (normalized with ,m localV ) is 

lowest and 15 deg row is significantly higher than the other two rows (30 deg, and 45 

deg). For the three-row design, stagnation row shows local blowing ratio lower than that 

of 30 deg row.  
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Fig. 5.1 Schematic of local coolant mass flow rate distribution and local blowing ratio: 

seven-row design (upper) and three-row design (lower)  
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5.2 Film Cooling Effectiveness Distribution for Seven-Row Design  

Coolant of air or foreign gas is from rotor meters and enters the plenum of 

leading edge semi-cylinder test section. Pressure differential between the internal coolant 

plenum total pressure and external static pressure is the driving force to make air or 

foreign gas ejecting through the film cooling holes. As the pressure differential is higher, 

there is more coolant ejects from the film cooling holes. Along the curved surface of 

leading edge model, the highest static pressure is at the stagnation line (row). The 

surface static pressure gradually decreases from stagnation row to downstream. This 

indicates driving force gradually increases from stagnation row to downstream and the 

least amount of coolant ejection is right at the stagnation row. This non-uniform coolant 

ejection will affect the film cooling effectiveness distributions on the leading edge 

surface compared with flat plate film cooling without any curvature effect.  The local 

coolant mass flow rate distributions can be seen from Fig. 5.2.  

For seven-row design, the film-cooling effectiveness distribution (contour plots) 

along the leading edge models is shown in Fig. 5.3  for four hole configurations such as 

radial angle cylindrical holes, compound angle cylindrical holes, radial angle shaped 

holes, and compound angle shaped  holes. There are forty night film cooling holes in 

total to eject coolant to protect leading edge surface for this seven-row design used to 

simulate vane. In this set of figures, blowing ratio ranges from M=0.5, 1.0, and 1.5. 

About density ratio, there are only DR=1.0 and 1.5 considered. The x axis is s/d along 

mainstream direction and the y axis is z/d along the span-wise or radial direction.  
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 Fig. 5.2 Schematic of local coolant mass flow rate distribution along semi-cylinder  
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(a) Radial angle cylindrical holes 

Fig. 5.3 Film cooling effectiveness distribution for seven-row design 

 

 

 

 

 

 

 



 61 

 

(b) Compound angle cylindrical holes 

Fig. 5.3 Continued 
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(c) Radial angle shaped holes 

Fig. 5.3 Continued 
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(d) Compound angle shaped holes 

Fig. 5.3 Continued 

 

 

Stagnation line (row) locates at s/d = 0 and follows by first row at s/d ≈ 3, second 

row at s/d ≈ 6, and third row at s/d ≈ 9. Data presented are only up to s/d =16.5.  

Even the film cooling hole configurations are different, there are some common 

features can be observed along stagnation row (s/d=0) for seven-row design. The overall 
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trend near the stagnation region is that the mainstream momentum is small for stagnation 

region and jet interaction with mainstream is weak for all hole configurations. Because 

the mainstream momentum is small near the stagnation row, this low momentum results 

in coolant jets from stagnation row easier flowing in the radial direction without being 

deflected. For example, at lowest average blowing ratio M=0.5, the pressure inside the 

semi-cylinder test section is low. In the stagnation region, the high outer pressure 

prohibits coolant ejecting from these stagnation holes. More coolant is directed to the 

downstream holes.  For radial angle cylindrical holes, smaller amount of coolant can 

eject from film holes for lower blowing ratio M=0.5 case at stagnation row, especially 

for heavier density coolant (DR=1.5) with lower momentum barely coming out. As 

increasing blowing ratio to M=1.0 and 1.5 for both density ratio cases (DR=1.0, 1.5), 

coolant comes out smoothly through the holes of stagnation row. These higher blowing 

ratio cases have more coolant accumulation in the radial direction at the stagnation row. 

As for next hole configuration: compound angle cylindrical holes are with an incline 

angle to the mainstream direction. At stagnation row, lower coolant coverage for this 

configuration by comparing with radial angle cylindrical holes, particularly for lower 

density ratio cases (DR=1.0, M=0.5 to 1.5). As density ratio increases to DR=1.5, this 

situation has been improved by comparison with DR=1.0 cases. In sum, first film hole 

configuration provides better film cooling effectiveness at stagnation row than the 

second configuration. The third and forth hole configurations are shaped hole but with 

different incline angle (radial and compound angle). Shaped hole is with expanded area 

at the exit of the hole, and this area expansion helps reduce momentum of the coolant jet. 
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Therefore, lower blowing ratio shaped hole cases (M=0.5, DR=1.0 and 1.5) show lower 

film cooling effectiveness at stagnation row, As increasing blowing ratio to the higher 

values (M=1.0 and 1.5) for density ratios of 1.0 and 1.5, coolant jets are with sufficient 

momentum to eject from film holes and even accumulate along radial direction at 

stagnation row as shown in contour plots (Fig. 5.3 (c), and (d)).    

The film cooling effectiveness distributions of downstream three rows located at 

s/d ≈ 3, 6, and 9 (seven-row design) are as follows. The general trend is that further 

downstream rows with more coolant coverage no matter near the holes or between two 

adjacent film rows due to two reasons. First reason is that coolant accumulation from 

stagnation row to downstream row. Another reason is that further downstream row with 

lower pressure difference between inner plenum and external static pressure, and this 

makes coolant easier ejecting from downstream rows. Take first hole configuration for 

example to explain the variations of film cooling effectiveness as increasing blowing 

ratio from M=0.5 to 1.5. As shown in Fig. 5.3 (a) radial angle cylindrical holes, lower 

blowing ratio and lower density ratio (M=0.5, DR=1.0) case, coolant traces are deflected 

from radial direction (z) of film holes into mainstream direction (s). This indicated 

coolant jets of lowing blowing ratio are too weak and easily affects by mainstream flow. 

As blowing ratio increases to 1.0, coolant traces are in the direction between radial and 

mainstream direction and show better lateral coolant spread and coverage, especially 

good at downstream portion. As increasing blowing ratio to M=1.5 (i.e. jet momentum 

increases), the deflection decreases. This means the jets are less deflected by mainstream 

at higher blowing ratio. As shown in the contour plot, coolant jets of M=1.5 mostly flow 
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toward radial direction directly at hole location, and less coolant spread out in lateral 

direction. Therefore, the overall film cooling effectiveness at higher blowing ratio 

(M=1.5) is not as good as medium blowing ratio (M=1.0) case, particularly at 

downstream portion. The higher density ratio cases of first film hole configuration are 

presented in Fig. 5.3 (a) DR=1.5, M=0.5 to 1.5. As density ratio increases from DR=1 to 

DR=1.5, the trend of film cooling trance is very similar to that of density ratio one. The 

only difference is that film cooling effectiveness traces become wider and longer for 

heavier density coolant (DR=1.5, M=0.5 to 1.5) cases. This indicates higher density 

coolant has lower momentum, larger tendency to adhere to leading edge surface for 

protection, resulting in higher film cooling effectiveness. The same hole shape: 

cylindrical hole but change hole’s orientation from radial angle to compound angel (hole 

configuration 2) to see whether compound angle holes help coolant spread laterally. For 

lower density ratio cases (Fig. 5.3 (b), DR=1.0), lower blowing ratio (M=0.5) coolant 

trace still be deflected to mainstream direction even already with compound angle. As 

increasing blowing ratio to M=1.0 and 1.5, film cooling effectiveness decreases for both 

right at film cooling holes and between two adjacent rows of holes. This film cooling 

effectiveness reduction can be explained as coolant mixed more with mainstream for 

compound angle holes at higher blowing ratios. Increasing density ratio from DR=1.0 to 

DR=1.5, the film cooling effectiveness level increases, heavier density coolant with 

better protection. By comparisons of results of radial angle cylindrical holes (Fig. 5.3 

(a)) with compound angle cylindrical holes (Fig. 5.3 (b)), contour plots of  lower 

blowing ratio M=0.5 case shows that the compound angle holes has higher effectiveness 
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than the radial angle holes at downstream portion. However, the results become different 

for the cases of higher blowing ratios M=1.0 and 1.5, the compound angles cylindrical 

holes shows lower effectiveness than radial angle cylindrical holes.  This is possibility 

due to less coolant jet can spread-out along curve surface for compound angle hole at 

higher blowing ratios. For the compound angle cylindrical holes, the compound angles 

of film cooling holes to from stagnation row to downstream rows reduce so that the 

coolant jets become relatively less deflected from stagnation to downstream rows. 

Comparing first and second hole configurations, the overall coolant traces become 

narrower but longer instead of spread-out for compound angle cylindrical holes due to 

coolant less spread out.    

The shaped holes film cooling effectiveness distributions of downstream three 

rows located at s/d ≈ 3, 6, and 9 (seven-row design) are in the following discussions. 

Laidback fan-shaped holes are used there as radial angle shaped holes (Fig. 5.3 (c)), and 

compound angle shaped holes (Fig. 5.3 (d)). The meter parts (holes’ inlet) for cylindrical 

and shaped holes are the same (with diameter 0.3715 cm). Because of the lateral 

expansion for shaped holes configuration at holes’ exit, the area ratio is equal to two 

between the cross section at the holes’ exit and holes’ inlet (metering part, cylindrical 

holes). The momentum at the shaped holes exit is lower than at cylindrical holes exit due 

to larger exit hole area. This represents that shaped holes provide lower momentum 

coolant with larger tendency to adhere to the leading edge surface and result in higher 

film cooling effectiveness. This can be seen by comparing all contour plots of cylindrical 

holes (Fig. 5.3 (a) and (b)) with that of shaped holes (Fig. 5.3 (c) and (d)). The shaped 
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holes cases are with wider effectiveness traces and overall higher film cooling 

effectiveness. For radial angle shaped hole at lower blowing ratio M=0.5 (Fig. 5.3 (c) 

DR=1.0), film cooling traces are easier deflected by mainstream into mainstream 

direction due to lower coolant jet momentum. As blowing ratio is up to M=1.0, coolant 

jet becomes partially defected by mainstream. At higher blowing ratio M=1.5, coolant jet 

is strong enough (does not affect by mainstream) and keeps in the radial direction (span-

wise direction), showing by larger film cooling effectiveness in span-wise direction. 

Increasing density ratio to DR=1.5 (heavier coolant), coolant jets have lower momentum 

and adhere more to leading edge surface. Therefore, the film cooling effectiveness is 

with an overall increase. Contour plots for compound angle shaped holes are shown in 

Fig. 5.3 (d). From film cooling effectiveness traces for compound angle holes, traces are 

along the compound angle holes’ direction for blowing ratio M=1.0 and 1.5 for both 

density ratios (DR=1.0 and 1.5). As for lower blowing ratio (M=0.5) case, film cooling 

effectiveness traces are slightly deflected to mainstream direction.            

Coolant downstream accumulation shows from contour plots from s/d=9 to 

s/d=16.5 on Fig. 5.3. The general trend in the downstream region of leading edge surface 

is that the mainstream momentum increases. Therefore, the interaction or mixing 

between the coolant jet and mainstream enhances. In other words, the higher the jet 

momentum, the stronger the interaction or mixing with mainstream happens. From 

configuration (a) contour plot downstream portion, film coolant effectiveness traces still 

adhere to leading edge surface for lower blowing ratio M=0.5 (either DR=1.0 or 1.5) 

cases. However, the film cooling traces already mix together for higher blowing ratio 



 69 

M=1.5 cases no matter density ratio 1.0 or 1.5 and result in reduced effectiveness. In a 

word, blowing ratio M=0.5 and 1.0 shows better film cooling effectiveness than M=1.5 

at the downstream portion for both density ratios for first hole configuration. As for 

second configuration, the downstream effectiveness trend for lower blowing ratio 

(M=0.5) is similar to that of configuration 1: coolant trace shows that coolant still 

adheres to leading edge surface for both density ratios. As increasing blowing ratio, 

coolant jets mix together with mainstream and also reattach happen for medium and 

higher blowing ratios of lower density ratio (DR=1) cases. However, increasing density 

ratio with heavier coolant helps improve coolant lift-off indicating by longer film 

cooling effectiveness traces, especially at higher blowing ratio (M=1.5). For 

configuration (c) and (d), the trend of film cooling effectiveness traces are close to that 

of configuration (a) and (b). At DR=1.0, higher blowing ratio case has lower film 

cooling effectiveness than lower and medium blowing ratio cases due to film coolant 

mix more with mainstream at leading edge downstream portion. When density ratio 

increases to 1.5, heavier density coolant shows wider film coolant coverage and more 

coolant accumulation for all blowing ratios and results in higher downstream film 

cooling effectiveness.          
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5.3 Film Cooling Effectiveness Distribution for Three-Row Design  

Three-row design with fewer film cooling holes is suitable to simulate film 

cooling of blade. There are twenty one film cooling holes in total to eject coolant out to 

protect leading edge for this design. The only difference between seven-row design and 

three-row design is the total holes’ number. The hole configurations of three-row design 

is the same as the seven-row design such as radial angle cylindrical holes, compound 

angle cylindrical holes, radial angle shaped holes, and compound angle shaped  holes. 

The blowing ratio selection also keeps the same as 0.5, 1.0, and 1.5. The density ratio 

except for 1.0 and 1.5, we extend to higher density ratio 2.0 to simulate realistic engine 

conditions. The x axis is s/d along mainstream direction and the y axis is z/d along the 

span-wise or radial direction. Stagnation line (row) locates at s/d = 0 and only follows by 

one row at s/d ≈ 6. Data presented are up to s/d =16.5. The film cooling effectiveness 

distributions for three-row design are shown Fig. 5.4. At the beginning, the discussion 

focus on film cooling along stagnation row (s/d=0) for all hole configurations. The 

mainstream momentum at stagnation region is smaller compared with first film row 

downstream the leading edge model. Coolant at stagnation row does not be easily 

deflected by mainstream and it still comes out in the radial direction. Another problem of 

stagnation row is highest static pressure at this row, and coolant becomes harder to eject 

out because coolant jet does not have high enough momentum. For the cylindrical hole 

such as first hole configuration: radial angle cylindrical holes and second hole 

configuration: compound angle cylindrical holes, coolant still can not come out from 

stagnation row of holes  for  all  blowing  ratios (M=0.5, 1.0, and 1.5)  and  density ratios    
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(a) Radial angle cylindrical holes 

Fig. 5.4 Film cooling effectiveness distribution for three-row design 
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(b) Compound angle cylindrical holes 

Fig. 5.4 Continued 

0 5 10 15 0 5 10 15

0 5 10 15 0 5 10 15

0
5

10
15

20
z/

d

0 5 10 15

0
5

10
15

20
z/

d

0 5 10 15

0 5 10 15 0 5 10 15
s/d s/d

0
5

10
15

20
z/

d

0 5 10 15
s/d

M=0.5
Vm

M=1.0
Vm

M=1.5
Vm

DR=2.0
M=0.5 M=1.0 M=1.5

DR=1.5
M=0.5 M=1.0 M=1.5

DR=1.0



 73 

 

(c) Radial angle shaped holes 

Fig. 5.4 Continued 
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(d) Compound angle shaped holes 

Fig. 5.4 Continued 
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(DR=1.0, 1.5, and 2.0) as shown in Fig 5.4 (a) and (b). Also, coolant jets at stagnation 

line have lower momentum and do not affect by mainstream flow. Therefore, all the film 

cooling traces are in the radial direction. For the shaped holes configuration, third hole 

configuration is the radial angle shaped holes (Fig 5.4 (c)) and forth hole configuration is 

the compound angle shaped holes (Fig. 5.4(d)). For both these two shaped holes 

configurations all density ratios (DR=1.0, 1.5, and 2.0), no matter medium blowing ratio 

(M=1.0) or higher blowing ratio (M=1.5) cases, coolant already has sufficient jet 

momentum to eject out from shaped film holes. Furthermore, coolant accumulate along 

the stagnation line (from z/d =0 to 20) in the radial direction. However, coolant has 

difficulty to come out from shaped film holes particularly at lower blowing ratio 

(M=0.5). The reason is that shaped hole itself with wider hole cross section area at hole 

exit, resulting in further lower film coolant jet momentum along stagnation row. For 

radial angle shaped hole lower blowing ratio (M=0.5), DR=1.0 case, film cooling traces 

along stagnation line are acceptable. Once increasing density ratio to DR=1.5 and 2.0 

with a fixed blowing ratio M=0.5, coolant becomes heavier and has even lower coolant 

jet momentum. From contour plots (Fig. 5.4 (c)) present that coolant jets barely eject out 

from stagnation row of film holes and coolant even do not have enough momentum to go 

further downstream to the fist film cooling row shown in coolant traces. This situation is 

even worst for last film hole configuration: compound angle shaped holes (Fig. 5.4 (d)). 

For lower blowing ratio (M=0.5) with density ratio DR=1 case, coolant only slightly 

comes out from film hole and contains insufficient momentum to go further downstream. 

The worst two compound angle cases along stagnation line are lower blowing ratio 
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(M=0.5) with heavier density coolant (DR=1.5 and 2.0). The film cooling effectiveness 

value is in the range of 0 to 0.1. This indicates coolant cannot come out to protect 

leading edge surface due to heavier density coolant with lower jet momentum and 

compound angle itself.    

  There is only one row located at s/d ≈ 6 behind stagnation row for three-row 

design shown in contour plots for all hole configurations. The downstream portion is 

from s/d ≈ 6 to s/d=16.5. For the first configuration: radial angle cylindrical holes with 

density ratio DR=1.0, coolant traces are deflected from original holes’ direction (radial 

direction) to mainstream direction for all blowing ratios (M=0.5 to 1.5). For lower 

blowing ratio, film coolant traces has better film cooling coverage, better protection. As 

increasing blowing ratio to M=1.0, lower z/d area (below z/d=4), coolant does not cover 

leading edge surface well no matter between two adjacent rows or downstream the first 

row. Further increasing blowing ratio to M=1.5, film coolant covers leading edge surface 

badly below the area z/d<10. When density ratio increase to DR=1.5 and 2.0, heavier 

density coolant adheres to leading edge surface and provides wider film coolant 

protection. This can been seen from contour plots (Fig. 5.4(a)) that the coolant uncover 

area reduces as increasing density ratio from 1.0 to 2.0 both between two adjacent rows 

and downstream first row. For second film hole configuration: compound angle 

cylindrical holes, compound angle hole’s orientation is forty five degree away from 

radial direction. However, due to lower blowing ratio (M=0.5) with lower momentum, 

coolant jets are deflected to close to mainstream direction. For blowing ratio M=1.0 and 

1.5 cases with higher momentum, coolant traces are in the compound angle direction. 
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Coolant traces for compound angle holes seem to interact more with mainstream 

compared with radial angle holes. This can be seen from contour plots: traces of 

compound angle holes do not flow downstream smoothly. As for increasing density ratio 

to 1.5 and 2.0 for all blowing ratios, the same conclusion as radial angle cylindrical holes 

can be made, coolant uncover area reducing indicating better film coolant protection. 

The results of shaped hole configurations can be seen from Fig. 5.4(c) and (d). No matter 

radial angle shaped holes or compound angle shaped holes, the coolant comes out 

smoothly from first row for all blowing ratios (M=0.5, 1.0, and 1.5) and density ratios 

(DR=1.0, 1.5, and 2.0). Coolant traces of all cases indicate film coolant deflected by 

mainstream into mainstream direction. About hole configuration 3 Fig. 5.4(c): radial 

angle shaped holes behind first row (downstream portion), only the case of higher 

blowing ratio (M=1.5) and lower density ratio (DR=1.0) shows that coolant does not 

cover leading edge surface well at lower location (z/d below 5). Fixed at density ratio 

DR=1.0, film coolant traces downstream first row become thinner and shorter indicating 

reducing film cooling effectiveness as blowing ratio increases from 0.5 to 1.0 and 1.5. As 

increasing density ratio from 1.0 to a higher one 1.5 and 2.0, film coolant traces become 

shorter. This implies heavier coolant which ejects out from radial angle shaped holes 

does not have enough momentum to flow toward downstream for all blowing ratios. The 

last film hole configuration is compound angle shaped holes for discussion. The overall 

trend for this configuration downstream first row is that coolant traces behind first row 

adhere to leading edge surface well no matter lower or higher blowing ratio, lower or 

higher density ratio.  As mentioned before, lower blowing ratio (M=0.5) case with lower 
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coolant jet momentum for all density ratios, coolant is deflect by mainstream from 

compound angle direction (forty five degree) to mainstream direction. As increasing 

blowing ratio to higher ones (M=1.0 and 1.5), coolant jet have larger momentum and 

coolant is only partially deflected by mainstream away from compound angle direction. 

As the density ratio increases to a higher value, film cooling effectiveness downstream 

first row increases for higher blowing ratio M=1.0 and 1.5.     

5.4 Blowing Ratio Effect  

  The general trends of blowing ratio effect on film cooling effectiveness are as 

follows. At lower blowing ratios, film coolant jets with lower momentum adhere to blade 

surface. Increasing blowing ratio means jet momentum increases. Film coolant jets mix 

and interact more with mainstream, resulting in reduction of film cooling effectiveness. 

In this section, three different blowing ratios: lower blowing ratio M=0.5, medium 

blowing ratio M=1.0, and higher blowing ratio M=1.5 are selected to see blowing ratio 

effect. Density ratios include DR=1.0 and 1.5 for these three blowing ratios. There are 

four holes configurations: radial angle cylindrical holes, compound angle cylindrical 

holes, radial angle shaped holes, and compound angle shaped holes. These four 

configurations are all tested based on three blowing ratios and two density ratios.  

The span-wise averaged film cooling effectiveness for the seven-row design is 

shown in Fig. 5.5. The data are presented in terms of s/d and θ (angles to the stagnations 

line). In the bottom x-axis is s/d and in the top x-axis is θ. The stagnation row is at s/d=0, 

and first to three rows are at 15°, 30°, and 45°. As shown in the span-wise averaged film 

cooling effectiveness, the peak value of  film  cooling  effectiveness is  at  the location of  
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(a) Radial angle cylindrical holes 

Fig. 5.5 Effect of blowing ratio on span-wise averaged film cooling effectiveness(7-row)  
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(b) Compound angle cylindrical holes 

Fig. 5.5 Continued  
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(c) Radial angle shaped holes 

Fig. 5.5 Continued  
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(d) Compound angle shaped holes  

Fig. 5.5 Continued  
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film holes, indicating coolant just ejecting out from holes. As film coolant moves 

downstream away from holes, film cooling effectiveness starts to decrease and increases 

again as reaching next row of holes. Behind the θ = 45°, this region is called downstream 

portion. Fig. 5.5 (a) contains two sub-figures of DR=1.0 and DR=1.5 for radial angle 

cylindrical holes. For DR=1 case, highest blowing ratio (M=1.5) has highest span-wise 

averaged film cooling effectiveness at hole locations (0°, 15°, 30°, and 45°). This can be 

explained as that higher blowing ratio with higher momentum so that coolant ejects and 

accumulates more in the span-wise (radial) direction. Between two adjacent rows, higher 

blowing ratio has higher effectiveness in general. In other words, the span-wise film 

cooling effectiveness increases with increasing of blowing ratio between any two rows. 

  At the downstream region, the span-wise averaged effectiveness of highest 

blowing ratio (M=1.5) becomes lowest among three blowing ratios. The reason is that 

highest blowing ratio contains strong coolant jet.  Coolant most likely accumulates in the 

radial direction rather than moves further downstream along mainstream direction (with 

lowest coolant deflection by mainstream). Medium blowing ratio (M=1.0) case shows 

best downstream coolant accumulation. As increasing density ratio to DR=1.5, heavier 

density coolant with lower momentum has the tendency to adhere more to leading edge 

surface. Increasing density ratio has marginal effect on lower blowing ratio (M=0.5). 

This can be seen from the span-wise averaged film cooling effectiveness level for two 

cases: DR=1.0, M=0.5 and DR=1.5, M=0.5. They are close to each other. For higher 

blowing ratio cases (M=1.0 and 1.5), increasing density ratio makes span-wise 

effectiveness slightly increase. This also indicated heavier density coolant spreads better 
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in the span-wise or radial direction. Second film hole configuration is also cylindrical 

hole but the hole orientates in compound angle direction. In general, higher blowing 

ratio has higher effectiveness at the exit of hole for these two configurations. As density 

ratio equal to DR=1.0, lower blowing ratio (M=0.5) case has lower span-wise averaged 

effectiveness at hole location and between two adjacent rows of holes. Also, it has 

highest coolant accumulation at the downstream portion. As increasing density ratio to 

DR=1.5, there is almost no change for lower blowing ratio (M=0.5). However, as 

increasing density ratio for compound angel cylindrical holes, there is only small span-

wise averaged effectiveness change for higher blowing ratios cases (M=1.0 and 1.5) at 

hole location and between two adjacent rows. As for downstream portion, coolant 

accumulates more for blowing ratio M=1.0 and 1.5 cases as increasing density ratio 1 to 

1.5. No matter density ratio, the best blowing ratio is M=1.0 with overall higher 

effectiveness at hole location, between two rows, and downstream portion for these two 

configurations. 

  The results of third hole configuration: radial angle shaped holes and forth hole 

configuration: compound angle shaped holes can been seen from Fig. 5.5 (c) and (d) for 

the seven-row design. No matter density ratio 1.0 or 1.5, the higher blowing ratio has 

higher span-wise averaged film cooling effectiveness except downstream region for 

radial angle shaped holes configuration. For DR=1.0, lowest blowing ratio (M=0.5) had 

overall lowest effectiveness. As increasing blowing ratio to M=1.0, there is obvious 

effectiveness increment both at hole location and between any two rows of holes. Further 

increasing blowing ratio from 1.0 to 1.5, span-wise film cooling effectiveness increases 
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but only with smaller amount of increment. For DR=1.5, the film cooling trends is 

similar to that of DR=1.0 for three blowing ratios. The only different is that higher 

density ratio case (DR=1.5) has slightly higher effectiveness level than lower density 

case (DR=1.0). Next hole configuration is compound angle shaped holes as shown in 

Fig. 5.5 (d). The overall trend for this configuration is similar to that of radial angle 

shaped hole for all blowing and density ratios. The effectiveness difference between 

these two configurations is that radial angle holes have more accumulation in radial 

(span-wise) direction compared with compound angle holes, resulting in higher 

effectiveness at hole location. In summary, radial angle shaped with higher density ratio 

(DR=1.5) and medium blowing ratio (M=1.0) shows best span-wise averaged film 

cooling effectiveness among these four configurations.  

The hole configuration for three-row design is the same as seven-row design 

except fewer film cooling holes. Blowing ratios are the same M=0.5, 1.0, and 1.5. 

Density ratios not only include 1.0 and 1.5 but also extend to realistic higher one 2.0. 

The span-wise averaged film cooling effectiveness for three-row design is shown in Fig. 

5.6. The general trend for cylindrical holes (either radial angle (a) or compound angle 

(b)) is that lower blowing ratio (M=0.5) with lowest span-wise film cooling effectiveness 

between stagnation row (θ=0) and first row of holes (θ=30°) for all density ratios .The 

trend is reverse at downstream portion. Blowing ratio M=0.5 case has highest span-wise 

film cooling effectiveness indicating more coolant accumulation downstream. 
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(a) Radial angle cylindrical holes 

Fig. 5.6 Effect of blowing ratio on span-wise averaged film cooling effectiveness(3-row)  
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(a) Radial angle cylindrical holes 

Fig. 5.6 Continued 
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            (b) Compound angle cylindrical holes 

Fig. 5.6 Continued 
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        (b) Compound angle cylindrical holes 

Fig. 5.6 Continued 
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(c) Radial angle shaped holes 

Fig. 5.6 Continued 
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(c) Radial angle shaped holes 

Fig. 5.6 Continued 
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(d) Compound angle shaped holes 

Fig. 5.6 Continued 
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(d) Compound angle shaped holes 

Fig. 5.6 Continued 

 

 

  At the first row of holes location, three blowing ratios all have the same value of 

span-wise averaged effectiveness in spite of density ratios. For the first hole 

configuration: radial angle cylindrical hole, as density ratio increases from 1.0 to 2.0, 

there is only minimal effectiveness change for lower blowing ratio (M=0.5). As for 

higher blowing ratio 1.0 and 1.5, the span-wise film cooling effectiveness increases as 

increasing density ratio from stagnation row to downstream portion. The same trend is 

for the compound angle cylindrical holes. Effectiveness of shaped holes can be seen 
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from Fig. 5.6 (c) radial angle shaped holes and (d) compound angle shaped holes. The 

overall trend for shaped hole (Fig. 5.6 (c) and (d)) is higher span-wise averaged film 

cooling effectiveness than cylindrical holes (Fig. 5.6 (a) and (b)) for all density ratio 

(DR=1.0 to 2.0) with higher blowing ratios (M=1.0 and 1.5) cases, particularly at 

location of stagnation row and first row. However, the lower blowing ratio (M=0.5) of 

radial angle shaped holes show pretty low effectiveness values from stagnation row to 

first low for three density ratios. This situation for compound angle shaped hole is even 

worst. Lowest blowing ratio (weak jet momentum) with heavier density coolant (density 

ratio 1.5 and 2.0) cases, coolant jet has insufficient momentum) and cannot eject out 

from shaped holes at stagnation row to protect leading edge surface. In summary, radial 

angle shaped with both higher density ratio and blowing ratio performs best film 

coverage among these four configurations.  

5.5 Hole Configuration Effect 

  There are four kinds of film cooling holes for comparisons to see which one is 

better for both seven-row and three-row designs. The blowing ratio ranges from 0.5 to 

1.5. The density ratio for seven-row design is 1.0 and 1.5 and for three-row design is 1.0 

to 2.0. The film cooling hole shape can be categorized as cylindrical hole and shaped 

holes. The orientation of hole also includes two categories as radial angle and compound 

angle. These can be combined into four film hole configurations as radial angle 

cylindrical holes, compound angle cylindrical holes, radial angle shaped holes, and 

compound angle shaped holes. For cylindrical hole, the inlet and exit holes’ cross section 

area are the same. For shaped hole, the laidback fan-shaped has been selected to 
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investigate. At the beginning of shaped hole (inlet), the hole is in cylindrical shape, the 

same hole inlet area as cylindrical hole. In the middle of length of film hole, the hole 

starts to expand until the exit of hole and the exit area is equal to two time of inlet area. 

This laidback fan-shaped contains film cooling hole lateral expansion angle and forward 

expansion angle. The advantage of the shaped holes is that the jet momentum reduces 

due to increase exit cross section area, coolant has larger tendency to adhere to blade 

surface for protection. By comparison of radial angle and compound angle, radial angle 

can direct coolant ejecting and accumulating in the radial or span-wise direction. 

However, as the coolant jet momentum is not sufficient enough to resist mainstream 

flow at lower blowing ratio, the coolant jet will be deflected by mainstream into stream-

wise direction. As for compound angle hole, the purpose of this hole orientation is to 

increase the lateral spread of film coolant to increase span-wise coolant coverage.  

  The span-wise averaged film cooling effectiveness includes comparison of four 

hole configurations in the same plot for each single blowing and density ratio as shown 

in Fig. 5.7. There are six sub-figures for seven-row design and nine sub-figures for three-

row design. From six-subfigures in the span-wise averaged film cooling effectiveness 

line plots, configuration of radial angle shaped hole shows best film cooling 

effectiveness among these four hole configurations at the hole location, between any two 

adjacent rows of holes, and downstream portion for all blowing ratios and density ratios, 

generally. For DR=1.0, increasing blowing ratio from M=0.5 to M=1.5, the peak film 

cooling effectiveness at hole location increases for all hole configurations. As for the 

downstream coolant accumulation, lower  blowing  ratio (M=0.5) and  medium  blowing  
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(a) DR=1.0 

Fig. 5.7 Effect of hole configuration on span-wise averaged film cooling effectiveness 

(7-row)  
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(a) DR=1.0 

Fig. 5.7 Continued  
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(b) DR=1.5 

Fig. 5.7 Continued  
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(b) DR=1.5 

Fig. 5.7 Continued  

 

 

ratio (M=1.0) provide the better film coolant accumulation than higher blowing ratio 

(M=1.5) case. As increasing density ratio from 1.0 to1.5, heavier density coolant is with 

lower jet momentum as ejecting out from film holes and is easier to adhere to leading 

edge surface. Therefore, span-wise film cooling effectiveness of three blowing ratios 

increase especially at hole location and near holes for four film holes configurations.  

  The span-wise averaged film cooling effectiveness for three-hole design can be 

seen from Fig. 5.8, the results of four configurations in the same plot for each blowing 
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ratio and density ratio. Overall, for density ratio 1.0, 1.5, and 2.0, radial angle shaped 

holes performs best film coverage from leading edge stagnation row to downstream 

portion among all configurations for medium and higher blowing ratios (M=1.0 and 1.5). 

This also indicates that the advantage of the shaped hole becomes more evident at higher 

blowing ratio cases. At lower blowing ratio lower coolant jet momentum cases, coolant 

jet at the exit of shaped hole has even lower momentum (due to hole expansion) than at 

the exit of cylindrical hole. This can be seen from Fig. 5.8, blowing ratio M=0.5 cases. 

Along the stagnation row, cylindrical hole (either radial or compound angles) perform 

better than shaped hole, especially for higher density ratio cases. The worse situation 

occurs for hole configuration of compound angle shaped holes along stagnation row, 

case of M=0.5, DR=1.5 and M=0.5, DR=2.0, coolant barely comes out from film holes 

to protect leading edge surface.   
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(a) DR=1.0 

Fig. 5.8 Effect of hole configuration on span-wise averaged film cooling effectiveness 

(3-row) 
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(a) DR=1.0 

Fig. 5.8 Continued 
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(b) DR=1.5 

Fig. 5.8 Continued 
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(b) DR=1.5 

Fig. 5.8 Continued 
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(c) DR=2.0 

Fig. 5.8 Continued 
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(c) DR=2.0 

Fig. 5.8 Continued 
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5.6 Density Ratio Effect 

  For a fixed blowing ratio, momentum of the coolant jets decreases with 

increasing density ratios.  Lower coolant momentum is less susceptible to coolant lift-off 

comparing with higher coolant momentum. Both seven-row design and three-row design 

are investigated the effect of density ratio. Density ratios for seven-row design are 1.0 

and 1.5 and for three-row design are 1.0, 1.5, and 2.0 for four film cooling hole 

configurations. The blowing ratio varies from 0.5 to 1.5.  

  The span-wise averaged film cooling effectiveness for seven-row design can be 

seen from Fig. 5.9. The film cooling effectiveness of density ratio 1.5 provides overall 

better film cooling coverage than density ratio 1.0 for four film hole configurations no 

matter which blowing ratios. This means heavier density coolant can adhere more to 

leading edge surface for protection. For first two film cooling hole configurations: radial 

angle cylindrical holes (Fig. 5.9(a)) and compound angle cylindrical holes (Fig. 5.9(b)), 

DR=1.5 cases show higher span-wise averaged film cooling effectiveness  at hole 

location, between any rows of holes, and also downstream portion for all three blowing 

ratios. As for shaped holes configurations: radial angle shaped hole (Fig. 5.9(c)) and 

compound angle shaped hole (Fig. 5.9(d)), heavier density ratio of 1.5 offers overall 

higher span-wise averaged film cooling effectiveness for  medium (M=1.0) and higher 

(M=1.5) blowing ratio cases. As for lower blowing ratio (M=0.5) case, heavier density 

cooling (DR=1.5) provides higher effectiveness except for one place: stagnation row of 

holes. The reason is that the coolant jets are already harder to eject out along stagnation 

row than other downstream row.  Also,  shaped  hole  with  expanded  cross  section area  
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(a) Radial angle cylindrical holes 

Fig. 5.9 Effect of density on span-wise averaged film cooling effectiveness (7-row)  
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(a) Radial angle cylindrical holes 

Fig. 5.9 Continued 
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                                 (b) Compound angle cylindrical holes 

Fig. 5.9 Continued 
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(b) Compound angle cylindrical holes 

Fig. 5.9 Continued 
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(c) Radial angle shaped holes 

Fig. 5.9 Continued 
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(c) Radial angle shaped holes 

Fig. 5.9 Continued 
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      (d) Compound angle shaped holes 

Fig. 5.9 Continued 
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(d) Compound angle shaped holes 

Fig. 5.9 Continued 

 

 

further reduces coolant jet momentum at the exit of holes. Therefore, coolant jet of lower 

blowing ratio and higher density ratio (M=0.5, DR=1.5) becomes harder to eject coolant 

out from holes, indicating by lower film cooling effectiveness. Among these four 

configurations, radial angle shaped holes already show higher film cooling effectiveness 

at lower density ratio (1.0). Further increasing density ratio to 1.5 is only with marginal 

increment of film cooling effectiveness. There is obvious film cooling effectiveness 

increment for the three remaining configurations, particular for cases of cylindrical hole.  
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   The span-wise averaged film cooling effectiveness for three-row design can be 

seen from Fig. 5.10. It can be seen that film cooling effectiveness level dramatically 

decreases with less number of film cooling holes compared with seven-row design. Also, 

some characteristics observed in seven-row design also take place in the three row 

design. Three blowing ratio (M=0.5, 1.0, and 1.5) and three density ratio (DR=1.0, 1.5, 

and 2.0) for each hole configuration. For cylindrical holes (either radial or compound 

angle), the higher the density ratio provides the higher span-wise averaged film cooling 

effectiveness for all blowing ratios. Density ratio effect is small for lower blowing ratio 

(M=0.5) cases with cylindrical hole (both angle), especially from stagnation row to 

leading edge first row.  As increasing blowing ratio to M= 1.0 and 1.5, span-wise film 

cooling effectiveness obviously increases as density ratio increases from 1.0 to 2.0. As 

for shaped hole (both radial and compound angle), density ratio has marginal effect on 

film cooling effectiveness for lower blowing ratio M=0.5. For medium and higher 

blowing ratios, density ratio effect becomes obvious shown in film cooling effectiveness 

for shaped holes. As increasing density ratio to DR=1.5, film cooling effectiveness 

obviously increase. As further increasing density ratio from 1.5 to 2.0, there is only 

minimal increment of film cooling effectiveness.    
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(a) Radial angle cylindrical holes 

Fig. 5.10 Effect of density on span-wise averaged film cooling effectiveness (3-row)  
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(a) Radial angle cylindrical holes 

Fig. 5.10 Continued 
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(b) Compound angle cylindrical holes 

Fig. 5.10 Continued 
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(b) Compound angle cylindrical holes 

Fig. 5.10 Continued 
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(c) Radial angle shaped holes 

Fig. 5.10 Continued 
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(c) Radial angle shaped holes 

Fig. 5.10 Continued 
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       (d) Compound angle shaped holes 

Fig. 5.10 Continued 
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(d) Compound angle shaped holes 

Fig. 5.10 Continued 
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5.7 Area Averaged Film Cooling Effectiveness 

  Area averaged film cooling effectiveness has been calculated for more directly 

and clearly comparing film cooling effectiveness for four film cooling holes 

configurations, different blowing ratios, and different density ratios. The region used to 

calculate area averaged film cooling effectiveness ranges from 0 to 16.5 of s/d, and 0 to 

20 of z/d, and this region is exactly the same area as contour plot. Blowing ratios are 

M=0.5, 1.0, and 1.5 for both seven-row and three-row designs for all configurations. 

Density ratios are DR=1.0 and 1.5 for seven-row design and are DR=1.0, 1.5, and 2.0 for 

three-row design. There are twenty-four cases in total for seven-row design, and thirty-

six cases in total for three-row design. Each film hole configuration is with results of 

various blowing ratios and density ratios in the same plot as shown in Fig. 5.11 (seven-

row design) and Fig. 5.12 (three-row design). 

  First configuration for discussion is radial angle cylindrical hole for seven-row 

design in Fig. 5.11. As increasing blowing ratio from 0.5 to 1.5, the overall film cooling 

effectiveness increases at the beginning, and then decreases for both density ratios. The 

best overall film cooling effectiveness for this hole configuration occurs at the medium 

blowing ratio (M=1.0) for either DR=1.0 or DR=1.5 case. As density ratio increases 

from DR=1.0 to 1.5, the increment percentage of the overall film cooling effectiveness 

ranges from 13% to 18% for three blowing ratios. For the second hole configuration: 

compound angle cylindrical hole, the overall film cooling effectiveness decreases as 

increasing blowing ratio from 0.5 to 1.5 for lower density ratio DR=1.0 cases. The 

overall   film   cooling   effectiveness   increases   slightly  and  then  decreases  again  as  
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Fig. 5.11 Area averaged film cooling effectiveness for seven-row design 
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Fig. 5.11 Continued 
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increasing blowing ratio to 1.5 for higher density ratio DR=1.5 case. The increment 

percentage of overall film cooling for this configuration is from 11% to 15%. The next 

film hole configuration is radial angle shaped holes. This configuration performs very 

well than cylindrical holes, particularly at medium and higher blowing ratios. At lowest 

blowing ratio (M=0.5), there is no density effect indicating by two overall film cooling 

effectiveness overlap as increasing density ratio. Increasing blowing ratio from M=0.5 to 

1.0, the overall effectiveness obviously increases for both density ratios. However, 

further increasing blowing ratio from M=1.0 to 1.5, there is only marginal increment of 

overall effectiveness either DR=1.0 or DR=1.5. Increasing density ratio from 1.0 to 1.5, 

the increment percentage of overall film cooling for this configuration is from 0% to 9% 

for three blowing ratios. The last film hole configuration for discussion is the compound 

angle shaped holes. The trend of increasing blowing ratio for this configuration is similar 

to that of radial angle cylindrical holes. The best overall film cooling effectiveness 

occurs at medium blowing ratio (M=1.0) for both density ratios. Enlarging the density 

ratio from 1.0 to 1.5, the increment percentage ranges from 7% to 12% for three blowing 

ratios. In summary, configuration of radial angle shaped hole performs best among all 

configurations by comparing four sub-figures of Fig. 5.11 for all blowing ratios and 

density ratios.  

  The overall film cooling effectiveness for three-row design for four 

configurations shows in Fig. 5.12. The same blowing ratio M=0.5, 1.0, and 1.5 for 

consideration. However, the blowing ratios are not only limited to DR=1.0, and 1.5 but 

also extended to realistic higher one 2.0.  First  configuration  of  radial  angle cylindrical  
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Fig 5.12 Area averaged film cooling effectiveness for three-row design 
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Fig. 5.12 Continued 
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 holes, increasing blowing ratio decreases overall film cooling effectiveness for lowest 

density ratio (DR=1.0) case. As increasing density ratio to 1.5 and 2.0, heavier density 

helps coolant jet adheres to leading edge surface for protection, indicating by increment 

of effectiveness. At higher blowing ratio (M=1.5) with strong jet momentum, even 

increasing density ratio (DR=1.5 and 2.0) with heavier coolant still can not prevent 

coolant jet interact with mainstream, indicating by reduction of overall film cooling 

effectiveness. By increasing density ratio from DR=1.0 to 1.5, the increment percentage 

of overall film cooling effectiveness is in the range of 11% to 23% for three blowing 

ratios. Also, the range becomes from 10% to 14% as enlarging density ratio from 

DR=1.5 to 2.0. As for second configuration of compound angle cylindrical holes, 

increasing blowing ratio from M=0.5 to 1.5 decreases overall film cooling effectiveness 

for all density ratios (DR=1.0 to 2.0). As increasing density ratio from 1.0 to 1.5, the 

increment percentage of overall effectiveness is in the range of 13% to 25% for three 

blowing ratios. Further increasing density ratio from DR=1.5 to 2.0, the increment 

percentage becomes 4% to 10% for all blowing ratios. As for radial angle shaped holes, 

there is no density ratio effect for lowest blowing ratio (M=0.5), shown by three 

effectiveness of three different density ratios close to each other. Density ratio effect 

becomes apparent for medium (M=1.0) and higher (M=1.5) blowing ratios. The 

increment percentage is from 0% to 17% as increasing density ratio from to DR=1.0 to 

1.5. Further increasing density ratio from DR=1.5 to 2.0, the increment percentage 

reduces to 4% to 6%. The last configuration for discussion is compound angle shaped 
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hole. For lowest blowing ratio (M=0.5) with lowest coolant jet momentum, increasing 

density ratio has an negative effect on overall film cooling effectiveness, indicating by 

reduction of overall effectiveness as increasing density ratio from DR=1.0 to 2.0. As for 

medium and higher blowing ratios, coolant jets already have higher enough momentum. 

Increasing density ratio (with heavier coolant) helps coolant stay close to leading edge 

surface and result in higher overall effectiveness. For lowest blowing ratio M=0.5, the 

reduction percentage of overall film cooling effectiveness as increasing density ratio 

from DR=1.0 to 1.5 is 29% and from DR=1.5 to 2.0 is 7%. For both medium (M=1.0) 

and higher (M=1.5) blowing ratios, increasing density ratio increases overall 

effectiveness. For blowing ratio M=1.0 and 1.5, the increment percentage is from 10% to 

13% as density ratio increase to DR=1.5 but the increment becomes 4% to 5% as further 

increasing density ratio from DR=1.5 to 2.0. To summarize, among all four 

configurations, the third (radial angle shaped holes) and fourth (compound angle shaped 

holes) perform best overall film cooling effectiveness at higher blowing ratios and higher 

density ratios.     
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6. CONCLUSIONS 

 

6.1 Unsteady Flow on Film Cooling  

High resolution film cooling effectiveness contours and line plots have been 

presented for upstream trailing edge ejection combined with unsteady wake on 

downstream blade film cooling effectiveness using pressure sensitive paint measurement 

method. A comprehensive discussion is presented for no wake condition, wake condition, 

and combined wake and ejection condition. The key remarks are listed below:  

1. Effect of blowing ratio. From leading edge to the second film row on both side of 

blade, lower blowing ratio provides higher effectiveness. However, the reverse is true at 

further downstream due to coolant accumulation. 

2. Effect of unsteady wake. Using no wake condition as reference, passing unsteady 

wake increases the turbulence in mainstream, inducing more mixing between 

mainstream and film coolant. The overall effectiveness reduces. 

3. Effect of trailing edge coolant ejection. Adding coolant ejection compensates the 

velocity defect resulted from passing wake. Also, coolant ejection is carried by wake to 

approach and protect blade surface. Therefore, the overall effectiveness slightly 

increases as compared with no coolant ejection. 

4. High density film cooling and ejection. Using coolant with density ratio 2.0 simulates 

typical engine condition. Overall effectiveness increases due to high density coolant 

from ejection carried by unsteady wake to approach and protect blade surface as well as 

itself heavier density coolant adheres to blade.    
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6.2 Leading Edge Film Cooling  

There are two leading edge film cooling designs investigated. Seven-row design 

with a heavily film cooled holes model to simulate vane. Another model is three-row 

design with a moderately film cooled holes to simulated blade. Four different film 

cooling hole configurations are investigated for both seven and three-row designs. The 

film cooling effectiveness on leading edge models are measured by Pressure Sensitive 

Paint (PSP). PSP is the superior method for determining detailed high resolution film 

cooling effectiveness contour, particularly for the surfaces with heavily distributed film 

holes. Because PSP bases on the mass transfer method rather than heat transfer one, 

inherent problems associated with heat transfer methods such as conduction error near 

film holes are avoided. A comprehensive discussions and key remarks are listed below:  

1. At a fixed blowing ratio, the overall film cooling effectiveness of seven-row design is 

much higher than that of the three-row design due to more film holes on seven-row 

model with larger amount of coolant consumption. Due to larger row-to-row spacing for 

three-row design, the coolant accumulation is relatively insignificant. Film coolant 

accumulation in both span-wise and stream-wise direction is obvious for seven-row 

design. The superposition of the coolant jets leads to elevated effectiveness level for the 

seven-row designs. 

2. The general trends is that lower blowing ratio case with lower coolant jet momentum, 

coolant jet is easily deflected by mainstream from original holes’ radial or compound 

angle direction into stream-wise direction from stagnation row to downstream portion, 

and also has obvious downstream coolant accumulation along stream-wise direction. As 
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blowing ratio increases, coolant jets contain sufficient momentum and accumulate more 

along their holes’ direction (either radial or compound angle direction). Furthermore, 

cylindrical film cooling holes are more sensitive to variations in blowing ratio than 

shaped holes. Shaped holes keep increase film cooling effectiveness as increasing 

blowing ratio. Cylindrical holes do not perform well at high blowing ratio because 

coolant interacts and mixes more with mainstream.    

3. For both the seven-row and three-row designs, the advantage of shaped holes becomes 

evident as increasing blowing ratio. The shaped holes (either radial or compound angle) 

in general offer higher effectiveness than cylindrical holes at medium and higher 

blowing ratios (M=1.0~1.5). For shaped holes, due to increasing the exit area of the film 

holes, the jet momentum from the shaped holes is reduced. Therefore, the coolant jets 

can stay closer to the leading edge surface, and result in a higher effectiveness at higher 

blowing ratio.  

4. For both designs, increasing density ratio increases film cooling effectiveness for all 

film hole configurations. For lower blowing ratio (M=0.5) case, there is minimal density 

effect on film cooling effectiveness. Coolant jet has higher tendency to lift-off at higher 

blowing ratio due to strong jet momentum. Increasing coolant density ratio will reduce 

momentum of the coolant jets. Heavier coolant can still adhere to blade surface and 

result in higher film cooling effectiveness. Density effect is more evident for cylindrical 

holes either radial or compound angle than for shape holes no matter seven or three-row 

design.                                                                                                                                
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5. From the overall film cooling effectiveness points of view, radial angle shaped holes 

gives the best effectiveness for seven-row design, particularly at higher blowing ratio 

and higher density ratio. For three-row design, both radial angle shaped holes and 

compound angle shaped holes have best effectiveness at higher blowing ratio and higher 

density ratio. However, the worst case occurs from lowest blowing ratio (M=0.5), higher 

density ratio (DR=1.5 and 2.0) cases of three-row design: compound angle shaped holes 

along stagnation low. Coolant barely ejects from stagnation row due to insufficient jet 

momentum, resulting in lowest effectiveness.  
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