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ABSTRACT 

 

 Xylella fastidiosa subspecies fastidiosa is the causative agent of Pierce’s disease 

of grape and has caused significant crop stress and loss in vineyards throughout Texas.  

While multiple techniques are available to identify subspecies of X. fastidiosa, only 

simple sequence repeat markers can be used for the differentiation of isolates within 

individual subspecies.  In this research, SSR markers were utilized to demonstrate the 

diversity of subsp. fastidiosa isolates from within a single vineyard.  The distributions of 

strains defined within subsp. fastidiosa were also compared to epidemiological data to 

clarify any relationships.   

Initial results from isolation attempts indicate disease severity to have the largest 

impact on the success of isolation attempts with 7% of samples rated as ‘Healthy’ and 

83% of samples rated as ‘Advanced’ producing successful isolations. A conventional 

PCR protocol employing 5 SSR markers was used to generate banding profiles for 97 

isolates collected from 7 grape varieties planted in 5 blocks throughout a single Texas 

vineyard.  SPSS statistical program was used to execute a hierarchical cluster analysis to 

produce a dendrogram which grouped isolates into 3 strain groups with 7% or 15% 

dissimilarity.  Of the 3 epidemiological factors analyzed, the distribution of strains 

showed significant dependence on grape variety while having no dependence on disease 

severity or location within the vineyard.   
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CHAPTER I  

INTRODUCTION 

 

The bacterium Xylella fastidiosa is a bacterial species which has been identified 

as the causative agent of diseases for numerous agricultural crops and landscape plants.  

One of the most notorious of these is Pierce’s disease of grape.  As a species, X. 

fastidiosa is endemic to several continents as well as many states in the continental U.S. 

and has caused major economic losses of several food crops.  For these reasons, this 

bacterium has been extensively studied.  

 

History of Pierce’s Disease 

        First reported by N.B. Pierce in a 1892 bulletin by the U.S. Bureau of Agriculture 

(35), Pierce’s disease of grape has long been considered a major problem to the 

agriculture production of grapes and is particularly notorious in California.  The 

pathogen went from virus status, as demonstrated by experiments in 1949 showing it 

was transmitted via leaf hoppers by Severin (45), to being identified as a rickettsia-like 

bacterium in 1973 by Hopkins and Mollenhauer (22).  The ambiguity of the organism’s 

classification was mainly due to the inability to isolate a pure culture.  It was not until 

1978 when Davis et al. (15) developed a complex media which facilitated the isolation 

of the bacteria associated with Pierce’s disease of grape and almond leaf scorch, that 

more in-depth research into the pathogen was able to progress with greater ease.  The 

next landmark for this organism’s classification came in 1987 when Wells et al. (54) 
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proposed a new genus and species, Xylella fastidiosa, as the taxonomic name for this 

pathogen. Since then, a great deal of emphasis has been placed on understanding the 

various subspecies of X. fastidiosa that are an important feature of the population 

structure of the pathogen.  These efforts were greatly facilitated by the completion of 

genomic sequencing and annotation of several strains of the bacteria including; 9a5c 

which causes citrus variegated chlorosis (47) as well as strains which cause disease on 

almond and oleander plants (4, 5). 

 

The Disease 

 A pathogen for many plants, X. fastidiosa affects several agricultural crops of 

economic value such as coffee, almond, citrus, alfalfa, and grape.  It also causes disease 

in shade trees such as oak and elm, and shrubs including oleander (23).  In most cases, 

symptoms will include leaf scorch, stunting of new growth, and eventually death.  In 

grapes, Pierce’s disease of grape symptoms also include irregular maturation of the stem 

or ‘green islands’, petiole retention, and desiccation of grape bunches or ‘raisining’.  

However, the most characteristic symptom of Pierce’s disease of grape is the pattern of 

leaf scorch.  In the early stages of disease, scorch will develop at the very tips of the leaf 

and move to encompass the entire margin of the leaf blade with no regard to leaf veins.  

At the innermost edge of necrosis, there will be a zone of yellow or red coloration 

depending on the variety of grape.  White grape varieties develop a yellow line and red 

varieties have a red line.  Variety will also affect the progression of disease symptom 

expression as some grapes have demonstrated resistance or tolerance to X.  fastidiosa.  
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Vitis species varieties, such as Viogner, tend to be more susceptible and succumb to the 

disease more quickly, those crossed with native Amercian grapes, such as the French 

American hybrid Blanc du Bois have been known to express fewer symptoms and 

continue to produce high yields (J. Kamas, personal communication). 

 Another factor affecting disease progression through a vineyard is the insect 

vector.  Movement of the bacteria is mostly facilitated through xylem sap-feeding insects 

including sharpshooters, leafhoppers, and spittle bugs (9).  There are a continually 

growing number species with the potential to serve as vectors with varying degrees of 

transmission efficiency.  The most notorious, however, is the glassy-winged 

sharpshooter (Homalodisca vitripennis).  After its introduction in the early 1990’s (48), 

the glassy-winged sharpshooter began to dramatically change the epidemiology of 

Pierce’s disease of grape in Southern California (6) by increasing the seasonal 

occurrence of vine-to-vine spread (39).  This increase is attributed to the habit of glassy-

winged sharpshooters to feed on the stems of vines rather than new growth as well as 

feeding more readily on dormant vines (51). Due to the rise of disease incidence caused 

by the glassy-winged sharpshooter, and its increasing range, the California Department 

of Food and Agriculture established the Pierce’s Disease Control Program which 

coordinates the state-wide management of this insect vector 

(http://www.cdfa.ca.gov/pdcp/). 

Control methods for Pierce’s disease of grape are currently dependent on 

managing the insect vector to prevent the spread of disease and managing infected and 

infested plant material to minimizing inoculum sources.  Several pesticides, including 
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systemic and non-systemic formulations, have been developed to reduce the number of 

insect vectors within and around the vineyard.  Managing native vegetation and 

minimizing other insect habitats is doubly important because X. fastidiosa also has a 

number of supplemental hosts which do not express symptoms.  In order to reduce 

inoculum sources, weeds and infected grapevines should be promptly removed.  Heavy 

pruning has also been observed to reduce, but not eliminate inoculum in areas which 

experience colder winter climates (37).  This phenomenon known as ‘cold curing’ is 

most effective when the bacterium is localized to new growth.  The best method for 

preventing the introduction of Pierce’s disease of grape is planting resistant varieties and 

choosing a vineyard site with low disease pressure.  Unfortunately, resistant varieties are 

often not those most desired for wine production.    

 

Impact 

 The wine and grape industry is a large and growing business with an economic 

footprint of over a $162 billion nationally (30).  In Texas alone, the industry has grown 

from $1.35 billion in 2007 to $1.7 billion in 2009 (31).  With over 3,000 bearing acres, 

Texas is America’s fifth largest grape and wine producing state and hosts 190 wineries 

as last recorded by the Texas Wine and Grape Growers’ Association 

(www.txwines.org/facts.asp).  Texas also plays host to the bacterium X. fastidiosa and 

many of the xylem-feeding insects which have been implicated in the spread of Pierce’s 

disease of grape.  
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While not the only challenge to the wine and grape industry, Pierce’s disease of 

grape has become a major limiting factor to long-term production in Texas causing over 

80% mortality in some cases (28).  In a study commissioned by the California 

Department of Food and Agriculture, Pierce’s disease of grape caused a 36% loss of 

gross to the state’s agriculture income (46).  A study by Appel et al. (unpublished) 

followed the progression of disease for 5 years in a single block of Viogner grapes.  

During the course of this study, disease began appearing in patches the first year after 

planting and steadily increased each subsequent year.  At the end of a 5 year period, a 

high percent of grapevine mortality caused a significant loss of yield and the block was 

abandoned.  This pattern in yield loss has been observed in several vineyards which 

grow susceptible varieties (2). 

 

The Pathogen 

An aerobic, rod-shaped, Gram negative, xylem-inhabiting bacterium, X. 

fastidiosa is relatively small, ranging in size from 0.2-0.4 by 1.0-4.0µm and is not visible 

using standard light microscopy (21).  With an optimal growth temperature range of 26-

28°C, it is considered a nutritionally fastidious organism and is notoriously difficult to 

grow in axenic culture.  Isolation requires a rigorous aseptic technique and surface 

sterilization procedure as well as a specialized complex media (13).  In addition to its 

nutritional requirements, it is also a slow growing organism, taking 7-14 days for a 

cultured colony to reach the size of a pin head, and is often overtaken by fungi and other 

contaminates further complicating isolation attempts.  While it does not possess a 
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flagellum, it does produce several pili with various functions, including Type IV pili 

which facilitate the movement of the bacterium both up- and downstream through the 

xylem vesicles (25).   

Similar to the xanthan gum produced by Xanthomonas campestris pv. campestris 

X. fastidiosa is also a producer an extracellular polysaccharide.  This substance 

contributes to cell aggregation and biofilm development which can cause blockages 

impeding the movement of fluid and nutrients throughout the plant and contributing to 

symptom development (24).  Biofilm development, as regulated by a diffusible signaling 

factor, has been shown to affect the transmission efficiency of vectors by facilitating the 

colonization of the bacterium in the foregut (33).   

There are several major differences among the species X. fastidiosa cultures 

which can be used to categorize isolates including host range, pathogenicity, nutritional 

requirements, and genetic composition (38).  In addition to the infection of multiple 

types of plants where disease is expressed, X. fastidiosa can also survive as an endophyte 

in many hosts which remain asymptomatic.  For just those isolates which cause Pierce’s 

disease, at least 145 plants have been identified as hosts (23).  There is also a degree of 

host-specificity observed in the various strains isolated from different hosts leading to 

the classification of pathovar types. However, these relationships are complex (23).   For 

example, almond trees can be infected by strains isolated from grapes or oleanders but 

the grape and oleander strains are not reciprocal and do not infect each other’s host.  

While the mechanisms for host-specificity have yet to be identified, each host presents a 

different micro-habitat for X. fastidiosa growth.  As a result, there exist small differences 
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in the nutritional requirements needed for optimal growth by various strains of X. 

fastidiosa.  Several complex media recipes have been used to culture X. fastidiosa 

strains, each originally designed for isolation from a specific host.  These media can be 

used to categorize isolates into two groups based on nutritional fastidiousness.  Most 

isolates will fall into the ‘Phony Peach’ (PP) group and will grow on the following 

specialized medias:  periwinkle wilt (PW)(13), buffered charcoal-yeast extract 

(BCYE)(55), and CS-20  (8).  Isolates in the PP group, however, will not grow on 

Pierce’s Disease 2 media (PD2)(14).  Those that grow on PD2 are clustered into the 

‘Pierce’s Disease’ (PD) group and will grow on all four media.  These isolates will also 

cause disease symptoms to be expressed on grapes (21).  All isolates of X. fastidiosa will 

grow on PW media.  The last method of categorization is based on genetic variation and 

analysis.  All strains of X.  fastidiosa share a high degree of DNA-DNA homology 

ranging from 75-100% (20).  However, through the use various techniques and assays, it 

is possible to differentiate isolates into definitive subspecies groups.  It is also through 

the analysis of genetic variation that we are able to better understand the relationship of 

strains to hosts and disease. 

 

Classification of Xylella fastidiosa 

 As previously mentioned, X. fastidiosa is classified as a single species which 

includes a variety of pathogenic and non-pathogenic strains.  It is also the only 

taxonomic species listed within the genus which was first suggested in 1984 by Wells et 

al. (53).  In this study fatty-acid analysis, guanine to cytosine content ratios, and 16S 
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ribosomal ribonucleic acid (rRNA) sequencing data were used as evidence to classify X. 

fastidiosa as a novel genus and species.  The same study also determined Xylella as 

being most closely related to Xanthomonas and other bacteria in the 

gammaproteobacterium group.  While the composite results from this research were able 

to describe a novel genus, individual strains within the species were unable to be 

identified and has been the focus of many studies since.   

  The first attempt to categorize this large and encompassing group of xylem-

limited bacteria into smaller groups was conducted by Chang and Schaad in 1982 (7) 

before X. fastidiosa was the accepted classification.  In their research, they used sodium 

dodecyle sulfate-poly-acrylamide-gel electrophoresis (SDS-PAGE) to perform an 

analysis of the total cell envelope protein profiles.  Their results indicated enough 

variability to distinguish various pathogenic strains into groups based on one of five 

hosts used for isolation while maintaining a high similarity among groups.  Wichman 

and Hopkins (56) conducted a similar study in 2002 with the whole-cell protein profiles 

and were able to identify four distinct pathogenic groups and two miscellaneous groups 

based on isolation hosts, including the following: 1) grape, 2) elderberry, 3) oak, 4) 

oleander and 5/6) almond, blackberry, lupine, mulberry, periwinkle, elm, and plum. 

 Many other efforts have since been made to categorize and differentiate X. 

fastidiosa into smaller groups, such as pathovars or subspecies, with most giving similar 

results and following general pathogenic distinctions.  In 1992, Restriction Fragment-

Length Polymorphisms (RFLP) were used on twenty-four strains isolated from eight 

hosts by Chen et al. (10) to better understand  the amount of diversity within the genome 
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of X. fastidiosa.  However, their study only showed the existence of an RFLP group for 

Pierce’s disease isolates and was not able to distinguish other pathogenicity groups with 

any distinction.   Pooler and Hartung (36) used Random Amplified Polymorphic DNA 

(RAPD) -Polymerase Chain Reaction (PCR) in 1995 to divide the species into five host 

groups including: citrus, plum-elm, grape-ragweed, almond, and mulberry.  Their results 

reaffirmed those previously achieved using RFLPs, but were faster and less expensive.  

In 2001, Hendson et al. (17) completed the first comprehensive study to identify distinct 

subspecies within X. fastidiosa by using a battery of techniques to analyze the genome.  

These techniques included RAPD-PCR, enterobacterial repetitive intergenic consensus 

sequence, repetitive extragenic palindromic (REP) elements, contour-clamped 

homogeneous electric field (CHEF) gel electrophoresis, plasmid content, and 16S-23S 

rRNA intergenic spacer region sequencing.  Analysis of each technique individually 

produced strain delineations similar to each other with variations on the number of host-

associated groupings defined.   

It was not until 2004, when Schaad et al. (43) completed a second comprehensive 

analysis of X. fastidiosa populations, that novel subspecies classifications were 

proposed.  In this work, twenty-six strains from ten hosts were analyzed using DNA-

DNA homology assays and sequenced 16S-23S intergenic spacer (ITS) regions.  The 

results led to the recommendation for three novel subspecies to be identified as follows:  

A) subspecies piercei which includes isolates pathogenic to grape, alfalfa, maple and 

almond group II; B) subspecies multiplex which includes isolates pathogenic to peach, 

elm, plum, pigeon grape, sycamore, and almond group I; and C) subspecies pauca which 
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includes strains pathogenic to citrus.  These subspecies classifications have been 

accepted with the exception of subspecies piercei being altered to subspecies fastidiosa 

(42).  There have, however, been two additional subspecies added including subspecies 

sandyi which includes isolates pathogenic to oleander (44) and the proposed subspecies 

tashke which includes isolates pathogenic to chitalpa plants (40).  Lastly, in 2007, it was 

determined by Wickert et al. (57) not to separate isolates causing disease on coffee from 

those which cause disease on citrus into a separate subspecies due to the high degree of 

genetic similarity and the inability to cluster isolates separately based on genetic 

analysis.  This leaves both citrus and coffee isolates, neither of which has been isolated 

in North America, grouped into subspecies pauca. 

 

Detection and Differentiation 

  While an enzyme-linked immunosorbent assay (ELISA) has been available for 

the detection of X.  fastidiosa since 1980 (34), a PCR method for detection was not 

available until 1994 (29).  Since then, there have been several protocols explored to 

develop an easy method for both the detection and the differentiation of X. fastidiosa 

subspecies.  In 2005, Travensolo et al. (50) used sequence characterized amplified region 

(SCAR) markers to specifically identify Pierce’s disease strains of X. fastidiosa from the 

strains of nine other hosts as well as a collection of various other Gram negative and 

positive bacteria.  However, it was never developed for the identification of other X. 

fastidiosa isolates which do not cause Pierce’s disease.  In 2003, Rodrigues et al. (41) 

used the 16S rRNA and the gyrB gene to produce a multiplex PCR protocol for the 
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detection and differentiation of isolates of subspecies fastidiosa and pauca from all other 

strains.  Similarly, in 2007, Bextine and Child (3) also used the gyrB gene, but this study 

used the complete sequences to demonstrate the use of DNA melting temperatures, as 

obtained through a SYBR Green-based quantitative real-time-PCR protocol, to 

differentiate Pierce’s disease, almond leaf scorch, and oleander leaf scorch strains of X. 

fastidiosa.  This method was not recommended as a definitive means of differentiation 

due to its sensitivity to genetic mutations.   

Perhaps the most durable and applicable method for the detection and 

differentiation of subspecies was described by Hernandez-Martinez et al. (18) who 

developed a multiplex PCR assay for the detection and differentiation of the three 

subspecies most likely to be found in North America: subspecies multiplex, subspecies 

fastidiosa, and subspecies sandyi.  Using three primer sets, the product from a single 

PCR procedure can be visualized through standard gel electrophoresis and the resulting 

DNA banding patterns will result in one of five patterns indicating the sample as one of 

the following possibilities: negative for X. fastidiosa, positive for X. fastidiosa 

subspecies sandyi, positive for X. fastidiosa subspecies fastidiosa, positive for an almond 

leaf scorch (ALS) group I isolate of X. fastidiosa subspecies multiplex, and positive for 

an ALS group II isolate of X. fastidiosa subspecies multiplex.   

Short repetitive DNA sequences were also used to analyze X. fastidiosa 

population variation.  Such sequences have been successfully used to study microbial 

evolution and epidemiology in various bacterial species as well as several eukaryotic 

organisms (52).  The first use of such sequences to study a plant pathogen was 
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conducted on X.  fastidiosa to study the variability in citrus and coffee isolates collected 

throughout Brazil (12) and later used to study isolates from several subspecies obtained 

throughout Brazil, Costa Rica, and the continental United States (32).  Both of these 

studies were able to successfully group isolates by subspecies and showed a significant 

degree of variability within those subspecies based on geography and host origin.  Lin et 

al. (26) identified thirty-four simple sequence repeat (SSR) loci and designed primers 

using X  fastidiosa isolates from oleander, citrus, almond, and grape.  With these 

primers, they were able to analyze the resulting gel electrophoresis banding profiles to 

successfully group isolates by subspecies, host origin, and region.  The scope of this 

study included several counties across California and citrus isolates from Sao Paulo, 

Brazil.  A later study used SSRs to analysis ninety-three grape isolates from five 

vineyards within Napa Valley, California (11).  This study demonstrated a high degree 

of variability within isolates but did not find any relationship to geographic distribution.  

A high degree of SSR diversity was observed when compared to other pathogens and it 

was hypothesized this may be caused by a high rate of evolution.  This phenomenon was 

discussed in previous publications (1, 58) and supports the use of SSR markers as a tool 

for studying variations within local populations over a short time scale. 

 

Research Objectives 

In an effort to further understand the diversity of X.  fastidiosa and the impact 

that genetic variability may have on disease expression, this research will focus on 
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subspecies fastidiosa isolates collected from a single vineyard in the Texas Gulf Coast 

region with the following objectives:   

1. To assemble a library of X. fastidiosa isolates from a single vineyard to 

represent a variety of epidemiological factors (grapevine variety, disease severity, and 

relative geography);  

2. To demonstrate the diversity of X. fastidiosa subspecies fastidiosa 

isolates within a single vineyard sampling area; and  

3. To analyze for a potential correlation between the diversity of X. 

fastidiosa subspecies fastidiosa and the several epidemiological factors in Objective 1. 
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CHAPTER II 

MATERIALS AND METHODS 

 

Sampling  

 During the summer of 2007, 337 grapevine samples were collected from 8 

varieties growing in 8 blocks throughout a vineyard in Brenham, TX.  The varieties 

included the following:  Blanc du Bois, Cabernet Sauvignon, Merlot, Chambroucin, 

Primitivo, Shiraz, Muscat Blanc, and Ruby Cabernet.  Each of these vineyard blocks had 

been previously surveyed for Pierce’s disease symptoms by rating each vine on a scale 

of 1 (healthy, no symptoms) to 5 (dead).  Samples consisted of five petioles harvested 

from vines demonstrating early symptoms of Pierce’s disease or a vine which in 2006 

had scored a ‘3’ or ‘4’ in a disease survey, indicating advanced symptoms and dieback 

occurred in the previous year.  When available, petioles were taken from symptomatic 

leaves in the upper portion of the canopy and the most basal leaf of a symptomatic vine, 

resulting in two different samples from the same vine.  After removing the petiole from 

the plant, leaf blades were discarded and petioles were stored in labeled zip-lock bags.  

Labels included vineyard name, variety, block number, row number, column number, 

and vine number as well as position within the vine where the sample was collected.  

Samples where then stored in a cooler with cold packs until returned to the laboratory 

and placed under refrigeration. 

Vines were selected from throughout the vineyard to maximize the potential for 

culture isolation while ensuring diversity of varieties and areas represented.  There were 
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three exceptions to this guideline.  Block 7, comprised completely of Blanc du Bois, was 

sampled systematically to be consistent with a different, ongoing experiment in that 

block.  Block 6 contained equal proportions of Merlot and Muscat Blanc.  The section 

containing Merlot was also sampled systematically to be consistent with the previously 

mentioned ongoing experiment.  Lastly, every fourth vine in the Muscat Blanc was 

sampled to compensate for previous difficulties in isolating X. fastidiosa from that 

variety and maximizing the potential for culture isolation.   

 

Isolation and Culture Purification 

 Upon returning to the laboratory, samples were stored in a conventional 

refrigerator (4°C) until processed.  The processing procedure was adapted from Schaad 

et al. (21) and included an intense surface sterilization process which consisted of the 

following steps: 

1. Cut petioles into 1 inch pieces. 

2. Rinse in 70% EtOH. 

3. Soak in 1% NaHClO for 3 minutes. 

4. Rinse with sterile and distilled H2O. 

5. Submerge in sterile, distilled H2O in micro Petri dish until plating. 

The plating process consisted of removing the terminal 5 mm of each piece of petiole 

and dissecting the tissue into 3-5mm segments.  Each segment was squeezed in the 

center using forceps or pliers and the fluid which was discharged from each end of the 

segment was blotted onto PW (Periwinkle Wilt) media modified from Davis et al. (13).   
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Two plates of modified PW media were blotted for each sample processed, with a total 

of 10 – 12 attempts per sample. All processing was done aseptically, including use of a 

laminar flow hood (NuAire, Inc., Plymouth, MN 55447). 

 Plates were incubated at 28.0°C for 7-14 days.  Suspected cultures retrieved from 

blotting were subjected to a series of isolation transfers for single cell isolation onto 

Periwinkle Wilt Media- Gelrite (PWM-G) and Pierce’s Disease 3 (PD3) media modified 

from Davis et al. (15) which was dubbed PD3-G+.  Cultures were identified as X. 

fastidiosa if they exhibited the following morphological characteristics as identified in 

Wells et al. (1987): discreet, circular, entire, smooth, convex and opaque reaching 

approximately 0.6 mm diameter after 10 days.  Once a pure culture was obtained, 

cultures were smeared onto three PD3-G+ media for overgrowth to be used for DNA 

extractions, ELISA testing, and frozen storage.   

 

Frozen Storage of Isolates 

A set of frozen cultures were made for each isolate collected.  Using a 3mm 

inoculating loop, two clumps of bacteria were removed from the PD3-G+ media plates 

and thoroughly vortexed to suspend cultures in 0.75ml of PD3-G+ Broth.  A 40% 

solution of glycerol in sterile, distilled H2O was then added to each suspension to bring 

the volume to 1.5ml.  Suspended cultures were frozen and stored at -80○C. 
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Species Confirmation 

 For each isolate two cell suspensions were prepared for species confirmation 

with double antibody sandwich- enzyme linked immunosorbant assay (DAS-ELISA).  

Using a 3mm inoculating loop, two clumps of bacteria were removed from the PD3-G+ 

media plates and thoroughly vortexed in a 1.5 ml micro tube to suspend cultures in 1 ml 

of General Extraction Buffer as provided in the Agdia DAS-ELISA kit.  Each cell 

suspension was tested using DAS-ELISA Kits (Agdia, Inc., Elkhart, IN 46514) using the 

manufactures protocol to identify isolates as X. fastidiosa.   A test was considered 

positive if the specified test well emitted a blue color and generated an absorbance 

reading >0.3000 using 620nm as the measurement wavelength on the SPECTRAFlour 

(Tecan Inc., Durham, NC 27703).  

 

DNA Extraction 

 Upon ELISA confirmation of the isolates as X. fastidiosa, three clumps of 

bacteria were removed from  cultures grown in PD3-G+ media plates using a 3mm 

inoculating loop and suspended in 300µl of MicroBead Solution (MO BIO Laboratories, 

Inc., Carlsbad, CA 92010) for DNA extraction.  DNA extraction was completed using 

Ultraclean Microbial DNA extraction kits from the same source according to the 

instructions provided by the manufacturer.  Three extractions were produced for each 

isolate and stored in a conventional freezer until needed.  DNA from an additional three 

strains was provided by C.F. Gonzalez (Department of Plant Pathology and 

Microbiology, Texas A&M University, College Station, TX  77843) to be used as a non-
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subspecies fastidiosa control.  These strains consisted of a Temecula strain (California 

grape strain), the Dixon strain (California almond strain), and another non-grape strain 

of unknown origin.   

 

 
 

Subspecies Identification 

 To confirm all isolates from the vineyard were X. fastidiosa subsp. fastidiosa, 

primer sets XF1968-L/R, XF2542-L/R, and ALM-1/2 (Table 1) were used in a multiplex 

PCR assay described by Hernandez-Martinez et al. (2006). DNA from Temecula (grape) 

and Dixon (almond) and another non-grape isolate were previously confirmed as subsp. 

fastidiosa and subsp. multiplex, respectively and were used as biological standards.  

Each 25µl PCR reaction mix contained 0.25µL of each primer, 18.5µl PCR Master Mix 

2X (Promega Corporation, Madison, WI 53711), and 5µl of sample DNA.  The PCR 

process was conducted using the following temperature series: 94○C for 5 min. (initial 

denaturation), 40 cycles of 94○C for 1min, 55○C for 1min, and 72○C for 1 min, 72○C for 

 
Table 1. List of primers used for subspecies identification. 

Primer 

 

Forward Sequence Reverse Sequence 

XF1968 

 

GGAGGTTTACCGAAGACAGAT ATCCACAGTAAAACCACATGC 

XF2542 

 

TTGATCGAGCTGATGATCG CAGTACAGCCTGCTGGAGTTA 

ALS 

 

CTGCAGAAATTGGAAACTTCAG GCCACACGTGATCTATGAA 
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10min (final extension), and 4○C hold.  All PCR products were subjected to 

electrophoresis using a 1.5% agarose gel run at 80V to observe the number and size of 

bands produced by each isolate.  Grape disease-causing strains, or X. fastidiosa subsp. 

fastidiosa, are indicated by a single band of ~412 base pairs. 

 

 

 

Simple Sequence Repeat Markers 

 Using 5 simple sequence repeat (SSR) primers developed by Lin et al. (2005) 

(Table 2), a series of PCRs were completed for each isolate as well as the Temecula, 

Dixon, and other non-grape isolates.  Each 25 µL PCR reaction consisted of 2 μL sample  

DNA, 50 pmole SSR primer, 12.5 μlPCR Master Mix 2X, and 9.5 μl nuclease free 

water.  The PCR process was conducted using the following temperature series: 95○C for 

6 min (initial denaturation), 30 cycles of 95○C for 30 s, 60○C for 30 s, and 72○C for 1 

Table 2.  Simple Sequence Repeat Primer sequences used to differentiate X. fastidiosa isolates. 
Primer Forward Sequence Reverse Sequence Type of repeat motif 

OSSR-9 TAGGAATCGTCTTCAAACTG TTACTATCGGCAGCAGAC (TTTCCGT)13 

GSSR-4 GCGTTACTGGCGACAAAC GCTCGTTCCTGACCTGTG (ATCC)7 

GSSR-7 ATCATGTCGTGTCGTTTC CAATAAAGCACCGAATTAGC (GGCAAC)24 

GSSR-14 TTGATGTGCTTTTGCGGTAAG GACAGGTCCTCTCATTGCG (TCCCGTA)24 

GSSR-19 GCCGATGCAGAACAAGAAC TCAACTTCGCCACACCTG (GAAAAACAAG)19 



 

20 

 

min, 72○C for 7 min (final extension), and 4○C hold.  The full SSR-PCR products were 

mixed with 6 μl 10X loading Dye and 10 μl were loaded into a 2% agarose gel.  Gel 

electrophoresis was conducted using 1 X TBE buffer for 3-4 hours at 80V and visualized 

with ethidium bromide.  

 

Hierarchal Cluster Analysis 

 The size of each band (base pairs) was quantified using AlphaEase FC software 

(Alpha Innotech, San Leandro, CA 94577).  A 1 kb ladder was used as the molecular 

weight standard and the Temecula strain was used to standardize all gels.  Relationship 

distances among isolates were derived by calculating the summation of the absolute 

value for differences of each corresponding SSR markers for two isolates according to 

the following equation.   

ABS(ASSR1-BSSR1) + ABS(ASSR2-BSSR2)+…ABS(ASSR5-BSSR5); 

        Where A represents isolate i and B represents isolate j and  

   SSR # represents a particular marker. 

Distances were used to create a distance matrix which was inserted in to SPSS v13.0 

(SPSS Inc., Chicago, IL  60606) where a hierarchical cluster analysis was completed for 

each of the following cluster methods: between-group linkage, within-group linkage, 

nearest neighbor, furthest neighbor, and median cluster.  All analysis utilized the squared 

Euclidean measure of distance.  Cluster methods were evaluated for biological accuracy 

based on position of the non-grape and ‘Dixon’ strains in relation to ‘Temecula’ and X. 

fastidiosa subsp. fastidiosa isolates.  
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Epidemiological Data 

Several epidemiological factors were analyzed to determine their influence, if 

any, on the occurrence of any potential sub-strains or isolates.  These factors included   

location within the vineyard, grape variety, and disease severity.  Vineyard location and 

grapevine variety were recorded when the sample was taken.  Disease severity was 

determined through a visual inspection of each grapevine for characteristic symptoms 

and rating each vine on a scale of 1 - 7, where:   

1- Healthy vine with no characteristic symptoms of Pierce’s disease. 

2- Incipient symptoms: 3 or more leaves showing foliar symptoms characteristic of 

Pierce’s disease. 

3- Advanced Symptoms:  More than half the vine showing foliar symptoms 

characteristic of Pierce’s disease or the plant is demonstrating petiole retention.  

May include ‘raisining’. 

4- Advanced w/ Dieback:  Entire cordons or vines on plant are dead or dying.  May 

also represent vines that have experienced the death of entire cordons or vines 

previously leading to growth closer to the main cane. 

5- Dead 

6- Stump:  Plant has been pruned back to where only a stump exists. 

7- Replant:  Evidence that a previous grapevine has been removed and replaced 

with a new one within the past year. 
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The statistical program SPSS was used to compare the percentage of successful 

isolations to the following three parameters: disease severity, vineyard block, and grape 

variety.  Each analysis produced Pearson’s Chi-Squared tests with p-values <0.01 

indicating a significant relationship between the percentage of successful isolation and 

all three factors (Appendix A:  Analysis of Isolations).  
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CHAPTER III 

RESULTS 

 

Sampling and Isolation 

 A total of 329 grapevine samples, representing 204 plants, were processed for 

isolation of X. fastidiosa.  Processing initially produced 120 isolates from 86 vines which 

exhibited characteristic culture morphology of X. fastidiosa.   When transferred, several 

potential isolates were lost to poor growth resulting in a final total of 97 isolates.  These 

surviving isolates were further analyzed for species and subspecies identification. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  1.  Percent of successful isolations per disease index rating.  Graph showing the relationship of 
successful isolation of X. fastidiosa versus the disease severity as demonstrated through visual 
symptoms of Pierce’s Disease of grape in 2007.  

7% 

53% 

83% 

75% 

R² = 0.7828 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1- Healthy 2- Incipient 3- Advanced 4- Dieback

Pe
rc

en
t P

os
iti

ve
 Is

ol
at

io
n 

Level of Disease (Visual Symptoms) 



 

24 

 

A total of 278 vines where scored for disease severity at the time of sampling.  

Those vines with a rating of ‘4- Advanced with dieback’ (n=48) had a 75% (n=36) rate 

of successful isolation, vines with a rating of ‘3- Advanced symptoms’ (n=6) had an 

83% (n=5) rate of successful isolation, vines with a rating of ‘2- Incipient symptoms’ 

(n=138) had a 53% (n=73) rate of successful isolation, and vines with a rating of ‘1- 

Healthy vine’ (n=86) had a 7% (n=6) rate of successful isolation.  When comparing 

isolation attempts and disease severity, a positive correlation (R2=0.7828) is observed 

between successful isolation and an increase in disease severity.  This relationship is 

maintained until plants start expressing symptoms consistent with a severity rating or ‘4-

Dieback’ (Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  2.  Percent of successful isolations from tip or basal petioles per disease index rating.  Graph 
showing the percentage of successful isolation attempts for each disease index category (Healthy, 
Incipient, Advanced, Advanced with Dieback, and All Categories) for petioles collected from the 
base or tip of a sample grapevine shoot. 
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A total of 103 vines had petiole samples collected from two locations on 

symptomatic shoots.  The ‘Basal’ samples where those closest to the base of the 

symptomatic shoot and the ‘Tip’ samples where those furthest from the base but still 

fully formed.  Basal petiole samples had a success rate of 36% (n=37) and Tip petiole 

samples had a success rate of 41% (n=42) (Fig. 2).  

 Of the 8 varieties sampled, Blanc du Bois was the only to produce no isolates 

(n=24 attempts).  The highest frequency of successful isolation was from Chambroucin 

(73%, n = 33).  The percentages of successful isolations for other varieties were as 

follows: Muscat Blanc 12% (n = 108), Merlot 33% (n = 38), Cabernet Sauvignon 43% 

(n = 14), Syrah 48% (n = 45), Primitivo 52% (n = 44), Ruby Cabernet 57% (n = 30), and 

an overall of 36% (n = 337) (Fig. 3).  

  

0% 14% 21% 

43% 51% 57% 64% 
73% 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Pe
rc

en
t o

f S
uc

ce
ss

fu
l I

so
la

tio
n 

Grape Variety 

Fig.  3.  Percent successful isolations per grape variety.  Graph depicts the level 
of success for isolations attempts for each grape variety. 
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Fig.  4.  Vineyard map of sample vines and positive isolates.  Vines sampled and processed 
for the isolation of X. fastidiosa are depicted by red or green dots.  Red dots indicate failed 
isolation attempts.  Green dots indicate successful isolation of X.fastidiosa.  
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The location of positive isolations were from vines throughout all areas of the 

vineyard except block 7 (Blanc du Bois) and the Merlot (half of block 6) (Fig. 4).   

Block 3 produced the most isolates (n=40) at a 61% rate of success while the identical 

block 4 produced fewer isolates (n=11) at a lower rate of success, 48%.  Both blocks are 

half Primitivo and half Shiraz.  Block 6, the most heavily sampled, only produced 13 

isolates with a 10% rate of successful isolation.   Block 8 produced the most successful 

rate of isolation (73%, n=24) (Table 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.  Isolation attempts for X. fastidiosa separated by vineyard block. 

Location 
Isolation Total 

Attempts 
Percent Successful 

Isolation Negative Positive 

Block 3 26 40 66 61% 

Block 4 12 11 23 48% 

Block 5 34 32 66 48% 

Block 6 103 13 116 11% 

Block 7 25 0 25 0% 

Block 8 9 24 33 73% 

Total: 209 120 329 36% 
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Species and Subspecies Identification 

 All isolates analyzed tested positive using DAS-ELISA as X. fastidiosa.  The 

typical, distinctive blue coloring of a positive reaction can be seen in each well of the 

reaction wells on a 96-well plate, with the exception of negative controls in the first row 

(Fig. 5).   

In addition, all isolates analyzed using the multi-primer PCR assay generated one 

band at approximately 412bp indicating isolates belong to the subspecies fastidiosa (Fig. 

6).  Both non-grape and ‘Dixon’ DNA generated two bands at 638 and 521bp indicating 

they belong to the subspecies multi-plex as was expected.   Images of the multi-primer 

gel electrophoresis products for all isolates can be found in Appendix B: Multiprimer 

Gel Photos.  

 

 

 

 

 

 

 

 

 

 

 

Fig.  5.  DAS-ELISA of isolated cultures.  Photograph depicts results of DAS-
ELISA assay used to identify suspected cultures as X. fastidiosa.  Blue color 
indicates a positive test where clear wells indicate a negative test.  All clear wells in 
this photograph correspond to the negative controls. 



 

29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SSR and Hierarchical Cluster Analysis  

 All 97 isolates produced a single band for each SSR primer sets.  The sizes of the 

PCR products ranged from 211bp to 429bp.  Each SSR generated varying degrees of 

difference among DNA fragment sizes with primer set GSSR# 19 producing the most 

variability of 199bp between the most extreme values.  Photos of the gel generated by 

each of the SSR markers for a subset of 18 isolates is pictured below (Fig. 7).   

A cluster analysis using between-group linkages was performed and generated a 

dendrogram which mirrored the expected distribution of subspecies groups (Fig. 8).  

This dendrogram shows three major clusters with 14 - 44 isolates each. All clusters 

Fig.  6.  Subspecies identification of X. fastidiosa isolates.  A gel electrophoresis was run for the 
products from the multiplex PCR assays.  Lanes 1-5, 7, & 8 are samples from seven unknown 
cultures isolated from field samples.  These samples have a single band at 412bp.  Lanes 9 & 10 are 
known non-grape isolates which have two bands at 512 and 638bp.  Lanes 11 & 12 are known grape 
isolates (Temecula) with a single band at 412bp.  Lane 6 is a 100bp DNA Ladder. 

1 6 7 8 9 10 11 12 2 3 4 5 
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include at least 3 varieties and 3 blocks with two clusters containing isolates from all 5 

blocks and 6 or 7 cultivars.  The cluster with the least diversity contains mostly isolates 

from Chambroucin, the variety with the highest rate of successful isolation.  Lastly, 21 

pairs of isolates extracted were from the same plant.  Of these pairs 90% were sorted into 

the same cluster while 10% are separated into different clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OSSR# 9 GSSR# 4 GSSR# 7 

GSSR# 14 GSSR# 19 

Fig.  7.  Differentiation of X. fastidiosa subsp. fastidiosa isolates.  Photographs depict gel 
electrophoresis results for the PCR products of 18 samples processed with 5 individual 
SSR markers.  The center lane of each gel depicts a 100bp ladder. 
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Fig.  8.  Simplified dendrogram of strains.  This dendrogram was generated by hierarchical cluster 
analysis of 97 isolates collected from a single vineyard.  Each color represents a separate cluster or 
strain, which were arbitrarily named 1, 2, and 3.  The Dixon and Non-Grape isolates were not 
grouped with any subspecies fastidiosa isolates while the Temecula isolate (see arrow) was 
grouped with Strain 3.  A larger representation of this dendrogram can be found in Appendix B. 
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Strain 2 

Dixon & Non-
Grape Strain 
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Fig.  9.  Vineyard map depicting the distribution of strain groups.  Strain groups were defined by 
cluster analysis of 97 X. fastidiosa subsp. fastidiosa isolates.   Each dot represents a vine from 
which one or more successful isolates were obtained while the color defines the strain(s) isolated.  
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Analysis of Strain Groups 

 When viewing the dendrogram generated through the hierarchical cluster 

analysis of simple sequence repeat markers, three distinct strain groups are formed (Fig. 

8).  Arbitrarily, they were labeled strain 1 (n=39), strain 2 (n=44), and strain 3 (n=13) 

beginning from the top-most cluster on the dendrogram and are colored red, blue, or 

green respectively.  Strain groups 1 and 2 are most closely related, merging at 7 units 

while strain group 3 does not merge until 15 units.  All three strains merge with the non-

grape isolates at 25 units.  Units were calculated using squared Euclidean measure of 

distance and describe the relative amount of dissimilarity.   

 Observing the distribution of strains, it should be noted that all three strain 

groups are comprised of most blocks and varieties (Fig. 9).  The only strain group that 

does not have representatives from each block is also comprised of the least varieties and 

is strain group 3.  In addition, this group is the most distantly related and is where the 

Temecula type strain from California was clustered.   

 

Epidemiological Data 

In August of 2007, a field survey for disease severity was conducted for all but 

10 rows of grapevines in block 5 (personal communication, D.N. Appel, Dept. of Plant 

Pathology and Microbiology, TAMU, College Station, TX 77843) (Fig. 10).   When 

plotted with survey data from the previous 6 years, a more comprehensive view of 

disease progression can be observed (Fig. 11).  Block 8, which consisted entirely of 

Chambroucin grapevines, had the greatest disease pressure as indicated by the  
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A B C D E

F G H I

Varietals Listing 

A- Primitivo 
B- Shiraz 
C- Merlot 
D- Muscat Blanc 
E- Chambourcin 
F- Primitivo 
G- Shiraz 
H- Ruby 

Cabernet 
I- Blanc du Bois  

Fig.  10.  Vineyard map of 2007 disease severity survey. Map depicts an ArcGIS 
visualization of disease severity.  The top key indicates the disease severity index rating 
for each vine.  The bottom key lists the varieties and indicates their location within the 
vineyard. 
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proportion of dead vines.  Chambroucin also showed the greatest increase in disease 

incidence over the past 3 years (2005-2007).   The second highest proportion of dead 

vines occurred in the Shiraz half of block 4 followed by the Primitivo half of block 3.   

The next step in this study was to compare strain groupings to several 

epidemiological factors using the Pearson’s Chi-Square test.  The first and least 

dependent pairing with a p-value = 0.303 was strain groups versus disease severity.  

Using the disease index, strain groupings were compared to healthy, mild symptoms, 

advanced and dieback symptoms, and dead, stump, or re-plants.  The dead stump, and 

re-plant categories were combined because each would result from the death of the vine.  

While there is no statistical significance between these two variables, isolates collected 

from plants with incipient symptoms were overwhelmingly from strain 2 while those 

collected from plants that later died or were most likely removed where  

Fig.  11.  Disease progress curve for vineyard from 2000 thru 2007.  Graph shows the disease 
progress curve for several grape varieties by vineyard block.  Data was collected through 
multiple disease severity surveys conducted from 2000 thru 2007 through a visual inspection 
for symptoms indicative of Pierce’s Disease of grape.   
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Fig. 12.  Successful isolation per disease severity rating.  Bar graph indicates the number of each 
isolate from strains 1, 2, and 3 from each disease index category (Healthy, Incipient, Advanced 
and Dieback, and Dead/stump/replant). 
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Fig. 13.  Successful isolation per vineyard location.  Bar graph indicates the number of 
isolates from strains 1, 2, and 3 from each vineyard block (3,4,5,6,or 8). 
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from strain 1 (Fig. 12).  Healthy and advanced symptom vines produced isolates in 

relatively equal amounts of both strains 1 and 2 with much fewer of strain 3.    

 When comparing strain groups with vineyard block locations, a p-value of 0.091 

was generated (Fig. 13).  Strain 1 makes up over half of the isolates obtained from 

blocks 4 and 6 but falls within standard deviations.  Strain 2 makes up over half of block 

8 and falls beyond the standard deviations of both strain 1 and 3 for that black.  Blocks 3 

and 5 have no appreciable difference between strains 1 or 2, however, strain 3 falls well 

beyond the standard deviation of both.  In all blocks, strain 3 is represented the least. 

 

 

 

 

  

 

 

 

 

 

 

 

 

Fig.   14.  Number of isolates per grape variety.  Bar graph indicates the number of isolates from 
strains 1, 2, and 3 collected from each grape variety type. 
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 The last comparison made was strain group to grapevine variety (Fig. 14) which 

showed a dependent relationship to strain identity with a p-value of 0.015.  This 

dependence increased with a p-value = 0.009 if grapevine varieties were identified by 

vineyard block (Fig. 15).  The major difference between the two categories was the 

effect of splitting the Shiraz and Muscat Blanc varieties into two blocks.  Block 3 of 

Shiraz and block 5 of Muscat Blanc are dominated by strain 2 while block 4 Shiraz and 

block 6 of Muscat Blanc are dominated by strain 1.  It is also important to note strain 3 is 

only present in the Shiraz half of block 3, Ruby Cabernet section of block 5, and the 

Chambroucin in block 8 of which none are adjacent nor do they show the same amount 

of disease pressure.  It should be noted that each of these Pearson Chi-Square tests 

suffered from a small sample size due to the difficulty of collecting a larger number of 

successful isolations resulting in a less robust analysis. 

 Also of importance in this cluster analysis were 21 pairs of isolates gathered from 

single grapevines.  These cultures were collected from different sections of the vine (tip 

or basal petioles) and isolated independently.  90% of these pairs were clustered within 

the same strain group.  Of those distributed into separate strains, only one plant did not 

have both isolates in strain 1 and 2, the most closely related strain groups.    
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Fig.  15.  Number of isolates per grape variety by vineyard block.  Bar graph indicates the number 
of isolates from strains 1, 2, and 3 from each grape variety type when separated by vineyard block. 

3 
5 4 4 

13 

3 0 1 2 
4 

0 

14 

1 1 

7 

3 1 
5 

8 

1 0 

7 

0 0 0 0 0 2 
4 

0 
0

2

4

6

8

10

12

14

16

18

N
um

be
r o

f I
so

la
te

s 

Variety Seperated by Vineyard Block 

Strain 1

Strain 2

Strain 3



 

40 

 

CHAPTER IV 

DISCUSSION 

 

Success and Implications of Culture Isolations 

 A library of 97 Xylella fastidiosa subspecies fastidiosa isolates was created 

through the sampling and isolation of a single vineyard.  This is a result of less than half 

of isolation attempts proving successful.  Of these successful isolation attempts, a pattern 

was observed for a positive correlation with disease severity (R2=0.7828) (Fig. 1).  This 

is to be expected due to the higher bacterial titer present in symptomatic grapevines (16, 

19, 38).  The reduction in successful isolations in plants exhibiting dieback could be a 

result of the reduced growth rate and viability of bacterium caused by the loss of 

available nutrients and optimal growing environment.  An observation of note is the 7% 

of non-symptomatic grapevines which yielded  X. fastidiosa isolates.  Current 

management practices for Pierce’s disease include reducing the bacterial population in 

the environment through the removal of infected plant tissue.  This method relies on 

visual symptoms to identify those plants which pose a hazard to continued disease 

spread.  The efficacy of this control method comes into question when the pathogen 

remains in the vineyard via non-symptomatic grapevines.  Further research should be 

conducted to study how disease progression is affected by the presence of non-

symptomatic, infected grapevines. 

 Success of isolation was also compared to the position on a grapevine from 

which a sample petiole was harvested.  Common practice, based on other xylem-limited 
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bacteria, suggests the selection of petioles closest to the base of any shoot sampled (38).  

As X. fastidiosa produces biofilms which result in the aggregation of cells, it is believed 

these basal petioles will have a higher bacterial titer due to the larger flow of xylem fluid 

through the area, therefore increasing the probability of the successful isolation of the 

pathogen (49).  This study did not find a significant advantage to sample position as the 

percent of successful isolations from basal petioles was within the standard of error for 

the percentage of successful isolations from tip petioles (Fig. 2). There was also no 

significance difference observed when petiole position was separated by disease index 

ratings.  Given the demonstrated relationship between symptom severity and isolation 

success, a more robust experiment would compare the rates of successful isolation 

between petiole samples collected from leaves showing foliar symptoms and non-

symptomatic leaves on the same shoot.   

 An analysis of isolation attempts for each variety showed a large degree of 

variability of success from 0% to 73% (Fig. 3).  Most values fall within standard error, 

however, Blanc du Bois, Muscat Blanc, and Merlot resulted in fewer successful isolation 

attempts then all others.  While Blanc du Bois and half of the Merlot plants available 

were sparsely sampled, Muscat Blanc was the most heavily sampled variety so this 

observation is not an artifact of sample size.    A more probable explanation for this 

observation would be the varying degrees of disease incidence and severity.  For 

example Chambroucin, the variety with the largest isolation success rate, was also the 

variety with the highest disease pressure. 
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Analysis of the location of the plant within the vineyard, as determined by the 

vineyard block where the plant was located, produced fairly uniform rates of isolation 

success with most falling between 48% and 73% , a difference of 25% (Table 4).  The 

only exceptions to this distribution of were the comparatively low successful positives 

from blocks 6 and 7.  This is likely due to the Merlot half of block 6 and the entirety of 

block 7 being largely ignored due to an ongoing experiment in these areas.  Also, the 

Muscat Blanc half of block 6 and the Blanc du Bois in block 7 have shown low disease 

pressure in previous surveys (Fig. 10) and are considered resistant varieties.  The most 

interesting results from the successful isolation data are those from blocks 3 (61%) and 4 

(48%).  Both of these blocks are half Primitivo and half Shiraz and are adjacent to each 

other, yet there is a 13% difference in success for isolation.  There is also a large 

difference in the rate of disease progression for the Shiraz in block 3 and the Shiraz in 

block 4 from 2005 to 2007 (Fig. 11).  While there are no factors recorded in this study 

that could contribute to this discrepancy, these blocks were planted a year apart (block 3 

in 2000 and block 4 in 2001) and there is a slight incline from block 3 to 4.  There has 

also been a larger occurrence of nutrient deficiencies occurring in block 4 (personal 

observation) and the two Primitivo sections utilize different root stocks (101-14 and SO4 

for blocks 3 and 4 respectively).  However, without further study of these sections, the 

cause for the difference in isolation success cannot be defined. 

 Given the studied parameters of disease severity, petiole position, grape variety, 

and grapevine location, the most influential factor to determine sample selection in order 

to increase the probability for the successful isolation of X. fastidiosa is disease severity.  
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Specifically, plants which are expressing advanced symptoms of Pierce’s disease are 

most successful for pathogen isolation.  Further research into which sample selection 

criteria would affect isolation success should include temporal relationships both 

throughout the day and year, the occurrence of other diseases and disorders, and the 

effects of rootstock. 

 

Subspecies Identification and Differentiation 

 A theory which has never been addressed in current research is the possibility of 

multiple subspecies groups within X. fastidiosa colonizing grapevines in a natural 

environment and leading to variability in symptom expression and disease response 

(Personal communication, D.N. Appel, Dept. of Plant Pathology and Microbiology, 

TAMU, College Station, TX 77843).  This phenomenon would result in a false positive 

diagnosis of Pierce’s disease through ELISA and generalized PCR reactions, especially 

in plants that do not exhibit Pierce’s disease symptoms.  While some studies have proven 

the ability of isolates other than subspecies fastidiosa to colonize grapevines in a 

controlled environment (20), and others have studied the genetic diversity of X. 

fastidiosa cultures isolated from grapevines(11, 17, 26, 42, 44, 50, 58), this is the first 

study to specifically focus on the subspecies classification of isolates from naturally 

occurring X. fastidiosa populations in a vineyard setting.  The results of this research 

indicate only X. fastidiosa subspecies fastidiosa cultures colonize grapevines in this 

natural environment.  Alternatively, X. fastidiosa subspecies fastidiosa may be the most 

successful at colonizing grapevines in a natural environment and are therefore the most 
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likely to be isolated.  If this were the case, however, there would be some variation in 

culture morphology when isolates were selected for purification, which was not 

observed.  A more definitive study would attempt to identify subspecies from plant 

exudates without relying on purified isolations.  However, there is no current protocol 

able to identify multiple subspecies of X. fastidiosa coexisting within a single sample. 

Once all isolates were identified as X. fastidiosa subspecies fastidiosa, analysis 

was conducted to further differentiate isolates into strain groups (Fig. 7).  This was 

accomplished using SSR markers previously developed by Lin et al. (27).  While SSR 

markers have been shown to have a high rate of evolution, they can be used to view 

current trends in population distributions on a smaller genetic scale (11, 58).  Using SSR 

data and hierarchical cluster analysis, multiple groupings were identified; however, three 

groups were distinguished as having more than 5% relative dissimilarity and arbitrarily 

labeled strains 1, 2, and 3.  Of these three groups, strain 3 was the most distantly related 

with 15% relative dissimilarity while strains 1 and 2 had 7% relative dissimilarity.  In 

contrast, two isolates which were not X. fastidiosa subspecies fastidiosa showed a 25% 

relative dissimilarity.  Of particular interest is the inclusion of the Temecula type strain, 

an isolate from California, into strain group 3.  This indicates a conservation of genetic 

structure among national isolates of X. fastidiosa subspecies fastidiosa.  It also suggests 

the possibility of Texas specific strains of X. fastidiosa subspecies fastidiosa given the 

separation of strains 1 and 2 from strain 3.  A more comprehensive study of isolates 

nationwide would be required to definitively identify any area specific strains.  While 

previous research has shown diversity within X. fastidiosa subspecies fastidiosa, they 
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have been focused on differentiating between subspecies and determining the origins of 

X. fastidiosa. These studies have also used larger geographic scales ranging from 

intercontinental to statewide.  This is the first indication of the genetic diversity that 

exists within the scale of a single vineyard.  In addition, of the grapevines that resulted in 

multiple isolates, 10% of these plants contained isolates from different strains.  This is 

the first look at the diversity of X. fastidiosa within a single grapevine and evidence for 

the co-colonization of X. fastidiosa strains within a single plant. 

 

Relationship of Strain Groups to Epidemiological Factors 

 The distribution of strain groups was compared with several epidemiological 

factors including disease severity, grapevine location, grape variety, and grape variety 

separated by vineyard block.  Of these factors, disease severity was the least dependent 

(p-value= 0.303) indicating no relationship between strain identification and disease 

expression.  This suggests there is little or no difference in virulence among strains.   

When strain distributions were compared to grapevine location, as indicated by 

the vineyard block from which the isolate originated, a weak dependence (p-value = 

0.091) was observed.  The main contributors to this association were the prevalence of 

strains 1 and 2 in blocks 3 and 5 and strain 2 in block 8 (Fig. 13).  Strain 3 is also 

completely absent from blocks 4 and 6.  While a minimal relationship between strain 

group distributions and grapevine location can be inferred from this data, there are many 

variables to consider when identifying the cause of this relationship to exist including the 
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following: elevation, relative distance to an inoculum source, relative distance to vector 

habitat, and distribution of disease incidence.   

The last component analyzed was the various grape varieties planted throughout 

the vineyard.  This factor showed a strong dependence (p-value = 0.015) when 

associated with strain distributions (Fig. 14).  While not conclusive, these results suggest 

a possible preference for specific grape varieties.  In addition, when grape varieties were 

separated by vineyard block (Fig. 15) this relationship became stronger (p-value = 

0.009).  Of significance are the two varieties most affected by this division, Muscat 

Blanc and Shiraz.  Both of these varieties exist in two separate blocks, which were 

planted in consecutive years (2000 and 2001).  For both varieties, those isolates from 

grapevines planted in 2000 are predominantly from strain 2 and those from grapevines 

planted in 2001 are predominantly from strain 1.  This would suggest each strain was 

introduced in different years; however, when other varieties planted in those same years 

are reviewed, approximately half of the varieties are predominated by strain 1 isolates 

and half by strain 2 isolates.  To further understand this event, a comparison between 

strain distributions and disease incidence and severity for each recorded year may enable 

an exact year of introduction to be detected for each strain.  In addition, continued 

tracking of strain group spatial distribution over time might assist in clarify what causes 

the strong relationship between isolate strain and variety. 
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CHAPTER V 

CONCLUSIONS 

 

 One of the limiting factors to studying X. fastidiosa has been the ability to 

successfully isolate and cultivate pure cultures.  By assembling such a large library of 

isolates from a diverse sampling, several factors were able to be analyzed for their effect 

on sample selection and successful isolation.  This research determined the most 

influential factor in sample selection for obtaining a pure culture to be disease severity 

and expression.  This study did not, however, find any advantage to considering petiole 

location, grape variety type, or relative location within the vineyard when selecting 

samples for culture isolation.  Moreover, X. fastidiosa was successfully isolated from 

non-symptomatic grapevines, stressing the need for a more thorough method for 

identifying plants which serve as potential sources of inoculum.   

 In addition to creating a library of isolates and defining criteria for sample 

selection, the diversity of X. fastidiosa was evaluated.  It appears, while there are several 

subspecies of X. fastidiosa which can be found in Texas, the only one colonizing 

grapevines is subspecies fastidiosa.  Moreover, a finer degree of differentiation can be 

delineated within the subspecies using Simple Sequence Repeat markers, clustering 

isolates in to strain groups.  This observation is reinforced by previous research 

conducted on X. fastidiosa subspecies fastidiosa; however, this is the first study to 

restrict the geographic range to a single vineyard.  Three distinct strains were 

differentiated with one strain being related to the Temecula type strain while the other 



 

48 

 

two were not.  This demonstrates both the conservation of genetic material between 

Texas and California isolates of X. fastidiosa subspecies fastidiosa as well as the 

diversity and potential for area specific strains of X. fastidiosa subspecies fastidiosa.  

Another discovery gained from studying population diversity is the ability of two 

different strains of X. fastidiosa subspecies fastidiosa to coexist within the same plant, 

furthering the discussion on the effects of multiple genetically distinct isolates on plant 

disease expression.   

With the diversity of X. fastidiosa subspecies fastidiosa defined, strain 

distributions were compared to several epidemiological factors to begin to understand 

the population dynamics of the pathogen and what possible effects there may be on 

disease expression.  While there are many variables to be considered, this research 

focused on disease severity, grapevine location, and grape variety.  This research found 

strain type to be independent of disease incidence, weakly dependent on grapevine 

location, and strongly dependent on grape variety.  These results suggest several 

characteristics for strain type dynamics; that there is no difference is virulence among 

strain types; that strain distribution amongst the vineyard is not dependent on strain type; 

and that there may be a selection factor either within the pathogen or plant which 

determines strain/grape variety combination.  Alternatively, there may be other factors 

which were not observed that may be affecting strain type/ grape variety associations. 

In conclusion, the three objectives outlined for this project, to create a library of 

X. fastidiosa isolates, to demonstrate diversity within subspecies fastidiosa, and to 

analyze the population diversity against several epidemiological factors, have been 
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completed and expanded upon.  Through this research, a more complete understanding 

of the population dynamics of Xylella fastidiosa subspecies fastidiosa has been outlined 

for this vineyard.  In addition, the relationship between pathogen and host has been 

further analyzed providing insights into the expression of disease in a naturally infected 

vineyard.  While several theories have been expanded upon or proven, the results from 

this thesis can also serve as a basis for exploring new topics of research, beginning new 

discussions and furthering the body of knowledge on Pierce’s disease of grapes. 
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 APPENDIX A 

ANALYSIS OF ISOLATES 

 

1. Analysis of strain groups 1 (Red), 2 (Blue), and 3 (Green) against disease severity 
ratings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Crosstab 
 

    

07 Rating 

Total Healthy Incipient 

Advanced and 
advanced 
w/dieback 

Dead, stump, 
or replant 

Strain Red Group Count 7 0 21 6 3  
Expected Count 6.4 3.2 20.4 4.0 34.  

Blue Group Count 7 6 22 3 3  
Expected Count 7.2 3.6 22.8 4.5 38.  

Green Group Count 2 2 8 1 1  
Expected Count 2.4 1.2 7.8 1.5 13.  

Total Count 16 8 51 10 8  
Expected Count 16.0 8.0 51.0 10.0 85.  

 

 Chi-Square Tests 
 

  Value df 
Asymp. Sig. 

(2-sided) 
Pearson Chi-Square 7.194(a) 6 .303 
Likelihood Ratio 9.993 6 .125 
Linear-by-Linear 
Association .548 1 .459 

N of Valid Cases 
85     

a  7 cells (58.3%) have expected 
count less than 5. The minimum 
expected count is 1.22. 
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2. Analysis of strain groups 1 (Red), 2 (Blue), and 3 (Green) against vineyard block. 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Crosstab 
 

    

Block 

Total 3 4 5 6 8 
Strain Red Group Count 15 7 8 4 5 39 

Expected Count 13.8 4.5 8.1 2.0 10.6 39.0 
Blue Group Count 15 4 10 1 14 44 

Expected Count 15.6 5.0 9.2 2.3 11.9 44.0 
Green Group Count 4 0 2 0 7 13 

Expected Count 4.6 1.5 2.7 .7 3.5 13.0 
Total Count 34 11 20 5 26 96 

Expected Count 34.0 11.0 20.0 5.0 26.0 96.0 
 

 Chi-Square Tests 
 

  Value df 
Asymp. Sig. 

(2-sided) 
Pearson Chi-Square 13.650(a) 8 .091 
Likelihood Ratio 15.332 8 .053 
Linear-by-Linear 
Association 5.637 1 .018 

N of Valid Cases 
96     

a  8 cells (53.3%) have expected count less than 5. The minimum 
expected count is .68. 
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3. Analysis of strain groups 1 (Red), 2 (Blue), and 3 (Green) against grape variety.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Crosstab 
 

    

Cultivar 

Total 
Cabernet 

Sauv Chambourcin Merlot Muscat Blanc Primitivo Ruby Cab Shiraz 
Strain Red Group Count 3 5 4 4 16 1 6 39 

Expected Count 1.2 10.6 3.3 2.4 10.6 3.3 7.7 39.0 
Blue Group Count 0 14 4 2 10 5 9 44 

Expected Count 1.4 11.9 3.7 2.8 11.9 3.7 8.7 44.0 
Green Group Count 0 7 0 0 0 2 4 13 

Expected Count .4 3.5 1.1 .8 3.5 1.1 2.6 13.0 
Total Count 3 26 8 6 26 8 19 96 

Expected Count 3.0 26.0 8.0 6.0 26.0 8.0 19.0 96.0 
 

 Chi-Square Tests 
 

  Value df 
Asymp. Sig. 

(2-sided) 
Pearson Chi-Square 25.052(a) 12 .015 
Likelihood Ratio 31.183 12 .002 
N of Valid Cases 96     

a  15 cells (71.4%) have 
expected count less than 5. The 
minimum expected count is .41. 
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4. Analysis of strain groups 1 (Red), 2 (Blue), and 3 (Green) against grape variety and 
vineyard block. 

 
 
 

 
  

 Chi-Square Tests 
 

  Value df 
Asymp. Sig. 

(2-sided) 
Pearson Chi-Square 35.257(a) 18 .009 
Likelihood Ratio 42.232 18 .001 
Linear-by-Linear 
Association .121 1 .728 

N of Valid Cases 
96     

a  24 cells (80.0%) have 
expected count less than 5. 
The minimum expected 
count is .14. 
 

Cabernet 
Sauv. Blk 5

Chambroucin 
Blk 8

Merlot Blk 5 Muscat 
Blanc Blk 6

Primitivo Blk 
3

Primitivo Blk 
4

Muscat 
Blanc Blk 5

Count 3 5 4 4 13 3 0
Expected 
Count

1.2 10.6 3.3 2 8.1 2.4 0.4

Count 0 14 4 1 7 3 1
Expected 
Count

1.4 11.9 3.7 2.3 9.2 2.8 0.5

Count 0 7 0 0 0 0 0
Expected 
Count

0.4 3.5 1.1 0.7 2.7 0.8 0.1

Total Count 3 26 8 5 20 6 1
Expected 
Count 3 26 8 5 20 6 1

CultivarByBlk

Strain
Red 
Group

Blue 
Group

Green 
Group

  

Ruby 
Cabernet Blk 

5
Shiraz Blk 3 Shiraz Blk 4

Count 1 2 4 39
Expected 
Count

3.3 5.7 2 39

Count 5 8 1 44
Expected 
Count

3.7 6.4 2.3 44

Count 2 4 0 13
Expected 
Count

1.1 1.9 0.7 13

Total Count 8 14 5 96
Expected 
Count 8 14 5 96

CultivarByBlk

  

Strain
Red 
Group

Blue 
Group

Green 
Group

Total
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APPENDIX B 

FULL DENDROGRAM AND KEY  

 

Dendrogram is broken into three sections.  Strain 1 (Red), Strain 2 (Blue), and Strain 3 (Green).
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