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ABSTRACT 

 

Human exposure to reduced weightbearing results in bone loss.  The rate of bone 

loss during microgravity exposure is similar to that of a post-menopausal women.  In 

fact, the maintenance of bone mass is intimately dependent on exercise.  Therefore, 

exercise associated mechanical loads to bone tissue are an important countermeasure to 

prevent disuse-induced bone loss.  However, the types of exercise modalities required to 

prevent such bone loss are unclear. Moreover, how mechanical loading to bone 

translates into molecular osteogenic signals in bone cells is unknown.  Radiation 

exposure is another potent inducer of bone loss, namely observed on Earth in the clinical 

setting following radiotherapy procedures.  It is expected that long duration space 

missions outside the protection of Earth’s magnetosphere will result in significant 

galactic cosmic radiation exposure.  However, the magnitude of bone loss resulting from 

this galactic cosmic radiation exposure is unclear.  Moreover, it is unknown if radiation 

exposure will exacerbate disuse-induced bone loss.  Therefore, a series of experiments 

were designed to determine: 1) Will simulated galactic cosmic radiation exacerbate 

reduced weightbearing-induced bone loss? 2) Will pharmacological activation of the 

putative mechanosensing Wnt pathway enhance exercise-induced bone mass gain?  To 

address these questions the experimental study series employed two animal models of 

reduced weightbearing, hindlimb unloading and partial weightbearing.  These model 

test-beds enabled the evaluation of two novel countermeasures (simulated resistance 

exercise and glycogen synthase kinase-3 (GSK-3) therapeutic) and simulated exposure to 



iii 

space radiation environments.  To test the impact of simulated space radiation (28Si) one 

study of the series was conducted at Brookhaven National Laboratory.  To quantify the 

impact of the abovementioned countermeasures and space radiation on bone, mechanical 

testing, peripheral quantitative computed tomography, micro-computed tomography, 

histomorphometry, and immunohistochemistry served as primary outcome measures. 

 The primary findings are: 1) Low-dose high-LET radiation negativity impacts 

maintenance of bone mass by lowering bone formation and increasing bone resorption.  

This impaired bone formation response is in part due to sclerostin induced suppression 

of Wnt signaling.  2) Combining GSK-3 inhibition with high intensity exercise mitigates 

cancellous bone loss and restores cortical periosteal growth during disuse. 
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CHAPTER I 

INTRODUCTION  

 

 Human exposure to reduced weightbearing results in bone loss.  In fact, the 

maintenance of bone mass is intimately dependent on mechanical loading.  Reduced 

weightbearing, for example during 6-month International Space Station (ISS) spaceflight 

missions (with moderate use of exercise equipment) results in 1-2% bone loss per 

month.  The National Aeronautic and Space Administration (NASA) recognized the risk 

of microgravity-induced bone loss early in the space program’s history, prior to the 

existence of the ISS (69).  Therefore, exercise countermeasures, human ground-based 

analogs, and ground-based animal models were developed to test countermeasures to 

mitigate bone loss during spaceflight.  In the 1970’s a team of scientist at NASA-Ames 

research center developed a ground-based animal model to simulate the “microgravity” 

effects of reduced load bearing to bone and muscle.  This model is now often referred to 

as the “Hindlimb Unloading,” (HU) model.   

 Exercise countermeasures have been employed early in the Space Program’s 

history, starting with the Gemini era.  Skylab missions were equipped with a cycle 

ergometer, isokinetic rope-pull resistance exercise systems, and treadmill.  Presently 

onboard the ISS, exercise countermeasures include treadmills, cycle ergometer, and 

high-force resistance exercise equipment.  Both studies on the ground and in-flight 

indicate that high intensity resistance exercise is required to generate an anabolic 

response in bone.  In summary, bone is a dynamic tissue responsive to reduced and 
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increased levels of load.  Bone tissue is of critical importance for the maintenance of 

ambulatory function.  Moreover, the skeleton functions as a mineral reservoir for basic 

physiological cellular function and physiological fluid homeostasis.  Beyond broken 

bones or altered gait, the loss of bone tissue and/or imbalance in bone turnover can 

negatively affect other physiological systems, for example, muscle cell contractility, 

kidney function, or neurological function. 

 Human exploration of the moon, Mars, or even distant planetary bodies, such as, 

asteroids will expose astronauts to galactic cosmic radiation (GCR). The estimated high-

linear energy transfer radiation dose for a Mars mission is approximately 0.4 to 0.5 Gy 

(19).  GCR includes but is not limited to high-energy heavy ions, characterized by high 

charge and energy (19).  Data on the biological effect of high-energy heavy ions is 

limited; furthermore, a possible synergistic interaction between radiation and 

microgavity-induced physiological deconditioning (including but not limited to 

deconditioning of bone matrix, bone cells, and bone progenitor cells) is unknown.  The 

effects of radiation on biological systems are complex and to date there are no human 

data that document the risk to GCR exposure (31).  Ground based research models of 

GCR in bone with high dose X-ray irradiation (15-30 Gy) have shown deleterious effects 

on bone.  While these studies provide invaluable data, at present there are few data 

reporting the effect ionizing radiation on bone. 

 The development of exercise and pharmaceutical countermeasures to mitigate 

disuse- and radiation-induced bone loss is of critical importance for the realization of 

long duration human exploration class missions.  The two experiments presented herein 
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were designed to test exercise and/or pharmaceutical countermeasures for bone loss 

using animal ground-based models of microgravity.  A second objective was to employ a 

new murine model of reduced weightbearing, to determine if radiation exposure would 

exacerbate bone loss during simulated Lunar gravity.  Given that the bone matrix 

embedded osteocyte is the putative mechaoregulator cell in bone, these studies sought to 

determine how cortical sclerostin-osteocyte levels respond to unloading and radiation 

exposure.  These experiments are the first to investigate the combined effects of 1) 

Partial weightbearing and radiation exposure, and 2) Simulated resistance exercise and 

pharmacological activation of Wnt signaling during disuse. 
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CHAPTER II 

LITERATURE REVIEW 

 

Bone Remodeling and Modeling 

 Osteoblasts are the basic bone forming cell and osteoclasts are the basic bone 

resorbing cell (70).  During bone remodeling osteoblasts can become embedded in the 

organic bone matrix.  Once embedded these osteoblasts often terminally differentiate 

into mature osteocytes.  Osteoblasts derive from the mesenchymal cell lineage, while 

osteoclasts derive form the hematopoietic cell lineage.  Osteoclasts and osteoblasts form 

the basic multicellular unit (BMU) that actively remodels the skeleton throughout life.  

Osteoclasts function on bone surfaces to resorb bone, facilitating repair of weak bone 

sites and/or liberating minerals, such as calcium.  These osteoclasts working on bone 

surfaces are often followed by a “team” of osteoblasts laying down osteoid (new bone 

matrix).  An imbalance in bone turnover, for example, an excess of osteoclast activity, 

can result in bone loss.  Alternatively, more vigorous osteoblast activity than resorbing 

osteoclasts can result in net bone gain.  Osteoclasts present the protein Receptor 

Activator of Nuclear Factor κ B (RANK) to the cellular surface.  Whereas, nearby 

osteoblasts present the membrane protein RANK-Ligand (RANK-L).  Lower levels of 

RANK-L reduce osteoclastogenesis and induce osteoclast apoptosis.  In addition, 

osteoblasts can secrete osteoprotegerin (OPG) that functions as a decoy receptor to bind 

to the RANK-L and interfere with RANK signaling.  Thus, the OPG/RANK-L axis 

functions to couple osteoblast and osteoclast activity; in addition, the OPG:RANK-L 
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ratio functions as one important laboratory measures of bone turnover status.  The 

uncoupled action of osteoblasts from osteoclasts is termed bone modeling.  Modeling 

allows the deposition of new bone matrix without prior osteoclast bone resorption.  Bone 

modeling occurs during skeletal growth and development.  Bone modeling occurs less 

frequently in the adult skeleton.  Mechanical loading of bone is one such stimulus 

capable of initiating bone modeling.  Bone modeling occurs more frequently on cortical 

bone surfaces than cancellous bone surfaces. 

Osteocyte Control of Bone Remodeling 

 Recent evidence suggests that osteocyte-secreted proteins regulate osteoblast 

proliferation, activity, and bone matrix synthesis.  Osteocytes are the most abundant cell 

in bone tissue; however, less is known about osteocyte function (10:1, osteocyte: 

osteoblast) as compared to osteoclasts and osteoblasts.  Recent osteocyte cell culture 

studies show that osteocytes secrete factors in response to mechanical and shear forces 

(10-12).  Sclerostin is one such osteocyte-secreted factor that inhibits Wnt signaling, 

osteoblastogenesis, and thus results in reduced bone formation capacity.  More recently, 

it has been demonstrated that osteocytes also secrete RANK-L, a key regulator of 

osteoclast maturation and activity (60,99).  Taken together, these recent osteocyte 

biology developments suggest that osteocytes are the key responders to mechanical 

loading and can regulate both bone formation and bone resorption activity. 

Bisphosphonates 

 Bisphosphonates, such as alendronate, are now a Food and Drug Administration 

(FDA: Application No. NDA-020560) approved class of pharmaceuticals designed for 
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the treatment and prevention of post-menopausal osteoporosis in women, treatment of 

osteoporosis in men, treatment of glucocorticoid-induced osteoporosis in men and 

women, and treatment of Pagets’ disease.  Bisphosphonates potently inhibit bone 

resorption and reduce facture incidence (15,48).  Currently, alendronate (oral dose of 70 

mg of alendronate taken weekly starting 3 weeks prior to flight) is being administered to 

some astronauts in an ongoing experiment on the ISS to test its efficacy as a 

countermeasure for microgravity-induced bone loss.  Several studies document the 

efficacy of alendronate to mitigate disuse-induced bone loss (3-4).  The highly charged 

phosphate backbone within the bisphosphonate molecule provides a high affinity 

interaction with calcium hydroxyapetite bone surfaces.  Therefore, during bone 

remodeling bisphosphonate coated bone surfaces reduce the incidence of osteoclast 

attachment to bone.  These bisphosphonates become incorporated into the bone matrix.  

Moreover, osteoclast-digested bisphosphonates inhibit the mevalonate pathway, causing 

osteoclast detachment from the bone surface and in some cases apoptosis (68,89). 

Wnt Signaling in Bone Tissue 

Bone mass and architecture adapt to mechanical load; for example, when 

mechanical load is below the physiologic threshold (e.g., microgravity), bone is 

resorbed.  Data published over the last ten years implicate the Wnt pathway in control of 

load-induced bone formation; however, the basic molecular mechanisms governing the 

osteogenic response to mechanical load are unknown.  Loss-of-function mutation of the 

low-density lipoprotein receptor-related protein 5 (Lrp5) gene impairs response to 

mechanical load, decreases bone mass, and osteoblast proliferation (24).  In contrast, a 
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gain-of-function mutation of Lrp5 that disrupts the binding site of sclerostin is associated 

with a high bone mass phenotype.  The Wnt pathway coordinates communication 

between mechanosensing osteocytes (via secreted sclerostin) and bone-forming 

osteoblasts (Figure 1).  

 

 

    
 
Figure 1.  Mechanotransduction via Wnt/β-catenin (canonical) pathway in an osteoblast. Mechanical 
loading promotes formation of the Wnt-LRP5/6-Frizzled transmembrane complex.  Disheveled (Dsh) 
inhibits a cytoplasmic complex composed of GSK-3β and Axin-2.  Intracellular β-catenin levels rise and 
β-catenin translocates to the nucleus where it associates with T-cell factor (TCF)/lymphoid enhancer-
binding factor (LEF) transcription factors to regulate gene expression.  
 
 

 Interestingly, mechanical loading in vivo down-regulates sclerostin (71) and up-

regulates osteogenic gene expression.  When mice lacking sclerostin are subjected to 

simulated microgravity, the Wnt pathway is unaffected and bone loss does not occur 

(47).  However, it is unknown if in vivo mechanical loading can overcome the potent 

stimulus of reduced weight bearing; furthermore, it is unknown if the Wnt pathway is 

active at graded levels of reduced weight bearing. 
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Interleukin-6 (IL-6) in Wnt Signaling 

 Data in the last ten years clearly demonstrates that Wnt signaling regulates 

osteoblast differentiation and bone accrual in adult vertebrates (human and rodent).  

Recently, cytokines such as tumor necrosis factor (TNF-α) and extracellular antagonists 

such as RANK-L, sclerostin and Dickkopf-1 (Dkk-1) have been shown to impair bone 

formation.  This impairment may result in bone loss.  It appears that these proteins 

disrupt mechanotransduction in bone by inhibiting Wnt-Ligand and LRP4/5/6 complex 

formation.  Sclerostin and Dkk-1 are known potent inhibitors of Wnt signaling; in vitro 

TNF-α has been shown to potentiate Dkk-1 inhibition of Wnt signaling (61).  However, 

it is unclear how Dkk-1, TNF-α, and IL-6 interact to regulate bone formation and bone 

resorption (39).  IL-6 is considered a potent osteoclastogenic cytokine (62). Primary 

cultures of bone cells from HU animals exhibit slowed osteoblast differentiation and 

higher IL-6 production compared to cage controls (25).  Moreover, IL-6 has been show 

to increase RANK-L secretion in a paracine/autocrine manner (56).    It appears that IL-6 

expression in osteoblast is regulated by oxidized phospholipids (88).  Interestingly, there 

is some evidence that reactive oxygen species are elevated in patients with osteoporosis 

(90) and that antioxdants provide some protection against disuse-induced bone 

resorption (77).  Therefore, the interaction of Dkk-1, TNF-α, and IL-6 may be an 

important signaling complex that regulates bone formation and bone resorption (Figure 

2). 
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Figure 2.  Dkk-1 and TNF-α inhibition of mechanotransduction via the  Wnt/β-catenin pathway in 
an osteoblast.  Mechanical loading promotes formation of the Wnt-LRP5/6-Frizzled transmembrane 
complex and thus downstream intracellular signaling and gene expression.  Wnt signaling diverts the 
mesenchymal stem cells down the pathway of osteoblast differentiation.  Sclerostin and Dkk-1 are potent 
extracellular antagonists of Wnt signaling. Dkk-1 binds to the Wnt receptor complex on the surface of the 
osteoblast lineage cell and blocks Wnt signaling, arresting osteoblast proliferation and differentiation. 
Blockade of Dkk-1 or TNF-α permits progression of osteoblast differentiation. 
 
 
 
SOST and Sclerostin Expression in Wnt Signaling 

 SOST gene expression is responsive to disuse.  Unloading for 3 days in mice 

results in a significantly higher SOST gene expression in tibial bone homogenates 

(cortical, cancellous, and marrow) compared to normal cage controls (71).  Conversely, 

externally applied mechanical loading of rodent bone produces an anabolic response and 

can lower SOST expression.  For example, SOST gene expression is downregulated 

following repeated bouts of daily 3-minunte loading cycles using the ulnar-loading 

model (53).  Similarly, external mechanical loading of 11-wk old female C57/B6 mouse 
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tibias (peak strain of -1300 uE, 2Hz for 30sec) produces a 3-fold lower SOST expression 

(101). 

 SOST and sclerostin expression in response to mechanical loading may be bone-

site specific.  SOST expression levels are similar in cortical and cancellous bone at 

metaphyseal, epiphyseal, and diaphyseal sites (75).  In addition, sciatic neurectomy-

induced bone loss is accompanied by significantly higher numbers of sclerostin-positive 

osteocytes in both the primary and secondary spongiosa of metaphyseal bone (59).  

Interestingly, however, external axial loading of tibiae in neurectomized limbs (at 1800 

uE) significantly lowers the proportion of sclerostin-positive osteocytes in the 

metaphyseal cortical bone but not midshaft cortical bone compared to ambulatory 

control mice (59).  Those cortical bone regions exhibiting the largest increases in newly 

formed bone area also exhibit the greatest decreases in sclerostin-positive osteocytes of 

proximal tibias (59).  Therefore, there may be important site-specific differences in how 

SOST and sclerostin expression respond to altered mechanical loading. 

Pharmacological Intervention via Wnt/β-catenin (canonical) Signaling 

 Glycogen synthase kinase-3-beta (GSK-3β) is a key modulator of the Wnt 

signaling pathway. Therefore, GSK-3β is an attractive target of drug development to 

resolve metabolic and neurological diseases.  Inhibition of GSK-3β can normalize blood 

glucose levels in an animal model (17) and suppress neuronal apoptosis (6).  GSK-3β 

inhibitors have recently been used to activate Wnt signaling in bone cells and increase 

bone mass in various rodent models (38,54).  GSK-3β inhibition prevents ovariectomy-

induced femoral bone loss (38).  Similarly, femoral cancellous and cortical BMD are 
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higher in normal healthy animals treated with a GSK-3β inhibitor (54).  However, it is 

unknown whether inhibition of GSK-3β can mitigate bone loss during disuse or how 

GSK-3β inhibition interacts with increased mechanical loading. 

Wnt Signaling Activators 

 More recently, a new class of pharmaceuticals is being tested and developed to 

target Wnt signaling in bone tissue.  When activated, Wnt signaling initiates a profound 

increase in osteoblastogenesis, resulting bone mass gain.  New antibody pharmaceuticals 

currently under development are designed to target Dkk-1 and Sclerostin (1,2,45,63).  In 

addition, (Glycogen synthase kinase-3) GSK-3 inhibitors are being developed to target 

Wnt signaling.  (2'Z,3'E)-6-Bromoindirubin-3'-oxime, also known as BIO, is a potent 

and selective inhibitor of the intracellular protein GSK-3 (Figure 3). GSK-3 inhibitors 

function by inhibiting GSK-3 dependent phosphorylation of beta-catenin.  The lack of 

phosphorylation side chains on the beta-catenin protein prevents trafficking of beta-

catenin to the proteosome for degradation.  Thus, GSK-3 inhibition raises intracellular 

beta-catenin levels which can then cross the nuclear membrane to activate an osteogenic 

gene expression profile.   
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Figure 3. Molecular structure of (2'Z,3'E)-6-Bromoindirubin-3'-oxime, BIO, a potent and selective, 
ATP-competitive glycogen synthase kinase-3 (GSK-3) inhibitor (95). 
 
 
 
Space Radiation Environment  

 The space radiation environment is primarily composed of galactic cosmic 

radiation (GCR), solar particle events, and secondary radiation products.  Ongoing 

advancements in solar storm monitoring, materials, and high velocity space vehicles will 

reduce the radiation risk to astronauts (51).  However, despite expected future 

engineering advancements, crew members will accrue some low dose GCR exposure 

during exploration class missions.  The GCR spectrum is low fluence and primarily 

composed of heavy charged particles (C through Fe) and protons. A 1000-day human 

exploration mission to Mars is expected to result in a total absorbed dose of about 0.42 

Gy (19).  A round trip 88-day mission to the moon would involve a total dose equivalent 

to the bone marrow of 0.074 Gy (26).  Radiation risk models estimate a 4.2% (95% CI: 

1.3-13.6) fatal risk for missions to Mars and for similar exploration class missions to 
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other distant objects.  This estimated risk level violates the current 3% career limit for 

excess cancer mortality recommended by the [National Council on Radiation Protection] 

for space activities for both sexes and all ages (26).  However, the radiation risk estimate 

for radiation-induced bone loss is unknown. 

Radiation Induced Bone Loss and Fractures 

 Radiation exposure to bone tissue increases the risk of skeletal fracture; for 

example, pelvic fracture rate is two-fold higher after radiation therapy for anal cancer 

(5,7,65,67).  In addition, radiation therapy early in life results in reduced bone density 

later in life (65).  Therefore, dividing a large gamma or proton radiation dose into small 

fractions is a common therapeutic strategy to deliver a sufficient radiation dose (for 

example, 10-50 Gy) to pathological tissue while sparing neighboring healthy normal 

tissue (102).   Similar fractionation strategies have been employed in ground based 

studies to test the effects of high-LET and low-fluence GCR that astronauts might 

experience on distant missions.  Utilizing fractionated dose regimes may help better 

simulate the low dose rate exposures to GCR during sojourns in space. 

Exercise Countermeasures for Humans during Spaceflight 

 Current exercise hardware and exercise prescriptions performed during ISS 

missions (~6 months) do not completely prevent musculoskeletal deconditioning, but 

may mitigate some of the musculoskeletal loss (42,73,76,78-79,81,87).  Recent data 

show that when exercise on the advanced resistive exercise device (aRED) is combined 

with adequate nutrition, astronauts exhibit no net bone loss after 6 month ISS missions at 

most bone sites (76).  However, it is unclear how these DEXA derived measures of bone 
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mass translate into mitigation of bone strength loss following 6-month ISS missions.  

These human exercise evaluations during microgravity provide further evidence that 

high impact resistive exercise prescriptions are necessary to prevent bone loss during 

long duration space missions. 

Exercise Countermeasures in Ground-Based Rodent Models 

The rodent hindlimb unloading (HU) model is a well-established ground-based 

model for investigating disuse effects on bone (58,72,91,93).  Our recent publication 

details how high intensity muscle contractions at 75-to-100% peak isometric torque (P0), 

produced during simulated resistance training (SRT) (Figure 4) which is undertaken 

during a period of HU,  produce significant gains in proximal tibia cancellous and mid-

diaphyseal tibia cortical bone (50,83).  These gains were associated with a significantly 

greater bone formation rate (BFR) as compared to control animals (50,83).  Therefore, 

high intensity exercise provides some protection against disuse-induced bone loss in 

rodent ground-based simulations of microgravity.  In fact, SRT produces bone mass 

gains during HU for several key bone measures. 

Mechanical loading, SRT, during disuse dampens sclerostin secretion from 

osteocytes, resulting in Wnt signaling activation and bone gain (50). When the hindlimbs 

of rats are subjected to HU, sclerostin-positive osteocytes are significantly increased 

(50).  However, when HU rats are subjected to SRT the number of sclerostin positive 

osteocytes are similar to weightbearing controls.  The reduction of the number of 

sclerostin positive osteocytes by mechanical loading may explain the recovery of the 

normal bone mineral accretion during disuse (50).  Therefore, these data suggest that 



15 

osteocytes embedded in bone matrix monitor the mechanical environment and respond 

by altering sclerostin protein levels. 

During bone deposition some osteoblasts become embedded in bone matrix, 

when this occurs these cells are called osteocytes.  Visual inspection of newly embedded 

osteocytes on the periosteal rim show very low sclerostin staining (50).  This observation 

is consistent with previous reports (59).  In fact, gene expression profile of newly 

embedded osteocytes is different from more mature osteocytes (70).  Taken together, 

these data suggest that newly embedded osteocytes are genetically programmed to limit 

sclerostin production or local signaling inhibits sclerostin expression.   

Sclerostin is a potent inhibitor of Wnt signaling in osteoblasts.  HU effectively 

increases sclerostin levels and added SRT lowers the number of sclerostin-positive 

osteocytes (50).  SRT imposed every third day during HU and prevents higher numbers 

of sclerostin-positive osteocytes (50).   These data suggest high intensity exercise every 

third day provides a sufficient mechanical stimulus to reduce sclerostin levels and 

activate Wnt signaling.   
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Figure 4. Simulated Resistance Training (SRT). Isometric plus eccentric exercise using percutaneous of 
sciatic nerve to produce active plantarflexor muscle contractions at 75% of peak isometric torque.  The 
Force instrumented servo-motor and footplate enable isometric and eccentric muscle contractions and 
simultaneous force measurements. 
 
 
 
 The ground-based tail suspension rodent hindlimb unloading model effectively 

reproduces the suppressed bone formation and increased bone resorption observed 

during spaceflight missions (57-58).  However, the HU model requires the rodent be 

suspended at a 30° angle to appropriately load the tail and forelimbs, and to simulate a 

head-ward fluid shift (29).  A novel harnessed mouse model has been developed for 

ground-based studies for the precise titration of ground reaction forces to all four limbs 

in order to study partial weightbearing effects (94).  Three weeks of partial 

weightbearing at ~38% total body weight results in approximately a 26% reduction in 

cancellous BV/TV and 20% reductions in diaphyseal cortical thickness relative to full 

weightbearing controls (21,94). 
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CHAPTER III 

SIMULATING THE LUNAR ENVIRONMENT: PARTIAL WEIGHTBEARING AND 

HIGH-LET RADIATION INDUCES BONE LOSS AND INCREASED SCLEROSTIN-

POSITIVE OSTEOCYTES 

 

Introduction 

 Human exposure to reduced weightbearing and radiation independently result in 

bone loss, however it was unclear if these two factors interact to exacerbate bone loss.  

Maintenance of bone mass is intimately dependent on mechanical loading.  Reduced 

weightbearing, for example during 6-month International Space Station (ISS) spaceflight 

missions, results in 1-2% bone loss per month relative to preflight baseline values at the 

femoral neck and lumbar spine (40-41,92).  In addition, radiation exposure early in life 

lowers bone mineral density later in life (65).  Long duration human spaceflight missions 

outside the protection of Earth’s magnetosphere will result in low-dose radiation 

exposure (19).  Therefore, the lack of weightbearing during spaceflight and space-

radiation exposure present serious skeletal tissue degenerative health risks for astronauts 

on long duration exploration class missions.  Moreover, it remains unclear how reduced 

weightbearing and added radiation exposure may impact bone mass on long duration 

space missions. 

 The magnitude of BMD loss and adaptations in bone geometry during a 6-month 

ISS mission produces declines in estimated bone strength equivalent to the median 

lifetime loss of that observed for Caucasian women (35).  Of particular concern are high-
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risk fracture sites such as the femoral neck and lumbar vertebrae.  These skeletal sites 

are composed of a thin cortical shell and reduction in mass of the shell and cancellous 

core can increase the risk of fracture.  Approximately 3 years, 6-times the typical ISS 

mission period, may be required to recover both mass and estimated strength to some of 

these skeletal sites (74). 

 The space radiation environment is primarily composed of galactic cosmic 

radiation (GCR), radiation emitted from solar particle events, and secondary radiation 

products (31).  Ongoing advancements in radiation biology and engineering research 

will help reduce the radiation risk to astronauts.  The GCR profile is of low-dose rate and 

primarily composed of heavy charged particles (C through Fe) and protons (hydrogen), 

and helium (31). A 1000-day human exploration mission to Mars is expected to result in 

total absorbed dose of about 0.42 Gy (19).  A round trip 88-day mission to the moon 

would involve a total dose equivalent to the bone marrow of 74 mSv (26).  Therefore, 

more data on radiation-induced bone loss are required to reduce the large uncertainties in 

estimates of radiation quality and to improve radiation risk estimates for exploration 

class missions. 

 Simulated GCR exposure of rodents provides the only experimental method to 

study the tissue level effects of low-dose high-linear energy transfer (LET) radiation.  

LET is the average local energy deposition per unit length of distance traveled in a 

material.  GCR is primarily composed of high-LET radiation, radiation that is highly 

energetic and extremely penetrating.  Radiation exposure to mice can independently 

induce potent cancellous bone loss and bone resorption (36,97).  In fact, gamma 
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radiation doses as low as 1 Gy of can cause significant murine cancellous bone mass loss 

within 1-wk following radiation exposure (36).  However, it remains less clear if low-

dose high-LET radiation, a radiation species not typically encountered on Earth, cause 

similar levels of bone loss.  

 The ground-based tail suspension rodent hindlimb unloading (HU) model 

effectively reproduces the suppressed bone formation and increased bone resorption 

observed during spaceflight missions (57-58).  The HU model requires the rodent be 

suspended at a 30° angle to appropriately load the tail and forelimbs and simulate the 

head-ward fluid shift (29).  A new harness suspension mouse model has been developed 

for ground-based studies for the precise titration of ground reaction forces to all four 

limbs (94).  Partial weightbearing at ~38% shows approximately a 26% reduction in 

cancellous BV/TV and 20% reductions in diaphyseal cortical thickness relative to full 

weightbearing controls (21,94).  

The aim of this experiment was to simulate the partial weightbeaing conditions 

and radiation environment on the Lunar surface.  The experimental design employed 

both X-ray reference radiation and 28Si radiation to determine the radiation quality effect 

of high LET species on bone tissue.  In addition, we employed a fractionated dose group 

to simulate the low-dose received over the course of an extended deep space mission.  

We hypothesized that simulated galactic cosmic radiation would exacerbate bone loss 

observed after reduced 1/6th partial weightbearing and fractionation of the highest dose 

group would mitigate detrimental effects observed with one acute dose.  
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Materials and Methods 

Animals 

This study was approved by Texas A&M University’s Institutional Animal Use 

and Care Committee (IACUC) and Brookhaven National Laboratory (BNL) IACUC.  

Radiation doses used in this study were chosen to ensure sufficient probability that each 

cell would be exposed to one 28Si particle and thus the X-ray energy equivalent was 

used.  

X-Ray Experiment 

Four-month old female BALB/cBYJ mice (Stock# 001026, Jackson 

Laboratories, Bar Harbor, Maine) were rank ordered by body weight and block assigned 

to one of 6 groups: (1) normal ambulatory cage control or 1 gravity group (1G SHAM, 

n=10), (2) 1G plus exposure to a fractionated 0.33 Gy X-ray dose (1G 3F x 0.33 Gy, 

n=10), (3) 1G plus exposure to a single 1 Gy dose (1G 1 Gy, n=10), (4) 1/6th weight 

bearing (G/6) group to simulate Lunar gravity (G/6 SHAM, n=12, (5) G/6 plus exposure 

to a fractionated 0.33 Gy X-ray dose (G/6 3F x 0.33 Gy, n=13), (6) G/6 plus exposure to 

a single 1Gy dose (G/6 1 Gy, n=14).  The single acute 1 Gy dose was given on Day 0; 

the fractionated 0.33 Gy X-ray dose was given on Days 0, 7, and 14.  Sham exposed 

mice were treated in the same manner as those exposed mice but without radiation 

exposure.  The dose-rate for these X-rays exposures was 0.191 Gy/min (Norelco MG300 

X-ray industrial radiograph).  Animals were irradiated prior to suspension on Day 0.  At 

the A&M radiation laboratory mice were placed in a plastic box at the center of the 

beam. No anesthesia was used on Day 0 exposures.  Animals in the fractionated dose 
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group (3F x 0.33 Gy) were anesthetized on Day 7 and 14 (ketamine100mg/kg + xylazine 

10mg/kg) before leaving the vivarium to limit any ambulatory activity during the 

transportation and irradiation periods. Suspended mice were anesthetized but remained 

in suspension.  All animals were given a subcutaneous injection of saline (0.25ml) to 

prevent dehydration.   

28Si Experiment 

Four-month old female BALB/cBYJ mice (Jackson Laboratories, Bar Harbor, 

Maine) were ranked ordered by body weight and block assigned to one of 8 groups: (1) 

normal ambulatory cage control or 1 gravity group (1G SHAM, n=8), (2) 1G plus 

exposure to a single 0.17 Gy dose (1G 0.17 Gy, n=8) (3) 1G plus exposure to a 

fractionated 0.17 Gy 28Si dose (1G 3F x 0.17 Gy, n=7), (4) 1G plus exposure to a single 

0.5 Gy dose (1G 0.5 Gy, n=8), (5) 1/6th weight bearing group to simulate Lunar gravity 

(G/6 SHAM, n=11), (6) G/6 plus exposure to a single 0.17 Gy dose (G/6 0.17 Gy, n=9), 

(7) G/6 plus exposure to a fractionated 0.17 Gy 28Si dose (G/6 3F x 0.17 Gy, n=11), (8) 

G/6 plus exposure to a single 0.5 Gy dose (G/6 0.5 Gy, n=10).  The fractionated 0.17 Gy 

28Si dose was given on Days 0, 2, and 7.  The single acute 0.5 Gy 28Si dose was given on 

Day 0.  The dose-rate for these radiation exposures was 0.25 Gy/min.  The sham mice 

were treated similarly as the irradiate mice and positioned in the beam line but without 

radiation exposure.  Due to logistical constraints at the NASA Space Radiation 

Laboratory (NSRL) the fractionated dose schedule differed from the X-ray experiment 

(Days 0, 7, and 14 versus Days 0, 2, and 7).  All mice were placed in special 50ml 

conical tube foam rack system for sham and irradiation exposures.  Animals in the 
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fractionated dose group (3F x 0.17 Gy) were anesthetized on Day 2 and 7 

(ketamine100mg/kg + xylazine 10mg/kg) before placement into the tube/rack system to 

prevent ambulatory activity during irradiation. 

For both experiments, the mice were acclimated for one week with standard 

conditions of temperature (23 ± 2°C) and light-controlled environment (12-hr light/dark 

cycle) and single-housed for two weeks prior to the experiment in cages with removable 

polypropylene perforated floors.  Food (standard rodent chow, Harlan Teklad 8604) and 

water were available ad libitum.  All animals were monitored for health and body weight 

was recorded daily. 

For both experiments, animals were anesthetized with a ketamine:xylazine 

cocktail before euthanasia on day 21.  To ensure the animals limbs did not bear weight to 

limbs prior to termination, all G/6 animals were anesthetized before removal from the 

suspension apparatus.  Immediately after euthanasia cocktail injections, blood was 

collected via cardiac puncture, clotted and spun down to isolate serum.  Following blood 

collection, animals were euthanized by decapitation and both femora and tibiae were 

harvested, stripped of soft tissue, and stored in either 70% ethanol at 4°C for micro 

computed tomography (µCT), histomorphometric analyses, wrapped in PBS-soaked 

gauze immediately and stored at −30°C for mechanical testing or snap frozen in liquid 

nitrogen and stored at -80°C for later determination of lipid peroxidation products. 

Suspension Devices 

Custom built mouse polycarbonate suspension cages (13” x 13” x 13”) with 

removable polypropylene perforated floors were used in this experiment.  The 
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suspension system was composed of a stainless steel rod, plastic pulley, i-hook, and 

spring.  This suspension system was modeled after that designed and tested previously to 

provide easy access to food and water but prevent animals from resting against the cage 

walls (94). 

A specialized weighing apparatus was built to allow accurate measurement of 

total body mass over the course of the experimental protocol and allow for 1/6th 

weightbearing titrations as described previously (94).  This custom precision engineered 

weighing apparatus was built around an electronic scale (Ohaus Corp., Pine Brook, NJ) 

for daily weighing of all mice while suspended in its suspension harness.  Small 

adjustments to the i-hook screw and spring suspension system were made to maintain 

1/6th weightbearing over the course of the study.  A more detailed overview of this 

suspension and weighing system has been previously described (94). 

Micro-computed Tomography (µCT) 

Right distal femurs were scanned ex vivo with microcomputed tomography (µCT 

SkyScan 1172; SkyScan, Kontich, Belgium) to quantify 2D and 3D micro architecture.  

A 60kV X-ray source was used over an angular range of 180° with 0.70° rotational 

steps. [Note: These uCT scans and reconstructions were performed in a colleague’s 

laboratory (MR Allen, Indiana University School of Medicine, Indianapolis).  Data 

reduction, statistical analysis, and interpretation of the results were performed by BR 

Macias.]  Six micrometer resolution projection images generated, reconstructed and 

analyzed (NRecon and CTAn; SkyScan).  For cancellous bone measurements, a 1mm 

segment within the distal metaphysis secondary spongiosa was identified and manually 
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traced.  To distinguish between bone from soft tissue a threshold was applied (range, 100 

to 255), and specimen analyzed in 3D for bone volume/ trabecular volume (BV/TV), 

trabecular number (Tb.N), and trabecular thickness (Tb.Th).  One slice, 3 mm proximal 

to the most distal end of the metaphyseal segment was analyzed to determine cortical 

bone area (Ct.Ar), polar moment of inertia (J), and Ct.Th.  All nomenclature used 

follows those guidelines established for micro-computed tomographic evaluation of bone 

(13).   

Cortical Dynamic Histomorphometry Analysis 

 Intraperitoneal injections of calcein (Sigma Chemical, St. Louis, 15 mg/kg body 

weight) was administered for fluorochrome labeling 7 and 2 days prior to euthanasia.  

Undemineralized distal left tibiae were serial dehydrated and embedded in 

methylmethacrylate (Sigma-Aldrich M5, 590-9, St. Louis, MO).  Serial cross sections 

(150 to 200 µm) of cortical bone were sectioned (Isomet diamond wafer low-speed saw: 

Buehler, Lake Bluff, IL) proximal to the tibiofibular junction (TFJ), rinsed of dust debris 

and mounted on glass slides.  The histomorphometric analyses were performed by using 

the OsteoMeasure Analysis System, Version 1.3 (OsteoMetrics, Atlanta, GA).  Measures 

of labeled surfaces and interlabel widths were obtained at 200x magnification of two 

sections per animal.  If double label did not appear on the first two sections an additional 

two sections we obtained to search for double label. After an exhaustive search and no 

double label observed a value of 0.3 um/day was used as the estimated physiological 

lower limit of MAR (22,66).  Periosteal and endocortical mineral apposition rates 

(MAR, µm/d) were calculated by dividing the average interlabel width by the time 
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between labels (5 days), and mineralizing surface (MS) for both periosteal and 

endocortical bone surfaces (BS) using the formula %MS/BS = {(single-labeled 

surface/2) + double-labeled surface]/surface perimeter} X 100.  Bone formation rate 

(BFR) was calculated as (MAR x MS/BS).   

Sclerostin Immunohistochemistry 

The distal half of left femora were fixed in 4% phosphate-buffered formalin for 

48 hours at 4ºC, then decalcified in a sodium citrate-formic acid solution for 14 days, 

and stored in 70% EtOH.  Five millimeter midshaft femoral cross sections were cut and 

placed in cassettes for paraffin embedding.  Following decalcification, they were 

embedded in paraffin and transverse cortical sections at the midshaft were cut 8 µm 

thick and mounted on slides.  Tissues were processed for sclerostin IHC as described 

previously (50).  Tissues were then placed on a wet-incubation tray and each sample was 

loaded with the sclerostin primary antibody (1:500 dilution, R&D Systems, Minneapolis, 

MN) and incubated at 4°C overnight.  The quantification of total (N.Ot) and sclerostin-

positive osteocytes (SOST+ Ot) was performed over the entire cortical bone cross-

section using the OsteoMeasure Analysis System, Version 1.3 (OsteoMetrics, Atlanta, 

GA).  The percentage of sclerostin-positive osteocytes was calculated as (SOST+ 

Ot/Total Ot) X 100. 

Serum TRAP 5b 

To quantify systemic osteoclast number, serum concentrations of TRAP 5b were 

measured.  TRAP5b levels were determined by with a TRAP 5b ELISA kit (IDS, 

Fountain Hills, AZ) according to the manufacturer's instructions.  Assay results were 
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analyzed using a DTX 880 microplate reader (Beckman Coulter; Brea, CA).  The intra- 

and inter-assay coefficients of variation were < ± 6.5% and 8%, respectively for this 

ELISA kit. 

Lipid Peroxidation 

 Tibias were snap-frozen and stored at -80°C.  Whole tibias were pulverized into a 

fine powder with a mortar and pestle, kept cold with liquid nitrogen.  The pulverized 

bone sample was resuspended in 20 mM of ice-cold PBS.  The manufacturer’s standard 

ELISA recommended protocol was followed for the quantification of the decomposed 

lipid peroxidation products malondialdehyde (MDA) and 4-hydroxyalkenals (HAE) 

(Oxford Biomedical Research, Inc., Oxford, MI). 

Mechanical Testing 

Femoral necks for mechanical testing were brought to room temperature and 

wrapped in PBS soaked gauze before testing to failure on an Instron 3345 as previously 

described (82).  [Note: These mechanical tests were performed in a colleague’s 

laboratory (HA Hogan, Mechanical Engineering, Texas A&M University).  BR Macias 

was assisted by students in Dr. Hogan’s laboratory to perform these mechanical tests.  In 

addition, data reduction, statistical analysis, and interpretation of the results were 

performed by BR Macias.]  In short, the proximal half of the femur was placed upright 

in a custom metal plate support. A quasi-static load was applied in displacement control 

at 1.27 mm/min.  The applied load was measured with a 100 Newton (N) load cell. All 

data collected during tests were digitized and analyzed by Bluehill software (version 

2.14.582, Instron Bluehill). 
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Statistical Analysis 

All data are presented as mean ± standard deviation (SD) and evaluated using the 

statistical package SPSS (v.15; Chicago, III).  Body mass data are presented as mean ± 

standard error (SE) for graphical clarity.  Data were analyzed using a 2-way ANOVA to 

test the main effects of partial weightbearing and radiation, with interactions.  A fisher's 

least significant difference post hoc analyses were performed for pairwise comparisons.  

For all data, statistical significance was accepted at p<0.05. 

Results 

 Body weight is reduced during partial weightbearing as compared to cage 

controls but added radiation exposure does not cause further losses (Figure 5 and 6). 
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Figure 5.  Effects of G/6 weightbearing and X-ray radiation exposure on body mass. Data are 
presented as mean ± standard error (SE) for graphical clarity. *The 1G group is significantly different on 
day 21 from G/6, P<0.05. 
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Figure 6. Effects of G/6 weightbearing and 28Si radiation exposure on body mass. 
Data are presented as mean ± standard error (SE) for graphical clarity. *The 1G group is significantly 
different on day 21 from G/6, P<0.05. 
 
 
 
Partial Weightbearing and Radiation Exposure Result in Cancellous Bone Loss 

 Partial weightbearing (G/6) for 21-days results in lower percent BV/TV at the 

distal femur compared to the full weightbearing cage controls (1G) (Figure 7A and 7D).  

Fractionating the 1.0 Gy X-ray dose mitigated decrements in cancellous 

microarchitecture both at 1G and G/6 (Figure 7A-C).   Surprisingly however, 

fractionating 28Si did not show the same protective effect as fractionated X-rays (Figure 

7D-F).  During full weightbearing, three fractions of 0.17 Gy 28Si produced a 18% lower 

BV/TV and one acute 0.5 Gy 28Si dose produced a 14% lower BV/TV, compared to 

SHAM exposed (Figure 7D).   



29 

B
V/

TV
 (%

)

0

5

10

15

20

G/61G
SHAM 3F x 0.33Gy 1 Gy SHAM 3F x 0.33Gy 1 Gy

*a a b

a a b

*

B
V/

TV
 (%

)

0

5

10

15

20

G/61G
SHAM 3F x 0.33Gy 1 Gy SHAM 3F x 0.33Gy 1 Gy

*a a b

a a b

*

Tb
.N

 (m
m

-1
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

G/61G
SHAM 3F x 0.33Gy 1 Gy SHAM 3F x 0.33Gy 1 Gy

baa

baa *
*

Tb
.N

 (m
m

-1
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

G/61G
SHAM 3F x 0.33Gy 1 Gy SHAM 3F x 0.33Gy 1 Gy

baa

baa *
*

Tb
.T

h 
(m

m
)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

G/61G
SHAM 3F x 0.33Gy 1 Gy SHAM 3F x 0.33Gy 1 Gy

**

Tb
.T

h 
(m

m
)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

G/61G
SHAM 3F x 0.33Gy 1 Gy SHAM 3F x 0.33Gy 1 Gy

**

A)

B)

C)

D)

E)

F)

*

*

* *

*

X-Ray 28Si

 
Figure 7.  Cancellous microarchitecture during partial weightbearing and X-ray or 28Si exposure.  
X-ray:  A) BV/TV, Bone Volume B) Tb.N, Trabecular Number C) Tb.Th, Trabecular Thickness. 
Cancellous microarchitecture during partial weightbearing and 28Si exposure: D) BV/TV, Bone Volume. 
E) Tb.N, Trabecular Number F) Tb.Th, Trabecular Thickness. *significant main effect for load condition 
(1G versus G/6, p<0.05).  Those radiation groups within the respective 1G or G/6 load condition not 
sharing the same letter are significantly different, p<0.05. 
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 Similarly, during partial weightbearing, three fractions of 0.17 Gy 28Si produced 

a 12.3% lower percent BV/TV and one acute 0.5 Gy 28Si dose showed a 8.8% lower 

BV/TV compared to SHAM exposed (Figure 7D).   The highest X-ray dose, 1 Gy, when 

combined with partial weightbearing, resulted in 33% lower Tb.N compared to full 

weightbearing SHAM controls (Figure 7B).  The magnitude of loss in percent BV/TV 

was greater when X-ray exposure was combined with partial weightbearing.  In addition, 

fractionating an X-ray dose during partial weighbearing reduced BV/TV by 4% 

compared to partial weightbearing SHAM exposed animals, not observed in the full 

weightbearing groups, suggesting that fractionating low LET during partial 

weightbearing may show a small but different effect compared to that observed during 

full weightbearing.  Partial weightbearing reduced Tb.Th by ~12-13% in both the 28Si or 

X-ray experiments.  X-ray and 28Si exposure during full- or partial-weightbearing 

conditions did not impact Tb.Th. 

Partial Weightbearing and Radiation Exposure Impact Cortical Bone Geometry 

 X-ray exposure did not cause significant decrements in Ct.Ar, J, or Ct.Th (Figure 

8A-C).  Partial weightbearing suppressed the cortical bone growth at the mid shaft femur 

(Figure 8D).  The fractionated 28Si radiation dose resulted in a lower Ct.Ar. compared to 

a full single radiation dose during full weightbearing (Figure 8D).  Similarly, polar 

CMSI (J), was lower with G/6 compared to full weightbearing (Figure 8E).  When 28Si 

radiation exposure was combined with partial weightbearing, the decrements in Ct.Ar 

and J are similar to the G/6 SHAM group but lower than the 1G groups.   
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Figure 8. Partial Weightbearing, X-ray radiation, and 28Si radiation effects on midshaft femoral 
cortical geometry.  X-ray radiation: A) Cortical bone area, Ct.Ar. B) Polar moment of inertia, J C) 
Cortical thickness, Ct Th; 28Si radiation: A) Cortical bone area, Ct.Ar.  B) Polar moment of inertia, J C) 
Cortical thickness, Ct Th.  *significant main effect for load condition (1G versus G/6, p<0.05). 
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Partial Weightbearing and Radiation Exposure Reduce Femoral Neck Strength 

 All groups exposed to partial weightbearing show lower femoral neck strength 

(Figure 9A and 9D).  Partial weightearing combined with a fractionated 0.5 Gy dose of 

28Si exacerbates disuse-related reductions in femoral neck strength compared to 1G 

SHAM or the 1G fractionated dose (p=0.003).  Partial weightbearing, radiation, or the 

combination of those factors did not significantly lower femoral neck stiffness (Figure 

9B and 9E). 
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Figure 9. Partial Weightbearing and radiation effects on femoral neck mechanical properties.   
A) Partial weightbearing and 28Si radiation exposure lower load to failure of the femoral neck.  B) Partial 
weightbearing and X-ray radiation exposure lower load to failure of the femoral neck.  C) Partial 
weightbearing and 28Si radiation effects on femoral neck stiffness.  D) Partial weightbearing and X-ray 
radiation effects on femoral neck stiffness.  *significant main effect for load condition (1G versus G/6, 
p<0.05).  † Significantly different from 1G 3F x 0.17 Gy group (p=0.003). 
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Partial Weightbearing Elevates Marker of Osteoclast Number 

 Partial weightbearing elevates serum TRAP5b levels, a marker of osteoclast 

number (Figure 10).  There was no independent effect of 28Si radiation. 

  

 
 
Figure 10.  Partial Weightbearing for 21-days and 28Si radiation exposure elevates serum TRAP 5b 
levels compared to 1G cage controls animals.  The values are given as mean ± SD. *significant main 
effect for load condition (1G versus G/6, p<0.05). 
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Partial Weightbearing Combined with 28Si Radiation Exposure Exacerbates the 

Proportion of Cortical Sclerostin-Positive Osteocytes 

 The proportion of sclerostin positive osteocytes in cortical bone was higher 

during G/6 then 1G (Figure 11A and 11B).  Unexpectedly, added 28Si radiation exposure 

during partial weightbearing significantly raised the proportion of sclerostin-positive 

osteocytes at the mid shaft femur (Figure 11A). X-ray radiation exposure combined with 

partial weightbearing does not appear to cause the same effect (Figure 11B).  However   

A) 

 
B) 
 

 
Figure 11. Proportion of sclerostin positive osteocytes during partial weightbearing and radiation 
exposure. A) Partial weightbearing and 28Si radiation exposure demonstrates a higher proportion of 
sclerostin positive osteocytes.  B) Partial weightbearing groups demonstrate a higher proportion of 
sclerostin positive osteocytes. *significant main effect for load condition (1G versus G/6, p<0.05). Within 
the G/6 load condition those groups not sharing the same letter are significantly different, p<0.05. 
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due to limited availability of tissue samples in the combined X-ray and partial 

weightbearing groups (n=6) we can not conclude if low-dose low LET causes the same 

elevation of cortical sclerostin positive osteocytes as observed in the 28Si radiation 

experiment.  Nevertheless, in the X-ray experiment we find significantly higher 

proportion of sclerostin positive osteocytes compared to the full weightbearing controls. 
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Figure 12.  Partial Weightbearing and 28Si radiation effects on tibial cortical dynamic 
histomorphometry Effects of reduced gravitational loading on periosteal and endocortical bone surface 
dynamic histomorphometric analyses measured at the tibia mid-diaphysis. A: Periosteal mineralizing 
surface (MS/BS). B: Periosteal bone formation rate (BFR).  C: Endocortical mineralizing surface 
(MS/BS). D: Endocortical bone formation rate (BFR).The values are given as mean ± SD. *significant 
main effect for load condition (1G versus G/6, p<0.05).  Those radiation groups within the respective 1G 
or G/6 load condition not sharing the same letter are significantly different, p<0.05. 
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Weightbearing at Less Than 1G Suppresses Bone Formation 

 Partial weighbearing potently suppresses mineralization on both periosteal and 

endosteal surfaces (Figures 12 and 13).  Interestingly, a fractionated 28Si exposure during 

full weightbearing conditions showed further reductions in MS/BS as compared to 

SHAM exposed mice (Figure 12C).  The fractionated dose group shows a similar 

suppression of bone formation as compared to the single full dose during partial 

weightbearing. 

 
 

X-Ray
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Figure 13.  Partial Weightbearing and X-ray radiation effects on tibial cortical dynamic 
histomorphometry. Effects of reduced gravitational loading on periosteal and endocortical bone surface 
dynamic histomorphometric analyses measured at the tibia mid-diaphysis. A: Periosteal mineralizing 
surface (MS/BS). B: Periosteal bone formation rate (BFR).  C: Endocortical mineralizing surface 
(MS/BS). D: Endocortical bone formation rate (BFR).  *significant main effect for load condition (1G 
versus G/6, p<0.05). Those radiation groups within the respective 1G or G/6 load condition not sharing the 
same letter are significantly different, p<0.05. 
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Lipid Peroxidation 

 A single 0.5 Gy dose of 28Si during full weightbearing caused a significant 

doubling of MDA+4HNE in whole tibia homogenates compared to 0 Gy SHAM 

exposed (Figure 14). 
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Figure 14. The highest acute 28Si radiation dose during 1G raises lipid peroxidation levels in tibias 
after 21-days. *unpaired t-test, significantly different from SHAM exposed, p=0.031. 
 
 
 
Discussion 

In support of our hypothesis, low-dose high LET radiation exposure exacerbates 

cancellous bone loss (BV/TV) seen with partial weightbearing.  Fractionating low-dose 

high LET radiation (28Si) does not prevent cancellous bone loss.  However, fractionating 

low-dose low LET radiation (X-rays) does protect against cancellous bone loss during 
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full weightbearing conditions.  Thus, the present data suggest that the effect of 

fractionation is dependent on LET for cancellous bone tissue.     

Dividing a large gamma or proton radiation dose into small fractions is a 

common therapeutic strategy to deliver a sufficient radiation dose, for example 5-10 Gy 

to pathological tissue but spare neighboring healthy normal tissue (102).  Therefore, 

utilizing fractionated doses regimes similar to those used in the present study may better 

simulate the low-dose rate exposures observed in space. 

As expected, midshaft cortical areas of the partial weightbearing groups were 

smaller than in weightbearing cage controls.  At the lower 0.5 Gy 28Si dose tested in the 

present study there were not significant negative effects on femoral neck mechanical 

properties.  Exposure to radiation doses 2-Gy and above may potently suppress cortical 

bone growth, potentially masking differences between low- and high LET effects.  In 

addition, these studies further highlight the temporal and tissue dependent effects of 

radiation exposure.  

Three low-dose high LET radiation exposures cause similar cancellous bone loss 

as compared to a single dose.  At higher radiation doses cancellous bone loss after 110-

days of 2 Gy high LET (56Fe) radiation or low-LET (gamma) radiation were similar (28). 

Similar to our findings, doses as low as 0.5 Gy 56Fe radiation demonstrate significant 

impacts on cancellous bone loss (100).   

X-ray radiation impairs osteoblast proliferation and enhances osteoclast 

maturation (46).  The present data show more circulating osteoclasts as evidenced by the 

higher serum TRAP5b levels in G/6 groups with or without radiation.  Radiation induced 
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elevation of TRA5b is up by 50% as early as 1-day following 2-Gy X-ray radiation, and 

TRAP5b has been shown to remain elevated 3-days following irradiation by 14% (96).  

Moreover, higher lipid peroxidation of whole tibia homogenates 21-days after radiation 

exposure suggests persistent radiation induced oxidative damage in bone tissue.  It has 

been reported previously that oxidative stress can lead to higher bone resorption (37).  

Limited numbers of snap frozen tissues limited lipid peroxidation measurement to sham 

and 50 cGy 28Si full weightbearing groups.  The present data suggest that lipid 

peroxidation of bone tissue may play a role in radiation induced bone loss. 

Both partial weightbearing and radiation exposure impair bone formation rate, 

primarily as a result of a lower MS/BS.  This lower MS/BS may indicate impairment of 

pre-osteoblast proliferation capacity or fewer osteoblasts directed to bone surfaces.    We 

find a lower cortical bone formation rate with partial weightbearing exposure than with 

radiation exposure during full weightbearing.  This disuse-associated suppression of 

cortical bone formation is consistent with previous investigations (37).     

Radiation, especially high-LET radiation, generates a substantial amount of 

reactive oxygen species, namely hydroxyl radicals (27).  Reports suggest that Wnt 

signaling is antagonized by oxidative stress (52).  Nitric oxide is one key molecule 

implicated in signal transduction of mechanical signals in bone tissue to osteoblasts and 

osteocytes (14).  Thus, elevated levels of reactive oxygen species beyond endogenous 

cellular antioxidants capacity could quench this mechanically induced nitric oxide 

signal.  This reduction in nitric oxide levels could result in lower than normal 

mechanical loading signals to osteoblasts and osteocytes leading to an increase in 
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sclerostin production.  Alternatively, radiation-induced suppression of osteoblast 

proliferation may indirectly result in higher sclerostin-positive osteocytes.  Recent data 

suggest that the mechanical loading-mediated downregulation of sclerostin expression in 

osteocytes is located near regions of new bone formation (59).  Therefore, radiation-

induced suppression of osteoblastogenesis could lower the number of mature osteoblasts 

on bone surface and prevent local signal processing between osteocytes nearby bone 

cells, resulting in more sclerostin-positive osteocytes. 

 BALB/cBYJ are highly responsive to the mechanical load environment (33).  

Thus, use of the BALB/c mice strain may have limited our ability to detect small 

enhancement of bone loss due to radiation effects when combined with reduced 

weightbearing.  However, utilization of BALB mice for these series of experiment 

enables direct comparisons with previous data from partial weightbearing literature 

(46,94).   

 Data on bone quality during or after Lunar missions do not exist. Moreover, no 

data exist testing the skeletal consequences of combining low-dose high-LET radiation 

and partial weightbearing. NCRP’s report 98 highlights the need for more data on the 

effects of low-dose high-LET radiation.   

 In support of our hypothesis, low-dose high LET radiation exposure during 

partial weightbearing conditions exacerbates cancellous bone loss (BV/TV).  In addition, 

fractionating our higher 28Si dose does not prevent cancellous bone loss.  Radiation-

induced oxidative stress may explain some of the resultant cancellous bone loss.  The 

number of sclerostin positive osteocytes is higher when exposed to partial weightbearing 
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and added low-dose high LET radiation compared to SHAM controls.  It remains to be 

determined if bone mass can recover following low-dose high LET exposure.  Exercise 

regimens that reproduce high impact force profiles observed during full weightbearing 

are an essential component of the bone loss mitigation strategy for both crew members 

and clinical population. 
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CHAPTER IV 

COMBINED SIMULATED RESISTANCE TRAINING AND GSK3 INHIBITION 

INCREASES BONE MASS DURING DISUSE 

 

Introduction 

 Approximately 1.5 million osteoporotic-related fractures occur annually in the 

United States (9) and these fractures are one of the most common causes of disability 

(20).  As a result, the direct care expenditures for osteoporotic fractures are estimated to 

be as high as $17.9 billion (86). 

 Weight bearing exercise early in life contributes to high peak bone mass; 

however, bone loss ensues if the exercise program terminates (34).  Mechanical loading 

of bone, as during high impact exercise activities, induces site-specific changes in bone 

architecture and increased bone mass (30,43).  Moreover, regular physical activity 

improves mobility and muscle function; it may also indirectly reduce the risk of falls 

thereby reducing fracture incidence.  In fact, exercise during extreme periods of disuse in 

humans such as bed rest maintains aerobic capacity (44), promotes bone formation (80), 

and maintains lumbar spine structure and function (49). 

Reduced weightbearing conditions during spaceflight result in 1-2% bone loss 

per month of preflight baseline values at the femoral neck and lumbar spine (40).  The 

rodent hindlimb unloading (HU) model is a well-established ground-based model for 

investigating disuse effects on bone (58).  Recently, high intensity muscle contractions at 

75-to-100% peak isometric torque (P0), produced during simulated resistance training 
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(SRT) undertaken during a period of HU  show significant gains in mid-diaphyseal tibia 

cortical bone mineral density (BMD) (50,83).  These gains were associated with a 2.6- to 

5-fold greater periosteal bone formation rate as compared to control animals (50,83).  

Therefore, high intensity exercise provides some protection against disuse-induced bone 

loss in rodent ground based simulations of microgravity. 

 Data over the last ten years strongly suggests that the Wnt pathway is a major 

regulator of bone formation; however, the basic molecular mechanisms governing the 

osteogenic response to mechanical load are unknown.  Loss-of-function mutation of the 

low-density lipoprotein receptor-related protein 5 (Lrp5) gene impairs the response to 

mechanical load and decreases osteoblast proliferation and bone mass (24).  Mechanical 

loading promotes formation of the Wnt-LRP4/5/6-Frizzled transmembrane complex.  

Formation of the receptor complex permits disheveled (Dsh) to inhibit the cytoplasmic 

formation of GSK-3β, APC and Axin-2 and allowing intracellular β-catenin levels to 

rise.  Once β-catenin levels are sufficiently high, β-catenin translocates to the nucleus 

where it associates with T-cell factor (TCF)/lymphoid enhancer-binding factor (LEF) 

transcription factors to activate the osteogenic gene expression program (18).  Moreover, 

the Wnt pathway functions to coordinate communication between mechanosensing 

osteocytes (via secreted sclerostin) and bone-forming osteoblasts by the binding of 

sclerostin to other Lrp receptors, for example Lrp4 and Lrp6 (16,47,98).    

 GSK-3β is a key modulator of the Wnt signaling pathway and has been a target 

of drug development to resolve metabolic and neurological diseases.  Inhibition of GSK-

3β can normalize blood glucose levels in an animal model (17) and suppress neuronal 



44 

apoptosis (6).  Given the efficacy of GSK-3β inhibitors to affect downstream Wnt 

signaling, they have recently been used to experimentally activate Wnt signaling in bone 

cells and increase bone mass in rodent models (38,54).  GSK-3β inhibition prevents 

ovariectomized-induced femoral bone loss in rodents (38).  In another report, femoral 

cancellous and cortical BMD were higher when treated with a GSK-3β inhibitor as 

compared to vehicle-treated controls (54).  However, it is unclear whether inhibition of 

GSK-3β can mitigate bone loss during disuse or how GSK-3β inhibition interacts with 

increased mechanical loading. 

 Current exercise hardware and exercise prescriptions performed during ISS 

missions (~6 months) does not completely prevent musculoskeletal deconditioning but 

may mitigate some of the musculoskeletal loss (73,76,78,81,87).  Recent data show that 

when exercise on the advanced resistive exercise device (aRED) is combined with 

adequate nutrition astronauts show no net bone loss after 6 month ISS missions at most 

bone sites (76).  These human exercise evaluations during microgravity provide further 

evidence that high impact resistive exercise prescriptions are necessary to prevent bone 

loss during long duration space missions. 

 Pharmaceuticals targeting the Wnt signaling pathway are currently being 

developed to treat osteoporosis and aid fracture healing (NCT01144377).  It is unclear 

how pharmaceutical perturbations of Wnt signaling during disuse or with exercise affect 

bone loss.  Therefore, the purpose of this study was to investigate the interaction of 

GSK-3 inhibition and resistance exercise imposed during simulated microgravity.  We 

hypothesized that simulated resistance training combined with a GSK-3 inhibitor 
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treatment during hindlimb unloading would most effectively mitigate disuse-induced 

decrements in cancellous and cortical bone geometry. 

Materials and Methods 

Animals and Experimental Design 

Forty male, Sprague-Dawley rats (6-mo-old) were obtained from Harlan 

(Houston, TX) at 6 months of age and allowed to acclimate for 14 days prior to initiation 

of the study.  All animals were singly housed after arriving at our animal facility in a 

temperature-controlled (23 ± 2ºC) room with a 12-hour light-dark cycle in an American 

Association for Accreditation of Laboratory Animal Care-accredited animal care facility 

and were provided standard rodent chow (Harlan Teklad 8604) and water ad-libitum.  

Animal care and all experimental procedures described in this investigation were 

approved by the Texas A&M University Laboratory Animal Care Committee.   

Six experimental groups were studied: (1) cage control (CC+Vh, n=10), (2) CC 

animals administered a GSK-3 inhibitor 0.2mg/kg (2'Z,3'E)-6-Bromoindirubin-3'-oxime 

(BIO) via subcutaneous injection once per week (CC+BIO, n=10), (3) hindlimb 

unloaded (HU+Vh, n=10), (4) HU animals administered 0.2mg/kg BIO via subcutaneous 

injection 1 time/week (HU+BIO, n=10), (5) HU subjected to simulated resistance 

training (HU+SRT/Vh, n=10), and (6) HU rats subjected to both BIO and SRT 

(HU+SRT/BIO, n=10).  All animals completed the 28-day protocol and maintained 

normal activity and appeared healthy.  Animals in all groups except CC underwent 28 

days of HU.  HU+SRT and HU+SRT/BIO animals underwent 9 sessions of simulated 
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resistive exercise conducted once every three days during the 28 day protocol.  The CC 

animals were allowed normal ambulatory cage activity.   

Calcein injections (25 mg/kg body mass) were given subcutaneously 9 and 2 

days prior to euthanasia to label mineralizing bone for histomorphometric analysis.  HU 

animals were anesthetized before removal from tail suspension at the end of the study to 

prevent any weight bearing by the hindlimbs.  At the end of the experiment, on day 28, 

all animals were anesthetized with 50 mg/kg BW of ketamine (Fort Dodge Animal 

Health; Fort Dodge, IA) and 0.5 mg/kg BW of medetomidine (Pfizer; New York, NY) 

and euthanized by decapitation.  Approximately 5 to 6 ml of blood was collected by 

cardiac puncture and allowed to clot for 20 minutes before centrifugation.  Serum was 

collected and stored at -80°C until analysis.  Proximal left tibiae were fixed in formalin, 

then stored in 70% ethanol at 4°C for histomorphometry analyses; proximal femurs were 

thoroughly cleaned of soft tissue, wrapped in gauze soaked with phosphate-buffered 

saline (PBS), and stored at -20°C for ex vivo pQCT scanning and mechanical testing. 

Hindlimb Unloading 

Hindlimb unloading was achieved by tail suspension as previously described 

(82).  The height of the animal’s hindquarters was adjusted to prevent any contact of the 

hindlimbs with the cage floor, resulting in approximately a 30° head-down tilt.  The 

forelimbs of the animal maintained contact with the cage bottom, allowing the rat full 

access to the entire cage.  All animals were monitored daily for health, including 

assessment of tail integrity, and body weights were measured weekly. 
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Simulated Resistance Training (SRT) Paradigm 

 Simulated resistance training was completed as previously described (100).  

Briefly, left plantarflexor muscles from animals in the HU+SRT/Vh and HU+SRT/BIO 

groups were trained once every 3 days during 28-day HU using a custom-made rodent 

isokinetic dynamometer.  Animals were anesthetized with isoflurane gas (~2.5%; Minrad 

Inc., Bethlehem, PA) mixed with oxygen before removal from tail suspension to prevent 

any weight bearing by the hind limbs.  Each rat was then placed in right lateral 

recumbency on a platform, the left foot was secured onto the foot pedal, and the left 

knee was clamped so that the lower leg was perpendicular to the foot and the femur and 

tibia were at right angles to each other.  This was referred to as the resting, 0° position.  

For isometric contractions, the foot pedal was held fixed in this position; to generate 

eccentric contractions of the plantarflexor muscles, the foot pedal moved the foot into 

40° of dorsiflexion.  For all contractions, the footplate was rotated in synchrony with 

muscle stimulation by a Cambridge Technology lever system (Model 6900) interfaced 

with a 80486 66-MHz PC using custom software written in TestPoint (v.4.0; Capital 

Equipment Corp., Billerica, MA).  Torque generated around the footplate pivot (at the 

rat’s ankle joint) was measured by the lever system’s servomotor.  Plantarflexor muscle 

stimulation was performed with fine wire electrodes consisting of insulated chromium 

nickel wire (Stablohm 800B, H-ML Size 003, California Fine Wire Co.), inserted 

intramuscularly straddling the sciatic nerve in the proximal thigh region.  The 

stimulation wires were then attached to the output poles of a Grass Instruments stimulus 

isolation unit (Model SIU5; Astro-Med, Inc; W. Warwick, RI) interfaced with a 
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stimulator (S88; Astro-Med, Inc; W. Warwick, RI) which delivered current to the sciatic 

nerve and induced muscle contraction.   

Voltage optimization to achieve peak isometric torque and stimulation frequency 

optimization of the eccentric torque were performed at the beginning of each session, as 

described previously (83).  The eccentric phase of the muscle contraction was titrated to 

equal ~75% of each animal’s daily peak isometric torque (Po).  The HU+SRT/Vh and 

HU+SRT/BIO animals completed a combined isometric+eccentric simulated resistance 

training (SRT) exercise paradigm, consisting of 4 sets of 5 repetitions, once every 3 days 

during HU (n=9 total exercise sessions).  The training paradigm consisted of a 1000 ms 

isometric contraction (75% Po), immediately followed by a 1000 ms eccentric 

contraction (75% Po). 

 (2'Z,3'E)-6-Bromoindirubin-3'-oxime Treatment 

 Animals in the CC+BIO, HU+BIO, and HU+SRT/BIO groups were administered 

0.2mg/kg (2'Z,3'E)-6-Bromoindirubin-3'-oxime (BIO) (R&D Systems, Inc.; 

Minneapolis, MN) via subcutaneous injection once per week for the duration of the 28-

day study.  BIO is a potent and selective glycogen synthase kinase-3 (GSK-3) inhibitor 

(55).  The BIO dose of 0.2mg/kg/week was previously shown to attenuate reductions in 

cancellous bone loss (%BV/TV) at the proximal tibia of rats during six weeks of 

methylprednisolone treatment (95).  Rats in the CC+Vh, HU+Vh, and HU+SRT/Vh 

groups were administered an equal concentration and volume of vehicle (dimethyl 

sulfoxide) by subcutaneous injection each week.   
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Peripheral Quantitative Computed Tomography (pQCT) 

On days -1 and 28 of the study, pQCT scans were performed in vivo at the 

proximal tibia metaphysis (PTM) and tibia mid-diaphysis with a Stratec XCT Research-

M device (Norland Corp., Fort Atkinson, WI), using a voxel size of 100 μm and a 

scanning beam thickness of 500 μm.  Two slices centered at 50% of the tibial total 

length (determined from a scout view on the CT scanner) were collected.  Calibration of 

this machine was performed on each day of scanning with a hydroxyapatite standard 

cone phantom.  A standardized analysis for diaphyseal bone (contour mode 1, peel mode 

2, outer threshold of 0.650 g/cm3, inner threshold of 0 g/cm3) was applied to each 

section. 

Values of cortical bone mineral content (BMC), cortical bone area, and the polar 

cross-sectional moment of inertia (CSMI) were averaged across the 2 slices at the tibial 

mid-diaphysis to yield a mean value.  Polar CSMI was based on geometry only and not 

weighted by density.  Machine precision for cortical vBMD (based on manufacturer’s 

data) is ±9 mg/cm3 for cortical bone.  Reproducibility in our laboratory was determined 

from five repeat scans using a in vivo multiple-slice scanning method; resulting 

coefficients of variation for cortical tibia BMD was ±0.59%. 

Values of total volumetric bone mineral density (vBMD), total bone mineral 

content (BMC), total bone area, and cancellous vBMD were averaged across the 3 slices 

at the proximal tibia to yield a mean value.  Machine precision (based on manufacturer’s 

data) is ±3 mg/cm3 for cancellous vBMD.  Coefficients of variation were ± 0.6, 1.6, 1.9, 
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and 2.13% for in vivo proximal tibia total vBMD, total BMC, total area, and cancellous 

vBMD respectively, as determined from repeat scans on each of 6 adult male rats. 

Ex Vivo pQCT 

 Following euthanasia, excised femurs were scanned ex vivo at the femoral neck 

(FN) using a voxel size of 70 μm to characterize mineral properties and cross-sectional 

geometry.  The proximal half of the femur was placed in a mold designed to hold the 

femoral neck in alignment with the scanning axis of the CT scanner (8,32). A scout view 

scan was performed, and three adjacent scan slices (500 μm) were made of the femoral 

neck starting just below the femoral head, with values averaged for 2 or 3 slices. 

Dynamic Histomorphometry Analysis 

 Undemineralized distal left tibiae were subjected to serial dehydration and 

embedded in methylmethacrylate (Sigma-Aldrich M5, 590-9, St. Louis, MO).  Serial 

cross sections (150 to 200 um) of midshaft cortical bone were cut starting 2.5mm 

proximal to the tibiofibular junction (TFJ) with an Isomet diamond wafer low-speed saw 

(Buehler, Lake Bluff, IL).  The histomorphometric analyses were performed by using the 

OsteoMeasure Analysis System, Version 1.3 (OsteoMetrics, Atlanta, GA).  Measures of 

labeled surfaces and interlabel widths were obtained at 200x magnification of up to two 

slides per animal.  Periosteal and endocortical mineral apposition rates (MAR, um/d) 

were calculated by dividing the average interlabel width by the time between labels (7 

days), and mineralizing surface (MS) for both periosteal and endocortical bone surfaces 

(BS) using the formula %MS/BS = {[(single-labeled surface/2) + double-labeled 
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surface]/surface perimeter} X 100.  Bone formation rate (BFR) was calculated as (MAR 

x MS/BS).   

Micro-computed Tomography (µCT) 

Microcomputed tomography (µCT SkyScan 1172; SkyScan, Kontich, Belgium) 

was used to quantify 2D and 3D microarchitecture.  [Note: These uCT scans and 

reconstructions were performed in a colleague’s laboratory (MR Allen, Indiana 

University School of Medicine, Indianapolis).  Data reduction, statistical analysis, and 

interpretation of the results were performed by BR Macias.]  The ex-vivo right and left 

proximal tibia were scanned using an X-ray source set at 60kV over an angular range of 

180 degrees with rotational steps of 0.70 degrees.  Projection images were attained at 6-

μm resolution and then reconstructed and analyzed using manufacturer-provided 

software (NRecon and CTAn; SkyScan). For trabecular bone analyses, a 1 mm long 

segment of the distal metaphysis secondary spongiosa was defined and the trabecular 

region within the segment was manually traced.  A threshold was applied to separate 

bone from soft tissue (range, 100 to 255), and then the specimen was analyzed in 3 

dimensions for bone volume/ trabecular volume (BV/TV), trabecular number (Tb.N), 

and trabecular thickness (Tb.Th).  All nomenclature follows currently accepted 

guidelines for micro-computed tomographic evaluation of bone (13).   

Femoral Neck Mechanical Testing 

 Specimens were brought to room temperature and all tests were performed on 

hydrated specimens using a material testing machine (Instron 3345, Norwood, MA) with 

a 1000-N load cell.  [Note: These mechanical tests were performed in a colleague’s 
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laboratory (HA Hogan, Mechanical Engineering, Texas A&M University).  BR Macias 

was assisted by students in Dr. Hogan’s laboratory to perform these mechanical tests.  In 

addition, data reduction, statistical analysis, and interpretation of the results were 

performed by BR Macias.]  Load and displacement data were collected at 10Hz during 

tests and analyzed using Bluehill software (version 2.14.582, Instron Bluehill) and a 

custom-written Matlab (version 7.12.0, The MathWorks, Inc.) program.  Mechanical 

properties of the femoral neck were evaluated using an axial loading configuration.  

Each proximal femur was placed upright with the diaphysis portion of the bone firmly 

inserted into a properly sized and fitted hole in a ½-inch thick aluminum plate fixture.  A 

10-mm cylindrical platen with a flat head was used to apply a load to the femoral head, 

parallel to the axis of the shaft of the femur. Quasi-static loading was applied in 

displacement control (2.54 mm/min) until fracture occurred.  Load-displacement curves 

were analyzed to determine the structural variables of ultimate force (F) and stiffness 

(S), the latter of which was defined to be the slope of the elastic linear portion of the 

loading curve.   

Serum Interleukin 6 (IL-6) 

 Serum IL-6 on cardiac blood samples collected at sacrifice was determined using 

the Rat IL-6 immunoassay Quantikine® ELISA (R&D Systems, Inc.; Minneapolis, MN) 

according to the manufacturer’s instructions.  All samples were run in duplicate and fit 

onto one plate to run this assay.  Assay results were analyzed using a DTX 880 

microplate reader (Beckman Coulter, Brea, CA, USA).  The interassay coefficient of 

variation was found to be 8%. 
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Statistical Analyses 

All data were expressed as means ± SD and evaluated using the statistical 

package SPSS (v.15; Chicago, Ill).  Data were first analyzed using a two-factor ANOVA 

(exercise and drug) to compare group differences between HU groups (HU+Vh, 

HU+BIO, HU+SRT/Vh, and HU+SRT/BIO).  A Tukey’s post-hoc test was used for 

pair-wise comparisons.  Subsequently, a one-factor ANOVA was used to compare HU 

groups’ values vs. that of the comparator cage control (CC) group (Tukey’s post-hoc test 

for pairwise comparisons).  A one-factor ANOVA was employed to determine 

significant longitudinal pQCT variable changes within each treatment group (in vivo 

pQCT data only).  An un-paired t-test tested differences between the HU+SRT and 

HU+SRT/BIO groups to determine the effect of added BIO treatment.  For all data, 

statistical significance was accepted at p<0.05. 

Results 

Simulated Resistance Exercise Combined with Inhibition of GSK-3 Prevents Disuse 

Induced Cancellous Volumetric BMD Losses 

 Cancellous proximal tibia total BMC was significantly lower by 11% after 28-

days of HU (p<0.05) (Table 1).  BIO treatment halved this HU-induced 11% loss of total 

BMC at the proximal tibia metaphysis (HU+Vh versus HU+BIO, p=0.03).  SRT 

significantly increased total BMC and total bone area at the proximal tibia metaphysis 

during HU (p<0.001 and p=0.002, respectively).  The gain in total BMC after 28-days 

was similar between the HU+SRT/Vh and HU+SRT/BIO groups.  Similarly, SRT 

significantly increased total bone area (area inside periosteal edge) at the proximal tibia 
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metaphysis by ~2% compared to the suppressed growth in the non-exercise control 

groups (p<0.001).  Moreover, BIO treatment combined with SRT enhanced gains in 

cancellous vBMD after 28-days HU, producing a significant 8.8% increase as compared 

to the 2.7% (non-significant) increase with SRT alone (HU+SRT/Vh). 

 

Table 1. Proximal Tibia Morphometry 
CC+Vh CC+BIO HU+Vh HU+BIO HU+SRT/Vh HU+SRT/BIO

Total BMC (mg)
Day 0 10.70 ± 0.50 10.88 ± 0.78 11.21 ± 0.92 10.44 ± 0.86  11.17 ± 0.58 10.82 ± 0.86

Day 28 11.20 ± 0.47* 11.29 ± 0.62* 9.96 ± 0.51*a 9.87 ± 0.85*b 11.98 ± 0.54*c 11.52 ± 0.94*c

%-Change 4.69% 3.98% -10.81% -5.37% 7.39% 6.57%
Total vBMD (mg/cm3)

Day 0  608.84 ± 33.64 612.35 ± 29.66 612.41 ± 30.44 599.64 ± 24.09 614.59 ± 34.94 602.72 ± 21.12
Day 28 635.93 ± 36.96* 624.40 ± 32.59*† 573.94 ± 41.46*a 569.31 ± 25.71*a 646.33 ±38.57*b 629.30 ± 20.34*b

%-Change 4.46% 1.96% -6.36% -5.06% 5.24% 4.44%
Total Bone Area (mm2)

Day 0 17.67 ± 1.63  17.79 ± 1.14 18.39 ± 2.19 17.45 ± 1.67 18.25 ± 1.42 18.00 ± 1.76
Day 28 17.71 ± 1.53 18.13 ± 0.86 17.47 ± 1.70a 17.38 ± 1.73a 18.61 ± 1.21b 18.33 ± 1.42b

%-Change 0.31% 2.03% -4.56% -0.30% 2.19% 2.07%
Cancellous vBMD (mg/cm3)

Day 0 201.42 ± 32.63 217.98 ± 34.72 215.18 ± 45.92 199.37 ± 25.30 210.05 ± 24.85 201.57 ± 28.21
Day 28 187.94 ± 34.87 204.16 ± 30.44 198.55 ± 35.05*a 187.91 ± 28.32a 214.32 ± 28.60b 218.74 ± 31.29*b

%-Change -6.44% -5.90% -6.71% -5.28% 2.74% 8.80%  
BIO treatment attenuates disuse associated decreases in total BMC (p=0.03).  †Significantly less than 
CC+Vh, p=0.014.  *p<0.05 vs. pre value. Those HU groups not sharing the same letter for each variable 
are significantly different from each other (p<0.05). 
 
 

The lower cancellous vBMD after 28-days in both cage control groups may suggest 

some age-related losses; however, the change was non-significant.  However, when HU 

was imposed for 28 days, cancellous vBMD was significantly lower by 6.7%. 

Simulated Resistance Exercise or Combined GSK-3 Inhibitor Administration Improves 

Cancellous Microarchitecture 

 Both SRT treatment alone or SRT treatment combined with weekly BIO 

treatment caused significant gains in proximal tibia cancellous BV/TV (p<0.05) (Figure 

15).  However, these ex vivo end-point µCT measures were unable to detect a difference 

between the HU+SRT/Vh and HU+SRT/BIO groups.  Both T.Th and T.N show a similar  
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Figure 15.  Effects of hindlimb unloading (HU) with or without GSK-3 (BIO) treatment and/or 
simulated resistance training (SRT) on cancellous bone microarchitecture.  A: Bone Volume 
(%BV/TV). B: Trabecular Thickness (Tb.Th.). C: Trabecular Number (Tb.N.).  Vertical dashed line 
indicates separation of CC from the experimental groups for preliminary 2-way ANOVA.  Those HU 
groups not sharing the same letter for each variable are significantly different from each other (p<0.05). 
*Significantly different versus CC (p<0.05). 
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response to the 3-times weekly SRT or the combined weekly BIO administration.  In rats 

given BIO treatment only during 28-days HU (HU+BIO), similar decrements in BV/TV, 

T.Th, and Tb.N as seen in the HU+Vh control group are observed.  Interestingly, BIO 

administration to full weightbearing animals show higher BV/TV, T.Th and Th.N 

compared to the CC+Vh control group (P<0.05). 

Simulated Resistance Exercise Combined with GSK-3 Inhibitor Administration not only 

Mitigates Suppressed Cortical Growth but also Stimulates Gain during Disuse 

 The magnitude of change in cortical BMC of the HU+SRT/BIO was significantly 

greater than the magnitude of change observed in the other HU groups (Table 2).  When 

SRT and BIO treatments are combined, the magnitude of change for cortical BMC was 

greater (6.5%) at the midshaft tibia as compared to the ~4% increase observed in the 

other HU groups, but non-significant (p=0.06).  Similarly, the 2.6% increase in cortical 

area in the HU+SRT/BIO was significantly greater than the 0.7% increase observed in 

the HU+SRT/Vh group (p<0.05).  These gains in cortical midshaft tibia BMC and area 

likely contributed to the significant increase in cortical thickness observed when SRT 

was combined with BIO treatment during disuse (p<0.05).  These gains in cortical 

midshaft BMC, area, and thickness resulted in the 7% gain in polar CSMI (p=0.06). 
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Table 2. Cortical Midshaft Tibia Bone Morphometry 
CC+Vh CC+BIO HU+Vh HU+BIO HU+SRT/Vh HU+SRT/BIO

Cortical BMC (mg)
Day 0  8.42 ± 0.57  8.54 ± 0.77  8.94 ± 0.76 8.56 ± 0.58 8.98 ± 0.82  8.41 ± 0.65

Day 28 8.75 ± 0.74*  8.95 ± 0.67* 9.28 ± 0.74*  8.89 ± 0.62*  9.33 ± 0.79*  8.95 ± 0.64*‡

%-Change 3.87% 5.80% 3.83% 3.90% 3.93% 6.48%
Cortical Area (mm2)

Day 0 8.78 ± 0.91  8.94 ± 89  9.03 ± 0.81 8.93 ± 0.73 8.97 ± 0.87  8.61 ± 0.86
Day 28  8.843 ± 0.88  9.01 ± 0.67  9.04 ± 0.83  9.09 ± 0.75 9.03 ± 0.79 8.81 ± 0.68†

%-Change 0.84% 1.09% 0.43% 1.82% 0.73% 2.65%
Cortical Thickness (mm)

Day 0 0.74 ± 0.03  0.74 ± 0.04  0.77 ± 0.03 0.74 ± 0.03 0.79 ± 0.04  0.75 ± 0.03
Day 28  0.76 ± 0.03  0.77 ± 0.04*  0.79 ± 0.03*  0.75 ± 0.04 0.80 ± 0.04 0.78 ± 0.03*†

%-Change 2.14% 4.16% 2.97% 1.26% 1.70% 4.66%
CSMI (mm4)

Day 0  12.00 ± 2.39 12.35 ± 2.26 12.92 ± 2.39  12.43 ± 1.96  12.76 ± 2.55 11.51 ± 2.29
Day 28  12.18 ± 2.32  12.54 ± 1.70 13.17 ± 2.52 12.99 ± 2.16#  13.05 ± 2.32  12.21 ± 1.83+

%-Change 2.09% 2.54% 1.22% 4.64% 2.82% 7.12%  
Cortical bone mineral content (BMC), cortical area, cortical thinkness, and polar cross-sectional moment 
of inertia (CSMI).  Values are group mean ± standard deviation of the mean. *p<0.05 vs. pre value.  †The 
magnitude of change in the HU+SRT/BIO group is significantly greater than that in the HU+SRT/Vh, 
p<0.05.  ‡The magnitude of change in the HU+SRT/BIO group was greater than the HU+SRT/Vh but non-
significant (p=0.055). +The magnitude of change in the HU+SRT/BIO group was greater than the 
HU+SRT/Vh but non-significant (p=0.06).  #The magnitude of change in the HU+BIO group was greater 
than the HU+Vh but non-significant (p=0.07). 
 
 
 
Simulated Resistance Exercise or Combined GSK-3 Inhibitor Administration Increases 

Bone Formation on Cortical Surfaces  

 Cortical midshaft tibia MS/BS, MAR, and BFR were suppressed after 28-days 

HU as compared to the full weightbearing controls (Figure 16).  Rats experiencing SRT 

during HU exhibited a significantly higher MS/BS on both the periosteal and 

endocortical surfaces (p<0.05).  SRT produced significantly higher MAR and BFR on 

the periosteal surface (p<0.05) and a non-significant increase in MAR and BFR on the 

endocortical surface.  In addition, by day 28 MAR of the SRT groups was not 

significantly different from levels in full weight bearing cage controls.  Periosteal BFR 

in HU/SRT rats remained lower than in full weight bearing controls; however, when 

SRT was combined with a GSK-3 inhibitor BFR was not significantly different from full 

weight bearing controls. 
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Figure 16. Effects of hindlimb unloading (HU) with or without GSK-3 (BIO) and/or simulated 
resistance training (SRT) on periosteal and endocortical surface dynamic histomorphometric 
analyses measured at the tibia diaphysis.  A: Mineralizing Surface (%MS/BS). B: Mineral Apposition 
Rate (MAR). C: Bone Formation Rate (BFR).  Vertical dashed line indicates separation of cage control 
(CC) from the experimental groups for preliminary ANOVA.  Those HU groups not sharing the same 
letter for respective surface measures are significantly different from each other (p<0.05).  *Significantly 
different vs. CC (p<0.05). Error bars not visible above bars have small SD values. 
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Figure 17. Femoral neck bone mineral content and strength.  A: Combined SRT and GSK3 inhibition 
produced higher total bone mineral content at the femoral neck compared to the non-treated control, 
HU+Vh group (*unpaired t-test, p=0.08).  B: Combined SRT and GSK3 inhibition (HU+SRT/BIO) 
resulted in higher femoral neck maximal force compared to HU+BIO (paired t-test, p=0.09). 
 
 
 
Simulated Resistance Exercise Combined with GSK-3 Inhibitor Administration during 

Disuse Restores Femoral Neck Bone Mineral Content  

 SRT during HU produced non-significant increases in total BMC at the femoral 

neck; the higher value in the HU+SRT/BIO group compared to HU+Vh group produced 

a p-value equal to 0.08 (Figure 17A).  Femoral neck strength was not affected by 

SRT+BIO (Figure 17B). 

Disuse for 28-days Shows Higher Serum IL-6 Levels 

 Circulating IL-6 as measured in cardiac serum was significantly higher after 28-

days of HU as compared to the full weight bearing controls (HU+Vh), p<0.05 (Figure 

18).  BIO treatment mitigated this increase resulting in serum IL-6 levels not 

significantly higher than in cage control rats. 



60 

 
 
Figure 18. Serum IL-6 after 28-days of disuse (HU+Vh) is significantly higher compared to those 
levels in full weight bearing controls. Those groups not sharing the same letter are significantly different 
from each other (p<0.05). 
 
 
 
Discussion 
 
 In support of our hypothesis, simulated resistance training (SRT) combined with 

pharmacological activation of the Wnt signaling pathway resulted in greater cortical and 

cancellous bone mass gains than SRT alone during disuse.  Higher bone formation rate 

observed in the SRT legs explains the observed cortical morphological adaptations.  

These are the first data to test the combination of mechanical loading and 

pharmacological activation of Wnt signaling during disuse.  The present data do not, 

however, demonstrate a consistent a synergistic effect of combined SRT and GSK-3 

inhibition.  However, the combined treatment did result in larger gains in several 

measures of cortical and cancellous bone compared to the SRT control (HU+SRT/Vh).  

For example, in the HU+SRT/BIO group we observe an increased cancellous vBMD, 

midshaft tibia cortical BMC, cortical area, cortical thickness, CSMI, and periosteal BFR 
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compared to HU+SRT/Vh group.  Disuse potently stimulates bone resorption and 

suppresses bone formation.  SRT has previously been shown to restore bone formation 

but may not affect elevated resorption observed during disuse.  However, SRT combined 

with bisphosphonate therapy has been shown to simultaneously increase bone formation 

and decrease a serum marker of bone resorption (84). Combining mechanical loading 

and GSK-3 inhibition provides a small additional increment in bone formation capacity; 

however, net bone mass gains may be limited by the disuse-induced elevation of bone 

resorption.   

 Treatment with GSK3 inhibitors significantly increases cortical and cancellous 

bone mass during full weightbearing status.  A orally bio-available GSK-3 inhibitor 

given once daily (20mg/kg) produces a 172% increase in bone mineral content, with 

most of this increase in bone mass was localized to the cancellous bone compartment 

(54).  This increase in bone mass was matched by a 5-fold increase in cancellous bone 

formation rate and a significant but less robust elevation in periosteal osteoblast activity 

(54).  BIO administration (the same drug and dose as used in the present study) 

attenuated glucocorticoid-induced cancellous bone loss and normalized cancellous bone 

formation rate (95).  GSK-3 inhibition when combined the SRT treatment in our study 

resulted in greater periosteal expansion, as evidenced by the higher total bone area and 

total BMC at the proximal and midshaft tibia in the present study.  This bone gain may 

have been a result of the higher BFR on the periosteal surface.  Notably, there was a 

higher endocortical mineralizing surface (%MS/BS) in SRT treated animals than in other 

HU groups.  Although there were not significant gains in endocortical BFR with added 



62 

GSK-3B inhibition during exercise, any increase in BFR on this surface is of special 

physiological significance, since few exercise or drug interventions increase endocortical 

bone formation rate.  Treatment with GSK-3 inhibitors during normal full weight 

bearing status, without added exercise interventions, does not affect bone formation rate 

on the endocortical surface (54).  Interestingly, the present data show combining 

simulated resistance exercise with drugs that activate Wnt signaling may stimulate 

additional increments in both periosteal and endocortical bone formation rate compared 

to high intensity exercise modalities alone.   

 GSK-3 is a key intracellular protein within the putative mechanosensing Wnt 

pathway.  Pharmacological inhibition of GSK-3 combined with SRT may allow 

sufficient accumulation of β-catenin levels and activate gene expression patterns to 

increase osteoblastogenesis and osteoblast activity.  The mechanical loading to bone 

tissue provided by SRT likely induced progenitors to differentiate towards the osteoblast 

cell fate (84).  In previously published work, Swift and co-workers demonstrated that 

SRT causes a shift in marrow cell populations away from adipocytes and towards a 

greater number of osteoblasts (84).  Inhibiting GSK-3 may have amplified this 

committed subpopulation of progenitors with osteogenic potential, as GSK-3β inhibitor 

cell culture studies suggest (23).  The fluorochrome label data in the present study 

suggest that SRT significantly increased the number of osteoblasts on cortical bone 

surface (%MS/BS).  While HU+SRT/BIO limb bone did not exhibit significantly higher 

MAR and BFR compared to the HU+SRT group, the mean value was higher.  Using a 

higher BIO dose or more potent drug may produce significant effects of combined 
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pharmacological and exercise therapies to better restore osteoblast activity during disuse 

on the endocortical surface.     

 It is clear that NASA management is open to exploring pharmacological 

management of flight-induced bone loss.  However, employing a pharmacological 

approach is challenging in the context of long duration spaceflight.  For example, 

pharmacokinetics can be altered during spaceflight and use of pharmaceuticals approved 

for treatment of disease, may be problematic for use in normal healthy astronauts.  In 

addition, NASA must choose only the most critical pharmaceutical therapies in order to 

minimize spacecraft mass and volume.  Alendronate is a type of bisphosphonate that 

potently suppress accelerated osteoclast-mediated bone resorption.  Currently, 

alendronate, an anti-resorptive bisphosphonate, is being administered to some astronauts 

aboard the ISS to investigate the efficacy of this bone loss countermeasure strategy (41).   

 Elevated IL-6 levels are associated with increased bone resorption.  Bone cells 

isolated from animals exposed to disuse showed a significantly higher production of IL-

6 compared to full weight bearing control samples (25).  The present finding of higher 

serum IL-6 after 28 days of HU is consistent with those reports of higher IL-6 in bone 

tissue cultures studies (25).  In bone metabolism, the inflammatory cytokine TNF-α is 

one of the most potent osteoclastogenic cytokines.  It stimulates synthesis of IL-6 in 

osteoblasts, and IL-6 functions to induce osteoclast formation and stimulate bone 

resorption (85).    However, the mechanism behind TNF-α induced IL-6 synthesis in 

osteoblasts is unclear.  Recently, data from cell culture experiments suggest that Wnt3a 

reduces TNF-α stimulated IL-6 release and expression via the Wnt pathway in 
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osteoblasts (61), suggesting a mechanistic role for Wnt signaling in the regulation of 

osteoclastogenesis.  However, little is known about TNF-α mediated Wnt signaling in 

vivo or with mechanical loading.  In the present study, thrice weekly high intensity 

exercise to the left leg was sufficient to prevent local bone loss but was unable to reduce 

systemic serum levels of IL-6.  Taken together, these data suggest that suppressed Wnt 

signaling in just one unloaded limb may be sufficient to increase IL-6 release from bone 

cells and cause systemic levels of IL-6 to remain above normal.  Alternatively, disuse 

may increase IL-6 production in other tissues (e.g., muscle) overshadowing any 

mitigation of disuse-induced IL-6 release from bone cells by SRT.   

 It remains to be determined if high resistance aRED exercises performed during 

6-month ISS missions effectively mitigates microgravity-induced bone resorption.  

DEXA-derived measures of bone mass during ISS missions show that exercise 

performed on aRED, concurrent with improved nutrition intake, does mitigate much of 

the usually observed bone loss (76).  Currently, NASA is testing the efficacy of an anti-

resorptive bisphosphonate (alendronate) in preventing microgravity-induced bone loss.  

However, it is not clear how alendronate administration combined with exercise will 

impact on bone maintenance during space flight.  The rate and amount of bone loss that 

occurs over the course of 6-month ISS missions is highly variable, similar to that 

observed in the general earth-bound population.  Animal studies do demonstrate that 

alendronate can hinder exercised-induced gains in cancellous and cortical BFR (50,84).  

Future investigations may show if this high variability in bone loss also applies to a high 

variability in the response to exercise or drug interventions.  
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 A limitation of the present study is that the GSK3 inhibitor we used does not 

discriminate between the inhibition of the alpha and beta forms, both of which are 

involved in modulating β-catenin levels (64).  However, since these isoforms can 

compensate for each others’ reduced activity and maintain β-catenin levels, use of BIO 

in the present study, an inhibitor of both alpha and beta forms, almost certainly affected 

β-catenin levels.   Future studies using more selective inhibitors of GSK-3 alpha or beta 

may allow determination of the relative impact of those specific isoforms on 

osteoblastogenesis and maintenance of bone mass during disuse. 

 In conclusion, we find that combining GSK-3 inhibition with high intensity 

exercise mitigates cancellous bone loss and restores cortical periosteal growth during 

disuse.  Future studies are warranted to better understand how combined 

pharmacological activation of Wnt signaling (with more specific Wnt signaling drugs) 

and mechanical loading of bone can prevent bone loss. 
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CHAPTER V 

CONCLUSIONS 

 

The data presented here-in demonstrate that thrice weekly simulated resistance 

exercise can restore disuse-suppressed cortical bone formation and normalize the 

number sclerostin positive osteocytes.  Secondly, the data show that simulated GCR 

(with low dose high LET radiation exposure) causes significant decrements in cancellous 

and cortical bone mass.  In addition, this simulated GCR appears to exacerbate partial 

weightbearing-induced cancellous bone loss.  Interestingly, fractionating low dose high-

LET radiation does not protect against cancellous bone loss as was observed with 

fractionation of low dose low-LET radiation.  Cortical bone in rats exposed to partial 

weightbearing conditions exhibits higher levels of sclerostin-positive osteocytes 

compared to full weightbearing controls. Unexpectedly, however, reduced weightbearing 

with added radiation exposure results in a greater number of sclerostin-positive 

osteocytes than with either treatment alone.  In addition, simulated resistance exercise 

combined with GSK-3 inhibition shows added gains in cortical and cancellous bone 

mass compared to a single exercise or drug treatment alone.  Taken together, these data 

suggest that regular high intensity resistance exercise may be an effective strategy to 

mitigate bone loss observed during long duration spaceflight or Lunar missions.  

Moreover, the data provide more evidence that Wnt signaling is highly responsive to 

mechanical loading conditions in cortical and cancellous bone. 
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