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ABSTRACT 

This research investigates the effects of the human body on the mechanical, 

chemical, and morphological properties of the surface of internal fixation devices. 

Stainless steel and titanium devices that had failed were provided from the Shandong 

Provincial Hospital in China, along with controls: implants that had never been used. 

Comparative study was conducted by evaluating properties of these implants before and 

after implanting. 

The first part of the research was simulation, and a model of the human femur 

was analyzed in Solidworks. The stress analysis software simulated the stress 

distribution, the strain distribution, and the deformation pattern. Two cases were 

simulated: walking and car accident. The simulations showed the points of highest stress 

and led to the analysis of the implants that were used in those regions. 

The next part of the research was to experimentally examine the properties and 

behavior of materials. Test samples fell into one of three categories: stainless steel femur 

implant, stainless steel tibia implant, and titanium femur implant. Material properties 

were characterized and effects of the human body on each of these groups were studied. 

Hardness was measured using Vickers hardness indentation. Surface roughness was 

analyzed using light interferometric technique.  Potentiodynamic polarization analysis 

was performed to evaluate corrosive behavior before and after implanting. Scratch tests 

were conducted to evaluate wear resistance and the microstructure was analyzed to 

further understand the morphological changes that occurred of implanted samples.  
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Results showed that the human body generally degraded the material properties 

of the stainless steel femur implant.  There were no measurable effects of the same on 

stainless steel tibia and on titanium alloy.  
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CHAPTER I 

INTRODUCTION 

This chapter provides background information that will be useful for 

understanding the thought processes and the actions performed in this experiment. The 

section deals with two major realms of understanding: the use and implementation of bio 

implant materials and the properties and the multifaceted properties of metals on 

different scales and for different functions.  

Knowledge of internal fixation is crucial to understanding the objectives of this 

research. The implants examined are all internal fixation devices, so understanding their 

function and environment explains the conditions to which they have been exposed. 

The first division of this section deals with the process of internal fixation. The 

history is described, as well as the numerous types and methods along with their uses. 

The biological process of bone healing during the fixation process is elaborated upon, 

along with the benefits to the healing process for using internal fixation. Some common 

materials used in these applications are discussed. Finally, the different causes of failure 

of the bone fixation are examined. 

The second division of this section investigates the different ways that a doctor 

can label the implant as a failure, and the methods by which an engineer can understand 

this failure on the mechanical property level. The failure criteria discussed are bending, 

fatigue fracture, and negative response from the human body. The principles and 

properties that govern these criteria are looked at in depth. 
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1.1. Internal Fixation 

Internal fixation is an innovation that orthopedic surgeons have named one of the 

most significant advances in treatment. This treatment has shortened hospital stays, 

caused bone to heal faster, and reduced the number of instances where the bone heals in 

an improper position [1]. 

1.1.1. History of Internal Fixation 

Before the use of internal fixation, fractures were generally treated with splints, 

casts, and braces. Fractures that resulted in soft tissue damage usually called for 

amputation, notably during the Civil War [1]. Lister first introduced open reduction 

internal fixation for the patella in 1860. In the 1880s and 1890s, the use of plates, 

screws, and wires was first documented. Danis and Muller refined the process of internal 

fixation in the 1950s, and contemporary techniques have been established within the last 

40 years. 

1.1.2. Types of Internal Fixation 

Some common devices used in internal fixation are wires, plates, nails, screws, 

rods, and pins [1]. Wires are generally used for small fractures or in conjunction with 

other internal fixation methods. An example of wire internal fixation is shown in Figure 

1. 
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Figure 1. Internal fixation of a fractured elbow using wires [2]. 

 

Plates are used to fix two pieces of bones that have detached during fracture. The 

plate holds the two pieces together with screws on either side. Rods and intramedullary 

nails are used in some fractures of long bones to fit inside the bone where the marrow 

would have been. Screws are applied from the outside of the bone to connect through 

screw holes in the rod or nail. The screws can be loosened to adjust the load on the bone, 

but the rod usually stays in the bone unless complications require its removal. Screws 

can be used on their own to fasten two bone fragments together. Screws are the most 

common form of bone fixation [1]. 

1.1.3. Biology of Fracture Repair 

The body’s natural fracture repair follows a four-step process. This process is 

illustrated in Figure 2. 
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Figure 2. This figure illustrates the fracture healing process. 

 

The first phase of fracture repair that occurs is inflammation. The ends of the 

damaged bone bleed and form a clot, and polymorphs, histiocytes, and mast cells begin 

the process of cleaning up. The next phase is the periosteum or soft callus stage, where 

cell division occurs and forms a callus around the dead ends of the bone. The soft callus 

is slowly replaced by hard callus to provide solid structure. Once the callus has 

connected the fracture, the remodeling phase occurs. The callus bone tissue is replaced 

with osteoclasts and osteoblasts to form the original cortical/cancellous bone structure 

[3].  

With proper fixation, strain is greatly reduced at the fracture site and the bone 

can heal without forming a callus. This is called direct bone healing. Osteons bond the 
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portion of bone that is in contact, and membranous bone fills the gaps where the bone 

fragments do not contact -- this is replaced by cortical and cancellous bone later. Direct 

bone healing greatly reduces the healing time [4]. 

1.1.4. Materials Used in Internal Fixation 

Materials in internal fixation applications are subject to many criteria. They must 

have high yield strength, elastic modulus similar to that of bone, low density, anti-

corrosive properties, and cannot cause allergy or reaction in the human body. These 

strenuous standards limit the known materials that can be used for internal fixation. 

Materials operating in the human body must be both “biofunctional” and 

“biocompatible”. Biofunctionality describes the ability of the metal to perform all of its 

functions while inside the human body. Biocompatibility confirms the material is 

compatible with the human body. Three main materials have been used in the recent 

history of internal fixation: titanium, stainless steel, and cobalt chromium alloy. Data for 

these bio-implanting metals from literature findings are compiled in Table 1. 
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Table 1. This table characterizes some commonly used bio implant 
metals [5]. 

 

Materials Use Limitations 

Pure Titanium Most internal fixation Almost no limitations 

Alloyed Titanium   

Stainless Steel Intramedullary nails Susceptible to corrosion 

Cobalt Hip arthroplasty Slight corrosion, weak mech.  

 

 

1.1.4.1. Resistance to Corrosion 

In order to maintain its mechanical properties in the human body environment, a 

material must have corrosion resistant properties. The saline solution in the human body 

serves as an excellent electrolyte for metal ions to diffuse from the metal’s surface in an 

electrochemical reaction. This presents difficulties, as even more care must be taken to 

ensure the anti-corrosive properties than in a normal working environment. The human 

body also contains molecular tissue species to combat foreign objects in the body, and 

biochemical attacks would facilitate a reaction to break down any strange objects in the 

body. Of the three examined materials, titanium has the highest corrosion resistance [6]. 

Cobalt chromium also remains fairly passive, but stainless steel can be susceptible to 

film breakdown and corrosion [5, 7]. 

1.1.4.2. Tissue Response to Materials 

Even though stainless steel, titanium, and cobalt chromium are classified as 

biocompatible, the tissue still responds negatively to corrosion products from these 
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materials. Stainless steel corrodes more than cobalt chromium and titanium, and the 

severe cases can cause inflammation and even infection to the point that the implant 

must be removed. Titanium corrosion occurs in small amounts, and the resulting 

particles are rarely harmful or painful to the patient [8]. Thick fibrosis layers form for 

around stainless steel and cobalt chromium, sometimes up to 2mm. Minimum fibrosis 

formation is observed for titanium [5]. These fibrosis layers wall off the living tissue 

from the foreign object, but bacteria multiplies in the absence of antibodies. 

1.1.5. Common Causes of Failure 

While the research in this paper investigates an alteration in mechanical 

properties as a cause of failure, many other factors often contribute to a failure. The three 

main categories of reasons for failure are a defect in the fixation device, an incorrect 

implanting procedure, or extraneous patient based factors that were not taken into 

consideration. Seldom can one of these reasons take 100% of the blame as multiple 

factors always contribute. These factors can never be eliminated – only reduced. 

1.1.5.1. Fixation Device Defect 

The factors that engineers can directly control are those related to device design. 

Internal fixation devices need to be designed to reduce stress concentration geometries, 

and to be biocompatible. Stress concentrations are manifested at screw holes, changes in 

cross sectional area, and bends in the axis [9]. Extensive research and trials over time 

have produced the optimal biocompatible materials, but the right material must be 

chosen for the application. When the material is not designed properly in terms of 

geometry or material, the fixation assembly is exposed to a high risk of failure under 
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normal circumstances. The part can also be manufactured incorrectly, or damaged due to 

negligence before fixation occurs. When deviation occurs at the fixation device, this 

factor can lead to failure in the implant or bone fixation. 

1.1.5.2. Incorrect Medical Operation 

Another factor that leads to failure of an internal fixation is the improper 

implementation by the medical professional. Many problems can arise during the 

fixation process, complicated by the fracture pattern [10]. Channels can be drilled in 

incorrect locations, incorrect screw length can be used, or screws can be over tightened 

[11]. The correct tools must be used for each operation, and the proper sanitation must 

be upheld to prevent infection. The subjectivity of this area places a burden on the doctor 

to perform with an alert and risk-averse mindset. Because the fixation method relies on 

the doctor’s opinion, this operation is not an exact science and is a viable factor in any 

fixation failure. 

1.1.5.3. Patient Factors 

Besides problems with the implant or the medical procedure, the problem can 

rest on the individual receiving the fixation. The mechanical properties of the bone are 

different for every person, so every fixation must include a safety factor to account for 

this [12]. The sizes of implants are different to account for the anthropometry of the 

current population. 

The patient can also be a factor in the success of the fixation by cooperating with 

the doctor’s orders. Placing load on a fixation too early can complicate healing or even 

cause the fixation device to fail. Engaging in certain physical activities is prohibited in 
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many cases following fixation, so the bone can have some time to heal. Failure to follow 

the doctor’s prescription is a prevalent factor in internal fixation failure. 

Accidents are a major cause of fixation failure. Not all incidents can be 

prevented, and disasters lead to broken bone or implants often. Falls, car accidents, and 

sporting injuries are all examples of physical traumas that complicate fixation healing. 

A patient may have physiological or pathological conditions that affect the 

healing of the bone fixation. Osteoporosis is the most common condition that affects 

bones. Osteoporosis causes a decrease in bone density and mass, as seen in Figure 3 

[13]. 

 

 

 

Figure 3. Normal bone versus osteoporotic bone shows the change in 
structure and density [14]. 
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This condition presents a real danger to many people. Decreasing the mechanical 

properties greatly increases the chance of fracture, and can also lead to complications 

after bone fixation. The bone may not be able to bear load like a normal bone, or screws 

may strip the bone [15]. Other disorders like osteopenia, osteomalacia, and 

hyperparathyroidism can also cause weakness in the bone that can compound with other 

complications to cause a failure in the bone fixation. Bone density is found to correlate 

directly with fracture stability [16]. 

1.2. Diagnosis and Evaluation of Internal Fixation Devices 

There are many criteria by which an engineer may evaluate the ability to succeed 

of an internal fixation device. A doctor may diagnose the failure of an implant by 

looking at an x-ray image, but an engineer looks at the mechanical properties of the 

material to determine its performance quality. This section introduces the methods by 

which a problem with an implant may be diagnosed and evaluated. 

1.2.1. Bending 

The patient can usually diagnose the failure as well as the doctor can in the case 

of bending. The implant can bend for a variety of reasons such as under-designed 

structure from the engineer, incorrect prognosis by the doctor, or by overloading from 

the patient. The post-failure evaluation explores the mechanical properties of the 

material to decide how the implant was insufficient and how it can be improved. (Spoiler 

alert) During an evaluation, the engineer may discover that the metal does not have the 

same properties it once had. In the case of bending, two mechanical properties are 
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examined that relate to the failure: yield strength and elastic modulus. It is important to 

remember that in bending, the highest stresses accumulate at the surface [17]. Thus a 

surface evaluation is a great indicator for analyzing an implant. 

1.2.1.1. Yield Strength 

The yield strength of a material is the point at which the material begins to 

undergo plastic deformation. Before this strength is reached, the material is governed by 

elastic deformation. After the material has exceeded its yield strength, the elastic 

deformation can be recovered while the plastic deformation cannot [18]. A typical stress 

strain relationship is shown in Figure 4. 

 

 

Figure 4. The stress strain curve shows extensive deformation once the 
yield stress (or strength) has been reached. The material is AISI 4140 

alloy steel [18]. 
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In most internal fixation device failures the implant yields, which also 

complicates the bone healing. Implants are designed so that the expected loads fall far 

below the material’s yield strength. 

1.2.1.1.1. Relation to Hardness 

To test the yield strength without machining tabs from the implant to tensile test, 

hardness testing can be used to evaluate the yield strength [19]. An equation from 

experimental data can be used to model the relationship, which has been proven to be 

linear for many metals. The equation used for steels is 

 

3
nHYS B=         (1.1) 

 

where YS is the yield strength, H is the hardness, B is a constant 0.1 for steels, and n is 

the strain hardening exponent [20]. 

1.2.1.1.2. Relation to Microstructure 

A microstructural analysis can provide insight towards the yield strength of a 

material. The grain size has been shown to affect the material properties. Yield stress is 

related to the grain size by the Hall Petch relationship 

 

1
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where sy is the yield stress, s0 is a material constant for the resistance to dislocation 

motion of the lattice, ky is the strengthening coefficient of the material, and d is the 

average diameter of the grains. By examining the size of the grains under a microscope, 

one can approximate the yield strength of the material by the Hall Petch relationship 

shown above [21]. 

Any yield or plastic deformation is unacceptable according to the design of 

internal fixation devices. Although the material may not have fractured at this point, 

additional stress will cause the material to rapidly fail. 

1.2.1.2. Wear Resistance 

Wear resistance is an indirect measure of a material’s strength at the surface 

level. Whereas yield strength quantifies the strength under tension or other conventional 

loading patterns, wear describes a material’s ability to resist plastic deformation as the 

result of a sliding or frictional force. There are numerous wear mechanisms that fall 

under this category. 

One type of wear is adhesive wear, in which material is transferred from one 

surface to another during sliding contact. This type of wear is dependent on the 

roughness of the materials, as it often occurs when the peaks of a rough surface 

plastically deform and attach to the contact surface. Galling is one effect of this type of 

wear, when material builds up and forms lumps above the original surface line [22]. 

Abrasive wear occurs when a harder and rougher surface slides against a softer 

and smoother one. Material is removed from the softer surface due to scratches from the 

hard material. A few different mechanisms occur during abrasive wear: plowing, cutting, 
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and fragmentation. Plowing involves material moving to the side of protrusions from the 

hard surface and forming scratches or valleys. The material is not removed but 

displaced. Cutting can be compared to machining, where material is chipped or cut away 

without significant displacement or deformation of material on the surface. 

Fragmentation occurs during cutting when the abrasive process deforms the material 

surrounding the removed portion, and cracks propagate through the remaining wear 

material [23]. 

Surface fatigue wear occurs when the surface has been stressed in cyclic loading 

to the point that micro-cracks have formed and material begins to deteriorate and detach 

[24]. Fretting wear happens in a similar process, where two surfaces are rubbed together 

cyclically [25]. Material may be removed from one or both surfaces in this process. 

Erosive wear appears when solid or liquid particles are passed over a surface 

until material from the surface detaches or erodes. The rate of this type of wear depends 

on the size, shape, hardness, and speed of the particles [26]. 

1.2.2. Breaks or Cracks 

When the implant fails completely by fracture, the bone is in danger of bearing 

the entire load imposed by the human body. Depending on the stage of bone healing, the 

bone may also re-fracture or not heal. Cracks are less consequential, but have the 

possibility of propagating and eventually causing a fracture [9]. These types of failure 

are generally produced by two factors: fatigue and incorrect placement. These two 

factors are not mutually exclusive, and often compound on each other to cause a 

fracture. 
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1.2.2.1. Fatigue 

Fatigue is a failure that occurs when a material has been subjected to cyclic 

loading. When a material experiences loads above a certain amount, micro-cracks form 

in the material. If these loads are repeated enough, the micro-cracks expand and 

propagate, leading to a sudden fracture [27]. In metals, cyclic loading causes dislocations 

to move and interfere. When dislocations meet, localized hardening and brittleness 

occurs in the material. This encourages cracking in the material [28]. 

One important thing to note is that damage from fatigue is cumulative. Even after 

the material rests from cyclic loading, the damage will not recover even though the 

deformation is elastic. If the cyclic stress is low enough, the material can theoretically 

survive for an infinite amount of cycles. This is often exhibited in metals like steel and 

titanium. Fatigue life is also affected by a variety of parameters, including temperature, 

surface finish, microstructure, oxidizing chemicals, and residual stresses.  

Loading and unloading occurs in any internal fixation implant as the patient 

walks and goes through their daily activity. The materials are selected so that the cyclic 

loading will be below the fatigue limit, allowing the implant to theoretically survive and 

outlive the patient. However, if the cyclic loading is too high or if the parameters 

affecting the fatigue life are changed too drastically, the implant still has a risk of failure. 

Stress concentrations because of geometry increase the probability of fatigue 

failure. For internal fixation, screw holes are the primary candidates for stress 

concentrations [29]. Interlocking screw fixation especially increases the stress at the 

screw holes, but sometimes has its benefits. Studies have shown that in some cases, 
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interlocking screws are necessary to prevent mal-union or limb shortening [30]. For most 

cases, however, dynamic fixation is suggested to reduce stress concentrations. Dynamic 

fixation includes one screw hole that functions more as a slit, allowing the screw to be 

loosened and slide to release stresses applied by shifts in the fixation [15]. 

1.2.2.2. Incorrect Placement 

Incorrect placement of the implant can cause fracture when the geometrical stress 

risers in the implant align with the high stress areas of the fracture. Figure 5 shows a 

femoral intramedullary nail fixation where the proximal interlocking screw was placed 

in proximity to the fracture site, and directly on top of an area of bone deformation. 

 

 

Figure 5. An x-ray image of a femoral fixation shows that in 
intramedullary nail has failed. The screw was placed close to the 

fracture and bend in the bone. 
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When an implant is placed incorrectly, it usually compounds with fatigue for a 

low cycle failure. The doctor should correct abnormalities or weaknesses in the bone 

before fixing an implant to that area. If the screw holes naturally fall too close to the 

fracture area, a different type of implant or in this case a longer intramedullary nail could 

be used. 

1.2.3. Negative Reaction by the Human Body 

Even if the implant does fine, the fixation can still be considered a failure due to 

the effects it has on the human body. Assuming that a biocompatible material has been 

chosen, complications can still arise within the fixation. Sometimes, the bone does not 

heal despite the proper fixation assembly. The surrounding tissue is subject to infection 

and inflammation due to the metal or improper sanitation. 

1.2.3.1. Failure to Heal 

When the bone does not connect after ample amount of time post fixation, a mal-

union has occurred. Mal-union has also been discussed for improper placement, as the 

bone is not properly aligned [31]. Nonunion occurs when the bone does not connect 

completely or at all [32]. Figure 6 shows an example of malunion and nonunion. 
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Figure 6. Malunion is a misalignment while nonunion occurs when the 
bone does not heal [33]. 

 

1.2.3.2. Infection or Inflammation  

Infection occurs when there is an imbalance of the body’s defense system and 

infectious bacteria. The body’s defense mechanisms are weakened by the trauma of the 

initial fracture, the surgical operation and fixation, and also by the addition of a foreign 

object into the body [34]. Infection is linked to nonunion and mal-union, and the implant 

is almost always removed in this case [35]. Figure 7 shows an example of an infected 

internal fixation. 
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Figure 7. An infected internal fixation. Plates and cables are attached to 
a dead tibia with infected tissue surrounding [36]. 

 

Inflammation is connected to infection, but does not always indicate a bacterial 

attack. In surgical implants, metal fragments that have come loose from wear or 

corrosion can irritate the human tissue. This type of inflammation (excluding the case of 

bacterial infection) can usually be ignored, as it does not halt the healing process [37]. 
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CHAPTER II 

MOTIVATION AND OBJECTIVES 

As discussed in Chapter 1, implants fail for a variety of reasons. Extensive 

research has been performed on the biocompatibility of metals used in bone fixation 

implants, but little efforts were made in understanding effects of the human body on the 

materials. If the mechanical properties of metals used for internal fixation do change 

while in the human body, additional design considerations will be required. This 

research focuses on evaluating mechanical and surface properties of materials that have 

been removed after being implanted in the human body. The three objectives are as 

follows: 

• Locate high-stress areas where the implants might be affected during service 

using SolidWorks  

• Obtain quantitative evaluation of material properties before and after 

implantation  

• Obtain understanding in effects of human body on materials before and after 

implantation 

The primary research involves experimental approaches. The sections of study 

are morphological evaluation, corrosion potential analysis, and mechanical property 

measurements. A simulation of the stress distribution in the human femur is included in 

the next chapter. 

The simulation models the femur in two cases: normal stresses during walking 

and stresses during a car accident. The simulation served to identify high stress locations 
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on the femur so implants in that region can be studied. Followed by the examination of 

surface morphology and their resulting microstructure. Mechanical behavior of samples 

was compared before and after implantation. The outcome of this research will have 

impacts on the design considerations for bone fixation implants. If the mechanical 

properties of metals change while in the body, then different materials may be selected, 

or the parameters of the implants may be enhanced to account for degradation.  
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CHAPTER III 

FEMORAL STRESS DISTRIBUTION 

In terms of bone injury, the fracture of the femur is one of the most common and 

consequential. The femur is the largest and strongest bone in the body, but can weaken 

greatly as a person grows older. The density and strength of the femur can be lowered by 

osteoporosis, osteopenia (low bone density), osteomalacia (lack of vitamin D), and 

hyperparathyroidism (delegation of calcium to other parts leading to a deficiency. In the 

United States, 44 million people have osteoporosis or low bone mass, which represents 

55% of the population 50 or older. Although less important than human life, medical 

costs are approximated at $40,000 for every hip fracture [38]. 

The importance of this chapter is to show the locations of stress concentrations 

on the femur to understand the locations in which fixations and implants can expect to 

experience the highest stresses. The fracture does not always occur at these locations, 

due to accidents where the forces are applied in unpredictable fashions. However, the 

simulation using the finite element method will help to understand the stress distribution 

on the bone and on implants during loading. 

3.1. Femur Model and Test Simulations 

Average mechanical properties were tabulated for the human femur, and the 

values appear in Table 2. 
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Table 2. This table lists the average mechanical properties found for the 
human femur [39]. 

 

 

These properties were used with a solid model of a femur generated by Redding 

Engineering LLC from a bone scan. For stress analysis, models in Solidworks require 

both dimensions and material properties. The properties were added to the model in 

Solidworks. The model used in this simulation appears in Figure 8. 

 

 

Figure 8. The Solidworks femur model was created from the bone scan 
of a real human femur. 
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 The simulation was conducted using the SimulationXpress package in the 

Solidworks software. As seen in the figure above, the model was meshed into many 

smaller pieces. SimulationXpress uses the finite element method, which divides the 

model into many smaller elements to solve the stress distribution. The stresses (or strains 

and displacements) are calculated at the nodes of the elements. Using finite element 

analysis, the linear static assumption was also made – this assumes small displacements, 

small rotations, linear elastic materials, and constant boundary conditions [40]. 

Two test conditions were chosen: one for a femur under normal stresses during 

walking, and one for a traumatic car accident. The initial conditions required that 

fixtures and forces be applied to the model. The test conditions are shown in Figure 9. 

 

 

Figure 9. The Solidworks stress analysis required both fixtures and 
forces for each simulation: walking (left) and car accident (right). 
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As is seen in the figure, the simulation for the walking case included fixture at 

the condyle region of the bone (the green area) and applied force at the head (the purple 

arrows). The total force to the head was the force that the average person applies during 

walking, 2100 N [41]. The car accident case had fixtures at both ends and the force 

being applied at the shaft. This accident could never be perfectly predicted or simulated 

but a worst-case scenario was constructed for the force being applied normal to the shaft 

at the center. 15 kN were used at the shaft to model the car accident [42]. 

3.2. Stress, Strain, and Displacement  

The results for the stress, strain, and displacement distributions were simulated, 

and the results are shown in Figure 10, Figure 11, and Figure 12. 

 

 
 Figure 10. The stress analysis showed a concentration on the shaft for

 walking (above) and a concentration on the neck for an accident (below). 
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 Figure 10 Continued

 

For the walking case, the highest stress (shown in red) was focused on the shaft. 

The highest stress does not come close to the yield stress, and the femur is never 

expected to fail during static loading during walking. In fact, the walking case more 

closely would follow a fatigue failure. Since the bone has the ability to heal, fatigue 

failure is unlikely in the human bone - but these data still have meaning for an implant 

inside the bone at that region. The highest stress in the walking case was 52.5 MPa. In 

the car accident case the highest stress (shown in red) was located at the neck. A fracture 

in this area would be classified as a hip fracture. In elderly people, over 90% of hip 

fractures are the result of a traumatic accident like a fall [43]. The car accident case 

certainly does not model every accident, but non-axial loading is shown to produce 
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stresses at the neck. This agrees with the hip fracture/accident correlation. For the car 

accident case, the yield stress is exceeded as seen on the scale bar. The highest 

experienced stress was 198.1 MPa. Since stress and strain are related due to the elastic 

assumption, the distribution was identical with different values on the scale bar. The 

walking case showed the highest strain on the shaft, and the car accident case showed 

the highest strain at the neck. The highest strain for the walking case was 0.00139 (unit 

less) and the highest strain for the car accident was 0.00789 (unit less). 
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Figure 11. The strain analysis showed essentially the same distribution 
as the stress analysis. 
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Figure 12. The displacement analysis showed the head deflecting for 
walking (above) and the shaft deflecting for an accident (below). 

 

The displacement map exaggerates the expected deformation pattern for the 

simulation. The walking case shows that the head has deflected the most – away from 

the fixed condyle region. The maximum displacement is 6.4 mm, which is not dangerous 
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for a flexible single cantilever bending system. The car accident simulation is closely 

described as a double cantilever, where both ends are fixed and not allowed to rotate. 

The maximum displacement of 2.5 mm occurs at the shaft, which explains the large 

stresses near the fixture points that cannot rotate with the force. 

3.3. Remarks 

The two cases simulated in Solidworks show the regions of the femur that can 

expect to experience the highest stresses (cyclic and sudden), strains, and displacements. 

Understanding the mechanical conditions affecting the femur is beneficial in 

understanding the conditions that implants can expect to face – especially implants 

designed for those high risk regions. Bone fixation devices that mend the neck of the 

femur or the middle of the shaft are in regions of high stress, strain, and displacement. 

The materials to be examined later in this paper are stainless steel and titanium. The 

yield strengths of the specific alloys are listed in Table 3 along with the yield strength of 

the femur (this value is the same average value used in the simulations). These values 

can be compared with the maximum stress of 52.5 MPa for walking and 198.1 MPa for a 

car accident. 
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Table 3. This table lists the yield strengths of the materials to be 
examined and also the femur. 

 

Material Yield Strength (MPa) 

Stainless Steel 316L 170 

Unalloyed Titanium Grade 2 275 

Femur 100 

 

 

Given the test conditions, all of the materials would have withstood the walking 

case (as expected) but only the titanium would survive the stresses induced by the car 

accident. Understandably, the stresses on the femur are not exactly what the implants 

would experience, but they do provide an estimate for what the implants could expect. 

This mechanical risk along with the biochemical factors of fixation can compound to 

cause complicated failures as seen in the introduction chapter. This simulation highlights 

the importance of studying implants used in these high stress locations. 

 

 

 

 



 

 

 32 

CHAPTER IV 

EXPERIMENTS 

This chapter discusses the experimentation performed in response to the question 

of degradation in the bone implants. The goal is to compare the properties and 

performance of implants before and after implantation leading to understanding of their 

failure mechanisms.  

 The tested materials will first be examined, and the standard properties 

will be referenced in the experimental results. This section contains information 

pertaining to chemical composition, mechanical properties, crystal structure, phase, and 

other material properties. 

 The sample preparation will be fully defined along with notation and 

schematics relating to the position of measurements, the direction measurements are to 

be taken, and the physical preparation of the samples for experimentation. 

 The experiments will be discussed theoretically and procedurally. The 

equipment will be listed and described. The theory and reason for choice behind each 

experimental method will be explained. 

4.1. Materials 

The materials tested in this experiment were donated by the Shandon Province 

Hospital in China. The hospital provided implants that had failed inside the human body 

and then been removed. The hospital also provided identical implants that had never 

been used as control samples to see the effects of the human body.  
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4.1.1.  History of Implants Studied  

Four sets of implants were tested, and a set comprises an implanted sample and 

its control. Of the four sets, three were stainless steel 316L and one was unalloyed 

titanium grade 2. All of the stainless steel implants were intramedullary nails while the 

titanium implant was a femoral plate. Two of the stainless steel implants were designed 

for the femur and the other was designed for the tibia. Pictures of the implants are shown 

in Figure 13. 

 

   

Figure 13. The tested samples supplied by the Shandon Hospital in 
order from top to bottom: long femoral nail, short femoral nail, tibial 

nail, femoral plate. 

 

4.1.2. Materials 

The materials to be examined in this section are biocompatible and highly 

corrosion resistant because of their use in the human body. Stainless steel 316L and 
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commercially pure Titanium TA2 are the materials used in the implants that were tested. 

These materials are common structural biomechanical materials because of their non-

harmful natures to the human body, and their high strength to weight ratios [7]. A list of 

selected mechanical properties for these alloys is compiled in Table 4. 

 

Table 4. This table lists some of the basic mechanical properties of 
stainless steel 316L and commercially pure titanium alloy 2 [44-46]. 

Mechanical Property SS 316L TA2 

Young’s Modulus [GPa] 193 116 

Yield Strength [MPa] 170 275 

Density [g/cm^3] 8.000 4.506 

Strength to Weight 

[Nm/kg] 

254 288 

 

 

4.1.3. Stainless Steel 316L 

Stainless steel 316L alloy is commonly referred to as surgical steel for its use in 

bone fixation screws, prostheses, and body piercings [47]. The elements and 

composition for stainless steel 316L are listed in Table 5. 

 

Table 5. This table describes the chemical composition of stainless steel 
alloy 316l [48]. 

Element Composition 

[%] 
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Iron Balance 

Carbon <0.03 

Chromium 16-18 

Nickel 14 

Molybdenum 2-3 

Manganese 2 

Silicon 0.75 

Phosphorus 0.045 

Sulfur 0.03 

Nitrogen 0.10 

 

 

The intramedullary nails examined in this paper are all made of austenitic 316L 

stainless steel. Steel is used over Titanium in some cases of bone fixation because of cost 

considerations, but Titanium is less corrosive, stronger in terms of yield and tensile 

strength, and much lighter.  

4.1.4. Commercially Pure Titanium Alloy Grade 2 

The elements and composition for commercially pure Titanium Alloy Grade 2 

are listed in Table 6. 
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Table 6. This table describes the chemical composition of 
commercially pure titanium alloy grade 2 [49]. 

Element Composition 

[%] 

Titanium 99.67 

Carbon 0.08 

Iron 0.3 

Nitrogen 0.03 

Oxygen 0.25 

Hydrogen 0.015 

 

 

4.2. Sample Preparation 

The experiments focused on four sets of implants. Table 7 summarizes these 

implants and some of the physical characteristics. 
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Table 7. This table lists the bone fixation samples examined in this 
experiment. The material, use, failure mode, and an image are shown 

for each of the implants. 
Implant Material Use Failure Mode Picture 

Femoral Nail 

(Long) 

SS 316L Internal Bone 

Fixation 

Bending 

 

Femoral Nail 

(Short) 

SS 316L Internal Bone 

Fixation 

Fracture 

 

Tibial Nail SS 316L Internal Bone 

Fixation 

Fracture 

 

Femoral Plate TA2 Exterior Bone 

Fixation 

Fracture 
 

 

 

The samples to be examined were mounted on a 2x4 wooden pallet on a bed of clay 

about 0.5 inches thick. This setup was optimal for exposing a horizontal test surface 

without having to use clamps or other potential surface damaging devices. The clay 

deformation during testing was deemed negligible, considering the amount of force 
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required to press the samples into the clay. The long femoral nails are shown in the bed 

of clay in Figure 14. 

 

 

Figure 14. The implant samples were placed in a bed of clay for testing. 

 

A common measurement metric was applied for axial measurements. A mark 

was made with a Sharpie marker every inch, starting with the screw holes at the tapered 

end (they are exactly one inch apart). Hardness measurements and roughness average 

data were taken toward the tapered end in the case of repeated measurements. This 
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information is included merely for consistency of measurement. A diagram is shown in 

Figure 15 to illustrate the measurement designations. 

 

 

 

Figure 15. This illustration demonstrates the pattern for taking 
measurements for the experiments. For example, measurements taken 
at the first inch marking were taken to the left of the hole as shown in 

this picture. 

 

The experiments in this section primarily deal with an investigation of 

mechanical properties on the surface of the material. The first set of experiments set out 

to discover if there has been a material degradation as a result of bone implantation. The 

second set of experiments set out to explore the mechanisms of this degradation, and 

provide some insight into the cause and effect relationship between the human body and 

the materials. 

4.3. Microhardness 

The first experiment was to determine the hardness of the materials to see if there 

was a significant difference in the mechanical properties of the material pre and post 
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implant. Microhardness was selected to test only the surface layer of material (on the 

order of nanometers), as the bulk material was not expected to see any effect from the 

human body.  

4.3.1. LM 300 Series Vicker’s Microhardness Indenter 

The machine used in the experiment was the LM 300 series Vicker’s 

Microhardness Indenter, shown in Figure 16. A Vicker’s Diamond indentation tip was 

attached to the indenter. This method was chosen over Knoop because of the low profile 

indent, which was needed to pack indents close to each other on a single axial ridge of 

the implant.  
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Figure 16. The LM 300 series Vicker’s microhardness indenter was 
used to test the materials’ hardness. 

 

The LM 300 was equipped with 3 objectives and an indenter. The indenter was 

set to apply 0.3 kg of force and to hold for 13 seconds. The 2.5X and 10X objectives 

were primarily used to position the indentation tip over a flat surface, while the 50X 

objective was used to find a suitable position to indent – not close to macro surface 
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defects. The 50X objective was also used to dimension the indents with the help of the 

micro-measurement tool in the stage. 

4.3.2. Vicker’s Microhardness 

The indenter measures the hardness by creating a diamond shaped indent that is 

the same shape no matter the size. The area of the indent is calculated by measuring the 

diagonals. Figure 17 shows a schematic of the indentation process and the resulting 

indent. 

 

 

Figure 17. The Vicker’s method leaves a diamond shaped indent, which 
is geometrically similar regardless of size. 

 

The LM 300 computed the Vickers hardness value using the recorded diagonal 

lengths according to the equations 
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  (4.1) 

and 

  (4.2) 

 

where HV is the hardness value, F is the applied force in kg force, A is the area, 

d2 is the product of the two diagonals, and 136 degrees for the angle of the Vickers 

indenter [50]. The hardness value is automatically available once the user has manually 

measured both of the diagonals. 

4.3.3. Procedure 

The microhardness indenter requires that a flat surface be exposed for 

indentation, so the samples were mounted in clay. The clay was firm enough to neglect 

the deflection during indentation given the small applied load.  A Sharpie marker was 

used to mark the sample every inch, where separate indentations were performed. Five 

indentations were performed beside every inch marking, with the indentations spaced 

apart by approximately 0.1mm. The large number of samples was taken to ensure that an 

accurate average was derived. Measurements were taken along the entire length of the 

implant to examine the possible change in hardness along the length due to conditions in 

the human body. All of the indentations were taken in a line on the ridge where the 

surface was perpendicular to the indenter. This could be accurately approximated by 

indenting along a bright stripe where the incoming light was reflected straight back. 

FHV
A

=

2

2sin(136 / 2)
dA = o
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For the titanium femoral plate, a different method was used. Since the surface 

was not polished, the Vickers microhardness did not produce meaningful data. Brinnel 

hardness was used instead just for this sample. The indenter was spherical instead of 

diamond, but the concept of hardness measurement was the same. 

4.4. Surface Roughness Evaluation  

Roughness is a way to measure the deviation of a surface from the normal form. 

Many metrics are used, called roughness parameters, to quantify this deviation. If the 

vertical distances of the variations are high, then the surface is rough. A few of the 

roughness parameters are described in Table 8. 

 

Table 8. Roughness parameters and the formulas [51]. 
Parameter Name Formula 

Ra Roughness Average 

1

1 n

a i
i

R y
n =

= ∑  

Rq Root Mean Square 

Roughness 

2

1

1 n

q i
i

R y
n =

= ∑  

Rt Max Peak to Valley 

Height 

max mintR y y= −  

 

 

Describing the surface roughness can be useful to predict the performance of the 

material. Rougher materials tend to wear faster than smooth materials, and defects in the 
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surface create sites for stress concentrations and corrosion to occur. For this reason, an 

experiment was performed to compare the roughness of the materials pre and post 

implant. 

4.4.1. Zygo 3D Optical Surface Profiler 

To calculate the roughness parameters, the surface was analyzed using a Zygo 

3D Optical Surface Profiler. The Zygo machine uses interferometry to profile the 

surface. A 10x objective was used for viewing the surface, and a 15 second scan elapsed 

during the interferometry process. Figure 18 shows the Zygo machine and the test setup. 

 

 

 

Figure 18. The test setup for roughness measurement includes the Zygo 
optical profiler, a vibration isolation table, and a computer with 

software for analysis. 
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A vibration isolation table was necessary to remove vibrations and noise that 

would otherwise alter the data. 3D images were constructed and analyzed with the 

software to produce the roughness statistics for maximum peak to valley height, 

roughness average, and root mean square roughness average. The roughness average is 

the most commonly used parameter, and serves our purposes for comparison. 

4.4.2. Interferometry 

Interferometry uses the diffraction pattern of light to map the surface that the 

light has reflected from. A beam splitter creates two beams of light, the original and the 

incident. The original beam passes through the beam splitter to a CCD camera, while the 

incident beam expands and passes through a collimator. The incident beam exits the 

collimator with parallel rays, and passes through a piezo phase shifter. After this the 

incident beam reflects from the test piece and returns through the piezo phase shifter and 

the collimator. The two beams are imposed on each other in the CCD camera, and the 

out of phase beams create a diffraction pattern. From this diffraction pattern, the 

topography of the surface can be extracted since beams that travelled a farther distance 

will be out of phase with beams that travelled a shorter distance. Figure 19 illustrates this 

process. 
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Figure 19. The interferometry process is illustrated. 

 

Light from the laser beam passes through an expander and into the beam splitter, 

where some of the rays pass to the ccd camera and some of the rays move on towards the 

collimator. The collimator bends the beams to become parallel, and then the beams pass 

through a piezo phase shifter and then through a reference surface. The beams then 

reflect off the test piece and return through the reference surface, piezo phase shifter, and 

collimator. The beams reflect off the beam splitter and are focused into the ccd camera. 

Since the beams that reflected off the test sample have gone through a phase shift and 

traveled a different distance, they interfere with the original beams of light. Beams that 

travel different distances interfere in predictable ways, allowing the camera to interpret 

the interference pattern. Information from the camera is mapped into a three dimensional 

topography of the surface, from which roughness parameters were calculated. 
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4.4.3. Roughness Measurement 

Once again, the samples were mounted in clay to provide a stable horizontal 

surface for analysis. Five samples were taken side by side every two inches for adequate 

sampling, and the scanned area for each measurement was approximately 1mm2. Like in 

the microhardness experiment, roughness was measured along the length of the implant 

to see if the roughness was different to explain the implant failure. An example of the 

software statistics for one measurement is shown in Figure 20. 

 

 

Figure 20. The Zygo surface analysis interface displays a colored 
topography map, a two dimensional profiler, and a three dimensional 

movable image. 

 

The interface provides three images of the surface: one as seen after 

magnification with no alterations, one with topography by color, and one as a 3-D image 
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with color topography. Even though the analyzed surface area was on an approximately 

horizontal surface, a data transform was performed using the software to remove the 

slightly cylindrical tendency of the surface. 

4.5. Corrosivity/Passivity 

Stainless steel and titanium are chosen for bone implants because of their anti-

corrosive properties. However, some of the surrounding tissue images showed the 

dissipation of metal into the human tissue. Whether the transfer was tribological or 

chemical in nature remained to be determined. The passivation of the metals was tested 

to see if the body had an effect on the corrosive properties of the metals. 

Potentiodynamic polarization scanning was chosen to be the method of testing. This 

section describes the potentiodynamix polarization scan method, examines the test 

apparatus and equipment, and outlines the procedure for the test 

4.5.1. Potentiodynamic Polarization Scan 

In a potentiodynamic polarization scan, the voltage potential is the controlled 

variable and the current is recorded. Contrary to standard notation, the controlled (or 

independent) variable is on the y-axis while the recorded (or dependent) variable is on 

the x-axis. There are two main regions for scanning: the anodic region and the cathodic 

region. 
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4.5.1.1. Anodic Polarization Scan 

The rest potential is the potential at which the anodic and cathodic reactions 

happen at the same rate, thus there is no current flow. The curve above the rest potential 

is the anodic polarization curve. This curve is shown in Figure 21. 

 

 

Figure 21. Theoretical anodic polarization scan of stainless steel [52]. 

 

As the potential increases from point A, the primary reaction is metal oxidation. 

The current density increases in region B, and this is known as the active region. Point C 

is the passivation potential, and the current density decreases after the potential increases 

past this point. The passive region (E) is notable, as the current density remains constant 

for a large region of voltage change. Point F is the breakaway potential, and after this 

point the current increases as potential increases (G). 
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4.5.1.2. Cathodic Polarization Scan 

The cathodic polarization curve is under the rest potential, and the theoretical 

curve is shown below in Figure 22. 

 

 

 Figure 22. Theoretical cathodic polarization scan of stainless steel 
[52]. 

 

In the cathodic region, potential is generally varied from high to low. Point B 

represents the oxygen reduction reaction. The current density remains constant for a 

region (C) before another cathodic reaction takes place (D). 

4.5.2. Gamry Reference 600 Potentiostat Machine and Equipment 

To calculate the corrosion potential, potentiodynamic polarization testing was 

performed using a Gamry Reference 600 Potentiostat machine. A Saturated Calomel 



 

 

 52 

Electrode (SCE) probe was used for a reference point. The approximate range of 

potential for stainless steel was determined from literature to be -1.2V to 0.4V. A 

solution of 2% NaCl in de-ionized water was used as the electrolyte. Figure 23 shows 

the test setup. 

 

 

Figure 23. This figure shows the potentiodynamic polarization setup 
with the Gamry Reference 600 Potentiostat 

 

4.5.3. Procedure 

For the samples, a one-inch portion was sawed off of the intramedullary nails. 

Tape was used to section off a specific area for testing. The exposed area was then 

measured in cm2. The test ran for approximately three minutes to span across the voltage 
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range. The Gamry instrument measured the current across the voltage range, and 

corresponding software was used to record the data. 

4.6. Scratch Testing 

The scratch testing comparison was performed to further characterize the surface 

mechanical properties of the samples. Previous microhardness testing had revealed 

strange fracture patterns and cracks at the fringe of the indentations, and scratch testing 

would amplify the effects of deformation and fracture at the peripheral of the marking. 

This behavior would give insight into a possible surface coating removal or formation in 

the human body. The data extracted in this test would only be meaningful in comparison, 

and would not be useful for reference of standards. 

4.6.1. Procedure 

A CSM Instruments tribometer was used to create a scratch using a drill bit as the 

hanging mass. Figure 24 shows the tribometer test setup. 
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Figure 24. The tribometer doubled as a scratch tester when a drill bit 
was used in place of a ball bearing. 

 

The tribotester setup contains a sitting mass and a hanging mass, designed to 

remove all force from the point of contact except for the intended mass added above the 

test sample. The hanging masses can be seen as two circular weights on the leftmost side 

of the picture. The hanging mass includes everything above the sample except the disc, 

which was the intentionally added mass. A circular motion mechanism was converted 

into a linear motion to form the scratch. The black machine contains the motion 

mechanisms. 

Each of the scratches was performed along a horizontal axial ridge of the sample, 

and ranged from 0.5 to 1 inch. The angle of the drill bit was 120 degrees and the force 

applied to the drill bit was 3N. The tribometer arm had to be manually raised after one 

linear movement, since the minimum movement was one cycle back and forth.  
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4.6.2. Data Interpretation 

The scratch width and depth were analyzed using the Zygo instrument and 

software. Figure 25 provides a picture of the software analysis of a scratch. 

 

 

Figure 25. The Zygo interface during surface analysis of a scratch 
created with the tribometer. 

 

As seen in the figure above, a profile of the scratch is formed by dragging two 

reference points to create a line perpendicular to the scratch in the topographical map. A 

2-D profile was generated, as seen in the figure above. Figure 9 shows another profile 

and the metrics used to measure the width and depth. 
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Figure 26. Two dimensional profile from the Zygo surface analysis 
software interface. 

 

As seen in the figure above, the height is defined as the distance from the highest 

point to the lowest point of the profile. The width is defined as the distance between the 

local maxima on either side of the ridge. For each scratch, five profiles were recorded. 

An optical microscope was used to image the surface to analyze the material pile-up at 

the peripheral of the scratch. Images were recorded for comparison from each of the 

scratches. 

4.7. Microstructural Analysis 

After the samples had been mechanically tested, they were examined at the 

microstructure level. The first set of experiments investigated the mechanical 
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degradation at the surface by testing mechanical properties, but the results could never 

identify a cause. This second set of experiments explores the properties of the materials 

that could shed a light on the degradation mechanism. 

4.7.1. Microstructural Analysis Sample Preparation 

This portion of experimentation needed to be performed after the mechanical 

tests because sections of the implants needed to be cut off and embedded in an epoxy 

plug. The following sections detail the methods for polishing and etching the samples. 

4.7.1.1. Polishing 

The samples first needed to be cut with a power hacksaw to remove a 0.5 inch 

long piece. These samples were embedded into an epoxy mount using the machine 

shown in Figure 27. 
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Figure 27. The Simplimet mounting press machine comes equipped 
with a pressure gauge, a heating cylinder, and cooling fins. 

 

The sample was placed in the compression cylinder and ten grams of Buehler red 

Phenocure powder were poured on top. A hollow heating cylinder was placed over the 

compression cylinder to melt the epoxy. The compression chamber was pressurized to 

42 ksi for fifteen minutes. The pressure was then released and the heating cylinder 

turned off and removed. 
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Next, a polishing machine was used to reveal a smooth surface for etching. An 

Ecomet 3 polishing table was used in conjunction with an Automet 2 polishing head; 

both are shown in Figure 28. 

 

 

Figure 28. The Automet 2 polishing head mounts on the Ecomet 3 
polishing table. Each machine is equipped with controls that are 

integrated with the other. 

The machine was equipped with controls for time, head rpm, head spin direction, 

applied force, and base rpm. The sample mount was designed to carry six samples, and 

Figure 29 shows the machine with the sample mount. 
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Figure 29. The samples were placed in a fixture, which attached to the 
rotating polishing head. 

After a consultation with Buehler, the manufacturer, a procedure for polishing 

the 316L was solidified. The polishing would be done in four steps, and Table 9 

summarizes the test conditions. 
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Table 9. Test conditions for polishing stainless steel 316l samples. 
Condition Step 1 Step 2 Step 3 Step 4 

Central Force 21 lbs 21 lbs 21 lbs 21 lbs 

Head Speed 60 rpm cw 60 rpm ccw 60 rpm ccw 60 rpm ccw 

Base Speed 250 rpm ccw 150 rpm ccw 150 rpm ccw 120 rpm ccw 

Time 4 minutes 4 minutes 4 minutes 4 minutes 

Polish Pad Si Carbide 320 Ultra Cloth Trident Cloth Micro Cloth 

Polishing 

Solution 

Water 9 um diamond 

suspension 

3 um diamond 

suspension 

Collodial 

Silica (30%) 

 

 

Between each step, the sample was rinsed with de-ionized water and wiped dry 

with a Kim-tech wipe. If a chemical film formed on the surface from the solution, then 

sometimes acetone or ethanol were used to clean the surface. 

4.7.1.2. Electro-etching 

After the surface was polished to the point of no visible scratches, the samples 

were etched electrochemically to reveal the microstructure.  The Aqua Regia solution 

was used as the electrolyte. Aqua Regia contains three parts hydrochloric acid to one 

part nitric acid. The solution was often diluted with water for some of the tests, but this 

only affects the amount of time for which the sample should be etched. The test sample, 

which served as the anode, was attached to the positive terminal by a copper wire, and 

the negative terminal was attached to a graphite rod, which served as the cathode. The 

voltage used was six volts, and the time immersed in the solution was five seconds. 
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Since the electrolyte was an etching reagent even without the electric current, the voltage 

was applied and the time elapsed when the anode was dipped into the solution. The 

anode (or the test sample) was not allowed to remain in the Aqua Regia solution even 

without the current, as non-uniform etching and pitting would occur. Quickly after the 

anode was removed, it was rinsed with de-ionized water and dried with a Kim-tech wipe. 
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CHAPTER V 

EFFECTS OF HUMAN BONES ON SURFACE PROPERTIES OF IMPLANTS 

This chapter discusses the effects of the human body on the morphology of the 

implants and the corrosion behavior after implantation. The chemical and microstructure 

of implants were studied using electrochemical potentiostat and optical microscopes.  

5.1. Corrosive Behavior 

The potentiodynamic study reveals corrosive behavior of samples before and 

after implantation that reflects the surface properties of the same. The results of the 

potentiodynamic polarization scans are posted in Figure 30 and Figure 31. 

 

 

Figure 30. Potentiodynamic polarization curves for stainless steel long 
femoral intramedullary nails. 
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The most telling sign of this result is that the passive region for the implanted 

material occurs at a much higher current than for the non-implanted material. This 

implies an increased chance for corrosion for the implanted material if the two materials 

were placed in the same environment. The difference morphologically could possibly be 

explained by the removal of a surface treatment used for all implants, or also by the 

deposition of an oxide layer that changed the corrosive properties of the steel. Results 

shown in Figure 30 indicates that the reference sample gets passivated earlier that the 

implanted one. This has several possible reasons. The first is the surface roughness effect 

that the rougher surface is prone to be corroded more because it traps more liquid inside 

the valleys. The second reason is the surface chemistry of both samples. If a protective 

layer preexists, the passivation can only make it better as shown in the steel case. The 

encapusulation and biological attack on the implant surface is possible we will look into 

this later in this chapter. Ultimately, the implanted sample surface is rougher than the 

reference sample. This will be shown in the following section. 
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Figure 31. Potentiodynamic polarization curves for stainless steel tibial  
intramedullary nails. 

 

The potentiodynamic polarization scan for the tibial nails was less conclusive 

than the previous evidence. There are slight deviations between the curves, but the 

differences are negligible and no claims can be made regarding the changes in 

passivation for the material. Higher potential range along the anodic scan were shown in 

this graph and still no significant differences appeared. No significant differences occur 

between the rest potentials, the passive regions. The difference between this implant and 

the previous one was that this was a tibia implant while the other was a femur implant. 

The fact that the tibia naturally experiences less stress than the femur (due to sharing 

load with the fibula) may have bearing on the lack of evidence for property alterations. 
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5.2. Surface Roughness / Corrosion Sites 

The surface roughness differences were apparent throughout all the stages of 

experimentation in the stainless steel samples. Some of the differences could be seen 

with the naked eye, and are quantified in the following chapter. The titanium bore 

significant signs of scratching and wear, although the locations and severity of the 

damage hinted that the damage occurred during removal from the bone. Both implanted 

and non-implanted materials experienced a mild degree of scratching or rubbing from 

shipping and handling. The implanted material also bore pits, explainable by corrosion. 

Images of the surface damage from the long femoral nails are shown side by side in 

Figure 32. 

 

 

Figure 32. A typical view of the surfaces is shown for the stainless steel 
long femoral intramedullary nails, non-implanted (left) and implanted 

(right). Arrows indicate pitting. 

 

As seen in the images, deeper scratching has occurred in the implanted material; 

this is intuitive as the material was scratched and rubbed by the bone during fixation and 
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possibly over time in the body. Localized pitting also appears in the implanted sample, 

indicating that a chemical reaction has occurred. Given that stainless steel is known to 

corrode in fixation applications, this is likely. 

5.3. Scratch Deformation Analysis 

An optical analysis was used to evaluate the scratch deformation patterns in the 

tested materials. Significant plowing occurred in all cases, and the material build up is 

easily visualized from the profile shown in Figure 33. 

 

 

Figure 33. The profile of the scratch from the Zygo surface roughness   
analysis interface for a stainless steel long femoral intramedullary nail. 

Brackets indicate pileup height. 

The material is pushed to the side during abrasive wear and builds up at the edges 

of the valley. Optical images of the scratches were taken to characterize the deformation 
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as brittle or ductile. The fracture pattern of the material speaks about dislocation pile-up 

in the microstructure. Images of scratches are shown in Figure 34 and Figure 35. 

 

 

Figure 34. The images from the scratch tests are compared for the 
stainless steel long femoral intramedullary nail case, non-implanted 

(left) and implanted (right).  

 

Brittle material exposed to plowing is characterized by cracks to the outside of 

the buildup material. The figures show that both of the materials contain cracks, but the 

implanted material contains more cracks. Blue circles highlight the buildup formation, 

and evidence of adhesive wear is shown in the non-implanted sample. This is evidence 

of ductility, whereas more frequent smaller and uniform cracking indicates brittleness. 

Another factor to consider is that the scratch is thinner (marked by brackets) – and thus 

shallower by geometry – and so less material has been displaced. The surface of the 

implanted sample is generally more resistant to scratch deformation. The implanted 

material appears to be more brittle than the non-implanted material. 
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Figure 35. The images from the scratch tests are compared for the 
stainless steel tibial intramedullary nail case, non-implanted (left) and 

implanted (right).  

 

In the case of the tibial nails, the difference is less apparent. The width is almost 

identical (shown with brackets), and the deformation pattern is similar. Blue circles on 

the figure mark areas of cracking but one material does not seem to be significantly more 

brittle than the other. This coincides with the lack of evidence for difference in the 

potentiodynamic polarization scan. Again, the evidence does not show that the tibial 

implant has experienced significant change. 

5.4. Microstructural Analysis 

The samples were etched so the microstructure could be analyzed. Both 

brightfield and DIC images of the samples appear in this section. The microstructure was 

analyzed to identify the mechanism for the changes documented earlier in this chapter. 

Microstructure images for all of the stainless steel samples appear in Figure 36, Figure 

37, Figure 38, and Figure 39. 
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Figure 36. Microstructure of the non-implanted stainless steel long 
femoral nail (2000X magnification). 

 

The grain boundaries are well defined in this image, and the austenite phase is 

clear. The micrograph shows partly recrystallized austenite grains. Remnants of 

twinning remain. The matrix is austenite [53]. 
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Figure 37. Microstructure of the implanted stainless steel long femoral 
nail (2000X magnification). 

 

Here the grain boundaries are fainter and selective etching has occurred. The 

underlying material has been etched unlike in the non-implanted sample – presumably 

due to a chemical alteration of the material due to corrosion. The material was made 

susceptible to corrosion by the damaging and removal of the chrome-rich oxide layer, 

leaving a chromium depleted surface [54]. In the absence of chromium, portions of the 

underlying metal have been etched away [53]. The selective etching appears to have 

occurred in a pattern that would suggest that the implanted material has a smaller 

effective grain size. This would only hold true for the effected surface layer, but still 

bears weight on the properties of the material. 
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Figure 38. DIC image of the microstructure of the non-implanted 
stainless steel tibial nail (20X, 0.5 NA objective). 

 

The etching shows distinct grain boundaries, but the contrast from the differential 

interference contrast image shows that the etched surface is not completely flat. The 

tibial implants have not shown significant change thus far, so let us examine the 

implanted sample to see if any noticeable differences have occurred. 
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Figure 39. DIC image of the microstructure of the implanted stainless 
steel tibial nail (20X, 0.5 NA objective). 

 

The difference in microstructure is not apparent after observing the implanted 

sample. The grain size appears to be larger but there is no reason to think that the grain 

size changed, rather that the direction of the grains might be different. The topography 

shows that both surfaces etched similarly, and the same effects from the femoral samples 

are not apparent in the tibial samples. 
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CHAPTER VI 

ALTERATION IN MECHANICAL PROPERTIES OF IMPLANTS 

This chapter discusses about the mechanical properties of the implants that the 

human body has changed. The interpretation of the surface morphology analysis leads to 

the idea of macro-scale changes in the material. The properties measured in the previous 

experiments of Chapter III are extrinsic, and are merely indicators of a change in 

intrinsic properties. 

This section discusses effects of  human body on mechanical properties. Results 

showed both a change in hardness and wear resistance of the implanted surface. The 

interpretation of the microstructure analysis helped to explain the change in mechanical 

properties. 

6.1. Effects of Human Body on Hardness of Implants 

As was seen in the microstructural analysis, the human body has certainly 

affected the change in properties of the bone fixation materials. In this section, the 

results form the mechanical tests are presented to show the changes that the human body 

had on the hardness. 

6.1.1. Hardness 

The hardness results are shown in Figure 40, Figure 41, and Figure 42. Figure 40 

has two plots of data. The top one is for samples that have been implanted inside the 

human femur, and the bottom plot is for the control sample that was not implanted. In 

comparing two plots, the difference is that the implanted samples are significantly 



 

 

 75 

harder, and that is consistent throughout the measurement. Through repeated 

experiments, results shown evidence that the surface of the implanted material had 

become higher than that of the non-implanted material in the case of the long femoral 

nails. An image of the tested implants appears beneath each set of data to match the data 

to the samples. 

 

 

 

 

Figure 40. The hardness data for the long femoral nails shows that the 
surface of the implanted sample was harder on average. 

The hardness data shows that the implanted long femoral nail was harder than the 

non-implanted long femoral nail. None of the error bars came within 10% of each other, 

so this is stated with certainty. The implanted sample had a peak in hardness in the bent 
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area, presumable due to dislocation pileup that occurred at the deformation. Both 

samples also showed that the hardness was higher at inches 1 and 2, explained by the 

presence of screw holes that imply cold working as a result of manufacturing technique. 

It is interesting to see that the shape of the plots correspond with the shape of samples. 

The shape of the data points almost changes exactly to match the shape of the deformed 

implant. This might indicate that the mechanical properties of their bulk follow the same 

trend of the surface. This will be further discussed correlating with stress distribution 

discussed in Chapter III. 

 

 

 

 

 
Figure 41. The hardness data for the short femoral nails shows that the 
 surface of the implanted sample was harder around the fracture point.  
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The hardness values were close in most cases, and a significant difference 

between the samples was not apparent. In the implanted sample at the fracture point, the 

average hardness was higher than the rest of the values for both samples. These 

measurements were taken on a different axial ridge due to the screw holes, so this may 

have caused discrepancy in the data at that point. 

 

 

 

Figure 42. The hardness data for the tibial nails is inconclusive in 
interpreting a significant difference. 
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The hardness data for the tibial nails was erratic and inconclusive. The hardness 

data along the length varied dramatically for both samples, and switch between one 

implant being harder than the other. No significant difference could be concluded from 

the data. 

While the tibial nails were not able to offer a conclusion, the long femoral nails 

present intriguing data for the whole length of the sample regarding a change in 

hardness. The data from the short femoral nails showed evidence of increased hardness 

around the fracture location. The inconclusive samples might be due to the following 

reason, implanting time, the activities of the patient and the age and gender. Since the 

source of our samples is limited, we will continue investigator on those factors in future. 

In the present research, we will focus on the evidence for the current samples.  

 

Table 10. This table compares the Brinell hardness values for the 
titanium femoral plates. 

 

Sample Hardness Standard Deviation 

Non-implanted 81.77 .058 

Implanted 77.87 .961 

 

 



 

 

 79 

  The hardness values for titanium show approximately a 5% increase between the 

non-implanted and the implanted samples. This difference is small compared to the 

difference shown in the steel femoral samples. The data is presented differently due to a 

different hardness test being performed, as explained in the experimental section. From 

this hardness data, we can say that the hardness of the titanium was not significantly 

altered.  

6.1.2. Evaluation of Surface Roughness  

Figures Figure 43, Figure 44, Figure 45, and Figure 46 are roughness average of 

the samples. Each of these figures shows both the roughness average data and the image 

of the samples to correspond to the data. The roughness average results were interesting 

and they showed that the stainless steel implanted samples were significantly rougher. 

Every one of the roughness tests for the stainless steel demonstrated that the implanted 

samples were rougher, even though some of the tests only proved this for the failure site. 

The relationship between roughness and hardness reflects the surface property – 

performance of a material. For a ductile material, roughness average bears an important 

correlation to surface hardness, as the deformations in the material lead to surface 

dislocations that pile up to increase surface stress and hardness. Although these 

dislocations due to roughness exist primarily at the surface, these stress intensification 

factors can compound to lead to complicated failures in the material. Another possibility 

is that the increase in hardness also correlates to a more brittle material – susceptible to 

crack propagation. In addition, if there are any chemical reactions between the implant 
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and surrounding tissue resulting in corrosion, the surface roughness of the implant could 

be increased. To confirm which factor(s) dominate, further analysis is carried out that are 

discussed in the following sections. 

 

 

 

 

Figure 43. The roughness average data for the long femoral nails shows 
that the surface of the implanted sample was rougher on average. 

 

The roughness average data shows that the implanted long femoral nail was 

significantly rougher than the non-implanted long femoral nail. The extra sampling for 

the implanted nail around the failure point showed an even higher roughness average 



 

 

 81 

than the rest of the sample. Independent of the roughness average values, the standard 

deviation was higher in the implanted sample. 

 

 

Figure 44. The roughness average data for the short femoral nails 
shows no conclusive evidence for a difference, but it appears that the 

implanted sample is rougher on average. 

 

The error bars for the stainless steel short femoral nails overlap at every point 

that measurements were taken. This fact makes it difficult to conclude with certainty that 

The implanted sample is rougher, although the averages are higher at every measured 

point. On its own this data might present a weak case, but the findings strengthen a 
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compelling argument with a repeatable trend: that is, that the implanted samples are 

rougher. 

 

 

 

Figure 45. The roughness average data for the tibial nails shows that the 
surface of the implanted sample was rougher on average. 

 

The roughness measurements for the stainless steel tibial implants show that the 

roughness average is higher for the implanted sample than for the non-implanted sample. 

The measurements for inch 1 of the implanted sample display a roughness average much 

higher than the rest of the measurements. This is related to the fracture at the screw hole, 

around which the surface is rough even to the naked eye. The standard deviation for the 
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implanted sample’s measurements was noticeably higher than the standard deviation for 

the non-implanted sample’s measurements. At all points, the average of the data 

measurements was higher for the implanted sample than for the non-implanted sample, 

and for half of these locations the error bars did not intersect. 

 

 

 

 

Figure 46. The roughness average data for the femoral plates shows 
that the surface of the implanted sample was rougher on average. 
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The roughness data for the titanium femoral plates is inconclusive in that there is 

no significant difference in roughness between the implanted and non-implanted sample. 

Many of the error bars overlap, and the averages are close in value. 

All of the stainless steel roughness average evaluation tests support that the 

surfaces of the implanted samples are rougher than the surfaces of the non-implanted 

samples. The titanium roughness average evaluation concludes that there is no 

significant difference between implanted and non-implanted sample. For the steel, the 

change in surface mechanical properties compounded the probability of implant fracture 

by introducing stress concentrations and crack growth sites. 

6.2. Effects of Human Body on Wear Resistance 

It has been well accepted that the wear resistance is a function of hardness, as 

shown by Archard’s equation [55]. 

The higher the hardness of a material, the lower it wears. In the present research, 

wear resistance provides more conclusive evidence for the removal or displacement of 

material instead of just the ability to resist deformation.  This provides more insight into 

mechanical and surface properties of the material than hardness testing would provide. 

6.2.1. Scratch Resistance 

An optical analysis of Figure 34 shown in Chapter 4 shows that the brittleness 

and apparently the hardness of the stainless steel femoral sample were increased after 

implanting into human body. The scratch tests shown in Figure 47 and Figure 48 

confirmed quantitatively that the stainless steel samples have higher scratch, i.e., wear 
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resistance in this case - this has increased due to implantation. The physical dimensions 

of the scratch were smaller than that reference material. In this sense the scratch testing 

functioned as another form of a comparative hardness test. Images were also taken with 

an optical microscope to characterize the material in the pileup region. This showed the 

failure pattern to identify the presence of a coating or lack the lack of a coating as shown 

in Chapter 4. The charts for scratch depth and width are shown in Figure 47 and Figure 

48. 

 
 

 

 

 

Figure 47. The scratch width and depth were smaller for the implanted 
long femoral nail. 

 

The scratch width and depth were smaller for the implanted sample. This leads to 

the conclusion that the implanted materials were harder. The error bars for the scratch 

width did not overlap, but the error bars for the scratch depth did overlap. A probably 

cause is the deformation pattern during scratching, during which the most surface level 
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material permanently deformed due to hardening and the innermost material deformed 

plastically, recovering partially from the deformation. As the material closer to the 

surface was more affected, the difference in the depth is less noticeable as the depth 

measurement accessed the region where the two samples were likely to be similar. 

 

 

 

Figure 48. The scratch width and depth were smaller for the implanted 
tibial nail. 

 

6.2.2. Effects of Surface Roughness on Wear  

A rougher material is more susceptible to wear. This is due to the asperity contact 

peaks sustaining higher contact stress than the rest. The higher the surface roughness, the 

less number of asperity contacts, and thus the higher contact stress [56]. The dramatic 

change in height of the surface will cause high friction when a slider is in contact with a 

disk.  In the present research, the wear can be seen using optical microscope and images 

are shown in Figure 49 and Figure 50. 
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Images of both the surface of the implanted material and of the proximal 

biological tissue are shown in Figure 50 and Figure 51. However, the material after wear 

occurred in the human body was still rougher than the pre-implanted material. This 

indicates that the wear was an effect of the roughness, not a cause. The non-implanted 

material was not perfectly smooth, but significantly smoother than the implanted 

material. An optical image of the non-implanted stainless steel long femoral nail is 

shown in Figure 49. 

 

 

Figure 49. The non-implanted stainless steel appears to be polished 
although having several scratches. 

The implanted material is visibly rougher, and was already confirmed by the 

Zygo analysis results. The roughness does not appear to be due to scratches only, but 

also from localized pitting, indicative of a bio-chemical attack. A similar image of the 

implanted material is shown in Figure 50. 
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Figure 50. The implanted sample shows increased roughness due to 
localized pitting. 

 

The observed pattern of surface roughness showed a cause of deformation other 

than physical wear. This observance was compared with images of biological tissue 

proximal to the bone implant, as shown in Figure 51. The tissue sample was provided by 

Dr. Zhou at Shandong Provincial Hospital for Orthopedic Trauma and the image was 

taken by Yan Zhou at Texas A&M University. The figure shows metal fragments that 

lodged in the tissue. Two of these images are shown in Figure 51. 
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Figure 51. Tissue samples proximal to the bone implant show the 
presence of metal fragments, fibroblasts, and inflammatory cells. 

 

The tissue contains inflammatory cells – the body’s response to harmful stimuli. 

This indicates that metal fragments have caused the inflammation, and a few metal 

fragments can be seen in the figure above. Fibroblasts also appear in the first image. 

Fibroblasts are metabolically active cells in the connective tissue, and play a large role in 

healing wounds [57]. The above images clearly show that material has transferred from 

the implant surface to the bio-tissue, increasing the roughness and decreasing the wear 

resistance. 

 

6.2.3. Microstructure Effect on Wear Resistance 

As shown from the grain size and the Halle-Pech effect, the implanted materials 

certainly had higher yield strength. The smaller grains also caused an increase in 

hardness, as shown in the Vickers microhardness results. The roughness proved that the 

dislocation density was higher, leading to resistance of both indentation and wear. These 
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dislocations were caused by a biochemical reaction, and the body’s response is shown in 

the proximal bio-tissue. The alterations to the surface do not likely confer a huge change 

to the bulk mechanical properties, but still lead to an increased probability of failure 

through stress concentration and crack propagation.  

6.3. Chapter Summary 

This chapter discussed the effects of human body on surface roughness, hardness, 

and wear resistance. Results showed that the hardness, roughness, and wear resistance of 

the stainless steel femoral implant were increased due to implantation in the human 

femur. The results show that the stainless steel tibial implant samples were not 

significantly harder, although they were rougher and more wear resistant. The titanium 

implants were overall unaffected by implanting in the human body. The primary reason 

for not conducting chemical and morphological tests on the titanium was that no 

mechanical properties had significantly changed. 
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CHAPTER VII 

IMPLANT FAILURE ANALYSIS 

This chapter discusses the failure mode, cause, and effects of the human body on 

implants. There are four implants studied here: Long Femoral Intramedullary Nail, Short 

Femoral Intramedullary Nail, Tibial Intramedullary Nail, and Femoral Plate. The failure 

types are identified from a macro scale analysis and mechanisms are further discussed. 

7.1. Long Femoral Intramedullary Nail 

To recapitulate on the case of the long femoral intramedullary nail, images of the 

implant are shown in Figure 52. 

 

 

Figure 52. The x-ray and regular image show the bend in the long 
femoral intramedullary nail. 
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The x-ray image shows a complicated fracture where the bone appears to be 

crushing into the right side of the intramedullary nail. This stress riser is coincident to 

the location of high stress shown in the simulation chapter. 

7.1.1. Failure Analysis 

The failure mode for the long femoral intramedullary nail was bending. Bending 

in a rod occurs due to non-axial loading and exceeding the yield strength of the material. 

In light of the experimental evidence, the failure of the long intramedullary nail 

is an enigma. The hardness results would lead to the assumption that yield strength of 

the material had been changed. However, since the hardness increased while inside the 

human body, the yield strength would have increased with the hardness. This counters 

the hypothesis that the implant failed because of lowered yield strength. 

This does not negate the findings in this paper. On the surface level, the hardness 

was higher in the implanted sample, and thus the yield strength on this surface level 

would have been harder. However, a bending failure would take into account the 

strength of the bulk material. Also, the bending failure would have happened suddenly, 

and changes in the mechanical properties of the surface level would not have been able 

to cause an impact in the bulk material like they would through crack propagation. 

Thus, the mechanical properties in the long femoral intramedullary nail were 

certainly altered, but the altered properties were not the reason for the bending failure. 
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7.2. Short Femoral Intramedullary Nail 

Although included earlier in this paper, the images of the short femoral 

intramedullary nail fracture are shown in Figure 53. 

 

 

Figure 53. The x-ray and regular image show the bend in the short 
femoral intramedullary nail. 

 

As seen in the x-ray, the bone appears to have a pre-existing mal-union that 

causes a stress riser at the bend. In addition, the bone fracture increases the stress in 

proximity to that area. As seen in the Chapter 3 on simulation, daily activity produces 

the highest stress on the femur shaft – right at the site of the implant fracture. The screw 

hole in the intramedullary nail introduces even more stress concentrations to that area. 
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This is why the implant fracture occurred in a slightly different location than the bone 

fracture. The fractography is shown in Figure 54. 

 

 

Figure 54. The fractography shows a brittle fracture. 

 

As seen in the image of the fracture, the break was brittle. The parallel cracks on 

middle top indicate fatigue failure. In conjunction with a decrease in mechanical 

properties, this fixation was a plausible candidate for failure. 

7.2.1. Failure Analysis 

The failure mode for the short femoral intramedullary nail was brittle fracture by 

fatigue. The fatigue occurred over a large number of cycles with stress at the fracture site 

well over the fatigue limit. 
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The two primary factors that caused the fatigue failure were increased hardness 

and increased wear. The hardness change was evidenced by the microstructural analysis 

and the mechanical hardness tests. Hardness and brittleness are also closely linked. The 

implanted material was shown to be more brittle, which creates an environment for crack 

propagation rather than the stress distributing through ductile deformation. The increased 

density of dislocations, shown in the microstructure, increases both the hardness and 

likelihood of crack propagation. 

The wear sites created opportunity for cracks to propagate, as scratches and pits 

introduced micro stress concentration sites. The wear resistance of the material both 

increased and decreased in different aspects. The material became more wear resistant as 

a result of hardening, which made the material more brittle and prone to cracking. The 

material also experienced pitting and scratching in the body, which created areas for 

more wear to occur. The physical wear resistance should not be confused with the 

corrosion resistance. The material experienced significant corrosive wear that introduced 

sites for crack propagation. 

7.3. Tibial Intramedullary Nail 

Although included earlier in this paper, the images of the tibial intramedullary 

nail failure are shown in Figure 55. 
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Figure 55. The x-ray and regular image show the bend in the tibial 
intramedullary nail. 

 

The x-ray only shows floating fragments, and not the implant at the time of 

failure. No outside evidence supports the reasons for failure, although the alterations in 

mechanical properties are not assumed to have caused the fracture single-handedly.  

7.3.1. Failure Analysis 

The failure mode for the tibial intramedullary nail was the same as the short 

femoral nail. High stress and many cycles contributed to a fatigue failure along with 

several observed failure causes. 

The mechanical properties in the tibial implant did not seem to change 

significantly except for the failure site. The mechanism is still unknown but the section 

that was changed was the section that failed. The failure site experienced increased 
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roughness, which indicates that corrosion and scratching has occurred. The similarity in 

situation to the short femoral implant leads us to assume similar failure causes. 

7.4. Femoral Plate 

The femoral plate appeared to have failed by brittle fracture. The fracture was 

sudden and a result of sudden loading rather than fatigue and crack propagation. 

The hardness data showed that there was not a significant increase in the 

implanted sample. The roughness data in Chapter 6 an Figure 46  showed a significant 

increase, but the difference can be seen in macro-scratches on the surface. The damage 

on the surface was created during removal, and is not considered in the failure cause. 

The corrosion data shows no significant differences, and the small differences are 

attributed to the physical damage the implant sustained during removal. Considering the 

corrosion resistant properties of titanium, this assumption is reasonable. The body’s 

effect on the mechanical properties of the titanium implant is considered negligible and 

the implant snapped from one of the causes listed in the introduction. 
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CHAPTER VIII 

CONCLUSIONS 

8.1. Conclusions 

This thesis researched the effects of the human body on the material properties of 

metals used for internal fixation devices. The effects were studied on macro-mechanical, 

micro-mechanical, chemical, and morphological parameters. The results have identified 

a potential hazard to internal fixation and a common factor in the somewhat frequent 

event of fixation failure. The following conclusions have been established by this 

research. 

• The simulation identified stress concentrations in the femur which doctors should 

be aware of to avoid aligning high stress areas on implant devices. 

• The human body has significant effects on the mechanical, chemical, and 

morphological properties of stainless steels that have been used in bone fixation. 

• The effect on the mechanical properties has ultimately led to a change in 

hardness and the roughness of stainless steel in the femur. 

• The mechanical properties of titanium are not significantly altered while 

implanted in the human body. This criterion should be considered among many 

when deciding which implant material to use. 

Typically the study of biomechanical implants in the human body focuses on the 

effects that the metals have on the human body. This research introduces an alternative 

approach in evaluating the implants. As the internal fixation industry grows to improve 
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human quality of life, reliability of the material will be crucial. The science of bone 

fixation is continually refining, and factors that affect failures are inevitably more 

controlled as time progresses.  

8.2. Future Recommendation  

Future focus is suggested to obtain greater variety of samples. Samples of 

different materials and from different bones could expand the understanding of the 

effects of the body on material properties. Modeling of more human bones and even 

adding models of the metal implants would provide data to build an understanding of the 

effects of stress on change in material properties. 
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