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ABSTRACT

Inverse spectral techniques are developed in this dissertation for recovering the

shear modulus and residual stress of soft tissues. Shear modulus is one of several

quantities for measuring the stiffness of a material, and hence estimating it accurately

is an important factor in tissue characterization. Residual stress is a stress that

can exist in a body in the absence of externally applied loads, and beneficial for

biological growth and remodeling. It is a challenge to recover the two quantities

in soft tissues both theoretically and experimentally. The current inverse spectral

techniques recover the two unknowns invasively, and are theoretically based on a

novel use of the intravascular ultrasound technology (IVUS) by obtaining several

natural frequencies of the vessel wall material.

As the IVUS is interrogating inside the artery, it produces small amplitude, high

frequency time harmonic vibrations superimposed on the quasistatic deformation

of the blood pressure pre-stressed and residually stressed artery. The arterial wall

is idealized as a nonlinear isotropic cylindrical hyperelastic body for computational

convenience. A boundary value problem is formulated for the response of the arterial

wall within a specific class of quasistatic deformations reflexive of the response due to

imposed blood pressures. Subsequently, a boundary value problem is developed from

intravascular ultrasound interrogation generating small amplitude, high frequency

time harmonic vibrations superimposed on the quasistatic finite deformations via an

asymptotic construction of the solutions. This leads to a system of second order or-

dinary Sturm-Liouville problems (SLP) with the natural eigenfrequencies from IVUS

implementation as eigenvalues of the SLP. They are then employed to reconstruct

the shear modulus and residual stress in a nonlinear approach by inverse spectral
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techniques.

The shear modulus is recovered by a multidimensional secant method (MSM).

The MSM avoids computing the Jacobian matrix of the equations and is shown to

be convenient for manipulation. Residual stress is recovered via an optimization ap-

proach (OA) instead of the traditional equation-solving method. The OA increases

the robustness of the algorithms by overdetermination of the problem, and compre-

hensive tests are performed to guarantee the accuracy of the solution. Numerical

examples are displayed to show the viability of these techniques.
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1. INTRODUCTION

Soft tissues are composite materials with constitutions and structure continually

varying corresponding to tissue and mechanical environment [1]. They also display

the potential to undergo large deformations and still restore back to the initial con-

figuration when unloaded. The mechanical behavior of biological soft tissue plays a

vital role in maintenance of health and growth for living bodies. However, modeling

the mechanical behavior in soft tissue can be a very challenging task. The research

in the dissertation focuses on modeling the mechanics of the wall of large muscular

arteries in human or animal models. While the mechanics of the arterial wall is a

subject extensively developed in a vast literature [10, 11, 16, 17, 22], there are still

many critical issues yet to be fully resolved. Among these are reliable techniques for

devising and fitting robust models capable of reproducing both the in vivo and in

vitro mechanical behavior of the arterial wall.

It is now well-established that mechanical factors play a central role in under-

standing the mechanobiology of both healthy and diseased arteries [17]. For example,

mechanical factors such as inner-wall shear stress and within-the-wall tensile stresses

have major influence on growth and remodeling of the arterial wall, and the ini-

tiation and growth of atherosclerotic lesions. Attaining a deeper understanding of

the mechanobiology of arteries requires the ability to more accurately estimate the

stresses the arterial wall experiences in vivo than current techniques allow.

Based on the framework established in [27], the dissertation focuses on devel-

oping mathematical inverse spectral techniques to numerically recover the spatially

nonhomogeneous shear modulus and residual stress of the arterial wall by making

a non-traditional use of intravascular ultrasound (IVUS) technique for imaging ar-
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teries particularly. The shear modulus or modulus of rigidity, defined as the ratio

of shear stress to the shear strain, is a quantity for measuring the stiffness of ma-

terials. Estimating it accurately is a significant factor in tissue characterization.

Unfortunately, the identification of it in vivo for arterial wall displays a difficulty in

recent studies [22]. Meanwhile, residual stress is a stress that exists in a body in

the absence of externally applied loads. This means that even in the unloaded state,

there is still stress in the tissues, which is steady and at an equilibrium state with its

surroundings, contributing to the biological modification. These two quantities are

reconstructed by different inverse spectral techniques.

1.1 Project Background

The research in the dissertation is part of the long range project for distinguishing

the safe atherosclerotic plaques from vulnerable ones. Atherosclerosis is one of the

most fatal diseases of the muscular cardiovascular system. It is a disease in which

plaques build up inside the inner wall of muscular arteries due to various biological

processes [4, 21], through which the arterial wall thickens as a result of build up of

cholesterol and other fatty materials inside the interior surface of the wall. A soft core

plaque is initially formed, and as time progresses, a fibrous layer builds up on it due

to various biological processes such as calcification, cell necrosis, mural thrombus,

or hemorrhage [4, 21]. This process takes place over a long period of time, and the

extent and severity of the disease depend on the thickness of the calcified fibrous

layer. A vulnerable or unsteady plaque is one that the later formed cover is not thick

enough so as to cause the plaque to rupture suddenly leading to fatal diseases like

acute myocardial infarction, sudden cardiac death etc. [21]. On the contrary, the safe

or stable plaque is one that the cover is thick enough to prevent a sudden rupture

of the inner core. Different kinds of plaques possess different material stiffnesses
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and residual stress distributions. Understanding the shear modulus and residual

stress distribution in atherosclerotic plaques could be key aspects for discrimination

between the two kinds of plaques. This dissertation focuses on studying the shear

modulus and residual stress distribution in healthy arteries, from which one can

further understand it in atherosclerotic lesions.

1.2 A Novel Use of IVUS

Discovery of the plaques in a timely manner is essential for proper cure of the

disease. One of the frequently used medical technique is IVUS for locating and

characterizing obstructions inside blood vessels [43]. It is an invasive procedure in

which a catheter is inserted into the vessel. On the distal tip of the catheter is

an extremely miniaturized transducer which sends small amplitude, high frequency

ultrasound waves to the arterial wall and records its echo. The echo is transformed

back to the other end of the catheter which is connected to a computerized ultrasound

processor that generates detailed images of the interior arterial wall. The images

allow one to see from inside out the cross sectional view of the artery in vivo, and thus

detect atherosclerotic plaques, quantify the morphology of them [48], and analyze

structure and composition of the obstructions. The IVUS images of the calcified,

fibrous part of the plaques are generally brighter and more homogenous than that

of the softer, fatty ones which absorb more ultrasound wave [12, 30] (See Figure 1.1

for a schematic view of IVUS cathter insider an artery and a sample IVUS image

for atherosclerotic plaque). By the IVUS image analysis and high-order statistical

texture-based algorithms, one can understand the plaque composition [49].
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(a) A schematic display of

IVUS catheter operating in-

side an artery emitting ultra-

sound wave (from [28]).

(b) A sample IVUS image of

inner artery with atheroscle-

rotic plaque (from myheart-

partner.com).

Figure 1.1: Operation of IVUS equipment inside an artery and a sample IVUS image.

However, for more advanced demands to discriminate the stable plaques from

unstable ones more accurately, the results from IVUS are unsatisfactory [54, 55].

Based on its operational principle, a novel use of the IVUS technique is conceived for

more accurate discrimination. Under the IVUS interrogation, the ultrasound wave

propagates through the vessel wall causing the wall to vibrate in a nanoscale due to its

periodic force imposed on the prestressed and residually stressed arterial wall. One

can control the frequency of the ultrasound wave to produce arterial wall resonances.

Several natural frequencies of the wall tissue can be obtained, which are close to the

wave frequencies creating resonances. These eigenfrequencies are crucial information

of the plaque tissues, which can be explored for better distinguishment of stable

and vulnerable plaques. Towards this aim, this research makes use of the natural

eigenfrequencies to calculate the shear modulus and residual stress for understanding

the stiffness and mechanical distribution of the tissues.
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1.3 Tissue Characterization and Simplifications

Soft tissue, in general, or an arterial wall, in particular, exhibits complex me-

chanical behavior. Among the significant complications are: highly nonlinear stress-

deformation response; anisotropy; inhomogeneity; time-dependent response; active

and passive response; pre-stress and residual stress; and complex in vivo boundary

conditions. Devising a testing program and modeling setting through which the me-

chanical behavior of arteries can be determined that takes account of this full range of

complexity is a daunting task, even more so if the program is to be applicable both

in vivo and in vitro. It is proposed to base a mechanical characterization testing

procedure on a nondestructive, inverse spectral, ultrasound interrogation technique.

The inverse spectral, ultrasound approach proposed herein is in contrast to conven-

tional soft-tissue elastography and conventional nondestructive evaluation methods

as applied to traditional structural engineering materials. In particular, it makes fun-

damental use of the finite strain, nonlinear response of the material to pre-stresses

resulting from quasistatic loading upon which infinitesimal strain, ultrasound in-

duced, harmonic waves are superimposed.

In the idealized modeling of arterial wall, some main assumptions have been

made. First, though arterial wall is experimentally shown to be anisotropic [11, 46],

it is assumed to be isotropic for an initial simplified formulation of the mechanical

framework and inverse spectral techniques, and anisotropy will be incorporated in

subsequent studies for more practical modeling. Second, some computational results

reveal that arterial wall is slightly noncircular [41], but circularity assumption can be

a reasonable approximation for typical arteries, and this trend is followed. Third, to

avoid end boundary effects, an artery is assumed to be an infinitely long cylindrical

tube. Lastly, the arterial wall is thought to be prestressed purely by blood pressures
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in the mechanical framework and other factors are excluded like the influence from

the outer tissues. This assumptions, though ignoring some elements, grasp the main

aspects of the tissue situation and helpfully make the mathematical modeling and

its computation more tractable.

1.4 Main Content and Structure of the Dissertation

In the modeling framework, two kinds of boundary value problems are established

according to two categories of deformations respectively. The first category contains

the quasistatic deformations of the residually stressed arterial wall subjected to blood

pressures. The other one relies on the IVUS interrogation generating small ampli-

tude, time harmonic ultrasound vibrations superimposed upon the quasistatic large

deformations. These boundary value problems are transformed to Sturm-Liouville

problems (SLP), of which the eigenvalues are from the natural frequencies generated

by IVUS implementation. Inverse spectral techniques are developed to reconstruct

the shear modulus and some components of the residual stress tensor. It is impor-

tant to note that, unlike other harmonic analysis approaches which use a single blood

pressure for as many eigenfrequencies as needed [23], the approaches applied in this

dissertation are based on formulating a system of boundary value problems corre-

sponding to different blood pressures, and using several lower-mode eigenfrequencies

as input data from each of the blood pressures to construct the shear modulus and

residual stress. Utilization of several blood pressures and a few lower-mode eigen-

frequencies for each of them makes our approaches nonlinear and the results more

accurate, since more blood pressures involved produce an over-estimation for the

solution, and the lower-mode eigenfrequencies can be more easily estimated experi-

mentally with higher accuracy.

The inverse spectral techniques are realized by MSM for reconstruction of the
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shear modulus and by OA for recovery of residual stress [28,37]. Many other inverse

spectral techniques are developed only for forms of simple SLP, and the solutions are

obtained through solving a system of equations or forming iterations by principle of

fixed point theorem [44, 56, 57]. However, the unknowns in a complicated biological

problem are intricately involved in the SLP, the solutions of which are only locally

unique and many other perturbational solutions exist densely around the real ones.

What makes things worse is that the real solutions are indistinct from their surround-

ings. These difficulties make the traditional approaches easily divergent, or if used,

astonishing quantity of computation is needed. The techniques in this dissertation

avoid these obstacles due to their more flexible and effective algorithms.

The remainder of the dissertation is organized as follows. In Chapter 2, intro-

duction to Green elasticity and SLP is presented for a better understanding of the

mechanical and mathematical theory applied in the dissertation. In Chapter 3, it

illustrates how residual stress is involved with natural Cauchy stress in soft tissues.

The tissue constitutive model is also given under the simplifications provided in the

introduction. This chapter also contains the construction of boundary value prob-

lems for quasistatic deformation and vibration caused deformation via an asymptotic

expansion technique for modeling the response of an arterial wall to ultrasound inter-

rogation through the superposition of small amplitude, time harmonic waves upon a

large, quasistatic deformation. In Chapter 4, complete algorithms for reconstruction

of the shear modulus and residual stress are shown. Numerical examples with tables

and plots are presented to show the viability of these algorithms. The last chap-

ter contains discussions, summary of contributions and future research plans. From

the appendix, readers can find other fundamental algorithms utilized in the inverse

spectral techniques.
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2. PRELIMINARIES

2.1 Basics of Green Elasticity

This section briefly reviews several main concepts of Green elasticity employed in

this dissertation: deformation of a material object, the Cauchy stress, Piola-Kirchhoff

stress, response function, strain-energy function etc.

For a material body embedded in a 3-dimensional Euclidian space, two configu-

rations are considered. One is the current configuration denoted as βt dependent on

the current time t. The other one is a particular configuration β (the time subscript

is omitted) for some fixed time t0 as the reference configuration. The coordinate of

any point in β is labeled by X. The coordinate of the same point in βt is x. If it is

the deformed configuration not the deformation history that is significant such that

time can be neglected, the deformation or motion mapping from β to βt is set to be

x = χ(X), (2.1)

where χ is a set of invertible functions.

The deformation gradient tensor F is calculated by the formula

F = ∇χ, (2.2)

where ∇ is the gradient operator. The cartesian component of F is given by Fij =

∂xi
∂Xj

, for i, j = 1, 2, 3.

The Cauchy stress tensor T is a second order tensor defined to describe the stress

distribution of each point in the current configuration. If for some material body,

the Cauchy stress is a function of F and X as T = T̂ (X,F ), then such material is
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said to be elastic and T̂ is called the response function. Furthermore, if as F = I,

T = 0, then β is called a natural configuration. Otherwise, the material body is said

to be residually stressed and the residual stress distribution is T̂ (X, I).

Practically, Cauchy stress is hard to be measured since information for the current

configuration can not be obtained in advance easily. Piola-Kirchhoff stress tensor S

is defined in the reference configuration for a convenient measurement as

S = JTF−T , (2.3)

where J = det(F ), i.e. the determinant of F , and F−T means the inverse transpose

of F . One can also define the response function for S to be S = Ŝ = JT̂F−T .

Furthermore, an elastic material is called hyperelastic if for some scalar function

Ŵ (F ) called strain-energy function satisfying principle of material frame indifference

such that

Ŝ(F ) =
∂Ŵ (F )

∂F
. (2.4)

For hyperelastic material, T̂ (F ) = ∂Ŵ (F )
∂F

F TJ−1.

Lastly, the equations of motion derived from balance of linear momentum of the

material body are

DivS + ρb = ρχ̈, (2.5)

where Div is the divergence operator on β, ρ is the point-wise density of the material

body, b is the body force per unit mass, and χ̈ denotes the second derivative of χ

with respect to time. (2.5) is subjected to appropriate boundary or initial conditions.

In this dissertation, only the soft tissue in its final configuration is studied, so b and

χ̈ are taken to be zero.
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2.2 Introduction to Sturm-Liouville Problem

2.2.1 Direct Sturm-Liouville Problem

The general form of the classical SLP is defined as

− d

dx

(
p(x)

du(x)

dx

)
+ q(x)u(x) = λω(x)u(x), (2.6)

where the coefficients p(x), q(x) and ω(x) are known real functions. This equation is

defined on a finite or infinite interval a < x < b. Two boundary conditions are defined

at the two ends a and b appropriately. λ is unknown to us. Not all real or complex

values for λ can make the equation generate a nontrivial solution. It is known that

only a discrete set of values can do so. We call any such value an eigenvalue of the

SLP. Under most cases they are real, but there are also cases under which they can

be complex [47]. The nontrivial solution corresponding to an eigenvalue is called an

eigenfunction of the problem.

Though specifically defined, SLP can be easily derived from second order ordinary

differential equations. Set a linear equation of the form

F (x)u′′ +Q(x)u′ +G(x)u = λE(x)u for x ∈ [a, b], (2.7)

where F (x) 6= 0 for any x ∈ [a, b]. Dividing this equation by F (x) and then multi-

plying it by e
∫

(Q/F )dx yield

−(e
∫

(Q/F )dxu′)′ + (−G
F
e
∫

(Q/F )dx)u = −λ(
Ee

∫
(Q/F )dx

F
)u, (2.8)

which is the form of (2.6).

The regularSLP is defined as follows.
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Definition 2.3 The SLP (2.6) is regular if

1. a and b are finite;

2. p(x), q(x) and ω(x) are defined on [a, b]. They are all piece-wise continuous with

at most finite jumps of discontinuities;

3. p(x) and ω(x) are strictly positive on the domain, i.e. p(x), ω(x) > 0, for any

x ∈ [a, b];

4. Boundary conditions are of the form

a0u(a) + a1u
′
(a) = 0 b0u(b) + b1u

′
(b) = 0, (2.9)

where a0, a1, b0 and b1 are all real constants satisfying a2
0 + a2

1 6= 0 and b2
0 + b2

1 6= 0.

We define an inner-product for any two real functions u and v as < u, v >=∫ b
a
uvωdx, where ω is the same as in (2.6). Set an operator L = 1

ω(x)
[− d

dx
(p(x) d

dx
) + q(x)],

where a ≤ x ≤ b. The operator L with boundary conditions of regular SLP is self-

adjoint with respect to the inner product. Namely, < Lu, v >=< u,Lv >. For a

regular SLP, we have the following theorem [47].

Theorem 2.4 For a regular SLP

1. The eigenvalues are simple. Namely, each eigenvalue generates only one linearly

independent eigenfunction;

2. The eigenvalues can be ordered to be a sequence which tends to positive infinity.

That is to say, we can put all the eigenvalues in an order λ0 < λ1 < λ2 < λ3 < · · · .

2.4.1 Inverse Sturm-Liouville Problem

For a regular SLP, given the functions p(x), q(x), ω(x) and the boundary condi-

tions, the eigenvalues and corresponding eigenfunctions can be found. This is called

the direct problem. Reversely, if the eigenvalues are given, one is able to recover the
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coefficients p, q and w under certain conditions. This is called the inverse SLP or

the inverse spectral problem. The inverse SLP has wide applications in areas like

physics and engineering.

For the inverse SLP, the regular SLP is further simplified to reduce the three

coefficient functions to only one so that we can find an effective algorithm for it. The

usual way is by a transformational method, and the one frequently used is the Liou-

ville transform [47]. It includes change of variable and domain, and transformation

of coefficients from the original form. After that, we can get the canonical form or

Schrödinger form of the SLP as

− d2

dt2
v(t) +N(t)v(t) = σv(t), (2.10)

with boundary conditions v′(0)− hv(0) = 0 and v′(1) +Hv(1) = 0.

The inverse spectral problem is formulated in several ways [8,44,56], two of which

are listed below:

Two-spectrum case: Two sets of eigenvalues {σ(1)
n }∞n=0 and {σ(2)

n }∞n=0 are given for

the canonical form (2.10) from two different pairs of known boundary conditions and

we recover N(t).

Partially known N(t) case: N(t) is known over at least half of the interval [0,

1], say [1
2
, 1], and a single set of eigenvalues {σn}∞n=0 is given. We recover the other

part of N(t) on the interval [0, 1
2
). See [39] for a computational method for this

particularity.

The inverse spectral method for the biological model we establish is of a different

type. It is called the shooting method for inverse spectral problem. The unknown

function to be recovered is approximated by cubic spline functions, and it appears

both in the coefficients and the boundary conditions of the SLP. Moreover, the
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coefficients of the SLP depend on another function r0 which can only be solved

numerically from a differential equation also related to the unknown function. The

details are presented in Chapter 4.
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3. FORMULATION OF BOUNDARY VALUE PROBLEMS

3.1 Interaction of Residual Stress in the Tissue

Biomechanically, the arterial wall is under the effect of both pre-stress and resid-

ual stress. Pre-stress in a material body arises from external loads whereas residual

stress exists in the absence of external loads. Bergel was one of the first to observe

residual stress in arteries. He found that when an artery is split open longitudinally,

it will unroll itself [25]. Studies show that residual stress in arteries is caused by

growth and remodeling of the tissues to make the cells in the arterial wall optimize

their biomechanical effect and maintain compatible growth of tissues [36,38]. As the

artery becomes abnormal, residual stress contributes to modifying the structure and

cell composition of the tissues to restore back to the normal biomechanical condition

of the vessels [26, 35]. It is also developed to avoid stress gradient among the multi-

ple layers of arteries for a uniformity of stress distribution [40,52,53]. Consequently,

failure to incorporate residual stress in the biomechanical analysis of the arteries will

produce false predictions for the internal stress distribution of the vessel wall and

cell biological signalling response.

From the perspective of material, residual stress in artery stems from interac-

tions among time, temperature, deformation and microstructure [31]. Correspond-

ingly, the arteries are shown to display three levels of interactions between residual

stress and the tissue: micro-level, meso-level and macro-level [29]. In the micro-

level, residual stress comes from local interactions among constituents of the tis-

sue like fibers, cell. Greenwald et al. showed that residual stress relies mainly on

intramural elastin [40]. In the meso-level, the nonhomogeneities of the tissue’s mi-

crostructure and constituents’s compositions may alter the residual stress. Zeller and
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Skalak showed that residual stress has different forms in different ingredients [42].

In elastin, it shows to be residual tension while in collagen, it develops into residual

compression. In the macro level, residual stress can also be modified by temperature

and the kinematical constraints superimposed on the tissue’s boundary producing

extra internal loading. Due to the widespread origination of residual stress, it is very

difficult to devise experiments to obtain a complete distribution of it in all the three

levels.

Fung’s paradigm is the pioneering one among the many methods. This technique

makes a single radial cut through an excised, unloaded arterial ring segment [6,9,26].

The ring segment springs open to minimize its stored energy by relieving the residual

stress. One can conclude that, in order that such opening occurs, it is compressive

stress in inner wall and tensile stress in the outer wall as a result of inhomogeneous

distribution of residual stress, so that the wall is internally balanced. It is assumed

that residual strains are constant circumferentially in the ring. By measuring the

inner and outer circumferences of the ring before and after cutting, one can estimate

the stretch ratio for the inner and outer surface respectively. This establishes an

approach for calculating the residual stress state indirectly.

This approach bears a few limitations. First, it is obvious that one cutting can not

relieve all the residual stress by the fact that extra cutting makes the ring segment

open more. This results from the micro-level of the interaction between residual

stress and tissue. Second, the magnitude of opening angle is affected by internal

and external conditions like temperature, hemodynamic load, position of cutting

etc. Fung’s paradigm can not incorporate these macro-level effects. Last, the ref-

erence configuration from the cut with openings can not evolve to the intact ring

segment without topological change, since the two faces of the cut map to a common

internal surface of the intact arterial segment. This brings difficulties for theoretical
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utilization of the measurement.

Actually, not only Fung’s paradigm but any other experimental method can not

fully reconstruct the residual stress distribution in the arteries. Using analytical

approaches to determine residual stress distribution is highly appreciated in under-

standing the mechanical effect of arterial wall. Among these is the virtual stress free

configuration invented by Hoger et al. [13, 14, 18, 32]. The configuration used in [33]

is followed in this dissertation to estimate residual stress analytically.

3.2 Residual Stress in Stress Tensor and the Constitutive Model

In order to incorporate residual stress in the model analytically, we assume the

total Cauchy stress is an additive form of the natural Cauchy stress and residual

stress as

T = T̂N(F ) +
1

J
FτF T , (3.1)

where τ is the residual stress tensor, and T̂N(F ) is the natural response function in

the sense that it gives the deformational behavior in the absence of residual stress.

We remark that 1
J
FτF T , the contribution of residual stress to the total Cauchy

stress, is chosen so as to satisfy material objectivity.

By the assumption for Cauchy stress in Equation (3.1), total Piola-Kirchhoff is

S = ŜN + Fτ, (3.2)

where ŜN(F ) = JT̂N(F )F−T and represents the natural Piola-Kirchhoff response

function.

It is known that soft tissue exhibits time-dependent mechanical behavior and

should be modeled as viscoelastic material. However, under the effect of the small

amplitude, high frequency ultrasound wave superimposed on the arterial inner wall,
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the glassy material property of the tissue is dominant, so it is reasonable to model

the arteries as a nonlinear elastic material. This equals to specifying a strain-energy

function Ŵ (F ) for the constitutive model such that

ŜN(F ) = ∂F Ŵ (F ), (3.3)

and

S = ∂F Ŵ (F ) + τF. (3.4)

Many experiments show that intact arteries are layered, anisotropic, slightly

compressible, heterogeneous, residually stressed, elastic or viscoelastic material bod-

ies [5, 16, 17, 26]. They also exhibit nonlinear stress-strain behavior. To incorporate

some of the properties, we adopt the slightly compressible neo-Hookean model for

the strain energy function as the natural response of the material [15] given by

Ŵ (F ) := µ
(
φ(J) +

1

2
(|F |2 − 3)

)
, (3.5)

where J = det(F ), φ(x) = 1
2β

(x−2β − 1), β = ν
1−2ν

, µ is shear modulus and ν is

Poisson’s ratio.

3.3 Construction of Boundary Value Problems

The unloaded, residually stressed reference configuration of arterial wall is ideal-

ized as an infinitely long axisymmetric cylindrical tube. The radius of cross-sectional

wall satisfies RI ≤ R ≤ RO, where RI and RO express the inner wall radius and the

outer wall radius respectively.

The cylindrical curvilinear basis (j1, j2, j3) is used for this specified geometrical
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model, the form of which is

j1 = cos(Θ)e1 + sin(Θ)e2, j2 = −sin(Θ)e1 + cos(Θ)e2, j3 = e3, (3.6)

where (e1, e2, e3) is the natural Euclidean orthonormal basis. The three variables

(R,Θ, Z) represent the radius, angle for cross section and axial length respectively

in cylindrical basis.

As the IVUS is interrogating inside the artery, its wave frequency of sound is in

the MHz range. Additionally, the artery is naturally subjected to a pulsatile, time-

dependent loading of roughly 1 Hz frequency. So compared with the MHz range,

the deformation caused by frequency of 1 Hz can be idealized as being quasistatic.

Under such simplification, two categories of deformations are speculated. One is

the quasistatic deformations of the vessel wall caused by constant blood pressure

denoted by π . The other one is the small amplitude, high frequency vibrations

superimposed on the quasistatic deformation from IVUS interrogation. This two

categories of deformations generates two kinds of boundary value problems.

3.3.1 Quasistatic Deformation Problem

Under the unloaded residually stressed reference configuration, the inner wall

subjected to blood pressures produces a class of axisymmetric deformations of the

form

χ0 = r0(R)j1(Θ) + λ0(R)Zj3, (3.7)

where r0(R) and λ0(R) represent the radial stretch and axial stretch respectively.

λ0(R) is assumed to be 1 in this dissertation.

The outer boundary βO is assumed to be stress free and the inner boundary βI is

assumed to be subjected only to constant blood pressures. Thus, by the equations
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of motion (2.5), the first category of boundary value problems for the quasistatic

deformations in the reference configuration is as follows

DivS0 = 0 in β, (3.8)

S0(−j1) = 0 on βO, (3.9)

S0j1 = −πJ0F
−T
0 j1 on βI , (3.10)

where F0 is the deformation gradient of χ0 expressed as

F0 = r′0j1 ⊗ j1 + (
r0

R
)j2 ⊗ j2 + j3 ⊗ j3, (3.11)

J0 = det(F0) and π is the blood pressure in a cardiac cycle.

By (3.2), the boundary conditions (3.9) and (3.10) are rewritten as

S0j1 = (Ŝ0N(F0) + τF0)j1 = Ŝ0N(F0)j1 + τF0j1. (3.12)

On the two boundaries, τ arises from the growth and remodeling processes of the

biological tissues itself without any external effects, and satisfies the governing equa-

tion

Divτ = 0 on β,

τm = 0 on ∂βO ∪ ∂βI ,
(3.13)

where m denotes the outward unit normal to the inner or outer boundaries of the

reference configuration β. Thus, boundary conditions in (3.13) equals τj1 = 0. This

simplifies (3.12) to be

S0j1 = Ŝ0N(F0)j1. (3.14)
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(3.9) and (3.10) hence become

Ŝ0N(F0)j1 = 0 on βO, (3.15a)

Ŝ0N(F0)j1 = −πJ0F
−T
0 j1 on βI . (3.15b)

Substituting (3.5), (3.4) and (3.11) into (3.8) and (3.15), one obtains the boundary

value problem for r0(R) as

0 = µ

[
ψ(J0)

(
1

R
(
R

r′0
)′ − 1

r0

)
+J0ψ

′(J0)R

(
(r0/R)′

(r0r′0/R)
− (

1

r′0
)′
)

+(Rr′0)′ − r0

R

]
+ τ 22R(

r0

R
)′ + τ 11Rr′′0 (3.16)

ψ(J0) + (r′0)2 = 0 for R = RO, (3.17a)

µ[ψ(J0) + (r′0)2] = −πr0r
′
0/RI for R = RI , (3.17b)

where ψ(r0) = φ′(r0)r0 and φ(r0) is defined in (3.5). Reorganizing (3.16) yields a

second order equation

r′′0 =
E(R, r0, r

′
0)

F (R, r0, r′0)
, (3.18)

where

E(R, r0, r
′
0) =µr−2β

0 (r′0)−2β−1R2β−1 − µr−2β−1
0 (r′0)−2βR2β

− 2βµ(r0r
′
0)−2β−1(r′0R− r0)R2β − µr′0 + µr0R

−1 − τ 22(r′0R− r0)R−1,

F (R, r0, r
′
0) =µ(1 + 2βR)r−2β

0 (r′0)−2β−2R2β + µR + τ 11R.

(3.19)
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The boundary conditions in (3.17) also become

−(
r0r
′
0

R
)−2β + (r′0)2 = 0 for R = RO, (3.20a)

µ[−(
r0r
′
0

R
)−2β + (r′0)2] = −πr0r

′
0/RI for R = RI . (3.20b)

3.3.2 Small Amplitude High Frequency Vibrational Deformation

Under the IVUS implementation, the inner wall is subjected to two pressures: the

pulsatile blood pressure and the pressure from the small amplitude, high frequency

ultrasound wave. This two can be combined to form a time harmonic blood pressure

as

πt = π(1 + εeiωt), (3.21)

where ε is an infinitesimally small quantity, ω is the frequency of IVUS wave and i is

the imaginary unit of complex number satisfying i2 = −1. Performing an asymptotic

expansion, we obtain the following forms

r(R, t) =r0(R) + εr1(R)eiωt + o(ε) (3.22a)

u(X, t) =u0(X) + εu1(X)eiωt + o(ε) (3.22b)

F (X, t) =I +5u(X, t) = F0(X) + ε5 u1(X)eiωt + o(ε) (3.22c)

S(X, t) =S0(X) + εS1(X)eiωt + o(ε) (3.22d)

λ(X, t) =λ0(X) + ελ1(X)eiωt + o(ε) (3.22e)

where X, u(X, t) and λ(X, t) express the three dimensional position vector, dis-

placement and the axial stretch factor respetively, quantities subscripted with 0

correspond to the static deformation, and quantities subscripted with 1 correspond

to the first-order perturbational terms.
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The boundary value problem governing the linearized free vibrations for pure

radial resonant frequencies (as λ1 = 0) is [27]

−ω2r1 =µ
[
r′′1 + (

r1

R
)′ − 2βJ−2β

0

(r′′0
r′0

+
(r0/R)′

(r0/R)

)(
2β

1

r′0

(r′1
r′0

+
r1

r0

)
+

r′1
(r′0)2

)
+ J−2β

0

[
2β
[ 1

r′0
(
r′1
r′0

+
r1

r0

)′ + (
r′1
r′0

+
r1

r0

)(
1

R
(
R

r′0
)′ − 1

r0

)
]

+
1

R
(
Rr′1
(r′0)2

)′ − r1

r2
0

− (
λ′0
λ0r′0

)(
r′1
r′0

)
]]

+ τ 22(
r1

R
)′ + τ 11r′′1 ,

(3.23)

with inner and outer homogeneous boundary conditions

2β

r′0
(
r′1
r′0

+
r1

r0

) +
r′1

(r′0)2
+ J2β

0 r′1 = 0, R = RI , RO, (3.24)

where r0 is solution of (3.16) and (3.17).

Reorganizing (3.23) to be a second order homogeneous differential equation gives

F (R)r′′1 +Q(R)r′1 +G(R)r1 = λE(R)r1, (3.25)

where

F (R) = 1 +
J−2β

0 2β

(r′0)2
+
J−2β

0

(r′0)2
+
τ 11

µ
, (3.26)

Q(R) =
1

R
− 2βJ−2β

0

[
ln(|r0r

′
0

R
|)
]′[2β + 1

(r′0)2

]
+ 2βJ−2β

0

[ 1

r′0
(

1

r′0
)′ +

1

Rr′0
(
R

r′0
)′
]

+ J−2β
0

1

R
(
R

(r′0)2
)′ +

τ 22

µR
, (3.27)
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G(R) = − 1

R2
− (2β)2J−2β

0

r0r′0

[
ln(|r0r

′
0

R
|)
]′

+ 2βJ−2β
0

[ 1

r′0

( 1

r0

)′
+

1

Rr0

(R
r′0

)′ − 1

r2
0

]
− J−2β

0

1

r2
0

− τ 22

R2µ
, (3.28)

E(R) = −1, (3.29)

and λ = ω2/µ.

(3.25) yields a SLP

− d

dR
(p(R)

dr1(R)

dR
) + q(R)r1(R) = λW (R)r1(R), (3.30)

where

p(R) = e
∫

(Q/F )dR, (3.31a)

q(R) = −G
F
e
∫

(Q/F )dR, (3.31b)

W (R) =
e
∫

(Q/F )dR

F
. (3.31c)

Boundary conditions (3.24) can be rearranged to be

( 2β

(r′0)2
+

1

(r′0)2
+ J2β

0

)
r′1 +

2β

r0r′0
r1 = 0, R = RI , RO. (3.32)
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4. CONSTRUCTION OF ALGORITHMS AND NUMERICAL EXAMPLES∗

In this chapter, we will devise algorithms for recovering the shear modulus µ and

τ 11 of the residual stress tensor. As we recover the shear modulus, residual stress is

ignored in the modeling. As we recover τ 11 or τ 22, µ is fixed to be 27 kPa and other

components of the residual stress tensor are set to be zero.

4.1 The Cubic Spline Interpolation

The IVUS technique only obtains the first several lower-mode eigenfrequencies of

the vessel wall for each blood pressure accurately. An approximation of the unknown

function g(R) (g(R) = µ(R) for shear modulus and g(R) = τ 11(R) for residual stress)

is herein recovered by this limited information. The cubic spline interpolation is

mainly utilized for such approximation. The domain [RI , RO] is uniformly partitioned

into N − 1 subintervals, where the nodes are denoted as R1, R2, . . . RN . The value

of g(R) at Ri is denoted by gi for 1 ≤ i ≤ N . The N points (Ri, gi) are interpolated

by cubic splines to be

g(R) = Pi(R), for Ri ≤ R ≤ Ri+1, (4.1)

for 1 ≤ i ≤ N − 1, where each Pi(R) is a cubic polynomial satisfying

continuity: Pi(Ri) = gi, Pi(Ri+1) = gi+1, (4.2)

first-order differentiability: P ′i (Ri+1) = P ′i+1(Ri). (4.3)

∗Part of the chapter is reprinted with permission from “Recovery of the shear modulus of
hyperelastic soft tissue by an inverse spectral technique” by Kun Gou, Sunnie Joshi, Jay Walton,
2012. International Journal of Engineering Science, 56, 1-16, Copyright [2012] by Elsevier B.V.
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A sample function of 4-node interpolation is given in Figure 4.1, where [RI , RO] is par-

titioned into 3 equal subintervals, and the 4 points for interpolation are (3.302, 0.5),

(3.5363, 1.2), (3.7707, 0.8) and (4.005, 1.6).

Figure 4.1: A sample of piecewise cubic spline function with 4 given nodes.

Consequently, recovering g(R) amounts to estimating gi for 1 ≤ i ≤ N and the

approximated function is given by (4.1) from the interpolation. For an abuse of

notation, the following identity is utilized

g(R) = (g1, g2, g3, · · · gN). (4.4)

Except the cubic spline interpolation, one can also apply its piecewise form which

discards the first-order differentiability at the nodes. The derivatives of the interpo-

lation at the first and last nodes can also be customarily prescribed. In Matlab, the

default derivatives at the two end nodes are set to be zero.

From (3.18) and (3.20) and (3.30-3.32), we know the following results:

1. r0 is a function of g(R) and π, i.e. r0(R) = r0

(
π, g(R), R

)
and can only be

evaluated numerically;

2. p(R), q(R), W (R) in (3.31) and coefficients for r1 and r′1 in the boundary
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conditions (3.32) are all functions of r0. Thus they are also functions of g(R)

and π.

An algorithm for solving this kind of inverse spectral problem is developed in the

next sections.

4.2 Algorithms for Recovering the Shear Modulus

4.2.1 Some Basic Algorithms

Some basic algorithms are needed, including the generalized secant method for

finding root of a system of nonlinear equations, the fourth-order Runge Kutta method

for finding solution of an initial value problem, the shooting method for finding

solution of a boundary value problem and the Sleign2 method for finding eigenvalues

of SLP. The details of the last three methods are discussed in the appendix. The

generalized secant method is explained in this section.

One dimensional secant method works to find the solution of an equation f(t) = 0.

The iterative formula is

tk = tk−1 −
tk−2 − tk−1

f(tk−2)− f(tk−1)
f(tk−1). (4.5)

It stops if for some tolerance number ε, |f(tk)| < ε or |f(tk)− f(tk−1)| < ε. We need

two initial guesses t0 and t1 near the root for the method.

Meanwhile, multidimensional secant method works to find the root of n linear or
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nonlinear equations with n unknowns

f1(x1,x2, ......xn) = 0,

f2(x1,x2, ......xn) = 0,

............

fn(x1,x2, ......xn) = 0.

(4.6)

Similar to the one dimensional secant method, we need n+ 1 trial solutions to start

the method and denote them by the following identities

X1 = (x
(1)
1 , x

(1)
2 , ......x(1)

n ),

X2 = (x
(2)
1 , x

2)
2 , ......x

(2)
n ),

............

Xn+1 = (x
(n+1)
1 , x

(n+1)
2 , ......x(n+1)

n ).

(4.7)

Set n+ 1 numbers Π1, Π2,...Πn+1 to satisfy the following n+ 1 equations

n+1∑
j=1

Πj = 1,

n+1∑
j=1

Πjfi(x
(j)
1 , x

(j)
2 , ......x(j)

n ) = 0 for i = 1, 2, ...n.

(4.8)

Solve for Π1, Π2,...Πn+1 from (4.8) and form a new vector

X∗ =
n+1∑
j=1

ΠjX
(j). (4.9)
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Compare the n+ 1 values

sj =
n∑
i=1

|fi(x(j)
1 , x

(j)
2 , ......x(j)

n )|Ω for j = 1, 2, ...n+ 1, (4.10)

where Ω is set according to different problems and usually it can be 1, 2, 3, 4. Let

sκ = max
1≤j≤n+1

sj.

We thus obtain a number κ. In (4.7), replace Xκ by X∗. Another new set of trial

solutions (4.7) is thus formed. We repeat the above process until we find a satisfactory

solution. The stopping criteria can be established to be

|X∗new −X∗old| < ε1,

where ε1 is the tolerance number, X∗new is the updated X∗, and X∗old means the X∗

from last iteration. Local convergence of the method is shown in [24]. We notice

that as n = 1 it reduces to the one dimensional secant method.

4.2.2 Shooting Method for Inverse Sturm-Liouville Problem

Though complicated, the advantage of this inverse problem is that we know the

exact function formulas of the coefficients of SLP in (3.30). We can make use of

this information to design a new algorithm called the Shooting Method for Inverse

Sturm-Liouville Problem.

To recover N unknowns in µ = (µ1, µ2, ...µN), we need N equations. We make

use of N different blood pressures π1, π2,...πN to reach this aim. For each πj, we

can acquire a sequence of eigenfrequencies from experiments and denote them as

{λ(j)
n }∞n=1. For each πj and an initial guess µ = (µ1, µ2, ...µN) from which we know
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the corresponding cubic spline function µ(R), we find the solution r0(µ,R) from

(3.18) and (3.20). Then substitute r0(µ,R), µ(R) and blood pressure πj into (3.30)

and (3.32) to find the sequence of eigenvalues depending on µ and πj as {λ(j)
n (µ)}∞n=0.

We define the distance† between{λ(j)
n }∞n=0 and {λ(j)

n (µ)}∞n=0 as

dj(µ) =
∞∑
n=0

|λ(j)
n (µ)− λ(j)

n |Γ , (4.11)

where Γ is a parameter we will specify case by case. We then find the µ such that

dj(µ) ≈ 0 for j=1, 2,...N (notice that dj(µ) = 0 can not be reached since µ is only

an approximation of the real shear modulus). We apply the secant method described

in Section 4.2.1 to solve these equations.

We remark that we can not get infinitely many eigenfrequencies λj from experi-

ments. However, the first few eigenfrequencies, say the first five or less, are enough

to recover an accurate µ, so a practical and effective substitute for (4.11) is

dj(µ) = |λ(j)
0 (µ)− λ(j)

0 |Γ . (4.12)

The detailed algorithm is as follows:

1. Give a tolerance number ε1, say 10−4 for the generalized secant method and

another tolerance number ε2, say 10−13 for other iterative parts;

2. Guess N +1 values µ(1), µ(2),...µ(N+1) for µ (each value is a vector with N com-

ponents and represents a cubic spline function). Make sure these guesses are

near the educated estimate of real µ so that the algorithm is locally convergent;

3. For each µ(i) in Step 2 (for the first iteration) or Step 9 (for later iterations),

and each blood pressure πj, where 1 ≤ j ≤ N , we find the numerical solu-

†This is not a distance in a mathematically strict sense.
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tion r
(j)
0 (R, µ(i)) from (3.18) and (3.20) respectively. The secant method and

shooting methods are used for solving the boundary value problems;

4. Plugging r
(j)
0 (R, µ(i)), µ(i) and πj into the Equations (3.30-3.32) and by Sleign2

method we can find the first eigenvalue for the SLP (3.30) which are denoted

as λ
(j)
0 (µ(i));

5. Plug λ
(j)
0 (µ(i)) into Equation (4.12) and get dj(µ

(i));

6. Set a (N + 1)× (N + 1) square matrix A by

A =



d1(µ(1)) d1(µ(2)) . . . d1(µ(N+1))

d2(µ(1)) d2(µ(2)) . . . d2(µ(N+1))

...
...

...
...

dN(µ(1)) dN(µ(2)) . . . dN(µ(N+1))

1 1 . . . 1


; (4.13)

7. Find the vector Π = (Π1,Π2, ...Π(N+1)) from the matrix equation AΠT =

(0, 0, 0, ...0, 1)T , where the superscript T stands for transpose;

8. By Equation (4.9) in Section 4.2.1, we find an updated µ∗;

9. Compute si for 1 ≤ i ≤ N + 1 from the method in Section 4.2.1 and find the

value κ such that sκ is the biggest among all these values. Then replace µ(κ)

by µ∗ and form an updated N + 1 values µ(1), µ(2),...µ(κ−1), µ∗, µ(κ+1)...µ(N+1)

for µ;

10. If |µ∗new−µ∗old| < ε1 (µ∗new is the current updated µ∗ and µ∗old is the updated µ∗

from last iteration), stop and µ∗new is the value we want. If not, go to Step 3.
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4.2.3 Numerical Examples

For the three examples below, we set that β = 2, i.e. ν ≈ 0.4, the radius of inner

boundary RI = 3.302 mm and the radius of outer boundary RO = 4.005 mm. In each

table, the first row represents the blood pressures used for that example. The second

row represents the related first eigenmode of that pressure. Each table contains a

number of sets of initial guesses for µ at nodes R1, R2, ...RN for the multidimensional

secant method. For the output, we have the returned value of µ at each node, the

iterational number of that input and relative errors computed in norm of L1, L2 and

L∞ respectively. In the figures, solid curves represent the original function plots and

dashed curves mean the approximations.

pressure(mmHg) 100 120 140

frequency(×106Hz) 3.8128 4.3736 4.8624

parameter Γ = 5 Ω = 2

initial guess 1 (kPa) 1.3 0.87 0.48

initial guess 2 (kPa) 0.98 0.93 0.57

initial guess 3 (kPa) 0.95 0.89 0.46

initial guess 4 (kPa) 1.15 0.88 0.55

returned value (kPa) 0.9777 0.8933 0.4837

iteration number 5

relative error
L1 L2 L∞

0.0130 0.0146 0.0223

Table 4.1: Numerical input and output of Example 4.2.1 with 3 nodes
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pressure(mmHg) 100 110 120 130 140

frequency(×106Hz) 3.8128 4.1045 4.3736 4.6249 4.8624

parameter Γ = 4 Ω = 3

initial guess 1 (kPa) 1.3 0.925 0.87 0.7 0.52

initial guess 2 (kPa) 0.98 0.88 0.93 0.75 0.57

initial guess 3 (kPa) 0.95 0.93 0.89 0.68 0.525

initial guess 4 (kPa) 1.15 0.91 0.88 0.73 0.55

initial guess 5 (kPa) 1.05 0.95 0.85 0.72 0.51

initial guess 6 (kPa) 0.955 0.92 0.875 0.71 0.49

returned value (kPa) 0.9797 0.9389 0.8549 0.7051 0.4798

iteration number 11

relative error
L1 L2 L∞

0.0277 0.0279 0.0305

Table 4.2: Numerical input and output of Example 4.2.1 with 5 nodes
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pressure(mmHg) 110 120 130 140 150
frequency(×106Hz) 6.2032 6.6059 6.9824 7.3386 7.6798

parameter Γ = 4 Ω = 3

initial guess 1 (kPa) 1 1.7 2.0 1.7 0.9
initial guess 2 (kPa) 1.1 1.6 1.9 1.6 0.8
initial guess 3 (kPa) 0.9 1.8 2.1 1.8 1.1
initial guess 4 (kPa) 1.2 1.6 1.95 1.6 1.2
initial guess 5 (kPa) 0.8 1.75 2.05 1.75 0.95
initial guess 6 (kPa) 0.9555 1.65 1.9555 1.7555 1.1555

returned value (kPa) 0.9844 1.6895 1.9913 1.7193 0.9792
iteration number 13

relative error
L1 L2 L∞

0.0070 0.0077 0.0104

Table 4.4: Numerical input and output of Example 4.2.2 with 5 nodes

pressure(mmHg) 110 130 140

frequency(×106Hz) 6.2032 6.9824 7.3386

parameter Γ = 2 Ω = 5

initial guess 1 (kPa) 1 1.85 1.15

initial guess 2 (kPa) 0.9 2.05 0.85

initial guess 3 (kPa) 0.85 1.95 0.9

initial guess 4 (kPa) 1.1 2 1.1

returned value (kPa) 0.9897 1.8462 1.1434

iteration number 13

relative error
L1 L2 L∞

0.0542 0.0614 0.0785

Table 4.3: Numerical input and output of Example 4.2.2 with 3 nodes

Example 4.2.1 The original function is µ = −(R − RI)
2 + 1, decreasing through

the domain. We use cubic spline interpolation with 3 nodes and 5 nodes respectively
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pressure(mmHg) 90 100 110 120 130 140 150
frequency(×106Hz) 5.2878 5.7668 6.2032 6.6059 6.9824 7.3386 7.6798

parameter Γ = 2 Ω = 2

initial guess 1 (kPa) 1 1.45 1.7 2.0 1.7 1.4 0.9
initial guess 2 (kPa) 1.1 1.4 1.65 1.9 1.65 1.3 0.8
initial guess 3 (kPa) 0.9 1.5 1.8 2.1 1.7 1.4 1.1
initial guess 4 (kPa) 1.15 1.455 1.655 1.95 1.6 1.35 1.15
initial guess 5 (kPa) 0.85 1.35 1.75 2.05 1.8 1.5 0.95
initial guess 6 (kPa) 0.955 1.5 1.85 1.955 1.755 1.5 1.155
initial guess 7 (kPa) 1.05 1.355 1.75 2.1 1.8 1.4 0.85
initial guess 8 (kPa) 1.15 1.65 1.82 2.15 1.75 1.68 1.05

returned value (kPa) 1.0104 1.4299 1.7541 2.0423 1.7534 1.4308 0.9428
iteration number 6

relative error
L1 L2 L∞

0.0384 0.0453 0.0644

Table 4.5: Numerical input and output of Example 4.2.2 with 7 nodes

pressure(mmHg) 110 120 130 140 150
frequency(×106Hz) 3.3242 3.6057 3.8686 4.1148 4.3459

parameter Γ = 4 Ω = 3

initial guess 1 (kPa) 1.4 2.45 1.5 0.4 1.5
initial guess 2 (kPa) 1.45 2.4 1.6 0.45 1.62
initial guess 3 (kPa) 1.5 2.55 1.49 0.53 1.58
initial guess 4 (kPa) 1.63 2.62 1.47 0.58 1.49
initial guess 5 (kPa) 1.57 2.58 1.46 0.48 1.45
initial guess 6 (kPa) 1.62 2.47 1.56 0.56 1.56

returned value (kPa) 1.4933 2.5148 1.4915 0.5307 1.5909
iteration number 31

relative error
L1 L2 L∞

0.0504 0.0543 0.0786

Table 4.6: Numerical input and output of Example 4.2.3 with 5 nodes
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pressure(mmHg) 90 100 110 120 130 140 150
frequency(×106Hz) 2.6815 3.0198 3.3242 3.6057 3.8686 4.1148 4.3459

parameter Γ = 4 Ω = 3

initial guess 1 (kPa) 1.4 2.2 2.3 1.5 0.7 0.8 1.5
initial guess 2 (kPa) 1.45 2.25 2.32 1.6 0.75 0.78 1.62
initial guess 3 (kPa) 1.5 2.3 2.35 1.49 0.78 0.75 1.58
initial guess 4 (kPa) 1.63 2.18 2.37 1.47 0.66 0.62 1.49
initial guess 5 (kPa) 1.57 2.27 2.29 1.46 0.65 0.68 1.45
initial guess 6 (kPa) 1.62 2.35 2.26 1.56 0.82 0.65 1.56
initial guess 7 (kPa) 1.42 2.22 2.27 1.46 0.77 0.81 1.48
initial guess 8 (kPa) 1.62 2.19 2.23 1.61 0.73 0.81 1.60

returned value (kPa) 1.5019 2.3325 2.2398 1.5712 0.5758 0.6841 1.4692
iteration number 22

relative error
L1 L2 L∞

0.0369 0.0399 0.0573

Table 4.7: Numerical input and output of Example 4.2.3 with 7 nodes

to approximate this function. See Tables 4.1 and 4.2 for the input and output data,

and Fig. 4.2 for plots of the original function and its approximations.

Example 4.2.2 The original function is µ = sin(π(R − RI)/L) + 1 with one peak

in its plot. We use interpolation with 3 nodes, 5 nodes and 7 nodes respectively to

approximate it. See Tables 4.3, 4.4 and 4.5 for the input and output data, and Fig.

4.3 and 4.4 for plots.

Example 4.2.3 The last one is more complicated with one upward peak and one

downward peak in its plot. The function formula is µ = sin(2π(R−RI)/L) + 1.5. 5

node and 7 node interpolations are used respectively for approximation. See Tables

4.6 and 4.7 for data input and output, and Fig. 4.5 for plots.
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(a) Approximation with 3 nodes. (b) Approximation with 5 nodes.

Figure 4.2: Approximation for Example 4.2.1.

(a) Approximation with 3 nodes. (b) Approximation with 5 nodes.

Figure 4.3: Approximation for Example 4.2.2.

Next, we provide some analysis for the data used and the results obtained.

Preconditioning for SLP: As we can see from these tables, the values of fre-

quency ω from IVUS implementation are in the order of 106. The actual eigenvalues

λ we compute from (3.30) by Sleign2 method are in the order of square of ω, i.e.,

36



Figure 4.4: Approximation with 7 nodes for Example 4.2.2.

(a) Approximation with 5 nodes. (b) Approximation with 7 nodes.

Figure 4.5: Approximation for Example 4.2.3.
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1012. These are large numbers for the computer to manipulate. Operationally, more

huge numbers will emerge driving the memory to go out of its scope easily. To avoid

such complications, we design a preconditioner for the algorithm. We multiply both

sides of (3.30) by ε, a quantity close to zero. The new eigenvalue, λε, is a number

much smaller than the actual one, and hence, it is easier for the machine to execute.

The authors tried a few possible ε and found 10−12 to be the most suitable one. Too

high or too low ε fails to work more effectively.

Errors: For the generalized secant method, we only have local convergence and

hence, more scattered guessed data might cause large error. In Example 4.2.1, the

relative errors from approximation with 3 nodes are even smaller than that with 5

nodes, because more nodes and guesses may make the data more scattered away from

the real ones. This suggests that a symmetric distribution of initial guesses around

the real value is an important factor influencing the accuracy. Therefore, one needs

to make an educated estimation of the real value for each node, and distribute the

initial guesses for the same node inside a small interval around that estimation nearly

symmetrically. If possible, small number of nodes is preferred for the approximation.

Parameters Γ and Ω: As Γ or Ω increases, values of (4.10) and (4.12), whose

bases are less than 1, decrease. Generally, this causes the algorithm to converge

with less iterations. Thus, in most cases, it is true that larger values of Γ and Ω

make the algorithm more accurate. However, if Γ and Ω are too large, the matrix

(4.13) appearing in the algorithm becomes badly scaled, and this results in poor

convergence. Thus, different values for Γ and Ω were tested for each of the examples,

and the most suitable ones were chosen based on both accuracy and convergence.

Number of nodes N : The number of nodes N depends on the function we are

trying to approximate. For instance, in Example 4.2.3, we use 5 and 7 nodes for

approximating µ = sin(2π(R−RI)/L) + 1.5. Approximation with 3 nodes does not
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guarantee convergence for this function. Instead, cubic splines with 5 and 7 nodes

can better reflect the curve shape, and thus give better approximations. Therefore,

one needs to have an estimation of the shape of the function to select a reasonable N .

This information is usually not available beforehand, so one should try several N ’s

to see which one actually converges, and choose the one that gives the best result.

4.3 Reconstruction of Residual Stress

4.3.1 Formulation of Inverse Spectral Problem

The SLP (3.30) depends on the value of the blood pressure π. To indicate such

dependence, p(R), q(R) and W (R) are redenoted by pπi(R), qπi(R) and Wπi(R),

where i is a subscript to indicate variation of blood pressures. The same change is

also applied to r1 and the boundary conditions. Under the new notation, (3.30) and

(3.32) develop into

− d

dR
(pπi(R)

dr1πi(R)

dR
) + qπi(x)r1πi(R) = λWπi(R)r1πi(R), (4.14)

a0πir1πi(R) + a1πir1
′
πi

(R) = 0 for R = RI ,

b0πir1πi(R) + b1πir1
′
πi

(R) = 0 for R = RO,

(4.15)

where

a0πi = C1(RI), a1πi = C2(RI), (4.16)

b0πi = C1(RO), b1πi = C2(RO), (4.17)
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with C1(R) and C2(R) denoting the coefficients of r′1 and r1 in (3.32) respectively,

i.e.

C1(R) =
2β

(r′0)2
+

1

(r′0)2
+ J2β

0 (4.18)

C2(R) =
2β

r0r′0
. (4.19)

The so called prüfer transformation is used in Sleign2 algorithm for computing

eigenvalues of SLP [45]. It transforms the second-order SLP to a system of equivalent

first-order nonlinear system with two dependent variables called the prüfer amplitude

and phase denoted by ρπi and θπi respectively. The transformation is

r1πi(R) = ρπi(R)sin(θπi(R)),

pπi(R)r1
′
πi

(R) = ρπi(R)cos(θπi(R)).

(4.20)

The system of equations for ρπi(R) and θπi(R) are

θ′πi(R) =
1

pπi(R)
cos2(θπi(R)) + (λWπi(R)− qπi(R))sin2(θπi(R)), (4.21)

ρ′πi(R)

ρπi(R)
=

1

2
(

1

pπi(R)
− λWπi(R) + qπi(R))sin(2θπi(R)), (4.22)

where

θπi(RI) = −arctan(
a1πi

pπi(RI)a0πi

) for θπi(RI) ∈ [0, π), (4.23)

θπi(RO) = −arctan(
b1πi

pπi(RO)b0πi

) + (n+ 1)π for θπi(RO)− (n+ 1)π ∈ (0, π],

(4.24)

and n = 0, 1, 2 . . .. In Sleign2 algorithm, the extra boundary condition (4.24) for
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θπi(R) is used to design a function for computing the eigenvalues. In the inverse

spectral technique of this dissertation, it is also utilized for recovering the residual

stress.

For each blood pressure πi, suppose one has eigenvalues λj, for 1 ≤ j ≤Mπi . An

implicit function is defined for τ 11 and each eigenvalue λj from (4.24) by

Dπi(τ
11, λj) = θjπi(RO) + arctan(

b1πi

pπi(RO)b0πi

)− (j+ 1)π for 1 ≤ j ≤Mπi , (4.25)

where θjπi(R) is the solution of (4.21) and (4.23). If τ 11 is the real solution, Dπi(τ
11, λj) =

0.

Suppose one uses K blood pressures, and for each blood pressure πi, Mπi eigen-

values are obtained from IVUS implementation‡ shown below:

Blood pressures and their eigenvalues:



π1 : λ1, λ2, · · ·λMπ1
;

π2 : λ1, λ2, · · ·λMπ2
;

...
...

πK : λ1, λ2, · · ·λMπK
.

(4.26)

Since τ 11 is represented by N unknowns, at least N equations of the form (4.25)

are demanded for calculating the solution to avoid under-determination. Namely,

this relation has to be satisfied:

K∑
i=1

Mπi ≥ N. (4.27)

‡For each blood pressure, one may discard a few lower-mode eigenvalues to make them not
consecutive in order.
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As
∑K

i=1Mπi = N , the system of N equations from (4.25) is denoted by

D(τ 11,Λ) = 0, (4.28)

where τ 11 is in the form of (4.4) and Λ denotes the set of N eigenvalues.

4.3.2 Analysis for Local Existence and Uniqueness

This section gives proofs for showing local existence and uniqueness of solution

for Equations (4.28). For a common use of the notation for independent variable, R

is replaced by x (only used in this section). A regular SLP [28] is considered

− d

dx
(p(x)

du(x)

dx
) + q(x)u(x) = λW (x)u(x), (4.29)

α1u
′(x) + β1u(x) = 0 for x = RI , (4.30)

α2u
′(x) + β2u(x) = 0 for x = RO, (4.31)

where p(x), q(x) and W (x) are functions of τ 11(x), and α1β1 6= 0, α2β2 6= 0.

Lemma 4.3.1 If λ∗ is an eigenvalue of SLP (4.29-4.31), depending on the three

coefficients of (4.29), p(x), q(x) and W (x) as a function λ∗(p(x), q(x),W (x)), and

u(x, λ) is the solution of the initial value problem

− d

dx
(p(x)

du(x)

dx
) + q(x)u(x) = λW (x)u(x), (4.32)

α1u
′(x) + β1u(x) = 0 for x = RI , (4.33)

u′(RI) = 1, (4.34)

42



then the following equation holds

∫ RO

RI

W (x)u2(x, λ∗)dx =
p(RO)u′(RO, λ

∗)

β2

∂ϑ(λ∗)

∂λ
, (4.35)

where ϑ(λ) = α2u
′
λ(RO, λ) + β2uλ(RO, λ).

Proof Differentiating (4.29) with respect to λ generates

− d

dx
(p(x)

duλ(x, λ)

dx
) + q(x)uλ(x, λ) = W (x)u(x, λ) + λW (x)uλ(x, λ). (4.36)

Multiplying (4.36) by u(x, λ), (4.29) by uλ(x, λ) and taking the difference produce

W (x)u2(x, λ) =−
(
p(x)u′λ(x, λ)

)′
u(x, λ) +

(
p(x)u′(x, λ)

)′
uλ(x, λ)

=
[
− p(x)u′λ(x, λ)u(x, λ) + p(x)u′(x, λ)uλ(x, λ)

]′
.

(4.37)

Integrating (4.37) with respect to x from RI to RO at λ = λ∗ and considering the

boundary conditions (4.30) and (4.31) yield

∫ RO

RI

W (x)u2(x, λ∗)dx =
p(RO)u′(RO, λ

∗)

β2

∂ϑ(λ∗)

∂λ
,

where ϑ(λ) = α2u
′
λ(RO, λ) + β2uλ(RO, λ).

Proposition 4.3.1 λ∗(p(x), q(x),W (x)) is a real analytic function of τ 11(x) on L2[RI , RO].

Proof The fact that the SLP (4.29-4.31) is regular means p(x) > 0 and W (x) > 0

as x ∈ [RO, RI ] [28]. u(x, λ∗) is the eigenfunction corresponding to the eigenvalue

λ∗, so u(x, λ∗) is not trivial, i.e. u(x, λ∗) 6= 0 for some x ∈ [RI , RO]. Therefore,

∫ RO

RI

W (x)u2(x, λ∗)dx > 0. (4.38)
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(4.35) and (4.38)yield

u′(RO, λ
∗) 6= 0. (4.39)

Since u′(RO, λ
∗) are functions of p(x), q(x) and W (x),

u′(RO, λ
∗) = u′(RO, p(x), q(x),W (x), λ∗) 6= 0. (4.40)

The implicit function theorem [47] applies, which implies that there exists a unique

real analytic function λ∗(Φ,Ψ,Ω) defined on some neighborhoods Λ ⊂ L2[RI , RO]

of p(x), ∆ ⊂ L2[RI , RO] of q(x) and Υ ⊂ L2[RI , RO] of W (x) for Φ, Ψ and Ω

respectively such that

λ∗(p(x), q(x),W (x)) = λ∗. (4.41)

Nevertheless, p(x), q(x) and W (x) all are analytic functions of τ 11(x), so

λ∗(p(x), q(x),W (x))

is also an analytic function of τ 11(x) and can be denoted by λ∗(τ 11).

Theorem 4.3.2 (Existence and Uniqueness) Provided the Jacobian ∂D
∂τ11

ex-

pressed in (4.43), where D is from Equation (4.28), is nonsingular at τ 11 = 0 and

the given eigenvalue set Λ of (4.26) lies in a sufficiently small neighborhood of the

eigenvalue set Λ0 generated by τ 11 = 0 through (4.14) and (4.15), then D = 0 has a

unique solution.

Proof Λ is in a sufficiently small neighborhood of Λ0, so by Proposition 4.3.1, there

exists sufficiently small τ̃ 11 such that it generates Λ through (4.14) and (4.15) which

makes D = 0.

Also, by Proposition 4.3.1, λ∗ continuously depends on τ 11 and D continuously
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depends on λ∗, so D is continuously dependent on τ 11. Consequently, since ∂D
∂τ11

is

nonsingular at τ 11 = 0 and τ̃ 11 is sufficiently small, ∂D
∂τ11

is also nonsingular at τ̃ 11.

By implicit function theorem applied on D(Λ, τ̃ 11) = 0, there exists a unique analytic

function τ̂ 11(Λ̃) defined on some neighborhood of Λ such that τ̃ 11 = τ̂ 11(Λ), so τ̃ 11 is

the unique solution for D = 0.

In the following examples, nonsingularity of ∂D
∂τ11
|τ11=0 is not verified by the ob-

servation that almost no case can make an exception.

4.3.3 Optimization Approach

Before the optimization approach is introduced, the usual quasi-Newton scheme

is presented for a comparison, the successive approximation of which is

D(τ 11(m)
,Λ) +D′(τ 11(m)

,Λ)(τ 11(m+1) − τ 11(m)
) = 0, (4.42)

where the Jacobian matrix

D′(τ 11,Λ) =



∂D1(τ11,Λ)

∂τ111

∂D1(τ11,Λ)

∂τ112
. . . ∂D1(τ11,Λ)

∂τ11N

∂D2(τ11,Λ)

∂τ111

∂D2(τ11,Λ)

∂τ112
. . . ∂D2(τ11,Λ)

∂τ11N
...

...
...

...

∂DN (τ11,Λ)

∂τ111

∂DN (τ11,Λ)

∂τ112
. . . ∂DN (τ11,Λ)

∂τ11N


. (4.43)

If D′(τ 11(m)
,Λ) is nonsingular, the technique quadratically converges to the solution

of D(τ 11,Λ) = 0 for initial guess close to it. If τ 11 is close to zero, instead of using

D′(τ 11(m)
,Λ) in (4.42), one can use D′(0,Λ) [44]. This quasi-Newton scheme is proven

to be efficient.

One difficulty arising for the equation system (4.28) is that D′(τ 11,Λ) of it is hard

to obtain analytically due to the complicated involvement of τ 11 in D. Computing
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it by a finite difference approach gives

[D′(τ 11,Λ)]mn =
Dm(τ 11 + εen,Λ)−Dm(τ 11,Λ)

ε
, (4.44)

where [D′(τ 11,Λ)]mn is the component of D′(τ 11,Λ) in the mth row and jth column,

Dm is the mth equation of D, en is a N -component vector with the component in

the nth position being 1 and all other components being 0, and ε is a small quantity

usually set to be between 10−13 and 10−7 [58].

For many other problems, this approximated Jacobian matrix is enough for use.

However, for the current one, this is not accurate enough for a convergence of the

iteration since the cut-off errors from the components of the matrix easily accumulate

and perturb the algorithm seriously. Under the theoretical guarantee of the local

existence and uniqueness of a solution from Theorem 4.3.2, another scheme called

optimization is utilized to avoid the disadvantage. The structure of this approach is

illustrated below.

First, a function§ for optimization is defined

S(τ 11) =
( K∑
i=1

Mπi∑
j=1

|Dπi(τ
11, λj)|φ

)ϕ
/

K∑
i=1

Mπi , (4.45)

where ϕ > 0 and φ > 0 . In this dissertation, ϕ = φ = 1. If τ̂ 11 is the solution

of (4.28), it is also a local minimum of S(τ 11). The following self-evident theorem

illustrates this result more completely.

Theorem 4.3.3 For K blood pressures, consider
∑K

i=1Mπi eigenvalues out of them

as the form of (4.26) such that
∑K

i=1 Mπi = N . The function S(τ 11) for optimization

§The function (4.45) for optimization can be constructed in other forms if they make the opti-
mization meaningful and the algorithm run smoothly.
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is in the form of (4.45). By these eigenvalues, form a system of N equations as the

form of (4.28), which can be verified by Theorem 4.3.2 to have a unique solution in

some neighborhood U0 of τ 11 = 0. Then S(τ 11) has a strict local minimum in the

same neighborhood U0 with the optimal value being 0, i.e. there exists some unique

τ 11∗ ∈ U0, such that S(τ 11∗) = 0, and for any τ 11 ∈ U0, τ 11 6= τ 11∗, S(τ 11) > S(τ 11∗).

A significant advantage of this approach is that one can over-determine this prob-

lem (the quasi-Newton scheme is incapable of realizing this). Namely, in (4.27),

consider
K∑
i=1

Mπi > N, (4.46)

which means the number of equations in (4.28) is bigger than the number of inde-

pendent variables. The extra information helps us find the solution more accurately

and the algorithm becomes more robust as seen in the following numerous numerical

examples. It should be noticed that the minimization for (4.45) from different over-

estimation produces slightly different τ 11 where the local minimum occurs. However,

the errors from overestimation are small and thus can be ignored.

There are several methods for finding local minima of a function, one of which is

Nelder-Mead simplex method [50,51]. It minimizes a function by using only function

value without computing any derivative. See Appendix A.4 for an introduction of

this method.

The syntax in Matlab called fminsearch using the Nelder-Mead simplex method

as a line search for minimization can be directly employed in our algorithm. The

minimal use of it is

[Tau, Fun-value]=fminsearch(@S, initial-guess-of-τ 11), (4.47)
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where ‘@S’ is the function handel for function of (4.45), ‘initial-guess-of-τ 11’ is the

initial guess of τ 11 we input for running of the algorithm, ‘Tau’ is the output for the

vector-valued τ 11 and ‘Fun-value’ is the final function value of (4.45) at the output

‘Tau’. For detail of this syntax, please reference on Matlab instruction manual.

The fundamental algorithm for using this method is:

Algorithm 4.3.1 1. For a series of blood pressures, one gains some eigenfre-

quencies for each of them from IVUS interrogation. Then formulate a function

in the form of (4.45);

2. In MATLAB, by syntax (4.47), run the algorithm and record the output ‘Tau’

as the vector-valued approximation for τ 11;

3. By the cubic spline interpolation for ‘Tau’, compute the final piecewise function

approximating τ 11.

Two cases are considered. First, we consider the case for τ 11 in the static defor-

mation equation (3.18) and (3.20) fixed to be the true solution. Hence, the exact r0

is applied in each inner iteration of the running of the algorithms. This simplification

makes the algorithms run fast and is beneficial for devising more viable algorithms.

Second, we consider the case for τ 11 in the static deformation equation not fixed

to be the true solution. τ 11 in the static deformation equation is the same as τ 11

appearing in other parts for producing the function value of (4.45).

4.3.4 Algorithms for Unknowns Fixed in the Static Deformation

In this section, we will see one significant property of the function (4.45). Then we

devise a set of algorithms to search a more accurate solution by various approaches

for avoidance of the disadvantages.
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(a) Plot for
∑K
i=1Mπi

= 8. (b) Plot for
∑K
i=1Mπi

= 12.

Figure 4.6: Plot of S(τ 11) with different values of
∑K

i=1Mπi for observation of multiple
local minima.

4.3.4.1 Multiple Local Minima

The function (4.45) dependent on τ 11, consists of the local minimum occurring

at the real solution. In addition, multiple local minima densely exist. The following

example shows this result.

Example 4.3.4 Consider τ 11 = (τ 11
1 , τ 11

2 ), which means two independent variables

τ 11
1 and τ 11

2 are for the function (4.45). The domain is [−1, 1] × [−1, 1]. For Figure

4.6, four blood pressures 90mmHg, 100mmHg, 110mmHg, 120mmHg are used. Two

cases are examined. For the first one, there are two eigenvalues for each blood

pressure and thus
∑K

i=1Mπi = 8. The plot of function (4.45) is demonstrated in

Figure 4.6a. For the second one, there are three eigenvalues for each blood pressure

with
∑K

i=1 Mπi = 12 and the plot illustrated in Figure 4.6b. For Figure 4.7, nine

blood pressures 70mmHg, 80mmHg, 90mmHg, 100mmHg, 110mmHg, 120mmHg,

130mmHg, 140mmHg and 150mmHg are used. Each blood pressure generates only

one eigenvalue (the first order eigenvalue). Compared with Figure 4.6, local minima

in Figure 4.7 are more sparse and easy to recognize.
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Figure 4.7: Plot of S(τ 11) with nine blood pressures (each pressure generates only
one eigenvalue) for observation of multiple local minima. This produces less number
of local minima.

In Figure 4.6, the multiple local minima in the form of little downward peaks

are positioned in the bottom of the two ditch-like figures. They are close to each

other and indistinct from their surroundings. This characteristic creates technical

difficulties for finding the position of true local minimum. This is why quasi-Newton

methods fail to solve the problem, since any initial estimation, however close to the

real solution, may lead to a different minimum by the algorithm among so many

noisy minima. In the optimization method, relatively more eigenvalues involved in

the function 4.45 can enhance the robustness as shown in the following section.

4.3.4.2 Robustness Comparison

In Example 4.3.4, the little peaks in Figure 4.6b are more flattened, and distances

between adjacent peaks are also slightly larger than that in Figure 4.6a, where less

eigenvalues are used. Therefore, more eigenvalues utilized in function (4.45) help

search a more accurate result. The following example can show this conclusion.

Example 4.3.5 We consider τ 11 = (τ 11
1 , τ 11

2 , τ 11
3 ). Six blood pressures 70mmHg,

80mmHg, 90mmHg, 100mmHg, 110mmHg, 120mmHg are used for Figures 4.8a,

4.8b, 4.8d and 4.8e. Four groups of different combinations of these blood pressures

and their eigenvalues are listed below:
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(a) Plot for Group (1). (b) Plot for Group (2).

(c) Plot for nine blood pressures with each pro-
ducing a single eigenvalue.

(d) Plot for Group (3).

(e) Plot for Group (4).

Figure 4.8: Plots of numerical results for Groups (1)-(4) and the case of nine blood
pressures with each one producing a single eigenvalue in Example 4.3.5. The solid line
represents the original function and the dashed line represents the approximations.
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(1) :



90mmHg : λ1

100mmHg : λ1

110mmHg : λ1

120mmHg : λ1

; (2) :



70mmHg : λ1

80mmHg : λ1

90mmHg : λ1

100mmHg : λ1

110mmHg : λ1, λ2

120mmHg : λ1, λ2

;

(3) :



70mmHg : λ1, λ2

80mmHg : λ1, λ2

90mmHg : λ1, λ2

100mmHg : λ1, λ2

110mmHg : λ1, λ2

120mmHg : λ1, λ2

; (4) :



70mmHg : λ1, λ2

80mmHg : λ1, λ2

90mmHg : λ1, λ2, λ3

100mmHg : λ1, λ2, λ3

110mmHg : λ1, λ2, λ3

120mmHg : λ1, λ2, λ3

;

Each group produces an optimization function (4.45) from the blood pressures and

its corresponding eigenvalues. The initial estimate for all the five groups is identically

(1, 1, 1). The exact function is τ 11(R) = 0.2sin(2π(R− RI)/(2L)). We also consider

a special case as shown in Figure 4.8c, where each blood pressure produces only one

eigenvalue (the first order eigenvalue), and nine blood pressures 70mmHg, 80mmHg,

90mmHg, 100mmHg, 110mmHg, 120mmHg, 130mmHg, 140mmHg and 150mmHg

are used.

In Figure 4.8, we see that Group (3) generates the best approximation. This shows

that more terms in (4.45) may make the approximation more accurate, but this is

not a guarantee. Group (4) is a counter-example. This may be due to the fact that

too much terms in (4.45) can also complicate the computation. Thus, a moderately

high number of terms in (4.45) should be considered for higher robustness.

Compare Figure 4.8c with Figure 4.8b, we see that Figure 4.8c produces a better
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approximation, where only the first order eigenvalues of all nine blood pressures are

used. This means approximation with only first order eigenvalues of each blood pres-

sure could generate better result than higher order eigenvalues used in the algorithm.

4.3.4.3 Error Tolerance in Eigenvalues

In actual measurement for eigenvalues from IVUS implementation, errors are

unavoidable. This section demonstrates several examples to see how much errors

can be allowed to produce an acceptable approximation. The eigenvalues used in

this section are preconditioned (see Section 4.2.3 for topic about “Preconditioning

for SLP”). Thus, though the values of frequencies from IVUS implementation are

around the order of 106 Hz, the actual eigenvalues used in the algorithms are around

the order of 10−1 Hz for better manipulation by the algorithms.

Example 4.3.6 Nine blood pressures 70mmHg, 80mmHg, 90mmHg, 100mmHg,

110mmHg, 120mmHg, 130mmHg, 140mmHg and 150mmHg are used to produce only

the first order eigenvalues for the true function τ 11(R) = 0.2sin(2π(R − RI)/(2L)).

The eigenvalues are as follows:



70mmHg : λ1 = 9.308794207954652e− 002

80mmHg : λ1 = 1.229315184535560e− 001

90mmHg : λ1 = 1.536510111910276e− 001

100mmHg : λ1 = 1.852044306524538e− 001

110mmHg : λ1 = 2.175236852775457e− 001

120mmHg : λ1 = 2.505393118007335e− 001

130mmHg : λ1 = 2.841868863592572e− 001

140mmHg : λ1 = 3.184084999281991e− 001

150mmHg : λ1 = 3.531527004733066e− 001

;
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(a) Plot for K = −12. (b) Plot for K = −10.

(c) Plot for K = −8. (d) Plot for K = −7.

(e) Plot for K = −5.

Figure 4.9: Plots of numerical results for various K in Example 4.3.6.
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We consider τ 11 = (τ 11
1 , τ 11

2 , τ 11
3 ) to approximate the true solution. Initial input for

the optimization is [0.0123 0.223 -0.2]. We add random errors to these eigenvalues

(generated by syntax rand(1,1) from MATLAB). Let ε ∈ [0, 1] represent the random

errors obtained from computer. The actual errors added to these original eigenvalues

are 10Kε, where K is negative adjustable integers. The approximations for differ-

ent K are listed in Figure 4.9. From the plots we can see that as K < −7 the

approximations are acceptable.

Example 4.3.7 To increase the error tolerance for the algorithms, we employ more

eigenvalues and regularization. The true function, number of nodal values used, error

interference in the eigenvalues and initial input in the optimization all are the same

as in Example 4.3.6. The blood pressures and eigenvalues are as follows:



70mmHg : λ1 = 9.308794207954652e− 002 λ2 = 5.312533556263537e− 001

80mmHg : λ1 = 1.229315184535560e− 001 λ2 = 7.033010994891145e− 001

90mmHg : λ1 = 1.536510111910276e− 001 λ2 = 8.799714596154322e− 001

100mmHg : λ1 = 1.852044306524538e− 001 λ2 = 1.129656275890929e+ 000

110mmHg : λ1 = 2.175236852775457e− 001 λ2 = 1.233454471814210e+ 000

120mmHg : λ1 = 2.505393118007335e− 001 λ2 = 1.437613830833612e+ 000

130mmHg : λ1 = 2.841868863592572e− 001

140mmHg : λ1 = 3.184084999281991e− 001

150mmHg : λ1 = 3.531527004733066e− 001

160mmHg : λ1 = 3.883740179742103e− 001

170mmHg : λ1 = 4.240323081114115e− 001

180mmHg : λ1 = 4.600921255066295e− 001

190mmHg : λ1 = 4.965221687238204e− 001

;

To express the approach of regularization (currently from comparison of the output
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with true value), we use ΠK to represent the output from the optimization for each

K. The output is then divided by an integer factor to obtain a better approximation.

As K = −6, the new output ΠK/10 is used in interpolation to generate the approx-

imation. As K = −5, the new output ΠK/100 is used in interpolation to generate

the approximation. As K = −4, the new output ΠK/1000 is used. As K = −3, the

new output ΠK/10000 is used. See Figure 4.10.

Example 4.3.8 In this example, τ 11 is fixed to be τ 11(R) = 0.2sin(2π(R−RI)/(2L)).

We recover τ 22 which is a line interval with the true value of τ 22 = −6(R−RI)
RI−RO

− 2.

τ 11 = (τ 11
1 , τ 11

2 ) is utilized to approximate the true solution. Initial input for the

optimization is [-2.5 4.5]. The blood pressures and eigenvalues are as follows:



70mmHg : λ1 = 2.555001971506981e− 001 λ2 = 1.640085559374259e+ 000

80mmHg : λ1 = 2.211609619396642e− 001 λ2 = 1.322237914674498e+ 000

90mmHg : λ1 = 1.875391777410913e− 001 λ2 = 1.120431298809309e+ 000

100mmHg : λ1 = 1.547079260764113e− 001

110mmHg : λ1 = 1.227381779339103e− 001

120mmHg : λ1 = 9.166758419102816e− 002

;

The actual errors added to these original eigenvalues are 10Kε as in Example 4.3.6,

where K is negative adjustable integers. The approximations for different K are

listed in Figure 4.11. From the plots we can see that as K < −5 the approximations

are acceptable.

Example 4.3.8 shows that τ 22 can tolerate more errors in its eigenvalues than τ 11

recovery in Example 4.3.6. Thus, the algorithms for τ 22 are more robust. In practice,

τ 22 is more important than τ 11 in the bio-mechanical effect for the deformation of the
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(a) Plot for K = −6. The output is divided by a
factor of 10 for the interpolation.

(b) Plot for K = −5. The output is divided by a
factor of 100 for the interpolation.

(c) Plot for K = −4. The output is divided by a
factor of 1,000 for the interpolation.

(d) Plot for K = −3. The output is divided by a
factor of 10,000 for the interpolation.

Figure 4.10: Plots of numerical results for various K in Example 4.3.7. More blood
pressures and eigenvalues are used than Example 4.3.6. Regularization is used to
produce a better approximation.

57



(a) Plot for τ22 as K = −8. (b) Plot for τ22 as K = −7.

(c) Plot for τ22 as K = −6. (d) Plot for τ22 as K = −5.

Figure 4.11: Plots of numerical results for various K in Example 4.3.8.The solid line
represents the original function and the dashed line represents the approximations.

blood wall. However, in this thesis, we mainly consider τ 11 as seen in the following

examples to develop more widely applicable algorithms, which can also be utilized

for τ 22 recovery.

4.3.4.4 Enhanced Robustness

The Nelder-Mead simplex method may generate an inaccurate result. More ex-

actly, if we use the previous numerical result as an initial estimation for the algorithm

and run it again, it may yield a different output. To obtain a more accurate solu-
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tion, We iteratively input the previous numerical result as a new initial guess and

run the algorithm until we obtain a limit. Then we use the limit as the final output.

The approach can improve the robustness of the algorithm and is displayed as below:

Algorithm 4.3.2 1. Give an initial guess, run the optimization algorithm and

keep a record of the numerical result;

2. Input the numerical result from Step 1 as a new initial guess and run the

algorithm again;

3. Compare the new numerical results from Step 2 and Step 1 to see if they are

close to each other;

4. If yes, then stop and accept the numerical result from Step 2 as the final solu-

tion; If no, use the numerical result from Step 2 as an initial guess for Step 1

and repeat the process.

Example 4.3.9 In Example 4.3.5, we only use Groups (1) and (4) for optimization.

Both of the two initial guesses are set to be τ 11 = (3 3 3). Relative maximum

norm is defined as ‖τ 11
new−τ 11

old‖l∞/‖τ 11
old‖l∞ , where τ 11

new is the current numerical result

and τ 11
old is the last one.

From Tables 4.8 and 4.9 and Figure 4.12, we see that after 3 iterations, Group (1)

produces a limit far away from the exact one, whereas in the 5 iterations, Group (4)

generates output closer and closer to the exact solution. This shows Algorithm 4.3.2

can produce more accurate solution with better robustness if appropriate number of

blood pressures and corresponding eigenvalues are selected.
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τ 11 vector relative maximum norm
initial guess 3 3 3
the first output 1.3006 0.3674 0.0107 99.64%
the second output 1.2840 0.3644 0.0120 0.1%
the third output 1.2844 0.3644 0.0120 0%

Table 4.8: Numerical results for Group (1) in Example 4.3.9

τ 11 vector relative maximum norm
initial guess 3 3 3
the first output 23.5153 -2.7085 3.799 190.28%
the second output 0.8304 0.1658 -0.0447 12.22%
the third output 0.8304 0.1658 -0.0447 102.17%
the fourth output -0.0184 0.1965 -0.0053 0.05%
the fifth output -0.0151 0.1963 -0.0054 0.09%

Table 4.9: Numerical results for Group (4) in Example 4.3.9

(a) Plot of the final iteration for Group (1). (b) Plot of the final iteration for Group (4).

Figure 4.12: Plots of the final iterations for Groups (1) and (4) in Example 4.3.9.
The solid line represents the original function and the dashed line represents the
approximations.
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4.3.4.5 The Forward Elevated Optimization Algorithm

First, let us see an observation for this optimization problem.

Observation 4.3.1 If τ̃ 11 is a true solution for the modeling, then for any function

(4.45) formed by a combination of blood pressures and the corresponding eigenvalues,

τ̃ 11 is always a point producing a local minimum for that function. On the contrary,

even though some τ ∗11, not the true solution for the modeling, exists to be a point

generating a local minimum for some functions in the form of (4.45), there always

exists a function in the form of (4.45) such that τ ∗11 is not a point for a local

minimum for it.

This observation provides us a technique for estimating the optimization in a

forward way. First, for a function (4.45) formed from some group (Γ) of blood pres-

sures and the corresponding eigenvalues, we calculate the optimization and record

the output τ 11
(1); For another group ∆ of blood pressures and the related eigenvalues

(Group ∆ contains more eigenvalues than Group (Γ)), we input τ 11
(1) from Group (Γ)

as initial guess and obtain another output τ 11
(2); then repeat this process until we find

a satisfactory result. Make sure the number of eigenvalues is increased each step to

make the method forward. The optimization will produce a result closer and closer

to the true solution. The detailed algorithm is as follows:

Algorithm 4.3.3 1. For an initial guess τ 11
(0) and the function (4.45) constructed

from a group (Γ) of blood pressures and their eigenvalues, by Algorithm 4.3.1

one obtains the output denoted as τ 11
(1);

2. Construct a function (4.45) from another group of blood pressures and related

eigenvalues denoted as (∆), where there are more eigenvalues than Group (Γ).
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With τ 11
(1) as the input, one finds another output denoted as τ 11

(2) by Algorithm

4.3.1;

3. Construct a function from another group of blood pressures and related eigen-

values denoted as (Θ), where there are more eigenvalues than both (Γ) and (∆).

With τ 11
(2) as initial guess, one keep the output τ 11

(3) by Algorithm 4.3.1;

4. Repeat the forward process until we find a satisfactory result.

Example 4.3.10 Consider a function τ 11(R) = (R − L
3
)(R − RO) to be approx-

imated. We apply the 4-node spline interpolation as τ 11 = (τ 11
1 , τ 11

2 , τ 11
3 , τ 11

4 ). Al-

gorithm 4.3.3 is used as the forward elevated optimization. Group (2) is used to

construct the first function. Initial guess is τ 11
(0)=(0 0 0 0). It produces the out-

put τ 11
(1)=(0.0202 0.0014 -0.0521 0.0010); Group (3) is used to construct the second

function. With τ 11
(1) as initial guess, it generates the output τ 11

(2)=(0.1583 -0.0004 -

0.0546 0.0001). This is already a very good result, so we stop and accept this as

the final solution. See Figure 4.13 for plots for approximation from τ 11
(1) and τ 11

(2)

respectively. The plot from τ 11
(1) does not show a good approximation. The plot for

τ 11
(2) demonstrates an improvement in approximation.

4.3.4.6 The Backward Comprehensive Test

By the previous several approaches, we can always obtain a final output. Once

again to verify it is a satisfactory result, we can apply Observation 4.3.1 to do a

backward comprehensive test. The algorithm is as below:

Algorithm 4.3.4 1. For a function (A) in the form (4.45). By some previous

algorithm, we obtain an output τ̃ 11;

2. For another function (B), which uses less number of eigenvalues than (A),

input τ̃ 11 as an initial guess and obtain another final solution τ 11
(1);
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(a) Plot of the first output τ11(1) of Example 4.3.10.(b) Plot of the second output τ11(2) of Example
4.3.10.

Figure 4.13: Plots of Example 4.3.10 to show the effect of the elevated optimization
algorithm.

3. For another function (C), which has less number of eigenvalues than (B), we

use τ̃ 11 as an initial guess for it and obtain another final solution τ 11
(2);

4. (Optional) We may use the same way to obtain τ 11
(3), τ

11
(4)· · · ;

5. Compare τ 11
(1), τ

11
(2), τ

11
(3), τ

11
(4)· · · with τ̃ 11. If these values are close to each other,

then we accept τ̃ 11 as a true solution; if not, τ̃ 11 is not the true solution.

Example 4.3.11 We consider Example 4.3.9. Group (4) with an initial guess τ 11=(3

3 3) generates the final solution τ 11
G(4)=(-0.0151 0.1963 -0.0054). Then we use this

solution as an initial guess for Groups (1), (2) and (3) to obtain the output τ 11
G(i)

for i=1,2,3 and compute the relative maximum norm defined as: rmni=‖τ 11
G(4) −

τ 11
G(i)‖l∞/‖τ 11

G(4)‖l∞ for i=1,2,3. The output is as below

(−0.0151 0.1963 − 0.0054)︸ ︷︷ ︸
output of Group (4) as initial guess

⇒


Group (1) : (−0.0176 0.1823 − 0.0020)

Group (2) : (−0.0183 0.1954 0.0008)

Group (3) : (−0.0000 0.1953 − 0.0003)
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output of Group (4)︸ ︷︷ ︸
initial guess for Groups (1)-(3)

: (12.9270 -0.3896 -0.6632 0.2311 -0.0011)

output of Group (1): (-0.5694 -0.0211 0.1502 0.1472 -0.0042)
output of Group (2): (13.2124 -0.5054 -0.1818 0.0129 -0.0026)
output of Group (3): (-61.7158 -1.7185 2.5794 1.2377 -0.0077)

Table 4.10: Numerical output for Groups (1), (2) and (3) with initial guess from
output of Group (4) in Example 4.3.12. This shows output from Group (4) is a bad
approximation.

The relative maximum norms are rmn1 = 7.13%, rmn2 = 1.63%, rmn3 = 0.51%

respectively. The three relative maximum norms are very small and decrease from

Group (1) to Group (3). Thus, we can conclude that the output τ 11
G(4) from Group

(4) is an acceptable approximation of the true solution. Figure 4.14a can show this

result.

Example 4.3.12 In 4.3.9, we consider τ 11 = (τ 11
1 , τ 11

2 , τ 11
3 , τ 11

4 , τ 11
5 ). Group (4) with

an initial guess τ 11=(1 2 3 4 5) generates the output τ̃ 11
G(4)=( 12.9270 -0.3896 -0.6632

0.2311 -0.0011). Then we use this solution as an initial guess for Groups (1), (2) and

(3) to obtain the numerical results and compute the relative maximum norm defined

in Example 4.3.11. The output is shown in Table 4.10. The relative maximum norms

are rmn1 = 104.4%, rmn2 = 1.69%, rmn3 = 577.42% respectively. They are very

big and not close to each other. Consequently, we conclude that τ̃ 11
G(4) is not an

acceptable approximation. Figure 4.14b can show this result.

The two examples show the necessity to do a comprehensive test before we accept

any final output.

4.3.4.7 The Complete Algorithm and Examples with Other Interpolations

The above algorithms show various approaches to produce a more accurate so-

lution and the corresponding verification. We integrate them and devise a complete
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(a) Plot of the result for Group (4) in Example
4.3.11. It shows a good approximation.

(b) Plot of the output for Group (4) in Example
4.3.12. It shows a bad approximation.

Figure 4.14: Plots of numerical result of Group (4) in Examples 4.3.11 and 4.3.12
to show the necessity of a comprehensive test. The solid line represents the original
function and the dashed line represents the approximations.

algorithm.

Algorithm 4.3.5 1. Construct the function (4.45) under a relation between the

number of eigenvalues and number of nodal points as

K∑
i=1

Mπi = ηN + ς, (4.48)

where Mπi is the number of eigenvalues for the blood pressure πi, N is the

number of nodal points for τ 11, the best η can be 4, 5, 6 or bigger to enhance

the robustness, and 0 < ς < N ;

2. Use Algorithm 4.3.2 or 4.3.3 to obtain an output, and apply Algorithm 4.3.4

to verify it;

3. If in Step 2 the output from many possible initial guesses does not pass the

verification, we need to consider increasing η or ς in (4.48), and go to Step 2;
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4. (Optional) Another way to judge if an approximation is a satisfactory one or

not is by observing the function value at the output. Less number of eigenvalues

used for the function, less function value should be generated at the output. For

example, for N=3 and η = 6, a good approximation may generate a function

value as low as 10−7 .

Example 4.3.13 The exact function is τ 11 =
√
L2 − (R−RO)2. The eigenvalues

used are based on Group (4). We consider two cases for different number of nodal

points:

(a) Set 3 nodes for the interpolation with τ 11 = (τ 11
1 , τ 11

2 , τ 11
3 ). The initial guess is (0

0 0). Algorithm 4.3.2 is utilized. After 4 iterations, the algorithm yields τ 11=(0.2417

0.5999 0.7017) with the function value at this point being 3.9595e-008. See Figure

4.15a for the result. From the plot, this output seems not to generate a satisfactory

approximation. We consider adding one more node to the interpolation as below in

Case (b);

(b) Set 4 nodes for the interpolation with τ 11 = (τ 11
1 , τ 11

2 , τ 11
3 , τ 11

4 ). The initial

guess is (0 0 0 0) used for the same algorithm as in Case (a). After 5 iterations,

the algorithm yields τ 11=(0.1407 0.5220 0.6622 0.7069) with the function value at

this point being 1.2997e-007. See Figure 4.15b for the approximation. This output

produces a much better result than Case (a).

In the dissertation, cubic spline interpolation is mainly used to interpolate the

nodal values of τ 11. Actually, other interpolations also deserve trying like nearest-

neighbor interpolation, linear spline interpolation, piecewise cubic spline interpola-

tion and Hermite interpolation. Different interpolation is suitable for different cate-
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(a) Plot of the output of Example 4.3.13(a). (b) Plot of the output of Example 4.3.13(b).

Figure 4.15: Plots of numerical results of Example 4.3.13 with a monotone function.
The solid line represents the original function and the dashed line represents the
approximations. Figure 4.15b shows a better approximation with 4 nodes for inter-
polation than that of Figure 4.15a with a 3-node interpolation, so for different cases,
we need to consider different numbers of nodes for interpolation for a better result.

gory of functions. For example, nearest-neighbor interpolation is the best choice for

approximating piecewise constant function, and piecewise cubic spline interpolation

generates an approximation without the second-time differentiability at the inter-

nal nodal points. We mainly make use of cubic spline interpolation for recovering

residual stress in the dissertation because component of residual stress as a function

in soft tissues is usually smooth. The following two examples show the effect of

piecewise cubic spline interpolation.

Example 4.3.14 For the same function in Example 4.3.13 we perform a piecewise

cubic interpolation with τ 11 = (τ 11
1 , τ 11

2 , τ 11
3 ). The initial guess is (0 0 0). The output

is (0.1844 0.6113 0.7028) and function value at this point is 1.3968e-008. See Figure

4.16.

Example 4.3.15 The exact function is given as τ 11(R) = 0.1sin(2π(R−RI)/L) for

a five-node piecewise cubic spline interpolation, where τ 11 = (τ 11
1 , τ 11

2 , τ 11
3 , τ 11

4 , τ 11
5 ).
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Figure 4.16: Plot of the output of Example 4.3.14. The solid line represents the orig-
inal function and the dashed line represents the approximations. It shows a better
approximation, especially at the left end, than Fig. 4.15a with cubic spline interpo-
lation, so other interpolations other than cubic spline should also be considered.

Eigenvalues used are listed below as Group (5):

(5) :



70mmHg : λ1, λ2, λ3, λ4

80mmHg : λ1, λ2, λ3, λ4

90mmHg : λ1, λ2, λ3, λ4

100mmHg : λ1, λ2, λ3, λ4

110mmHg : λ1, λ2, λ3, λ4

120mmHg : λ1, λ2, λ3, λ4

130mmHg : λ1, λ2, λ3, λ4

140mmHg : λ1, λ2, λ3, λ4

150mmHg : λ1, λ2, λ3, λ4

The initial guess is (-0.02 0.07 -0.05 -0.05 -0.01). After 2 iterations, it produces the

final output (-0.0621 0.0988 -0.0070 -0.0860 -0.0105). Function value at the output

is 2.6671e-005. See plot in Fig. 4.17.
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Figure 4.17: Plot of the output of Example 4.3.15. This shows that other inter-
polation approaches are also possible for use. The solid line represents the original
function and the dashed line represents the approximations.

The approximation in Figure 4.17 is not as good as that in the other examples,

because five nodes are employed and this increases the complexity when searching

for a local minimum. The original function bears two peaks and approximation from

less number of nodal points can not properly represent the shape of the function.

Hence, 5-node approximation display a relatively better option.

4.3.5 Algorithms for Unknowns not Fixed in the Static Deformation

The algorithms developed in Section 4.3.4 are based on the simplification that

the unknown τ 11 is fixed in the static deformation creating a fixed r0. The same

algorithms can be applied to the situation without such simplification. Namely, r0

depends on τ 11 and the iterations in the algorithms also occur in the static defor-

mation. Removal of the simplification makes the problem more ill-posed and highly

increases the computational task, but makes the modeling more practical.

The goal is to find the global minimum of the function expressed in (4.45) on some

appropriately guessed domain. The global minimum occurs in a very narrow spike

of function plot. This makes it uneasy to be searched. To avoid such disadvantage,
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we partition the domain into several parts. The Global Optimization Toolbox in

MATLAB is utilized to search the global minimum on each subdomain. Draw out a

few subdomains where comparatively smaller minima are found. These subdomains

are the potential areas where the global minimum in the whole domain occurs. Then

we apply the enhanced robustness, the forward elevated optimization algorithm or

the backward comprehensive test to find the real τ 11. See below for the detailed

algorithm

Algorithm 4.3.6 1. Make an educated guess for the component-wise domain Di

of τi
11 ∈ τ 11 for 1 ≤ i ≤ N . This forms a domain D = D1 × D2 · · · × DN of

τ 11.

2. Partition D into w subdomains as D = D(1)
⋃
D(2) · · ·

⋃
D(w) (an updated

partition should be different from the last one).

3. Use Simulated Annealing method (or other methods like genetic algorithm, pat-

tern search etc. See Global Optimization Toolbox 3 User¡¯s Guide for detail)

from the Global Optimization Toolbox of Matlab to search the global minimum

on each subdomain.

4. Identify the subdomain D(y) where the global minimum occurring at τµ
11 ∈ D(y)

is the smallest (D(y) is the potential area where the approximated solution of

τ 11 exists).

5. Form another function in the form (4.45) by more eigenvalues for each blood

pressure (or use different blood pressures and corresponding eigenvalues), and

utilize Simulated Annealing method (or other global optimization algorithms)

to search another global minimum for the new function on D(y) with τµ
11 as

initial guess. Denote the output as τν
11.
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6. Compare τν
11 with τµ

11. If the two are close to each other, go to Step 7 to verify

τν
11 is the true solution; If not, go to Step 2 and repartition the domain D.

7. τν
11 must be verified by Algorithm 4.3.3 or 4.3.4. If the verification succeeds,

stop and accept τν
11 as the true solution. If not, go to Step 2.

In Step 2, finer partition can generate a better output, but the time for running of

the algorithm will be highly increased. Thus, there is always a compromise between

accuracy and time. Steps 5, 6 and 7 can be classified as the verification steps to

test an output to be the true solution or not. The above algorithm only present

one approach. Other verification approaches can also be invented from the basic

algorithms of Section 4.3.4. It should be emphasized that the verification is greatly

necessary because some global optimization algorithms in Matlab is stochastic and

the inverse spectral problem in the modeling is largely ill-posed. Any point other

than the true solution, which makes a global minimum occur over a subdomain, can

be verified not to be the true solution. The following examples show the flexible

employment of Algorithm 4.3.6.

Example 4.3.16 The exact function is given as τ 11(R) = 5sin(π(R − RI)/L) for

a three-node piecewise cubic spline interpolation, where τ 11 = (τ 11
1 , τ 11

2 , τ 11
3 ). The

groups of blood pressures and their eigenvalues are listed below.
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(6) :



70mmHg : λ1

80mmHg : λ1

90mmHg : λ1

100mmHg : λ1

110mmHg : λ1

120mmHg : λ1

130mmHg : λ1

140mmHg : λ1

150mmHg : λ1

; (7) :



70mmHg : λ1, λ2, λ3

80mmHg : λ1, λ2, λ3

90mmHg : λ1, λ2, λ3

100mmHg : λ1, λ2, λ3

110mmHg : λ1, λ2, λ3

120mmHg : λ1, λ2, λ3

130mmHg : λ1, λ2, λ3

140mmHg : λ1, λ2, λ3

150mmHg : λ1, λ2, λ3

We suppose τ 11
1 ∈ [−0.3, 1], τ 11

2 ∈ [−0.3, 5.3] and τ 11
3 ∈ [−0.3, 1]. We partition

the whole domain [−0.3, 1]× [−0.3, 5.3]× [−0.3, 1] into five subdomains as



1 : [−0.3, 1]× [−0.3, 1]× [−0.3, 1]

2 : [−0.3, 1]× [1, 2]× [−0.3, 1]

3 : [−0.3, 1]× [2, 3]× [−0.3, 1]

4 : [−0.3, 1]× [3, 4]× [−0.3, 1]

5 : [−0.3, 1]× [4, 5.3]× [−0.3, 1]

On the five subdomains, we search the global minima respectively with Group (6) by

algorithm of Simulated Annealing. The time running on each subdomain is equally

set to be 10 minutes. The outputs are in Table 4.11. We can see that subdomain

5 generates the smallest function value with an order of 10−5. This implies that

the global minimum of the whole domain occurs most possibly on this subdomain.

To further study this subdomain completely, we design another function for opti-

mization by Group (7), where the number of eigenvalues are tripled compared with

Group (6). On subdomain 5 , we use [0.1 4.9 0.1] as input, the algorithm by Sim-
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Figure 4.18: Plot of the approximation of Example 4.3.16. The solid line represents
the original function and the dashed line represents the approximations.

ulated Annealing with Nelder-Meader simplex as a hybrid gives a global minimum

5.4928e-5 occurring at [-0.0777 4.9 -0.025].

[-0.0777 4.9 -0.025] should be verified to be the approximated true solution.

By the approach of enhanced robustness from Section 4.3.4.4, we use [-0.0777 4.9 -

0.025] as input under algorithm of Simulated Annealing with hybrid of Nelder-Mead

simplex method over the domain [−0.2, 0.2] × [4.8, 5.2] × [−0.2, 0.2] closely

around [-0.0777 4.9 -0.025]. The minimum 1.144e-007 of the function occurs at [-

0.067155 4.8528 -0.013693]. [-0.0777 4.9 -0.025] and [-0.067155 4.8528 -0.013693]

are close to each other. Hence we can certify that [-0.067155 4.8528 -0.013693] is

the desired approximation. See Figure 4.18 for the plots of the real function and

the approximation. The forward elevated optimization algorithm and the backward

comprehensive test can still be used to test the accuracy of the solution.They are

ignored for succinctness.

Example 4.3.17 The exact function is τ 11(R) = 100(R − RI)
2(R − RO) + 5.5 for

a three-node piecewise cubic spline interpolation, where τ 11 = (τ 11
1 , τ 11

2 , τ 11
3 ). We

suppose τ 11
1 ∈ [5, 6], τ 11

2 ∈ [1, 1.5] and τ 11
3 ∈ [5, 6]. We partition the whole
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subdomain initial input global minimum

1 [0.35 0.35 0.35] 1.6308e-3 occurring at [0.6913 0.0262 0.0359]

2 [0.35 1.5 0.35] 1.3326e-3 occurring at [0.7730 1.7268 0.0557]

3 [0.35 2.5 0.35] 1.4648e-3 occurring at [1 2.8167 -0.0020]

4 [0.35 3.5 0.35] 5.9577e-4 occurring at [0.3985 3.5800 0.0162]

5 [0.1 4.9 0.1] 9.0288e-5 occurring at [ 0.90649 4.3238 -0.0006]

Table 4.11: Numerical results for Example 4.3.16

domain [5, 6]× [1, 1.5]× [5, 6] into three subdomains as


1
′
: [5, 5.2]× [1, 1.5]× [5, 6]

2
′
: [5.2, 5.8]× [1, 1.5]× [5, 6]

3
′
: [5.8, 6]× [1, 1.5]× [5, 6]

On the three subdomains, we search the global minima respectively for function

formed from Group (6) by algorithm of Simulated Annealing with hybrid of Nelder-

Mead simplex method. The results are in Table 4.12. We can see that subdomain

2
′

generates the smallest function value with an order of 10−11. This implies that

the global minimum of the whole domain occurs most possibly on this subdomain.

We use Nelder-Mead simplex algorithm with [5.6330 1.1688 5.5000] as input. It

gives the minimal function value 2.8548e-011 at the point [5.6330 1.1688 5.5000]. The

input and output are almost the same. This shows that [5.6330 1.1688 5.5000] should

be the final solution of the approximation. To further test this result, we design

another function for optimization by Group (7), and Nelder-Mead simplex algorithm

with [5.6330 1.1688 5.5000] as input is applied again. The function minimum 5.2509e-

005 occurs at [5.6340 1.1805 5.5000]. The output is only slightly different from

the input. This shows that [5.6330 1.1688 5.5000] is the approximated solution as

claimed. See Figure 4.19 for the comparison of true solution and its approximation.
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subdomain initial input global minimum

1
′

[5.1 1.3 5.8] 8.0149e-010 occurring at [ 5.1893 1.0016 5.5001]

2
′

[5.3 1.2 5.5] 2.8554e-011 occurring at [ 5.6330 1.1688 5.5000]

3
′

[5.9 1.4 5.3] 3.1077e-010 occurring at [5.9641 1.0791 5.5001]

Table 4.12: Numerical results for Example 4.3.17

Figure 4.19: Plot of the approximation of Example 4.3.17. The solid line represents
the original function and the dashed line represents the approximations.
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5. SUMMARY

At the end, a summary is presented. Discussions are made for the modeling and

algorithms developed in the dissertation. The contributions of the research in the

dissertation are also summarized. Short-term and long-term plans are displayed for

the future research to complete the project.

5.1 Discussions

This section shows why the algorithms are devised and what the benefits they

are compared to other approaches.

5.1.1 Discussions for Recovering the Shear Modulus

The shear modulus is one of several quantities for measuring the stiffness of

arterial wall. Its recovery is crucial for studying the bio-mechanical properties of the

wall. The extent of hardening of an atherosclerotic plaque is known to depend on

shear modulus. Therefore, methods to accurately estimate values of shear modulus

can contribute in distinguishing between a healthy artery and an unhealthy one.

Traditionally, one needs experiments in vitro to recover shear modulus [7]. However,

the method presented in this article provides a novel way to measure it from IVUS

implementation in vivo. It is also known that the shear modulus in soft tissues is

not constant, and it varies within the thickness of the arterial wall. The cubic spline

interpolation can give us flexibility for finding different values on different layers of

the wall, which makes the result more practical.

A novelty in our work is that we use a nonlinear system of equations from various

blood pressures instead of one linear equation from only one pressure. This engenders

a nonlinear approach for the problem. It complicates the theoretical work but makes
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the result more accurate by featuring the nonlinear characteristic of the problem.

Large N , which is the number of nodal points of the recovered functions, gener-

ally makes it difficult for the algorithm to be both robust and accurate. We also tried

other methods to replace the generalized secant method such as Broyden’s method

in [2], but the results are not so satisfactory. Other algorithms deserving trial may

complicate the problem, e.g. Newton-Krylov method [3, 58] and inexact Newton

method [19]. Solving nonlinear simultaneous equations efficiently and accurately is

still a challenging problem today. Most of these methods are variation of Newton’s

method which requires computing the Jacobian matrix. However, it is almost im-

possible to obtain the Jacobian matrix for many highly nonlinear problems. Our

problem is even more complicated due to the fact that there are no explicit formulas

for dj(µ) in (4.12). Most of the existing methods for solving this kind of problem

depends on finding an approximate Jacobian matrix. The method that we present

is very easy to implement and avoids having to approximate the Jacobian matrix.

The idea of the algorithm can be applied to recover other constants like β, π, RI

or RO given all the relevant information. For the atherosclerotic plaques with two

layers, one of which is soft and fatty and the other one calcified and fibrous, we can

also utilize this algorithm to find the position of the interface of the two layers.

5.1.2 Discussions for Recovering the Residual Stress

Biologically, it is not likely that any soft tissue can be completely free from resid-

ual stress introduced during growth. Residual stress can be beneficial in maintaining

the healthy state of an artery. It can also be detrimental when it reduces the stability

of the material which may cause, for example, a vulnerable atherosclerotic plaque to

rupture suddenly. This article incorporates residual stress analytically in the arterial

modeling and recovers the stress distribution of some components of it via an inverse
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spectral technique. Due to the characteristic of multiple local solutions of the prob-

lem, the approach of solving a system of equations is avoided. Instead, a function

is constructed for optimization to obtain the solution. A forward elevated optimiza-

tion and backward comprehensive test are employed to increase the robustness and

guarantee the accuracy of the output.

In addition, the inverse spectral technique does not operate on the original SLP

form. Instead, it works on one of the first order differential equations after the

application of prüfer transformation. The advantage of this performance is that one

boundary condition of the new form relates to the eigen-order, thus providing extra

vital information for the calculation.

Usually, solving a system of equations is employed to find the solution of equa-

tions established by the inverse spectral technique. However, some facts make such

approach impossible as analyzed in Section 5.1.1. First, the Jacobian matrix is hard

to obtain analytically and the approximated one is inaccurate for use, resulting a

divergence of the algorithm. Second, some points near the true solution also make

the system of equations close to zero, so any Newton-like approach will easily con-

verge to the points which are not the solution. Instead, optimization technique is

utilized. Many algorithms for optimization, like the Nelder-Mead simplex method,

can search the solution directly without any use of the gradient of the function. The

over-estimation of the problem in the optimization also increases the capability of

distinguishing the solution from other noisy data.

5.2 Summary of Contributions

The proposed research makes several contributions to biomedical engineering.

First of all, IVUS is proposed as a method for obtaining the natural frequencies of

the arterial wall. Second, the shear modulus as a function is recovered to represent
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the variation of stiffness along the radial direction. Third, the inverse spectral ap-

proach in the research establishes an analytical way to estimate the residual stress

more accurately. Current practice for experimentally measuring residual stress is

done by cutting a slice of arterial ring radially, where the ring segment springs

open to minimize its stored energy by relieving the residual stress. This in vitro

technique is inaccurate since additional cutting causes a redistribution of residual

stress. Fourth, usually, only one blood pressure is utilized to obtain a sequence of

eigenvalues. In this research, several different blood pressures are employed, each of

which generates several eigenvalues. This makes the nature of the governing differen-

tial equations nonlinear, which is more applicable and accurate because more blood

pressures involved produce more information for the computing, and the lower-mode

eigenfrequencies are easier to be detected and also more accurately estimated from

experiment.

The research also contributes to inverse spectral techniques. First, reverse use of

cubic spline interpolation for inverse problem is applied. Traditionally, given values

at nodes, one can interpolate them by cubic splines. In the inverse problem, the

values at nodes are unknown and one needs to calculate them so that the splines from

interpolation can approximate a function appropriately. Second, a multi-dimensional

secant algorithm is built up for inverse SLP to recover unknown function, which is

usually done by method from fixed-point theorem. Third, instead of using a standard

quasi-Newton approach for finding solutions of a system of equations, an optimization

approach is utilized for calculating the solution, and the overestimation makes the

algorithms more robust.
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5.3 Future Research Plan

The long-term goal of the project in the dissertation is to discriminate the stable

atherosclerotic plaques from unstable ones. The research in the dissertation serves

as a foundation for understanding the structure of the modeling and inverse spectral

techniques so that we can establish more complicated models for more practical

realizations. Future studies need to test the effectiveness of the modeling and inverse

spectral techniques by experimental data.

5.3.1 Short-term Plan

As shown in Section 4.3.4.3, the algorithms developed are sensitive to the errors

in the eigenfrequencies for both τ 11 and τ 22 recovery. This is natural because most

of the inverse problems are ill-posed and sensitive to the initial data. For in vitro

experiments in lab operating on phantom materials, the indicated eigenfrequency

measurement accuracy can be achieved much more easily than in vivo measurements

of soft tissue. As done for many other inverse problems, future work needs to con-

struct an effective regularization or design more effective algorithms for the inverse

reconstructions demanding less stringent eigenfrequency measurement accuracy re-

quirements.

The constitutive model we use in Section 3.2 was proposed by Ronald Rivlin in

1948. This model comes from statistical thermodynamics of plastic and rubber-like

materials due to the cross-linked polymer chains effect. The stress-strain behavior

of hyperelastic material under this model is nonlinear. And arterial wall belongs to

this category. The disadvantage of this model is that it works better for low strain of

the material. Experiments on arteries suggest that stress-strain behavior should be

modeled using exponential stiffening with increasing strain [11], and that such strong

nonlinear response should cause the inverse spectral methods to be more accurate.

80



To better reflect the structure of blood vessels, the arterial wall will be modeled as

an anisotropic material, where two families of collagen fibres are embedded in an

isotropic groundmatrix. Collagen fibres are key factors of the architecture of the

arterial wall. Continuum models for the arterial model showing the effect of collagen

fibres accounts for more accurate mechanical distribution. The natural strain energy

function used to derive the Piola-Kirchhoff stress is a superposition of the isotropic

potential for the non-collagenous groundmatrix and the two transversely isotropic

potentials for the embedded families of collagen fibres. There is a total of ten neo-

Hooken and fibre-orientation parameters. Inverse methods are established to recover

most of the key parameters while the less significant ones are given from educated

guesses. Second, for the pathological arterial wall with atherosclerotic plaques, we

consider a two layered arterial wall. One represents the softer, fatty core formed

initially, and the other one represents the harder, fibrous layer formed later covering

the core. The two layers possess different material parameters, and the thickness of

the two layers are not uniform in the angular direction. We will use the spectrum

gained from the IVUS interrogation to recover the shear modulus and thickness of

each layer. The layer thickness suggests whether or not the later formed layer is

thick enough to prevent the sudden rupture of the atherosclerotic plaques. Third,

we will consider the multiplicative model instead of the additive model for how the

residual stress is involved in the Cauchy stress. There is no conclusion for how the

two stresses are involved theoretically or practically, so we can utilize different forms

to see which one better simulates the experimental data.

5.3.2 Long-term Plan

A three dimensional ultrasound wave is considered to spread inside the artery.

Thus, the vibration of the arterial wall is also three dimensional, and three eigen-
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modes in the three cylindrical directions need to be utilized. The boundary value

problems for both the static deformations and vibration caused deformations pro-

duce highly complicated partial differential equations. These equations are utilized

to recover material parameters, residual stress, thickness of layers and so on. Then

incorporating these recovered quantities, we will construct a complete mathematical

approach for the distinguishment of two types of atherosclerotic plaques from the

information of natural frequencies gained from the IVUS interrogation.

The biological modeling will bring more challenging numerical problems to the

research. We will apply approaches from numerical analysis and scientific computing

to analyze some special partial differential equations and find the corresponding

numerical solutions. As well, under our theoretical work, we need to validate the

modeling and inverse spectral approaches. We propose utilizing phantom material

to imitate the in-vivo arterial wall. The IVUS interrogation inside such material is

used to generate natural material frequencies. Then the spectral data are used as

input to test the effectiveness of the modeling. Finally, we will consider applying the

model to in-vivo arteries for the ultimate goal to distinguish atherosclerotic plaques.
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APPENDIX A

SOME BASIC ALGORITHMS

A.1 Runge Kutta Formula for Initial Value Problem

Now suppose we encounter a second order differential equation with initial values

x′′(t) = f(t, x, x′), for t ≥ a, (A.1)

x(a) = α, (A.2)

x′(a) = β, (A.3)

where f is a known function and α and β are known constants [20]. We set

x1 = t, x2 = x(t), x3 = x′(t). (A.4)

This yields

x′1 = 1, x′2 = x3, x′3 = f(x1, x2, x3). (A.5)

Define vectors X = (x1, x2, x3)T , F (X) = (1, x3, f(x1, x2, x3))T and A = (a, α, β)T .

This gives an initial value problem for X in vector form

X ′ = F (X), X(a) = A. (A.6)

One of the methods to solve the initial value problem is the fourth-order Runge

Kutta method in vector form given by

X(t+ h) = X(t) +
1

6
(F1 + 2F2 + 2F3 + F4), (A.7)
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where

F1 = hF (X),

F2 = hF (X +
1

2
F1),

F3 = hF (X +
1

2
F2),

F4 = hF (X + F3).

A.2 Shooting Method for Boundary Value Problem

We find the numerical solution for the boundary value problem

x′′(t) = f(t, x, x′) for a ≤ t ≤ b, (A.8)

F (a, x(a), x′(a)) = 0, (A.9)

G(b, x(b), x′(b)) = 0. (A.10)

Set x′(a) = z, where z is any number. Then by the secant method, we can find

the solution x(a) from Equation (A.9) expressed as x(a) = s(z), which means x(a)

depends on z. We thus obtain an initial value problem

x′′(t) = f(t, x, x′)

x(a) = s(z), x′(a) = z.

By Runge Kutta Formula from A.1, we can find the solution for this initial value

problem expressed by X(t, z), which depends on z also. At the end t = b, we establish

a function from (A.10) as

G(b,X(b, z), Xt(b, z)), (A.11)
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which is actually implicitly dependent on z. We need to find a proper z such that

G(b,X(b, z), Xt(b, z)) = 0. We can borrow the idea from secant method again to

solve this problem.

A.3 Sleign2 Method for Computing Eigenvalues of Regular Sturm-Liouville

Problem

Sleign2 is a library routine to compute the eigenvalues of the SLP given the

coefficient formulas [45]. In our problem, however, finding the eigenvalues is only

part of the algorithm, and we need to compute them in each iteration. Additionally,

we cannot obtain the exact coefficient formulas but only a discrete form for them.

As a result, understanding Sleign2 method in detail and incorporating it into our

algorithm become significant. We make a simple demonstration for this method

below.

Consider the Regular SLP

− d

dx
(p(x)

du(x)

dx
) + q(x)u(x) = λω(x)u(x), (A.12)

a0u(RI) + a1u
′(RI) = 0, (A.13)

b0u(RO) + b1u
′(RO) = 0. (A.14)

For any eigenvalue λ, we can find two functions θ(x) and ρ(x) satisfying

u(x) = ρ(x)sin(θ(x)),

p(x)u′(x) = ρ(x)cos(θ(x)).

(A.15)

This is the so called prüfer transformation. Plugging (A.15) into (A.12), we obtain
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the differential equations for θ(x) and ρ(x) as

θ′(x) =
1

p(x)
cos2(θ(x)) + (λω(x)− q(x))sin2(θ(x)), (A.16)

ρ′(x)

ρ(x)
=

1

2
(

1

p(x)
− λω(x) + q(x))sin(2θ(x)). (A.17)

(A.16) is an ordinary differential equation for θ(x) only. The boundary conditions

are found to be

θ(RI) = −arctan(
a1

p(RI)a0

) for θ(RI) ∈ [0, π), (A.18)

θ(RO) = −arctan(
b1

p(RO)b0

) + (n+ 1)π for θ(RO)− (n+ 1)π ∈ (0, π], (A.19)

where n = 0, 1, 2 . . .

Combining (A.16) and (A.18), we get a solution for θ(x) named as θL(x). Simi-

larly, combining (A.16) and (A.19) generates another solution θR(x). Both of these

two solutions are implicit functions of λ. For any fixed point x∗ ∈ [RI , RO], we define

a function

Γn(λ) = θL(x∗)− θR(x∗). (A.20)

If λ happens to be the nth eigenvalue, then Γn(λ) = 0. Otherwise, it returns nonzero

value. We can make use of Newton’s method (or bisection method) to find the zero

of (A.20). The iteration for Newton’s method is set to be

λ(m+1)
n = λ(m)

n − Γn(λ(m)
n )(

dΓn(λ
(m)
n )

dλ
)−1. (A.21)

The only thing left is to find dΓn(λ
(m)
n )

dλ
= (θL)λ(x

∗) − (θR)λ(x
∗), where (θL)λ means

derivative of θL with respect to λ and the same for (θR)λ. First we find (θL)λ, the

detail of which is as follows.
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In (A.16), only θL(x) is a function of λ. We differentiate this equation with

respect to λ and it yields

(θL)′λ = −f(x)(θL)λ + ω(x)sin2θL, (A.22)

where f(x) = ( 1
p(x)
−λωL(x)+q(x))sin(2θL). (A.22) is a first order ordinary equation

for (θL)λ. Furthermore, from (A.18) we find that the initial value for (θL)λ at x = RI

is 0. Solution for (A.22) is

(θL)λ(x) = e
−

∫ x
RI

2f(ξ)dξ

∫ x

RI

e
∫ η
RI

2f(ξ)dξ
ω(η)sin2(θ(η))dη. (A.23)

Similarly, we get

(θR)λ(x) = e
−

∫ x
RO

2f(ξ)dξ

∫ x

RO

e
∫ η
RO

2f(ξ)dξ
ω(η)sin2(θ(η))dη. (A.24)

Hence we find dΓn(λ
(m)
n )

dλ
from (A.23) and (A.24).

We need an initial guess λ
(0)
n for (A.21), which can be found by Newton’s method

from ∫ RO

RI

√
λ

(0)
n ω(x)− q(x)

p(x)
dx = (n+ 1)π. (A.25)

A.4 Nelder-Mead Simplex Method for Function Minimization

The so called Nelder-Mead simplex method was published by Nelder and Mead in

1965 [51]. It is one of the most widely used direct search methods for minimization

of scalar-valued unconstrained function . The method minimizes a function with

multiple variables by using only function values without utilization of any gradient.

Simplex is a geometrical object with flat surfaces (or sides), whose number of

vertexes is one more bigger than the dimension of space where the object relies. For
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example, a simplex in a plane is a triangle; a simplex in the 3-dimensional space

is a tetrahedron. If the space dimension is n, the corresponding simplex is called

n-simplex. By definition, a n-simplex owns n+ 1 vertexes.

The general idea of Nelder-Mead simplex method minimizing a function f(x),

for x ∈ Rn, depends on the comparison of function values at the n + 1 vertexes of

a simplex. The vertex generating the largest function value is replaced by another

newly admitted point producing smaller one. Four actions are utilized to search a new

point (or points): reflection, expansion, contraction and shrinkage. Four constrained

parameters ρ, χ, γ and σ are prescribed to reflect the extent of each of the actions

respectively. A frequent use of the values is ρ = 1, χ = 2, γ = 1/2 and σ = 1/2. The

detailed algorithm and explanation are described as follows:

1. For the k-th iteration, order the n+ 1 vertexes of the simplex to be x
(k)
1 , x

(k)
2 ,

x
(k)
3 · · · x

(k)
n+1 such that

f(x
(k)
1 ) ≤ f(x

(k)
2 ) ≤ f(x

(k)
3 ) · · · ≤ f(x

(k)
n+1).

If the standard error
√

1
n

∑n
i=1(f(x

(k)
i )− y)2 < ξ, where y = 1

n

∑n
i=1 f(x

(k)
i )

and ξ is the tolerance number, then stop; Otherwise, go to Step 2;

2. Perform a reflection of point x
(k)
n+1 with respect to the centroid of the other n

points to form a reflection point

xr = x+ ρ(x− x(k)
n+1),

where x = 1
n

∑n
i=1 x

(k)
i expressing the centroid of points x

(k)
1 , x

(k)
2 , x

(k)
3 · · ·x

(k)
n .

If f(x
(k)
1 ) ≤ f(xr) < f(x

(k)
n ), accept xr, discard x

(k)
n+1 to form a new simplex,

and go to Step 1 for the next iteration. Otherwise, if f(xr) < f(x
(k)
1 ), go to
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Step 3, and if f(xr) ≥ f(x
(k)
n ), go to Step 4.

3. Since f(xr) < f(x
(k)
1 ), it implies that smaller function value may be found

further away from the reflection point. Thus, perform an expansion to form

an expansion point

xe = x+ χ(xr − x).

If f(xe) < f(xr), accept xe as a new vertex, discard x
(k)
n+1 to form a new simplex

and go to Step 1 for the next iteration. If not, accept xr as a new vertex, discard

x
(k)
n+1 to form a new simplex and go to Step 1 for the next iteration;

4. Since f(xr) ≥ f(x
(k)
n ), this means points further away from the centroid x

produces larger function value, so a contraction is performed to form a con-

traction point

xc = x+ γ(x∗ − x),

where x∗ = xr, if f(xr) ≤ f(x
(k)
n+1) (contract outside); x∗ = x

(k)
n+1, if f(xr) >

f(x
(k)
n+1) (contract inside).

If f(xc) ≤ f(x∗), accept xc, discard xn+1 to form a new simplex and go to Step

1; If f(xc) > f(x∗), go to Step 5;

5. Since f(xc) > f(x∗), this meas a shrinkage inside the simplex is required for

search smaller function values. Perform such action to form shrinkage points:

vi = x
(k)
1 + σ(x

(k)
i − x

(k)
1 ), i = 2, 3 · · ·n+ 1.

The n + 1 points x
(k)
1 , v2, v3 · · · v(n+1) form a new simplex. Then go to Step 1

for next iteration.

The converge of the method for n = 2 is proved in [50].
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