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ABSTRACT 

 

With the recent development of in situ transmission electron microscopy (TEM) 

characterization techniques, the real time study of property-structure correlations in 

nanomaterials becomes possible.  This dissertation reports the direct observations of 

deformation behavior of Al2O3-ZrO2-MgAl2O4 (AZM) bulk ceramic nanocomposites, 

strengthening mechanism of twins in YBa2Cu3O7-x (YBCO) thin film, work hardening 

event in nanocrystalline nickel and deformation of 2wt% Al doped ZnO (AZO) thin film 

with nanorod structures using the in situ TEM nanoindentation tool.  The combined in 

situ movies with quantitative loading-unloading curves reveal the deformation 

mechanism of the above nanomaterial systems. 

At room temperature, in situ dynamic deformation studies show that the AZM 

nanocomposites undergo the deformation mainly through the grain-boundary sliding and 

rotation of small grains, i.e., ZrO2 grains, and some of the large grains, i.e., MgAl2O4 

grains. We observed both plastic and elastic deformations in different sample regions in 

these multi-phase ceramic nanocomposites at room temperature. 

Both ex situ (conventional) and in situ nanoindentation were conducted to reveal 

the deformation of YBCO films from the directions perpendicular and parallel to the 

twin interfaces.  Hardness measured perpendicular to twin interfaces is ~50% and 40% 

higher than that measured parallel to twin interfaces, by ex situ and in situ, respectively.  

By using an in situ nanoindentation tool inside TEM, dynamic work hardening 

event in nanocrystalline nickel was directly observed. During stain hardening stage, 
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abundant Lomer-Cottrell (L-C) locks formed both within nanograins and against twin 

boundaries. Two major mechanisms were identified during interactions between L-C 

locks and twin boundaries. Quantitative nanoindentation experiments recorded during in 

situ experiments show an increase of yield strength from 1.64 to 2.29 GPa during 

multiple loading-unloading cycles.  

In situ TEM nanoindentation has been conducted to explore the size dependent 

deformation behavior of two different types (type I: ~ 0.51 of width/length ratio and type 

II: ~ 088 ratio) of AZO nanorods. During the indentation on type I nanord structure, 

annihilation of defects has been observed which is caused by limitation of the defect 

activities by relatively small size of the width. On the other hand, type II nanorod shows 

dislocation activities which enhanced the grain rotation under the external force applied 

on more isotropic direction through type II nanorod. 
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CHAPTER I  

INTRODUCTION 

 

1.1. Overview  

Emergence of the nanomaterials has led to remarkable developments in the field 

of nanotechnology owing to their extraordinary properties under their reduced sizes in 

nanoscale from micro or mesoscale.  Significant advances in the area of microelectronic 

devices have been achieved by the discoveries of new nanomaterials and new nanoscale 

processing techniques.  For example, every two years the number of transistors in an 

integrated circuit is supposed to be doubled based on Moore’s law. Maintaining the law 

was largely contributed by nanotechnology as indicated by the diagram in figure 1.1 [1]. 

 

 
 

Figure 1.1. Reduction of transistor size based on physical gate length under Moore’s 

Law [1]. 
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Especially, recently numerous new properties in nanostructured metals and 

ceramics have been introduced.  The field of nanostructured materials has brought 

significant research interest to develop more advanced materials to overcome the 

limitation of materials’ intrinsic properties. For example, with the recent introduction of 

nanostrctured metals, it is possible to have ultrahigh strength and high ductility of the 

metals.  For instance, as nanostructured copper employing nanotwined structures shows 

10 times increased tensile strength compared to the coarse grained copper sample [2].  

Remarkably, it has been noticed that the yield strength has been significantly increased 

with the reduction of the twin thickness up to 15 nm, which obeys the Hall-Petch 

relationship [3].   Additionally, as nanocrystalline copper composed of micro sized 

grains in matrix of the nanocrystalline grain, the bimodal grain size distribution enhances 

the high tensile ductility with significant elongation rate [4].  In the case of 

nanostructured ceramic, with recent development of new structures in nanocomposite 

ceramic materials by incorporating nanosize dispersions within the matrix grains and at 

the grain boundaries [5, 6], mechanical property of ceramic material has been 

significantly enhanced.  Especially, based on recent research finding, it is possible for 

the nanocrystalline ceramic to have plastic deformation based on the grain boundary 

sliding and grain rotation while the grain boundary interacting with dislocations [7-9].  

The discoveries of new nanomaterials such as carbon nanotubes, nanowires and 

graphene have shown large potential impacts in the developments of future 

microelectronic devices [10-12].  Moreover, with the recent advances of high resolution 

imaging and physical property measurement techniques, discovering new nanomaterials 
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with further enhanced physical properties is possible [13-15].  Particularly, because of 

the development of the high resolution of electron microscopy as companied with energy 

dispersive x-ray spectroscopy, it is possible to analysis the lattice structure of a material 

and composition of constituent at atomic scale.       

However, despite the fact that significant advance has been made in the 

characterization techniques, most of the research still focus on conventional 

characterization methods such as ex situ nanoindentation, four point probe system, and 

etc..  Especially, for the measurement of mechanical property, much work still heavily 

relies on the ex situ nanoindentation method.  Using scanning electron microscopy (SEM) 

or atomic force microscopy (AFM) after ex situ nanoindentation, the surface of 

deformed area in the materials can be analyzed.  Furthermore, in order to fully 

understand the deformation mechanism of the materials during indentation, it is 

necessary to study the microstructure evolution of the materials under the TEM column.  

However, it might be difficult for the preparation of the TEM specimen, maintaining the 

original deformed condition.  Therefore, for the post-analysis data with TEM, SEM and 

AFM, it sometimes can be in doubt whether deformed condition observed in the 

microstructural analysis can be directly corresponded to that during the deformation 

processing.  Thus, it is lack of the reliability for a specific phenomenon observed from 

the post-mortem data to be generalized.  In order to overcome the obstacle of the post-

mortem observation, in situ TEM nanoindentation system has been developed at 

Lawrence Berkeley National Laboratory in 1997 [16] for more dynamic and real-time 

observation which brings direct correlation between property and structural evolution.   

http://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy
http://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy
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1.2. Nanomaterials 

Nanomaterials are usually defined as materials whose structural morphologies 

become nanometer scale in the range of 1~100 nm.  And such morphologies can be 

differentiated with different structures in different dimensions.  For example, as a zero 

dimensional nanostructured material, nanoparticle or nanocluster can be introduced, 

whose size of diameter is on nanometer scale [17].  And nanotube, nanowire or 

nanofiber can be categorized to one dimensional nanostructured material with nanometer 

sized width [18].  Next, graphene nanosheet or thin film can be explained as a two 

dimensional nanostructured material with nanosized thickness [12, 19].  And finally, 

bulk nanostructed material can be exampled as a three dimensional nanostructured 

material, in which usually grain size is less than 100 nm [20].  Therefore, with such 

small scale of structure, minimum variation of atomic arrangement during the synthesis 

can give large impact on the property.  Generally, nanomaterial can be processed on 

either bottom-up or top-down processing method.  For example, lithography etching 

belongs to top-down methods, under which radiation such as ultraviolet light or X-ray 

can design the nanostructure form as bombarding the top surface of the material [21].  

And several thin film processing methods such as pulsed laser deposition (PLD), 

sputtering, molecular beam epitaxy method, and etc. can be introduced as bottom-up 

processing method on which adatoms evaporated from a target material lie down on a 

substrate and grow up from bottom to top to form a nanomaterial. 
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1.2.1. Bulk nanostructured materials 

1.2.1.1. Material Processing 

Bulk nanostructured materials have brought a lot of attention due to their 

excellent performance and capability of their unique structures, which can be useful for 

broad range of applications [22].  Additionally, as integrating with multi-properties from 

mix of different constituents, nanostructured materials can show outstanding 

combination of physical properties [23-25].  In order to maintain such potential 

characteristics of nanostructured materials, most challenging part to demonstrate the 

materials is to control the structural morphology with small-size grains during the 

sintering processing.  Currently, there are several processing methods to consolidate 

materials, i.e. spark plasma sintering, pulsed electric current sintering, electric pulse 

assisted consolidation, etc. [26-28].  Among them, most broadly used technique is the 

spark plasma sintering (SPS) system because of its more efficient sintering processing 

approach.  The processing of sintering powder within SPS is composed of three major 

factors which are pressure, heat and holding time.  Once the powder of the material 

loaded in the system, external pressure has been applied by punch along uniaxial 

direction.  Usually the rearrangement, diffusion and finally growth of the particle during 

the sintering process can be controlled by the pressure and holding time.  Figure 1.2a 

illustrates the influence of the pressure on the density of the ZrO2 while it was sintering 

at1200 °C under holding time of 5mins [29].  It shows clearly that the overall density of 

the ZrO2 is logarithmically proportional to the applied pressure.  Similarly, in figure 1.2b 
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size of grain of alumina (Al2O3) can be significantly affected by the holding time which 

controls the duration of inter-diffusion between grains [30].  

 

 
 

Figure 1.2. a) Influence of the pressure on the density of the ZrO2 under 1200 °C with 

holding time of 5mins, b) effect of size of grain of alumina (Al2O3) by the holding time 

[29, 30]. 

 

Usually during the processing, the heat (Joule heating) can be applied with the 

sparked discharge caused internally between materials induced by pulsed DC voltage 

and current [31].  Therefore, it can ramp up significantly as fast as 1000K/min.  Then 

material can be sintered at a lower sintering temperature and for a shorter time than other 

conventional sintering techniques.   During such rapid sintering process, increasing the 

heating rate can shorten the period of surface diffusion; hence, growth of the grain can 

be limited and material shows reduced size of grain [30].   

 



 

7 
 

 

1.2.1.2. Nanostructured ceramic 

Ceramic material is usually very hard and brittle under external force applied due 

to its directional ionic or covalent bonding.  Thus, owing to the low fracture toughness 

and poor machinability, its industrial applications are limited.  However, as new types of 

the ceramic material introduced, it is possible to overcome the poor mechanical property 

of the material.  Ever since last decade, a lot of research efforts have been given to 

enhance the strength and fracture toughness of ceramic materials.  And the pioneering 

work by Niihara implies that as nano-sized particle incorporating within the matrix 

grains and at the grain boundaries, the mechanical properties can be significantly 

enhanced at both room temperature and high temperatures [5].  For example, more than 

50% increase of the toughness of ceramic material has been reported primarily by crack 

deflection by nano-sized particle within matrix grains.   

It has been demonstrated that there could be three different types of 

nanostructured ceramic materials as composite materials (figure 1.3) [6].  The first type 

(type I) is the two-phased nanostructured material in figure 1.3a.  And the second type 

(type II) is nanostructured material with nano-sized particle dispersed within matrix 

grains in figure 1.3b, d and e.  Finally the third type (type III) is two-phased 

micro/nanostructured material in figure 1.3c. For the second type, as the nano-sized 

particle reinforced the matrix grains, the nanostructured material can be divided into 

three more different groups (figure 1.3b, d and e).   First, the nanoparticles have been 

incorporated along the grain boundary of the matrix grains, which is known as 

intergranular structure (figure 1.3d).  Next group of structure is the intragranular 
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structure, which is formed as nanoparticles dispersed in interior of the matrix grains 

(figure 1.3e).  And last group of the type II is the mixed form of the first and second 

groups of the structures in type II material (figure 1.3b).  Each different nanostructure in 

the material can be benefited with achievement of increase fracture toughness as 

enhancing the plasticity during the deformation processing.  During the deformation of 

ceramics, major microstructural evolution has occurred by grain and grain boundary 

activities.  And depending on the different nanostructures aforementioned and size of 

grain, the deformation behavior of the material could be different.  Usually for the type I, 

deformation behavior can be dominated by grain boundary sliding which can enhance 

the superplasticity.  For the type II, nanoparticles dispersed along the grain boundary 

from the first group of the nanostructured material can play to pin the grain boundary; 

therefore, it can enhance the threshold stress which is the maximum stress to produce the 

creep, based on the relationship of              , where G is shear modulus, b is 

burgers vector and D is the spacing between dispersed particles along grain boundary.  

Whereas, for the second group of the type II nanostructured material, once the size of the 

dispersed particle in the matrix grain becomes small enough compared to the threshold 

size to induce the crack propagation, deformation behavior of the material may show the 

enhancement of the property with crack reflection by the particles.  Therefore, with such 

specialties given to different types of nanostructured ceramic materials, during the 

deformation, finally, the materials can show the significant enhancement of the 

toughness, compared to the conventional ceramic materials. 
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Figure 1.3. Schematic diagram showing different types of nanostructured ceramic 

materials: a) two-phased nanocomposite material b) inter/intra-granular nanocomposite 

material c) micro/nanostructured material d) inter-granular nanocomposite material and e) 

intra-granular nanocomposite material [6]. 

                       

1.2.1.3. Nanostructured Metal 

Different from the ceramics which are usually hard and brittle, metallic systems 

are usually ductile due to their metallic bonds in which free electrons glue non-valence 

electrons and nucleus of atoms.  Therefore, conventionally metal shows relatively low 

mechanical strength.  However, with recent demonstration of nanostructured metals, it 

has shown significant increase of the mechanical property.  The plastic deformation of 

the metal is mainly driven by the dislocation activities.  Therefore, retarding the 

dislocation motions during the deformation processing can be the key factor to increase 

the yield strength.  Usually at the temperature less than half of the material melting point, 

mobile dislocation can be hindered by the grain boundaries [32].  Therefore, based on 
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Hall-Petch relationship in equation (1.1), it has been explained that slip path of the 

dislocation can be limited by frequent presence of misaligned slip plane along the grains 

which is due to reduction of grain size; thus the yield stress of material is inversely 

proportional to size of grains.       

         
 

  
                                              (1.1),         

where σy is the yield stress, σ0 is a fractional stress needed for initial movement of the 

dislocation, k is the strengthening coefficient and d is the size of the grain. In order to 

materialize the relationship of size-dependent strengthening, nanostructured metals have 

employed the nano-sized grain or twin structure.  Figure 1.4 shows clearly the increase 

of the stress as the grain sizes of nanocrystalline copper decrease from ~50 to ~12 nm   

[33].  Under the stress applied, a maximum number of dislocations could be piled up at 

the grain boundary at around 2.5 ~ 3% of the strain (Figure 1.4a).  However, after the 

maximum stress as the dislocations moved in the interior of grains, the curve shows the 

plastic deformation regime with decreasing stress.  Figure 1.4b also shows obviously 

variation of yield stress of the materials highly depending on the grain size.  Although 

reverse Hall-Petch relationship has been observed with grain size less than 12 nm, which 

might be occurred as the grain size is significantly reduced more than stable distance 

maintaining the elastic interaction between dislocations [34, 35], in the range of 15 ~ 50 

nm of grain size change of the yield stress well obeys Hall-Petch relationship.   
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Figure 1.4. Plots show clearly the increase of the stress as the grain sizes of 

nanocrystalline copper decreased from ~ 50 to ~12 nm [33]. 

 

 
 

Figure 1.5. Plot shows increment of hardness of nickel based alloys along reduction of 

size of the twin spacing during the indentation test [36]. 

 

Additional to grain size dependent hardening effect, nickel based alloys 

employing the nanotwined structures show comparable result depending on different 

size of the twin spacing during the indentation test (figure 1.5) [36].  In the report, it has 

been suggested that nonlinearly increase hardness with the reduction of twin spacing 

could be from the different deformation mechanisms through the different the twin 
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spacing.  The main driving force to enhance the hardness is the increasing stress acting 

between the dislocations as the dislocation density is getting higher when the twin 

spacing becomes greater than 150 nm.  On the other hand, as the twin spacing gets 

smaller than 100 nm, the hardness can be determined by the amount of the energy 

needed for expansion of dislocation through the glide planes.  Therefore, it can be 

explained by the suggestion that the stress flowed during hardening highly depends on 

the dislocation density.  And in this term, the Hall-Petch relationship can be rewritten 

based on Taylor relationship in equation (1.2) 

                                                             (1.2),         

where the α is the geometrical constant, M is Taylor factor, G is the shear modulus, b is 

the magnitude of burgers vector and ρ is the density of dislocations involved in the 

increase of yield strength. Therefore, in the nanostructured metal, how to control the 

dislocation activity could be the main key factor to improve the property of the material 

system.  

 

1.2.2. Thin film materials 

Although a lot of ceramic and metal are employed by various applications in bulk 

form, thin film material has been introduced with several advantages over the bulk 

material owing to its flexibility in processing nanostructured metals and ceramics.  First 

of all, as the thin film material has increased ratio of surface area to volume, it can cover 

the large surface area.  Usually, thin film can be deposited with thickness in nano or 

micro-scale.  Therefore, contrast to the bulk material which has relatively small ratio of 
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surface area to volume with thickness on macro scale, small amount of materials can be 

used during the processing of the thin films.  Another reason for the preferred thin film 

material is because it is usually processed by different deposition techniques which 

could sometimes be simpler than the approaches to manufacture the bulk materials.  For 

example, while manufacturing solar cell modules based on bulk silicon solar cell, bulk 

silicon should be processed with about nine different steps while the thin film solar cell 

only has about four steps required.  Especially, the process to make different layers i.e. 

n-type and p-type layers, on the substrate for the bulk silicon solar cell shows at least 

four steps required, including diffusion of phosphorus, screen printing for metal contact, 

wiring the contact, arraying on glass substrate.  However, during the thin film solar cell 

process, these four steps can be conducted only with a thin film deposition process.  

Moreover, depending on the deposition parameters, the property of thin film material 

can be more easily variable and reproducible.  Finally, thin film material can be lighter, 

smaller and more flexible potentially with its lower cost.   

 

1.2.2.1. Processing of thin film materials 

It has been mentioned in previous section that the property of the thin film can be 

easily changeable with different parameters during the process of the film.  It means that 

for different film functionalities, different deposition methods with various parameters 

are required.  Therefore, over the past decade, various deposition methods have been 

introduced and extensively used for the industrial applications.  Currently, the thin film 

processing methods can be divided into physical vapor deposition (PVD) and chemical 
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vapor deposition (CVD) methods.  Usually, these two deposition methods can be 

differentiated with its gas regime (figure 1.6) [37]. 

 

 
 

Figure 1.6. Diagram illustrates the different gas flow regimes based on variation of the 

system dimensions and pressure [37]. 

 

PVD can be performed under the molecular flow regime with large mean free 

path of the adatoms under the low gas pressure.  Therefore, under the PVD, the film is 

usually deposited as the adatoms nucleated on the substrate directly from target material 

through the gas phase by evaporation or impact of collision.  Among PVD methods, 

currently most widely used techniques are evaporation, magnetron sputtering, 

electrodeposition etc..  First, for the evaporation method, it can be divided into thermal 

and electron beam evaporations depending on the heating source.  While thermally 

heating source used in the thermal evaporation process, during e-beam evaporation 
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process heat source is from the tungsten wire which generates the resistive heat.  During 

the evaporation process usually the film is grown by the evaporation rate given by 

equation 1.3 which can be controlled by heating energy and vapor pressure.   

     
           

      
      (1.3), 

where αe is the coefficient of evaporation, NA is Avogadro’s number, Pe is vapor pressure, 

Ph is hydrostatic pressure, M is molar mass, R is gas constant, T is the temperature.   

Therefore, under certain temperature, target material can evaporate into the gas atoms 

and transfer from a heated target to a substrate.  In addition to the evaporation process, 

another PVD process with good film surface coverage is sputtering method.  Usually 

sputtering can be used to grow metal or non-conductive ceramic thin film materials.  

Basic principle for this method is that as high energy gas ions bombard surface of target, 

atoms can be removed from the target surface by the interaction with the incident ions.  

Then the dislodged atoms from the target can fly to the surface of the substrate to be 

deposited on.  Dependent on power sources, there are usually two different sputtering 

deposition systems, RF magnetron and DC sputtering systems (Figure 1.7). 
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Figure 1.7. Schematic diagrams illustrate a) RF magnetron and b) DC sputtering 

systems. 

 

Figure 1.7a shows the RF magnetron sputtering system.  This system is usually 

used to deposit non-conductive ceramic materials.  Since the ceramic material is not 

conductive, it requires a force to carry the atoms from the target to the surface of the 

substrate.  This force is usually formed by the magnetic and electric field.  On the other 

hand, with the DC sputtering system the metal samples are usually grown on the 

substrate (figure 1.7b).  Since the metal particles sputtered from the target are 

conductive, they can fly on the substrate under different potentials formed by the DC 

power source.  Therefore, via this processing method, the thin film can be processed 

with smooth surface and good surface coverage.  Finally, another widely used PVD 

process is electrochemical deposition.  This processing is usually used for deposition of 
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the metal.  The processing can be occurred through the electric field applied between 

anode and cathode plates under which the metal ions (from anode) in the solution bath 

can be deposited on the substrate material (cathode).   Figure 1.8 shows the experiment 

set up for the electrochemical deposition.   

 

 
 

Figure 1.8. Schematic diagram illustrate experiment set up for electrochemical 

deposition. 

 

For the deposition, both the cathode and anode plates have to be immersed in the 

solution bath which is electrolyte in which the metal ions can electrically flow.  Then as 

applying the electric field between the anode and cathode plates, the metal elements 

from the anode plate can be dissolved in solution base with ionized form as losing 

electrons, e.g. Cu → Cu2+ + 2e-.  Then the cation from the anode can be deposited on the 

cathode substrate through the solution base.  Once it attaches on the surface of the 
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cathode, finally, it can be grown as metal form, after gaining electrons which transfer 

from anode plate, Cu ← Cu2+ + 2e-.  With such simple equipment setting for the 

deposition process, it is inexpensive.  Besides these processing methods, there are 

several other PVD methods such as pulsed laser deposition (PLD) and molecular beam 

epitaxy (MBE) methods.  And these methods also show noticeable advantages over other 

deposition systems.  For example, during PLD processing, the film can be deposited 

stoichiometrically with high energy of pulsed laser, and under MBE system, high quality 

epitaxial films with good interface and surface morphology due to large mean free path 

of adatoms can be processed. 

In contrast to such simple process of the PVD, during CVD processing, the thin 

film is deposited by gas chemical reaction near the surface of the substrate through 

several steps.  Therefore, it can have the better film surface coverage and higher 

throughput than that from PVD.  Usually, the CVD deposition can be performed in 

viscous flow regime in figure 1.6.  Therefore, target gas atoms have huge collisions 

during the process.  Figure 1.9 shows the basic steps for the CVD process. 
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Figure 1.9. Schematic diagram illustrates the CVD process under the laminar flow based 

on the following steps: 1) transport of reactant by the convention of main stream, 2) 

diffuse of the reactant on the surface of substrate, 3) absorption of reactant, 4) surface 

process, 5) desorption of by-product, 6) diffuse to the main stream, 7) transport of the 

by-product.    

 

While the reactants transport through the main stream, as it passes over the 

substrate, it diffuses to the surface of the substrate through the boundary layer.  Then, 

during the surface process, chemical reaction, deposition and surface migration has been 

carried out.  After the process, byproducts are desorbed from the surface of the substrate, 

and then diffuse into the main stream.  The overall growth rate can be decided by step 

2~5 in figure 1.9 which is mainly performed within the boundary layer.  However, as the 

target gas atoms being consumed along the susceptor with increasing static boundary 

layer δ(x), and due to limitation of deposition by the mass transfer though the boundary 

layer, the film growth rate will decrease moving through the susceptor.  Therefore, 

susceptor with substrate should be tilted to increase the gas flow rate.   
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Figure 1.10. Plot shows growth rate of film in mass transfer and reaction regimes based 

on deposition temperature variation during CVD process. 

 

Usually, the deposition rate of the film during the CVD can be explained based 

on the growth velocity in mass transfer regime and reaction regime depending on the 

deposition temperature (Figure 1.10).  Under high temperature, chemical surface 

reaction rate goes beyond the mass transfer rate; thus mass transfer can control the 

growth rate (equation 1.4 and 1.5).  And due to hG which is insensitive to the 

temperature while kS is sensitive, relatively constant deposition rate has been show in 

this regime.     

    
    

     

  

 
                                      (1.4),  

      
  

 
    when                     (1.5),  

      
  

 
    when                     (1.6),  

where v is the growth rate of the film, kS is the chemical surface reaction rate, hG is the 

mass transfer coefficient, CT is the concentration of all molecules in gas phase, N is 
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atomic density of the film and Y is the partial pressure of the incorporating species.  

However, under low temperature, the mass transfer rate can exceed the surface reaction 

rate.  Therefore, based on the equation (1.4) and (1.6), the deposition rate will be 

determined by the surface reaction.    

 

1.2.2.2. Growth mechanism of thin film materials 

Once the adatoms from target material lie on the substrate, they diffuse and find 

right position to reduce the surface energy and nucleate.  During the nucleation of solid 

phase, the mechanism should be considered in terms of the change of free energy, ΔG.  

Equation 1.7 shows the change of the total free energy during the nucleation of the solid 

phase as spherical shape in the liquid phase in Figure 1.11a. 

    
 

 
                                                (1.7), 

Once the particle formed in the liquid phase, the free energy increases until stable state 

of the nucleation formation exists as  the nucleation size exceeds the critical radius of r* 

(figure 1.11b).  And the energy barrier of ΔG* would be overcome.  Finally, the thin 

film can be grown up. 
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Figure 1.11. a) Schematic diagram illustrates the nucleation of solid particle as spherical 

formation.  And during this process, b) plot shows the variation of the free energy. 

 

Usually, when the films are deposited on the substrate, they are formed on three 

different growth modes.  The first mode is the Frank-Van der Merwe mode which is well 

known as layer by layer mode.  Usually, as the film grown on this mode, the adatoms are 

widely spread out over the substrate, showing larger growth rate of the film along lateral 

direction than the vertical one, under which film looks like two-dimensional sheet shape.  

The second mode is Volmer-Weber mode which is also known as island growth mode.  

Unlike the first mode, as the film grown on this mode, surface tension between the 

adatoms of the film is stronger than that between substrate and vapor.  Thus, the film can 

grow more like three-dimensional island shape.  Finally, last mode is the mixed case of 

the first and second modes.  The reason why the film should be formed on one of these 

three growth modes is because as a film grown on a substrate, different surface tensions 

could be acted between the film and substrate, film and vapor, and substrate and vapor, 

depending on the kinds of material of the film and substrate (figure 1.12).  And as the 
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surface tensions between the film, substrate and vapor driven along lateral direction, it 

can result in the equation 1.8 which can be used to determine the growth mode of the 

film. 

      
        

    
                                                                (1.8) 

 

 
 

Figure 1.12. Schematic diagram illustrates the different surface tensions acted between 

the film and substrate, film and vapor, and vapor and substrate while the film nucleated 

on substrate. 

 

Based on this equation, the first growth mode (layer by layer) can be enhanced as 

the surface tension between the substrate and vapor exceeds or equal to sum of those 

between the film and substrate, and the film and vapor (equation 1.9).  Usually, when 

growth of oxide materials on metal substrates, or growth of silicon or germanium film on 

silicon substrate, the growth of the films can be controlled with this mode.   

                          for layer by layer growth,           (1.9) 

                          for island growth,                       (1.10) 
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                          for island and layer growth,        (1.11) 

However, in the reversed case with equation 1.10, the island structure of the film can be 

formed. And the growth mode of the metal films on oxide materials of the substrate 

belongs to this mode.      

 

1.3. Material systems studied                       

1.3.1. Al2O3-ZrO2-MgAl2O4 ceramic nanocomposites 

As starting with Niihara’s suggestion of incorporating nanosize dispersions 

within the matrix grains and at the grain boundaries [5], significant achievement has 

been made in the field of nanostructured ceramic materials to further enhance the 

strength and fracture toughness. Especially, recently as Kim et al showed that alumina–

zirconia–magnesia spinel (Al2O3–ZrO2–MgAl2O4, AZM) nanocomposites exhibits high 

strain rates up to 1 s-1 at temperature of 1650 °C due to its unique multiphase structure 

[20], high strain rate superplasticity (HSRS) with high ductility could be demonstrated 

by the nanostructured ceramic material, which can be explained by the Mukherjee–Bird–

Dorn equation 1.12 as follows. 

    
    

  
 
 

 
 
 

 
 

 
 
 

                                                              (1.12) 

where G is the elastic shear modulus, b is the Burgers vector, k is the Boltzmann's 

constant, T is the absolute temperature, d is the grain size, p is the grain-size dependence 

coefficient, n is the stress exponent, Q is the activation energy, D0 is the diffusion 

coefficient and R is the gas constant.  An alumina zirconia magnesia spinel (Al2O3–

ZrO2–MgAl2O4, AZM) nanocomposite is typically composed of tetragonal zirconium 
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oxide, magnesium aluminate spinel and α-alumina phases.  Magnesium aluminate 

(MgAl2O4) spinel usually shows high melting point, low thermal expansion coefficient, 

good corrosion resistance and excellent optical transmission [38-41].  Therefore, it can 

be employed by various applications [42, 43].  Recently with incorporation with zirconia 

(ZrO2), the mechanical property of MgAl2O4 spinel could be improved.  Based on 

Morita et al’s report [44], it has been explained that as 3 mol% Y2O3 stabilized 

tetragonal ZrO2 mixed with 30 vol% of MgAl2O4, tensile ductility has been increased 

more than six times at 1823K, showing the elongation of soft spinel, which provides the 

evidence of the superplasticity.  Especially, as Al2O3 becomes rich in MgAl2O4 spinel, 

the density of the material could be increased with increase in grain size [45].   Recently, 

Jiang et al. processed the AZM with 30-40-30 mol% mixture under different steps of 

procedure, i. e. ball milling, drying, sieving, powder mixture, and spark plasma sintering 

(SPS) and forming [46].  During the SPS sintering and forming processes, different 

heating temperature and pressure were applied.  First, for sintering process, 63MPa of 

pressure was applied; then temperature rose up to 600 °C for 3-5 min.  After this, the 

temperature was significantly ramped up to 1150 °C for 2 min and this temperature was 

maintained for 3 min.  During the forming process following the sintering, initially 

relatively low pressure of 18 MPa was applied and same procedure as the sintering 

process was repeated.  Then pressure was increased up to 105 MPa for ~30 sec.  During 

the forming process, as graphite punch was used, which was composed of two 45° 

inclined teeth with 4mm between teeth, and 1mm tooth depth, both compressive and 

shear stress could be applied.  Then based on the equation 1.12, under the constant 
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temperature, high strain rate with ~1.4 ×10-2 S-1 could be enhanced due to the small grain 

size.  Compared to the structure of as-sintered material, through the forming process, the 

grain has been significantly grown up to 1μm.  This can be possibly induced difference 

of dissolving elements which move through grain boundary during the grain boundary 

diffusion under high pressure applied which has been explained by Kim et al. [47].        

 

1.3.2. Nanocrystalline nickel 

Since Axel Fredrik Cronstedt classified nickel (Ni) as one of the chemical 

elements in 1751, this metal has been broadly used due to its unique properties such as 

high oxidation resistance, thermal conductivity, ferromagnetism, etc. [48-50].  As one of 

transition metals, it has face centered cubic structure with lattice parameter of 3.52 Å.  

Nickel is one of room temperature magnetic materials with Curie temperature of 335 °C.  

More potentially, mixing with cobalt or iron, it has been more widely used as alloy form, 

as performing high strength, high temperature creep resistance and corrosion resistance.  

Additionally, with development of processing technique, as the grain size in the metal 

has been reduced to nano-meter range, mechanically superior performance of the 

material is expected with grain refinement.  Since the size dependent hardening 

mechanism has demonstrated based on Hall-Patch relation, reduction of the slip length 

based on decrease in the grain size has been considered as one of key factor to enhance 

the mechanical property of the metal.  Additionally, nanoscale twin structure embedded 

in the material is also counted to effectively enhance the mechanical property as 

hindering the dislocation movements.  Therefore, to demonstrate such property of the 

http://en.wikipedia.org/wiki/Axel_Fredrik_Cronstedt
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nanocrystalline (nc) nickel, recently various deposition methods have been performed.  

First, Kumar et al. has conducted electrochemical deposition to grow fully densed nc 

nickels with mean grain sizes of about 30 nm [51].  In order to explore deformation 

behavior of nc nickel, cold rolling test, uniaxial compression and nanoindentation tests 

were conducted as parallel with in situ tensile test under TEM column.  During the cold 

rolling test, grain coarsening, round shaped grain boundaries at the triple junction and 

several clear evidences of dislocation activity such as semi circular shaped contrast and 

slip traces in the grain were noticed.  On the other hand, existence of dislocation in the 

interior of grain, dislocation array in low angle grain boundary and nanovoid at the triple 

junction which has crack formation were observed after uniaxial compression test.  More 

interestingly, during the in situ tensile test, growth of grain boundary crack and triple 

junction void, and dislocation emission from the crack tip were noticed, which enhanced 

the facture.  During the test, severe plastic deformation was occurred with separation of 

grains under increment of load proceeding to necking of a ligament as accompanying 

with the formation of twin.  Finally, surface morphology after fracture showed dimple 

shaped rupture which was 6~10 times larger than the grain size.  Such deformation 

process can be summarized by following steps.  First, under stress increased, 

dislocations emitted from grain boundary with formation of voids at the boundary and 

triple junction during the grain boundary sliding, which was possibly caused by the grain 

boundary shear after the dislocation piled up at the grain boundary [52,53].  Eventually, 

dimple was nucleated from the void and grain boundary.   
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Holland et al. also conducted the tensile test to explore deformation behavior of 

nc nickel with bimodal grain distribution (mixture of 50% of 20 nm and 50% of 200 nm 

grains, and mixture of 20% of 20 nm and 80% 200 nm grains) processed by the spark 

plasma sintering (SPS) system [54].  After the test, twin deformation and shear band 

were mainly observed with which partial dislocation emission by the grain rotation was 

accompanied.  Usually, twin deformation in the metal is explained in terms of the 

stacking fault energy (SFE) and twining stress (a critical resolved stress to nucleate twin 

structure) based on the relation of             , where σ is twinning stress, Esf is 

SFE, S is the shear modulus and b is the burgers vector.  Additionally, the interaction 

between dislocation and twin structure should be taken into account for explanation of 

the twin deformation under which twin boundary migration is led by twin dislocation 

gliding.    Recently Zhu et al. explained various cases of interaction between dislocation 

and twin boundary [55].  For example, while a shockley partial dislocation (Bα) gliding 

from matrix plane interacts with the twin boundary, based on the Thompson tetrahedron 

model, the dislocation (Bα) can be dissociated into another shockley partial (Bδ) and 

immobile stair-rod dislocation (δα).  Once the partial dislocation, Bδ, glides along the 

twin boundary, leaving the immobile δα dislocation, the distorted lattice plane leads 

detwinning with reduced twin thickness to stabilize the total energy.  Similarly, as a 

partial dislocation gliding from the interior of the twin interacts with the twin boundary, 

the twin dislocation dissociated gliding along the twin boundary could lead the twin 

nucleation.  
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1.3.3. YBa2Cu3O7-x thin films 

Since Karl Muller and George Bednoz discovered a high temperature 

superconducting (HTS) materials in 1986 [56], enormous of research has been carried 

out to optimize the operation condition.  Especially, with the discovery of yttrium 

barium copper oxide (YBCO) (Tc > 77K) in 1987 by Maw-Kuen Wu and Paul Chu, it 

has brought extensive research interest in terms of both fundamental physics and 

potential applications.  Therefore, HTS YBCO thin film coated conductors have recently 

became one of the main research directions for YBCO-related research because of their 

many envisioned applications, including superconducting generators, motors, power 

cables, and other devices [57-59].   

In order to maintain or improve superconducting property of such novel material, 

processing technique should be very crucial.  Specifically, controlling the oxygen 

contents during the deposition of the thin film is the key factor to manipulate the 

superconducting property.  Usually, HTS YBCO can be formulated with YBa2Cu3O7-x.  

And during non stoichiometry growth of YBCO thin film, amount of the oxygen 

contents changes the structure of the unit cell and its superconducting property.  

Typically, YBCO can be crystallized as perovskite structure which is made of different 

composition of layers (CuO, CuO2 BaO, Y in figure 1.13).   

 

http://en.wikipedia.org/w/index.php?title=M.K._Wu&action=edit&redlink=1
http://en.wikipedia.org/wiki/Chu_Ching-wu
http://en.wikipedia.org/wiki/Perovskite_(structure)
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Figure 1.13. Schematic diagram illustrates YBCO perovskite crystal structure with 

copper (orange), oxygen (green) and barium (purple) atoms. 

 

As less oxygen presents during the processing (x~1), in the layer of CuO the 

oxygen sites could be vacant.  Then tetragonal structure can be formed in the unit cell 

with lattice constant of a = 3.86Å.  Once YBCO formed in tetragonal structure, this 

material is no longer superconductor but insulator.  However, as the oxygen contents 

have been increased, the layer of CuO has more oxygen.  Then tetragonal structure can 

be transited to orthorhombic structure with lattice constant of a = 3.82 Å, b = 3.89 Å and 

c = 11.68 Å.  Then YBCO could function as a HTS material.  During the phase transition 

from tetragonal to orthorhombic structure, another noticeable phenomenon to enhance 

the superconductivity is formation of defect which can act as effective pinning centers in 

YBCO thin film.  Flux pinning is to stop motion of the magnetic flux lines under Lorentz 
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force applied to avoid the flux creep.  Usually such pinning event can be occurred only 

with defect formed in the superconducting materials such as grain boundary, embedded 

impurity particles, etc..   Especially, several recent researches reported that the twin 

structure formed during YBCO thin film process significantly enhances the 

superconducting property.  For example, Shi et al. has showed increase of critical current 

density (Jc) with increasing twin spacing [60].  And Safar et al. has reported that Jc has 

been increased as the twin structure rotated with 45° about current flow while the 

samples with twin boundary oriented parallel or orthogonal to current direction reduced 

Jc [61].      

Usually twin structure can be formed along (110) planes in YBCO thin film as 

the stress released during phase transition by oxygen diffusion along a-b plane.  The 

oxygen diffusion is usually occurred along the a-b plane of YBCO rather than c-axis.  

This is because the activation energy for the oxygen diffusion along a-b plane is lower 

than that along c-axis [62].  Therefore, the diffusivity of oxygen along a-b plane can be 

more active.  During the diffusion of oxygen along CuO layer, cluster formation along 

Cu-O chain causes another nucleation of cluster which is oriented orthogonal direction 

as reducing stress along [110] direction; then during relaxation from the stress, coherent 

twin boundary can be formed along (110) plane as boundary of the cluster meet each 

other [63].  

With such intrinsic defect in YBCO thin film, additionally to improvement of 

superconductivity, another possible capability is to enhance the overall mechanical 

performance.  Raynes et al. has demonstrated that during the indentation on twinned and 
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detwinned single crystal YBCO, ~25% of fracture toughness has been increased with 

twined structure while no significant change of hardness has been observed [64].  And 

this can be explained by the increase in fracture energy with twin nucleation and twin 

boundary motion relaxing stress at the crack tip; thus limit the growth of crack while it 

interacting with twin structures [65].           

 

1.3.4. Al doped ZnO 

 

 
 
Figure 1.14. Schematic diagram illustrates ZnO hexagonal wurtzite crystal structure with 

zinc (red) and oxygen (purple) atoms [71]. 

 

Transparent conducting oxide (TCO) thin films have a large variety of 

applications, such as transparent interconnects for optoelectronic devices including 

liquid crystal displays (LCDs), organic light emitting diodes (OLEDs) and solar cells 

[66-68].  Among all of the TCO materials researched, recently ZnO (II-VI compound) 
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has brought extensive research interests because of its unique optical and electrical 

properties and its tunable nanostructures as nanorods, nanotubes, nanowires and 

nanobelts.  In addition, as a direct bandgap semiconductor with a bandgap of 3.4 eV, 

ZnO can be used for optoelectronic devices operating in the blue to UV regime. 

Therefore, with such potential properties, it can be excellent candidate as a TCO material 

over others.  Especially, due to low cost and non-toxicity compared to other 

conventional TCO materials such as GaN, Indium Tin Oxide (ITO), ect., ZnO has 

promise to be replaceable with the conventional materials [69, 70].   

Typically as thermodynamically stable structure ZnO shows hexagonal wurtzite 

structure with lattice constant of a = 3.296 Å and c = 5.206 Å as tetragonally coordinated 

Zn2+ and O2- ions with sp3 covalent bonding compose alternative plane along c-axis 

(figure 1.14 [71]).  However, once high pressure (~9 GPa) has been applied or thin film 

has been grown on cubic structured substrate such as ZnS, GaAs or etc., possibly cubic 

structure, i. e. zinc-blende or rocksalt (NaCl), can be formed as metastable structure.   

To increase its electrical conductivity, ZnO is usually doped with B, Al, Ga or In 

(group III elements) as n-type or Na, K, P or N (group I or group V elements) as p-type 

semiconductors.  Among those, Al-doped ZnO (AZO) is one of the most widely studied 

n-type ZnO films because presence of Al ionic content in Zn site can increase the 

electrical conductivity as it reduces the grain impedance caused in the grain boundary of 

ZnO.  Recently Matsubara et al. processed Al-doped ZnO thin film at room temperature 

under oxygen radical-assisted PLD, whose minimum resistivity reached down to 5× 10-4 

Ωcm while it showed about 86~92% of optical transmittance [72].  Additionally, Agura 

http://en.wikipedia.org/wiki/Wurtzite_(crystal_structure)
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et al. also conducted PLD deposition to deposit Al doped ZnO film on glass substrate 

and it recorded the lowest resistivity of 8.54 × 10-5 Ωcm with over 88% optical 

transmittance in the visible wavelength region [73].   

AZO thin films with the high transmittance and electrical conductivity have been 

grown by various deposition techniques such as molecular beam epitaxy, plasma 

enhanced chemical vapor deposition, sol-gel, sputtering and pulsed laser deposition 

(PLD).  Usually during the deposition AZO tends to grow with different size columnar 

grains such as nanorods with [0001] direction normal to surface of substrate to minimize 

the surface energy [74].  While the film grows, it tends to reduce the surface free energy.  

Therefore, film prefers to grow along plane whose surface energy is lowest.  For ZnO 

the density of surface energy decreases in the order of (      ,         and (0001); thus, 

it has strong tendency to grow with (0001) plane.   

During the deposition, different processing methods and deposition parameters 

highly affect the physical property of the AZO films.  Especially, presence of oxygen 

contents during the processing increase the collisions between the adatoms from the 

target and gas molecules; thus it can reduce the mean free path of the adatoms and limit 

the nucleation size of the films on the substrate. Therefore, the density of grain boundary 

can be increased as the oxygen pressure increases, which highly affects grain boundary 

scattering of charge carriers.  As a result, controlling the grain size of AZO is very 

important to have different surface morphologies.   For example, Zhu et al. demonstrated 

variation of the resistivity along increase of oxygen partial pressure based on film 

surface morphologies [75].  During the deposition of ZnO film by PLD on the glass 
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substrate at 350°C under the different partial oxygen pressures, i.e. 0.003, 0.2, 24 and 

150 Pa, the surface roughness has been increased from 0.5 to 6 nm with root mean 

square (RMS) value along the increasing oxygen pressure, as a result of increase of grain 

size, which was due to enhancement of collision between flux of adatom and oxygen gas 

content.  Finally, electrical resistivity increased from 1.3×10-2 Ω·cm to 1.17 ×10-1 Ω·cm 

with increase of oxygen pressure.  On the other hand, the AZO film grown by the 

magnetron sputtering showed the electrical resistivity in the range of 3×10-4 ~ 6×10-4 

Ω·cm at 350 °C while a AZO film grown by the chemical vapor deposition (CVD) has 

resistivity values ranging from 4.6×10-3 to 1×10-1 Ω·cm [76, 77].  As the oxygen partial 

pressure increased from 1 to 100 mTorr, the resistivity increased drastically from 

5.1×10-4 to 5.2 Ω·cm [78].   

 

1.4. In situ TEM characterization  

After processing the materials as either bulk or thin film material, various 

characterization methods have been employed to examine the materials properties.  

Among them, transmission electron microscope (TEM) has been introduced as the most 

essential tool to identify the micro/nanostructure within the materials.  Especially, with 

recent development of the in situ TEM characterization technique, it provides the 

opportunity of observing the microstructural evolution during the physical property 

measurements such as mechanical test with nanoindentation or tensile test, electrical 

property measurement, etc. in the TEM column.  Therefore, the real time observation 

allows more reliable study with correlation between variation of the physical properties 
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and structural responses than the conventional static TEM analysis approach.  Since the 

last decade, several in situ TEM characterization methods have been introduced.  For 

example, in situ nanoindentation and straining tests have been developed for analysis of 

microstructural response of a material under the external stress applied with real time 

observation.  Additionally, in situ scanning tunnelling microscopy (STM) has been 

introduced for direct observation of microstructural evolution under electrical potential 

applied on a material.  Table 1.1 summarizes various results from recent researches on 

different kinds of nanomaterials characterized with various in situ TEM techniques.  It 

shows that depending on the materials, different in situ characterization methods are 

required to reveal concealed properties.  For the metal regardless of its size dimension, 

most of the studies introduced microstructural evolution such as dislocation, grain and, 

grain and twin boundary activities during deformation behavior.  On the other hand, for 

the ceramic, it can be noticed that the most of the ceramic materials employed for the in 

situ test are one dimensional material such as nanowire or nanotube.  And either 

electrical or mechanical test has been performed on them.  This can be because once the 

three dimensional bulk ceramic, which is mechanically very hard and brittle, and 

electrically insulating without dopant, reduces its dimension, it can expose any hidden 

properties with active reaction about small variation of atomic rearrangement under the 

external impact.  Besides these, in situ TEM tests on newly discovered material such as 

carbon nanotube or graphene have also been conducted to reveal its unknown physical 

properties.  Therefore, as such a useful tool, more dynamically approaching to analyze a 
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material, in situ TEM characterization methods could be very potential as having 

advantages over conventional TEM analysis.  

 

Table 1.1. Recent research progress with in- situ TEM characterization on various 

nanomaterials. 

In situ TEM characterization 

Material Major observation  (Type of in situ test) reference 

Metal 

Nanocrystalline Al 
thin film 

 Grain rotation and coarsening, grain boundary 
migration and grain growth (Nanoindentation) [79] 

Single crystal Al  Increment of strain rate with dislocation 
nucleation (Tensile test) 

[80] 

Nanocrystalline Ni 
pillar 

 Strain hardening based on annihilation of 
dislocation (Nanoindentation) 

[81] 

Al/Nb multilayer 
thin film 

 Dislocation climbing at the Al/Nb interface 
(Nanoindentation) 

[82] 

Nanotwined Cu 
thin film 

 Dislocation multiplication at Twin boundary 
resulting in migration of coherent twin boundary 
(Nanoindentation) 

[83] 

Au nanowire 

 Dislocation mediated plasticity and phase 
transition through the necking process (Tensile 

test) 
 Cold welding by atomic surface diffusion and 

structure relaxation (Contacting and pulling) 

[84, 85] 

Ni thin fim 
 Grain boundary deformation mediated by porosity 

(Tensile test) 
[86] 

Martensitic steel 
 Grain boundary deformations after dislocation 

activities at low and high angle grain boundaries 
(Nanoindentation) 

[87] 
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Table 1.1. Continued  

In situ TEM characterization 
Material Major observation  (Type of in situ test) reference 

Ceramic 

GaN nanowire  Dislocation nucleation and propagation leading 
fracture (Uniaxial compression) [88] 

ZnO nanowire 
 Phase transition from crystalline to amorphous 

(Nanoindentation) 
 Size dependent young’s modulus through fracture 

test (Tensile test) 

[89, 90] 

Bi2S3 Nanowires  In situ I-V measurement (I-V measurement) [91] 

SnO2 nanowire 
 Volume expansion of SnO2  nanowire while 

lithiation with charging up to -3.5V 
(Electrochemical charging) 

[92] 

BN nanotube  Fracture induced by electric current heat  
(Electric heating) [93] 

TiN thin film  Grain boundary diffusion comprised of 
dislocation activities (Nanoindentation) [94] 

Others 

Carbon nanotube 
(CNT) 

 
 

 
<0001> sessile dislocation motion (glide and 

climbing) under increment of temperature from 
room temperature to 2000°C (Electric heating) 

 Kink motion under high temperature of 2000°C 
during tensile test (Tensile test ) 

[95, 96] 

Graphene  Multilayer reconstruction and sublimation 
(Electric heating) [97] 

Si nanowire 
 Anisotropic expantion  along [110] and  [111] of 

Si nanowire during lithiation (Electrochemical 

charging) 
[98] 

 

1.4.1. In situ TEM nanoindentation  

Since nanoindentation has been developed in the mid of 1970s, this method is the 

most mainly used technique to measure the mechanical properties of small volume of 

materials such as hardness, stiffness and young’s modulus as accompanying the force-
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displacement plot.  More potentially, this tool cannot just be used to measure the 

mechanical values, but it can also estimate different phenomenon during deformation 

events of the materials as combined with several different postmortem experiments.  

Recently, several research studies have reported the interesting results of deformation 

event during the nanoindentation process.  During the nanoindentation on (001) GaAs 

wafer, the force-displacement plot shows obvious pop-in effect occurred at around 45 

mN on the wafer [99].  And as correlating with TEM analysis, it has been conclude that 

this pop-in effect could be occurred with nucleation and extension of dislocation loops, 

which possibly enhance the plastic deformation.  In addition of pop-in effect by the 

dislocation activity, another interesting feature which could be observed during the 

indentation is phase transformation.  During the indentation on p-type (001) Si wafer, the 

force-displacement plot shows the pop-out effect around 10 mN during unloading 

process, which has been induced by the phase transition from single crystal to 

amorphous structure [100].  However, in spite of such enormous efforts, direct 

observation of the deformation events during the microstructural evolution under 

indentation has still been desirable.  Finally, such eager to have more advanced 

technique for material characterizion enables in situ TEM nanoindentation system to be 

developed.  And it has become currently one of widely used system to explore 

microstructural evolution in the nanomaterials during the deformation under real time 

observation.  For the in situ TEM nanoindentation, as diamond nanoindenter tip, indenter 

sensor and piezoelectric motion controller have been equipped in conventional TEM 

holder, under the TEM column, indentation can be conducted with fine motion of TEM 
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specimen, approaching to the nanoindenter tip.  More potentially, during the indentation, 

the indenter sensor can detect the pressure sensed by tip and generate the force-

displacement plot just like the conventional ex situ nanoindentation system.  Therefore, 

it can provide chance of more quantitative study. 

With such novel technique, lately several research studies have demonstrated 

impressive property-structure correlations of nanomaterials with in situ TEM 

nanoindentation.  Jin et al. has demonstrated that the different deformation behaviors of 

aluminium (Al) thin film depending on the size of grains during the in situ TEM 

nanoindentation [79].  When the grain size is on submicrometer range, grain boundary 

migration and grain coalescence have been observed, which is mainly driven by 

dislocation interaction at the grain boundary.  Meanwhile, nanocrystalline Al thin film 

shows rapid change of deformation behavior with grain growth and grain rotation.  

Similarly, Ohmura et al. also introduced the novel result of grain boundary and 

dislocation interactions during in situ TEM nanoindentation on martensitic steel [87].  

During the indentation near the low-angle grain boundary, significant dislocation pilling 

up event at the boundary was observed, following with emission of the dislocations 

through the boundary under further indentation. Meanwhile, as indentation conducted 

near high-angle grain boundary, the dislocations generated disappeared, as absorbed by 

the boundary.  Finally, after the indentation, for the low-angle grain boundary, 

significant shift of the grain boundary was noticed, while the high-angle grain boundary 

was very static but only the grain showed severe deformation.  Even though Conrad’s 

analysis has explained that kinetically stress flow in the material could be driven by the 



 

41 
 

 

dislocations piled up at the grain boundary which can enhance the grain boundary shear 

when the grain size of the material is within range of 10 nm ~ 1 μm [53], with such 

novel experiment under TEM column, size dependent grain boundary mediated plastic 

deformation could be verified based on the real time observation.    Additionally, Li et al. 

also shows novel deformation behavior of nanotwined Cu thin film during the in situ 

nanoindentation [83].  In this report, it has been demonstrated that under the high 

resolution TEM column, dislocation multiplication at the twin boundary results in 

migration of coherent twin boundary based on the following steps.  1) A lattice 

dislocation glides toward the twin boundary under stress applied during the indentation.  

2) As the lattice dislocation going through the boundary, it can be dissociated into a 

sessile partial dislocation and mobile twin dislocation.  3) As the twin dislocation gliding 

along the twin boundary, lattices can be rearranged and finally, twin boundary could be 

migrated. 4) Then as the sessile dislocation dissociated into another full dislocation and 

twin dislocation, the deformation procedure could be repeated.  Although theoretical 

approach of this phenomenon has been introduced based dislocation activities on 

Thompson tetrahedron model [55,101], the conventional theory can be confirmed with 

such practical result from the direct observation during the in situ TEM nanoindentation.  

Besides the in situ mechanical tests on thin film and bulk materials, Shan et al. 

demonstrated the strain hardening based on annihilation of dislocation in one 

dimensional single crystal nickel (Ni) pillar [81].  During the in situ test, Ni pillar which 

initially had high defect density becomes defect free after the external force applied.  

Simultaneously, the maximum stress applied on the pillar was increased with ~60%, 
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compared to that loaded on the initial state based on the load-displacement plot.  It could 

be possible based on Greer et al.’s report which explained that before defects interact or 

multiply with other defects, they could leave from the free surface of the crystal as the 

size of width in the nanomaterial becomes relatively smaller than that of length [102], 

and after all, nucleation of the new dislocations requires higher stress for plastic 

deformation.  Finally, with such novel experiments in the metal samples, the direct 

observation of deformation behavior can provide the clear evidence to support the 

conventional theory, or disclose a hidden deformation mechanism.   

However, compared to research on the deformation behavior of the metal 

samples, there were only few in situ studies introduced on the ceramics during the 

indentation process.  This is because during the deformation of the ceramic at room 

temperature, it usually becomes fractured as skipping plastic deformation zone.  In spite 

of the fact, the recent in situ tests on several ceramic materials provide the possibility of 

being the plastic deformation zone in the ceramics.  For the ceramics, most of the in situ 

nanoindentation tests are conducted on the one dimensional semiconductor materials.  

This is because as the dimension of a ceramic reduces from 3D bulk to 1D nanowire or 

nanotube, the enhanced mechanical properties could be exposed, i.e. ultimate strength of 

the 1D ZnO nanowire could be significantly increased with about 40 times greater than 

the bulk value [103].  Recently, Huang et al. showed the deformation behavior of GaN 

nanowires under which fracture mechanism was explained, following with local plastic 

deformation based on dislocation activities [88].  Under compressive stress, dislocation 

nucleation and piling up was observed in the surface of the nanowire right under the 
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punch, which induced the lattice distortion and finally local plastic deformation.  

However, in this report, the nanowire never showed any global plastic deformation 

which could be observed in the metallic systems.  And it seemed difficult for such 

ceramic materials to have broader plastic deformation regime.  Nevertheless, Minor et al. 

demonstrated that dislocation activity enhanced plastic deformation in TiN, a metallic 

ceramic, during the in situ nanoindentation [94], which is similar to deformation 

behavior in the metallic system in which dislocation activity mainly dominates the 

plastic deformation.  During the indentation on TiN thin film grown on MgO substrate, 

the relatively soft substrate (with hardness 9 GPa of MgO) led the banding of the hard 

thin film (with hardness 20 GPa of TiN).  During the bending of the film, hemispherical 

shaped area with dark contrast was observed which indicated distribution of high defect 

density.  Finally, 8° grain boundary tilt was noticed within in this area, which could 

possibly induced by dislocation activity, accompanying with grain boundary diffusion.  

And this provides clear evidence of possibility of being plastic deformation in hard 

ceramic materials.   

 

1.5. Summary           

Remarkable development in the field of nanotechnology has been driven by the 

discoveries of various nanostructured materials.  With the recent advances of high 

resolution imaging and physical property measurement techniques, developing the 

nanostructured materials with further enhanced physical properties is possible.  

Especially, the development of the in situ TEM characterization technique has brought 



 

44 
 

 

the possibility of direct observation during real-time experiments as providing new 

approaches to characterize a material in the more reliable idea.  Among the approaches, 

the in situ TEM nanoindentation is one of the most broadly used technique to 

characterize the mechanical property of materials.  The direct observation in the 

deformation behavior of the nanomaterials can provide the clear evidence to support the 

conventional theory and disclose a hidden deformation mechanism.  However, since 

most of the in situ works have been apparently focused on metallic and nanowire 

systems, the work on nanostructured ceramic using in situ tools is still scare.  

Additionally, the works highly rely on the qualitative study.  Therefore, in situ TEM 

characterization on ceramic materials such as ceramic nanocomposite and ceramic thin 

film material could be required for future research with a comparison study on 

nanocrystalline metal as combined with more quantitative study. 
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CHAPTER II  

RESEARCH METHODOLOGY 

 

2.1. Transmission electron microscopy 

Transmission electron microscopy (TEM) is one of the most widely used 

methods to obtain the structural morphology of a material.  Especially with the 

capability to identify the internal structure underneath of the surface while the electrons 

transmit through the TEM specimens, this system can be clearly distinguishable with 

other microscopes.  Additionally, as providing projection of microstructure in atomic 

level, it can lead us to comprehend the material systems.  As a result of such potentiality 

of the technique, these days it cannot be just employed by field of material science 

research but other areas such as microelectronic device technology, biotechnology, and 

other material related field also require its application.  For instance, during the 

microelectronic device fabrication, thin film surface uniformity and structural 

morphology can be inspected under the TEM column.  Although large portion of the 

film quality analysis still highly relies on surface analysis tools such as atomic force 

microscopy (AFM) and scanning electron microscopy (SEM), the analysis ability on the 

internal microstructure of a material along with the cross-section view is entitled by 

TEM technique to exceed the capability of such surface analysis systems.  And this 

capacity of TEM has also provided clear evidence of interfacial reaction and surface 

diffusion after the device processing.  Therefore, TEM has become the most crucial 

technique which can explore structural and defect analysis.  Within such remarkable 
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system, as other analytical techniques, such as STEM, EELS, and EDX have been 

combined together, this system could become even more powerful to characterize a 

material as integrating chemical composition analysis technique within single atomic 

scale.  Currently, JEOL JEM-2010 and Tecnai F20 super-twin (at TAMU) have 0.23 and 

0.24 nm respectively for the point resolution.  For this section, many parameters of TEM 

are explained.  And several important techniques such as imaging and diffraction are 

presented. 

  

2.1.1. Resolution  

Resolution and magnification can be introduced as the main parameter of TEM.  

Although the magnification can be readily adjustable by change of acceleration voltage, 

there are several parameters considerable for enhancement of the resolution.  When no 

aberration effect considered, the maximum resolution of the microscope can be 

theoretically variable mainly by wavelength of the electrons and aperture angle of lens, 

which can be explained based on Rayleigh criterion as shown below: 

    
      

      α 
                (2.1), 

where   is the wavelength of the electrons, n is refractive index (usually, for vacuum, n = 

1) and α is  aperture angle of lens.  Usually, in TEM, as the electron accelerates to 

generate more coherent beam, the wavelength of beam could be shortened in the order of 

hundredth of 1 Å. Then the resolution value could be smaller. 
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Figure 2.1. Diagrams illustrate the objective aberrations: a) spherical b) chromatic, c) 

astigmatism [104]. 

 

Besides these parameters from the criterion, there are additional factors to affect 

the resolution of the microscope.  First, spherical aberration can be explained.  Spherical 

aberration is one of main lens defects caused by more refraction when the incident 

electron beam going through near edge of the lens compared to that passing through the 

centre of the lens (Figure 2.1a).  Therefore, the electron beam near from edge of the lens 
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could be focused before the image plane while the beam going through the centre of the 

lens is focused on the plane. And finally, for such non-paraxiality of the electron beam, 

the spherical aberration disk with radius rs can be made with relation of rs = Csβ3, where 

β is angular aperture of the lens.   

Following the spherical aberration, next introducible factor is chromatic 

aberration.  Usually, the chromatic aberration is occurred due to the energy difference 

(ΔE) from incident electrons.  Once the electrons have different energy, less refraction 

through the objective lens could be expected from fast electrons while the slow electrons 

cause high angle refraction.  Therefore, the focal lengths between these two groups of 

electrons can be different (Figure 2.1b).  Usually, the chromatic aberration can be worse 

when TEM specimen thickness becomes thicker.  Thus to avoid the aberration, 

preparation of the thin specimen is essential.   

Finally, astigmatism can be introduced as the last factor to affect the resolution.  

Astigmatism usually comes from non-uniform magnetic field which results in different 

focal length (Figure 2.1c).  There are several reasons causing this problem.  It can be 

caused by the vibration of the electromagnetic field due to non-uniform surface of 

cylindrical polepieces and contamination charging up the electron beam.  Then projected 

TEM image can be deformed with radius rast as shown below: 

 rast = βΔf                      (2.2), 

where Δf is the maximum difference in focal length coming from astigmatism.  And it 

can be easily fixed as adjusting the field.               
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2.1.2. Depth of field and depth of focus 

 

 
 

Figure 2.2. Schematic diagrams illustrate depth of field and depth of focus [105]. 

 

Once a beam with multiple rays going through the specimen, depth of field, D, is 

vertical distance between points at which the rays cross over along the central axis on 

objective plane, maintaining the resolution (Figure 2.2).  And it can be defined as the 

equation (2.3)  

   
  

 
                 (2.3), 

 Similarly, depth of focus, D’ can be described another vertical distance between points 

at which rays cross over along the central axis, but on image plane instead of object 

plane.  And D’ can be defined as the equation (2.4)     

    
  

 
 
  

  
    

  

 
 
 

 
                      (2.4),     
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Therefore, it can be noticeable that as β becomes decreased with selecting small size of 

aperture, the depth of field, D, and depth of focus, D’, can be increased.  For example, 

when the d1 is 1Å and β is 5×10-3 radius, depth of the focus can be 20 nm.  Then any 

region of the specimen which thickness less than or equal to 20 nm can be focused.  

Usually, for the thick specimen with a lot of electron beam scattering, β can be 10-2 rad, 

while the thin specimen can have β with ~10-4 rad.  Eventually, preparation of thin 

specimen can be very essential to have broader range of the D and D’. 

 

2.1.3. Image and diffraction modes 

Once the coherent electron beam transmits through the specimen, it can be 

dispersed and refocus on the image plane by the objective lens.  Once the beam 

dispersed by the lens, in the back focal plane the diffraction pattern can be generated.  At 

this moment, as size of the beam gets smaller and selected area diffraction (SAD) 

aperture is inserted in the image plane, beam coming from the specimen outside will 

travel through the SAD diaphragm (Figure 2.3a).  Then on the viewing screen, the 

diffraction pattern can be projected.   
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Figure 2.3. Schematic diagrams illustrate the basic operation of TEM imaging system 

under a) diffraction mode and b) imaging mode   [105]. 

 

The generation of the electron diffraction can be explained based on two features.  

First, as the wavelength of the electron beam is smaller than the lattice distance, the 

diffraction angle can be smaller.  Then Bragg’s law defined as             becomes 

         since         with θ ~ 0.5°.  Second, as the specimen becomes very thin, 

the projected diffraction can be in the rod form of the domain especially for single 

crystal.  Then Ewald reflection sphere could overlap the diffraction domain for active 

state of hkl reflection.  Finally, based the relation of the reflection indices, hu+kv+lw=0, 
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the reflection on the (hkl) lattice planes can have the incident direction with [uvw] along 

the zone axis, which can be explained in reciprocal plane (uvw) including the lattice 

point hkl.            

For the image mode, as the object plane becomes the image plane of the 

objective lens with adjustment of the intermediate lens, image can be projected on the 

viewing screen (Figure 2.3b).   

 

2.1.4. High resolution TEM (HRTEM) 

As detailed analysis of structure of a material within range of atomic scale under 

higher resolution, such as atomic structure, position of atom and any defects emergence 

in the structure, is desirable, it can be possible with high resolution TEM (HRTEM).  

And it can be approached as consider the microscope as a linear system.  Under the 

linear system based on the relation of αS0 + βS0 → αS1 + βS1, transmission of the input 

signal, αS0 + βS0, is linear related with the output signal of αS1 + βS1.  Then through the 

signal processing system of the microscope in figure 2.4, the input signal of the object 

phase shift induced by the specimen is processed by the function of the fourier transform; 

then after processing with phase contrast transfer function, final output signal can be 

gained by the inverse fourier transform function, generation of TEM contrast can be 

explained.     
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Figure 2.4. Diagram shows signal transmission system in TEM. 

 

2.2. Nanoindentation 

Since nanoindentation has been developed in the mid of 1970s, this method is the 

most mainly used technique to measure the mechanical properties of materia, such as 

hardness, stiffness, elastic modulus, etc., of small volume of material like thin film 

materials. Especially, with analysis based on the load-displacement plot, any concealed 

mechanical property of the material can be revealed during the indentation process.  

Figure 2.5 shows several material responses with different properties during the 

indentation process, i.e. high ductility from steel, brittleness from fused silica, phase 

transition from crystalline silicon, cracking from sapphire evidenced with pop-in event 

and creep event from polymer.           
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Figure 2.5. Load displacement plots show different material responses (different 

properties) during the indentation process: a) Elastic, b) brittle, c) ductile, d) phase 

transform, e) cracking, f) creep [106]. 

 

Conventionally, indentation technique has been used to measure the hardness of 

a material as a hard tip with known mechanical property compresses down into the 

surface of a material with unknown property.  At this point, the hardness can be simply 

defined with the relationship as shown below: 

   
    

 
              (2.5), 

where Pmax is the maximum pressure applied by the tip on the surface of the material and 

A is the projected area of the tip on the surface of the material.   

Due to the various geometries of the tips employed for the indentation test, the 

hardness values can be changeable as the projected area in the relationship can be varied 
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by the shape of the tip.  As simply considering about the contact of a hard sphere on a 

flat surface of a material with its elastic modulus E (Figure 2.6a), radius of the contacted 

sphere circle, a, can have relationship in equation (2.6) show below: 

    
 

 

  

  
                 (2.6), 

where E* is reduced modulus which can be given by 1/E = (1-υ2)/E + (1-υ’2)/E’ with 

which the first term of (1-υ2)/E is for the indenter tip and the second term of (1-υ’2)/E’ 

for the sample (υ: Poissons’s ratio), and R is relative radius.  Figure 2.6b also illustrates 

the load-displacement plot after the nanoindentation process in figure 2.6a.  Based on the 

following calculations, the values of hardness H and elastic modulus E* can be estimated.    

 

 
 

Figure 2.6. a) Schematic diagram illustrates indentation with standard spherical indenter 

and related parameters from measurements. b) Load displacement plot is resulted from 

the indentation [106]. 
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As starting with   
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             (2.7),   

Then        
  

   
   .     (2.8), 

After plugging (2.8) into (2.7),  
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Based on Hertz’ model,     
  

 
, where a is the radius of the contact area. 

Then from equation (2.6),     
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Finally, elastic modulus E* can be estimated with    
 

 

 

 

  

  
 . 

Then the hardness H can be expressed as    
 

 
 , where A is the contact area with A = 

πa2.   

As a certain amount of load from the indenter is applied on the surface of sample 

with a contact area A, the depth of penetration can be measured. The contact area under 

maximum load can be decided by the penetration depth of the tip and either known angle 

or radius of the indenter tip. And then desirable properties of the materials can be 

estimated such as the elastic modulus and hardness.  

Finally, for the data analysis based on the load-displacement plot, multiple point 

measurement and single point measurement can be introducible.  For the single point 
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method, Hertz contact equations can be directly applied with two data points.  On the 

other hand, for the multiple point method with which several data points are selected, 

derivative between the points are necessary.  Thus, the single point method can be 

processed faster while the multiple point method generates finer elastic response, taking 

a longer time. 

 

2.3. In  situ TEM nanoindentation system 

Since Wall and Dahmen developed in situ TEM nanoindnetation system in 1997, 

it has been widely used characterization technique, especially for mechanical property of 

materials, allowing direct observation of the deformation behavior during the indentation 

process under TEM column.  And such dynamic experiment could be possible after 

sharp diamond tip mounted in the specimen holder and three dimensional motions of 

either tip or specimen controlled by piezoelectric drives.  Especially, as the pressure 

sensor equipped along the tip permits to plot load-displacement just like the 

conventional nanoindentation system, it has brought a chance of quantitative study.  

Therefore, with such potential technique, by this time, a lot of valuable research 

achievements have been made in the field of the material science research.  Among them, 

observation of dislocation activity and its correlation with grain and twin activities in the 

metallic system could provide clear evidence to support the conventional theories [79, 81, 

82, 83, 87].  Additionally, discovery of new phenomenon via the in situ test could 

expose possibility for development of advanced materials.  For this section, the 
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components composing the in situ TEM nanoindentation system are introduced as 

combined with explanation for several required parameters. 

 

2.3.1. Major components of in situ nanoindentation system 

 

 
 

Figure 2.7. Schematic diagram illustrates the experimental set-up for in situ 

nanoindentation. 

 

In situ TEM nanoindentation system manufactured by Nanofactory inc. is 

composed of two main components, in situ specimen holder and control system, with 

several peripherals as shown in figure 2.7.  In situ holder is the major part to hold the 

TEM specimen and indenter sensor which are directly observable under TEM column.  

The in situ holder is mainly composed of three parts.  Starting with front-piece which is 

mainly under electron beam transmission in the TEM column, rod and end-piece can be 

introduced next as illustrated in figure 2.8a.  Unlike the conventional TEM specimen 
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holder, the front and end pieces from the in situ holder could require different design as 

considering the piezoelectric motion of the sample and indentation procedure.  As a 

result, the enlarged image of the front-piece in figure 2.8b shows that a small hat holding 

the TEM specimen on half grid should be mounted on the sapphire ball which is 

connected to piezo tube for smoother motion of the specimen.  And as the indenter 

sensor (indenter tip) installed in the very front area of the holder, it allows the direct 

contact with the specimen under the electron beam transmission in TEM.                

 

 
 

Figure 2.8. Three major component of in situ TEM nanoindentation system is decribed: a) 

in situ nanoindentation holder, b) enlarged image of front piece of the holder with TEM 

specimen loaded, c) control system and computer. 
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Finally, the end-piece of the holder has several wire connectors for indentation 

signal and piezoelectric signal which are transferred through the control system as 

shown in figure 2.8c.  Once the indentation process is initiated, the indentation tip is 

fixed while the sample moves toward the tip by a piezoelectric stage.  For the movement 

of the sample, several parameters can be changeable depending on different settings on 

the specimen motion control program (software from nanofactory inc.) such as motion 

speed in unit of nm/step, maximum indentation depth and force, and holding time at the 

maximum depth.  During the indentation, the loading process between the tip and 

specimen can be captured by a built-in CCD camera in the microscope.  After the 

indentation, based on data detected by the control system, force-displacement plot can be 

displayed on the computer in figure 2.8c.  

 

2.3.2. Nanoindentation tip and alignment with specimen under TEM 

Similar with the conventional nanoindentation system, in situ system also 

requires various kinds of indentation tips such as Berkovich, Conical and Vickers.  

Unlike the conventional nanoindentation which is conducted on large dimension of 

surface, for the in situ nanoindetation which is conducted on very small surface area of 

the thin foil, a defect such as slip between the tip and specimen during loading should be 

considered.  And in order to solve the problem, wedge and punch shaped tips are 

currently widely used, with which contact area between the tip and surface of the 

specimen is broader.  Because of the different geometries of the tips, different 
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parameters are required for calibrations of the tips.  The table 2.1 shows the sensor data 

for each tip after calibration by nanofactory instrument Inc.  

 

Table 2.1. Calibrated indenter sensor data 

Tip type k [N/m] P0[μN] P1[NpF] 
Berkovich 450 1500 ± 300 -5200 ± 1500 

Conical 450 1400 ± 300 -5500 ± 1500 
Vickers 900 3950 ± 300 -15550 ± 1500  
Wedge 1400 2840 -5735 
Punch 3400 5825 -13245 

 

where k is mechanical spring constant, P0 and P1 are force calibration coefficient with 

accuracy ± 5%.  Based on these data, the control system could tune sensor parameters to 

identify the tip type.  Then indentation could be initialized.     

Once the specimen and sensor of indenter tip is installed in the holder, next step 

before conducting the indentation is for alignment between the tip and thin specimen.  

Unlike the conventional indentation procedure which is conducted on large surface area 

of the sample, as the in situ nanoindentation conducted on the thin foil, the alignment of 

the specimen along the same eucentric height as the tip positioned is very critical for the 

right amount of the force applied between the tip and specimen.  Typically, the 

alignment of the tip and specimen can be carried out based on adjusting their eucentric 

heights (z-height).  As starting with setting the eucentric height of the tip by control 

panel from TEM system, the z-height of the specimen can be adjustable by the 

piezoelectric motion control from the motion control program.         
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Figure 2.9. Graphical user interface (GUI) program shows a) main control window and b) 

motion control window.  The motion control can be performed based on c) the specimen 

movements   
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2.3.3. Electronic control 

The piezoelectric motion control can be performed in the graphical user interface 

(GUI) program provided by Nanofactory inc.  Once the program is open, the control 

window, shown in figure 2.9a, is popped up.  The motion control during the tip 

alignment with the specimen can be carried out in GUI window in figure 2.9b.  During 

the coarse movement setting, the pulse, speed and amplitude can be adjustable from the 

coarse movement setting section.  The pulses slider can change the maximum number of 

steps per a click of the button in the coarse movement section.  The speed slider can 

adjust the step frequency up to 50 pulse/sec.  And the amplitude slider can be used to set 

the different amplitude applied by voltage pulse which controls the piezoelectric tube.  

Then actual motion control can be performed with key button in the coarse and fine 

movement sections.  Figure 2.9c shows the specimen movement direction based on six 

different buttons, i.e. up, down, right, left, fwd and bwd, displayed in figure 2.9b.  Once 

the button clicked, the number of pulse can be generated and the specimen can be moved 

to preferred direction.  For the fine movement, the different directional motion can be 

controlled by clicking the arrows in the fine movement section.  During the fine motion, 

change of the step size can be possible with input of different number in “Inc” boxes.  

After aligned the specimen along the height of the tip, next step is to conduct the 

indentation process.   

To initiate indentation, several steps are required for customized outcomes.  For 

the section of the force plot from the window in figure 2.9a, the maximum load and 

depth, step length and hold time can be set up.  Maximum load the sensor can reach is up 



 

64 
 

 

to 3000 μN.  Step length in unit of step/nm controls the fine motion of the sample during 

loading process.  And holding time can be set up for time period held during the 

maximum load.  After every desired parameter is input, the indentation process can be 

initiated as clicking the “starting” button in measure section.  Once the measurement is 

started, the main force-time diagram shows fluctuation of electrical signal.  Then as 

clicking the button of “force plot”, a cycle of indentation can be performed based on the 

parameter set up in the section of force plot.  Once the indentation initiated, force-time 

plot is generated in the diagram.  Simultaneously, the in situ experiment can be recorded 

by a real-time movie using a built-in CCD camera in the microscope.  After the cycle of 

indentation finished, three different plots (Force-distance, Force-time and Distance-time) 

can be generated in the diagrams from right column of the window in figure 2.9a. 

 

2.3.4. Contact mechanics 

For the conventional indentation test, based on Hertz contact model [107], the 

maximum instantaneous pressure can be estimated from equation 2.9.  

  
     

 
                                                                             (2.9) 

where F is the load, E* is the reduced modulus, and R is the radius of curvature of the 

indenter.  However, this estimation did not concern about geometrical factors such as 

TEM foil thickness, which might result in an overestimation of the pressure value.  

Therefore, after considering the geometric parameters of the specimen, the calculation of 

the actual stress applied could be possible.   Figure 2.10 shows the projection image of 

the nanoindenter tip along cross-sectioning view.      
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Figure 2.10. A schematic diagram illustrating projection image of the nanoindenter tip 

along cross-sectioned view. 

 

In the figure,         
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And the project area of the tip on top surface of the specimen will be  

      
 

    
 

 
 
           

 

 
   ,         (2.10), 

where t is the thickness of the TEM specimen as illustrated in figure 2.11. 

Therefore, once the specimen foil thickness t and indentation depth D are taken into 

account, the mean stress, σ, can be calculated by plugging equation (2.10) into (2.11) as 

illustrated in equation (2.12) 

  
 

 
    (2.11), 
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Finally, maximum stress could be calculated in equation (2.13) 

       
 

   
 

    
 
  

           
 

 
  
  

 

 
    (2.13) 

 

 
 

Figure 2.11. A schematic diagram illustrates alignment of TEM specimen and 

nanoindenter tip, including the positions of the specimen, the electron beam, and the 

(conical) nanoindenter tip and the specimen moving direction [108, 109]. 

 

2.4. X-ray diffraction  

X-ray diffraction (XRD) is one of the most widely used nondestructive crystal 

structure analysis technique as providing the lattice constant and orientation of the 

crystal.  Especially, application for the thin film materials can help to identify the strain 

effect along the interface between the film and substrate, which may suggest more 

detailed study of the defects in the the film.  Figure 2.12 shows the schematic set up of 

X-ray spectrometer.  For the operation, there are couples of factor to be noted.  First, 

incident direction of the x-ray beam should be orthogonal to the surface of the reflecting 
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plane.  Second, the incident beam and diffracted beam should form angle 2θ.  In the 

schematic, once the incident beam diffracted by the plane surface, the diffracted beam 

could be measured by the detector D as rotating with a certain angle respect to sample 

position C.  

 

 
 

Figure 2.12. Schematic diagram of X-ray spectrometer [110]. 

 

Basic operation mechanism of this technique can be explained based on the 

Bragg’s law as shown below: 

                     (2.14)    

Once the parallel and monochromatic X-ray beam presents on the surface of material 

with a certain wavelength (  ~ 1.540Å) along variation of angle of incident beam, the 

incident beam is diffracted by a set of crystal planes spaced with d along a certain 

direction.  And high intensity of a peak for the plane could be resulted at a corresponding 

angle θ based on the Bragg’s law.  Finally, based on the peak value, the crystal structure 
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of the material could be characterized.  Particularly, the information from the width and 

degree of the intensity peak could be essential enough to determine the crystallinity of 

the material based on the size of its unit cell.   

There are several factors introducible affecting on the variance of peak width.  

First, due to the wave destructive interference resulted from periodicity of atomic 

arrangement, the width of the diffraction peak could increase as the reduction of crystal 

thickness.  Figure 2.13 shows effect of particle size on the width of the peak.  Based on 

this diagram, size of the particle can be estimated by    
    

      
 since the width of the 

peak, B, is defined as the difference between 2θ1 and 2θ2. 

 

 
 

Figure 2.13. Plots show effect of particle size on the peak width [110]. 

 

Another possible reason for the variance of the peak width is from the 

relationship between the spectral width of the x-ray source and diffracted angle θ.  The 
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term of “spectral width” can be rephrased as the wavelength width or wavelength 

interval.  And because such wavelength width from the source is proportional to tanθ, as 

the θ is closer to 90°, increase of the peak width can be caused by misorientation of 

“checker” structured crystal of a material.  For example, once the angle for 

misorientation between the crystal blocks is defined as ε, the diffracted peak at θ for the 

single crystal will be broadened up to θ + ε.  Additional to the variance of the peak width, 

the intensity of the peak could also be affected by the “checker” structured crystal.  In 

other words, the peak intensity is highly affected by the crystallinity of the material.  

Once the atomic arrangement is irregular, the constructive and destructive interference 

won’t be come out due to random phase.  And then, the intensity of the x-ray beam can 

be estimated by the summation of all the x-ray intensities scattered.  For example, the 

intensity of the refracted beam as scattered can be formulated with NA2, where N is the 

number of scattered rays and A is amplitude of the rays.  However, once the beam hits 

the well-oriented crystal, and the refracted beam could be explained based on Bragg’s 

law, the intensity of the beam could be reformulated with N2A2, where NA is the 

amplitude of the rays instead of A.  Therefore, a material with high crystallinity can have 

higher intensity than that with low crystallinity or amorphous state.      
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Figure 2.14. Plots describe the effect of lattice strain on the peak width, intensity and 

position [111]. 

 

Additional to the information about the size of grain and crystallinity of materials, 

X-ray diffraction technique can also analyze the strain effect of the grain or thin film 

based on the peak position along with the crystallinity as illustrated in Figure 2.14.  Once 

a uniform tensile strain is felt by the film or grain, the d-spacing of the material can be 

larger than its bulk value.  On the other hand, the materials are under a uniform 

compressive strain, the d-spacing can become smaller.  Therefore, the corresponding 

peak position could be shifted to the lower angle under the tensile strain and the higher 
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angle under compressive strain (Figure 2.14b).  However, as the thin film is under non 

uniform strain with which the top area of the film is under the tensile strain and the 

bottom area near the interface between the film and substrate is under the compressive 

strain, XRD peak shows the increase of the width with lower intensity caused by the 

imperfect crystal orientation (Figure 2.14c).  Then only preferred orientation which is 

perpendicular to the beam direction can contribute the peak intensity.   

 

2.5. Pulsed laser deposition system 

Since laser assisted thin film deposition was initially carried out in 1960s, and 

Dijkkamp and Venkatesan demonstrated deposition of YBa2Cu3O7 as a high temperature 

superconducting material by laser deposition method in 1987 [112], currently pulsed 

laser deposition (PLD) system is applied for high quality thin film fabrication.  PLD is 

one of the physical vapor deposition systems for thin film processing.  Basic operational 

mechanism for this system is mainly depending on the laser ablation after the pulsed 

laser hits the surface of the target material inside of vacuum chamber.  Once the pulsed 

laser strikes the target material, the evaporated materials from the target can fly through 

the plasma plum and deposit on the surface of the substrate.  Thus, because the film 

deposition is carried out directly by the laser process, this technique is relatively simpler 

than other methods.  For the film processing, high vacuum condition in the chamber is 

required.  Before the deposition, backing pressure of the chamber should be reduced up 

to 10-7 mbarr range.  And the pressure can be controlled by the mechanical and turbo 

molecular pumps.  Once the laser is on operation, the high spatial coherent beam of the 
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lasers allows extreme focusing and directional irradiation with high energy densities.  

With such a monochromatic laser light, it can be possible to have narrow band excitation 

of the laser.  And the pulsed excitation of the laser maintains the transient resolution.  

Then, based on these capabilities, PLD system shows several advantages over other 

deposition techniques such as evaporation or chemical vapor deposition methods.  First, 

PLD can produce the high quality stoichiometric films with complex composites, 

maintaining the low contamination levels.  And almost all metals and complex ceramic 

materials can be processed.  Multi-targets can be used to grow single or multi layer thin 

films.  During the deposition, extra gases such as O2 or N2 can be introduced as 

maintaining the film stoichiometry of oxides and nitrides.  Finally, the film property can 

be variable by the in situ control.  Therefore, based on these advantages, different thin 

film properties can be achieved.        

The schematic diagram of the PLD experimental setup is illustrated by the figure 

2.15.  In the chamber, multiple target holders are located face to face with the substrate 

holder.  The targets could be mounted on the target holders at which the surface of the 

target is 45° tilted respect to the incident direction of the excimer laser beam.  Once a 

high power laser strikes the target through the optical focusing lens, it can generate the 

heat energy to vaporize the target materials.  Under the laser ablation, through the 

plasma plum, the evaporated materials can travel onto the surface of the substrate 

attached on the substrate holder positioned about 3~5 cm away from the surface of the 

target.  During the thin film deposition, the substrate temperature can be changeable in 

the range between room temperature and 800 °C.   
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Figure 2.15. Schematic diagram illustrates the laser physical vapor deposition system 

[113]. 

 

There are several parameters to affect the quality of the thin films such as 

repetition rate of the laser pulse, substrate temperature, laser energy density, distance 

between the target and substrate and partial gas pressure of the chamber.  Especially, 

presence of the partial gas in the chamber highly affects the surface coverage of the 

plume.  For example, under high partial gas pressure, the mean free path of adatom from 

the plume can be reduced after it collides with the partial gas atoms.  Then the plum can 

cover the relatively small area of the substrate.  Meanwhile, as the mean free path of the 

adatom increases under high vacuum condition, the plume can cover the larger area of 

the substrate.  Therefore, under such various deposition conditions of PLD system, 

growth of different structures of the thin films is possible.  However, in spite of the fact, 
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in order to comprehend the mechanism of PLD processing, study of interaction between 

the laser and target is inevitable.  And the interaction during the laser ablation should be 

explained based on physical phenomenon with equilibrium and non-equilibrium 

processes which can be decided by the physical properties of laser and target materials.  

Once the pulsed laser beam strikes the target, laser radiation can be absorbed by the 

target surface.  Then, as electromagnetic energy transferred from the laser to target, it 

can be converted to different forms of energy source, such as electronic excitation, 

thermal, chemical and mechanical energies, to evaporate the target material.  During the 

evaporation, usually other processes such as ablation, excitation, plasma formation and 

exfoliation are accompanied.  Eventually, these processes generates a plasma plume 

resulted from a mixture of energetic atoms, molecules, electrons, ions, clusters, micron-

sized solid particulates and molten globules. The short mean free path after the collision 

between the species results in the rapid expansion of the plum from the target surface.   

To further understand the mechanism of the plum formation, detailed 

descriptions of the formation of the plume during the laser-target interaction is shown in 

figure 2.16.  Once a laser pulse initiated on the target surface with its intensity of I0 exp(-

α), the interaction process can be explained with three different steps until a plum 

formed within a few nanosecond.  On the first step, as starting with the laser pulse, the 

target materials can be evaporated as resulted from the interaction between the laser and 

target.  During the second step, further interaction between the evaporated materials and 

laser enhances the formation and expansion of the isothermal plasma.  Finally, during 
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the third step, the plasma can expand anisotropically under adiabatic condition.  This 

step is initiated at the end of the pulse.   

 

 
 

Figure 2.16. Schematic diagram illustrates different steps of laser target interactions 

during laser pulse along time variation (ns) [114]. 

 

2.5.1. Interaction between the laser beam and target 

As the laser–target interaction initiated, the beam with intensity of I0 exp(-α) can 

be absorbed by the target up to the depth of x. Then, the high electromagnetic energy of 

the laser pulse is transferred to the different energy forms to generate the heat to melt 

and evaporate the materials from the target surface layer.  Usually, the heating, melting 

and evaporation rate with the pulsed laser rely on the parameters of the laser and 

properties of the target materials.  The laser parameters include the laser energy density, 
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pulse duration (frequency of the pulse), wavelength of the laser and shape of the laser 

pulse.  For material properties, optical reflectivity, absorption coefficient, heat capacity, 

thermal conductivity, density, etc. can be explained.  Such heating and melting effects of 

the laser beam govern the heat flow through the target.  Thermal diffusion distance 

defined as 2(Kt)1/2 explains how far the heat can transfer with the spreading time of t and 

diffusivity, K.   And during PLD processing, heat flow through the target can be 

explained by the equation (2.15) shown below:  

          
       

  
  

 

  
      

       

  
                                      (2.15), 

where x and t are the distance normal to the surface of the sample and the time.  Ρi(T) is 

density, Cp(T)  is thermal heat capacity, R(t) is the reflectivity, and a(T) is the absorption 

coefficient and I0(t).  Ρi(T), Cp(T), R(t) and a(T) are all temperature dependent functions.  

I0(t) is the intensity of the incident laser.  The term of Ki(T) is for the thermal 

conductivity.  Depending on the values of subscript, i, which stand for solid (when i=1) 

and liquid (when i=2) phases, the K value can be varied by the state of the different 

material phases.  Based on this equation, the prediction of the heat transfer through the 

target material is possible.        

As the evaporation after the melting of the target material proceeding, the 

position of the target surface can be changeable.  Therefore, based on the energy balance 

approach, it can be possible to calculate the amount of the evaporated material by the 

laser pulse which can be considered similarly as the amount of the energy needed for the 

film deposition without any energy loss between two procedures.  The balance equation 

can be explained with the equation (2.16) given by: 
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            (2.16), 

where Δxi  is change of thickness of the target after evaporation, R is the reflectivity, ΔH 

is the amount of the heat absorbed by unit mass, Cv is heat capacity under constant 

volume, and ΔT is the change of the temperature.  And the threshold energy Eth stand for 

the minimum energy required for the evaporation.  This equation can be only applied for 

the case with shorter absorption length than that of the thermal diffusion within in the 

target material.    

 

2.5.2. Interaction of the laser beam with evaporated materials 

After the materials from the target are evaporated, as the evaporated materials 

still on the way of the laser path, further interaction of these species with the laser could 

be expected.  Once the laser beam strikes the target surface, the temperature of the 

surface layer can be significantly increased (> 2000K).  Then positive ions and electrons 

can be emitted from the surface.  Such phenomenon of these species emissions could 

exponentially increase about the increasing temperature.  And it can be estimated by 

Langmuir-Saha equation (2.17) shown below:           

  

  
  

  

  
                                   (2.17), 

where i+ and i0 are fluxes of positive and neutral ions emitted from the surface at a 

certain temperature of T.  g+ and g0 are the weights of the ions which are on the ionic 

and neutral states.  f is the work function of the electron.  And I is the material ionization 

potential.  Based on the equation, under condition of I > ϕ, the flux of the neutral ions 

will exponentially increase with increase of the temperature.   Such higher temperature 
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can be achieved after interaction of the evaporated species with the laser resulting in the 

plasma formation.  Electron-ion density, temperature and wavelength of the laser can 

decide how laser beam can penetrate and be absorbed by the plasma.  And the plasma 

frequency can decide whether the incident laser can be reflected or penetrate the plasma.  

This frequency can be formulated as fp = 8.9 × 103
ne

0.5, where ne is the concentration of 

the electrons in the plasma.  For the transmission and further absorption process of the 

laser beam, the plasma frequency should be lower than that of the laser beam.  

The primary absorption mechanism for plasma is based on the electron-ion 

collisions.  Once a photon is absorbed by the free electron, the absorption process can 

occur under which the absorption coefficient is expressed by the following equation 

(2.18): 

             
    

 

           
  

  

  
 
                             (2.18), 

where z, ni and T are the parameters of the plasma, i.e. average charge, ion density and 

temperature.  h is the Plank constant, f is the frequency of the laser and k is Boltzmann 

constant.  The term of       
  

  
   stands for decay of the processing due to the 

emission.  Therefore, based on the equation (2.18), it can be explained that the heating of 

the evaporated materials by the absorption of laser radiation is highly relying on the 

concentration of ion, temperature of plasma, wavelength with the frequency of the laser.           



 

79 
 

 

 
 

Figure 2.17. Schematic diagram shows presentation of different phases during the 

interaction of laser beam with the target surface [114]. 

 

Figure 2.17 shows a schematic diagram of the interaction of laser beam with the 

target surface.  In the diagram, it is shown that the four different regimes exist during the 

laser processing by the separation with different phases.  The first regime marked by ‘A’ 

illustrates the area of the bulk target which has not been affected by the laser beam.  The 

second regime ‘B’ stands for the target surface area in which laser can penetrate and 

materials can evaporate.  The next regime of ‘C’ shows the area adjacent to the target 

surface in which the dense plasma can absorb the laser radiation.  Finally, in the regime 

‘D’, expansion of the plasma plum can exist, which is transparent to the laser beam.        

        

2.5.3. Adiabatic plasma expansion and film deposition 

After the pulse of laser, no more laser energy absorption by the target transfers 

particles from the target to the plasma plum.  Then under adiabatic condition, anisotropic 
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expansion of the plasma plume can be enhanced, which can be explained by the relation 

as shown below: 

T[X(t)Y(t)Z(t)]γ
-1

 = const                     (2.19),  

where γ is the ratio of the specific heat capacities at constant pressure and volume.  

During the adiabatic regime, the conversion of the thermal energy into the kinetic energy 

can occur as the plasma expanded under high velocity.  Therefore, the dimension of the 

plasma which initially has larger size along X and Y direction than Z direction can be 

expanded along the Z direction with increase of the velocity under adiabatic condition.    
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CHAPTER III  

GRAIN AND GRAIN BOUNDARY ACTIVITIES OBSERVED IN ALUMINA-

ZIRCONIA-MAGNESIA SPINEL NANOCOMPOSITES BY IN SITU 

NANOINDENTATION IN TRANSMISSION ELECTRON MICROSCOPE* 

 

3.1. Overview 

At room temperature, in situ nanoindentation experiments in a transmission 

electron microscope reveal the grain and grain boundary activities in fully dense ceramic 

nanocomposites composed of Al2O3 : ZrO2 : MgAl2O4 (AZM) processed by spark 

plasma sintering (SPS).  The composites have a bi-modal grain size distribution, where 

the larger grains (500 nm – 1 m in diameter) consist of Al2O3 and MgAl2O4 grains, and 

the smaller grains (100 – 300 nm in diameter) are primarily ZrO2.  In situ dynamic 

deformation studies show that the AZM nanocomposites undergo the deformation 

mainly through the grain-boundary sliding and rotation of small grains, i.e., ZrO2 grains, 

and some of the large grains, i.e., MgAl2O4 grains.  We observed both plastic and elastic 

deformations in different sample regions in these multi-phase ceramic nanocomposites at 

room temperature.  

 
 
 

 
*Reprinted from “Grain and grain boundary activities observed in alumina–zirconia–
magnesia spinel nanocomposites by in situ nanoindentation using transmission electron 
microscopy” by J. H. Lee, I. Kim, D. M. Hulbert, D. Jiang, A. K. Mukherjee, X. Zhang, 
H. Wang, Acta Materialia 14 (2010) 4891. Copyright (2010), with permission from 
Elsevier.   

http://www.sciencedirect.com/science/journal/13596454
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3.2. Introduction 

Nanostructured ceramic materials have demonstrated superior performance and 

are capable of meeting requirements of structural materials in wide applications [115-

117].  More importantly, ceramic nanocomposites that combine multi-functionalities 

from different constituents demonstrate an outstanding combination of physical 

properties [23-25].  Although ceramics usually have very high hardness, they exhibit low 

fracture toughness and poor machinability.  In the past decade, a significant amount of 

work has been done to further enhance the strength and fracture toughness of ceramic 

materials.  Initial work by Niihara suggests that, by incorporating nanosize dispersions 

within the matrix grains and at the grain boundaries, significant enhancement in 

mechanical properties can be achieved at both room temperature and high temperatures 

[7].  The ceramic nanocomposites show significantly improved toughness by 50-100% 

or higher, and an increase in hardness of three to five times depending on systems at 

room temperature.  It was reported that these composites are toughened primarily by 

crack deflection due to nanosize particles within the matrix grains.  Following this 

pioneering work, several other ceramic nanocomposites with enhanced fracture 

toughness and hardness have been demonstrated [118-120].  Recently spark plasma 

sintering (SPS) has been introduced to produce ceramic nanocomposites with enhanced 

fracture toughness at a lower sintering temperature and for a shorter time than 

conventional sintering techniques [121, 122, 28].  As the grain size decreases at lower 

sintering temperature and shorter sintering time, the strain rate during plastic 
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deformation can be enhanced based on the Mukherjee-Bird-Dorn Equation as follows 

[123]. 

    
    

  
 
 

 
 
 

 
 

 
 
 

                                                              (3.1) 

where G is the elastic shear modulus, b is the Burgers vector, k is the Boltzmann's 

constant, T is the absolute temperature, d is the grain size, p is the grain-size dependence 

coefficient, n is the stress exponent, Q is the activation energy, D0 is the diffusion 

coefficient, and R is the gas constant. 

Several conventional methods such as high temperature tensile testing, X-ray 

diffraction (XRD) analysis, and scanning electron microscopy (SEM) have been used to 

analyze the deformation mechanisms of ceramic nanocomposites [20, 124, 125].  

However it is quite difficult to determine the deformation mechanism(s) explicitly 

without a direct observation of the microstructural evolution during deformation.  

Recently, in situ nanoindentation in the column of transmission electron microscope 

(TEM) has been developed to examine material deformation mechanisms, mainly in 

metallic samples including Al [126] and Ni [127].  In situ nanoindentation on ceramic 

materials is rare [94].   

In this study, we have conducted an in situ nanoindentation study on alumina-

zirconia-magnesia spinel (Al2O3-ZrO2-MgO, AZM) nanocomposites prepared by SPS to 

explore the deformation behavior of ceramics nanocomposites.  This system has been 

previously shown with high-strain-rate superplasticity at high temperatures because of 

its unique multiphase structure [20].  Later, fully dense and porosity-free AZM 

nanocomposites were demonstrated by using SPS technique [128, 46].  It is important to 
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further understand the deformation and energy-dissipation mechanisms through the grain 

and grain boundary activities in the multi-phase structures.  Detailed conventional TEM 

analyses and ex situ nanoindentation studies were performed prior to the in situ TEM 

work.   

 

3.3. Experimental  

Fully dense AZM nanocrystalline ceramics consisting of four parts ZrO2, three 

parts Al2O3, and three parts MgAl2O4 by volume were processed by SPS.  The 

superplastic forming was carried out at a temperature of 1150 ºC and a strain rate of 10-2 

s-1.  During SPS, the samples were superplastically deformed to a special form by a die 

set.  Shear (area a) and compressive (area b) stress regions were created and cut for TEM 

specimens as illustrated with inset in Figure 3.2b.  Multiple TEM specimens from both 

regimes were prepared through a conventional method including cutting, grinding, 

polishing, and ion milling.  Conventional TEM and energy-dispersive X-ray 

spectroscopy (EDX) mapping were conducted on the samples to resolve the 

microstructure and composition of the nanocomposites.  In situ nanoindentation was 

conducted using an in situ nanoindentation holder manufactured by NanoFactory, Inc.  

The samples were controlled in three dimensions (3D) by a piezoelectric actuator.  Both 

conventional TEM and in situ TEM analyses were conducted within a JEOL2010 

analytical electron microscope with a point-to-point resolution of 0.23 nm.  Images and 

movies during indentation events were captured using a built-in CCD camera in the 

microscope.  Within the TEM column, the indentation experiments were performed 
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using the nanoindentation tips made of diamond in both conical (tip radius  ~100 nm and 

tip angle ~ 70°) and standard Berkovich (tip radius ~100 nm and tip angle ~ 142.3°) 

geometries.  The sharp conical shape tip was used for performing nanoindentation on 

specific grains or positions in the sample and both the conical- and the standard 

Berkovich-shape tips were used for standard load-displacement measurements.  In situ 

movies and TEM images were taken during the nanoindentation experiment. The 

detailed indentation experiment set-up (with a conical-shape indentation tip) is 

illustrated in Figure 3.1. During the indentation experiment, the nanoindentation tip was 

stationary while the sample was driven closer to the tip by a piezoelectric stage in a 

precision movement as fine as 0.1 nm per step.  During the loading process, a constant 

loading rate of 10 nms-1 and a holding time of 15 ms were used for all the indentation 

experiments.  A standard nanoindentation holder manufactured by Nanofactory, Inc. can 

reach a maximum load of 1000 μN and a maximum loading depth of 700 nm. For most 

of the experiments in this study, a maximum depth of 250 nm and a maximum load of 

200 μN were set to avoid tip damage.  Prior to the in situ nanoindentation work, a 

detailed conventional nanoindentation study was performed by a Hysitron nanoindentor 

at a constant load mode. 
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Figure 3.1. A schematic diagram illustrates in situ nanoindentation experimental setup, 

including the sample, electron beam and naoindenter tip (a conical-shape tip) positions, 

and sample moving direction.   

 

3.4. Results and discussion 

Figures 3.2a, b, and c, d, show the bright field TEM images of AZM samples cut 

from the compressive and the shear regions, respectively.  In the low magnification TEM 

images (a, c), it is clear that, in both cases, all of the grains are elongated along a certain 

direction, which is identified as the deformation direction during the SPS process 

(marked by arrows in the figures).  More interestingly, these samples show an obvious 

bi-modal grain size distribution, as shown in Figure 3.2e.  The large white grains (grains 

with bright contrast in the images), further identified to be either Al2O3 or MgAl2O4 with 

grain size ranging from 290 nm to 1.1 μm (an average grain size of 830 nm), are aligned 

along the elongation direction and are surrounded by the small black grains (grains with 

dark contrast in the images), ZrO2 with an average grain size of 220 nm (Figure 3.2e).  

Figures 3.2 b and d are taken at higher magnification to resolve the grain boundary 
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structure between the white/large and black/small grains.  An important nature of the 

samples is that very little or no porosity is observed at the grain boundaries from either 

region; which resulted from its unique grain arrangement and multi-phases.  This also 

suggests that the samples are fully dense, ideal for conducting in situ nanoindentation 

studies. The ZrO2 grains are arranged as a “necklace” pattern surrounding several 

elongated large Al2O3 and MgAl2O4 grains.  It is likely that, during SPS process at 

elevated temperatures, the small ZrO2 grains undergo sliding and rotation to facilitate the 

deformation and realignment of the large Al2O3 and MgAl2O4 grains.   

To confirm the composition of the grains, EDX mapping studies were performed 

on AZM composites cut from the compressed regions and an example is given in Figure 

3.3. The image covers a grain boundary area between several small black (Yttria- 

stabilized ZrO2, YSZ) grains and a large white (MgAl2O4) grain (Figure 3.3).  Each map 

corresponds to one element of interest.  Based on the EDX scans, it is clear that the large 

hexagonal shaped grain corresponds to the Al- (3a), Mg- (3b) and O- (3c) rich area 

which is identified as a MgAl2O4 grain.  The surrounding grains are Zr- (3d), Y- (3e) and 

O- (3c) rich and identified as ZrO2 grains.  Most of the elements are uniformly 

distributed in the grains without any grain boundary segregation.  The overall 

composition analysis is consistent with the above microstructural analysis.      
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Figure 3.2. a) Low magnification TEM image and b) enlarged image of a specimen cut 

from the compressive region.  c) Low magnification TEM image and d) enlarged image 

for a specimen cut from the shear region.  Insert shows a SPS processed AZM bulk 

sample where “a” and “b” regions were under shear and compressive stress, 

respectively, during SPS process.  e) Grain size distribution of Al2O3 and MgAl2O4, and 

ZrO2 grains (AZM) shows a clear bi-modal distribution. 
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Figure 3.3. EDX mapping indicates a hexagonal MgAl2O4 grain is surrounded by small 

YSZ grains.  Grain boundaries are quite clean and obvious without any obvious grain 

boundary intermixing. 

 

Conventional nanoindentation was first performed on the samples from both the 

compressive and the shear regions.  The nanoindentation experiments were performed 

under constant loads at 3000 and 5000 µN.  Under both loads, the hardness of the 

samples ranges from 16 to 27 GPa. This is mainly due to the intrinsic hardness variation 

between the different components in the nanocomposite.  Pure bulk Al2O3 usually has a 

high hardness ~ 30 GPa.  ZrO2 has a hardness of ~ 19 GPa [129].  The hardness of 

MgAl2O4 is around 2~3 GPa [130].  It is highly possible that the soft region (~16 GPa) is 

composed of a large amount of MgAl2O4 with other grains while the hard region (~27 

GPa) consists of Al2O3 and ZrO2 grains and less MgAl2O4 grains.  
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Figure 3.4. a) Force-displacement and b) force-time plots show elastic deformation. A 

series of movie frames shows an elastic deformation regime with a detailed analysis in 

grain boundary activities shown in: c) before indentation; d) during loading; e) at 

maximum load; f) after indentation, and the schematic comparison for; g) between 

before indentation and right before the maximum load and h) between before and after 

indentation.  (Based on instrument specifications, the estimated measurement error of 

force is ± 5%.) 
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To understand the deformation mechanisms in nanocomposites with such bi-

modal grain size distribution, in situ nanoindentation experiments were conducted in a 

TEM column using the experimental set-up illustrated in Figure 3.1.  Based on the 

quantitative load-displacement measurement, similar to ex situ nanoindentation 

observations, we clearly identified hard and soft regions in the samples using the 

conical-shaped diamond tip.  The hard regions are mainly associated with the small 

black grains (ZrO2) and some of the large white grains (Al2O3) (corresponding to a 

maximum load of 40-45µN at a displacement of 200 nm), while the soft regions are 

mainly white grains (MgAl2O4) and some ZrO2 grains with a lower load in the range of 

20-30 µN at a displacement of 200 nm. These observations are consistent with our 

conventional nanoindentation results and support our hypothesis on the compositions of 

soft and hard regions.  

During nanoindentation experiment, the activities of grains were captured by 

movies along with the quantitative load-displacement measurements in real time.  By 

comparing the movies and the corresponding load-displacement curve, we can easily 

identify the deformation regions with either elastic or plastic deformation. We performed 

many of the indentation experiments at relatively thick regions to eliminate the concerns 

that thin sample regions could have local sample bending during indentation; which 

could result in a false interpretation. One typical experiment showing mainly elastic 

deformation is presented in Figure 3.4.  The corresponding force-displacement (F-D) and 

force-time (F-T) plots are shown in Figure 3.4a and b.  The loading process at a constant 

displacement rate continues up to 25 s with a maximum depth of 250 nm, followed by an 
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unloading process at the same rate.  First, the F-D and F-T plots (Figure 3.4a and b) 

show the nature of elastic deformation without any obvious slope change in this sample 

region. Figures 3.4c-4f are the selected snapshots during the complete loading-unloading 

experiment.  The nanoindentation tip located near the upper center in the images and the 

direction of movement of the sample are labeled in Figure 3.4c. No sample bending was 

observed during the nanoindentation experiment.  During the indentation experiment it 

was difficult to identify the grain boundary activities, which are mostly on the order of 

nanoscale.  Therefore, the grain boundaries were color-traced and compared in each 

snapshot to identify the grain boundary activities.  For example, in Figures 3.4c-h, three 

grains, A, B and C, are selected for analysis.  For clear view, a magnified image of grain 

B has been inserted in each snapshot.  Grain A is identified as a reference grain which 

shows no obvious change in shape and position during the indentation.  Once the sample 

was in contact with the tip, the loading process started.  From 0 to 25 s, 3.4c, d and e are 

under loading and from 25 to 50 s, 4f is under unloading process.  Before indentation, 

obvious grain boundaries of grains B and C can be identified (Figure 3.4c).  During the 

loading process, grain B slides up ~14 nm and the grain C rotates in clockwise direction 

about 5.6 from the reference (Figure 3.4c, e and g).  The inserts of grain C also show 

clear grain rotation.  Arrows in the inserts mark a particular section of the grain 

boundary in grain C.  Based on the positions of the arrows, it is clear that the grain 

boundary has shifted and rotated.  However after the indentation, the grains completely 

recovered, i.e. they moved back to their original positions (Figure 3.4c, f and h).  This, 

again, suggests that grain rotation can sometimes recover and result in elastic 
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deformation in certain areas of ceramic nanocomposites.  Since the sample is moving 

during nanoindentation, conducting microdiffraction on a specific small grain or a group 

of grains becomes very difficult and the results might not be very conclusive, as most of 

the grains range in size from 100-200 nm.  Therefore, we mainly focused on the image 

analysis for this study.       

 

 
 

Figure 3.5. a) Force-displacement and b) force-time plots show a clear step and the 

corresponding TEM images at point a and point b. This clearly indicates a plastic 

deformation regime resulted by grain rotation and realignment. (Based on instrument 

specifications, the estimated measurement error of force is ± 5%.) 
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Similarly, we also identified a few areas with a clear indication of plastic 

deformation.  One such example is shown in Figure 3.5.  Here grain A went through 

little to no change in position.  Therefore, grain A is considered a reference grain for the 

analysis.  During loading, the F-D and F-T plots (Figure 3.5a and b) show a clear step 

from 12.3 s to 13.9 s which corresponds to a displacement at ~125 nm.  For this 

experiment, the conical nanoindenter tip was positioned at the upper right corner in the 

images (marked in Figure 3.5c).  At 12.3 s the snapshot image shows an obvious grain 

boundary around grain C (Figure 3.5c).  Within this step period (Figure 3.5d, at 12.98 s), 

the width of the grain boundary of grain C increased significantly (the width change 

marked as arrows in Figure 3.5d and 5e) along with an obvious change in contrast.  

Enlarged images of the grain boundary of grain C are shown as an inset in Figure 3.5c-e 

to show the obvious change in grain boundary width.  At 13.97 s the grain boundary 

width reached its maximum at the end of the step.  This observation suggests that grain 

C starts to rotate in order to accommodate the stress induced by the deformation, which 

results in a local plastic deformation regime (i.e., the step regime) in the loading-

unloading curve.  The correlated qualitative and quantitative analyses clearly 

demonstrate that a small plastic deformation regime can exist in ceramic nanocomposites 

as a result of grain rotation and grain realignment to accommodate the load and 

deformation.  

The maximum instantaneous pressure where the step occurred can be estimated 

from Equation 3.2 based on the Hertz contact model [107].  

  
     

 
                                                                             (3.2) 
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Where F is the load, E* is the reduced modulus, and R is the radius of curvature of the 

indenter.  Given the load ~18.0 µN at the step, the value of E* ~200 GPa measured by 

conventional nanoindentation and the tip radius of 100 nm, the estimated pressure at the 

step using Equation 3.2 is around 24.0 GPa.  However this estimation did not take into 

consideration geometrical factors such as TEM foil thickness, which might result in an 

overestimation of the pressure value.  If the sample foil thickness t and indentation depth 

D are taken into consideration, a geometry-based pressure analysis using the schematic 

illustrated in Figure 3.1 can be performed by applying Equations 3.3 and 3.4 below.   

The mean stress, σ, is calculated by using 

  
 

 
    (3.3), 

where F is the load (force) and A is the projected contact area.  For the special geometry 

of a conical indentation tip and a thin TEM foil as illustrated in Figure 3.1, A is given as 

below, 

      
 

    
 

 
 
           

 

 
            (3.4) 

Where t is sample foil thickness, D is indentation depth, R is the tip radius, and α is the 

tip angle.  The estimated mean stress is ~ 2.2 GPa with a measured load F of 18.0 µN, a 

tip radius R of 100nm, indentation depth D around 120 nm, foil thickness t of 30 nm, 

and a tip angle α of 70o.  Using the Hertz theory of elastic contact, the maximum stress is 

3/2 times the mean stress, ~ 3.3 GPa.  This estimation is much smaller than the value 

calculated using Equation 3.2, and provides a lower bound for the real stress applied 

during in situ nanoindentation tests.  In this analysis, bending of the TEM foil is not 

considered since bending is not detected in the current in situ studies.  Our lower bound 
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estimation using the geometrical analysis could be more reliable for the case of in situ 

nanoindentation study as the sample and tip geometry, indeed, play an important role in 

the overall pressure (stress) calculation. 

 

 
 

Figure 3.6. During indentation obvious grain rotation, grain-boundary sliding and plastic 

deformation were observed.   A detailed grain boundary study has been performed to 

analyze the grain activities during deformation as shown in: a) before indentation; b) 

during loading; c) during unloading; d) after indentation, and schematic comparison for; 

e) between before indentation and after the maximum load and f) between before and 

after indentation. 
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To clearly identify the grain rotation and grain-boundary sliding, more detailed 

grain boundary analysis has been performed on the TEM movie frames in Figure 3.6.  

From 0 to 20 s, Figure 3.6a and 6b were taken during loading, and from 20 to 40 s, 

Figure 3.6c and 6d were recorded during unloading process.  Figure 3.6c was taken right 

after the maximum load.  About the reference grain A, the relative position between 

grain B and C did not change significantly during loading in Figure 3.6a and b.  But after 

the maximum load (Figure 3.6c), grain B rotated by about 9.06o clock-wise and grain C 

moved up by ~36 nm from its original position (Figure 3.6c and the corresponding grain 

diagram in 3.6e). After unloading was complete, as shown in Figure 3.6d and the 

corresponding grain diagram in 6f, both grains B and C have shifted up ~31 nm from 

their original position but the rotation of grain B was recovered.  The grain boundary 

shift and grain rotation of grain B are enlarged as insets in Figure 3.6a-d.  The arrows 

mark one particular section of grain boundary for grain B where obvious grain boundary 

activities were observed.  For example, the marked edge of grain B in the inset of 6a 

became shorter during the loading process (inset in 6b), is the shortest at the maximum 

load (inset in 6c), and almost recovered to its original length when unloading was 

complete (inset in 6d).  The length and position variation of grain boundary in grain B 

could be the sum of results from its grain rotation and grain-boundary sliding.  This 

clearly demonstrates the grain boundary activities in ceramic nanocomposites by 

comparing the images from before (Figure 3.6a) and after indentation (Figure 3.6d) 

using grain A as a reference.  It is noted that the grain rotation is essentially recovered 



 

98 
 

 

after unloading process, whereas the grain-boundary sliding did not completely recover 

in this case.               

 Grain rotation and grain realignment have been previously reported in 

microcrystalline metals [131, 132] and nanocrystalline metals [133-135].  These grain 

activities were summarized as cooperative grain-boundary sliding and grain rotation 

phenomena in superplastic deformation, mainly observed in metals.  The above in situ 

nanoindentation experiments suggest that the deformation in these ceramic 

nanocomposites, especially in certain local and specific sample regions with unique 

grain arrangements, shows the nature of elastic or plastic deformation at room 

temperature.  The main deformation mechanism is the grain rotation and grain-boundary 

sliding, which is quite similar to that observed in metals [126, 127].  This is surprising as 

generally the plastic deformation regimes in ceramics are very short [136] and only 

observed at relatively high temperatures [20, 137].  However, the in situ nanoindentation 

experiments indicate that both elastic and plastic deformations occur in ceramic 

nanocomposites at room temperature.  

It is noted that the plastic and elastic deformations were observed in different 

regions in the composites.  This suggests that grain morphology and arrangement 

strongly affect the local deformation and energy dissipation mechanisms.  For example, 

the cases illustrated in Figure 3.5 and 3.6 show a small amount of plastic deformation 

process and Figure 3.4 shows mainly elastic deformation.  By comparing the grain 

structures in Figure 3.4-6, it is obvious that Figure 3.5 and 6 are in the regions where 

large white contrast grains (Al2O3 and MgAl2O4) were in direct contact with the indenter 
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and only a few small grains were at the left corner of the images.  These regions (Figure 

3.5 and 3.6) were softer than the case in Figure 3.4.  During indentation, the main 

contrast change and grain activities were found mainly in the large grains, e.g. grain B in 

Figure 3.6.  It is also interesting to note that a relatively low pressure (~ 3 GPa, estimated 

by geometrical analysis) can trigger the grain boundary rotation and sliding events in a 

certain region.  This observation of localized plastic deformation suggests that, at a 

certain location (Figure 3.5), the soft MgAl2O4 grains, e.g. grain B, may deform 

plastically and facilitate deformation in the form of grain rotation and sliding with 

neighboring grains.  However, these soft MgAl2O4 grains are relatively large and the 

grain boundary activities were not fully recovered. In contrast, the region in Figure 3.4 

has a unique “necklace” pattern with several large grains (Al2O3 and MgAl2O4) 

surrounded by many small grains (ZrO2).  The indenter tip was in direct contact with the 

small ZrO2 grains.  In Figure 3.4, the contrast variations were mainly observed in the 

black ZrO2 grains, which suggests that ZrO2 grains were highly active during the 

deformation process.  In F-D curves in this region, we mainly observed elastic 

deformation.  This, again, confirms our hypothesis that the unique “necklace” pattern 

helps in accommodating the load (the same as that during SPS process) and the small 

black ZrO2 grains actively assisted in the deformation process and the flow of large 

Al2O3 and MgAl2O4 grains.  More interestingly, this particular grain arrangement can 

fully recover after the deformation and grain boundary activities.  The effect of ZrO2 was 

proposed to play a major role in the accommodation of grain-boundary sliding, i.e., 

stress relaxation during high-strain-rate deformation in AZM nanocomposites [20].  
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Additionally, after indentation, no obvious crack or void was observed in the specimen. 

One explanation for this is that the sample is under compression during nanoindentation 

and, therefore, cracking or voiding is less likely to form in the ceramic nanocomposites. 

Other factors are the strain-relaxation from soft MgAl2O4 grains and the active grain 

boundary activities of ZrO2 grains.  This in situ study is direct evidence of the grain 

activities of the small ZrO2 grains in the overall deformation process.  Further analysis is 

under way to identify the best geometry and ratio of the AZM nanocomposite in 

achieving superplasticity.  

 

3.5. Conclusions 

Fully dense AZM ceramic nanocomposites were consolidated by SPS and 

prepared for the in situ nanoindentation experiment in a TEM column.  Through 

conventional TEM study, we observed a unique “necklace” grain structure with bi-

modal grain size distribution, where all the large white grains (Al2O3 and MgAl2O4) are 

surrounded by small ZrO2 grains.  Through in situ nanoindentation experiment, we 

monitored the grain activities during deformation.  We found that in certain areas where 

a clear ‘necklace’ structure exists, the region mainly went through elastic deformation, 

i.e., the grains recover to their original alignment after indentation by the assistance of 

the strong grain activities in the small ZrO2 grains.  In other regions where mainly the 

hard Al2O3 and soft MgAl2O4 grains exist, a certain amount of plastic deformation was 

observed and the grains undergo a series of grain rotation, grain-boundary sliding, and 

realignment.  This experiment demonstrates elastic and plastic deformation through 



 

101 
 

 

grain and grain boundary activities in local grain areas of multi-phase ceramic 

nanocomposites at room temperature.  This in situ study could provide useful insight for 

future designs of ceramic nanocomposites with superplasticity.  
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CHAPTER IV  

DIRECT OBSERVATION OF TWIN DEFORMATION IN YBCO THIN FILMS 

BY IN SITU NANOINDENTATION IN TEM* 

 

4.1. Overview 

The deformation behaviors of YBa2Cu3O7-x (YBCO) thin films with twinning 

structures were studied by in situ nanoindentation experiment in a transmission electron 

microscope (TEM).  The YBCO films were grown on SrTiO3 (001) substrates by pulsed 

laser deposition.  Both ex situ (conventional) and in situ nanoindentation were conducted 

to reveal the deformation of YBCO films from the directions perpendicular and parallel 

to the twin interfaces.  Hardness measured perpendicular to twin interfaces is ~50% and 

40% higher than that measured parallel to twin interfaces, by ex situ and in situ, 

respectively.  Detailed in situ movie analysis reveals that twin structures play an 

important role in deformation and strengthening mechanisms in YBCO thin films.  

 

 

 

 

 

 

 
*Reprinted from “Direct observation of twin deformation in YBa2Cu3O7-x thin films by 
in situ nanoindentation in TEM” by J. H. Lee, X. Zhang, H. Wang, Journal of Applied 
Physics 109 (2011) 083510. Copyright (2011), with permission from American Institute 
of Physics 
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4.2. Introduction 

Since high temperature superconducting (HTS) YBa2Cu3O7-x (YBCO) was 

discovered in 1987, it has garnered extensive research interests in terms of both 

fundamental physics and potential applications [138, 139].  HTS YBCO thin film coated 

conductors have recently became one of the main research directions for YBCO-related 

research because of many envisioned applications including superconducting generator, 

motors, power cables, and other devices [57-59].  Despite their excellent 

superconducting properties, the poor mechanical property of YBCO thin films limits 

their industrial applications.  Limited work has been done to explore the mechanical 

strength and toughness of YBCO through tensile and bending tests and ex situ 

nanoindentation measurement [140, 141].  It has been reported that twin structures in 

YBCO thin films enhance the overall mechanical performance, e.g., they provide a 25% 

enhancement in toughness [64].  Conventionally twin structures are observed in face 

centered cubic (FCC) metals with low stacking fault energy, such as Cu and Ag [142, 

143].  Previous reports have shown that high density twin structures improve the 

mechanical strength of Cu [3,144,145] but have little or no impact on its electrical 

properties [146].  It was reported that the enhanced plastic deformation was observed in 

bulk Al via dislocation activities at the twin boundaries [147].  Different from 

monolithic metals, twins in YBCO, one of complex oxides, are formed because of the 

nature of orthorhombic structure, where a = 3.82 Å, b = 3.89 Å and c = 11.68 Å.  The 

YBCO twins are formed along the (110) planes during the phase transition from 

tetragonal to orthorhombic phase simply by local oxygen diffusion [148, 63].  It is 
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generally believed that twins, as one type of intrinsic defects in YBCO, act as effective 

pinning centers in YBCO thin films and enhance the superconducting properties in self-

field and applied magnetic field [61, 149, 150, 151].   

Although much has been done to study the effects of twins on YBCO’s 

superconducting properties [60, 152], research exploring the effects of twins on its 

mechanical performance is scarce.  Conventional nanoindentation and optical 

microscopy observation have been performed to show the effect of the twin structure on 

the mechanical properties in bulk YBCO [153, 154].  However, the strengthening 

mechanism(s) of twinning structures in YBCO is not yet well understood.  

 

 
 

Figure 4.1. A schematic diagram describes the two different indentation directions 

(indentations have been performed on parallel with and perpendicular to the twin 

interfaces).  The inset plan-view TEM image shows that YBCO twin interfaces have two 

orientations orthogonal to each other. 
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In this paper, we combined ex situ and in situ nanoindentation tools to explore 

the twin strengthening mechanisms in superconducting YBCO thin films.  Both ex situ 

and in situ nanoindentation experiments were conducted either along [001]YBCO 

(indentation direction parallel to the twin interfaces) or [110]YBCO (indentation direction 

perpendicular to 50% of the twin interfaces and parallel to the other 50% of the twin 

interfaces) as illustrated in Figure 4.1.  

 

4.3. Experimental 

 Depositions of YBCO films on SrTiO3 (STO) (001) substrates were performed 

by pulsed laser deposition (PLD) with a KrF excimer laser (Lambda Physik LPX210i, 

= 248 nm, 10 Hz).  The laser beam was focused to obtain an energy density of 

approximately 4 J/ cm2 at a 45° angle of incidence.  The films were grown to about 420 

nm for in situ nanoindentation and 1 to 5 μm for conventional nanoindentation.  The 

substrate temperature and oxygen pressure were fixed at 790 C and 200 mTorr for all 

depositions.  No post annealing was performed. The samples were tested for 

superconducting critical transition temperature (Tc) ranging from 90 to 92 K by ac 

susceptibility measurement and critical current density (Jc) in the range of 2.5 to 5.5 

MA/cm2 by transport measurement at 77 K to ensure that all the samples had good 

superconducting properties.  Both plan-view and cross-section TEM samples were 

prepared through a conventional procedure, including mechanical grinding, polishing, 

and ion milling to be used for conventional TEM and in situ TEM studies.  The 

conventional nanoindentation study was performed by a Tribo-nanoindenter 
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manufactured by Hysitron, Inc. under a constant load mode.  In situ nanoindentation was 

conducted using an in situ nanoindentation holder manufactured by NanoFactory, Inc.  

The sample is controlled in three dimensions by a piezoelectric actuator.  Both 

conventional TEM and in situ TEM analyses were conducted on a JEOL 2010 analytical 

electron microscope with a point-to-point resolution of 0.23 nm.  Images and movies 

during indentation events were recorded using a built-in CCD camera in the microscope.  

For in situ nanoindentation experiment, indentation experiments were performed with 

conical diamond tip (tip radius ~100 nm and tip angle ~70°) for standard load-

displacement measurements within TEM column.  In situ movies and image were taken 

during the loading and unloading processes under the experiment set up described in 

Figure 4.2.  During the indentation experiment, the nanoindentation tip was fixed while 

the sample was moved toward the tip by a piezoelectric stage in a precision movement as 

fine as 0.1 nm/step.  During the loading process, a constant loading rate of 10 nm/s and a 

holding time of 15 ms were used for all the indentation experiments.  For most of the in 

situ experiments, a maximum depth of 200 nm was used to protect the tip from damage.   
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Figure 4.2. A schematic diagram illustrating the in situ nanoindentation experimental 

setup, including the positions of sample, the electron beam and the (conical) naoindenter 

tip and sample moving direction. 

 

4.4. Results and discussion 

 The hardness of the YBCO thin films was measured with conventional 

nanoindentation in the directions perpendicular to [indentation on YBCO (110) plane] 

and parallel with [indentation on YBCO (001) plane] the twin interfaces.  Figure 4.1 

illustrates two different indentation directions on YBCO thin film with respect to the 

YBCO twin interfaces.  When indenting on YBCO (001) planes (along [001]YBCO), i.e. 

parallel to twin interface, there is no or minimal effect from twins.  When indenting on 

YBCO (110) planes (along [110]YBCO), i.e. perpendicular to 50% of the twin interfaces, 

we expect about 50% of the maximum effect from the twin interfaces.  This is because 

of the two orthogonal orientations of the twins in YBCO, as illustrated in Figure 4.1.  

The inset is the plan-view TEM image of YBCO which clearly shows the two different 

orientations of the twin interfaces orthogonal to each other.  Figure 4.3a plots the 
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hardness data versus the displacement data for a series of ex situ indentation along the 

cross-section of YBCO film with a thickness of 5 μm, as illustrated in the inset.  Despite 

the indentation depth varied from 50 to 150 nm, the hardness values are consistent for all 

regions.  For region I and II (close to substrate-film interface), the mean hardness is 

around 11.9 GPa and 10.2 GPa, respectively.  For region III and IV (film surface), where 

we begin to enter the thick YBCO film regime, the mean hardness drops to 7.9 GPa and 

6.3 GPa, respectively.  The softening effect is possibly occurs because (1) the porosity of 

the film starts to play a rule as the film gets thicker, and (2) the effect of twin interfaces 

become less dominant.  To avoid potential substrate interference, the hardness of region 

II (around 10.2 GPa) is considered as the mean hardness of YBCO film when indenting 

on YBCO (110) planes.  Figure 4.3b plots the hardness data of YBCO samples with 

different film thicknesses varing from 1.5 to 5 μm.  The indentation direction is 

perpendicular to the film top surface, i.e. along [001] YBCO, as illustrated in the inset.  

The hardness was varied from 6.2 GPa for film with a thickness of 1.5 μm to 4.25 GPa 

with a thickness of 5 μm.  The slight hardness reduction is possibly due to the surface 

porosity in the 5 μm film.  However, for most of the films the hardness is about 6.2 to 

6.5 GPa.  Clearly the mean hardness value of 10.2 GPa with the indentation on YBCO 

(110) planes is much larger than that for the cases of indentation on the YBCO (001) 

planes (6.2 GPa).  This significant hardness enhancement when loading along [110] 

direction suggests that the twin interfaces are very effective in strengthening the YBCO 

films, presumably by blocking the transmission of dislocations in the matrix.  Several 

previous studies in bulk YBCO show that the indentation hardness on YBCO(110) 
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increased about 4% to 7% compared with the hardness values on YBCO (001) [64 , 

155].  However the reported twin interface effect is very small compared with our 

reported value here in YBCO thin films, which shows an increase of more than 50%.  A 

possible reason for the difference in the effect of twins in bulk and thin film YBCO is 

the different density of the twins.  Thin film YBCO has much higher twin density, with a 

small twin spacing ranging from 10 to 100 nm, while bulk YBCO has a much lower twin 

density, with twin spacing in the range of few microns.   

 

 
 

Figure 4.3. a) For the conventional indentation on YBCO (110) plane, hardness 

measurements are plotted along different indentation depths and different indentation 

positions from the interface between the film and the substrate.  b) After indentation on 

YBCO (001) plane with different thicknesses, various hardness values are plotted 

relative to different film thickness.  Insets illustrate different indentation directions with 

regard to film structure. 

 

 

50 100 150
0

3

6

9

12

15

Surface

IV

III

II

 

H
a

rd
n

e
s

s
 (

G
P

a
)

Displacement (nm)

II:  H = 10.15 +/-0.53GPa
III: H = 7.86+/- 0.5GPa
IV: H = 6.26 +/- 0.5GPa

Indent on (110) YBCO

I:   H = 11.89 +/- 0.33 GPa

I

Interface

a)  

1 2 3 4 5 6
0

2

4

6

8

10

12b)

 

 

H
a

rd
n

e
s

s
 (

G
P

a
)

Film thickness (m)

 Indent on (001)YBCO 



 

110 
 

 

 To fully understand the effect of twins on the deformation mechanisms, in situ 

nanoindentation on YBCO samples has been performed in TEM column.  Similar to the 

above ex situ nanoindentation experiments, we conducted the in situ nanoindentation 

along two directions, i.e. indenting on both YBCO (110) planes and (001) planes by 

preparing the YBCO TEM foils in two specific orientations as illustrated in the insets of 

Figure 4.4.  The loading process at a constant displacement rate continues up to 30 s and 

is followed by an unloading process at the same rate.  A set of typical force-

displacement plots along two directions is shown in Figure 4.4, representing data after 

the loading-unloading experiments.  The force for indentation on (110) plane increases 

up to ~70 μN, whereas the maximum force for indentation on (001) plane is ~50 μN, 

with the maximum loading depth of 150 nm for both cases.  Overall, there is about 40% 

enhancement in the maximum force for the case of indenting on (110) plane as 

compared with the case of (001) planes.  Apparently indentation on YBCO (110) planes 

is harder than that on (001) planes, which again confirms that twin interfaces play an 

important role in the overall deformation mechanism of the film.  During the unloading 

process for the case of indentation on (001) plane, the plot decreases to -15 μN.  This is 

due to some portion of the film sticking onto the indentation tip and extra force was 

needed to pull out the indentation tip.   
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Figure 4.4. Two force-displacement plots are compared for indentation on YBCO (110) 

plane (solid symbols) and indentation on YBCO (001) plane (open symbols).  Insets 

illustrate different indentation directions along film.  (Based on instrument 

specifications, the estimated measurement error of force is ± 5%.) 

 

 Based on the force-displacement curves in in situ work, one can estimate the 

instantaneous pressure corresponding to the maximum load.  In previous research 

reports, it has been discussed that the Hertz contact model does not consider film 

thickness, which could result in overestimated values [108].  Considering the film 

thickness and indentation geometries as illustrated in Figure 4.2, we can calculate the 

instantaneous pressure at the maximum force loaded by applying equations 4.1 and 4.2. 

The mean stress, σ, can be calculated with equation 4.1 
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where F is the load (force) and A is the projected contact area.   

With consideration of the thickness of thin TEM foil and geometry of the 

nanoindentation tip (illustrated in Figure 4.2), the projected contact area, A, can be 

calculated with following equation: 



















 )
2

tan()(
)

2
cos(
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RD

R
tA             (4.2) 

where t is sample foil thickness, D is indentation depth, R is the tip radius, and α is the 

tip angle.  The estimated mean stress of indentation on (110) plane is ~ 7.4 GPa with a 

measured load F of 70.0 µN at the given maximum load, given R = 100 nm, D  150 

nm, t = 30 nm, and a tip angle α of 70o (Figure 4.4).  Using the Hertzian theory of elastic 

contact [107], the maximum stress is 1.5 times the mean stress, which is ~ 11.1 GPa.  

Consistent with the ex situ nanoindentation results, the estimated hardness value for 

indentation on (001) plane shows a smaller value of ~ 8.0 GPa at the maximum load of 

50 µN.  Again it is about a 40% increase in the maximum stress value for the case of 

indenting on (110) planes compared with the case of (001) planes.  These results are 

consistent with our ex situ nanoindentation results and again confirm that the twin 

structure strengthens YBCO films.   
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Figure 4.5. A series of movie frames during indentation on YBCO (001) plane is shown 

in a) before indentation, b) during loading, c) near maximum load, and d) after 

unloading. 

   

During the in situ nanoindentation experiments, the deformation activities were 

captured by digital videos and snapshots along with the quantitative load-displacement 

measurements in real time.  The loading process at a constant displacement rate 

continues up to 30 s, followed by an unloading process at the same rate.  Figure 4.5 

shows a series of snapshots (TEM images) corresponding to the force-displacement 

curves in Figure 4.4.  Figure 4.5a-d are the snapshots taken during the indentation 

normal to YBCO (001) plane, where the clear lattice fringes of YBCO film can be seen.  

Each image was labeled with the time in seconds during experiment.  Near the maximum 

load at 28.94 s, there’s a minimal contrast change due to the high strain introduced by 
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indenter; also, the lattice fringes become less clear.  Besides this, no other obvious 

change was observed during the loading process.  After the indentation, at 59.62 s, the 

sample was completely retracted to its original position with a small contrast change.  

The small contrast variation might be because of lattice distortion caused by the local 

strain during the indentation.  Unlike the indentation on YBCO (001) planes, during the 

indentation normal to (110) planes, obvious contrast change was observed.  Figure 4.6a-

d show a series of snap shots taken during the indentation on YBCO (110) planes.  

Before indentation, clear twin boundaries perpendicular to the loading direction are 

observed in Figure 4.6a.  Twins with bright contrast are narrow, whereas the ones with 

dark contrast are wider.  However, once the loading process starts (at the right-middle 

region of the image, marked by a box), the contrast of the narrow twin boundaries 

reversed (from bright to dark) at 7.84 s.  Then at 30.00 s under the maximum applied 

load, the reversed contrast extended from right to the middle of the micrograph as shown 

in Figure 4.6c.  In addition, the widths of the twins changed.  Finally, after unloading, at 

60.17 s in Figure 4.6d, the sample shows a small variation in both the contrast and twin 

thickness compared to its initial condition.  For example, the twin marked with black 

arrow shows a slight increase in twin thickness as compared to its initial state.  These 

observations suggest that twin boundaries indeed play an important role in 

accommodating the stress during the deformation of YBCO films.       
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Figure 4.6. After indentation on YBCO (110) planes, the corresponding movie frames 

are shown a) before indentation, b) during loading, c) at maximum load, and d) after 

unloading.     

 

To clarify the role of twins in deformation mechanisms of YBCO films, more 

detailed analyses have been performed, and a typical example is given in Figure 4.7.  In 

this case, the loading-unloading experiment has been conducted for 80 s, from which 

video frames for the period from 34 to 48 s were selected to understand the activities of 

twins during deformation.  Figures 4.7a and b were taken during the loading process, 

between 0 and 40 s, and Figure 4.7c–f were captured during unloading process, from 40 

to 80 s.  During loading up to 34.87 s, twin/matrix boundaries are clearly observed with 

sharp alternating contrast.  To track the twin activities during deformation, two typical 

twins have been labeled as twin 1 (bright) and twin 2 (dark) for illustration.  At 34.87 s, 
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twins 1 and 2 have the thickness of 23.5 nm and 44.2 nm, respectively.  As reference, 

two other twin boundaries were selected and marked with black arrows.  Using the 

references, the relative location of each twin boundary can be traced during deformation.  

At 39.63 s, the contrast of the twins starts to get blurred and boundaries become less 

clear.  The dark contrast presents in twin 1and spreads up at 41.65 s, showing an 

increased width of 35.36 nm while twin 2 has a decreased width of 35.67 nm.   At 42.65 

s, the contrast of twins gets blurred, and the dark contrast area in twin 1 is further 

extended.  At 44.67 s, the dark contrast dominates all of twin 1, while the adjacent twin 

is covered by bright contrast.  At 47.90 s, the contrasts of twin 1 and 2 along the 

boundaries are completely reversed from their original ones.  Finally, twin 1 shows a 

width of 46.64 nm and twin 2 shows a decreased width of 32.6 nm.  This indicates that 

reorientation of twin structures occurs while each twin accommodates the external stress 

by twin spacing variation during the deformation process. 
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Figure 4.7. During indenting on YBCO (110) plane, obvious deformation of twin 

structures was observed.  A series of movie frames shows the deformation region with a 

detailed analysis a)-b) during loading and c)-f) during unloading.   

 

Finally an example is presented where the loading-unloading curve is coupled 

with movie snapshots to reveal the nucleation and propagation of twins.  Along with the 

force-displacement and force-time plots (Figure 4.8h and g), several movie snapshots are 

shown of interesting deformation events, as shown in Figure 4.8a-f.  The loading-
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unloading process was completed in 80 s, wherein the loading process ran from 0 to 40 s, 

corresponding to Figures 4.8a-d, and Figures 4.8e and f were taken during unloading 

process, from 40 to 80 s.  Before indentation, as shown in Fig. 4.8a, twins and other 

planar defects are observed in YBCO films.  During initial indentation, the loading force 

increased rapidly to ~ 20 μN at 17.34 s, at which point the microstructure, as shown in 

8b, reveals a group of twins marked inside a circle that appears to encounter a spherical 

particle to the right and is pined well by the particle.  During further loading process, up 

to 23.61 s, the twins in the circle becomes less distinct.  Meanwhile, the corresponding 

force-displacement plot shows a plateau (or step) in Figure 4.8g (from point b to point c).  

Upon further loading, the slope of the plot starts to increase abruptly to a maximum load 

of ~ 67.7 μN.  Near the maximum load, at 35.72 s, clear twin contrast is again revealed.  

Furthermore, twins appear to extend through the lower section of the spherical particle.  

In the region where the circle was drawn, the twin lamella are clearly offset with respect 

to one another.  Similar to the experiment depicted in Figure 4.7, this set of twin 

activities again confirms that twins are effective barrier for external stress which always 

corresponding to the increased load in force-displacement curves.  During unloading 

process, at 50.23 s, as shown in Fig. 4.8e, the offset of twins is insignificant and the twin 

microstructure is somewhat similar to that of Fig. 4.8b, where a similar load was applied.  

When unloading is nearly complete, at 79.89 s, the microstructure appears to have 

recovered by a large extent to their initial condition.    
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Figure 4.8. A detailed study on deformation mechanisms was carried out by correlating 

the force-displacement plot with the movie snapshots for indenting on YBCO (110) 

plane. The movie snapshots are a) before indentation, b) and c) during loading, d) right 

before maximum load, e) during unloading, and f) after unloading.  The corresponding 

image letters are labelled on h) force-displacement and g) force-time plots.  (Based on 

instrument specifications, the estimated measurement error of force is ± 5%.) 
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4.5. Conclusions 

A series of YBCO thin films with various film thicknesses were prepared by 

PLD for conventional nanoindentation and in situ nanoindentation in TEM column.  

Through conventional nanoindentation, we observed that the indentation hardness on the 

(110) planes is about 50% larger than that on the (001) planes.  Consistently through the 

in situ nanoindentation experiments, the mean stresses at maximum loads is 11.14 GPa 

for indentation on (110) planes and 7.95 GPa for indentation on (001) planes, which 

results in a 40% increase in the maximum load.  Through detailed analysis using in situ 

movies, we found that during deformation, a certain portion of the twin structures 

reverses the contrast; more interestingly, variations in the width of the twin boundaries 

during the loading and unloading process were observed.  This suggests that twin 

interfaces act as effective barrier for external stress and therefore enhance the 

mechanical strength of HTS YBCO films, in the direction perpendicular to the twin 

interfaces by accommodating the external stress through twins.           

 

 

 
 
 
 
 
 
 
 
 
 
 



 

121 
 

 

CHAPTER V  

DIRECT OBSERVATION OF LOMER-COTTRELL LOCKS DURING STRAIN 

HARDENING IN NANOCRYSTALLINE NICKEL BY IN SITU TEM 

 

5.1. Overview 

Strain hardening capability is critical for metallic materials to achieve high 

ductility during plastic deformation. A majority of nanocrystalline metals, however, have 

inherently low work hardening capability with few exceptions. Interpretations on work 

hardening mechanisms in nanocrystalline metals are still controversial due to the lack of 

in situ experimental evidence. Here we report, by using an in situ transmission electron 

microscope nanoindentation tool, the direct observation of dynamic work hardening 

event in nanocrystalline nickel.  During stain hardening stage, abundant Lomer-Cottrell 

(L-C) locks formed both within nanograins and against twin boundaries. Two major 

mechanisms were identified during interactions between L-C locks and twin boundaries. 

Quantitative nanoindentation experiments recorded during the experiments show an 

increase of yield strength from 1.64 to 2.29 GPa during multiple loading-unloading 

cycles. This study provides both the evidence to explain the roots of work hardening at 

small length scales and the insight for future design of ductile nanocrystalline metals. 
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5.2. Introduction 

In polycrystalline metals with coarse grain size, strain hardening is typically 

described by Taylor relation, where the increases in flow stress is tied to increased 

dislocation densities [156, 157]. During plastic deformation, dislocation networks (or 

forest dislocations) may form in grain interior and thus become barriers to the 

propagation of successive mobile dislocations. Additionally strain hardening can also be 

described in terms of the decreasing mean free path of a dislocation and the reduced 

number of active slip systems for dislocations adjacent to barriers, such as grain 

boundaries or twin boundaries [158, 159]. Therefore control of slip distance by 

microstructural refinement can provide a feasible hardening mechanism.  

Ultrafine grained and nanocrystalline (nc) materials have a large population of 

grain boundaries which are considered natural barriers to the propagation of dislocations. 

Indeed ultra-high mechanical strength has been achieved in nc and recently nanotwinned 

(nt) metals [160-166]. The size-dependent hardening has been explained by the Hall-

Petch relationship, where the decrease of dislocation pile-ups in fine nc and nt metals 

leads to strengthening [160, 161, 3]. A recent study has suggested dislocation multi-

junction formation in single crystal bcc molybdenum measurably increases the strength 

during a uniaxial compression testing [167].   

Although nc metals can have much greater mechanical strength than their bulk 

counterparts, their ductility is typically low (less than a few percent of true strain) with a 

handful of exceptions. Strain hardening, which is crucial to achieve high ductility, is 

typically diminished in nc metals, or very often absent in many cases. There are various 
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mechanisms that explain the lack of strain hardening in nc metals. Grain boundaries are 

effective sources and sinks for dislocations. Dislocations once emitted from grain 

boundaries may be absorbed rapidly by opposite grain boundaries in nc metals. Thus 

there may be lack of sustainable dislocation networks within the grains to provide the 

necessary strain hardening. In situ X-ray experiments evidenced rapid dislocation 

recovery events during unloading of plastically deformed nc Ni [168]. On the other hand, 

L-C locks associated with stair-rod dislocations have been observed near grain and twin 

boundaries after rolling of nc Ni, and were proposed to be effective barriers to mobile 

dislocations and result in work hardening [169]. There is no in situ evidence to explain 

the origin of such controversy. Additionally stacking fault energy (SFE) appears to play 

an important role on work hardening capability of nc metals. Stacking faults appear to 

inject work hardening capability in low SFE metals [170].  

Despite extensive studies on work hardening in metallic materials, most of the 

previous works focused on post-deformation microstructural analysis. Meanwhile, to 

directly probe the structure-property relationships, various real time phenomena have 

recently been recorded with in situ TEM mechanical testing of different materials 

systems. Among these studies, several are noteworthy, including evidence of mechanical 

annealing and dislocation source starvation in nickel pillar [81], increment of strain rate 

with dislocation nucleation within single crystal Al[80], dislocation slip in TiN thin 

film[94], grain rotation and coarsening in polycrystalline Al thin film[79], dislocation 

climb in Al/Nb multilayers[82] and grain boundary sliding and grain rotation in ceramic 
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nanocomposite[108]. However there is scare in situ TEM evidence on strain hardening 

in nc metals. 

In this study, in situ nanoindentation in a transmission electron microscope was 

conducted on nc Ni.  During multiple loading-unloading cycles, prominent work 

hardening was observed from quantitative nanoindentation experiment. In parallel, work 

hardening was found to arise from the formation of abundant L-C Locks both within the 

grains and at twin boundaries. L-C Locks interacted with twin boundaries through the 

formation of active partial dislocations. Numerous deformation mechanisms were 

identified. (See experimental details in methods section).  

The nc Ni powders were mixed by roller milling and consolidated by Spark 

Plasma Sintering (SPS) process.  Details on the sample processing can be found 

elsewhere [26, 54].  TEM specimens were prepared through a conventional procedure 

including mechanical thinning, polishing and ion milling polishing.  This typical set of 

Ni samples has nanocrystalline grains with a bimodal grain size distribution. The 

nanograins accompanied by the bimodal grain size distribution in nc Ni allow enhanced 

ductility and high mechanical strength [171].  Growth twins with an average twin 

spacing of ~ 30 nm were observed in numerous grains. 

 

5.3. Experimental  

In situ nanoindentation was conducted using an in situ nanoindentation holder 

(manufactured by NanoFactory, Inc.).  In situ TEM analyses were conducted within an 

analytical electron microscope (JEOL2010) with a point-to-point resolution of 0.23 nm. 

http://www.nature.com/nmat/journal/v10/n8/full/nmat3055.html#supplementary-information
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Images and movies during indentation events were captured using a built-in high 

resolution CCD camera in the microscope. While the indentation under the TEM 

column, the sample is controlled in three dimensions by a piezoelectric actuator.  To 

avoid the slip between tip and sample surface, wedge diamond tip (tip angle ~ 50.5°) for 

standard load-displacement measurements is used.  During in situ indentation 

experiment, the nanoindentation tip was fixed while the sample was moved toward the 

tip by a piezoelectric stage in a precision movement as fine as 0.1 nm/step. To examine 

more precise motion of dislocations during work hardening, a maximum depth of 50 nm 

was used with step length of 0.1 nm/step and holding time of 10 ms.  Each loading-

unloading cycle spans across 100 seconds, e.g., the loading process occurred at a 

constant displacement rate continues up to 50 sec, followed by an unloading process at 

the same rate of 1 nm/sec (the estimated strain rate is 3.6×10-2 s-1 for the first cycle, 

4.1×10-2 s-1 for the second cycle and 4.5×10-2 s-1 for the third cycle).  While the force 

was measured along displacement and time, the estimated measurement error was ± 5%.  

 

5.4. Results and discussion  

Figure 5.1a shows the TEM image of two major grains, delineated as G1 and G2 

in a typical area selected for in situ nanoindentation study.  G1 contains three twin 

boundaries (TBs), labelled as TB1-TB3. Figures 5.1b-d show the selected area 

diffraction (SAD) patterns corresponding to matrix and twin (T1) in G1, and G2. 

Comparison of Figure 5.1b and 1d shows the formation of a 30o high angle grain 

boundary between G1 and G2.   
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Figure 5.1. a) TEM image shows the area where in situ nanoindentation experiments 

were conducted.  It shows very obvious grain and twin structures.  From the top to 

bottom, grains, G2 and G1, and twin, T1, are marked.  The arrows point the boundaries 

between G1, G2 and T1.  The inserted SAD diffraction patterns were taken from the area 

of b) grain, G1, c) twin, T1, and d) grain, G2. 
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Figure 5.2. Three sets of movie frames during indentation on nc nickel are shown in a1) 

before and a2) after yield point during the first cycle; b1) before and b2) after yield point 

during the second cycle; and c1) before and c2) after yield point during the third cycle. 

 

To examine dislocation activity during deformation, in situ nanoindentation has 

been performed.  Three indentation (complete loading-unloading experiments) cycles 

were conducted in exactly the same area as shown in Figure 5.1a.  Figure 5.2a1 -a2 are 

the video snap shots captured during the first loading cycle before (at 18.48 s) and after 
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the yield point (at 25.29 s) as revealed from the force–displacement (F–D) plot in Figure 

5.3a. Similarly, microstructure evolutions (before and after yielding) for the 2nd and 3rd 

loading cycles were recorded in Figure 5.2b1-b2 and 5.2c1-c2. The corresponding F-D 

plots are shown in Figure 5.3b and c.  The yield point was determined from the 

corresponding F-D plots, on which a clear non-linear deformation can be identified. 

During these experiments, the nanoindenter tip was positioned at the upper right corner, 

and the samples were moving towards the tip with the loading direction marked as white 

arrows as shown in Figure 5.2.   

During the first loading cycle before yielding (at 18.48s), groups of dislocations 

on the ( 111 ) and ( 111 ) slip planes in G1 are observed in the circled area in Figure 

5.2a1. Many of these dislocations form V- shape junctions, which are typical signature 

of L-C locks. Under indentation these L-C locks are immobile before yielding (up to 

22.96 sec). At the yield point, the L-C locks appear interacted with succeeding 

dislocations, and then became unlocked. The unlocked dislocations migrate towards the 

TB1 during continuous deformation after yielding (25.29 sec in Fig. 5.2a2). When 

numerous dislocations approach TB1, new L-C locks form at the twin boundary (Fig. 

5.2b). And the density of dislocations at TB1 is ~ 7.0 × 1015 /m2.  

During the second loading cycle, dislocation density at TB1 rise continuously to 

~ 1.2 × 1016/m2 by 21.96 sec as shown in Figure 5.2b1 (for details see supplemental 

information). By 28.47 sec a majority of dislocations including L-C Locks piled up 

against TB1 have transmitted through TB1. Correspondingly the F-D plot in Figure 5.3b 

shows a clear non-linear deformation, indicating the occurrence of considerable plastic 
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deformation. Additionally the force at the onset of plastic yield approaches 6.6 μN, 

greater than that in the first cycle (~ 4.9 μN).  

 

    

 
 
Figure 5.3. a) force-displacement plot was measured during the first in situ 

nanoindentation cycle.  During the second cycle, b) force-displacement plot show the 

yield point increases compared to that in the first cycle.  Finally, c) force-displacement 

plot was measured during the third cycle.   
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Finally, in the third cycle, at 22.17 sec, high density dislocations including L-C 

locks emerge underneath TB1 in T1 (the twinned crystal). The newly formed L-C locks 

become barriers to succeeding dislocations and applied load continues to increase. At the 

yield point, ~ 28 sec as shown in Figure 5.3c, L-C locks begin to unlock. By 38.29 sec 

near the maximum load in Figure 5.3c, L-C Locks are nearly completely annihilated, and 

the TEM image shows dark contrast surrounding a band of forest dislocations resulting 

from dislocation-L-C Lock interactions in T1 (Fig. 5.2c2). Obvious load drop is 

identified in Figure 5.3c during continuous deformation.  

 

 
 

Figure 5.4. Three force-displacement plots only with the loading regime show the nature 

of work hardening after sequential indentation.  Increment of the force at the yield point 

from ~ 4.9 to 7.0 μN during the three loading cycles is shown.  A small regime of 

softening during the third cycle is observed due to the dislocations exhausted in G1. 
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Figure 5.5. During the first indentation cycle, evident activity of dislocations (mainly 

screw or mixed dislocations) at the twin boundary was observed with formation of L-C 

lock.  a) A snap shot taken shows the area of interest marked by a white box near TB1. 

And enlarged series of movie frames show the interaction between dislocations and twin 

boundary b) at yield point and c-h) after yield point, with the corresponding i) force-

displacement plot. 
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Comparison of multiple consecutive F-D plots in Figure 5.4 shows that the force 

at the yield point increases sequentially from ~ 4.9 to 7.0 μN during the three loading 

cycles. Consequently given the measured foil thickness and loading depths, we arrive 

that the yield strength increases from ~ 1.6 to 2.3 GPa by using a relation described in 

supplemental information.        

Work hardening is a complicated plastic deformation phenomenon. Cottrell 

stated that work hardening is the first phenomenon discovered in studying plasticity of 

metals, and may be the last problem to be solved [172]. Work hardening deemed 

necessary for the achievement of ductility is largely absent in a majority of nc metallic 

materials. But foregoing in situ nanoindentation studies strongly suggest that significant 

work hardening takes place in nc Ni.  

Several salient characteristics can be derived from the in situ studies. First, work 

hardening may arise directly from the formation of L-C locks in grain interior. L-C locks 

form the back-bone of dislocation networks and resist the propagation of mobile 

dislocations. This mechanism has long been postulated and recently received some 

support from ex situ rolling studies of nc Ni [169]. The formation of L-C locks arises 

from the interaction of dislocations on two sets of inclined {111} planes. Second, L-C 

locks formed within grains were removed at higher stress by mobile dislocations (many 

of which maybe mobile partials). Recent MD simulations show that mobile Shockley 

partials can engage stair-rod dislocation in stacking fault tetrahedra (SFTs), and the 

interaction leads to new mobile partials which then glide on the surfaces of SFTs and 

lead to decomposition of SFTs [173]. Hence it is likely that abundant partials emitted 
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from grain boundaries may lead to the removal of L-C locks in grain interior. Third, L-C 

locks when encountered twin boundaries can lead to even greater work hardening (as 

indicated by the necessity of higher stress for plastic yield shown in the second loading 

cycle). The details of interaction of L-C locks with twin boundaries are complex, and at 

least two scenarios are identified.   

We begin by first examining the work hardening mechanism that arises from the 

interaction of L-C locks with twin boundaries. Figure 5.5 shows a set of snap shots 

captured from 22 to 45 sec (after yielding) during the first loading cycle. The area of 

interest marked by a white box in Figure 5.5a is near TB1, and the box is enlarged in 

Figure 5.5b. By 28.30 sec two dislocations (possibly mobile screw or mixed 

dislocations), A0 and B from different set of {111} plane intercept at TB1. During 

continuous indentation at 30.28 sec, the two dislocations interact and an L-C. lock forms. 

At 34.65 sec, A0 vanishes and two new dislocations, A1 and A2, emerge. By 36.87 sec, a 

new dislocation A3 appears at TB1. By 44.43 sec, these dislocations appear absorbed by 

TB1.  

The interaction mechanism of these dislocations with twin boundaries is shown 

in a schematic diagram in Figure 5.6. As shown in Figure 5.6a-b, two full dislocations, 

A0 and B, from differently oriented {111} planes form an L-C lock at the twin boundary.  

Based on the equation of a/2[101] + a/2[ 101 ] = a/2[110], the formation of Lomer 

dislocation (at the intercept of L-C locks) can reduce the overall elastic energy of the 

dislocations. The Lomer dislocation formed has a Burgers vector parallel to the electron 

beam, and hence appears as a dot during numerous interaction events. 
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Figure 5.6. Schematic diagrams illustrate the interaction of L-C locks with twin 

boundaries from series of movie snap shot in Figure 5.5.  a) Two full dislocations, 

(possibly screw or mixed dislocations), A0 and B, on different set of {111} planes 

intercept at TB1. b) As dislocation A0 glides toward dislocation B, an L-C lock is formed 

at the twin boundary. c) Dislocation A0 dissociates into two partial dislocations, A1 and 

A2 as separated by ~15 nm. d) As the separation is constricted to ~4.5 nm, another 

dislocation A3 is emitted from the dislocation A1. 

 

A0 then dissociates into two partial dislocations marked with A1 and A2, 

separated by ~ 15 nm. The dissociation event occurs at a rate of ~19.3 nm·s-1 (dividing 

the separation distance by the time). The force decreases by ~4.8% during the 

dissociation event. Since the self-stress (line tension) of the dislocation is proportional to 

its curvature [174], the back stress from the forest dislocations in addition to the line 

tension in dislocation A0 causes it to unbow which allows the perfect dislocation to then 
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separate into leading and trailing partials. After dissociation, the partial dislocation A2 is 

still associated with the dislocation B. The other partial dislocation A1 appears to be the 

source for emission of another dislocation, A3. The emission of A3, very likely a screw 

dislocation, occurs at a rate of 116 nm·s-1. If A3 was to have non-screw dislocation 

nature, then its emission and migration shall be a type of climb, which typically occurs at 

a very low rate at room temperature. During the aforementioned events, continuous 

increase of stress is necessary in general to promote the interaction of L-C locks with 

twin boundaries, and consequently work hardening is achieved.     

Next we consider a mechanism that may lead to the transmission of dislocations 

from L-C locks across twin boundaries. In the second indentation cycle, several snap 

shots captured during 21 to 33 sec are shown in Figure 5.7. This period corresponds to 

the deformation right before the maximum load is achieved. Figure 5.7a shows a box 

that outlines the area of interest, which is then magnified in Figure 5.7b (at 21.65 sec). 

An L-C lock due to interception of A0 and B (likely to be screw or mixed dislocations) is 

identified.  During continuous deformation from 25.71 to 28.23 sec, the contrast of B 

decays rapidly; meanwhile, a dislocation labelled as B’ emerges from underneath the 

twin boundary and resides on a (100) plane in the twinned crystal T1. By increase of the 

applied stress to 2.4 GPa (near 28.56 sec), dislocation A0 vanish, instead A1 and A2 

appear as shown in Figure 5.7g. Then dislocation B rapidly passes through the twin 

boundary and becomes dislocation B’ (Fig. 5.7h).  By 32.98 sec, dislocation A1 and A2 

also transmit through twin boundary.  
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Figure 5.7. a) A snap shot taken during the second indentation cycle shows the area of 

interest marked by a white box near TB1. And enlarged series of movie frames show 

interaction between two specific dislocations, A0 and B (likely to be screw or mixed 

dislocations), resulting in the transmission from L-C locks across twin boundaries, with 

a detailed analysis as shown in b), c) and d) before yield point and e), f), g) and h) after 

yield point, with the corresponding i) force-displacement plot. 
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Figure 5.8. Schematic diagrams illustrate process of dislocation transmission across TB1 

from series of movie snap shot in Figure 5.7.  a) Two full dislocations, A0 and B, on 

different set of {111} planes form an L-C lock at the twin boundary. b) Dislocation A0 

dissociates into two partial dislocations, A1 and A2. Meanwhile, c) dislocation B 

penetrates through the twin boundary and glides on the (100) plane in T1 as the 

dislocation B’ as released from the back stress at the L-C lock. d) Dislocation B 

completely penetrates through the twin boundary. Then, dislocation A1 and A2 also pass 

through the twin boundary. 

 

Figure 5.8 shows the schematics that illustrate the series of interaction event. 

Basically the L-C lock forms at twin boundary due to interactions of A0-B dislocations. 
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B gradually transmits through twin boundary and becomes B’ on lower (100) plane, 

whereas A0 remains intact. The transmission of full dislocation in Ni has been modelled 

by MD simulation. The simulation shows that under high resolved shear stress, ~ 3 GPa, 

a full dislocation will transmit across twin boundary onto the lower {100} plane in the 

twinned crystal l[175]. At increasing stress, A0 dissociates into A1 and A2 as shown in 

Figure 5.8b at a velocity of ~12.3 nm·s-1. The dissociation is likely to relieve some of the 

back stress at the L-C lock, and consequently making it easier for B to rapidly transmit 

across twin boundary as shown in Figure 5.8c.   

Twin boundaries have been proved as effective barriers to the transmission of 

dislocations. It has been previously reported there might be stair-rod dislocation 

generated along twin boundaries, after the partial dislocation interacts with the 

boundaries[55] which possibly blocks the dislocation penetration through the boundary 

in this work.  Additionally, residual dislocations density stored at the twin boundary 

increases during indentation (from 6.96×1015 /m2 to 1.22×1016/m2). Significant increase 

in dislocation density has been observed in rolled nt Cu, wherein dislocation density 

approaches 1016/m2 at a true strain level of 50% or greater [176]. Consequently high 

density dislocations may increase the barrier strength of twin boundary to the 

transmission of dislocations and lead to enhanced work hardening.  

 

5.5. Conclusions 

In summary In situ nanoindentation experiment shows solid evidence for 

significant work hardening in nc Ni based on sequential loading-unloading cycles. 
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During work hardening, the dislocation density along the TB increases, and the yield 

strength increases gradually by ~40 %.  Frequent formation of L-C locks were identified 

in grain interior and along twin boundaries. L-C locks are effective barriers to 

dislocations and lead to work hardening. Several mechanisms of interaction between L-

C locks and twin boundaries were identified which provide important insight to 

understand plasticity in nc metals.   
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CHAPTER VI  

GROWTH-CONTROLLED SURFACE ROUGHNESS IN AL-DOPED ZNO AS 

TRANSPARENT CONDUCTING OXIDE* 

 

6.1. Overview  

The surface morphology of Al2O3-doped ZnO (AZO, 2wt %) thin films varies 

from a uniform layer to nanorod structure by simply controlling oxygen pressure during 

growth.  All AZO films were deposited on sapphire (0001) substrates using a pulsed 

laser deposition (PLD) technique.  In the low oxygen pressure regime (vacuum ~ 50 

mTorr), AZO films grow as a smooth and uniform layer.  In the high oxygen pressure 

regime (100 ~ 250 mTorr) AZO thin films with nanorods have formed.  Detailed cross-

section transmission electron microscopy (TEM) and x-ray diffraction (XRD) studies 

reveal that, besides the obvious variation in the film morphology, the in-plane d-spacing 

of AZO film increases and the out-of-plane d-spacing decreases, as oxygen pressure 

increases.  A bilayer AZO film with a nanorod structure on top of a uniform layer was 

demonstrated by controlling the oxygen pressure for the two layers.  Electrical resistivity 

and optical transmittance measurements were carried out to correlate with the 

microstructures obtained under different oxygen pressures.  The bilayer AZO films 

could find applications as transparent conducting oxide (TCO) with unique light trapping 

function in thin film solar cells. 

 
*Reprinted from “Growth-controlled surface roughness in Al-doped ZnO as transparent 
conducting oxide” by J. H. Lee, C.Y. Chou, Z. Bi, C.-F. Tsai, H. Wang, Nanotechnology 
20 (2009) 395704. Copyright (2009), with permission from Institute of Physics.  



 

141 
 

 

6.2. Introduction 

Transparent conducting oxide (TCO) thin films have a large variety of 

applications, such as transparent interconnects for optoelectronic devices including 

liquid crystal displays (LCDs), organic light emitting diodes (OLEDs) and solar cells 

[66-68].  Among all of the TCO materials researched recently, doped ZnO has brought 

extensive research interests because of its unique physical properties.  ZnO is a direct 

band gap semiconductor with a bandgap of 3.4 eV.  It can be used for optoelectronic 

devices operated in blue to UV regime.  Compared with other TCO materials such as 

indium-tin-oxide is cheaper and non-toxic [69, 70].  To increase its electrical 

conductivity, ZnO is usually doped with B, Al, Ga or In (group III elements) as n-type 

[73, 177, 178, 179] or Na, K, P or N (group I or group V elements) as p-type 

semiconductors [180-183].  Among those, Al-doped ZnO (AZO) is one of the most 

widely studied n-type ZnO films.  AZO films with high transmittance and electrical 

conductivity have been grown by various deposition techniques such as molecular beam 

epitaxy [184], Plasma enhanced chemical vapor deposition [185], sol-gel [186], 

sputtering [187] and pulsed laser deposition (PLD) [188].   

Recently AZO film with designed surface roughness has been introduced as light 

trapping method for solar cell applications [189, 190].  The surface roughness was 

achieved by anisotropic etching method which involves lithographic patterning and 

etching steps.  This leads us to explore a direct avenue for achieving high surface 

roughness during growth.  It has been reported that deposition techniques and deposition 

parameters have strong impact on the electrical resistivity and optical property of AZO 
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films.  For example, the electrical resistivity of PLD-grown 200 nm thick AZO films has 

been reported to be in the range of 2.2×10-4 ~ 1×10-3 Ω·cm while a MOCVD-grown 

AZO film with same thickness possesses a resistivity value in the range of 4.5×10-3~ 

1×10-2 Ω·cm [191, 192].  One of the main deposition parameters is oxygen pressure.  

Oxygen pressure has been reported to have strong effect on the surface roughness and 

optical properties of pure ZnO films [193, 75].  Therefore, it is highly possible that the 

oxygen pressure plays a very important role in the growth and nucleation of the AZO 

films and therefore results in a large variation in the physical properties of AZO films 

deposited by different techniques. 

In this work, a systematic study has been conducted by depositing AZO films 

under various oxygen pressures to explore the effects of oxygen pressure on film 

morphology and properties.  Bilayer AZO thin films were also grown with each layer 

deposited under different oxygen pressures.  Detailed microstructural characterizations 

and electrical and optical measurements were conducted to resolve the effects of oxygen 

pressure on the microstructure and physical properties of AZO films.   

 

6.3. Experimental 

Depositions of 2 wt% Al2O3-doped ZnO films on sapphire (0001) single-crystal 

substrate were performed in a UHV chamber with a KrF excimer laser (Lambda Physik 

210,   = 248 nm, 10 Hz).  The laser beam was focused to obtain an energy density of 

approximately 4 J/ cm2 at 45° angle of incidence.  The targets were hot pressed using a 

mixture of Al2O3 and ZnO powders and sintered at 1100 oC for 11 h in presence of 
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oxygen.  Single layer depositions were conducted under different oxygen partial 

pressures, i.e., 250 mTorr, 100 mTorr, 50 mTorr and vacuum.  The bilayer deposition 

was conducted under two different oxygen pressures; i.e., first vacuum and then 250 

mTorr.  The substrate temperature was fixed at 750 °C for all depositions.  The back 

pressure of the system was 1 ×10-7 Torr before oxygen was introduced.  Microstructural 

characterizations, including X-ray diffraction (XRD) by Bruker D8 Discover X-ray 

diffractometer, surface morphology by atomic force microscopy (AFM), high resolution 

field emission scanning electron microscope (FE-SEM) and cross-sectional transmission 

electron microscopy (TEM) using a JEOL2010 analytical electron microscope with a 

point-to-point resolution of 0.23 nm, were performed on all the single layer and bilayer 

thin films.  The optical properties of the single and bilayer films were measured by a U-

4100 UV-VIS-NIR Spectrophotometer.  Electrical resistivity was measured by a four-

point probe measurement system. 

 

6.4. Results and discussion 

 6.4.1. Microstructure and surface morphology 

 XRD Ѳ ~ 2Ѳ scans of all four single layer Al-doped ZnO films under different 

oxygen pressures were plotted in Figure 6.1a.  For all single layer samples, ZnO (0002) 

and (0004) peaks are aligned well with sapphire (0006) which suggests highly textured 

ZnO films grown along sapphire (000l).  It is noted that the peak position of ZnO (0002) 

shifts from 34.5° to 34.12° as the oxygen pressure reduced from 250 mTorr to vacuum, 

i.e., the d spacing of the ZnO (0002) increases from 2.597Å to 2.625Å as the oxygen 
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pressure decreases.  Compared with the bulk value, dZnO(0002) = 2.605Å, the film 

deposited under 250 mTorr has lattice parameters close to that of bulk ZnO.  As the 

oxygen pressure reduces, the film starts to be in tension out-of-plane and in compression 

in-plane.  

 

 
 

Figure 6.1. (a) XRD θ ~ 2θ scans of AZO single layer films grown under different 

oxygen pressures: 250 mTorr, 100 mTorr, 50 mTorr and vacuum, and (b) XRD pattern 

of a bilayer grown at vacuum and 250 mTorr sequentially. Inset in b is the enlarged ZnO 

(0002) peak showing an obvious peak splitting for the bi-layers in the sample. 
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Figure 6.2. Cross-sectional TEM micrographs show a nanorod structure of AZO single 

layer epitaxially grown on sapphire substrate at oxygen pressures of  (a) 250 mTorr (b) 

100 mTorr while continuous layers grow at oxygen pressures of (c) 50 mTorr and (d) 

Vacuum. 

 

Figure 6.1b shows the XRD Ѳ~2Ѳ scan of the bilayer of AZO film with first 

layer deposited at vacuum and second layer deposited at 250 mTorr.  The overall XRD 

pattern is very similar to that of the single-layer samples, except that the ZnO (0002) 
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peak splits into two peaks as shown as inset in figure 6.1b.  This suggests that the bilayer 

sample consists of two layers with two different out-of-plane lattice parameters.  The 

first peak at 2Ѳ = 34.2° (d = 2.626Å) is close to that of the single layer deposited under 

vacuum.  The second peak at 2Ѳ = 34.4° (d = 2.605Å) has a similar 2Ѳ value as that of 

the single layer deposited under 250 mTorr.   

In order to fully understand the microstructure variation as a function of oxygen 

pressure, we conducted a detailed cross-sectional TEM study for all the samples.  Figure 

6.2a-d show the cross-section TEM images of single-layer AZO films on α-Al2O3 (0001) 

substrates.  It is very obvious that, the films, deposited under oxygen pressure of 250 

mTorr (figure 6.2a) and 100 mTorr (figure 6.2b), are both grown as nanorods on 

sapphire substrate.  The nanorods have an average diameter of 50 nm and an average 

spacing of 5-10 nm.  On the other hand, under a low oxygen pressure regime at vacuum 

(2d) and 50 mTorr (2c), AZO films grow as a continuous layer with a smooth surface.  

More interestingly the nanorod average diameter decreases from 66 nm for the film 

deposited at 250 mTorr (2a) to 44 nm for the film deposited at 100 mTorr (2b), i.e., the 

width of the nanorods decreases as the oxygen pressure decreases.  The insets are 

corresponding SAD pattern for all the samples.  It is noted that the epitaxial quality of all 

the films is high, shown by the distinguished diffraction dots from the films, despite the 

fact that they have very different film morphology.   
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Figure 6.3. A cross-sectional TEM micrograph shows AZO bilayer epitaxially grown on 

sapphire substrate with sequential deposition at oxygen pressures of vacuum and 250 

mTorr.  The first AZO layer is grown with uniform layer structure under vacuum.  The 

second layer is structured with nanorods under oxygen pressure of 250 mTorr. 

 

It is possible that surface energy of the substrate might be different at different 

oxygen pressures, which results in the different surface morphologies under different 

oxygen pressures.  To understand the growth mechanism under different oxygen 

pressures, we grew a bilayer film with a sequential deposition of a layer under vacuum 

and a layer under 250 mTorr of O2 pressure.  A cross-section TEM image of one such 

bilayer sample is shown in figure 6.3.  A clear interface is observed between the two 

layers.  The first layer deposited under vacuum grows as a continuous layer and the 

second layer grows as a nanorod structure as if it directly grew on top of the sapphire 
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substrate.  It suggests that the oxygen pressure plays more important role in the growth 

morphology rather than the surface energy of the underlying substrates. 

 

 
 

Figure 6.4. A plot of out-of-plane d-spacing change as a function of oxygen pressure. As 

oxygen pressure increases, (a) in-plane d-spacing increases while (b) out-of-plane d-

spacing decreases. 
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Figure 6.5. AFM images of AZO films grown at oxygen pressures of (a) 250 mTorr, (b) 

50 mTorr, (c) vacuum and (d) bilayer of 250 mTorr and vacuum. SEM images of AZO 

films grown at oxygen pressures of e) 250 mTorr and f) bilayer of 250 mTorr and 

vacuum.  Both the single layers grown at 250 mTorr and the bilayer have high surface 

roughness with nanorods. Films grown at low pressure regime (50 mTorr and vacuum) 

have a smooth film surface. 
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Besides the morphology variation we also observe a systematic change in the 

out-of-plane and in-plane d-spacing of AZO as a function of oxygen pressure (figure 

6.1), which is confirmed by a detailed analysis on the corresponding SAD patterns.  

Based on the TEM SAD patterns and XRD patterns (figure 6.2) we calculated the out-of-

plane d spacing of AZO (0002) and in-plane d spacing of AZO ( 0110 ) and compared it 

with its bulk values as plotted in figure 6.4.  Figure 6.4a shows the in-plane d spacing of 

AZO ( 0110 ) increases with increasing oxygen pressure.  On the other hand, in figure 

6.4b the out-of-plane d spacing of ZnO (0002) decreases with increasing oxygen 

pressure.  

The TEM microstructure result is consistent with the XRD data.  In the range of 

100 ~ 250 mTorr oxygen, the films grow as nanorods as the film lattices are relaxed 

without significant substrate lattice effect.  While the films deposited at vacuum and 50 

mTorr are continuous film, the films with dZnO )01(10  bulk  = 2.8179Å and dZnO (0002) bulk  = 

2.6049Å  are highly strained by the substrate lattices with dAl2O3 20)11(  = 2.3777Å due to 

the 18.5% lattice mismatch, i.e. in compression in-plane with dZnO )01(10  under 50 mTorr  = 

2.788Å and dZnO )01(10  under vacuum  = 2.782Å and in tension out-of-plane with dZnO (0002) under 

50 mTorr   = 2.634Å and dZnO (0002) under vacuum = 2.650Å.  This is consistent with the XRD 

data, i.e. out-of-plane lattice parameter decreases as oxygen pressure decreases. 

Surface morphologies of AZO films under different oxygen pressures were 

characterized by AFM and SEM and shown in figure 6.5.  Increasing the oxygen 

pressure leads to an increase of surface roughness, which is consistent with the cross-

sectional TEM observations.  The film deposited at 250 mTorr (figure 6.5a and 6.5e) 
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shows the highest surface roughness with its root mean square (rms) value of 33.425 nm.  

The surface roughness decreases to 6.3 nm for the film deposited at 50 mTorr (figure 5b) 

and 1.325 nm for film deposited at vacuum (figure 5c).  Additionally, obvious island 

structures are observed on the film deposited at 250 mTorr O2 pressure which 

corresponds to the top view of nanorods (figure 5a and 5e).  In figure 6.5e, few tilted 

nanorod structures are also observed on the surface.  The sample deposited at low 

oxygen pressure samples (50 mTorr and vacuum) show a rather smooth surface without 

such structures (figure 5b and 5c).  The surface morphology of the bilayer AZO film 

(figure 5d and 5f) also shows a very rough surface with the RMS value of 30.742 nm, 

similar to that of the single-layer sample deposited at 250 mTorr (figure 5a).  In order to 

view the nanorod structure, figure 6.6 plots the surface morphologies in line profile and 

the corresponding 3D images for the film deposited at 250 mTorr and the bilayer sample.  

Interestingly the film deposited at 250 mTorr (figure 6.6a and b) has randomly 

distributed nanorods while the bilayer film grown at 250 mTorr and vacuum (figure 6.6c 

and d) shows much more ordered arrangement of the nanorods.  It suggests that the 

nucleation of the AZO nanorods on AZO films is more ordered than the one on sapphire 

substrate directly.  
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Figure 6.6. Line scans ((a) and (c)) and 3D surface plots ((b) and (d)) for single layer 

deposited under 250 mTorr ((a) and (b)) and bilayer AZO film ((c) and (d)).  The bilayer 

film shows a more ordered nanorod distribution than the single layer deposited under 

250 mTorr. 

 

Similar oxygen pressure effects on growth morphology have been reported in 

other thin film materials.  It was reported that ambient gas pressure during PLD affects 

nanocluster growth rate of CeO2 film, which can determine the density of the 

microstructure [194].  However it is not yet clear why high oxygen pressure induces the 

columnar grain structure with intergranular gap while a film grown under vacuum grows 

as a fully dense columnar structure. A detailed study on AZO growth mechanisms is on-

going in the authors’ lab.   
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 6.4.2. Optical and electrical properties 

Optical transmittance measurements were conducted on all the AZO single-layer 

films to compare the oxygen pressure effect on optical properties of AZO films.  Figure 

6.7 shows the plot of optical transmittance spectra (%) versus wavelength for all single-

layer films.  For the single layers grown under low oxygen pressure regime (50 mTorr 

and vacuum) the spectra shows a very sharp absorption edge at 384 nm (Eg = 3.23eV) 

and a smooth wave form right after the absorption edge which suggests that the film has 

a high epitaxial quality with very smooth surface.  On the other hand, the spectra of 

single layers deposited under a high oxygen pressure regime (250 and 100 mTorr) shows 

a relatively wider absorption edge and no wave form was observed.  This suggests that 

these films have a rough surface, which is consistent with the nanorod structures 

observed in TEM.  This result clearly suggests that AZO films in nanorods form have 

higher light reflection than the ones with smooth and continuous layer.  

Room temperature electrical resistivity was measured by a four-point probe 

system and summarized in table 6.1.  The electrical resistivity was varied from 25 mΩ-

cm for the continuous layer deposited at vacuum, to 106 mΩ-cm for the single-layer 

with discontinuous nanorods structure deposited at high oxygen pressure regime (250 

mTorr). Electrical resistivity data is again consistent with the microstructure study as the 

films with nanorods deposited at higher oxygen pressures have less conductivity in-plane 

than the continuous films deposited under lower oxygen pressures.  The bilayer 

deposited at vacuum and then 250 mTorr has a resistivity value of 149 mΩ-cm, higher 

than the single-layer deposited at 250mTorr.  Here the film porosity was not taken into 
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count for the resistivity calculation.  Recently it was reported that increasing oxygen 

pressures affects oxygen vacancies, zinc interstitials and grain sizes which reduce the 

carrier concentration and increase the resistivity [75].  However for our case, the surface 

morphology controlled by oxygen pressure affect the electrical conductivity strongly.  

The nanorod structure deposited at a high oxygen pressure regime will have very limited 

electrical transport in-plane and therefore result in high electrical resistance.  The smooth 

layers deposited at low oxygen pressure have much better electrical transport in-plane 

and therefore higher electrical conductivity.  It is interesting to note that a one-order of 

magnitude difference in electrical conductivity can be achieved by simply control the 

oxygen deposition condition.     

 

 
 

Figure 6.7. Optical transmittance spectra for single layers grown under different oxygen 

pressures at 250 mTorr, 100 mTorr, 50 mTorr and vacuum.  The spectra for film grown 

at 50 mTorr and vacuum show a sharp absorption edge; instead, wider absorption edges 

are found with spectra for film grown at 250 and 100 mTorr.     
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Oxygen Pressure 
Thickness 

(nm) 

Resistivity 

(Ω-cm) 

Single layer under 250mTorr 324.11 0.106 

Single layer under vacuum 323.76 0.025 

Bilayer of 250 mTorr and Vacuum 483.46 0.149 

 
Table 6.1. List of samples and electrical resistivity values. 

 

6.5. Conclusions 

Single-layer and bilayer AZO films were deposited by PLD at various oxygen 

pressures. AZO films grown at different oxygen pressures result in different surface 

morphologies and microstructures, and thus different properties.  The films grown at 

high oxygen regime have shown obvious nanorod structures with a large surface 

roughness.  On the other hand, films grown in low oxygen pressure regime and vacuum 

show continuous layers with small surface roughness.  The bilayer film deposited at 

vacuum and 250 mTorr sequentially grows as nanorods on top of a continuous layer.  

This suggests that the oxygen pressure plays a more important role on the growth 

morphology and the lattice parameters of AZO films than the substrate surface energy.  

The bilayer AZO films have strong potential in TCO layers with light-trapping function 

for thin film solar cells as they essentially combine high electrical conductivity of the 

continuous layer and high surface roughness of the top nanorod layer as the light-

trapping layer.  

(http://dx.doi.org /10.1088/0957-4484/20/39/395704) 

 

http://dx.doi.org/
http://dx.doi.org/10.1088/0957-4484/20/39/395704
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CHAPTER VII  

GROWTH OF AL-DOPED ZNO FILMS WITH TILTED NANO-COLUMNS ON 

R-CUT SAPPHIRE SUBSTRATES BY PULSED LASER DEPOSITION* 

 

7.1. Overview 

2wt% Al2O3-doped ZnO (AZO) thin films in both single layer and bi-layer forms 

were deposited on α-Al2O3 ( 2101 ) (r-cut) and (0001) (c-cut) substrates by a pulsed laser 

deposition technique.  Single layer AZO films were grown under either vacuum or 33.3 

Pa of O2 pressure.   Bilayer AZO films were grown with a sequential deposition of a 

uniform template layer under vacuum and a nano-column-structured layer under 33.3 Pa 

of O2 pressure.  Interestingly, single layer AZO film grown on r-cut sapphire in high 

oxygen pressure (33.3 Pa) shows tilted grain boundaries along [ 2101 ]AZO.  The bilayer 

film deposited on r-cut substrate shows tilted nano-column growth while the film grown 

on c-cut substrate has vertically grown nano-columns. The results of X-ray diffraction 

and cross-section transmission electron microscopy studies show a systematic variation 

of the d-spacing of  (0002)AZO and ( 0211 )AZO for all AZO films.  Electrical resistivity 

was measured and found to be strongly dependent on the different microstructures 

achieved under different oxygen pressures and substrates.    

 

 
*Reprinted from “Growth of Al-doped ZnO films with tilted nano-columns on r-cut 
sapphire substrates by pulsed laser deposition,” by J. H. Lee, T. Lu, S. Cho, F. Khatkatay, 
L. Chen, H. Wang, Thin solid films (2012) in press Copyright (2012), with permission 
from Elsevier. 
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7.2. Introduction 

Al-doped ZnO (AZO) as a transparent conducting oxide material has been widely 

explored for various applications, such as solar cells, light emitting diodes and 

transparent thin film transistors because of its unique optical and electrical properties, 

and especially its tunable nanostructures as nanorods, nanotubes, nanowires and 

nanobelts [195,196, 197, 198, 199, 200, 201,71].  Aluminum (Al) is a typical n-type 

dopant for ZnO, which is broadly used to increase the electrical conductivity [202, 203].  

Other approaches to enhance the electrical conductivity are to employ different 

processing methods and deposition parameters.  For example, the AZO film grown by 

magnetron sputtering at 350 °C showed the electrical resistivity in the range of 3×10-4 ~ 

6×10-4 Ω·cm while a AZO film grown by chemical vapor deposition has resistivity 

values ranging from 4.6×10-3 to 1×10-1 Ω·cm [76, 77].  As the oxygen partial pressure 

increased from 0.133 to 13.33 Pa (from 1 to 100 mTorr), the resistivity increased 

drastically from 5.1×10-4 to 5.2 Ω·cm [78].   

Besides optimizing its electrical conducting properties, there is a growing need 

on tuning the surface properties of the AZO films.  For example, incorporating a light 

trapping layer for solar cells has been proposed for enhancing the solar cell efficiency 

[189, 204].  Recently most of the light trapping layers were introduced through 

anisotropic etching method using diluted hydrochloride (HCl). This method leads to high 

surface roughness to deflect the sun light [195].  However, it is time consuming by 

involving multiple steps of deposition, chemical etching process and lithography 

patterning.  Recently several reports demonstrate that controlling the partial gas pressure 
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can directly tune the microstructure and surface morphologies of thin films [197, 194, 

205].  In isothermal condition, under the partial gas pressure, the grain size can be 

usually governed by mean free path of the mobile atoms [206-208].  The collisions 

between the atoms from the target and gas molecules reduce the mobility of the atoms 

and limit the nucleation size of the films on the substrate, which leads to the formation of 

nanorods/nano-columns. We have previously demonstrated that vertically aligned nano-

columns can be formed in AZO films when they are deposited under high oxygen 

pressure larger than 26.66 Pa (200 mTorr) [209].  

In this work we report the direct growth of tilted nano-columns of AZO films by 

a two-step template deposition method. In analogy to the abovementioned light trapping 

scheme with high surface roughness to deflect the sunlight, the inclined surface of these 

tilted nano-columns could possibly provide more effective light trapping scheme 

compared to the vertical ones.  The films were grown as single layer or bilayer on α-

Al2O3 ( 2101 ) (r-cut) or (0001) (c-cut) substrates under different oxygen pressures.  The 

resulted microstructures based on substrate types, growth parameters and layer structures 

were characterized by X-ray diffraction (XRD), transmission electron microscopy 

(TEM) (with selected area diffraction (SAD)) and scanning electron microscopy (SEM), 

and correlated with their electrical properties.  

 

7.3. Experimental details 

In a high vacuum chamber 2 wt% Al2O3-doped ZnO films were deposited on α-

Al2O3  (r-cut) or (c-cut) single crystal substrate by a KrF excimer laser (Lambda Physik 
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210,   = 248 nm, 10 Hz).  The laser beam was focused to obtain an energy density of 

approximately 4 J/ cm2 at 45° angle of incidence.  The targets were hot pressed using a 

mixture of Al2O3 and ZnO powders and sintered at 1100 oC for 11 h in flow of oxygen.  

Different oxygen partial pressures, i.e., 33.3 Pa and vacuum, were applied to deposit the 

single layer film on α-Al2O3 r-cut substrates (176.8 nm thick with deposition rate of 0.98 

Å/s under vacuum, and 206.9 nm thick with the rate of 3.4 Å/s under 33.3 Pa of O2 

pressure).  Two bilayer samples were deposited; i.e., the first sample on α-Al2O3 r-cut 

substrate is a vacuum layer (107.9 nm thick with deposition rate of 1.8 Å/s) as the 

template and then a 33.3 Pa layer (321.8 nm thick with deposition rate of 5.4 Å/s), and 

the second sample on c-cut substrate has a 3.3 template (111.7 nm thick with deposition 

rate of 1.9 Å/s) and then a 33.3 Pa layer (347.5 nm thick with deposition rate of 5.8 Å/s).  

The substrate temperature was fixed at 750°C for all depositions.  The back pressure of 

the system was at 1.3×10-5 Pa.  TEM samples were prepared through a conventional 

procedure, including mechanical grinding, polishing, and ion milling, to be used for 

TEM study.  Microstructural characterizations, using X-ray diffractometer (XRD, 

Bruker D8 Discover X-ray diffractometer with copper x-ray radiation under theta-2 theta 

configuration,  operation voltage of 40 kV and current of 40 mA; 0.001° as step-size and 

0.1 s per step were used in all scans), high resolution field emission scanning electron 

microscopes (FE-SEM, JEOL JSM-7500F with operation voltage of 5 kV) and 

transmission electron microscope (TEM, JEOL 2010 analytical electron microscope with 

a point-to-point resolution of 0.23 nm and operating voltage of 200 kV), were performed 

on all the single layer and bilayer thin films.  Electrical resistivity was measured by a 
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four point probe measurement system under room temperature along different in-plane 

directions. The resistivity-temperature dependence was conducted by a physical property 

measurement system (PPMS, Quantum Design, Inc.) using van der Pauw method.  

 

7.4. Results and discussion 

 7.4.1. Microstructure and surface morphology 

Figure 7.1a shows the XRD Ѳ ~ 2Ѳ scans of single layer AZO films deposited 

on r-cut sapphire under 33.3 Pa and vacuum.  For both samples, AZO ( 0211 ) peak is 

aligned with sapphire ( 2101 ) peak indicating highly textured film along the out-of-

plane direction of the substrate.  As the oxygen pressure reduces from 33.3 Pa to 

vacuum, it is noticed that the peak position of AZO ( 0211 ) shifts from 56.76° to 56.57°, 

i.e., the d-spacing of the AZO (0002) increases from 1.621 Å to 1.626 Å.   Compared to 

the bulk value of ZnO ( 0211 ) d-spacing, 1.625 Å [210], the film deposited under oxygen 

pressure is in compression while that under vacuum is in tension out-of-plane.  Figure 

7.1b shows the XRD Ѳ ~ 2Ѳ scans of two bilayer AZO films.  The top plot is for the 

film with the first vacuum layer and the second layer deposited at 33.3 Pa on r-cut 

sapphire.  The peak of AZO ( 0211 ) is at 56.62° with a calculated d-spacing of 1.624 Å, 

which is close to the bulk value.  The bottom plot shows the XRD scan for the bilayer 

film grown first under 3.3 and then 33.3 Pa of O2 on c-cut sapphire.  AZO (0002) peak is 

aligned well with sapphire (0006).  The peak is at 34.44° with a calculated d-spacing of 

2.602 Å. The peak intensity is higher than that in the films grown on r-cut sapphire.  

This suggests that AZO films on c-cut sapphire have a better crystallinity than that on r-
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cut sapphire.  In our previous report [209], the bilayer film grown under vacuum for the 

first layer and 33.3 Pa (250 mTorr) for the second layer shows a peak split of AZO 

(0002).  In this case, as the oxygen partial pressure for the first layer was adjusted to 3.3 

Pa (Figure 7.1b), a single AZO (0002) peak was observed.  The d-spacing of AZO 

(0002) peak, 2.602 Å, is close to that of the second layer grown with 33.3 Pa (250 mTorr) 

of O2 (2.605 Å) from the previous study. This suggests that a little amount of oxygen 

presented during the first layer deposition could increase the d-spacing of the first layer 

and relax the film to its bulk value of ZnO (0002) d-spacing, 2.603 Å [210]. 

 

 
 

Figure 7.1. (a) XRD θ~ 2θ scans of AZO single layer films grown on α-Al2O3 ( 2101 ) 

(r-cut) substrate under 33.3 Pa oxygen pressure and vacuum, and (b) XRD pattern of a 

bilayer films grown at vacuum and 33.3 Pa sequentially on α-Al2O3 ( 2101 ) (r-cut) and 

at 3.3 and 33.3 Pa on (0001) (c-cut) substrates.  
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Figure 7.2. Cross-sectional TEM micrographs show the AZO single layers epitaxially 

grown on α-Al2O3 ( 2101 ) (r-cut) substrate at the oxygen pressure of  (a) 33.3 Pa and (b) 

vacuum, and the  AZO bilayer grown with sequential deposition at oxygen pressures of 

vacuum and 33.3 Pa on (c) α-Al2O3 ( 2101 ) (r-cut) substrate and 3.3 and 33.3 Pa on (d) 

α-Al2O3 (0001) (c-cut) substrate. 

 

To fully understand the microstructure variation as functions of oxygen pressure 

and substrate type, a detailed cross-sectional TEM study for all the samples was 

conducted.  Figure 7.2a and b shows the cross-section TEM images of single layer AZO 

films on r-cut substrates under 33.3 Pa and vacuum, respectively.  The single layer film 
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deposited under 33.3 Pa shows very evident tilted grain boundaries with the average 

grain size of around 27.53 nm.  The tilted angle of the boundaries is about 52.76° 

regarding to the substrate surface, which corresponds to the extended direction of [ 2101

]AZO.  These tilted grain boundaries are possibly caused by the preferred growth 

orientation of the tilted grains, i.e., [ 2101 ]AZO. Further discussion on the grain 

orientation is given later.  Figure 7.2b shows the single layer film deposited under 

vacuum. The film has no evident grain boundary observed which is similar to the 

microstructure of the AZO film grown under vacuum on c-cut substrate from our 

previous report [209].  Figure 7.2c and d shows bilayer AZO films on r-cut and c-cut 

substrates, respectively.  For the bilayer film grown on r-cut substrate (Figure 7.2c), the 

vacuum layer is about 108 nm and a sequential layer deposited under 33.3 Pa of O2 

pressure is about 322 nm.  For the other bilayer grown on c-cut substrate (Figure 7.2d), 

the layer under 3.3 is about 112 nm and the sequential layer under 33.3 Pa is about 348 

nm.  In both cases, the bilayers show evident nano-column growth on a thin smooth 

layer.  More interestingly, while the bilayer on c-cut substrate shows vertically grown 

nano-columns, the one deposited on r-cut substrate has nano-columns grown with a tilted 

angle of 63.74° in regard to the substrate surface.  This might be due to the different 

preferred growth orientations on two different substrates. The insets are corresponding 

SAD patterns for all the samples.  It is noted that the epitaxial quality of all the films is 

highly evidenced by the distinguished diffraction dots from the films, despite the fact 

that they have very different film morphologies.  Based on the above XRD and SAD 

analyses, schematic diagrams describing the orientation relationships for the single layer 
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and bilayer films are presented in Figure 7.3a and b, respectively, both on r-cut substrate. 

For the single layer sample (Figure 7.3a) which is corresponding to the films in Figure 

7.2a and b, the matching relationships are determined to be ( 0211 )AZO//( 2101 )r-cut and [

1001 ]AZO//[ 0112 ]r-cut. For the bilayer sample (Figure 7.3b) which is corresponding to 

the film in Figure 7.2c, the bottom smooth nanolayer has the same orientation as those of 

the single layer samples. However, the top nano-column layer shows a very different 

orientation, i.e., ( 0111 )AZO nano-column//(0002)AZO nanolayer and [ 1001 ]AZO//[ 0112 ]r-cut.  

 

 
 

Figure 7.3. Schematic diagrams describe the orientation relationship between the film 

and the substrate for (a) single layer and (b) bilayer AZO films grown on α-Al2O3 (

2101 ) (r-cut) substrate. 

 

In addition to the evident morphology variation introduced by different oxygen 

pressures and substrates, a systematic variation of the d-spacing of AZO (0002) and (
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0211 ) as a function of film geometry was found based on a detailed analysis of the 

corresponding SAD patterns.  Based on the TEM SAD patterns and XRD plots, the d-

spacings of AZO (0002) and ( 0211 ) were compared with their bulk values (dZnO 002)0( bulk 

= 2.603 Å and dZnO 0)2(11 bulk = 1.625 Å [208]) and plotted in Figure 7.4a and b, 

respectively.  Figure 7.4a shows that the film deposited under vacuum has a smaller d-

spacing of AZO [0002], i.e., in compression.  However, as oxygen is introduced in the 

bilayer growth, the d-spacing starts to approach its bulk value and the film starts to be 

relaxed.  For the bilayer grown on α-Al2O3 c-cut substrate the d-spacing increases to its 

bulk value.  Finally, the single layer film grown under 33.3 Pa of O2 pressure shows the 

film in tension.  On the other hand, in Figure 7.4b the variation of d-spacing of ( 0211 ) 

shows exactly opposite trend, i.e., decreasing with increasing oxygen pressure.     

 

 
 
Figure 7.4. Plots show variation in d-spacing along AZO [0002] and [ 0211 ] as a 

function of oxygen pressure and effect of different substrates.       
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Figure 7.5. HRTEM images show the single layer AZO films grown on α-Al2O3 ( 2101 ) 

(r-cut) substrate. (a) is for the film/substrate interface area and (b) is the area near the 

tilted grain boundary, both for  33.3 Pa sample.  (c) is the film/substrate interface area 

for the vacuum sample, and (d) is the film/substrate interface region for the bilayer film 

grown on α-Al2O3 (0001) (c-cut) substrate.  The insets are corresponding FFT diffraction 

patterns for each image. 
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Figure 7.6. HRTEM images from the different areas of bilayer deposited on α-Al2O3 (

2101 ) (r-cut) substrate under different oxygen pressures: (a) the vacuum layer and (b) 

the interface area between the vacuum and 33.3 Pa layers, and (c) the 33.3 Pa layer.  The 

insets are the corresponding FFT diffraction patterns.  The in-plane d-spacing variation 

is calculated on the areas along the film growth direction and plotted in (d), i.e., i) 

NL(B): the area right above the film/substrate interface, ii) NL(T): the area of film right 

below the nanolayer/nano-columns interface, iii) NC(B): the area right above the 

nanolayer/nano-columns interface and iv) NC(T): the area from the tip portion of the 

nano-columns. 
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To further elucidate the formation mechanism(s) of the tilted grain boundaries in 

the single layer film grown under 33.3 Pa of O2 pressure and the bilayer films with tilted 

nano-columns, both on r-cut substrates, more detailed analysis with cross sectional high 

resolution TEM (HRTEM) and fast Fourier transform (FFT) analysis were performed on 

specific areas of the AZO films and presented in Figures 7.5 and 7.6.  Figure 7.5a and b 

shows the HRTEM images of the single layer AZO film grown under 33.3 Pa of O2 

pressure.  Figure 7.5a was taken near the interface area between the film and the 

substrate.  A clear interface is observed without any evident intermixing.  The inset is the 

corresponding FFT diffraction pattern of the area.  In the film the evident lattice fringes 

of (0002) and ( 0211 ) could be observed and measured as dZnO 002)0( = 2.613 Å and dZnO

0)2(11 = 1.646 Å, which are both in tension.  Figure 7.5b shows a HRTEM image taken at 

a typical tilted grain boundary.  Similarly in Figure 7.5a, evident lattice fringes are 

identified and the inset of FFT diffraction pattern shows clear diffractions from AZO 

(0002) and ( 0211 ).  Interestingly, dZnO 002)0(  and dZnO 0)2(11  near the tilted grain boundary 

are calculated to be 2.581 Å and 1.618 Å, respectively. The values are about 1.2% and 

1.7% smaller than the un-tilted area, for AZO (0002) and AZO ( 0211 ), respectively.  As 

a result of the d-spacing reduction in both in-plane and out-of-plane, the sum of the 

stress along < 2101 > is quite large (~2%) which might be the main driving force for the 

formation of the tilted grain boundaries.  Interestingly, by forming the tilted grain 

boundaries, the resulted in-plane mismatching between the film and the substrate (( 0411

)sapphire//(0002)AZO) is reduced from 2.4% to 1.2%, based on the following measured d-
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spacing values, dsapphire 04)11( = 2.550 Å, dZnO 002)0(  without tiled boundary = 2.613 Å and dZnO 

002)0(  with tiled boundary = 2.581 Å.  Figure 7.5c shows the HRTEM image of the film grown 

under vacuum with high epitaxial quality, and the inset corresponds to the FFT 

diffraction pattern of the area.  Similarly, the film grown under vacuum also shows 

evident lattice fringes and diffraction dots corresponding to (0002) and ( 0211 ).  In 

Figure 7.5d HRTEM image of the AZO bilayer film grown on c-cut substrate was taken 

near the interface and shows high quality epitaxial growth of the film.  The insets 

correspond to the FFT diffraction patterns of the nano-columns layer (top) and the 

nanolayer (bottom).  In both nano-columns and nanolayer FFT patterns, very clear 

(0002) and ( 0022 ) diffractions are observed and the corresponding d-spacings are 

calculated to be dZnO (0002)  nano-columns = 2.611 Å and dZnO (0002)  nanolayer = 2.630 Å, and dZnO

00)2(2  nano-columns = 1.404 Å and dZnO 00)2(2  nanolayer = 1.399 Å. 

Figure 7.6 shows the HRTEM images of the bilayer sample on r-cut substrate, 

from (a) nanolayer/substrate, (b) nano-columns/nanolayer, and (c) nano-columns areas.  

It is clear that within each region grown under different oxygen partial pressures the 

sample has high crystallinity. However, via the interface the change of the orientation in 

the AZO film is observed.  Based on the FFT inset, the nano-column grown under high 

oxygen pressure shows an interesting 62.51° counter clockwise rotation of [0002] in 

regard to [ 0111 ].  The tilted angle is very close to the observed tilt angle (63.74°) in 

Figure 7.2c.  As a result of d-spacing measurement based on the FFT diffraction pattern, 

it reveals that there is a variation of in-plane d-spacing along the film growth direction.  

The in-plane d-spacing, dZnO (0002) , of the nanolayer near the substrate is 2.609 Å (Figure 
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7.6a and d).  Then it is reduced to 2.565 Å for the area right below the interface between 

the nanolayer and the nano-columns (Figure 7.6b and d).  In the nano-columns grown 

under high oxygen pressure, the dZnO (0002)  was increased to 2.656 Å right above the 

interface between the nanolayer and the nano-column (Figure 7.6b and d).  Then the dZnO

(0002)  was further increased to 2.700 Å near the tip area of the nano-columns (Figure 7.6c 

and d).  At the same time, the in-plane d-spacing, dZnO 01)1(1 , of 2.525 Å for the nano-

columns area right above the interface decreases to 2.513 Å for the tip area (Figure 

7.6d).  dZnO (0002)  is compressed for the layer under vacuum; but for the film deposited 

under high oxygen pressure, the dZnO (0002)  is in tensile.  As a result, the lattice strain 

between dZnO (0002) nanolayer and dZnO (0002)  nano-columns increased to 3.43%.  Instead, the lattice 

strain between dZnO (0002)  nanolayer and dZnO 01)1(1  nano-columns is 1.58 %.  This lattice strain 

difference between the above two cases might be one of the main reasons for the 

formation of the tilted nano-columns on top of the template layer but with very different 

lattice orientations, i.e., ( 0111 )AZO nano-columns //(0002)AZO nanolayer. A similar tilted growth 

structure induced by strain has been reported previously [211-213].  This result suggests 

that it is highly possible to manipulate the AZO nano-columns growth as well as their 

tilting angles based on the growth orientations and oxygen pressures.  

Overall surface morphology studies for all samples were conducted by SEM and 

presented in Figure 7.7.  Figure 7.7a shows the surface morphology of the single layer 

AZO film deposited under 33.3 Pa of O2 pressure on r-cut substrate.  There are very 

evident tilted nano-columns observed with triangular shape.  Interestingly, the nano-
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columns are ordered distributed on the surface.  In contrast, the film deposited under 

vacuum shows a very smooth structure without any evident surface features observed 

(Figure 7.7b).  The surface morphologies of the bilayer grown on α-Al2O3 r-cut and c-cut 

substrates show very evident nano-column structures on the surfaces (Figure 7.7c and d).  

The nano-columns on r-cut are elongated to a certain direction marked by the arrow in 

Figure 7.7c. The feature is consistent with the above TEM results.  

 

  

  
 
 

Figure 7.7. SEM images show the different surface morphologies of AZO films grown at 

(a) 33.3 Pa, (b) vacuum and (c) the bilayer of vacuum and 33.3 Pa on r-cut substrate, and 

(d) the bilayer of 3.3 and 33.3 Pa on c-cut substrate.   
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7.4.2. Electrical properties 

               

 
 

 
Figure 7.8. Plots show the electrical resistivity values of AZO films grown at a) 33.3 Pa 

and b) vacuum on r-cut substrate.  The values are measured along the variation of the 

temperature in the range of 200~400K. 

 

To clarify the effect of variation of microstructure and surface morphology of the 

AZO films on the electrical properties, electrical resistivity was first measured by a four 

point probe system at room temperature.  Data is summarized in Table 7.1.  For the 
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single layer deposited under vacuum, the electrical resistivity was around 1 mΩ-cm 

while the single layer deposited under high oxygen pressure regime (33.3 Pa) shows 

increased value with around 9.8 mΩ-cm. The resistivity measurement along different 

orientations in-plane for the films was conducted to explore the possible in-plane 

anisotropic properties. No obvious differences were observed for all the tested samples.  

Similarly, the temperature dependent electrical resistivity for both AZO films grown at 

33.3 Pa and vacuum on r-cut substrate has been measured and plotted in figure 7.8. It 

shows the decrease of the resistivity values as the temperature increases from 200 K to 

400 K following a typical semiconductor behavior.  The reduced electrical resistivity in 

the single layer sample grown under vacuum is because of less grain-boundary-induced 

scattering similar to previous reports [214-216].  The tilted grain boundaries in the film 

grown under high oxygen pressure could enhance the scattering and therefore lead to the 

increased resistivity.  But interestingly, compared to the electrical resistivity of the single 

layer grown on α-Al2O3 (0001) (c-cut) substrate from previous study (25 mΩ-cm for 

single layer under vacuum) [209], the film on r-cut substrate shows significantly reduced 

values.  This suggests that the electrical transport could prefer a certain in-plane 

orientation on the AZO film, i.e. ( 0211 )AZO  rather than (0001)AZO.  The bilayer 

deposited on r-cut substrate has 104.5 mΩ-cm while 112.9 mΩ-cm was measured for the 

bilayer sample deposited on c-cut substrate (Table 7.1).  This is because nanopillar 

structure limits the electrical transport along in-plane direction and the thickness of the 

nanolayer is quiet small (~110 nm). It is noted that the films were all deposited under a 

high temperature of 750°C where a possible deterioration of the Al doping distribution 
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could occur and lead to a lower conductivity.  Further optimization on the growth 

temperature is underway to achieve the tilted nanopillar films with a better electrical 

conductivity.            

 

Sample Information 
Thickness 

(nm) 

Uniform Layer  

Thickness 

(nm) 

Resistivity 

(Ω-cm) 

Vacuum (r) 176.75 - 0.0010 

33.3 Pa (r) 206.87 - 0.0098 

Vacuum/ 33.3 Pa (r) 429.68 107.96 0.1045 

3.3/ 33.3 Pa (c) 459.25 111.74 0.1129 

 
Table 7.1. List of the samples and their electrical resistivity values. 

 

7.5. Conclusions 

Both oxygen pressure and substrate orientation play a very important role on the 

overall microstructure and electrical properties of the AZO films. On r-cut sapphire 

substrates, single layer AZO films grown under high oxygen pressure (33.3 Pa) show the 

tilted grain boundaries possibly induced by internal lattice strain while the film deposited 

under vacuum shows no evident grain boundaries.  Bilayer AZO films were deposited 

sequentially with a uniform vacuum layer first followed by a nano-column layer under 

33.3 Pa of O2 pressure on both c-cut and r-cut substrates.  The tilted nano-columns in 

bilayer sample on r-cut substrate grow along AZO [0002] which results in a tilt angle of 

63.74° in regard to the substrate surface. This tilted nano-column structure could 

minimize the lattice strain between the in-plane lattices of the nanolayer and the nano-

columns.  Electrical resistivity of the single layer on r-cut substrate is significantly 



 

175 
 

 

smaller (25 times) than that on the c-cut substrates. It suggests that higher conductivity 

values can be achieved in AZO films with the electrical path along ( 0211 )AZO.  More 

interestingly the self-assembled tilted nano-columns can be formed by properly selected 

AZO growth orientation and oxygen pressures. These structures could find unique 

applications for light trapping schemes in future thin film solar cells.  
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CHAPTER VIII  

DIRECT OBSERVATION OF DEFORMATION BEHAVIOR OF AL DOPED 

ZNO NANORODS GROWN WITH DIFFERENT WIDTH/LENGTH RATIOS 

 

8.1. Overview 

In situ TEM nanoindentation has been conducted to explore the size dependent 

deformation behavior of two different types (type I and II) of 2wt% Al2O3-doped ZnO 

(AZO) nanorods.  The AZO films are grown on α-Al2O3 (0001) (c-cut) substrates under 

250 mTorr of O2 pressure by a pulsed laser deposition technique.  Type I has grown with 

a width/length ratio of ~0.51 while type II nanorod has ~0.88 ratio.  During the 

indentation on the type I nanord structure, annihilation of defects has been observed 

which is caused by limitation of the defect activities by relatively small size of the width.  

On the other hand, the type II nanorod shows dislocation activities which enhance the 

grain rotation under the external force applied on more isotropic direction through the 

type II nanorod.   
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8.2. Introduction 

As a transparent conducting oxide material, ZnO has been broadly employed on 

various applications, such as solar cells, light emitting diodes and transparent thin film 

transistors, due to its unique optical and electrical properties [215, 68, 217, 197].  

Especially, as a direct bandgap semiconductor with a bandgap of 3.4 eV, ZnO can be 

used for optoelectronic devices operating in the blue to UV regime [218, 219].  Usually 

for n-type ZnO, ZnO is usually doped with group III elements, B, Al, Ga and In to 

increase its electrical conductivity [220, 73,178, 217].  Among those, Al is one of the 

most typical dopant for n-type ZnO film as result of high transmittance and electrical 

conductivity of Al doped ZnO (AZO). 

More potentially, the microstructure of AZO can be tuned to nanorod, nanowire 

or nanotube under different processing conditions.  It has been recently reported that 

microstructure can be tuned under various partial gas pressures during the deposition 

process with which the grain size can be determined by mean free path of adatoms [194, 

205, 206].  For example, Lee et al. demonstrated that during the pulsed laser deposition 

(PLD) processing vertical aligned AZO nanorods were grown in 250 mTorr of oxygen 

partial pressure while smooth continuous layer has been formed under vacuum [209].   

Once the size of two dimensional thin film nanostructure is reduced to one 

dimensional nanorod structure, it is necessary to address the physical properties of the 

AZO nanostructure.  For example, the deformation behaviors of the nanorod structures 

are crucial for mechanical manipulation for future nano-electromechanical systems 

(NEMS), using ZnO nanostructures [222, 223].  Recently several research reports 
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introduced interesting results from mechanical tests on ZnO nanostructures, e.g. phase 

transition from wurtzite to body centered tetragonal structure during the tensile test on 

ZnO nanorod [224],  size dependent ZnO nanostructure deformation behavior such as a 

significant increase in both elastic modulus [225] and fracture strain [226] with the 

reduction of its diameter size.   

In spite of that, the recent development of in situ TEM technique has brought 

research opportunities in real time dynamic and quantitative studies under TEM column.  

Lately, during in situ TEM deformation on ZnO nanowire, observations of size 

dependent fracture processing during the tensile test [90] and transition from crystalline 

to amorphous structure during compressive and bending test [89] have been reported. 

In this work we have conducted in situ TEM nanoindentation on two different 

types of AZO nanorods with different ratios of width/length (w/l), (type I: l >> w and 

type II: l ≥ w), grown on c-cut sapphire substrate to explore the size dependent 

deformation behavior of AZO nanorod structures.  During the indentation on the type I 

AZO nanorod, relatively small size of the width limits the defect activity during the 

deformation and finally size confinement induces annihilation of the defects.  

Meanwhile, more defect activities have been observed during the indentation on type II 

nanorod, which enhances the grain boundary activity by grain boundary shear.  
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8.3. Experimental details          

 

 
 
Figure 8.1. A schematic diagram illustrates in situ nanoindentation experimental setup, 

including the sample, electron beam and naoindenter tip (a wedge shape tip) positions, 

and sample moving direction.    

 

In a high vacuum chamber, depositions of 2 wt% Al2O3-doped ZnO films on α-

Al2O3 (c-cut) single crystal substrate were performed by pulsed laser deposition (PLD) 

with a KrF excimer laser (Lambda Physik LPX210i,   = 248 nm, 10 Hz). The laser beam 

was focused to obtain an energy density of approximately 4 J/cm2 at a 45° angle of 

incidence.  The targets were hot pressed using a mixture of Al2O3 and ZnO powders and 

sintered at 1100 oC for 11 hours in flow of oxygen.   The substrate temperature and 

oxygen pressure were fixed at 750 °C and 250 mTorr of O2 pressure for deposition.  The 

back pressure of the system was at 1 ×10-7 Torr before oxygen was introduced.  Post-

annealing was performed under 750 °C and 100 Torr of O2 pressure for 30 minutes after 

deposition.  TEM samples were prepared through a conventional procedure, including 

mechanical grinding, polishing, and ion milling, to be used for both conventional TEM 
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and in situ TEM studies.  In situ nanoindentation was conducted using an in situ 

nanoindentation holder (NanoFactory, Inc.). The sample is controlled in three 

dimensions by a piezoelectric actuator.  Both conventional TEM and in situ TEM 

analyses were conducted on a JEOL 2010 analytical electron microscope with a point-to-

point resolution of 0.23 nm. Images and movies during indentation events were recorded 

using a built-in CCD camera in the microscope.  For the in situ nanoindentation 

experiment, indentation experiments were performed with a wedge-shaped diamond tip 

(tip radius of ~100 nm and tip angle of ~50.5°) for standard load-displacement 

measurements within TEM column.  In situ movies and images were taken during the 

loading and unloading processes under the experimental setup described in Figure 8.1. 

During the indentation experiment, the nanoindentation tip was fixed while the sample 

was moved toward the tip by a piezoelectric stage in a precision movement as fine as 0.1 

nm/step. During the loading process, a constant loading rate of 10 nm/s and a holding 

time of 15 ms were used for all of the indentation experiments. For the in situ 

experiments, a maximum depth of 50 nm was used to protect the tip from damage. 
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Figure 8.2. (a) Cross-sectional TEM micrograph shows the AZO single layer epitaxially 

grown on α-Al2O3 (0001) (c-cut) substrate at the oxygen pressure of 250mTorr.  (b) 

Schematic diagrams describe two different types of nanorod structures with different 

ratios of width/length (w/l), e.g. (i) for type I size of length is much larger than that of 

width with w/l ratio of ~0.51 and (ii) for type II size of width and length are on similar 

range with w/l ratio of ~0.88, selected for in situ TEM nanoindetation. 

 
 

8.4. Results and discussion 

Figure 8.2a shows the cross-section TEM image of single layer AZO films on c-

cut sapphire substrate under 250 mTorr of O2.  It is very obvious that the film is grown 
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as nanorods along [0001] on the substrate.  The inset is corresponding selected area 

diffraction (SAD) pattern for the sample.  It is noted that the epitaxial quality of the film 

is high, shown by the distinguished diffraction dots from the film.  In order to explore 

the size dependent deformation behavior of AZO nanorods, two different types of 

nanorod have been selected for the in situ TEM nanoindentation.  Figure 8.2b shows the 

two different w/l ratios of nanorods and indentation direction.  For type I, size of 

nanorod width is much smaller than that of the length while the type II shows that the 

size of width becomes similar to that of length.  Therefore, it is expected that during the 

indentation process, different deformation behaviors in two different types of nanorods 

could be driven by different defect activities which can be controlled by the width of the 

nanorods. 

To investigate size dependent deformation behavior of two different types of 

AZO nanorods, in situ TEM nanoindentation on AZO samples has been performed in 

TEM column while the deformation behaviors were captured on video.  The loading 

process at a constant displacement rate continues up to 50 sec, followed by an unloading 

process at the same rate of 1 nm/sec.  During the loading-unloading experiments, a set of 

typical force-displacement plots from two different geometries of AZO nanorods has 

been conducted. For the indentation on the type I nanorod, nanorod with w/l ratio of 0.51 

with length and width of about 308 and 157 nm has been selected.  Figure 8.3a-f are the 

snapshots taken during the indentation normal to the AZO (0001) plane.  Figure 8.3a-d 

were captured during the loading process between 0 and 50 s, and Figure 8.3e was taken 

right after the maximum load.  Finally, Figure 8.3f was taken after the indentation.  
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Before the indentation, in Figure 8.3a a lot of defects are observed over the entire 

nanorod structure.  Once the indentation has been initiated, density of defects in the top 

area of the nanord marked by the red dashed circle in Figure 8.3a becomes decreased at 

the 18.81 sec.  And at 25.52 sec it is noticed that movement of defects is more active 

with dark contrast in the center of the nanorod while top portion (right below the 

indenter tip) is cleaner with bright contrast.  Then after the yielding initiated at about 37 

sec in figure 8.3g and h, at 39.28 sec even boarder area right under the indenter tip 

within circled area becomes cleaner.  It might be possible because before defects interact 

and multiply with other defects, they could leave from the free surface of the crystal as 

the size of width becomes relatively smaller than that of length, which is similar to 

previous reports [81, 102].  Finally, near the maximum load at 50.36 sec, about upper 

half of the nanorod structure becomes much cleaner than previous condition during the 

loading process.  Additionally, it has been noticed that through yielding, significant 

deformation behavior from lower half of the nanorod was observed, which could be 

induced as at the yield point the dislocation penetration through the boundaries marked 

with A and B in figure 8.3c.  More noticeably, after indentation, lower portion of the 

nanorod still have a lot of defects, but top area right below the indenter tip is very clean 

with less defect compared to the its initial condition in figure 8.3a.  Finally, it can be 

concluded that during the indentation on the nanorod with w/l ratio of 0.51, relatively 

small size of width could confine the activation of the defects; thus, annihilation of 

defects has been led by their escape from the crystal surface.   
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Figure 8.3. A detailed study of deformation mechanism was carried out by correlating 

the force–displacement plot with the movie snapshots for indentation on type I AZO 

nanorod.  A set of movie frames during indentation on AZO (0001) is shown in (a) 

before indentation, (b), (c) and (d) during loading process, (e) right after maximum load, 

and (f) after indentation.  The corresponding image letters are labelled on the (h) force–

displacement and (g) force–time plots. (Based on instrument specifications, the 

estimated measurement error of force is ±5 %.) 
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Figure 8.4. During indentation on type II AZO nanorod, a set of movie frames was 

captured in (a) before indentation, (b), (c), (d) and (e) during loading process, (f) after 

indentation.  The corresponding image letters are labelled on the (h) force–displacement 

and (g) force–time plots. (Based on instrument specifications, the estimated 

measurement error of force is ±5 %.) 
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On the other hand, for the type II nanorod, several type I nanorods have been 

conglomerated during the deposition and postannealing processes; then finally, a type II 

nanorod with length of 261 nm and width of 232 nm could be formed.   As the w/l ratio 

of type II nanorod becomes much greater than that of type I nanorod, more active 

microstructural evolution by defect activities on isotropic direction would be expected in 

type II nanorod structure unlike the limited defect activation on the anisotropic direction 

in type I.  Figure 8.4a-e were taken during the loading process between 0 and 50 s, and 

Figure 8.4f was taken after the indentation.  Before indentation in Figure 8.4a, based on 

the inset of SAD pattern, two bright dots (indexed with ‘a’ and ‘b’) of AZO (0002) are 

observed, which are possible from differently oriented grain structures.  Once the 

indentation process has been initiated, at 19.87 sec activation of defects is observed.  

Especially, in the grain A within the circled area, contrast becomes dark, which possibly 

induced by high density of mobile dislocations piled up at the grain boundary indicated 

by white arrows.  Then right before the yield point (y ~28 sec in figure 8.4g), at 27.25 

sec as the dark contrast completely dominates the upper area of grain A.  After the yield 

point, as the dislocations penetrate through the grain boundary, the grain boundary of the 

grain A becomes blurred.  Then up to near the maximum load at 49.54 sec, as severe 

plastic deformation has been accompanied along the grain A, the grain boundary has 

been completely disappeared.  Finally, after the indentation, in figure 8.4f it has been 

observed that in the inset of SAD pattern ‘a’ of AZO (0002) has been vanished and small 

textured structure has been formed with single dot ‘b’ of AZO (0002).  This strongly 

suggests that during dislocation piling up at the grain boundary of grain A, internal stress 
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exerted on the boundary could be high enough to lead rearrangement of lattices near the 

boundary during grain rotation of grain A through the yielding.  Finally, it can be 

explained that as the w/l ratio has exceed much more than 50%, more isotropic geometry 

of nanorod allows more defect activity over broad range of structure.  Therefore, 

increased internal stress induced by higher density of the defects in the grain with size of 

~110 nm perhaps promotes grain boundary shear under which the grain and grain 

boundary activities could be observed as dominating the deformation behavior of type II 

nanorod structure.  Although this phenomenon has been suggested in nanostructured 

copper by Conrad [53], by the in situ TEM nanoindentation, we could demonstrate that 

such high stress from high detect density could possibly lead similar process in a 

ceramic material.   

 

8.5. Conclusions 

Two different types of AZO nanorod with different w/l ratios (w/l: 0.51 for type I 

and 0.88 for type II) were prepared by PLD for direct observation of size dependent 

deformation behavior during in situ TEM nanoindentation.  During the indentation on 

the type I nanorod structure, relatively small size of width could limit the activation of 

the defects which inducing their annihilation.  On the other hand, type II nanorod formed 

with conglomerating several type I nanorods showed that as the external force spreading 

on the isotropic direction, broad range of dislocation activities has been observed, which 

is accompanied with the grain boundary shear during dislocation piling up at a grain 

boundary, enhancing the grain rotation.  Briefly, the in situ TEM experiment recorded 
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the two different size dependent deformation behaviors of nanorods and revealed the 

importance of controlling their width size for various application under which different 

deformation mechanisms are required.   
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CHAPTER IX  

SUMMARY 

 

The following list summarizes the deformation behaviours of : 

AZM:  Fully dense AZM ceramic nanocomposites were consolidated by SPS and 

prepared for the in situ nanoindentation experiment in a TEM column.  Through 

conventional TEM study, we observed a unique “necklace” grain structure with bi-

modal grain size distribution, where all the large white grains (Al2O3 and MgAl2O4) are 

surrounded by small ZrO2 grains.  Through in situ nanoindentation experiment, we 

monitored the grain activities during deformation.  We found that in certain areas where 

a clear ‘necklace’ structure exists, the region mainly went through elastic deformation, 

i.e., the grains recover to their original alignment after indentation by the assistance of 

the strong grain activities in the small ZrO2 grains.  In other regions where mainly the 

hard Al2O3 and soft MgAl2O4 grains exist, a certain amount of plastic deformation was 

observed and the grains undergo a series of grain rotation, grain-boundary sliding, and 

realignment.  This experiment demonstrates elastic and plastic deformation through 

grain and grain boundary activities in local grain areas of multi-phase ceramic 

nanocomposites at room temperature.  This in situ study could provide useful insight for 

future designs of ceramic nanocomposites with superplasticity. 

YBCO twins: A series of YBCO thin films with various film thicknesses were 

prepared by PLD for conventional nanoindentation and in situ nanoindentation in TEM 

column.  Through conventional nanoindentation, we observed that the indentation 
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hardness on the (110) planes is about 50% larger than that on the (001) planes.  

Consistently through the in situ nanoindentation experiments, the mean stresses at 

maximum loads is 11.14 GPa for indentation on (110) planes and 7.95 GPa for 

indentation on (001) planes, which results in a 40% increase in the maximum load.  

Through detailed analysis using in situ movies, we found that during deformation, a 

certain portion of the twin structures reverses the contrast; more interestingly, variations 

in the width of the twin boundaries during the loading and unloading process were 

observed.  This suggests that twin interfaces act as effective barrier for external stress 

and therefore enhance the mechanical strength of HTS YBCO films, in the direction 

perpendicular to the twin interfaces by accommodating the external stress through twins.           

Nc Nickel: In situ nanoindentation experiment shows solid evidence for significant work 

hardening in nc Ni based on sequential loading-unloading cycles. During work 

hardening, the dislocation density along the TB increases, and the yield strength 

increases gradually by ~40 %.  Frequent formation of L-C locks were identified in grain 

interior and along twin boundaries. L-C locks are effective barriers to dislocations and 

lead to work hardening. Several mechanisms of interaction between L-C locks and twin 

boundaries were identified which provide important insight to understand plasticity in nc 

metals.   

AZO nanorods: Two different types of AZO nanorod with different w/l ratios 

(w/l: 0.51 for type I and 0.88 for type II) were prepared by PLD for direct observation of 

size dependent deformation behavior during in situ TEM nanoindentation.  During the 

indentation on the type I nanord structure, relatively small size of width could limit the 
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activation of the defects which inducing their annihilation.  On the other hand, type II 

nanorod formed with conglomerating several type I nanorods showed that as the external 

force spreading on the isotropic direction, broad range of dislocation activities has been 

observed, which is accompanied with the grain boundary shear during dislocation piling 

up at a grain boundary, enhancing grain rotation.  Briefly, the in situ TEM experiment 

recorded the two different size dependent deformation behaviours of nanorods and 

revealed the importance of controlling their width size for various application under 

which different deformation mechanisms are required.   
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