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ABSTRACT 

 

 Laser in situ scattering and transmissometry (LISST) instruments are used to 

measure the particle size distributions (PSDs) and volume concentration of individual 

and groups of phytoplankton in water. The objective of this research was to test the 

LISST’s ability in detecting monospecific blooms in-situ and the ability to detect 

aggregation after diatoms were subjected to different temperatures and bacteria 

concentrations. The PSDs of ten harmful algal bloom (HAB) species were measured 

with the LISST characterizing the peak location, peak height, peak width, and peak 

range resulting in a scattering signature for each species. Each species had specific 

characteristics that would allow for their detection with the LISST, though microscope 

observations would be needed for complete accuracy. The LISST was able to detect 

HABs placed in natural seawater collected off the Texas coast. Blooms of four HAB 

species before they reached full” bloom concentrations were detected making the LISST 

a possible low cost, effective tool in the early detection and monitoring of HABs. The 

diatom, Odontella aurita, was used to test how well the LISST could monitor 

aggregation, an important process in the termination of many phytoplankton blooms. 

Increasing temperature causes an increase in transparent exopolymer particle (TEP) 

production in diatoms, which is a critical sticky particle that increases the probability of 

aggregation. An increase in temperature can also cause an increase in bacteria 

concentration that can positively effect TEP production and thus aggregation. O. aurita 

was grown at 20 °C and 28 °C and showed a significant increase in TEP abundance with 
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temperature (p = 0.002), though  no relationship between TEP production and bacteria 

concentration existed. Coomassie stained particles (CSP) are proteinaceous gel-like 

particles, which are currently understudied. CSP was consistently produced though it did 

not appear to be dependent upon any single factor. The increase in ocean temperatures 

has implications for an increase in phytoplankton blooms making the monitoring and 

understanding of these blooms even more important as they can affect the carbon cycle 

and potentially the microbial loop. 
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CHAPTER I 

INTRODUCTION  

 

The LISST-100X-C instrument 

 The laser in situ scattering and transmissometry (LISST) instruments is a particle 

analyzer that was originally designed to measure sediment size, distributions, and 

volume concentrations in water (Agrawal and Pottsmith 2000; Gartner 2001). These 

instruments use laser diffraction to determine the particle size distribution (PSD) and 

particle volume concentration in 32 size bins placed on a logarithmic scale in the range 

of 2.5 to 500 µm.  The collimated laser beam (670 nm) shines across a 5 cm path 

through the water to be analyzed. Suspended particles in the water diffract the light, and 

the scattered light hits the detector composed of 32 concentric rings. The scattered light 

is largely dependent upon a particle’s size and shape. The size of the suspended particles 

is determined based on an interpolation of which of the 32 rings the light hits (Agrawal 

and Pottsmith 2000). The radius of each ring increases logarithmically to correspond 

with the logarithmic spacing of particles. A particle detected by a ring is assumed to be a 

spherical object and an equivalent spherical diameter (ESD) is approximated for the 

particle (see Fig. 1). 
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Fig. 1. Simplified image of the LISST sample chamber for laboratory work. The laser passes  

 through the water sample scattering off particles (represented by green circles) that are suspended 

 and strikes the detector rings (black rings). Red arrows represent laser scatter. 
 

  

The LISST is able to determine total volume by calculating the volume 

calculated from each of the 32 detector rings to produce a PSD where the height of the 

peak represents the volume detected at each size bin.  As the LISST does not measure 

particle shapes and assumes that everything is spherical in nature, phytoplankton having 

different length and width measurements, their orientation to the laser could produce 

more than one peak on a PSD. The resulting peak location and relative height on the 

PSD can be used as a tool to identify individual phytoplankton species in the water 

column assuming different species have different ‘scattering signatures’ resulting in a 

distinct PSD that doesn’t change with time (Rzadkowolski & Thornton 2012) (Fig. 2). 
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Fig. 2.  Scattering signature of Asterionella taken from Rienecker et al. (2008). Since phytoplankton are 

 not all spherical objects, peaks will be produced at different ESD based on the particles 

 orientation to the laser. The number of peaks, position of peaks, and relative height of peaks can 

 potentially be used to identify different species. The grey bars indicate the range of cell 

 dimensions measured with a microscope. 

 

 

Phytoplankton ecology 

 There are several major taxonomic groups of phytoplankton; diatoms and 

dinoflagellates are two main types of phytoplankton that make a significant contribution 

to global primary production, and are chosen for this research due to their ability to form 

massive harmful blooms, as well as being able to aggregate. For there to be living 

organisms inorganic carbon must be chemically reduced to an organic state as organic 

carbon is the foundation of all life. Primary producers synthesize simple organic 

compounds from the inorganic forms of carbon, and as diatoms and dinoflagellates are 

autotrophs they use light energy to fix the carbon. Phytoplankton use light that 

penetrates the water column to produce organic carbon in the euphotic areas of the 

world’s oceans. Blooms of phytoplankton, particularly in the fall and spring, produce 
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vast amounts of carbon that through cell death the phytoplankton are able to transport 

the organic carbon to benthic environments via sinking particles (Billet et al. 1983). The 

sinking of phytoplankton to the depths is dependent upon biological processes such as 

the size of the cells, cell stickiness, growth characteristics (i.e. single cell or chain), and 

physical variables like turbulence, currents, and advection (Riebesell and Wolf-Gladrow 

1992). These components can causes aggregation of phytoplankton into particles 

referred to as marine snow (particles greater than 0.5 mm in length; Alldredge and Silver 

1988). Diatom aggregation into marine snow and the subsequent sinking alone produces 

a rapid flux of particulate organic matter to the benthos at rates that can exceed 100 m 

day
-1

 (Billet et al. 1983, Smetacek 1985). Benthic environments do not support 

phytoplankton growth and rely on this continuous, seasonally-variable deposition of 

particulate organic carbon (POC). Approximately 16 of the 45 Pg C per year (i.e. 36%) 

of total net marine primary production is transported from the euphotic zone to the deep 

sea (Falkowski 1998). 

 Unlike terrestrial plants, phytoplankton communities are able to change 

dramatically in abundance and composition within days or even hours.  Different 

phytoplankton groups and species respond differently to nutrient, temperature, and light 

conditions. Understanding the phytoplankton environment and how global increases in 

temperature may affect their biological processes is important considering they 

photosynthesize more than 99% of the food used by all other marine organisms (Segar 

2007), and their continuous sinking to the deep sea affects various biogeochemical 

cycles (i.e. organic carbon cycle, silica cycle). However, through sinking, phytoplankton 
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are sequestering carbon from the surface waters and transporting the carbon to the deep 

sea contributing to the global biological carbon pump which could be forcing global 

climate change (Broecker 1982, Omta et al. 2006). The significance of understanding the 

effects of temperature on these organisms is becoming apparent.  

Warming oceans effect on phytoplankton 

 Phytoplankton are found throughout the world’s oceans, however the 

temperature, light, and nutrient concentrations available to phytoplankton is unique 

depending upon location and can widely vary (Marinov et al. 2010). Every species of 

phytoplankton thus occupies a region that best suits their temperature (as well as light 

and nutrient) requirements. Due to changes in climate and the overall increase in 

temperature, phytoplankton that thrive in the mid-latitudes and tropics where the ocean 

is thermally stratified, will have increased stratification due to the increase in sea surface 

temperature thus reducing vertical mixing and limiting the amount of nutrients in the 

surface waters (Behrenfeld et al. 2006). Under those conditions phytoplankton growth 

and biomass should decrease. At higher latitudes where phytoplankton growth is 

generally limited by light, the increased stratification that will occur due to high 

temperatures will favor the phytoplankton through their retention closer to the surface 

where there is light (Doney 2006). The increase in sea surface temperature may start 

favoring the more motile phytoplankton. The more motile phytoplankton would also be 

favored in mid-latitude and tropical regions where the water could have nutrient 

limitation. The phytoplankton’s ability to move would enable it to find the available 

nutrients. 
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 This raises concern as to how temperature affects the physiology of 

phytoplankton and each species ability to adapt to the change. Acclimation of 

phytoplankton is species dependent and Geider et al. (1997) and Behrenfeld et al. (2008, 

2009) showed that acclimation responses can be interpreted from the chl a:carbon ratio, 

which could represent the adjustment in intracellular carbon allocation via the exudation 

of exopolymers (Geider et al. 1997; Thornton 2002). Carbon allocation in phytoplankton 

will change with an increase in temperature and Claquin et al. (2008) found that 3 

diatom species exuded more exopolymers with an increase in temperature.  The role of 

increased sea temperature and its effects on ecosystems on a local scale and the 

production of extracellular carbon needs further investigation. 

Harmful algal blooms  

 Algal blooms are referred to as “harmful” when the blooms cause a range of 

deleterious physiological and environmental effects (Smayda 1997). Harmful algal 

blooms (HABs) are natural phenomena that affect virtually every coastal nation in the 

world (Hallegraff 1993). This widespread occurrence of HABs could be caused by 

physical processes such as currents and storms, or by anthropogenic sources such as 

transference from ship ballast water, increased aquaculture operations in coastal waters, 

and stimulation of the blooms due to increased eutrophication (Anderson 1989; 

Hallegraff 1993; Burkholder 1998; Gilbert et al. 2005; Gilbert and Burkholder 2006). 

Only 2% of all phytoplankton taxa produce toxins causing HABs and dinoflagellates 

make up three quarters of these toxin producing algae (Smayda 1997). Phytoplankton 

that cause HABs can be motile or non-motile, and are present in different sizes.  
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 Algal blooms are considered harmful due to their ability to produce toxins some 

of which can cause paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning 

(NSP), amnesic shellfish poisoning (ASP), and ciguatera fish poisoning (CFP). These 

blooms can also cause fish mortality, fatalities to marine mammals and benthic 

organisms, and illness in humans. With global warming causing elevated water 

temperatures, the seasonal succession and biogeographic boundaries of the HABs will 

change (Dale et al. 2006), leading to an increase in the occurrence and magnitude of 

HABs at any given area. The early detection and mitigation of these harmful 

microorganisms will allow for healthy and safe coastal waters. 

Diatom aggregation  

Diatoms are a major group of marine phytoplankton that produce an estimated 

40-45% of the net oceanic production (Mann 1999). Marine snow, or particles greater 

than 0.5 mm in length (Alldredge and Silver 1998), can be formed by detritus, living 

organisms, and inorganic matter (Thornton and Thake 1998). Diatoms are a common 

component of these aggregates. Marine snow and the diatoms that compose it interact 

with the surrounding environment, and other microbes such as heterotrophic bacteria. 

Heterotrophic bacteria are able to either break down marine snow through high 

hydrolytic enzymatic activities thereby reducing the vertical flux of the organic matter 

(Smith et al. 1992; Grossart and Ploug 2001), or they may enhance aggregation and 

stabilize existing aggregates through exopolymer production (Decho 1990; 

Heissenberger and Herndl 1994).                          

           A possible pathway for exopolymer production is the carbon fixed by diatoms via 
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photosynthesis forms glucan, a carbohydrate (Bellinger et al. 2005; Abdullahi et al. 

2006), which is exuded as exopolymers during normal growth. The exopolymers 

produced by diatoms can form three different substances depending on their solubility, 

molecular weight and structure: cell coatings, water soluble exopolymers, and 

transparent exopolymeric particles (TEP) (Thornton 2002).    

TEP is a matrix of sticky, gel-like particles, and is defined as an independent 

polysaccharide (i.e. detached from a cell) that is stained by Alcian blue and can be 

retained on a 0.4 µm filter (Alldredge et al. 1993). These particles are formed abiotically 

from dissolved and colloidal organic matter via spontaneous assembly (Chin et al. 1998), 

shear coagulation (Passow 2000), or bubble adsorption (Mopper et al. 1995; Zhou et al. 

1998; Mari 1999). TEP exists as discrete particles rather than as cell surface coatings 

(Alldredge et al. 1993). Due to the sticky nature of TEP, it is important to the formation 

of diatom aggregations in marine ecosystems (Passow et al. 1994; Engel 2000), although 

the presence of TEP does not ensure aggregate formation (Thornton 2002). The 

coagulation of particles depends on the probability of particles colliding together, and on 

the probability of the two particles sticking together once they collide (i.e. the stickiness 

of the particles) (Jackson 1990). TEP, as a sticky substance, is thought to play a large 

role in the aggregation process. Diatoms produce small TEP particles, or precursors to 

TEP during early growth, the large TEP particles are formed by aggregation, and have 

the potential to envelop most of the phytoplankton in the bloom (Passow and Alldredge 

1995). 

 Marine phytoplankton remove dissolved inorganic carbon from the euphotic zone 



 

9 

 

 

via photosynthesis and then redirect it to the deep ocean through sedimentation (Engel 

and Passow 2001) powering the biological carbon pump. These vertical fluxes are 

believed to influence global climate by leading to a net burial of carbon in the ocean 

floor, which could potentially reduce the amount of carbon dioxide in the atmosphere 

(Kiørboe 2001). The vertical sinking of these large marine snow aggregates is therefore 

important on the global scale. TEP may affect the flux of organic carbon from the 

euphotic layer to the bottom of the ocean, due to its role in the coagulation process 

(Jackson 1990; Logan et al. 1995). As aggregates age, TEP persists, suggesting that TEP 

may be resistant to microbial decay, which can explain how the aggregates are held 

together long enough to reach the deep areas of the ocean (Alldredge et al. 1998). 

The polysaccharide TEP is not the only particulate organic matter that may play a 

role in diatom aggregation. Coomassie stained particles (CSP) are protein particles that 

are defined by being stained with Coomassie Brilliant Blue (CBB) dye.  Most work has 

focused more on the role of TEP and bacteria in diatom aggregation while little is known 

about the role CSP may play. Bhasker et al. (2005) showed that CSP are more abundant 

than TEP in water collected from the Pacific Ocean off of Scripps Pier (California), 

however it is unknown whether there is overlap between the two particles as they could 

serve as smaller subunits of the same particle (Engel 2009).  Prieto et al. (2002) 

questioned the relative stickiness of CSP as results showed TEP was of more importance 

in diatom aggregation. TEP is well studied, but the effects of CSP are largely unknown. 

CSP could play a role in the aggregation of diatoms, and regardless of that CSP still 
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could serve as a potentially important pool of nitrogen in the nitrogen cycle and could be 

produced and consumed by bacteria.  

Heterotrophic bacteria colonize plankton generally once they become more 

senescent and form marine snow or aggregates (Smith et al. 1995). Once attached to the 

aggregates, bacteria cause particulate organic carbon (POC) solubilization to dissolved 

organic carbon (DOC) (Smith et al. 1992; Grossart and Ploug 2001). The role of bacteria 

in decomposing POC derived from phytopolankton is well studied, but their role in the 

decomposition of DOC derived from phytoplankton and how this effects the production 

of TEP, CSP, and aggregation is not understood.  

Study objectives 

 The LISST-100X though originally designed for sediments, has become a tool to 

identify and quantify biological organisms (Serra et al. 2001; Karp-Boss et al. 2007; 

Rienecker et al. 2008; Rzadkowolski and Thornton 2012). The LISST can be a potential 

tool for monoculture bloom identification (Karp-Boss et al. 2007; Rienecker et al. 2008), 

as well as detecting aggregates in the water column (Rzadkowolski & Thornton 2012). 

To look more into the LISST’s potential; two experiments were designed to test its 

ability in both areas. 

To determine the ability of the LISST to identify and quantify individual species, 

harmful algae taxa were studied. The LISSTs ability to detect and distinguish between 

HAB species at realistic bloom concentrations, and against populations of natural 

particles found in coastal waters needs to be determined. 

 My main hypotheses for this experiment were: 
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1. Different HAB species have significantly different scattering 

signatures as measured by the LISST-100X particle analyzer. 

Approach: The LISST-100X estimates the equivalent spherical 

diameter of particles and places them in logarithmically spaced bins 

(Gartner 2001; Agrawal et al. 2008). The LISST produces a PSD 

based on the shape of the cells and the scattering caused by different 

orientation of the cells relative to the laser, which will give sufficient 

information to identify the HAB species. 

2. The volume concentration measured by the LISST is proportional to 

the concentration of dinoflagellates in the water sample. 

Approach: The LISST takes the volume concentration of a sample 

and separates it into 32 size bins assuming all the particles are 

spherical. Using careful dilutions, the LISST will be tested to 

determine whether it can accurately calculate cell abundance. 

3. HAB species can be detected at bloom concentrations or less against 

the background particle field in natural seawater. 

Approach: In a “full-bloom” situation, the bloom is largely 

monospecific and there is a high concentration of the dinoflagellate 

causing the bloom. Rienecker et al. (2008) showed the LISST was 

able to detect a diatom bloom in-situ. I will use the LISST to 

determine whether bloom and sub-bloom concentrations of 

dinoflagellates can be detected in natural waters by identifying their 
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scattering signatures from the resulting PSD measured with the 

LISST-100X. 

 The ability to identify and quantify aggregates in the water column and in 

laboratory experiments using the LISST-100X needs to be further studied, especially 

with the current increase in global temperatures possibly effecting aggregation rates in 

the ocean. To study this, an experiment was designed to determine how temperature 

affects the abundance of sticky particles, (TEP and CSP) in cultures of the diatom 

Odontella aurita, as well as how the abundance of bacteria affects the production of TEP 

and CSP and aggregation. The LISST was used to measure the aggregation.  

 My main hypotheses for this experiment were: 

4. TEP concentration, CSP concentration, and aggregation increases 

with increasing temperature. 

Approach: Metabolic processes, such as photosynthesis, are affected 

by temperature (Davison 1991). TEP production per chlorophyll a 

unit varies as a function of temperature in diatom species; it has been 

shown that TEP increases with temperature until it reaches a 

maximum where it then decreases (Claquin et al. 2008). If TEP 

production increases, the increased stickiness in the cultures should 

enhance the ability of diatoms to stick together upon collision, and 

thus form larger aggregates. 

5. TEP concentration and aggregation increases with increasing bacterial 

abundance. 



 

13 

 

 

Approach: As bacteria are able to increase the amount of TEP 

production in diatoms (Gärdes et al. 2011), the increase in bacterial 

community should lead to an increase in TEP and thus aggregation.
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CHAPTER II 

LASER SCATTERING SIGNATURES OF HARMFUL ALGAL BLOOM SPECIES 

 

Methods 

Harmful algae selection and arrival. Several harmful algae were selected and 

obtained from the Provasoli-Guillard National Center for Marine Algae and Microbiota 

(NCMA), and some species obtained from Dr. Lisa Campbell (Texas A&M University, 

College Station, TX) (see Table 1). Species were selected based on their known 

occurrence as HABs in the Gulf of Mexico. This work was carried out as part of a Texas 

Sea Grant project to develop the LISST as a tool to identify and quantify HABs in the 

Gulf of Mexico. 

 When cultures arrived from Provasoli-Guillard, 1 ml was taken from the 

Prorocentrum minimum (2780), Karenia brevis  (2228), Karlodinium veneficum (2936), 

and Aureoumbra lagunensis (1502) 15 ml tubes and inoculated into triplicate flasks of 

40 ml of 0.2 µm filtered autoclaved artificial seawater (Harrison et al. 1980; Berges et al. 

2001). L1 nutrients were added aseptically and P. minimum (2780) and A. lagunensis 

(1502) were incubated at 20 ºC (14 h light: 10 h dark) while K. brevis (2228) and K. 

veneficum (2936) were incubated at 28 ºC (14 h light: 10 h dark) to maintain actively 

growing cultures. No other algae species was grown continuously.  On the day the 

harmful algae species arrived, 8 ml were taken from every species culture tubes and 

diluted with 72 ml of 0.2 µm-filtered artificial seawater. The sample was put in the 

LISST chamber to establish archival data in case the species began to look different after 
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acclimating to the growth conditions in our experiment compared to conditions at 

NCMA. 

 

 

Table 1. Harmful algae species obtained  from Provasoli-Guillard NCMA and from Dr. Lisa Campbell. 

Shown are species approximate size, nutrient medium grown in, where the species was collected, and 

where it occurs in the Gulf of Mexico. Name monikers were given based on genus, species, and strain. L1 

is a nutrient supplement recipe added to artificial seawater (Andersen 2005). Size, nutrient medium, and 

collection site are data obtained from NCMA. Dashes represent not recorded data.  

 

Harmful algae species Size (l x w) Nutrient medium Collection Site 

Bloom 

location 

in Gulf of 

Mexico 

AM3105 Alexandium 

monilatum 
- L1-Si Gulfport, MS TX-FL 

AL1502 Aureoumbra 

lagunensis  
5 µm - 5µm 

L1 + 150 µm 

NH4Cl 

Laguna Madre, 

TX 

TX coast 

(Laguna 

Madre) 

CL1770 Ceratuim longipes  
160 µm x 

215µm 
L1 - Si 

West Boothbay 

Harbor, ME 
TX coast 

K. BREVIS (2228) Karenia 

brevis   
26 µm x 24 µm L1 - Si Sarasota Bay, FL 

TX and 

FL coast 

KBcampbell Karenia brevis - - Port Aransas, TX TX coast 

KMcampbell Karenia 

mikimotoi 
- - Port Aransas, TX TX coast 

KV2936 Karlodinium 

veneficum  
14 µm x 13 µm L1 - Si (11 psu) Inland Bays, DE 

TX and 

FL 

PP1830 Pfiesteria piscicida  11 µm x 11 µm 

Seawater (12 psu)  

Rhodomonas sp. as 

food 

Chesapeake Bay, 

MD 
TX-FL 

PM2780 Prorocentrum 

minimum  
15 µm x 15 µm L1-Si Tampa, FL 

TX and 

FL 

PN1309 Pseudo-nitzchia sp. - L1 
Baffin Bay, 

Canada 
 Northern  
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LISST operation. The LISST 100X Type C (Sequoia Instruments) uses laser 

scattering to analyze particle size in a laboratory or in-situ. Through light diffracting off 

particles at small forward angles in the water column, the LISST estimates the 

equivalent spherical diameter (ESD) and the total volume concentration of the particles 

in the water, and the light that is transmitted through the particle accounts for an 

inconsequential portion of the measured scatter (Agrawal & Pottsmith, 2000). The light 

hitting each of the 32 logarithmically concentric detector rings is used to estimate the 

volume concentration in each of the 32 size bins. The rings are able to measure particles 

in the range of 2.5 to 500 µm in diameter. This subsequent volume concentration is 

processed against a background scattering file of 0.2 µm filtered artificial seawater used 

as a blank in the Sequoia Scientific LISST software for work with algae. The LISST was 

operated through a PC running LISST SOP software (Sequoia Scientific). For laboratory 

work, the instrument was fitted with a chamber for liquid samples to be held in. Samples 

were approximately 80 ml in volume, which was sufficient to cover the laser beam path, 

and a piece of aluminum foil was placed over the top of the chamber to prevent overhead 

light and particles in the air from effecting the measurement. 

 Cell counting and sizing. One ml from each dinoflagellates culture was placed in 

a centrifuge tube and preserved with a drop of Lugol’s iodine (Parsons et al. 1984) for 

use in cell counts. Cell counts were determined using a cell hemocytometer (Hauser 

Scientific Fuchs-Rosenthal) where 400 cells per culture were counted and a calculation 

subsequently made to determine the amount of cells per ml (Guillard and Sieracki 2005). 
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Since preservation can effect cell dimensions (Menden-Deuer et al. 2001), the major and 

minor axis of 100 living cells were measured using a Carl-Zeiss Axioplan2 microscope. 

 LISST measurements. The PSD of each of the harmful algae species was 

measured at a rate of 1 Hz for 100s resulting in 100 measurements per sample as 

described by Rzadkowolski and Thornton (2012). The sampling time had to be restricted 

due to particles sinking out of the water column (Rzadkowolski & Thornton 2012).  To 

obtain a scattering signature that could be used to identify the different species, 8 ml of 

each species was mixed with 72 ml of 0.2 µm filtered artificial seawater and put in the 

sampling chamber. The data presented by the LISST recounts the volume concentration 

(µl l
-1

) of the particles in each of the 32 size bins based on the particles ESD. The size 

bins are represented by the median particle diameter for each ring with 2.72 µm being 

the smallest and 460 µm being the largest. The size bins contain a range of particle 

diameters and the size bins range increase with increasing particle size as the upper 

particle diameter range in each size bin is 1.18 x the smallest diameter in that size bin 

(LISST-100X User’s Manual, Sequoia Scientific). In the subsequent experiments, the 

size bins will be named according to the median particle size that occurs in that size bin.  

 Once K. brevis (2228) grew into a dense culture, monoculture samples were 

mixed at different concentrations with 0.2 µm filtered artificial seawater to provide 

dilutions of 100, 90, 70, 50, 30, 20, 10, 5, and 1% (v/v) which was measured by the 

LISST and then compared with cell counts via hemocytometer and cell sizing using a 

Carl-Zeiss Axioplan 2 microscope. This dilutions series were conducted to determine 
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whether there was a positive correlation between the counted concentration of the 

dinoflagellate and the volume concentration measured by the LISST. 

 Collected seawater background. In February 2011 surf zone seawater was 

collected from Crystal Beach, TX (29.45ºN, 94.63ºW), and in April 2011 surf zone 

seawater was collected from Galveston, TX (29.28ºN, 94.83ºW).  To test whether the 

LISST would be able to detect harmful algal blooms against a backscatter of natural 

seawater particles, K. brevis (2228), P. minimum (2780), A. lagunensis (1502), and K. 

veneficum (2936) were put in the LISST chamber in combination with seawater at 

different bloom concentrations. Water was collected at different months in the year to 

allow for different organisms to be present in the sample. For this experiment “bloom” 

concentrations for each of these 4 dinoflagellates came from literature: K. brevis bloom, 

5.35 x 10
3
 cells ml

-1
 (Vargo et al., 2002); K. veneficum bloom, 2.00 x 10

5
 cells ml

-1
 (Hall 

et al., 2008); A. lagunensis bloom, 1.4 x 10
6
 cells ml

-1
 (Buskey et al., 2001), and P. 

minimum bloom, > 10
5
 cells ml

-1
 (Tango et al., 2005).   

 Each dinoflagellate was measured with the LISST after being diluted with the 

collected natural seawater to obtain bloom concentrations of 100, 50, and 10% of a “full 

bloom” concentration. In addition to these measurements another LISST measurement 

was taken with only the collected seawater in the chamber to determine baseline 

measurements. The seawater collected from Crystal Beach had time for the particles in 

the water to settle out because the LISST measurements were done 2 days after 

collection to allow for large particles such as sand to settle out but allow for biological 

organisms to remain in the water. The seawater collected at Galveston was used to run 
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this experiment twice. On the day the water was collected the 3 different bloom 

concentrations of each dinoflagellate species was run through the LISST. Due to this 

being surf zone water, the water was extremely cloudy and turbid. A base line of the 

seawater was also measured. Two days after the Galveston water was collected, the 

experiment was run again once the sediments in the sample had settled out. 

 Karenia brevis growth curve. A flask of 750 ml of autoclaved 0.2 μm filtered 

artificial seawater with L1 nutrients and K. BREVIS (2228) was grown in a 22 °C 

incubator (14 h light: 10 h dark). The growth of K. BREVIS (2228) was monitored by 

measuring culture absorbance at 664 nm with a UV-Mini Shimadzu spectrophotometer. 

LISST measurements were taken during cell growth and during the stationary phase to 

determine whether there is a change in PSD at different stages of growth. Data was 

analyzed using SigmaPlot 11.0. Two-way analysis of variance (ANOVA) was used to 

determine whether there was a significant difference in the PSDs produced by the LISST 

at different times of growth. ANOVA was conducted on data that met the assumptions of 

normality and equality of variance. 

Results 

Scattering signatures of HAB species. The volume concentration in the last size 

bin (median particle size of 460 μm) was highly variable; because of this the volume 

concentration data from this size bin was not included in the subsequent analysis. The 

volume concentration calculated from each size bin was normalized to the total volume 

concentration in the 31 size bins in order to directly compare the harmful algae species 

(Rzadkowolski and Thornton 2012). The PSD of each HAB species produced a different 
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scattering signature, though some are very similar. A peak in the PSD was defined as 3 

or more sequential size bins that contained a volume concentration greater than the mean 

volume concentration. As the scattering signatures reported are the fraction of total 

volume concentration from data in the first 31 size bins, the mean volume concentration 

in all graphs is a constant 0.032. Fig. 3a, Fig. 3b, and Fig. 3c represent the PSDs 

produced by the LISST for each of the 10 HAB species. A summary of the PSD 

differences can be found in Table 2. 

In Fig. 3a each of the Karenia cultures were compared to determine whether the 

LISST could detect differences in the PSD of the same genus, and even the same species 

though they were different genetic strains. K. brevis (2228) had a sharp peak at 23.4 μm 

while the Texas strains K. brevis (Campbell) and K. mikimotoi (Campbell) had a sharp 

peak at 27.6 μm though K. mikimotoi (Campbell) had a larger relative peak height (i.e. 

volume concentration). 

 The larger of the HAB species measured C. longipes (1770),  A. 

monilatum (3105), and P. piscicida (1830) were compared to determine the LISSTs 

ability to detect differences in the larger particles (Fig. 3b). While A. monilatum (3105) 

had one sharp peak at 45.3 μm, P. piscicida (1830) produced the largest range of peaks 

covering 17 size bins. C. longipes (1770) produced a peak in the last size bin used in this 

analysis (390 μm). Though C. longipes (1770) is not that large of a phytoplankton (refer 

to Table 1) the peak could be due to the formation of aggregates. Lastly, the PSD of A. 

lagunensis (1502), P. minimum (2780), K. veneficum (2936), and Pseudo-nitzchia sp. 

(1309) were compared (Fig. 3c). A. lagunensis (1502) and Pseudo-nitzchia sp. (1309) 
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produced similar scattering signatures with the difference coming in the location of their 

second peak, 27.6 μm and 19.8 μm respectively K. veneficum (2936) and P. minimum 

(2780) have a peak at 10.2 and 12.1 m respectively, with their main difference being in 

the relative peak height with K. veneficum (2936) being 2.8 and P. minimum (2780) 

being at 5.2 (Table 2).  

Dilution series of dinoflagellates. Dilution series of the dinoflagellate K. brevis 

(2228) was done in monoculture to show the relationship between dinoflagellate biomass 

based on cell counts and integrated volume concentration via the LISST (Fig. 4). For K. 

brevis (2228) the laser was significantly attenuated at a concentration of 4.85 x 10
5
 cells 

ml
-1

. In this monoculture situation, the dilutions have shown that the total LISST volume 

and cell concentration have a proportional, linear relationship (K. brevis (2228) r
2
=0.94). 
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Fig. 3. Particle size distributions (PSDs) of ten harmful algal bloom (HAB) species in 31 size bins 

 normalized to the total volume concentration of particles. The  horizontal line represents the mean 

 volume concentration. The smooth curves were drawn through the average (n=100) fraction of 

 volume concentration in each size bin. (a),K. brevis (2228), K. brevis (Campbell), and K. 

 mikimotoi (Campbell) (b), C. longipes (1770), A. monilatum (3105), and P. piscicida (1830) (c), 

 A. lagunensis (1502), P. minimum (2780), K. veneficum (2936), and Pseudo-nitzchia sp. (1309). 
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Table 2. Scattering signature characteristics of 10 HAB species measured with the LISST. The table shows 

the number of peaks, the median size bin of the peak at which the particles are located (μm), relative peak 

height, the range of the peak referred to by the number of size bins it spans, and the width of the peak 

(μm). The analysis of the PSD did not include the largest size bin (460 μm). 

  
Peaks 

Size bin 

(median, µm) 

Relative peak 

height 

Range of peak 

(# of size bins) 

Width 

(µm) 

Alexandrium 

monilatum 

(3105) 

1 45.3 5.4 7 55.4 

Aureoumbra 

lagunensis 

(1502) 

1 2.72 5.1 5 2.55 

 

2 19.8 1.7 7 17.4 

Ceratium 

longipes 

(1770) 

 

1 390 7.4 7 246 

Karenia 

brevis (2228) 
1 23.4 5.5 5 15.7 

 

2 390 3.2 4 153 

Karenia 

brevis 

(Campbell) 

 

1 27.6 5.6 7 28.5 

Karenia 

mikimotoi 

(Campbell) 

 

1 27.6 7.7 6 21.6 

Karlodinium 

veneficum 

(2936) 

1 10.2 2.8 5 8.15 

 

2 87.9 1.3 5 50.5 

Pfiesteria 

piscicida 

(1830) 

 

1 87.9 2.1 17 186.8 

Prorocentrum 

minimum 

(2780) 

1 12.1 5.2 6 11.15 

 

2 390 3 4 153 

Pseudo-

nitzchia sp. 

(1309) 

1 2.72 6 4 1.74 

  2 27.6 1.8 7 28.5 
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Fig. 4. Dilution series of the dinoflagellate K. brevis (2228) compared to integrated LISST PSD 

 volumes. This represents the relationship between cell concentration and integrated LISST 

 volume (n=100).  
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LISST detection of harmful algae against background of collected natural 

seawater: Crystal Beach. At 10% of an A. lagunensis (1502) bloom (1.4 x 10
4 

cells ml
-1

, 

Buskey et al. 2001), the LISST detected a peak at 2.72 µm (Fig. 5a) corresponding with 

A. lagunensis (1502) scattering signature. With cell concentrations higher than 10% of a 

bloom, the laser in the LISST attenuated. P. minimum (2780) could not be detected at 

10% concentration, but at 50% and 100% (5.00 x 10
4
 cells ml

-1
 and >10

5
 cells ml

-1
 

respectively, Tango et al. 2005) there was a peak at 2.72 and 12.1 µm similar to its 

scattering signature (Fig. 5b).  The K. veneficum (2936) peak was similar to that of P. 

minimum (2780) with the same peaks at 50% concentration and an additional broad peak 

at 144 µm (Fig. 5c). The only real way to distinguish between P. minimum (2780) and K. 

veneficum (2936) is that P. minimum (2780) had a larger volume concentration. K. brevis 

(2228) could not be detected at 10% bloom concentration (535 cells ml
-1

, Vargo et al. 

2002), but at 50 and 100%  the 23.4 µm peak corresponded with K. brevis (2228)and 

there was an additional  peak at 87.9 µm at 50% concentration (Fig. 5d). With Crystal 

Beach surf zone water, at some concentrations the dinoflagellates were detected with the 

LISST. 

Turbid Galveston seawater. A. lagunensis (1502) was not detected at any bloom 

concentration due to background particles and laser attenuation (Fig. 6a). P. minimum 

(2780) could not be detected at 10% or at full bloom concentration due to background 

particles and laser attenuation respectively. At 50% bloom concentration, a peak was 

produced at 2.72 and 12.1 µm again indicating that the LISST was able to detect P. 

minimum (2780) in the water sample (Fig. 6b).  K. veneficum (2936) could not be 
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detected at 10% but at 50% peaks were produced at 12.1 and 144 µm with an additional 

peak at 2.72 µm at 100% bloom concentration (Fig. 6c). Again, this PSD was very 

similar to P. minimum (2780) but at 50% concentration P. minimum (2780) again had the 

higher volume concentration. K. brevis (2228) could not be distinguished against 

background particles at 10 or 50% bloom concentration. However, at 100% there was a 

slight peak at 23.4 µm (Fig. 6d) indicating that K. brevis (2228) was present. 

Settled Galveston seawater. At 10% A. lagunensis (1502) produced a single peak 

at 45.3 µm. At 50% concentration, a peak is formed at 2.72 and 45.3 making A. 

lagunensis (1502) more distinguishable in the water sample (Fig. 7a). Laser attenuation 

occurred at the “full” bloom concentration. At 10% P. minimum (2780) could not be 

detected, but at 50 and 100% the P. minimum (2780) scattering signature could be seen 

with a peak at 2.72 and 12.1 µm (Fig. 7b). K. veneficum (2936) had the same PSD for 

each concentration as P. minimum (2780), but again P. minimum (2780) had the larger 

volume concentration with 23 µl l
-1

 compared to 13 µl l
-1

 (Fig. 7c).  K. brevis (2228) was 

not distinguishable based on the scattering signature produced for it at any bloom 

concentration (Fig. 7d).  

Karenia brevis growth curve. K. brevis (2228) was used to determine whether the 

LISST would be able to monitor the dinoflagellate at different phases of growth. The 

growth curve showed that growth occurred for 28 days before hitting the stationary 

phase for 6 days followed by cell death (Fig. 8). On day 13 of growth, K. brevis (2228) 

was at a concentration of 7.92 x 10
4
 cells ml

-1
and a measurement was taken with the 

LISST producing a scattering signature typical of K. brevis (2228) with a peak at 23.4 



 

27 

 

 

µm (Fig.9). On Day 22 of growth, the culture had reached a concentration of 1.03 x 10
5
 

cells ml
-1

and another LISST measurement was taken. No data was gathered due to laser 

attenuation. On Day 34 when K. brevis (2228) had decreased in concentration (5.84 x 

10
4 

cells ml
-1

) another LISST measurement was taken. The data gathered from the 

LISST was normalized so the difference in biomass would not affect the scattering 

signatures produced. During cell death, the scattering signature produced by the LISST 

was different from data produced during the growth phase. Day 34 produced 2 peaks 

with the volume of particles in the 23.4 µm size bin decreasing and shifting towards the 

larger 87.9 µm size bin (Fig. 9). Although visually different, a two-way ANOVA with 

day and LISST size bins as a source of variation showed that there was no statistically 

significant difference. 
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Fig. 5 The PSD of dinoflagellates against a background of collected surf zone seawater from Crystal 

 Beach, TX in February 2011. Measurements were taken 2 days after collection. The spline curve 

 represents the PSD of the collected water with no other additions. Red bars indicate 10% of a 

 bloom concentration, blue bars 50% bloom concentration, and green bars 100% of a bloom 

 concentration. Bars represent mean (n = 100) + SD. (a), A. lagunensis (1502) (b),P.minimum 

 (2780) (c), K. veneficum (2936) (d), K. brevis (2228). 
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Fig. 6 The PSD of dinoflagellates against a background of collected surf zone seawater from Galveston, 

 TX in April 2011. Measurements with the LISST were made the same day the water was 

 collected. The spline curve represents the PSD of the collected water with no other additions. Red 

 bars indicate 10% of a bloom concentration, blue bars 50% bloom concentration, and green bars a 

 100% of a bloom concentration. Bars represent mean (n = 100) + SD. (a), A. lagunensis (1502) 

 (b),P.minimum (2780) (c), K. veneficum (2936) (d), K. brevis (2228). 
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Fig. 7 The PSD of dinoflagellates against a background of collected surf zone seawater from Galveston, 

 TX in April 2011. The measurements were taken 2 days after the collection of the water so larger 

 sediment particles could settle out. The spline curve represents the PSD of the collected water 

 with no other additions. Red bars indicate 10% of a bloom concentration, blue bars 50% bloom 

 concentration, and green bars a 100% of a bloom concentration. Bars represent mean (n = 100) + 

 SD. (a), A. lagunensis (1502) (b),P.minimum (2780) (c), K. veneficum (2936) (d), K. brevis 

 (2228). 
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Fig. 8 Growth curve of K. brevis (2228) determined using a Shimadzu UV-Mini spectrophotometer at 

 an absorbance of 664 nm. Black filled dots indicate days at which samples were taken and run 

 through the LISST-100X (Type C). 
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Fig. 9  Particle size distribution (PSD) of day 13 and day 34 of K. brevis (2228)growth  

  experiment showing the difference in scattering signatures between growth phase and 

  stationary phase. Bars represent mean (n=100) + SD. 
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Discussion 

The LISST is able to measure particles from a range of 2.5 to 500 µm, though 

due to measurement noise affecting the inversion calculations made; only 10-12 distinct 

peaks are able to be resolved over this size range (Sequoia Scientific, Bellvue, WA). 

Harmful algae, especially the dinoflagellates, tend to have a similar shape and though 

they may have different cellular dimensions under the microscope, their similar size can 

cause them to become indistinguishable in PSDs produced by the LISST. For this 

reason, as Table 3 shows, a PSD can give more information to characterize different 

harmful algae species than just peak location. Through a combination of peak location, 

number of peaks, peak widths, and range of the peaks, the harmful algae species were 

able to be distinguished from one another.  Rzadkowolski and Thornton (2012) 

measured six different diatom species with the LISST and determined that the LISST 

could be used as a tool to monitor the distribution, growth and aggregation of diatoms. 

Rienecker et al. (2008) measured the PSDs of three dinoflagellates (Alexandrium, 

Ceratocorys, and Pyrocystis) which were all spherical in nature and produced a single 

peak in the PSDs. Rienecker et al. (2008) also proved that the harmful algae Pseudo-

nitzchia produced a PSD in the lab that matched ones taken in-situ providing a basis that 

the LISST could be used to monitor and detect harmful algae. Using these results as a 

foundation for this experiment, the LISST has shown that it is able to produce PSDs for 

each of the ten harmful algae species used in this experiment (Fig. 3).  During this 

experiment, samples in the LISST were taken based off visual inspection of the culture 

flasks to ensure cells were still in the growth phase. As each species grew at a different 
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rate it was important to normalize the volume of each size bin to the total volume of all 

size bins to account for the difference in cell concentrations and to compare the PSDs of 

the harmful algae species. An organism’s aspect ratio, the ratio of the cells length to 

width, will allow us to predict how many peaks will be on the PSD produced by the 

LISST. Organisms that contained a high aspect ratio (length:width > 2) such as Pseudo-

nitzchia produced multiple peaks while low aspect ratios produced one. Harmful algae 

that produced one peak due to a low aspect ratio (< 2), and the LISST not being able to 

detect the difference in cell dimensions corresponds with the findings of Traykovski et 

al. (1999) who concluded that for there to be two peaks on a PSD of a mixture of two 

natural sediment, the diameter of the two sediments would have to differ by at least a 

factor of 2. 

Against a background of seawater collected at different locations, different time 

of year, and different turbidity, harmful algae at times could be detected if they produced 

peaks distinct from that of the background particles and their abundance was relatively 

high (but not sufficient to attenuate the laser) compared with the volume concentration 

of the background particles. Our data indicated that the volume concentration produced 

by the LISST corresponds to the cell biomass put in the chamber (Fig. 4). This indicates 

the LISST can be used not only to determine the presence of a HAB species, but can be 

used to measure the abundance of the HAB species in water. However, the relationship 

between the LISST volume concentration and a species biomass differs with different 

species. Rzadkowolski and Thornton (2012) found that there was a linear relationship 

between cell concentration and volume concentration measured with the LISST in 
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cultures of the diatom Chaetoceros mulleri. The slope and intercept for each linear 

relationship is different, based upon the shape of the species. Against different 

backgrounds, the PSD of the HAB species did not always have the same peak location. 

For example, Fig. 6d and Fig. 7d show the scattering signature of K. brevis (2228) 

against collected water from Galveston, with one sample being run the day the water was 

collected and the other two days later. On the day the water was collected K. brevis 

(2228) produced a scattering signature similar to the PSD recorded (Fig. 3a) with the 

peak location at 23.4 µm. Two days later when measurements were taken again the peak 

shifted to 27.6 µm. Agrawal and Pottsmith (2000) noted that particles of the same 

diameter class could occupy several size bins due to the mathematical models used by 

the LISST limiting the resolution of the particle size class detection leading to leakage of 

particles into the size bins closest to the particles actual diameter. This could apply for 

single particles, but leakage would not occur for an entire population of particles, leading 

to the conclusion that leakage does not explain the shift in size bins. These results give 

further confirmation to what previous researchers has noted that peak location provided 

by the PSDs produced by the LISST is insufficient to determine the presence of HAB 

species on its own (Andrews et al. 2010). The K. brevis (2228) strain must have had a 

change in the culture or in the medium to produce such a distinct shift. The cells could 

have acclimated to new culture conditions due to their lack of being in their natural 

environment, or growth of other organisms in the seawater could have occurred causing 

this change in the PSD. LISST instruments are not able to distinguish between 

phytoplankton and other particles in the seawater, nor is it able to determine the 
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physiology of the cells in the water. Aggregation, or increase cell size due to 

environmental change could all be possible reasons for the shift in the PSD. To account 

for the limitations of the LISST, it should be combined with other technologies, such as 

chlorophyll fluorometers and species confirmation should be done by microscopic 

observation (Serra et al. 2001). 

When different concentrations of bloom densities were placed in the LISST with 

natural seawater, laser attenuation occurred at high cell biomasses. Once a bloom 

reaches a concentration high enough to cause laser attenuation, the bloom would already 

be established and any warning given to the public would be too late. The LISST has 

shown it can be a tool in the early detection of HAB formation. HABs generally form 

thin layers which are dramatic patches where large numbers of photosynthetic organisms 

are found generally several centimeters thick and extending for kilometers horizontally 

(Dekshenieks et al. 2001, Moline et al. 2010, Durham and Stocker 2012). These thin 

layers can be beneath the surface causing satellite monitoring of HABs to be ineffective, 

offering little warning time to alert fisheries (McManus et al. 2008). Since the LISST 

can be placed on a mobile platform it would be able to monitor bloom formation beneath 

the surface. 

 Unfortunately for this experiment, only surf zone seawater could be easily 

accessed. Harmful algal blooms do not generate in the surf zone off coasts, and therefore 

that water was not ideal for testing the LISST’s abilities in detecting HABs. Water 

should be collected slightly offshore where blooms occur, and where crashing waves are 

not causing increased turbidity. Although the surf zone water collected caused problems 
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with laser attenuation in the LISST, it did show that even against a background particle 

field on extremely turbid water, the LISST was able to detect HABs at some bloom 

concentrations. With this knowledge, it is a natural assumption that in clearer water 

offshore where blooms form, the LISST will be able to detect HABs at early 

concentrations of a full bloom to allow for their early detection. 

To determine whether the LISST would be able to detect HAB formation and 

continue to monitor the bloom through different growth phases, K. brevis (2228) was 

continuously monitored. As Fig. 9 shows, on day 13, K. brevis (2228) produced its 

signature PSD. As time went on day 34 of K. brevis (2228) growth, the PSD produced is 

nothing like a K. brevis (2228) scattering signature. Dinoflagellates such as K. brevis 

(2228) can have complicated life cycles, though bloom formation for Karenia brevis 

generally occurs during their vegetative cell state (Van Dolah et al. 2008). The 

vegetative cell of K. brevis (2228) produces the peak shown in Fig. 9 on day 13. The 

PSD produced on day 34 could be due to cell death and more particles being in the 

sample due to the release of the organelles from inside the cell. The organelles could 

have caused aggregation of the cells due to their stickiness. These data show that the 

LISST can be used to monitor the initial growth of the HAB species into the bloom, but 

cannot be used for continued monitoring through cell death. To further refine what 

stages the LISST would be able to detect, this experiment should be run again with more 

frequent LISST measurements taken to determine exactly when the PSD produced 

changes. Microscopic observations should also be made at times to determine the state 

of the cells in the culture to understand what is happening to the culture.  
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As much as an advantage the LISST is in detecting HABs, with it being low cost, 

easy to use, and no moving parts, there are some limitations as to what the LISST is able 

to measure. Honjo et al. (1984) showed that stringy scatters are present in marine 

environments and therefore the LISST with its spherical approximation is not a suitable 

instrument for in-situ detection. In natural environments there may be particles smaller 

(e.g. bacteria) or larger (e.g. zooplankton) than the size range measured by the LISST, 

which in turn could affect the laser scattering (Rzadkowolski and Thornton 2012). The 

LISST is limited to monitoring blooms because a diverse community of phytoplankton 

would cause overlying scattering signatures, but as HABs are generally monospecific in 

nature, this would not be an issue. LISST instruments are not able to detect individual 

particles unlike flow cytometry imaging instruments; however those instruments are 

more complex to run and are more expensive than the LISST. The LISST has been 

proven to map the distribution of dinoflagellates such as Ceratium in Monterey Bay 

(Rienecker et al. 2008), Alexandium taylori in the Meditteranean Sea off the coast of 

Spain (Anglès et al. 2008), and Lingulodinium polyedrum in California coastal waters 

(Ahn and Grant 2007). Although the LISST has limitations, the LISST can be used as a 

low cost tool to detect the early formation of HABs in-situ. For complete accuracy, 

samples should be taken and looked at underneath a microscope when blooms are 

suspected to be forming for species verification. 
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CHAPTER III 

EFFEECTS OF TEMPERATURE AND BACTERIA ON THE PRECUROSRS FOR 

DIATOM AGGREGATION 

 

Methods: Temperature effects on Odontella aurita 

 Experimental design. To test the effect of temperature, bacterial abundance, TEP 

concentration, and CSP concentration on diatom aggregation the diatom Odontella 

aurita was chosen to act as a model as it is a cosmopolitan species. The diatom O. aurita 

was purchased from Provasoli-Guillard NCMA strain number 1776. One ml of O. aurita 

was placed in each of the 6 flasks of 40 ml autoclaved 0.2 µm filtered Harrison’s 

artificial seawater (Harrison et al. 1980; Berges et al. 2001) with L1 nutrients and 

incubated at 20 ºC (14 h light: 10 h dark). Three of the flasks contained bacteria and the 

other three had 400 µl of penicillin (400 µg ml
-1

) and streptomycin (200 µg ml
-1

) added. 

After 24 hours, 400 µl of neomycin (200 µg ml
-1

) and ampicillin (200 µg ml
-1

) were 

added to the same 3 flasks to produce an axenic culture. After 2 weeks of growth each 

bottle was subcultured and 1 ml of each flask was aseptically placed in a new flask of 40 

ml autoclaved 0.2 µm Harrison’s artificial seawater with L1 nutrients and placed back 

into the 20 ºC incubator (14 h light: 10 h dark) for an additional 2 weeks. Bacteria counts 

(see method below) were used to determine which cultures were axenic.  

After the 2 weeks, twelve glass bottles were filled with 500 ml of autoclaved 0.2 

µm filtered Harrison’s artificial seawater and L1 nutrients were added to each bottle. 

Bottles 1, 2, 3, and 4 (referred to as Control group) had 1 ml of O. aurita added that 
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contained bacteria to be used as a control. Bottles 5, 6, 7, and 8 (referred to as Antibiotic 

group) also had 1 ml of O. aurita added that contained bacteria, and 5 ml of penicillin 

(400 µg ml
-1

), streptomycin (200 µg ml
-1

), neomycin (200 µg ml
-1

), and ampicillin (200 

µg ml
-1

) were added to the bottles to determine the effects that  antibiotics have on O. 

aurita aggregation. Bottles 9, 10, 11, and 12 (referred to as Axenic group) had 1 ml of an 

O. aurita culture added in that was considered axenic. The bottles were placed in a fish 

tank with a temperature controlled water bath (VWR recirculating pump model 1196D) 

with two 40 watt Deluxe bulbs placed on two side of the tank supplying 160 µmol 

photons m
2
 s

-1
 to illuminate cultures (14h light: 10 h dark). The bottles were set up like 

this for three different experiments run at different times. One experiment was run at 20 

ºC where cell counts were taken every 24 hours while chlorophyll a, carbohydrates via 

the phenol-sulfuric acid method, LISST measurements, and TEP staining and analysis 

samples were done on Days 7 and 11 with bacteria counts via DAPI were done on Day 

11. The experiment was run again at 20 ºC and once more at 28 ºC. Cell counts and cell 

density measurements via absorbance (Shimadzu UV-Mini spectrophotometer at 750 

nm) were taken every 24 hours while chlorophyll a, carbohydrates via the phenol-

sulfuric acid method, LISST measurements, and TEP staining and analysis were done on 

Days 6, 9, and 13, and CSP staining and analysis was done on Days 6 and 13. Bacteria 

counts using DAPI were done on Day 13. 

Cell counting and cell densities. Cell counts (see method under LISST 

characterization of harmful algae) of each culture were taken every day of the 

experiment.  Cell densities were determined by taking 1 ml of each culture and placing it 
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in a cuvette and measuring the absorbance with a (Shimadzu UV-Mini 

spectrophotometer) at a wavelength of 750 nm and were measured every day. 

Phenol-sulfuric acid carbohydrate analysis.  From each culture on Days 6, 9, and 

13, a 1.2 ml aliquot was used to determine the total carbohydrate concentration. Total 

carbohydrate concentration was determined based on the phenol-sulfuric acid method as 

described by DuBois et al. (1956) . A calibration curve was constructed by the addition 

of 1 g of D-glucose in 1000 ml UHP water creating dilutions of 100, 50, 40, 30, 20, 10, 

5, and 0 µg D-glucose ml
-1

.  Using the Dubois et al. (1956) method, the standards, as 

well as the samples, were analyzed spectrophtometrically using a Shimadzu UV-Mini 

spectrophotometer following the combination of 0.8 ml of sample to be analyzed, 0.4 ml 

phenol (5% w/v), and the quick addition of 2 ml concentrated sulfuric acid in a glass 

boiling tube. The boiling tubes were agitated and then left to sit for thirty minutes. The 

calculation of total carbohydrates for each culture was calculated based on their 

absorbance at 485 nm from the standard represented in µg D-glucose equivalents per 

milliliter. 

Chlorophyll a analysis. At 20 ºC and 28 ºC on Days 6, 9, and 13 a 1 ml aliquot 

per culture was filtered down onto a 25 mm GF/C filter and placed into a centrifuge tube 

and frozen in the dark at -20 ºC until analysis. A calibration curve was made based off 

TD-700 Laboratory Fluorometer Application Note (www.turnerdesigns.com).When 

analyzed, 4 ml of cold (4 ºC) 90% acetone was combined with the macerated filters in 15 

ml centrifuge tubes. The tubes were covered with foil to prevent light penetration and 

were placed in the refrigerator to extract for 24 hours. The tubes were centrifuged at 
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1000 rcf for 5 minutes to obtain the supernatant and the absorbance of the extract was 

measured with a Turner Designs 700 fluorometer. To correct for blanks, blanks of 90% 

acetone were measured with the fluorometer and the concentration recorded was referred 

to as Rb. One drop of HCl was added to the acetone blank and left to sit for 5 minutes 

before measurement with the fluorometer. The concentration was recorded as Ra. To 

obtain the before:after ratio of a pure chlorophyll a solution (r): 

r = Rb/Ra 

Samples were then measured with the fluorometer and the concentrations recorded were 

referred to as Rd. A drop of HCl was added to each sample and measurements were 

taken after the sample sat for 5 minutes, and the concentration shown was recorded as 

Rc. To determine the amount of chlorophyll a, the following equation was used: 

 Chlorophll a, µg/l = (r/r-1)(Rd-Rc) 

To obtain the concentration of chlorophyll a in the entire sample: 

 Total chl a = (chlorophyll a µg/l)*(extraction volume of acetone ml)/(volume of 

 sample filtered ml) 

 

TEP Staining. TEP was stained and size measured according to the methods in 

Alldredge et al. (1993) and Passow et al. (1994). On Day 6, 1.25 ml of Harrison’s 

artificial seawater (Harrison et al. 1980; Berges et al. 2001) and 0.75 ml of a culture 

were filtered together using a glass column under low pressure (150 mm Hg) onto a 0.4 

µm polycarbonate filter on top of a GF/C glass fiber filter. Then this was followed by 1 

ml of Alcian Blue to stain the TEP particles, and lastly two separate rinses of 0.5 ml of 

0.2µm-filtered UHP water were used to remove any excess dye. The 0.4 µm 
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polycarbonate filter was taken off the apparatus and mounted in fluorescent stable 

microscopy oil atop a GE Osmotics CytoClear® frosted slide and placed in a microscope 

slide box and stored in the freezer (-20 ºC) until analysis. On Days 9 and 13, TEP slides 

were made following the same technique as described above however 1.75 ml of 

Harrison’s artificial seawater will be used in combination with 0.25 ml of a culture. A 

total of 2 ml was always filtered to ensure even distribution of sample on filter (Hobbie 

et al. 1977). 

CSP Staining. CSP staining followed the procedure of Long and Azam (1996). 

On Day 6 and 13 CSP slides were made. A Coomassie Brilliant Blue (CBB) dye 

working solution was prepared by diluting the CBB stock dye 25 times with 0.2 µm 

filtered artificial seawater. The filtration apparatus was set up using a GF/C glass fiber 

filter placed under a 0.4 µm Nucleopore filter which collected the organic particles. A 

specified volume of 2 ml was filtered on both days to ensure an even distribution of the 

sample. On Day 6, 1.25 ml of Harrison’s artificial seawater and 0.75 ml of a culture was 

filtered together using a glass column under low pressure (150 mm Hg) onto the 0.4 µm 

polycarbonate filter. Then this was followed by 1 ml of CBB to stain the CSP particles, 

and lastly two separate rinses of 1 ml 0.2µm-filtered UHP water to remove the excess 

dye. The 0.4 µm polycarbonate filter was taken off the apparatus and mounted in 

fluorescent stable microscopy oil atop a GE Osmotics CytoClear® frosted slide and 

placed in a microscope slide box and stored in the freezer (-20 ºC) until analysis. On Day 

13 the same procedure was used with the exception of only 0.25 ml of each culture was 
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used and combined with 1.75 ml of Harrison’s artificial seawater due to the density of 

cell biomass. 

Roller experiment. To determine the practicality of LISST instruments as tools in 

detecting changes in particle size distributions due to diatom aggregation, rollers were 

set up in incubators to induce aggregation in the different Odontella aurita cultures. This 

allowed for aggregation to be related to TEP concentration, CSP concentration, and 

bacteria abundance. In the first experiment at 20 ºC, on Days 7 and 11, 80 ml of each 

culture was transferred under sterile conditions into a 100 ml amber glass bottle.  Each 

was sampled with the LISST before being placed on one of two roller tables, rolling at 

approximately 12 rpm, in the 20 ºC incubator. After a culture had been on one roller 

table for 2 hours it was transferred to the other table to ensure every bottle was being 

rolled evenly.   After 4 hours on the roller tables each culture was carefully poured into 

the LISST chamber and another measurement was taken. A histogram was produced for 

each sample day of the differences in PSDs from before aggregation was induced to after 

aggregation had occurred.  

In the second and third experiment at 20 and 28 ºC respectively, the same method 

as above was used, however, each culture was diluted with 0.2 µm filtered artificial 

seawater that had an overall temperature of 20 or 28 ºC based on the experiment. The 

cultures were diluted to a specific concentration to obtain a constant cell concentration to 

ensure that cell concentration did not affect aggregation. At 20 ºC each culture was 

diluted to 3.70 x 10
4 

cells ml
-1

, while at 28 ºC the Control group and Axenic group were 

diluted to a concentration of 3.70 x 10
4
 cells ml

-1
 and the Antibiotic group was diluted to 
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a concentration of 2.29 x 10
4
 cells ml

-1
 due to their slower growth rate. Cultures were 

placed on the roller tables and LISST measurements were taken on Days 6, 9, and 13 

and a histogram was produced for each day showing the difference in PSDs from before 

aggregation occurred to after.  

TEP - microscopic analysis. To determine the amount of TEP particles in the 

culture, the CytoClear® TEP slides were placed atop a Carl-Zeiss Axioplan2 microscope 

and observed underneath 100x brightfield. Pictures were taken d their perimeters were 

manually outlined using Axiovision (Carl-Zeiss), in order to determine TEP surface area 

for each culture. As this technique is not time efficient, TEP particles from the first 20 ºC 

experiment were analyzed like this and the Control group for Days 6, 9, and 13 in the 

second 20 ºC experiment were done this way. All other TEP particles were analyzed via 

image analysis and a graph comparing the two techniques was produced. 

TEP and CSP – image analysis. To provide more quantitative measurements of 

TEP and CSP present in the cultures, average particle size, total area, and particle 

numbers were computed using image analysis. The National Institue of Health’s (NIH) 

WCIF Image J open source image analysis suite 

(http://www.uhnresearch.ca/facilities/wcif/download.ntml) was used to analyze TEP and 

CSP particles produced by O. aurita. Using the CytoClear® slides made containing the 

filters of TEP and CSP particles, each slide was mounted on a Carl-Zeiss Axioplan2 

microscope and observed underneath 100x brightfield. Each slide had 10 adjacent 

pictures taken moving from top to bottom on each slide (Fig. 10a). Each image had to 

have the cells removed from the picture by coloring over them as this analysis was only 

http://www.uhnresearch.ca/facilities/wcif/download.ntml
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looking at the organic particles not the diatoms (Fig. 10b). ImageJ requires a binary 

image in order to automatically analyze the particles. To do this, a threshold range was 

chosen that included all the pixels that composed of the particles being looked at, in this 

case TEP and CSP. Since TEP and CSP have to be stained to be seen, the color 

information of these particles was used to enhance the contrast between the particles and 

the background. This led to the composite RGB picture to be split into individual red, 

blue, and green channels. The red channel provided the best contrast and accentuated the 

stained particles, so it was used to set the threshold range (Fig. 10c) The original photo 

with no modifications and the red channel are compared visually to confirm that that 

threshold set includes as many as the stained particles as possible without background 

noise being included in the analysis. Once this threshold was set, a binary image was 

produced (Fig. 10d).  Image J has an “Analyze particle” algorithm which was used to 

draw an outline around each particle, recording particle areas as small as 10 µm
2 
with no 

upper limit to how large the particle can be (Fig. 10e). Particles on the edge of the 

picture that are not fully shown were not counted nor measured to get a more accurate 

particle size and average particle area. The particle size information gathered can be 

gained from the major or minor axis of the particle based of the best fitted ellipse 

surrounding it. 
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Fig. 10 Series of images produced by ImageJ to determine particle size.. (a) original photo taken  with 

 microscope, (b) diatom cells colored out using ImageJ so only particles being analyzed will be 

 seen, (c) red color channel to better distinguish particles, (d) color threshold set to produce the 

 binary image used to size particles, (e) final outline of particles being studied. 

a b 

c d 
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Bacteria abundance. Before the beginning of the temperature experiments and on 

the last day of the temperature experiments bacteria counts were used to determine the  

bacteria abundance in each culture. Microcentrifuge tubes were autoclaved under sterile 

conditions, 1 ml of each culture was placed in a centrifuge tube and stained with 50 µl of 

DAPI (4’6-diamidino-2-phenylindole di hydrochloride) and placed in the refrigerator (4 

ºC) for one hour (Proctor et al., 1991). After 1 hour under sterile conditions, 0.5 ml of 

the sample and 1.5 ml of 0.2 µm filtered autoclaved UHP water were filtered together 

onto a 0.2 µm black membrane filter and rinsed twice with UHP water. The membranes 

were then transferred onto a glass slide and placed in a microscope slide case in the 

freezer (-20 ºC) until analysis. Bacteria in each culture were analyzed by counting 400 

bacteria in the cultures under a fluorescence microscope according to Porter and Feig 

(1980). 

Data analysis. Data gathered was analyzed using SigmaPlot 11.0 (Systat 

software). Correlation analysis was conducted using the Pearson product moment 

correlation to determine whether TEP and CSP production in Odontella aurita correlated 

with cell growth.  One-way and two-way ANOVA was conducted on data that met the 

assumptions of normality and equality of variance. When the data did not meet these 

assumptions, the data was log transformed (log[x + 1]) before analysis or a non-

parametric ANOVA was carried out on ranks (Kruskal-Wallis ANOVA). With data that 

compared fixed factors, pairwise comparisons were made using post-hoc tests. The 

Holm-Sidak method was used to make pair-wise comparisons of the data when the group 

sizes were equal and there was no missing data. 
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Methods: Bacteria effects on Odontella aurita 

 Experimental design. Bacteria and abiotic processes can affect TEP and CSP 

formation (Passow 2000) therefore looking at how these processes interact will reveal 

more about TEP and CSP. A flask containing 750 ml of autoclaved 0.2 µm filtered 

artificial seawater with L1 nutrients and 6 ml of Odontella aurita was placed in a 20 ºC 

incubator (14 h light: 10 h dark) and left to grow for two weeks. At the end of two 

weeks, under sterile conditions 200 ml of the 750 ml was double filtered through two 2 

µm filters to remove diatoms. The filtrate was placed in a separate flask. To enhance 

bacterial growth in the filtrate, 1 mM glucose and 0.5 mM urea was added. Three days 

later, triplicate tissue culture flasks of five different treatments were made (see Table 3). 

To get bacteria filtrate, the bacteria culture was filtered twice with a 0.2 µm filter, and to 

get the diatom filtrate, the flask of diatoms was filtered twice with a 0.2 µm filter. Each 

of the 15 tissue culture flasks was placed randomly on a shaker table in the 20 ºC 

incubator  (14 h light: 10 h dark) shaking at a rate of 70 rpm. Each tissue culture was 

moved on the shaker table every 2 hours when the light in the incubator was on to ensure 

equal light intensity to each flask. Bacteria counts were made using the technique 

described above after 2 days of shaking, and diatoms were counted as described above. 

TEP slides were prepared and analyzed. 

 TEP staining and analysis. TEP was stained and size measured according to the 

methods in Alldredge et al. (1993) and Passow et al. (1994). For Treatments 1, 2, and 3 

1.25 ml of Harrison’s artificial seawater and 0.75 ml of each triplicate flask culture were 

filtered together using a glass column under low pressure (150 mm Hg) onto a 0.4 µm 
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polycarbonate filter placed on top of a GF/C glass fiber filter. This was followed by 1 ml 

of Alcian Blue to stain the TEP particles, and lastly two separate rinses of 0.5 ml of 

0.2µm-filtered UHP water were used to remove any excess dye. The 0.4 µm 

polycarbonate filter was taken off the apparatus and mounted in fluorescent stable 

microscopy oil atop a GE Osmotics CytoClear® frosted slide and placed in a microscope 

slide box and stored in the freezer (-20 ºC) until analysis. For Treatments 4 and 5 2 ml of 

each triplicate flask was filtered onto the 0.4 µm polycarbonate filter since the treatments 

contained no cells, stained, and stored the same as the previous treatments. 

CSP staining and analysis. CSP was stained and size measured following the 

procedure of Long and Azam (1996). For Treatments 1, 2, and 3 1.25 ml of Harrison’s 

artificial seawater and 0.75 ml of each triplicate flask culture were filtered together using 

a glass column under low pressure (150 mm Hg) onto a 0.4 µm polycarbonate filter 

placed on top of a GF/C glass fiber filter. This was followed by 1 ml of CBB to stain the 

CSP particles, and lastly two separate rinses of 1 ml of 0.2µm-filtered UHP water were 

used to remove any excess dye. The 0.4 µm polycarbonate filter was taken off the 

apparatus and mounted in fluorescent stable microscopy oil atop a GE Osmotics 

CytoClear® frosted slide and placed in a microscope slide box and stored in the freezer 

(-20 ºC) until analysis. For Treatments 4 and 5 2 ml of each triplicate flask was filtered 

onto the 0.4 µm polycarbonate filter since the treatments contained no cells, stained, and 

stored the same as the previous treatments. 

 Image J image analysis was used to determine the amount of TEP in each 

treatment, and was used in the same way as described above with a slight difference 
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between some treatments. For all treatments the “Analyze particles” algorithm was set so 

only particles 10 µm
2 

or larger would be counted as TEP particles.  

 

Table 3. Different culture combinations to determine whether bacteria or abiotic processes effects TEP and 

CSP production in the diatom Odontella aurita. The treatments will be referred to by the bold words. 

  
Diatom (O. 

aurita) 
Bacteria 

Bacteria 

filtrate 

Diatom 

filtrate 

HAR + L1 

nutrients 

Treatment1:          

100% 

bacteria 

40 ml 10 ml - - - 

Treatment 2: 

50% bacteria 
40 ml 5 ml 5 ml - - 

Treatment 3: 

No bacteria 
40 ml - 10 ml - - 

Treatment 4: 

Medium 

control 

- - - - 50 ml 

Treatment 5: 

Organic 

control 

- - 10 ml 40 ml - 
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Results 

Temperature effect on cell growth.  With an increase in growth temperature, the 

Control and Axenic groups of O. aurita had increased cell abundance from a maximum 

concentration of 1.10 x 10
5
 cells ml

-1
 to 1.45 x 10

5 
cells ml

-1 
and from 8.00 x 10

4
 to 1.10 

x 10
5
 cell ml

-1
 respectively. Samples were taken on Day 7 and 11 in the first 20 °C based 

off the growth curve of the diatom made from cell counts (Fig. 11a). The growth curve 

was used to determine when the diatom would be in the growth phase and when it was in 

the stationary phase to ensure sampling in both growth stages. In the second 20 °C 

experiment and in the 28°C experiment samples for chlorophyll a, total carbohydrates, 

TEP, and CSP were taken on days 6, 9, and 13 based on the stage of growth of O. aurita 

(Figs. 12 & 13). Although there was an increase in cell concentration, the amount of 

chlorophyll a in each culture decreased significantly with the increase in temperature as 

shown by a one-way ANOVA analysis with the chlorophyll data log transformed, F1,71 = 

32.079, p < 0.001, and the Holm-Sidak post-hoc test showed an overall significance 

level of 0.05. At 20 °C the carbohydrates of each culture (Control, Antibiotics, and 

Axenic) followed a trend of going from approximately 25 to 80 to 30 µg ml
-1 

D-glucose 

equivalents with each sample day, while there was an increase in chlorophyll a overtime 

with the Antibiotic cultures having the most chlorophyll out of the three treatments with 

a concentration of approximately 300 µg l
-1 

(Fig. 12). With the increase in temperature to 

28 °C, the Control and Axenic cultures reached a maximum of approximately 30 µg ml
-1

 

D-glucose equivalents, while the Antibiotics cultures reached 65 µg ml
-1

 D-glucose 

equivalents (Fig. 13). The chlorophyll a concentration in the Antibiotic group and the 
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Axenic group were the highest, but only reached a third of the concentration of the 

Antibiotic cultures in the 20 °C experiment at approximately 90 µg l
-1 

chlorophyll a (Fig. 

12).  

Temperature effects on aggregation. In the first 20 °C temperature experiment, 

equal volumes of each treatment of O. aurita were measured with the LISST to generate 

a baseline measurement of the diatom before aggregation was initiated for comparison. 

O. aurita was gently rolled at 20 °C and another LISST sample was taken to generate a 

PSD demonstrating the effects of temperature on diatom aggregation formation. Fig. 14 

represents the difference in aggregation from after being rolled to before with volume 

normalized PSDs for each treatment. The cell concentration placed in the LISST 

chamber for each sample was not standardized, causing laser attenuation to occur when 

the cell concentration was too high as represented in Fig. 14b. At 20 °C the Antibiotic 

cultures were extremely dense causing errors in the LISST. This is one reason why the 

20 °C experiment was run again with a standardized cell concentration placed in the 

LISST chamber. All figures in Fig. 14, except Fig. 14b, show a shift in particle size from 

the smaller size bins to the larger size bins after rolling suggesting aggregates had 

formed. 

In the next 20 °C experiment and in the 28 °C experiment the cell concentrations 

placed in the LISST chamber for each sample day (days 6, 9, and 13) were diluted with 

artificial seawater at the same temperature to reach a concentration of 3.70 x 10
4
 cells 

ml
-1

. The antibiotic cultures at 28 °C grew slowly at first and consequently were diluted 

to a concentration of 2.29 x 10
4
 cells ml

-1
. The control cultures had fewer large 
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aggregates form after rolling at 28 °C compared to 20 °C (Fig. 15). This could be due to 

the bacteria concentration in the cultures or due to the concentration of transparent 

exopolymeric particles (TEP) and coomassie stained particles (CSP). Contrarily, the 

Antibiotic cultures had more large aggregates form at 28 °C but there is evidence of 

large particles in the cultures before rolling was initiated (Fig. 16). O. aurita is an 

extremely sticky diatom, and the addition of antibiotics made it appear “stringy”. This 

could explain the larger particles before rolling; some of the diatoms had already formed 

chains (Fig. 16f). The Axenic cultures had similar PSDs at both temperatures with a shift 

in particle diameter from the smaller size bins to the larger ones after rolling (Fig. 17). 

Bacteria concentration for each temperature experiment is shown in Table 4. The 

bacteria counts were done on the last day of the experiment. Sterile technique was used 

to keep bacteria from entering the cultures, however bacteria was still able to 

contaminate the cultures. The control treatment has the highest bacteria concentration in 

each experiment which was expected, however the Axenic group was measurably 

contaminated, and the concentration of bacteria in the group increased with temperature. 

Antibiotic treated cultures had a relatively constant bacteria concentration even when the 

temperature was increased. The bacteria concentration did not significantly correlate 

with an increase in temperature between the treatments.  Bacteria concentration in the 

cultures is significant however because bacteria are able to affect the total carbohydrate 

concentration detected and they can use or remineralize the nutrients intended for diatom 

growth. 
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Fig. 11 Growth curve of Odontella aurita based off cell abundance. Points indicate mean cell abundance 

 (n = 4) ± SD. Black circles represent the Control cultures, upside down triangles represent 

 Antibiotic cultures, and blue squares represent Axenic cultures. (a) Cell abundances at 20 °C, (b) 

 cell abundances of the second experiment run at 20 °C, and (c) cell abundances at 28 °C.  
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Fig. 12.  Odontella aurita growth curve at 20 °C. Solid circles represent the Control group, upside down 

 white triangles represent the Antibiotic cultures, and blue squares represent the Axenic cultures. 

 (a), Diatom concentration in the cultures in cells ml
-1

 (mean ± SD; n=4) (b),  total carbohydrate 

 concentration (mean ± SD; n=4) (c), chlorophyll a concentration (mean ± SD; n=4). 
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Fig. 13.  Odontella aurita growth curve at 28 °C. Solid circles represent the Control group, upside down 

 white triangles represent the Antibiotic cultures, and blue squares represent the Axenic cultures.

  (a), Diatom concentration in the cultures in cells ml
-1

 (mean ± SD; n=4) (b), total carbohydrate 

 concentration (mean ± SD; n=4) (c), chlorophyll a concentration (mean ± SD; n=4). 
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Fig. 14. Difference in particle size distributions (PSDs) of each three treatments of O. aurita cultures at 20 

 °C from being rolled to before aggregation was initiated. PSDs normalized to total volume 

 concentration (mean values ± SD; n = 4).Black bars represent samples on day 7 and grey bars 

 represent samples on day 11. (a) and (b) are the Control cultures. (c) and (d) are the Antibiotic 

 cultures, and (e) and (f) are the Axenic cultures. 
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Fig 15.  Difference in particle size distributions (PSDs) of the Control cultures of O. aurita at 20  and 28 

 °C from being rolled to before aggregation was initiated. PSDs normalized to total volume 

 concentration (mean values ± SD; n = 4).Black bars represent 20 °C and grey bars represent 28 

 °C. (a) and (b) are LISST measurements taken on day 6. (c) and (d) are  measurements taken on 

 day 9, and (e) and (f) are day 13 measurements.  
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Fig 16.  Difference in particle size distributions (PSDs) of the Antibiotic cultures of O. aurita at 20 

 and 28°C from being rolled to before aggregation was initiated. PSDs normalized to total volume 

 concentration (mean values ± SD; n = 4).Black bars represent 20 °C and grey bars represent 28 

 °C. (a) and (b) are LISST measurements taken on day 6. (c) and (d) are  measurements taken on 

 day 9, and (e) and (f) are day 13 measurements. 
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Fig 17.  Difference in particle size distributions (PSDs) of the Axenic cultures of O. aurita at 20 and 

 28°C from being rolled to before aggregation was initiated. PSDs normalized to total volume 

 concentration (mean values ± SD; n=4).Black bars represent 20 °C and grey bars represent 28 

 °C. (a) and (b) are LISST measurements taken on day 6. (c) and (d) are  measurements taken on 

 day 9, and (e) and (f) are day 13 measurements. 
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Table 4. Bacteria cell concentration in three different treatments at different temperatures. Data is referred 

to as mean concentration ± SD on the last day of each experiment (n=4). 

  Bacteria concentration (cells ml
-1

) ± SD 

Treatment  20 °C (1) 20 °C (2) 28 °C  

Control 7.21 x 10
4
 ± 3.78 x 10

4
 1.07 x 10

5
 ± 5.65 x 10

4
 7.51 x 10

4 ± 2.10 x 10
4
 

Antibiotic 1.93 x 10
2 ± 89.5 1.52 x 10

2
 ± 43.3  1.86 x 10

2
 ± 34.1 

Axenic 1.52 x 10
4
 ± 2.51 x 10

4
 1.66 x 10

4
 ± 1.45 x 10

4
 3.41 x 10

4
 ± 9.64 x 10

3
 

 

 

 Transparent exopolymer particles (TEP) were stained with Alcian blue (an acid 

polysaccharide dye) with the expectation that the TEP particles would be seen as 

independent particles or with cells embedded within the TEP.  Under brightfield 

microscopy (100x magnification) TEP particles were observed as well as acid 

polysaccharides that appeared to coat the outside of the cells (Fig 18).  The TEP particles 

and polysaccharides on the cells vary in size, shape, and the staining on each can be 

different intensities. The average size (longest dimension of the TEP particle) of the TEP 

particles at 20 °C and 28 °C can be seen in Fig. 19. An increase in temperature caused an 

overall decrease in average size of the TEP particles. However, the Axenic cultures 

appeared to have an increase in TEP size with temperature which could be due to an 

increase in the amount of bacteria in the cultures. Fig. 20 shows that there appears to be 

no correlation between TEP size and bacteria concentration. The decrease in particle size 

with temperature could explain why the Control and Antibiotic cultures did not form as 

many large aggregates as the Axenic cultures did (Figs. 15, 16, and 17).  Total TEP area 

in the cultures did vary with temperature.  TEP concentration in the control cultures 
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initially increased at 28 °C; however after day 6 it steadily decreased (Fig. 21b). The 

Axenic cultures remained relatively the same with temperature but there was a large 

increase in TEP area in the Antibiotic cultures jumping from 4,000 µm
2
 at 20 °C to 

10,000 µm
2
 at 28 °C (Fig. 21).  Total TEP per ml did not correlate with cell or bacteria 

concentration at either temperature (Fig. 22 and 23) suggesting a different or a number 

of factors affect the amount of TEP produced.  Generally the amount of TEP per ml 

decreased over time, with the exception of the Axenic cultures at 28 °C where a large 

increase occurred (Fig. 22a). A two-way ANOVA with temperature and treatments as 

factors showed that there was a significant difference between TEP concentration per ml 

when the data was transformed with the change in temperature p < 0.01, as well as a 

significant difference in TEP concentration between the three different cultures, p < 

0.05.  

TEP particles were measured and counted for the Control group of the second 20 

°C experiment using the microscope so a comparison could be made between TEP 

analysis with the microscope vs. Image J image analysis. The results show that though 

they have similar numbers of large particles, the average size of the particles is smaller 

with Image J analysis because it is able to detect the smaller particles in the photos (Fig. 

24). Total TEP abundance increases when using Image J because of its ability to detect 

and accurately measure particles. 
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Fig. 18 Pictures of TEP particles in the Odontella aurita cultures at 28 °C stained with Alcian blue at 

 100x magnification. (a) Control culture (b) Antibiotic culture, and (c) Axenic culture. Note the 

 presence of blue staining around the edges of the O. aurita cells.  

a 

b 
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Fig. 19 Average size of TEP particles (µm), (i.e. longest cell dimension) for each culture group at 

 different temperatures. Green bars  represent average TEP size at 20 °C while the grey bars 

 represent 28 °C. Solid bars represent the Control cultures, diagonal stripes represent Antibiotic 

 cultures, and horizontal stripes represent Axenic cultures. Bars represent mean + SD (n=4). 
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Fig. 20 Average size of TEP particles (µm) (i.e longest cell dimension) for each culture at different 

 temperatures on day 13 of the experiment compared to bacteria concentration (cells ml
-1

).  Black 

 dots represent cultures at 20 °C and white squares represent cultures at 28 °C.  
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Fig 21 Total TEP area (µm
2
) in the different Odontella aurita cultures compared to total cell abundance. 

 Circles represent TEP area on day 6, upside down triangles day 9, and squares day 13. Green 

 shapes represent the Control cultures, blue the Antibiotic cultures, and red the Axenic cultures

 (mean ± SD; n=4). (a) Total TEP area at 20 °C and (b) at 28 °C.  
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Fig 22 Total TEP abundance in Odontella aurita cultures at 20 °C. (a) Total TEP abundance related to

 cell abundance (mean ± SD; n=4).  Circles represent TEP abundance on day 6, upside down 

 triangles day 9, and squares day 13. (b) TEP abundance in each bottle on day 13 in relation to 

 total amount of bacteria in the bottles. Green shapes represent Control culture samples, blue 

 shapes Antibiotic cultures, and red shapes Axenic cultures. 
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Fig. 23 Total TEP abundance in Odontella aurita cultures at 28 °C. (a) Total TEP abundance related to 

 cell abundance (mean ± SD; n=4).  Circles represent TEP abundance on day 6, upside down 

 triangles day 9, and squares day 13. (b) TEP abundance in each bottle on day 13 in relation to 

 total amount of bacteria in the bottles. Green shapes represent Control culture samples, blue 

 shapes Antibiotic cultures, and red shapes Axenic cultures. 
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Coomassie stained particles (CSP) detected under a brightfield microscope at 

100x magnification, were identified by being independent of diatom cells (Fig. 25). 

These organic particles do not appear to effect diatom aggregation.  The average size 

(longest dimension of the CSP particle) of CSP particles in O. aurita cultures ranged 

from 142.07 µm in the Antibiotics cultures at 20 °C, to 1120.29 µm in the Axenic 

cultures at 28 °C (Table 5). With an increase in temperature, CSP particles appear to get 

larger. At both temperatures the Antibiotic treatment has the smallest CSP particles 

recorded. Coinciding with the increase in average size of CSP, with an increase in 

temperature there was an increase in CSP area (Fig. 26), although with time the total 

area decreases. No correlation between CSP and bacteria concentration occurred at 

either temperature (Fig. 27 and 28), but at 20 °C cell concentration and CSP per ml 

correlated with an r
2
 value of 0.81 (Fig. 27a). However, at 28 °C the CSP per ml and cell 

concentration were not correlated (r
2
 = 0.03; Fig. 28a).  The Axenic cultures had the 

highest amount of CSP per ml while Antibiotics had the least at both temperatures (Fig. 

27 and 28). There were significant positive correlations (r > 0.80) between the total 

amount of carbohydrates and chlorophyll a in the cultures at both 20 and 28 ºC, however 

there were no more significant relationships that continuously occurred with the change 

in temperature (Table 6). 
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Fig 24.  Difference between microscope and ImageJ technique to count particles in a sample. Bars 

 represent the control cultures at 20 °C (mean ± SD; n = 4). 

 

 

 

 

 

 



 

72 

 

 

 

 

 

 

 

 

Table 5. Average CSP particle size in O. aurita cultures. Three different treatments were used (Control, 

Antibiotics, and Axenic) to determine how temperature and bacteria affected CSP production. (mean size 

± SD; n=4). 

Average CSP size (μm) 

Odontella aurita @ 20 °C 

 

Day 6 Day 13 

Control 508.30 ± 188.87 613.86 ± 145.59 

Antibiotics 142.07 ± 11.43 376.10 ± 226.12 

Axenic 248.61 ± 73.62 364.07 ± 136.87 

Odontella aurita @ 28 °C 

Control 607.73 ± 123.95 720.62 ± 480.09 

Antibiotics 216.65 ± 180.69 205.76 ± 137.08 

Axenic 488.87 ± 50.82 1130.29 ± 921.87 

 

 

 

 

 

 

 



 

73 

 

 

 

 

 

Fig. 25 Pictures of CSP particles in the Odontella aurita cultures at 28 °C stained with Coomassie 

 Brilliant Blue (CBB) at 100x magnification. (a) Control culture (b) Antibiotic culture, and (c) 

 Axenic culture.   

a 
 

b 
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Fig. 26  Total CSP area (µm
2
) in the different Odontella aurita cultures compared to total cell abundance. 

 Circles represent CSP area on day 6 and upside down triangles day 13. Green shapes represent 

 the Control cultures, blue the Antibiotic cultures, and red the Axenic cultures (mean ± SD; n=4). 

 (a) Total CSP area at 20 °C and (b) at 28 °C.  
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Fig. 27 Total CSP abundance in Odontella aurita cultures at 20 °C. (a) Total CSP abundance related to 

 cell abundance (mean ± SD; n=4).  Circles represent CSP abundance on day 6 and upside down 

 triangles day 13. (b) CSP abundance in each bottle on day 13 in relation to total amount of 

 bacteria in the bottles. Green shapes represent Control culture samples, blue shapes Antibiotic 

 cultures, and red shapes Axenic cultures. 
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Fig 28  Total CSP abundance in Odontella aurita cultures at 28 °C. (a) Total CSP abundance related to 

 cell abundance (mean ± SD; n=4).  Circles represent CSP abundance on day 6 and upside down 

 triangles day 13. (b) CSP abundance in each bottle on day 13 in relation to total amount of 

 bacteria in the bottles. Green shapes represent Control culture samples, blue shapes Antibiotic 

 cultures, and red shapes Axenic cultures. 
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Table 6. Pearson product moment correlation coefficients (r) between data gathered from Odontella aurita 

cultures at 20 and 28 ºC. Data was pooled from Day 13 at both temperatures; at 20 ºC n = 4 and at 28 ºC n 

= 4. *p < 0.05, **p < 0.01, ***p < 0.001.  

Odontella aurita@ 20 °C 

  Chl a  Bacteria  TEP  CSP  Cells  

Total carbohydrates 0.973*** -0.615* -0.269 -0.427 0.804** 

Chl a 

 
-0.695* -0.291 -0.284 0.698* 

Bacteria 

  

0.0725 -0.223 0.182 

TEP 

   

0.460 0.468 

CSP 

    

0.773** 

Odontella aurita@ 28 °C 

  Chl a  Bacteria  TEP  CSP  Cells  

Total carbohydrates 0.965*** -0.855*** -0.264 -0.705** 0.378 

Chl a 

 

-0.785** -0.297 -0.713** 0.483 

Bacteria 

  

-0.0926 0.595* 0.218 

TEP 

   

-0.0338 0.422 

CSP         0.014 
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Bacteria concentration effects on aggregation. TEP particles from each of the 

five treatments of Odontella aurita (see Table 2) were stained with Alcian blue. When 

mixed with only bacteria filtrate (No bacteria treatment), O. aurita cultures produced the 

largest average TEP size of approximately 260 µm (Fig. 29). The medium control, which 

consisted of 50 ml Harrison’s artificial seawater and L1 nutrients, had a large average 

TEP size of approximately 220 µm though this number could be overestimated due to 

the larger particle size threshold used during image analysis (Fig. 29). Coinciding with 

the largest average TEP size, the no bacteria treatment also had the highest total TEP 

area at approximately 5,400 µm
2
 (Fig. 30a). The medium control and organic control had 

the smallest total TEP area suggesting some biological factors affect TEP formation. 

Bacterial abundance seems to have some effect on the amount of TEP particles in each 

culture with a linear regression r
2
 value of 0.65, though the treatment with the most 

bacteria does not have the highest amount of TEP particles per milliliter (Fig. 30b). The 

100% bacteria treatment had the largest CSP particle size but there was no pattern 

between particle size  and bacteria concentration (Fig. 31).  The total CSP area increased 

with an increase in bacteria concentration (Fig. 32a), but with the medium control and 

organic control resulting in the least amount of CSP area, it suggests that the diatoms are 

needed for CSP production. Bacterial abundance seems to have some effect of CSP 

abundance in each culture with a linear relationship (r
2
) of 0.67 (Fig. 32b). 
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Fig. 29 Average TEP particle size (length of an individual particle in µm) in the five different bacterial 

 treatments to Odontella aurita at 20 °C. The five treatments were used to determine how biotic 

 and abiotic processes affected TEP production (mean size + SD; n = 3). Refer back to Table 3 for 

 treatment definitions. 
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Fig. 30 TEP production as it relates to bacterial abundance under the influence of biotic and abiotic 

 processes (mean ± SD; n = 3). (a) Relationship between total TEP area and bacterial abundance, 

 and (b) relationship between total TEP abundance and bacterial abundance (r
2 
= 0.65).  
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Fig. 31 Average CSP particle size (length of an individual particle in µm) in the five different bacterial 

 treatments to Odontella aurita at 20 °C. The five treatments were used to determine how biotic 

 and abiotic processes affected CSP production (mean size + SD; n = 3).  Refer back to Table 3 for 

 treatment definitions. 
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Fig. 32 CSP production as it relates to bacterial abundance under the influence of biotic and abiotic 

 processes (mean ± SD; n = 3). (a) Relationship between total CSP area and bacterial abundance, 

 and (b) relationship between total CSP abundance and bacterial abundance (r
2 
= 0.67). 
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Discussion 

Temperature effects on TEP and CSP production. The presence of exopolymeric 

substances (EPS) such as TEP and CSP alters particle stickiness influencing the 

production of aggregates thereby affecting the microbial community, sedimentation, and 

nutrient cycling in marine ecosystems (Berman and Viner-Mozzini 2001). Claquin et al. 

(2008) found that an increased in temperature increased TEP production in 3 diatoms 

until the diatoms reached a maximum temperature threshold where the amount of TEP 

produced decreased significantly. This coincides with the TEP results gained from O. 

aurita where a one-way ANOVA was done and concluded that the TEP concentration 

per ml was significantly different between 20 and 28 °C  (F1,71 = 10.307, p < 0.01), with 

an overall significance level from the Holm-Sidak post-hoc test being 0.05.  

Long and Azam (1996) showed that the seawater from the Pacific Ocean off 

Scripps Pier (California) contained more CSP than TEP and the CSP had larger total 

surface area. Our results indicate that in the laboratory, TEP was produced at a higher 

concentration than CSP, though CSP had the larger total surface area.  Particle 

abundance may differ in this study compared to that of Long and Azam (1996) because 

the TEP and CSP in that experiment were produced by dinoflagellates instead of 

diatoms. 

 The presence of TEP is essential for diatom aggregation formation (Passow et al. 

1994; Dam and Drapeau 1995; Jackson 1995; Logan et al. 1995).  Placing the diatoms 

on the rollers showed that aggregation did occur (Figs. 14, 15, and 16). The increase in 

temperature from 20 to 28 °C caused a general increase in fraction of total volume in the 
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largest size bins on the PSD produced by the LISST. Rzadkowolski and Thornton (2012) 

reported the same results with the diatom Skeletonema costatum where with a 10 ºC 

increase in temperature, 82% of the volume concentration was located in size bins 

greater than 80 µm. This corresponds with the increase in TEP production with 

temperature leading to larger aggregates. The LISST can be used to show aggregation 

occurrence in diatoms though specific size of some aggregates could not accurately be 

determined due to aggregate breakage.  Error did occur in the Control cultures rolling 

(Fig. 14) due to the presence of large aggregates (> 1 cm) that disassembled when being 

poured into the LISST chamber.  

 CSP increased with temperature, but as time continued the amount of CSP in the 

cultures decreased. This suggests that the diatom growth stage may influence the release 

of dissolved organic matter and consequently CSP formation. Wetz and Wheeler (2007) 

discovered a higher release of dissolved organic carbon (DOC) during the exponential 

and transitional growth phases of diatoms compared to DOC discharge during the 

transitional phase. 

Coomassie brilliant blue (CBB) stains protein, resulting in the CSP observed 

containing protein, though the fraction of the particles mass which consist of protein 

cannot be determined (Long and Azam 1996). As the particles were filtered to view 

under the microscope, the particles were probably flattened so the calculations of the 

surface area of the particles are likely to be underestimated by at least a factor of 2, 

while the average size (length of the particle) could be overestimated. 
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The warming trend of ocean temperature makes it critical to understand how an 

increase in temperature effects EPS formation because of its influence on aggregation, 

grazing and virus attack, processes involved in phytoplankton bloom fate, sedimentation, 

and nutrient cycling (Claquin et al. 2008). For example, increased temperature caused 

TEP production by O. aurita to increase. Higher levels of TEP could lead to lower 

grazing rates on phytoplankton by zooplankton as the TEP could replace phytoplankton 

as a zooplankton food source (Passow and Alldredge 1999). However, this does not 

mean that there will be an increase in the growth rate of phytoplankton, as producing 

more TEP means the phytoplankton has to release a lot more EPS. The increased TEP 

production could also lead to more large aggregate formation leading to a decrease in 

predation by zooplankton due to the phytoplankton’s increased size. This production and 

movement of TEP with the increased temperature could alter the traditional foodweb of 

zooplankton predation on phytoplankton (Passow and Alldredge 1999). 

In conclusion, an increase in temperature causes an increase in TEP production, 

and an increase in surface area and size of CSP. This increase in TEP caused larger 

aggregates to form due to the increase in sticky particles, and the increased probability of 

the diatoms colliding with the TEP. There was not an exponential increase in TEP with 

the 8 °C increase in temperature, which could be due to 28 °C being too high of a 

temperature for O. aurita to acclimate to and the TEP production could have been 

declining from this maximum production temperature (Claquin et al. 2008). The 

stickiness of CSP could not be determined, nor could the role CSP played in diatom 

aggregation. CSP is obviously being produced by diatoms. CSP is made from protein 
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and thus contain nitrogen. This infers that the diatoms are losing nitrogen as they 

produce CSP, and nitrogen could then potentially become a limiting nutrient which 

could in turn inhibit cell growth. The CSP produced by the diatoms could be produced 

solely for the benefit of bacteria formation. Increased bacteria concentrations could 

benefit the diatom as bacteria could enhance TEP formation in diatoms (Passow 2001). 

Bacterial abundance in cultures. Passow et al. (2000) found that TEP formation 

was positively affected by bacteria abundance as the bacteria enhanced TEP production 

by the diatoms. In the temperature experiments, there was no correlation between 

bacteria abundance and TEP or CSP abundance (Figs. 21b, 22b, 26b, and 27b). The 

amount of TEP produced in the bacteria experiment treatments where diatoms were 

present was significantly higher than in the treatments that contained no diatoms. 

Bacterial exopolymeric substances (EPS) contain high molecular weight colloids that are 

capable of producing TEP (Bhaskar et al. 2005). The treatment with no bacteria had the 

most TEP area and the largest TEP particle size suggesting that a combination of 

diatoms and EPS produced by bacteria produces the greatest TEP area and size. Bhaskar 

et al. (2005) showed that aggregates of diatoms were produced under exclusively abiotic 

conditions. TEP does not appear to be a carbon substrate that is used by bacteria, but it 

has been shown to have a weak, inverse correlation with total bacterial abundance 

(Bhaskar and Bhosle 2006). My experiment showed that TEP abundance had a weak 

linear regression with bacterial abundance with an r
2
 value of 0.65 (Fig. 29b).  Gärdes et 

al. (2011) found that specific bacterial strains had to be attached to the diatom 

Thalassiosira weissflogii for TEP production and aggregation formation to occur. The 
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composition of the bacterial community in the O. aurita cultures was unknown and 

whether it was a specific bacteria taxa causing TEP production in the cultures is also 

unknown. Further work should be done to characterize whether a specific bacterium or a 

consortium of bacteria causes increased TEP production. One method that could be used 

to determine this would be fluorescent in-situ hybridization where the ribosomal-RNA of 

bacteria is stained to identify the taxonomic affiliation of individual bacterial cells 

(Llobet-Brossa et al. 1998, Ishii et al. 2004). 

 It is unknown whether bacteria have to be present for TEP and aggregation 

formation in diatoms. The Axenic cultures in the temperature experiments became 

contaminated with time and therefore they cannot give conclusive evidence.  The 

bacteria experiment showed that organics in the bacteria filtrate seem to play a large role 

in TEP area and size, though all the cultures containing bacteria had similar TEP 

abundance (Fig. 29b) suggesting than an increase in bacteria concentration does not 

result in more total TEP particles. More work needs to be done to determine if it is a 

specific taxa of bacteria that cause TEP production and diatom aggregation, or if only 

certain diatom species require bacteria since it has been shown that bacteria may degrade 

and break down TEP (Passow and Alldredge 1995). 

 Proteinaceous matter is critical to the energy flow of the surface ocean due to it 

being a source of dissolved organic matter and particulate organic matter (Kuznetsova et 

al. 2005). Kuznetsova et al. (2005) found that 20-40% of the CSP was colonized by 

bacteria suggesting that the particles could be potentially providing a pool of nitrogen for 

bacterial production. Our data suggests that there is more CSP when bacteria are present 
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in cultures suggesting that there is a relationship between the two. As CSP is a source of 

nitrogen and carbon, it could support bacteria growth. 

 This experiment has shown that there is a complex relationship between bacteria, 

diatoms, TEP, CSP, and aggregation. Diatoms are required for diatom aggregation to 

occur. It seems that the exponential growth of the diatom plays a role in the amount of 

TEP and CSP production. The healthier the diatom, the more TEP and CSP produced. 

TEP is a sticky particle and thus increases the probability of aggregation, and is therefore 

a critical particle in the aggregation process. Diatoms also produce CSP. CSP was not 

shown to directly affect diatom aggregation. CSP is exuded from diatoms and is made up 

of proteins and is therefore rich in nitrogen. Bacteria associated with the diatoms, or in 

the surrounding environment can use this nitrogen as a source of energy. Gärdes et al. 

(2011) have shown that bacteria are required for TEP production in diatoms. As TEP is 

needed for aggregation, diatoms could be producing CSP as a source of energy for 

bacteria, which they need for TEP formation (Fig. 33). This is an extremely complicated 

relationship that needs to be further studied, as there are probably even more variables 

involved. This is just one suggestion as to the interactions between these variables. 
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Fig. 33 Flow diagram of how diatom production of TEP and CSP results in aggregation. Diatoms are 

 needed for aggregation to occur, and the healthier the diatom cell, then the more TEP production 

 will result, and aggregation can occur. Diatoms produce TEP as a sticky particle which increases 

 the probability of aggregation. CSP is also produced by diatoms and has shown no direct role in 

 diatom aggregation. CSP is made up of nitrogen and can thus be used as a source of energy for 

 bacteria. Bacteria have been shown to increase TEP production in diatoms which increases the 

 chance of aggregation. All these aspects interact with each other to lead to aggregation. 

 

 

 

 

 

 

 



 

90 

 

 

Image analysis errors. The size threshold set for the Image J software was 10 

µm
2
 in an attempt to reduce the signal to noise ratio in the measurements, where the 

noise is the inclusion of particles that are not TEP or CSP (i.e. excess dye on filter)  and 

will increase the TEP/CSP area slightly and will have a huge effect on the total count. 

The 10 µm
2
 was calculated based off a minimum curve which showed that it would 

include the most TEP/CSP particles without having too much noise. However, there will 

always be some noise when smaller TEP/CSP particles are included in the analysis 

causing the area and total count to be slightly overestimated.  The color threshold used 

was based on eyesight, where everything that was judged to be a particle was included as 

the threshold was set. The original photo was used to compare with the grey scale image 

to determine what color blue was considered a particle and what blue was background 

noise.  

 When studying the pictures to do the analysis, diatoms have carbohydrate 

coatings surrounding the cell that stain blue but are not actually TEP or CSP particles. In 

this case they were colored out so only TEP particles were counted. However, at times 

there can be large blue gel like particles of exopolymers that are attached to the cell as 

they are sticky. In this case I included these particles as TEP or CSP, which could again 

cause an overestimation of total count, size, and area. There is no distinct way to 

determine whether those particles are TEP/CSP or not so it was a judgment call.  

 In some of the pictures, particles will be on the edge of the picture so the whole 

particle is not shown. In this case particles on the edge of the photo that could not be 

fully seen were not included in this analysis. This gives a more accurate average size of 
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the particles, but underestimates the total area and abundance of the particles. The 

particles on the edge could be included in analysis; however it is probable to 

overestimate total number of particles if the pictures are taken in a sequential order as a 

large particle could be on more than one photo. There is not one specific way to use the 

Image J analysis software, but depending on what you are studying, parameters can be 

set up for accurate measurements. 

 Diatom and carbon cycling. In the marine carbon cycle, TEP is extremely 

important as it will either sediment or be grazed (Passow 2000).  Diatoms are a major 

contributor of TEP production in marine environments. TEP production increases the 

likelihood of marine snow formation, which can be a vehicle for reactive trace elements, 

bacteria, phytoplankton, zooplankton, and carbon in a flux down through the water 

column (Azetsu-Scott and Passow 2004). Marine snow, as it sinks to the ocean floor, is a 

food source for benthic food chains, it can contribute to sedimentation, and it can 

stimulate microbial life making it imperative to know the C:N ratio of the aggregates and 

their sinking rates to determine the amount of carbon available for these processes. The 

C:N ratios of marine snow is 12.2-16.9 with a sinking rate as low as 31 ± 18 m d
-1 

with 

up to 80% of the POC in the aggregates being remineralized by bacteria before reaching 

the benthos (Ploug et al. 1999).These sinking marine snow aggregates therefore act as a 

carbon sink, but also as a source of CO2 in the surface waters where most of the carbon 

is respired (Ploug et al. 1999).  

Coastal waters are often nutrient limited with an excess of carbon. Understanding 

what diatoms do with this excess carbon has begun (Geider et al. 1997; Thornton 2002). 
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It has been proposed that diatoms process the excess carbon into different forms of EPS 

that can provide a way to decreased predation on the diatoms and increase the diatoms 

surface area to slow their sinking velocity (Kiørboe and Hansen 1993; Fukao et al. 

2009). These byproducts of excess carbon may be secondary in nature as diatoms could 

be wasting carbon as a way to prepare metabolic products for future use when nutrients 

become readily available (Russell and Cook 1995; Hessen and Andersen 2008). 

Diatoms are responsible for a third of the world’s primary production, and if 

blooms increase with increase in ocean temperatures, more carbon would be transferred 

from the sea surface to the benthos at an increased rate. This would not only change the 

amount of available carbon at the sea surface in terms of DOC, POC and CO2, but the 

large amount of carbon reaching the sea floor. The effects of temperature on diatom 

physiology needs to be further studied to see how increased temperature will affect TEP 

production and consequently aggregation, how sticky CSP is and whether it is acting as a 

nitrogen source for bacteria, and whether specific bacteria taxa influence TEP 

production and aggregation and how temperature will affect their growth. All these 

factors together affect the biological carbon cycle in the ocean. 
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CHAPTER IV 

DISCUSSION AND CONCLUSIONS 

 

 Identifying, characterizing, and counting biological particles in the ocean is 

important as each type of particle can play a crucial role in the marine ecosystem. For 

example, particles suspended in the water column can affect light penetration through 

the water and thus impact primary productivity and radiative transfer (Mobley et al. 

2002). Particulate organic carbon (POC) can also be suspended in the water column and 

understanding how POC sinks from the surface of the ocean to the benthos is an 

important step in the carbon cycle and thus has implications on climate models (Davies 

et al. 2011). For the LISST instruments to characterize particles in the water, a primary 

requirement is that there is a relatively high concentration of particles suspended in the 

water to provide a sufficient signal (Rienecker et al. 2008). In terms of studying 

dinoflagellate and diatom blooms the LISST would be sufficient because bloom 

concentration enable a strong signal. Full phytoplankton bloom situations could cause 

the transmission of the laser on the LISST to drop below 30%, which will cause laser 

attenuation, and an accurate measurement would not be determined (Styles 2006). 

 LISST instruments are relatively cheap to purchase and have low running costs. 

That, in combination with its ability to allow for aggregation to be measured, as it does 

not cause floc breakups, allows for long-term continuous in-situ monitoring applications 

(Andrews et al. 2010) makes it an extremely versatile instrument for studying 

phytoplankton. With its compact size and internal data logging, the LISST could be 



 

94 

 

 

routinely deployed on a fixed mooring for time series measurements, or it could be fixed 

on a profiler to take measurements at specific transects (Styles 2006). The LISST could 

be attached behind boats and towed to map extent of phytoplankton blooms (Anglès et 

al. 2008), or it could be incorporated into existing ocean observing systems (e.g. Texas 

Automated Buoy System,  

TABS) to monitor phytoplankton growth over time. Depending on the species in the 

bloom, the phytoplankton can undergo diel vertical migrations and by attaching the 

LISST to a profiler, or a CTD, the bloom could be monitored as migration occurred. 

 The versatility of the LISST allows for it to monitor phytoplankton, however the 

LISST does have limitations as it can only tell us the size and volume concentration of 

the phytoplankton in the water column. It also is only accurate in identifying 

phytoplankton in monospecific blooms. In a heterogeneous bloom situation, the LISST 

would not be able to discriminate between different phytoplankton species due to size 

overlapping (Anglés et al. 2008). The instrument itself does not describe the physiology 

of the bloom, and the chemical, physical, and biological processes that interact with the 

blooms in natural environments (Anglés et al. 2008) are crucial to understanding the 

phytoplankton, and as well as mitigating the bloom if it is harmful.  To overcome these 

limitations, adjustments can be made to the LISST to ensure continuous mapping of 

phytoplankton as well as understanding their physiology. A fluorometer could be easily 

attached to the LISST to measure chlorophyll. If the LISST was attached to a CTD, 

samples of where the phytoplankton were could be taken to understand the environment 

at which they live in. Rienecker et al. (2008) attached physical, nutrient, and bio-optical 
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sensors to the LISST to get an idea of phytoplankton variability and environmental 

variability. To look at cell health and confirm the LISST results, Davies et al. (2011) 

attached a digital in-line holograph to produce particle images with the PSD. 

 LISST instruments were originally designed to measure marine sediments 

(Agrawal and Pottsmith 2000), however the LISST’s potential to studying 

phytoplankton, their physiology, and their environment has huge implications on 

studying marine microorganisms. With the LISST being relatively cheap, more than one 

could potentially be used and a continuous study of phytoplankton in areas of the 

world’s ocean could be done. In combination with other scientific tools, the LISST 

would be able to monitor phytoplankton distributions as well as their physiology and 

environmental factors. 
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