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ABSTRACT

This dissertation presents an integrated approach to planning and scheduling

surgeries in operating-rooms (ORs) at strategic, tactical and operational levels. We

deal with uncertainties of surgery demand and durations to reflect a reality in OR

management.

The strategic part of the dissertation studies capacity decisions that allocate sur-

gical specialties to OR days with the objective of minimizing total expected costs due

to penalties for any patients who are not accommodated and for under- (i.e., idleness)

and over- (i.e., overtime) usage of OR capacity. It presents a prototypical non-linear,

stochastic programming model to structure the problem and four adaptations, along

with associated solution approaches, with the goal of facilitating solution by overcom-

ing the computational disadvantages of the prototype. Each of these models offers

advantages but is also attended by disadvantages. Computational tests compare the

four models and solution approaches with respect to solution quality and run time.

The tactical part of the dissertation prescribes an approach to optimize a master

surgical schedule (MSS), which adheres to the block scheduling policy, using a new

type of newsvendor-based model. Our newsvendor approach prescribes the optimal

duration of each block and the best permutation, obtained by solving the sequential

newsvendor problem, determines the optimal block sequence. We obtain closed-form

solutions for the case in which surgery durations follow the normal distribution. Fur-

thermore, we give a closed-form solution for optimal block duration with no-shows.

We conduct numerical tests for surgery durations that follow normal, lognormal and

gamma distributions. Results show that the closed-form solutions associated with

the normal distribution gives close approximations to solutions associated with log-
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normal and gamma distributions.

The operational part of the dissertation prescribes an optimal rule to sequence

two or three surgeries in a block. The smallest-variance-first-rule (SV) is generally ac-

cepted as the optimal policy for sequencing two surgeries, although it has been proven

formally only for several restricted cases. We extend prior work, studying three dis-

tributions as models of surgery duration (the lognormal, gamma, and normal) and

including overtime in a total-cost objective function comprising surgeon-and-patient-

waiting-, operating-room-idle-, and staff over-times. We specify expected waiting-

and idle- time as functions of the parameters of surgery duration to identify the best

rule to sequence two surgeries. We compare the relative values of expected waiting-

and idle- times numerically with that of expected overtime. Results recommend that

the SV rule be used to minimize total expected cost of waiting-, idle- and over-time.

We find that gamma and normal distributions with the same mean and variance as

the lognormal give nearly the same expected waiting- and idle- times, observing that

the lognormal in combination with either the gamma or normal gives a similar result.

Lastly, the dissertation investigates an appointment system with deterministic

arrival times (D) and non-identical exponential service times (M̃). For two cus-

tomers, we show that both the smallest-mean-first-rule and the SV minimize the

sum of expected waiting- and idle-times. We prove that neither is optimal for three

customers, but verifies that the first customer in the sequence should be the one with

the smallest variance (mean).
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1. INTRODUCTION

This dissertation prescribes an integrated way for planning and scheduling surg-

eries in operating room (OR). We deal with capacity allocation decision at the strate-

gic level; master surgical block schedule at the tactical level; sequencing surgeries at

the operational level. The decisions at a higher level are used as a constraint to

lower level decisions. For example, tactical decision determines the planned block

duration of a sub-specialty and operation decision determines sequencing surgeries

of the assigned sub-specialty. We also analyze operational decisions under a general

appointment scheduling system.

Each OR provides vital services to patients and a major source of revenue to

the hospital; it employs capital-intensive equipment and skilled surgery teams (e.g.,

surgeons, anesthesiologists, nurses), who are highly paid. Hospital administrators

seek to utilize capacities (e.g., capital-intensive equipment and human resources) as

efficiently as possible.

Every hospital provides a unique capacity for performing surgery through the

numbers of ORs and surgical skills it offers. A surgical suite typically comprises

several ORs, each of which is equipped to support one (e.g., heart, neurological, or

orthopedic) or several (e.g., general surgery, ENT) specialties. The typical surgi-

cal specialty comprises a number of sub-specialties. For instance, the orthopedics

specialty includes hip replacement, knee replacement, femur fixation, and shoulder

repair sub-specialties. Surgeries that require the same sub-specialty are medically

homogeneous and require the same medical expertise of the surgeon or perhaps a

group of surgeons who practice the same sub-specialty (van Oostrum et al., 2008).

OR capacity is typically measured by three components: physical resources, hu-
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man resources, and time availability (May et al., 2011). Physical resources include

the number of ORs and the equipment installed in each OR. Some surgical specialties

(e.g., cardiology, neurology, orthopedics) require specialized equipment that, when

installed in an OR, dedicates that OR to that particular specialty. Some specialties

(e.g., general surgery, ENT) require less specialized equipment and can share ORs

that provide such flexibility. Human resources, which include surgeons, anesthesiolo-

gists, and nurses, can be assigned to ORs as desired. Time availability at the strategic

level relates to the length of the OR work day (e.g., 8 hours), and, at the tactical

level, to time blocks, which are shorter (e.g., 2 or 4 hours). We concentrate on time

availability to manage OR capacity, assuming that physical and human resources are

fixed.

Capacity planning is a process of specifying the levels of resources necessary to

meet demands in a cost-effective way (Blake, 2011). Inadequate capacity planning

can deteriorate the quality of care provided by hospitals (Bai et al., 2009). For

example, hospital administrators may have to meter patient admissions over time

or route patients to other hospitals if capacity is not sufficient to accommodate

them. Capacity planning over different time horizons involves constructing and/or

upgrading facilities (very long term, or strategic), allocating specialties to OR days

(long term, or strategic), assigning sub-specialties to time blocks (medium term, or

tactical), scheduling actual patients within time blocks in a specific OR day (short

term, or operational), making last minute adjustments (very short term, or real-

time), and executing the schedule (contemporaneous) (May et al., 2011). We focus on

the long term decisions that allocate specialties to OR days, not capacity expansion.
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1.1 Research Scope

Strategic-level allocations provide a structure within which tactical master sur-

gical schedules (MSSs) are prescribed (Choi and Wilhelm, 2012b) to assign sub-

specialties to time blocks in each OR day to which the associated specialty is allo-

cated. Should the intermediate-term forecast prepared to plan the MSS differ sub-

stantially from the long-range forecast upon which strategic allocations have been

based, the allocation model can be implemented again using the refined, tactical

forecast so that the MSS is consistent with specialty-to-OR-day allocations. Subse-

quently, operational level decisions schedule specific patients within the time blocks

prescribed by the MSS.

Strategic level deals with specialty in a horizon of long term; tactical, subspe-

cialty, medium term; operational, individual surgery, short term. Table 1.1 illustrates

exemplar inputs and main decisions by a decision hierarchy based on decision level

and time frame, accordingly. Capacity expansion, bed planning, assignment of sub-

specialties, time tabling, rescheduling, and execution are out-of-scope, in italics in

Table 1.1. While capacity expansion is an ad-hoc decision, we deal with capacity

planning of on-going basis. Bed planning decision is more related to general capacity

decision rather than OR capacity decision. If the allocation decision is made at the

strategic level, it is not necessary to assign sub-specialty to ORs or blocks at the

tactical level. We focus on only sequencing decision other than scheduling decisions

such as time tabling or rescheduling.

We assume an environment in which strategic decisions assign specialties to

OR days based on a long-term (e.g., annual) forecast. MSS decisions assign sub-

specialties to time blocks within each day, based on an intermediate-term forecast,

which can be expected to be more accurate because it deals with a shorter time hori-
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Table 1.1: Decision Hierarchy from Long-term to Short-term
Decision Level Time Frame Inputs Main Decisions
Strategic Long term Demand forecast Capacity allocation
(specialty) Surgery duration Patient mix

Standing schedule OR times estimation
Contribution margin Capacity expansion
Related costs Bed planning

Tactical Medium term Allocation of specialties Block duration and sequence
(subspecialty) Demand forecast/actual lists Assignment of subspecialties

Surgery duration
Related costs

Operational Short term Block duration and start time Sequencing surgeries
(surgery) Surgery duration Time tabling

Related costs Rescheduling
Execution

zon and may include a mix of actual and forecast needs. Operational-level decisions,

which are made on a daily basis, assign actual patients to specific times within time

blocks, matching sub-specialty need with the MSS (e.g. Dexter et al. (2005)). We

depict our focus of the dissertation as shown Figure 1.1.

Strategic Level 
(Specialty) Capacity Allocation 

Block Durations 

Block Sequence 

Sequencing Surgeries 

Tactical Level 
(Subspecialty) 

Operational Level 
(Surgery) 

Number of patients 

Allocation of ORs 

Block start- and end- times 

Figure 1.1: Main Decision Variables by Level
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The following subsections describe the problem background of individual parts:

strategic, tactical, and operational, respectively.

1.1.1 Capacity Allocation at the Strategic Level

We begin by formulating a prototypical non-linear, stochastic model to identify

relevant practical features of the problem and to structure them. The prototype

incorporates nonlinear forms of several types and is not computationally attractive.

Thus, we propose four adaptations to linearize it with the goal of facilitating solution:

NV-CA, NV-SIP, SIP and NS-SIP. The first two (i.e., NV-CA, NV-SIP) are based on

the inverse news vendor model (Carr and Lovejoy, 2000), each of the last three (i.e.,

NV-SIP, SIP, and NS-SIP) recast decision variables and involve stochastic programs

for which we adopt recourse models to prescribe certain decisions that must be

delayed until stochastic processes are realized, resolving uncertainty. A recourse

model is designed to prescribe a solution that balances the potential impacts of

various possible outcomes (Higle, 2005).

1.1.2 Master Block Surgical Schedule at the Tactical Level

Tactical-level decisions for the intermediate-term (e.g., month or quarter) pre-

scribe an MSS to assign sub-specialties to time blocks in each OR each day. Under

a block scheduling policy, an MSS must determine block duration and sequence for

each OR day, to minimize the total cost of earliness and tardiness.

We deal with the block scheduling policy in this study. A block is the amount

of time during which an OR is assigned to a specific sub-specialty. For example, a

block may be planned with the duration of two hours, half of a day (e.g., morning,

or afternoon), or a day-long duration, for example, to permit a surgeon to perform a

series of complex surgeries. An alternative, the open scheduling policy, under which

each surgeon can schedule his/her surgeries at any time, was common in the 1960s
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and 1970s but is rarely used in practice today, because it does not utilize surgeons’

time as efficiently as block scheduling (Blake et al., 2002).

An MSS, which is analogous to a master production schedule in a manufac-

turing environment, has a number of important uses. MSS defines aggregate re-

source requirements of peri-operative activities and ancillary departments (e.g., post-

anesthesia care unit(PACU), surgical intensive care unit(SICU), nursing), not only

of ORs and surgeons. Nurse managers should ensure that the set of ORs and PACUs

run compatibly each day of the week (Blake and Donald, 2002) so that actual deci-

sions adhere to the MSS as strictly as possible. Like Dexter and Hopwood (1999),

Rohleder et al. (2005), and Samanlioglu et al. (2010), this paper focuses on ORs and

does not deal with other departments. MSS enables hospital managers to respond

to random events (e.g., a short-term shortage of surgeons or anesthetists), seasonal

fluctuations in demand (e.g., summer or Christmas time), or strategic decisions that

alter program emphasis (e.g., to respond to an increasing popularity of cosmetic

surgery) (Blake and Donald, 2002). In particular, the operational-level uses the MSS

to schedule individual patients; if actual demand levels were to deviate significantly

from the MSS, a hospital manager should update the MSS to better accommodate

them.

1.1.3 Sequencing Surgeries in a Block at the Operational Level

Sequencing surgeries in a single OR involves only a few patients in each time

block, which may, for example, have a duration of two-, four-, or eight-hours. Each

surgery requires a random duration that depends upon its type (i.e., specialty such as

cardiac, orthopedic, or neurological) of surgery. In order to study sequencing policies

for different surgery-duration distributions, the dissertation deals with two or three

surgeries in a time block of duration h and analyzes three different distributions
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of surgery duration (lognormal, gamma, and normal), rather than invoking general

restrictions such as stochastic order or increasing (decreasing) hazard rate, as have

previous studies (Niño-Mora, 2002; Gupta, 2007; Denton et al., 2007; Pinedo, 2009).

We note that most previous studies assumed that surgery durations are indepen-

dent and identically distributed (i.i.d.) for all patients (Cayirli and Veral, 2003). We

assume that surgery durations are independent, but extend prior results, allowing

durations that are not identically distributed. We focus on sequencing surgeries that

require the same specialty for a given set of patients in a single time block.

1.2 Research Objectives of the Dissertation

The primary objective of the dissertation is an integrated way of planning and

scheduling surgeries at strategic, tactical, and operational level. Each part in the

dissertation achieves its own research objectives for each level. We describe research

objectives at the strategic, tactical, and operational levels, respectively.

The research objectives of strategic part are (1) a prototypical model to optimize

the allocation of surgical specialties to OR days, resulting in the mix of patients

accommodated; (2) four adaptations to facilitate, along with associated solution

approaches: news vendor-based capacity allocation (NV-CA), news vendor-based

stochastic integer programming (NV-SIP), stochastic integer programming (SIP) and

stochastic integer programming without symmetry (NS-SIP); and (3) numerical tests

that compare the computational characteristics of the four models.

Tactical-level decisions for the intermediate-term (e.g., month or quarter) pre-

scribe an MSS, which assigns surgery sub-specialties to time blocks in each operating

room (OR) each day. Under a block scheduling policy, an MSS must determine block

duration and sequence for each OR day to minimize the sum of expected earliness and

tardiness costs. With the goal of synthesizing a methodology to prescribe an MSS,
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specific research objectives of this paper are (1) a method to optimize the planned

duration of each block, minimizing the sum of expected earliness and lateness costs;

(2) a method to optimize the sequence (i.e., permutation) of blocks in each OR day;

and (3) a method to prescribe an optimal planned block duration when no-shows are

considered.

The research objectives of the operational part are (1) identifying the best rule

to prescribe the sequence of two surgeries; (2) specifying expected waiting- and idle-

time as functions of the parameters of surgery duration; (3) numerically comparing

the relative values of expected waiting and idle times with that of expected overtime;

(4) extending to the case in which a lognormal distribution is combined with either a

gamma or a normal distribution; (5) modeling the three-surgery case with normally

distributed durations; and (6) demonstrating how our results can be applied by using

them as a basis for a heuristic that assigns surgeries to multiple ORs and sequences

them in each OR.

1.3 Contributions of the Dissertation

The dissertation contributes from several perspectives. It shows how upper-level

decisions affect (or constrain) lower-level decisions in an integrated way. Strategic

and tactical levels deal with assignment problems of specialties and subspecialties,

respectively. The latter determines blocks durations of an OR, given the former

decisions. Block durations at the tactical level are more refined than the OR time at

the strategic level. Operational-level decisions are constrained by both the number of

assigned surgeries at the strategic-level decision and block durations at the tactical-

level decision.

The dissertation prescribes two new types of newsvendor model: inverse newsven-

dor and sequential newsvendor. The former model of the strategic part determines
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the optimal number of assigned surgeries, and can be applied to a setting in which one

may assign customers (or orders) to a capacitated resource, such as airline booking.

The latter model of the tactical part prescribes the optimal duration and sequences

of blocks, and can be extended to a setting in which one may determine production

(or delivery) times and sequence. Sequential newsvendor is a series of time-based

newsvendor problems, not a quantity-based multi-period problem, in which quanti-

ties are random and each interval is of fixed duration.

Lastly, the dissertation conducts numerical studies to support or complement

analytical results, which cover general instances with wide ranges of mean and vari-

ance. The strategic part shows the effectiveness of the proposed heuristic using a

large number of scenarios. The tactical part prescribes block durations and sequence

analytically using the normal distribution, and conducts numerical studies to show

that the gamma or the lognormal has nearly the same results. The operational part

conducts extensive numerical studies to convince analytical results.

1.4 Outline of the Dissertation

The remainder of the dissertation is organized as follow. Chapter 2 reviews

strategic-level decisions, tactical-level decisions, and sequencing surgeries at the op-

erational level, respectively. Chapter 3 prescribes four solving models for capacity al-

location problem. Chapter 4 prescribes a master block surgical scheduling approach.

Chapter 5 prescribes optimal rule to sequence surgeries in a block. Chapter 6 pre-

scribes optimal rule to sequence customers in an appointment scheduling system in

which the inter-arrival time is deterministic. Chapter 7 gives conclusions and offers

suggestions for future research.
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2. LITERATURE REVIEW

A review of the literature suggests few studies have addressed strategic OR ca-

pacity planning. The literature deals almost entirely with questions of medium- to

short-term planning in which it is assumed that the number of ORs is fixed (Green,

2004).

Several studies (Blake and Carter, 1997; Gupta, 2007; Cardoen et al., 2010) have

proposed three-level classifications of OR planning and scheduling: strategic (long-

term), tactical (medium-term), and operational (short-term). May et al. (2011) up-

dated previous classification schemes, expanding their scope to encompass a number

of emerging topics such as scheduling (rescheduling) the day on which each surgery

is to be performed. We focus on strategic decisions that allocate surgical specialties

to OR days.

We review literatures at strategic-, tactical-, and operational-level, respectively

in the following sections.

2.1 Strategic Level Decisions

A review of the literature suggests that few studies have addressed strategic OR

capacity planning. The literature deals almost entirely with questions of medium- to

short-term planning in which it is assumed that the number of ORs is fixed (Green,

2004).

A few authors (Dexter et al., 2005; Dexter and O’Neill, 2004; Bai et al., 2009)

studied capacity expansion at the strategic level. Dexter et al. (2005) explored the

allocation of OR time after the decision has been made to increase the number of

ORs. Dexter and O’Neill (2004) applied data envelopment analysis (DEA) in sev-

eral contexts pertaining to capacity expansion, workload, and external competition.
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Bai et al. (2009) investigated the role of accounting and operational factors as well

as interactions among these factors that drive OR capacity investments, combining

insights from analytical models in the accounting and operations management liter-

ature. In contrast to these approaches, we focus on capacity allocation rather than

capacity expansion.

Other studies have dealt with allocation as a tactical, medium-term problem

(Wachtel and Dexter, 2008; Strum et al., 1997; Dexter et al., 2002; Kuo et al., 2003).

Wachtel and Dexter (2008) noted that assigning surgical sub-specialties to expanded

OR capacities is a tactical decision. Strum et al. (1997) formulated a news vendor

model to determine OR utilization, analyzing the quality of surgical schedules, and

allocating surgical budgets. Dexter et al. (2002) described the allocation of OR time

from a financial perspective, and determined the mix of allocations that maximizes

excess revenue. Kuo et al. (2003) used linear programming to allocate OR time

among a group of surgeons based on the fees that would be generated. In contrast,

we derive our allocation models for use at the strategic level with the presumption

that resulting allocation decisions provide a structure in which a tactical MSS assigns

sub-specialties to time blocks each OR day.

2.2 Tactical Level Decisions

Few studies have addressed MSS. Complicating matters, there is no commonly

accepted standard definition of MSS (Testi et al., 2007; van Oostrum et al., 2008).

Blake and Donald (2002), Santibanez et al. (2007), and Fei et al. (2008) described the

MSS development process in detail, comparing it with master production scheduling

in manufacturing. van Oostrum et al. (2008) discussed the pros and cons of MSS,

compared centralized and decentralized MSS-planning processes, addressed various

implementation issues and discussed suitability for hospitals with different organiza-
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tional foci and culture.

Due to the absence of a standard definition, various studies have assigned surgeries

to ORs as part of strategic, tactical, or operational decisions. The strategic problem

of assigning specialties to ORs assumes that each OR day comprises a single time

block and determines the number of OR-days for each specialty. One line of research

on intermediate-term decisions has investigated assigning the expected number of

surgeries associated with each specialty to OR days. In contrast, we regard this

assignment problem as a strategic-level decision and assume that the assignment of

specialties to ORs is given. Santibanez et al. (2007) assigned specialties to time

blocks at the tactical-level, assuming that both the total amount of OR time and the

number of patients are predetermined for each specialty over the planning horizon.

Following Santibanez et al. (2007), our approach invokes the assumption that the

number of patients is forecast for each sub-specialty. Guinet and Chaabane (2003)

and Jebali et al. (2006) combined the assignment of specialties to ORs, typically a

strategic-level problem, and the sequencing of surgeries in each OR, considered an

operational-level issue, in one model.

A number of OR methodologies have been used to assign surgeries to ORs or

blocks. Both deterministic integer programs (Kharraja et al., 2006; Blake and Don-

ald, 2002; Zhang et al., 2009; Fei et al., 2009) and stochastic programs (Denton et al.,

2010; Beliën et al., 2009) have been used to prescribe MSSs. Kharraja et al. (2006)

modeled the assignment of specialties to days of pre-specified duration as a cutting

stock problem with the objective of minimizing penalties for under- and over-use

of ORs. Blake and Donald (2002) and Zhang et al. (2009) developed an analytical

solution and incorporated it in a simulation model that captures randomness (e.g.,

random arrivals, no-shows) and non-linearities (e.g., non-proportional allocation of

demand). Fei et al. (2008) studied surgery assignment using a set-partitioning for-
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mulation and branch-and-price. Denton et al. (2010) and Beliën et al. (2009) used

stochastic optimization at the operational level to assign surgeries to ORs on a given

day.

A number of studies have used newsvendor models to prescribe block duration.

Several studies (Strum et al., 2000a; Olivares et al., 2008; Wachtel and Dexter, 2010)

have employed the newsvendor model to optimize the duration of a single block; they

do not deal with sequencing blocks. This approach is more closely related to ours than

is the assignment problem used, for example, by Guinet and Chaabane (2003) and

Jebali et al. (2006). Guerriero and Guido (2010) and May et al. (2011) employed a

newsvendor model at the strategic level to determine OR time for a specialty. Strum

et al. (2000a) developed a newsvendor model to find the optimal block duration

based on historical workloads (e.g., numbers of surgeries performed, numbers of staff

hours). Olivares et al. (2008) applied a newsvendor model to determine how much

OR time to reserve for a specific cardiac surgery to balance the costs of reserving too

much vs too little OR time. Wachtel and Dexter (2010) gave a systematic review

of the behavioral and experimental literature associated with newsvendor problems

relevant to OR management and commented on the potential significance of these

studies to OR management.

In contrast to earlier studies, we employ a newsvendor model to prescribe planned

end-time (accordingly, block durations as well) and the sequential newsvendor model

to specify block sequence. No prior research has addressed the block-sequence prob-

lem. We are the first to provide a closed-form solution for the case in which surgery

durations are independent and normally distributed. Using the closed form that we

obtain, we are able to derive the optimal rule to sequence blocks.
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2.3 Operational Level Decisions

Researchers in stochastic scheduling typically seek to optimize an overall measure

of schedule performance such as the sum of expected completion times or expected

makespan. In contrast, OR scheduling focuses on minimizing waiting-, idle- and

over-time penalties. Niño-Mora (2002) and Pinedo (2008) summarized stochastic

scheduling research. Righter (1994) provided a review of stochastic ordering and its

application in scheduling. One fundamental result for the single-machine configura-

tion has shown that the rule that schedules the job with the smallest-mean-first-rule

(SM) minimizes the sum of completion times under the assumption that all job pro-

cessing times are independent and exponentially distributed (Glazebrook, 1979); that

they have a common, general distribution with a nondecreasing hazard rate function

(Weber, 1982); or that they follow stochastically ordered distributions (Weber et al.,

1986). The largest-mean-first-rule (LM) rule minimizes expected makespan for the

single-machine configuration when job processing times are exponentially distributed

(Bruno et al., 1981), or when job processing times follow a common distribution with

a nondecreasing hazard rate function (Weber, 1982). Although many articles on

stochastic scheduling impose strict assumptions, including, for example, that service

time is exponentially distributed, we consider three distributions that are relevant

to surgery scheduling: lognormal, gamma, and normal.

Appointment-based models (e.g., health care, law firm) typically assume that

customers arrive for service at pre-determined, rather than random, times (Wang,

1993). Gupta and Denton (2008) summarized key issues in appointment systems for

health services. Jansson (1966) studied the D/M/1 queueing model of appointment

systems. Wang (1993) and Wang (1997) considered the scheduling of a finite number

of arrivals. Denton and Gupta (2003) conducted a numerical study using different
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numbers of patients (e.g., 3, 5, and 7) to determine arrival intervals between patients

and modeled service times using the uniform distribution. These models assume that

a finite number of patients arrive at deterministic times and that their service involves

an exponentially distributed duration. In contrast, we model surgery duration using

the lognormal, which is regarded as a good fit; the gamma, which can be shaped

similar to the lognormal; and the normal, which is used extensively because of its

tractability and general applicability.

Weiss (1990) was the first to address the scheduling (i.e., time tabling) of two

surgeries for a given sequence. His model prescribes the starting time of the second

surgery with the objective of minimizing the sum of the expected costs of surgeon’s

waiting- and OR-idle- times. In contrast, we focus on sequencing of surgeries rather

than scheduling starting times. Weiss (1990) showed that, if surgery times are i.i.d.

and symmetrical, as is the normal distribution, for example, sequencing surgeries

according to the SV rule is optimal. Gupta (2007) and Denton et al. (2007) used

stochastic ordering to schedule two surgeries with durations that have the same mean

but different variances. However, they cite no reference that indicates these relation-

ships are prevalent in practice. Pinedo (2009) discussed the scheduling of two surg-

eries with durations that are independent and uniformly distributed, arguing that

variance has a much stronger influence on the optimal schedule than does the mean.

In contrast, we study applicable distributions rather than imposing restrictions such

as symmetry or stochastic ordering.

Assuming that short surgery durations inherently exhibit less variability than

long ones, Lebowitz (2003) studied the SM rule, using Monte Carlo simulation to

show that it can improve on-time performance and decrease overtime expense. Sier

et al. (1997) described a practice that sequences surgeries according to patient age

and estimates of surgery durations, scheduling the younger patient first or using LM
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if ages are the same. The rules proposed by Lebowitz (2003) and Sier et al. (1997) are

based on experience or assumption, but our work provides analytical and numerical

results.

Mathematical programming models formulated to prescribe surgery scheduling

may be categorized as deterministic (Guinet and Chaabane, 2003; Jebali et al., 2006;

Cardeon et al., 2009; Fei et al., 2008, 2009) or stochastic (Denton and Gupta, 2003;

Denton et al., 2007; Lamiri et al., 2008, 2009). All approaches proposed to optimize

the former all employ column generation to assign each surgery to a specific OR and

to sequence surgeries in each OR each day; the latter employ some sampling method

(e.g., the sampling average approximation) that uses a limited number of scenarios

to represent the broad range of surgery-durations outcomes. Rather than developing

a solution algorithm as in the deterministic case or attempting to represent a broad

range of possible outcomes with a limited number of scenarios, we study stochas-

tic sequencing policies both analytically and numerically, representing all possible

outcomes.
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3. CAPACITY ALLOCATION

This chapter proposes strategic-level models to allocate surgical specialties to

operating room (OR) days, each defined as the capacity provided by one OR during

a work day of duration h hours. The objective is to minimize total expected costs due

to penalties for any patients who are not accommodated and for under- and over-

usage of OR capacity, which result in under-utilization and overtime, respectively

(Dexter et al., 2003). Such an allocation model provides a plan by which surgeons

can schedule their activities, assuring that they can balance time performing surgery,

time supporting office hours, and time fulfilling other responsibilities. The plan can

also be used by hospital administrators to plan OR capacity, for example by initiating

an expansion if an excessive number of patients can not be accommodated, and to

integrate the efforts of surgery support staff (e.g., anesthesiologists and nurses) and

ancillary departments such as a PACU and a SICU.

Strategic level decisions may involve capacity allocation (Denton et al., 2010;

Zhang et al., 2009), capacity expansion (Lovejoy and Li, 2002), and patient-mix

problems (Gupta and Wang, 2008; Zhang et al., 2009). We do not consider capacity

expansion decisions, which are typically made over a time horizon of 3 - 5 years;

rather, we focus on capacity allocation, which commonly deals with a one-year hori-

zon and provides guidelines for subsequent tactical decisions that refine capacity

allocations. This chapter regards patient-mix as a byproduct of capacity allocation

decisions.

The remainder of this paper is organized as follows. Section 3.1 presents prelim-

inaries and formulates our prototypical model. Section 3.2 describes our four model

adaptations: NV-CA, NV-SIP, SIP, and NS-SIP. Section 3.3 presents a numerical ex-
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periment that compares the computational efficacies of the four models, emphasizing

run time and solution quality.

3.1 Preliminaries

This section presents preliminaries that underlie our study. Subsections discuss

our assumptions, define the notation we use, and present our prototypical stochastic,

non-linear optimization model (NL-CA), which allocates each surgical specialty to a

specific number of OR days.

3.1.1 Assumptions

We assume that hospital administrators know the distribution functions for de-

mand and surgery durations and that weekly demand is stationary over the planning

horizon. For planning purposes, we form a representative duration (Choi and Wil-

helm, 2012b) for each specialty and interpret it as the duration of a randomly selected

surgery requiring this specialty. Each specialty performs hundreds of different pro-

cedures, which can be classified by current procedure terminology codes (CPT) and

their combinations. We determine the representative duration for each specialty by

forming the convex combination of the durations of these relevant procedures ac-

cording to their (historical or forecast) frequencies (i.e., probabilities) of occurrence

and then invoking the central limit theorem (Casella and Berger, 2001) to justify

assuming that each is normally distributed.

We assume that at most one specialty is allocated to each OR each day, but we

allow each specialty to be allocated to more than one OR and/or more than one day

to accommodate demand. We assume that the number of accommodated patients

requiring a particular specialty is the same on each OR day to which the specialty

is allocated.

We partition ORs into subsets, each of which is outfitted with similar equipment
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and can thus support the same types of surgeries. Similarly, we partition surgical

specialties into subsets, each of which require the same OR equipment. This decom-

poses the overall problem into an index set K of independent and pairwise-disjoint

problems, each κ ∈ K involving one subset of ORs and the subset of specialties that

can be performed using the equipment they offer. The cost parameters associated

with one subset of ORs may differ from those related to others because the equip-

ment installed in them and the surgical specialists who use them may give rise to

unique costs.

3.1.2 Notation

We use the following indices and sets in formulating our model:

Index Sets and Indices

M ORs m ∈M
N surgery specialties, (e.g., orthopedic, cardiovascular) n ∈ N
K compatible surgical specialties and ORs κ ∈ K
Mκ ORs dedicated to specialties n ∈ Nκ

Nκ specialties to be performed in ORs m ∈Mκ

D days (e.g., Monday through Friday) d ∈ D = {1, . . . , 5}

Two types of random variables are associated with specialty n ∈ N : An denotes

the forecast number of surgeries demanded each period (e.g., week); and Pn denotes

the random, representative duration of each surgery. We assume that weekly demand

An is Poisson distributed with mean rate λn. Let Pn be normally distributed with

mean µn and variance σ2
n. Let h denote the length of the standard OR workday (e.g.,

8 hours).

Two types of decision variables allocate specialties to OR days and, as a by

product, determine patient mix: Rn prescribes the number of OR days to which

specialty n ∈ Nκ is allocated, and Vn gives the number of representative surgeries
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requiring specialty n that are assigned each day to each OR in set Mκ to which

specialty n is allocated. Following earlier work Zhang et al. (2009), Testi et al.

(2007), Adan and Vissers (2002), and Blake and Donald (2002), we use integer

variables to prescribe allocation decisions at the strategic-level. We assume hospital

administrators and surgeons can map the Rn solutions that our models prescribe to

assign each specialty to particular day(s) of the week. Such assignments are likely to

be heavily influenced by the schedule that has been used historically as well as the

preferences of surgeons.

The random variable that describes the time to complete the set of surgeries

allocated to an OR day is the sum of Vn i.i.d. Pn’s, which we denote by [Vn ∗ Pn].

We assign the same random workload, [Vn ∗ Pn], to each OR on each day to which

specialty n is allocated.

Other random variables are related to cost penalties incurred by allocating Vn

surgeries of specialty n to each OR day of duration h: Un = max(h − [Vn ∗ Pn], 0)

defines the under-usage of each OR day, On = max([Vn ∗ Pn] − h, 0) specifies the

over-usage of each OR day, Ān = max(An − RnVn, 0) gives the number of patients

requiring specialty n who are not accommodated, and S̄n = min(An, RnVn) defines

the number of patients requiring specialty n who are accommodated.

The objective of our model is to maximize excess revenue. For specialty n, we

use Πn to denote the excess revenue for each surgery performed; that is, the total

reimbursement to the hospital minus its direct costs (e.g., operating staff, OR equip-

ment, the OR facility, and overhead). From another perspective, Πn is the excess

revenue foregone if a surgery is not accommodated. If the surgeon has privileges at

another hospital, s/he can take her/his patient elsewhere, so the surgeon would not

be giving up his income and the patient would still receive surgery. In addition, we

include a penalty of ĉan for each surgery of specialty n that is not accommodated,

20



for example, representing the cost of administrative effort to handle the overload;

the loss of good will, although the patient may not be perturbed if the surgery is

performed at another hospital; and/or the loss of patient satisfaction due to delay-

ing an elective surgery. If an emergency surgery could not be accommodated and

could not be performed at another hospital, the penalty would be severe. The cost

structure also depends upon the organizational structure: if the surgeon worked for

the hospital and could not perform a surgery elsewhere, Πn would have to be defined

appropriately.

Other relevant cost parameters include penalties associated with specialty n ∈ Nκ

and OR subset κ ∈ K: cun for under-usage of OR time relative to h each day (i.e., idle-

ness), and con for over-usage of OR time each day (i.e., overtime for any surgery time

beyond h hours). The cost of underutilization, cun, could account for the fixed cost of

the equipment and facility itself. Alternatively, it could be considered the opportu-

nity cost of foregoing excess revenue so that incorporating the factor
(

Πn/µn

)
would

cost underutilization (in terms of hours) more on a par with not accommodating a

patient. Overtime is bad in that the surgery staff is paid a premium, which may de-

pend upon union contract or hospital policy, increasing direct cost by an increment.

However, it is good in that equipment and the OR are utilized when, otherwise, they

would go idle. It is also good in that the hospital earns excess revenue for surgeries

completed after time h, allowing more patients to be accommodated. Clearly, more

surgeries could be accommodated on overtime, increasing excess revenue, at the cost

of overtime premium, so these parameter values set the stage for interesting trade

offs.
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3.1.3 Prototypical Allocation Model (NL-CA)

Our prototypical formulation (NL-CA) represents issues relevant to allocating

surgical specialties to OR-days in a succinct manner. The objective is to maximize

excess revenue:

max
∑
κ∈K

∑
n∈Nκ

{
ΠnE[S̄n]− ĉanE[Ān]−Rn{cunE[Un] + conE[On]}

}
, (3.1)

where, for specialty n, E[·] denotes the expected values of S̄n, Ān, Un, and On,

respectively. Noting that S̄n = min(An, RnVn) = −max(−An,−RnVn) = An −An −

max(−An,−RnVn) = An − max(An − RnVn, 0) = An − Ān we substitute E[S̄n] =

E[An]− E[Ān], reforming the objective as

max
∑
κ∈K

∑
n∈Nκ

{
ΠnE[An]− canE[Ān]−Rn{cunE[Un] + conE[On]}

}
, (3.2)

where can = Πn + ĉan.

Because ΠnE[an] is a constant, the prototypical allocation model can be formu-

lated as

(NL− CA) min
∑
κ∈K

∑
n∈Nκ

{
canE[Ān] +Rn{cunE[Un] + conE[On]}

}
(3.3)
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s.t.
∑
n∈Nκ

Rn ≤ |Mκ||D| κ ∈ K (3.4)

[Vn ∗ Pn] + Un −On = h κ ∈ K, n ∈ Nκ (3.5)

RnVn + Ān ≥ An κ ∈ K, n ∈ Nκ (3.6)

Vn ≤ α1

( h
µn

)
κ ∈ K, n ∈ Nκ (3.7)

Rn ≤ α2λn/
( h
µn

)
κ ∈ K, n ∈ Nκ (3.8)

Vn, Rn ∈ Z+ κ ∈ K, n ∈ Nκ (3.9)

Ān, On, Un ∈ <+ κ ∈ K, n ∈ Nκ. (3.10)

Objective function (3.3) minimizes total expected costs due to penalties for any

patients who are not accommodated (i.e., the first term), including revenue foregone

as well as associated administrative costs, and for under- and over-usage of OR days

(i.e., the last two terms), respectively. Constraints (3.4) ensure that total number of

OR days allocated to all specialties n ∈ Nκ cannot be larger than the total number

of OR days available |Mκ||D|. Constraints (3.5) define the under- (Un) and over-

(On) usage of each OR day to which specialty n is allocated, given that [Vn ∗ Pn]

denotes the workload associated with allocating Vn surgeries of specialty n to each

OR and each day. Constraints (3.6) define the number of patients who are not

accommodated (Ān). Rather than using arbitrarily large upper bounds on integer

decision variables Vn and Rn, (3.7) and (3.8) invoke practical bounds with the goal

of managing model tightness to facilitate run time. The upper bound that constraint

(3.7) imposes on decision variable Vn is a multiple (α1) of the expected number of

surgeries that can be accommodated in an OR day of duration h (i.e., h/µ). Similarly,

the upper bound that constraint (3.8) imposes on decision variable Rn is a multiple

(α2) of the expected number of OR days required by surgical specialty n, determined
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as the expected demand divided by the expected number of patients that can be

accommodated each OR day. Specifying values of α1 = α2 = 2 would be reasonable.

Constraints (3.9) and (3.10) impose integer requirements and sign restrictions on

decision variables. To facilitate presentation, we do not repeat restrictions (3.7)-

(3.10) in following models.

Clearly, NL-CA is separable on κ, leading to |K| independent problems, NL-

CAκ. The primary advantages of this model are that it presents the fundamental

issues involved in a succinct manner and that it demonstrates separability relative

to κ. Subsequent models (i.e., NV-CA, NV-SIP, NV-SIP and NS-SIP) relate to such

decomposed sub-problems. The primary disadvantage of model NL-CA is that it

involves nonlinearities; products of decision variables in the objective function and

in constraints (3.6); and the form [Vn ∗ Pn], which represents the sum of Vn i.i.d.

random variables.

In the context of a two-stage stochastic program, Rn and Vn are prescribed in

the first stage before demands and durations are realized. Once these uncertainties

have been resolved, decision variables Ān, Un, and On can be prescribed.

3.2 Model Adaptations and Solution Methods

In this section, we propose four adaptations of prototypical model NL-CA. The

goal of this study is to overcome the disadvantages of the prototype by deriving a

linear form that facilitates solution. Each of these models offers advantages but is

also attended by disadvantages. Each adaptation may be better suited to particular

applications. Also, each adaptation may be better suited to a different solution

approach.

Each of the following four subsections formulates one of the model adaptations;

describes relevant advantages, disadvantages, and applications; and outlines a solu-
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tion approach. The first two models, NV-CA and NV-SIP, exploit the relationship

of constraints (3.5) to the news vendor problem, dealing with the nonlinear [Vn ∗Pn]

term to obtain the expected values of underage, E[U∗κ ], and overage, E[O∗κ]. The

third model, SIP, recasts general integer decision variables Vn and Rn to allocate

specialty n to specific ORs m ∈ Mκ and days d ∈ D, adding subscripts m and d,

to obtain Vnmd and Rnmd and defining the later as a binary decision variable. It

also replaces the nonlinear term [Vn ∗ Pn] with the product of decision variable Vnmd

and random variable Pn. The fourth model, NS-SIP, incorporates linear forms to

eliminate nonlinear terms, each formed by the product of two decision variables, and

symmetry induced in model SIP relative to m and d.

The solution approach that we propose for each of the last three models involves

a two-stage stochastic integer program, giving rise to the SIP designation in each

acronym. We employ stochastic programming by generating a set of scenarios to

evaluate E[On], E[Un] and E[Ān]. A scenario is one specific, complete realization

of the stochastic elements that underlie the formulation (e.g., actual demand and

representative duration for each specialty). We model uncertain surgery demand and

duration via the multi-variate random variable ω̃ for which a realization is commonly

referred to as a scenario. For each scenario ω ∈ Ω, we define a problem, which

we refer to as the recourse problem. We discretize probability measure function

qω = P(ω̃ = ω) for each scenario ω ∈ Ω and evaluate the deterministic-equivalent

form of the stochastic program (Birge and Louveaux, 1997) to prescribe solutions to

models NV-SIP, SIP, and NS-SIP.

In large-scale problems, the number of scenarios is huge and the possibility of

using statistical estimations of the recourse function becomes computationally at-

tractive. The simplest method for incorporating statistical approximations in solu-

tion procedures is to replace the recourse function, g(V,R, ω), with a sample mean
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approximation. We solve the sample mean problem with a collection of independent

and identically distributed observations of ω̃.

3.2.1 News Vendor-based Capacity Allocation (NV-CA)

Prototype model NL-CA aggregates sub-specialties within each specialty to form

the representative duration of each surgery associated with the specialty. Model NV-

CA further aggregates specialties n ∈ Nκ, forming representative duration Pκ for all

specialties n ∈ Nκ in a manner analogous to the one we used to form Pn for specialty

n. Since representative durations are used, Ā, U,O, and V are associated with set κ,

not specialty n, and become Āκ, Uκ, Oκ, and Vκ. Representative surgeries are then

allocated to each day to each OR in set Mκ. Decomposed subproblem κ provides a

capacity of |Mκ| × |D| OR days. Our model for decomposed problem κ, (NV-CAκ),

is based on the premise that Vκ surgeries of type κ are allocated to each OR m ∈Mκ

each day d ∈ D and is

(NV − CAκ) min caκE[Āκ] + |Mκ||D|{cuκE[Uκ] + coκE[Oκ]} (3.11)

s.t. [Vκ ∗ Pκ] + Uκ −Oκ = h (3.12)

|Mκ||D|Vκ + Āκ ≥ Aκ. (3.13)

Constraints like (3.4) in NL-CA are not needed because NV-CA eliminates Rκ

decision variables; only one aggregated specialty is assigned to subset κ and uses

its capacity |Mκ||D| exclusively. Constraints (3.12) ((3.13)) are equivalent to (3.5)

((3.6)).

The primary advantage of NV-CA is that it simplifies NL-CA, eliminating non-

linear terms, each formed by the product of two decision variables. This advantage

of simplicity also predisposes its applicability to cases in which it is meaningful to
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assign aggregated specialties to each OR in subset κ ∈ K each day; we advocate

it for what we call rough-cut capacity planning, a process that assesses whether a

hospital has enough overall OR capacity to deal with future demand or not.

NV-CA retains the [Vn ∗Pn] term, but it is amenable to a straightforward heuris-

tic based on the inverse news vendor model. Consider a subproblem based on con-

straints (3.12) with the objective of minimizing the sum of expected under- and

over-usage; expressed in the form of a news vendor problem, we have

min
Vκ

cuκE[(h− [Vκ ∗ Pκ])+] + coκE[([Vκ ∗ Pκ]− h)+]. (3.14)

Assuming that the duration of the OR day is fixed to be h and that aggregated du-

rations durations Pκ, κ ∈ K, are normally distributed (Choi and Ketzenberg, 2012),

the optimal number of surgeries to allocate, V ∗κ , can be found from

F[Vκ∗Pκ](h)=
coκ

coκ + cuκ
= Φ(z), (3.15)

where F[Vκ∗Pκ] is the distribution function of [Vκ ∗Pκ]. V ∗κ can be expressed explicitly

as follows:

V ∗κ = xV̂κy or pV̂κq,

where V̂κ =
(−zσκ +

√
z2σ2

κ + 4µκh

2µn

)2

.

We can incorporate V ∗κ into constraint (3.13) and use it to determine the as-

sociated value of decision variable Āκ. Defining E[U∗κ ] := E[(h − [V ∗κ ∗ Pκ])+] and

E[O∗κ] := E[([V ∗κ ∗ Pκ] − h)+] (see (Choi and Wilhelm, 2012b)), the values of V ∗κ ,

Āκ, E[U∗κ ], and E[O∗κ] can be incorporated in objective function (3.11) to obtain the
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solution value that this heuristic prescribes.

V ∗κ is optimal with respect to the news vendor problem but may not lead to

globally best possible values for Āκ, E[U∗κ ], and E[O∗κ]. For that reason, this method

must include a local search on Vκ values (e.g., .., V ∗κ − 1, V ∗κ + 1, ...).

3.2.2 News Vendor-based Heuristic (NV-SIP)

Model NV-SIP retains the focus of the prototype model, NL-CA, seeking to

prescribe V ∗n , the optimal number of patients requiring specialty n ∈ Nκ each OR

day, but adopting the inverse news vendor model proposed in the previous section.

Subsequently, we solve a stochastic integer programming with V ∗n fixed to determine

the number of OR days for each specialty, R∗n.

Consider a subproblem based on constraints (3.12) with the objective of mini-

mizing the sum of expected under- and over-usage; expressed in the form of a news

vendor problem, we have

min
Vn

cunE[(h− [Vn ∗ Pn])+] + conE[([Vn ∗ Pn]− h)+]. (3.16)

Let V ∗n be the optimal solution to (3.16), and define E[U∗n] := E[(h− [V ∗n ∗Pn])+]

and E[O∗n] := E[([V ∗n ∗Pn]−h)+]. Next, we adapt prototype model NL-CA, relaxing

constraints (3.5), (3.7) and (3.8) and incorporating values V ∗n , E[U∗n] and E[O∗n]. The

NV-SIP model for subset κ is a two-stage stochastic program that prescribes decision

variables R∗n and E[Ā∗κ].

(NV − SIPκ) min
∑
n∈Nκ

Rn{cunE[U∗n] + conE[O∗n]}+
∑
ω∈Ω

qωhκ(R,ω)

(3.17)

s.t. (3.4).
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For each scenario ω,

min hκ(R,ω) =
∑
n∈Nκ

canĀ
ω
n (3.18)

s.t. Āωn ≥ Aωn −RnV
∗
n n ∈ Nκ. (3.19)

NV-SIP offers a number of advantages. It simplifies NL-CA, eliminating nonlinear

terms, each formed by the product of two decision variables, and deals with the

[Vn ∗ Pn] term, which is amenable to our heuristic based on the inverse news vendor

model. With V ∗n determined as the solution to an inverse news vendor problem,

NV-SIP involves only the small number of 2|N | integer decision variables, so it could

be used to solve the problem over all κ ∈ K without decomposing relative to κ.

Finally, because NV-SIP retains the focus on individual surgery specialties instead

of aggregated specialties as in NV-CA, it can be expected to find wider application.

Like the NV-CA model, NV-SIP requires a search on Vκ∗ values to guarantee the

best possible global solution.

3.2.3 Stochastic Integer Programming (SIP)

Model SIP linearizes the prototype model. It adapts NL-CA by replacing the sum

of random variables [Vn ∗ Pn] with the product of decision variable Vn and random

variable Pn. Both forms have the same mean, Vn ∗µn, but the variance of the former

is Vn ∗ σ2
n and that of the latter is V 2

n ∗ σ2
n. Thus, this replacement introduces an

additional variability due to multiplying by a constant.

Model SIP also replaces decision variables Vn and Rn by Vnmd and Rnmd, respec-

tively, adding subscripts m and d to specialize each allocation of specialty n to a

particular OR m and day d. At the same time, we revise general integer variable Rn

to the binary form Rnmd, which is 1 if specialty n is allocated to OR m on day d, 0
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otherwise. Rn in NL-CA is equivalent to
∑

m,dRnmd in SIP. Similarly, we revise Un

and On to represent under- and over-usage of OR m on day d, changing subscripts

from n to m and d, to obtain Umd and Omd, respectively. With these adaptations, we

propose the following two-stage stochastic integer linear formulation, SIP for subset

κ:

(SIPκ) min
∑
ω∈Ω

qωgκ(V,R, ω) (3.20)

s.t.
∑
n∈Nκ

Rnmd ≤ 1 m ∈Mκ, d ∈ D (3.21)

Rnmd ≤ Vnmd n ∈ Nκ,m ∈Mκ, d ∈ D (3.22)

Rnmdα
h

µn
≥ Vnmd n ∈ Nκ,m ∈Mκ, d ∈ D. (3.23)

For each scenario ω,

min gκ(V,R, ω) =
∑
n∈Nκ

canĀn +
∑
m∈Mκ

∑
d∈D

{cuκUω
md + coκO

ω
md} (3.24)

s.t.
∑
n∈Nκ

Vnmdp
ω
n + Uω

md −Oω
md = h m ∈Mκ, d ∈ D (3.25)

∑
m∈Mκ

∑
d∈D

Vnmd + Āωn ≥ Aωn n ∈ Nκ. (3.26)

Constraints (3.21) ensure that at most one specialty is assigned to each OR each day;

(3.21) is equivalent to (3.4) in NL-CA. Constraints (3.22) and (3.23) ensure that the

number of assigned patients is positive if and only if specialty n is assigned to OR

m on day d, else both Rnmd and Vnmd must be zero. Owing to (3.22) and (3.23),
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constraints (3.5) and (3.6) of NL-CA can be recast in the linearized forms (3.25) and

(3.26). Constraints (3.25) linearize constraints (3.5) of NL-CA, replacing [Vn ∗ Pn]

with the product VnmdP
ω
n for each scenario ω.

The primary advantages of SIP is that it linearizes NL-CA with the expecta-

tion that it will facilitate run time and that it focuses on individual specialties n

rather than on aggregations of specialties as in NV-CA. Its primary disadvantages

are that it introduces additional variability due to replacing [Vn ∗Pn] with the prod-

uct VnmdP
ω
n and that it introduces a high degree of symmetry relative to m and d

in replacing decision variables Vn and Rn with Vnmd and Rnmd, respectively, to effect

the linearization of product terms Rn ∗ Vn in (3.6).

3.2.4 Stochastic Integer Programming without Symmetry

Model NS-SIP seeks to improve model SIP by eliminating the symmetry rel-

ative to m and d (SIP entails
∑

κ |Nκ||Mκ||D| general integer variables Vnmd and

binary variables Rnmd ) with the goal of facilitating run time. To avoid sym-

metry, we introduce new decision variables and constraints. The new index set

Sκ = {1, . . . , |Mκ||D|} denotes the number of OR days to which specialties n ∈ Nκ

can be allocated, where |Mκ||D| is the total number of OR days (i.e., capacity) avail-

able. New binary decision variable RB
ns is 1 if specialty n is allocated to s ∈ Sκ OR

days, 0 otherwise.

To linearize product forms VnRn, RnU
ω
n , and RnO

ω
n , we introduce RVn, RU

ω
n , and

ROω
n . We define sufficiently large numbers V̄n, Ūn, and Ōn that exceed upper limits

on RVn, RU
ω
n , and ROω

n , respectively. For example, V̄n = |Mκ||D| ∗ h/µn. Following

this introduction, we present model (NS-SIP), a stochastic integer linear program
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that avoids symmetry:

(NS − SIPκ) min
∑
ω∈Ω

qωgNSκ (V,R,RB, RV, ω) (3.27)

s.t. (3.4)∑
s∈Sκ

RB
ns = 1 n ∈ Nκ (3.28)

Rn =
∑
s∈Sκ

sRB
ns n ∈ Nκ (3.29)

RVn ≥ sVn − s(1−RB
ns)V̄n n ∈ Nκ, s ∈ Sκ. (3.30)

RVn ≤ sVn + s(1−RB
ns)V̄n n ∈ Nκ, s ∈ Sκ. (3.31)

For each scenario ω,

min gNSκ (V,R,RB, RV, ω) =
∑
n∈Nκ

{canĀn + cunRU
ω
n + conRO

ω
n} (3.32)

s.t. Vnp
ω
n + Uω

n −Oω
n = h s ∈ Sκ (3.33)

RVn + Āωn ≥ aωn n ∈ Nκ (3.34)

RUω
n ≥ sUn − s(1−RB

ns)Ūn n ∈ Nκ, s ∈ Sκ (3.35)

RUω
n ≤ sUn + s(1−RB

ns)Ūn n ∈ Nκ, s ∈ Sκ (3.36)

ROω
n ≥ sOn − s(1−RB

ns)Ōn n ∈ Nκ, s ∈ Sκ (3.37)

ROω
n ≤ sOn + s(1−RB

ns)Ōn n ∈ Nκ, s ∈ Sκ. (3.38)

Constraints (3.28) ensure that specialty n is allocated to a specific number, s, of
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OR days. Constraints (3.29) define Rn using binary decision variables RB
ns (i.e.,

Rn = s if RB
ns = 1). Constraints (3.30) and (3.31) ensure that RVn = sVn = RnVn

if RB
ns = 1. If RB

ns = 0, constraints (3.30) and (3.31) are redundant. Similarly,

constraints (3.35) and (3.36) ensure that RUω
n = sUω

n = RnU
ω
n if RB

ns = 1. If

RB
ns = 0, constraints (3.35) and (3.36) are redundant. Invoking the same logic,

constraints (3.37) and (3.38) ensure that ROω
n = sOω

n = RnO
ω
n if RB

ns = 1. If

RB
ns = 0, constraints (3.37) and (3.38) are redundant. Actually, the effect of the

minimizing objective function renders (3.36) and (3.38) unnecessary and we do not

include them in the test cases reported in the next section. Both constraints (3.30)

and (3.31) are, however, necessary.

The primary advantages of NS-SIP are that it is a linear model that avoids sym-

metry with the goal of facilitating solution and that it focuses on individual special-

ties n to promote applicability. The main disadvantage of NS-SIP is that it requires

large numbers of constraints to effect linearization and avoidance of symmetry (i.e.,

(3.35)-(3.38)).

3.3 Computational Evaluation

The goals of our experiment are to compare our four models in terms of problem

size, solution quality, and run time and to evaluate the performance of the sample

mean approach in application to our three SIP models by generating small, medium

and large numbers of scenarios - 50, 150 and 250. This section describes our exper-

iment in two subsections. The first describes the design of our experiment and the

second reports test results.

3.3.1 Design of Experiment

To evaluate our three SIP models, we employ four factors, three each with three

levels and one with two levels, creating a total of 54 cases. We denote the first factor,
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which determines problem size, using (|N |, |M |) to indicate that any of |N | specialties

can use any of |M | ORs. The three levels we use are (5, 5), (5,5)+(5,5), and (10, 10),

where the second can be decomposed into two independent (5, 5) problems and the

third is a relaxation of the second that allows each of 10 specialties to use any of the

10 ORs. These levels (small, medium, large) provide a good test bed to evaluate our

models and represent the sizes of many actual problems. The second factor is the

coefficient of variation (CV) of surgery duration for which we use two levels: 0.1 and

0.7. The third factor is the model and our three levels are (NV-SIP, SIP, NS-SIP).

The fourth factor is the number of scenarios for which we use three levels: (50, 150,

250). For each case, composed by selecting one level of each factor, we solve 20

independent replications and table average performance measures.

In contrast, we solve NV-CA analytically for each (|N |, |M |) and CV combina-

tion. The number of integer decision variables for NV-CA is equal to the number of

decomposed sets, |K|.

Table 3.1 displays the size of each problem. The seven columns give, respectively,

(|N |, |M |), model, number of scenarios, numbers of variables (continuous, general

integer (GI), binary integer (BI)) and constraints. Model NV-SIP has the small-

est numbers of variables and constraints because we determine values of GIs, Vn,

analytically. Model NS-SIP has fewer GIs than SIP but more constraints.

We generate λn, the mean rate of demand for surgeries associated with specialty

n, employing U [10, 50] and each random representative surgery duration employing

a normal distribution with mean value from U [0.5, 4.5] and CV from {0.1, 0.7}. We

chose these ranges of parameter values by reviewing other papers to assure that they

represent a range of actual cases (Beliën and Demuelemeester, 2006; Fei et al., 2010;

Zhang et al., 2009). To provide a relative basis for comparison, we fix cu = 1 and

generate cost-parameter ratio co/cu from U [0.5, 1.5]. Because can is a penalty per
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Table 3.1: Problem Size

(|N |, |M |) Model Scenarios Continuous GI BI Constraints
(5,5) NV-SIP 50 250 5 - 251

150 750 5 - 751
250 1,250 5 - 1,251

SIP 50 2,750 125 125 1,775
150 8,250 125 125 4,775
250 13,750 125 125 7,775

NS-SIP 50 1,050 5 125 12,890
150 3,150 5 125 37,890
250 5,250 5 125 62,890

(5,5)×2 NV-SIP 50 500 10 - 502
150 1,500 10 - 1,502
250 2,500 10 - 2,502

SIP 50 2,250 250 250 3,550
150 8,250 250 250 9,550
250 13,750 250 250 15,550

NS-SIP 50 2,050 10 250 25,780
150 6,150 10 250 75,780
250 10,250 10 250 125,780

(10,10) NV-SIP 50 500 10 - 501
150 1,500 10 - 1,501
250 2,500 10 - 2,501

SIP 50 5,500 500 500 4,050
150 16,500 500 500 10,050
250 27,500 500 500 16,000

NS-SIP 50 2,050 10 500 51,530
150 6,150 10 500 151,530
250 10,250 10 500 251,530

surgery and cu is the cost per hour, we generate ca using can = cu * µn * U [1.7, 3.3].

In all tests, we run CPLEX 12.1 with default settings on a 3.00 GHz CPU of Intel

Core Quad with 8 GB RAM. We use a time limit of 3,600 seconds (i.e., 1 hour) for

each run, noting that preliminary tests have shown that using a limit of 2, or even

3, hours does not allow for significantly better convergence.

3.3.2 Test Results

Table 3.2 details results for all cases. The eight columns give, respectively, prob-

lem size (|N |, |M |), CV, model, number of scenarios, objective function mean and

variance (over 20 replications), GAP, and CPU run time (seconds). We define GAP

= 100 (ZI - ZL)/ZI, where ZI = current incumbent IP solution value and ZL= cur-

rent relaxed LP solution value. Note that ZL can increase over time as CPLEX adds
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cuts; at the optimal solution, GAP = 0 because ZI = ZL. The objective function

values achieved by SIP and NS-SIP are comparable, but that of NV-SIP is smaller.

Objective function values depend upon the variance of surgery duration (Choi and

Wilhelm, 2012b) and SIP and NS-SIP have larger variability than NV-SIP, as dis-

cussed in section 3.2.3. Hence, NV-SIP gives a narrower confidence interval for the

objective function value.

As the number of scenarios increases, mean values of objective function estimates

do not change appreciably but variances tend to be smaller. However, the run time

required to converge increases with the number of scenarios.

In general, run time tends to increase with CV. For example, for problem size

(|N |, |M |)= (5, 5) with CV = 0.1, SIP can converge within 100 seconds, but when

CV is increased to 0.7, SIP cannot converge within 1 hour. Run time is substantially

affected by the model used.

In the attempt to obtain convergence, we extended our run time limit from 1 hour

to 10 hours. This longer run time achieved better GAP values but not convergence.

To foster further insights, we now compare solutions prescribed by the four mod-

els, basing discussion on Table 3.3, which gives results for a typical case with (|N |,

|M |)=(5,5); CV = 0.1; and, for each of the three SIP models, 250 scenarios. We

also focus on the rate of convergence using Figures 3.1 and 3.2. Run times for

the NV-CA model, which we solve numerically using Excel, are negligible and are,

therefore, not tabled; those for the other three models are given in Table 3.2.

Rows in Table 3.3 give prescribed values of the objective function value, canE(Ān),

canE(Sn), cunE(Un), conE(On), λn, E[Ān], E(Sn), E[Un], and E[On], Vn and Rn, respec-

tively. We apply can to E[Sn] in our analysis, because we do not generate individual

values for Πn or ĉan. Rows use ”/” separator to report values prescribed for each of

the five specialties (i.e., n = 1, ..., 5). Columns in Table 3.3 display the solution pre-
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Table 3.2: Detail Comparison of NV-SIP, SIP, and NV-SIP Approaches

(|N |, |M |) CV Model Scenarios Obj(mean) Obj(stdev) GAP Run time
(5,5) 0.1 NV-SIP 50 53.71 2.09 0.0 0.02

150 54.32 1.3 0.0 0.04
250 54.22 0.8 0.0 0.07

SIP 50 58.50 2.2 0.0 5.53
150 59.14 1.56 0.0 27.59
250 59.44 0.93 0.0 89.9

NS-SIP 50 59.80 2.19 0.0 23.2
150 59.47 1.54 0.0 149.4
250 59.54 0.97 0.0 567.3

0.7 NV-SIP 50 98.68 2.18 0.0 0.02
150 98.86 0.99 0.0 0.03
250 98.03 0.93 0.0 0.05

SIP 50 134.30 5.45 3.85 3600
150 135.10 2.97 4.71 3600
250 135.80 1.28 5.32 3600

NS-SIP 50 136.10 6.70 0.0 157.9
150 136.09 3.13 0.0 1770.3
250 135.49 2.06 7.12 3600

(5,5)×2 0.1 NV-SIP 50 140.91 2.84 0.0 0.02
150 141.71 1.67 0.0 0.07
250 142.74 1.01 0.0 0.16

SIP 50 152.45 3.06 0.03 3600
150 152.25 2.02 0.06 3600
250 152.34 1.38 0.08 3600

NS-SIP 50 152.40 4.22 5.21 3600
150 152.90 1.72 7.62 3600
250 153.80 1.66 8.19 3600

0.7 NV-SIP 50 247.76 3.09 0.0 0.02
150 245.78 1.86 0.0 0.07
250 246.47 1.74 0.0 0.15

SIP 50 316.55 7.19 7.59 3600
150 314.81 3.95 8.45 3600
250 316.11 2.69 8.82 3600

NS-SIP 50 317.04 7.65 8.63 3600
150 316.01 4.12 9.51 3600
250 318.82 4.08 13.42 3600

(10,10) 0.1 NV-SIP 50 141.54 2.86 0.0 0.02
150 142.10 2.07 0.0 0.08
250 141.67 1.27 0.0 0.18

SIP 50 151.53 4.27 0.31 3600
150 152.12 1.72 0.59 3600
250 151.88 1.57 1.03 3600

NS-SIP 50 151.75 3.96 6.32 3600
150 152.48 1.74 8.93 3600
250 153.85 1.52 9.56 3600

0.7 NV-SIP 50 244.27 2.55 0.0 0.02
150 243.34 2.07 0.0 0.09
250 244.62 1.61 0.0 0.12

SIP 50 310.21 8.93 4.98 3600
150 313.95 4.33 5.39 3600
250 314.79 2.42 5.43 3600

NS-SIP 50 315.84 7.56 9.12 3600
150 317.98 5.21 11.76 3600
250 319.27 4.47 15.12 3600
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scribed by each of the four models (NV-CA, NV-SIP, SIP, and NS-SIP. The NV-CA

column gives values associated with the aggregated model with κ ∈ K where |K| = 1;

each of the other columns gives results relative to specialty n ∈ N = {1, ..., 5}. Note

that, because cun = 1, cunE[Un] = E[Un]. Also, because con is close to 1 and numbers

are rounded, the values of conE[On] and E[On] are similar.

The models tend to fall in two groups with respect to the objective function

values they prescribe: NV-CA and NV-SIP give similar values that are lower than

the similar values reported by SIP and NS-SIP. We conjecture that this difference is

caused by the variability that each of the models ascribes to surgery duration. In

forming the convex combination the representative durations of relevant specialties,

NV-CA multiplies each by a fraction less than one (i.e., λn/
∑

n∈N λn), and squaring

that fraction to determine variance tends to reduce the variability ascribed to the

aggregate, representative duration. Correspondingly, the objective function value

reported by NV-CA is somewhat less than that of NV-SIP. In replacing the sum of

random variables [Vn ∗Pn] with the product of decision variable Vn and random vari-

able Pn, SIP and NS-SIP increase the variability ascribed to representative surgery

duration. Correspondingly, they report larger objective function values.
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Table 3.3: Comparison of NV-SIP, SIP, and NV-SIP for (|N |, |M |)=(5,5) with CV=0.1 and 250 Scenarios

Model NV-CA NV-SIP SIP NS-SIP

Obj Value 53.63 55.02 60.79 59.61

canE[Ān] 46.79 17.24/6.36/3.98/12.60/1.16 17.32/6.95/3.52/11.65/1.34 16.42/6.58/3.78/11.95/1.26

canE[Sn] 206.41 33.46/44.24/45.42/53.90/34.84 33.38/43.65/45.88/54.85/34.66 34.28/44.02/45.62/54.55/34.74

cunE[Un] 0.28 0.49/0.05/0.02/0.72/0.28 0.62/0.20/0.16/0.88/0.45 0.59/0.18/0.16/0.86/0.49

conE[On] 0.02 0.07/0.44/0.42/0.01/0.01 0.12/0.58/0.63/0.04/0.22 0.14/0.51/0.61/0.06/0.18

λn 154 13/23/38/35/45

E[Ān] 28.46 4.42 /2.89/3.06/6.63/1.45 4.44/3.16/2.71/6.13/1.67 4.21/2.99/2.91/6.29/1.58

E[Sn] 125.54 8.58/20.11/34.94/28.37/43.55 8.56/19.84/35.29/28.87/43.33 8.79/20.01/35.09/28.71/43.42

E[Un] 0.28 0.49/0.05/0.02/0.72/0.28 0.62/0.20/0.16/0.88/0.45 0.59/0.18/0.16/0.86/0.49

E[On] 0.02 0.07/0.54/0.38/0.01/0.01 0.13/0.71/0.57/0.04/0.20 0.15/0.62/0.55/0.05/0.16

Vn 5 2/4/7/4/11 2/4/7/4/11 2/4/7/4/11

Rn 25 4/5/5/7/4 4/5/5/7/4 4/5/5/7/4
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E[Ān], E[Un], or E[On] values also depend upon variability and, thus, the model.

In application to the data generated in our tests, the three SIP models prescribe

three categories of E[Un], E[On], and E[Ān], reflecting the tradeoffs involved:

(1) large (≥ 0.5) E[Un] and small (≤ 0.15) E[On], E[Ān] is large (≥ 4.0) - see n

=1, 4;

(2) small (≤ 0.2) E[Un] and large (≥ 0.37) E[On], E[Ān] is small (≤ 3.2) - see n

=2, 3;

(3) medium E[Un] and small (≤ 0.20) E[On], E[Ān] is medium (1.5) - see n =5.

As E[On] gets smaller and E[Un] gets larger, E[Ān] gets larger; similarly, as E[On]

gets larger and E[Un] gets smaller, E[Ān] gets smaller, as can be expected.

NV-CA reports values that represent weighted (i.e., λn/
∑

n∈Nκ λn) average values

for the five specialty values reported by NV-SIP. Still, we see that the models give

consistent results:

caκE[Āκ] ≈
∑
n∈Nκ

canE[Ān]

caκE[Sκ] ≈
∑
n∈Nκ

canE[Sn]

cuκE[Uκ] ≈
∑
n∈Nκ

λn∑
n∈Nκ λn

cunE[Un]

coκE[Oκ] ≈
∑
n∈Nκ

λn∑
n∈Nκ λn

conE[On]

Vκ ≈
λn∑

n∈Nκ λn
Vn

Rκ = |Mκ||D| =
∑
n∈Nκ

Rn.

Table 3.3 shows that all three SIP models (NV-SIP, SIP, and NS-SIP) prescribe

the same Vn and Rn values. NV-CA prescribes a single value for Vκ that is the

convex combination of the five Vn values prescribed by each of the three SIP models
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as indicated above. Similarly, NV-CA reports a single value for Rκ that is the sum

of the Rn values prescribed by each of the three SIP models as shown above. Thus,

all four models are consistent in prescribing values for these core allocation decision

variables.

Figure 3.1 ( 3.2) demonstrates how the value of the objective function changes

over time as measured by GAP. Both figures show results for the case with (|N |,

|M |)=(10,10), CV = 0.1, 250 scenarios, and models SIP and NS-SIP. We selected

problem size (|N |, |M |)=(10,10) for this analysis because it defines the largest cases

and takes longest to converge. NS-SIP makes a rapid improvement in the objective

function value initially but SIP gives comparable values not long afterwards; both

converge slowly after about 500 seconds. The GAP achieved by SIP decreases rapidly

to less than 1% after about 1,000 seconds, but the GAP attained by NS-SIP remains

large, even though these two models give similar objective function values. This

result occurs because the NS-SIP model is not tight; the value of its linear relaxation

is zero initially and increases very slowly as CPLEX adds cuts.
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Figure 3.1: Trend of Objective Function Values
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Figure 3.2: Trend of GAP Values
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4. MASTER SURGICAL BLOCK SCHEDULES

We deal with the block scheduling policy in this study. A block is the amount

of time during which a specific sub-specialty is assigned to an OR. A block may be

planned with the duration of two hours, half of a day (e.g., morning, or afternoon),

or a day, for example, to permit a surgeon to perform a series of complex surgeries.

An alternative, the open scheduling policy, under which each surgeon can schedule

his/her surgeries at any time, was common in the 1960s and 1970s but is rarely used

in practice today, because it does not utilize surgeons’ time as efficiently as block

scheduling (Blake et al., 2002).

Table 4.1 illustrates an exemplar block schedule showing that strategic decisions

have already assigned the orthopedic specialty to OR-1 and the ophthalmology spe-

cialty to OR-2. One sub-specialty of the orthopedic specialty is scheduled in one time

block in OR-1, but two sub-specialties of the ophthalmology specialty are scheduled

in OR-2, each in one time block.

Table 4.1: An Example of Master Block Surgical Schedule
Time OR-1 OR-2

8 : 00 ∼ 9 :00

Retinal
9 : 00 ∼ 10 :00
10 : 00 ∼ 11 :00
11 : 00 ∼ 12 :00
12 : 00 ∼ 13 :00 Joint Replacement
13 : 00 ∼ 14 :00

Pediatric14 : 00 ∼ 15 :00
15 : 00 ∼ 16 :00

MSS determines the duration of the block time (i.e., OR-hours) associated with

each sub-specialty and the sequence of time blocks during a day (Beliën and De-

muelemeester, 2008), affording each surgeon the opportunity to perform a series
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of surgeries efficiently at times acceptable to him/her, while allowing routine office

hours. Once MSS determines a schedule of time blocks, including the duration and

sequence of each, the day-by-day schedule for a week may be used cyclically, that

is, for each week over the intermediate planning horizon. A cyclic schedule avoids

the need to prescribe a new schedule every week and promotes coordination among

surgeons, staff, and other departments (e.g., PACU, ICU).

The remainder of this paper is organized as follows. Section 4.1 presents pre-

liminaries and section 4.2 describes our solution approach. Section 4.3 presents

numerical analysis of the expected values of earliness and lateness associated with

normal, lognormal, and gamma surgery durations. Section 4.4 describes the optimal

block duration with no-shows. Section 4.5 provides sights for hospital management.

4.1 Preliminaries

This section introduces notation and assumptions used in the subsequent presen-

tation. We also discuss both decision and associated random variables. Finally, we

formulate the objective function, which minimizes the sum of expected earliness and

lateness costs.

4.1.1 Assumptions and Notation

We deal with a general number of blocks to cast our results in the most generic

form possible, even though there may only be one, two, or (at most) four blocks for

each OR day. We focus on a single OR because, once surgical specialties have been

assigned to OR days, a problem involving multiple ORs can be decomposed into a

set of independent problems, each involving a single OR.

We assume that the forecast employed to support the strategic decisions that as-

sign specialties to OR days is compatible with the forecast used at the tactical level to

prescribe the MSS, which partitions each OR day into time blocks for subspecialties
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associated with the relevant specialty.

We assume that one surgery begins as soon as the previous one ends. Most prior

studies have assumed that each surgery is scheduled to begin at the expected com-

pletion time of the previous surgery (Choi and Wilhelm, 2012a; Gupta, 2007; Pinedo,

2009), although some incorporate a multiple of the standard deviation of the surgery

duration as a safety time to manage risk (Gul et al., 2011). If the previous surgery

completes before the scheduled start of the next surgery, OR idleness is incurred;

if it finishes after the scheduled start time, the next surgery (i.e., both patient and

surgeon who are ready at the scheduled start time) must wait. In contrast, we as-

sume that each surgery begins when the previous surgery ends. This assumption

appears to be reasonable in our study because patients are typically prepared well

in advance of their scheduled start time and successive surgeries within each block

are likely to be performed by the same surgeon so that s/he would be available as

well. If successive surgeries are in different time blocks, our assumption would require

schedulers to communicate with the surgeon who will perform the next surgery and

facilitate her/his readiness ahead of the scheduled start time. This is done currently

if possible but may entail establishing different procedures to effect routinely. If the

scheduled start time were enforced when the previous surgery is completed early, our

assumption would lead to lower bounds on optimal block durations.

Each medical procedure is designated by one of many thousands of CPT codes.

Each surgery specialty (e.g., orthopedic) may deal with hundreds of CPT codes and

each subspecialty (e.g., joint replacement; bone fractures; knee, spine or shoulder

repair) within the index set I of subspecialties that constitute the specialty may deal

with dozens of CPT codes. Further, a given surgery may involve a combination of

CPT codes. For example, shoulder repair deals with a large number of CPT codes,

of which about 15 procedures are performed commonly. Examples of these five-digit
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codes are 29805 (diagnostic shoulder arthroscopy), 29826 (shoulder arthroscopy with

subacromial decompression), 29807 (labral repair), 29827 (rotator cuff repair), 23430

(bicep tenodesis), and 23120 (acronioclavicular joint resection). One of the authors

recently had shoulder-repair surgery that involved the combination of the first four

of these CPT codes. We use Ŝi to denote the index set of surgery types associated

with subspecialty i, each an individual CPT code or a combination that is common.

We envision a tactical planning process that forecasts ni, the expected number

of surgeries to be performed within subspecialty i ∈ I; and qis, the portion of sub-

specialty i surgeries that will be of type s ∈ Ŝi. Historical data can be used to

estimate µ̂is and σ̂is , the mean and variance, respectively, of the duration of surg-

eries of type s ∈ Ŝi. With this information, the planning process can determine a

representative surgery duration for each subspecialty, which can be interpreted as the

duration of a randomly selected surgery to be performed by this subspecialty. The

random duration of the representative surgery, Di, can be expressed as the convex

combination of individual, mutually independent, surgery-type durations D̂is, s ∈ Ŝi:

Di =
∑

s∈Ŝi qisD̂is. This representative surgery of subspecialty i has a mixture dis-

tribution with mean µi =
∑

s∈Ŝi qisµ̂is and variance σ2
i =

∑
s∈Ŝi q

2
isσ̂

2
is and, by the

Central Limit Theorem (CLT) (Casella and Berger, 2001), is normally distributed

because |Ŝi|, for each i ∈ I, is large, as described in the paragraph above. Based

on this analysis, we treat the duration of surgeries of subspecialty i as i.i.d. normal

random values.

We now define the notation we use in the subsequent presentation. If sub-

specialty i is assigned to one block and the duration of each surgery is Di hours

with mean µi and variance σ2
i , the block must accommodate the total surgery time,

the ni-fold convolution of Di, which has mean µ̄i := niµi and variance σ̄2
i := niσ

2
i .

We use map ∆ : I → K to represent a set of sequences (or permutations), each
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Index Sets and Indices

I sub-specialties i ∈ I
K sequence positions for time

blocks
k ∈ K

∆ permutations of time blocks δ ∈ ∆

Parameters

ce Earliness penalty cost

cl Lateness penalty cost

β Ratio of earliness cost to late-
ness cost,

β = ce/cl.

of which assigns each sub-specialty to one and only one sequence position. We use

subscripts [k] for kth block sequence position and i for sub-specialty to avoid potential

confusion. The total number of permutations is |K|!, where |K| is the number of

blocks and |K| = |I|.

Decision variables prescribe planned block durations (i.e., xδ[k] gives the planned

duration of the kth block) and block sequence (i.e., permutation δ) for one day in

the OR. The planned end time of the block in the kth position, given δ, is prescribed

by yδ[k], where yδ[k] = xδ[1] + · · · + xδ[k]. The planned end time of the last block yδ[|K|]

corresponds to the end of the OR day and is important in deciding the number of

hours that the staff will be required to work and the amount of overtime that is

required. The utilization of an OR, as determined by yδ[|K|], relative to the length

of the work day may vary by day because it depends on forecast workloads and

sub-specialties assigned to each day.

The random duration of the kth block in the sequence, Bδ
[k] is the n[k]-fold con-

volution of D[k] and has mean µ̄[k] = n[k]µ[k] and variance σ̄2
[k] = n[k]σ

2
[k]. Random

duration Bδ
[k] must be compared with decision variable xδ[k], which prescribes planned

block duration. We define T δ[k] := Bδ
[1] + · · ·+Bδ

[k] as the random end time to complete

all surgeries assigned to blocks [1] through [k] and compare it with decision variable
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yδ[k], the planned end time of block [k].

Figure 4.1 shows the relationship between decision variables and related random

variables for four time blocks: the former are indicated below the time line; and

the latter, above. In Figure 4.1, lateness is incurred in association with the third

block; earliness, with other blocks. If the last surgery of the sub-specialty assigned to

the block completes earlier than the planned completion time of the block, earliness

results; otherwise, lateness is incurred. Because no surgery will be started after the

last block, its earliness corresponds to surgeon and OR idleness. The lateness of the

last block corresponds to overtime.
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Figure 4.1: Relationship between Decision and Random Variables

Our objective function penalizes the expected earliness, E[(xδ[1] + · · ·+xδ[k]−Bδ
[1]−

· · ·−Bδ
[k])

+] or E[(yδ[k]−T δ[k])
+] and the expected lateness, E[(Bδ

[1] + · · ·+Bδ
[k]−xδ[1]−

· · · − xδ[k])
+] or E[(T δ[k] − yδ[k])

+], of each block k ∈ K. The former represents the

cost of expediting the start time of the next surgery; and the latter, the cost of

delaying the start time of the next surgery. In the case of the last surgery in the

sequence, the cost of earliness represents idleness, and the cost lateness represents

overtime premium. We use the same lateness penalty, cl, for all blocks k ∈ K

because analytical results depend mainly upon parameters of surgery durations (i.e.,

mean and standard deviation). On-time performance is important in health-care
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delivery systems, because MSS coordinates surgeons, nurses, and anesthesiologists

and influences other departments like PACU. We build a schedule that balances the

expected costs of earliness and lateness associated with each block, defining objective

functions f[k](x
δ
[1] + · · ·+ xδ[k]) and f[k](y

δ
[k]), k ∈ K, δ ∈ ∆, respectively, as follows:

f[k](x
δ
[1] + · · ·+ xδ[k]):=c

eE
[(

(xδ[1] + · · ·+ xδ[k] −Bδ
[1] − · · · −Bδ

[k]

)+
]

+clE
[(
Bδ

[1] + · · ·+Bδ
[k] − xδ[1] − · · · − xδ[k]

)+
]
, (4.1)

f[k](y
δ
[k]) :=ceE[(yδ[k] − T δ[k])

+] + clE[(T δ[k] − yδ[k])
+]. (4.2)

4.1.2 Mathematical Model

This subsection describes two optimization models, one in terms of xδ[k] and an-

other, which transforms xδ[k] to decision variable yδ[k]. We focus on the latter model

to prescribe optimal durations and sequence, because it reduces a complicated prob-

lem to a series of newsvendor problems, the sequential newsvendor model. In this

subsection, we describe the two mathematical models and show how to exploit the

sequential newsvendor model. Lastly, we depict the sequential newsvendor model

graphically.

In minimizing the sum of expected earliness and lateness costs, the sequential

newsvendor problem (SNV), in terms of decision variable xδ[k], k ∈ K, is :

(SNV δ(x)) min
δ∈∆

min
xδ

[k]
:k∈K

∑
k∈K

f[k](x
δ
[1] + · · ·+ xδ[k]) (4.3)

s.t. xδ[k] ≥ 0 k ∈ K, δ ∈ ∆. (4.4)
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We seek to determine the optimal planned duration x̂δ̂[k] of the kth block, k ∈ K

and the optimal block sequence (i.e., permutation) δ̂. To solve SNV δ(x), we need

to show that both the first order necessary condition (FONC) and the second order

necessary condition (SONC) are satisfied; i.e., the Hessian matrix of the objective

function should be semi-positive at the optimal point x̂δ̂[k] (Bazaraa et al., 2006).

Constraint (4.4) requires decision variable xδ[k], k ∈ K to be non-negative. Solving

the problem with decision variables xδ[k], k ∈ K is challenging because it requires a

complex Hessian matrix to be evaluated.

Instead, we employ a linear transformation to use alternative decision variables

y[k], k ∈ K and do not use a Hessian matrix, as described in the following subsec-

tion. With planned end-time decision variable y[k], k ∈ K, problem SNV δ(x) can be

transformed to SNV δ(y):

(SNV δ(y)) min
δ∈∆

min
yδ
[k]

:k∈K

∑
k∈K

f[k](y
δ
[k]) (4.5)

s.t. yδ[k−1] ≤ yδ[k] k = 2, . . . , |K|, δ ∈ ∆ (4.6)

yδ[k] ≥ 0 k ∈ K, δ ∈ ∆. (4.7)

Figure 4.2 depicts the variable transformation in two dimensional space. While

the feasible area is the first quadrant of x-space, owing to constraints (4.4), the

feasible area in y-space is half of the first quadrant as shown in Figure 4.2(b) owing

to constraints (4.6) and (4.7).

The variable transformation from x-space to y-space recasts SNV δ(x) as SNV δ(y),

which is able to utilize well-known properties of the newsvendor problem. Given δ,

50



x1 

x2 y2 

y1 

𝑓 𝑥1, 𝑥2 = 𝑓1 𝑥1 + 𝑓2(𝑥1 + 𝑥2) 𝑓 𝑦1, 𝑦2 = 𝑓1 𝑦1 + 𝑓2(𝑦2) 

(a) x-space (b) y-space 

Figure 4.2: Variable Transformation from x-space to y-space

each [k] term in (4.5),

(NV δ
[k](y

δ
[k])) min

yδ
[k]

f[k](y
δ
[k]),

is a newsvendor problem. f[k](y
δ
[k]), equivalently f[k](x

δ
[1] + · · · + xδ[k]), is a convex

objective function and its solution satisfies FONC and SONC at the optimal point

(Porteus, 2002). We discuss constraint (4.6), which requires yδ[k] to increase with

k, in the following section. Proposition 1 establishes that f[k](y[k]) is convex. The

sum of f[k](y[k])’s is a convex function because the sum of convex functions is also

convex (Bazaraa et al., 2006). Hence, the objective functions of both SNV δ(x) and

SNV δ(y) are convex. Our development exploits these simple characteristics of the

newsvendor problem. We now suppress superscript δ to streamline presentation.

Proposition 1. Because f[k](y[k]), equivalently f[k](x[1] + · · · + x[k]), is convex, it

satisfies FONC and SONC at the optimal point, say ŷ[k], k ∈ K. The optimal solution

to NV[k](y[k]), ŷ[k], is the value at which the distribution function FT[k]
(y[k]) is equal

to the critical ratio:

FT[k]
(ŷ[k]) =

cl

ce + cl
=

1

1 + β
. (4.8)
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Critical ratio 1
1+β

is the same for each k ∈ K because cost parameters are the same

for all blocks.

Proof. Because f[k](y[k]), k ∈ K is the objective function of a newsvendor-type prob-

lem that balances under- and over-age, it is known to be convex (Porteus, 2002).

Hence, the equivalent function f[k](x[1] + · · · + x[k]) is also convex. The newsvendor

objective function f[k](y[k]) satisfies FONC and SONC (Porteus, 2002) at optimal

point ŷ[k] so that

f
′

[k](ŷ[k]) = 0 and f
′′

[k](ŷ[k]) ≥ 0, k ∈ K.

The solution ŷ[k] specified by (4.8) is known to optimize NV[k](y[k]) (Porteus, 2002;

Nahmias, 2008).

We now introduce a new function, g(δ), to explain the sequential newsvendor

problem:

Z∗ = min
δ∈∆
{g(δ) : (4.6), (4.7), and g(δ) = min

∑
k∈K

f[k](y
δ
[k])}. (4.9)

Figure 4.3 depicts the sequential newsvendor problem, representing relationships

among g(δ) and NV δ
[k](y

δ
[k]). There are |∆| = |K|! possible sequences, and each

δ ∈ ∆ has an associated g(δ). Z∗ of (4.9) achieves its minimum at sequence δ̂.

Given sequence δ ∈ ∆, NV δ
[k](y

δ
[k]) defines the objective function of a newsvendor

problem that prescribes the optimal, planned end time of block [k], ŷδ[k], k ∈ K.

Given δ, g(δ) is the sum of optimal values to NV δ
[k](y

δ
[k]), for all k ∈ K. Z∗ in (4.9)

is minimized by prescribing the best sequence (i.e., permutation) of blocks. We first

determine g(δ) by summing the solutions of the |K| newsvendor problems, giving

the optimal block durations for a given sequence δ, then find the best sequence as

described in following section.
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Figure 4.3: Sequential Newsvendor Problem

4.2 Solution Approach

In this section, we describe solution approaches to prescribe optimal block dura-

tions and optimal sequence. We show that the newsvendor solution, NV δ
[k](y

δ
[k]), k ∈

K, gives the optimal planned end times for a given sequence δ ∈ ∆. We derive the

closed form of the objective value and prove that the SV rule is optimal to sequence

blocks for the case in which surgeries are independent and normally distributed.

Subsection 4.2.1 devises optimal block durations for the unconstrained version

of SNV (y) and subsection 4.2.2 devises the closed-form solution to the constrained

version. Subsection 4.2.3 determines the optimal sequence, δ̂.

4.2.1 Unconstrained Optimal Block Durations

We first seek the unconstrained (i.e., without constraints (4.6) and (4.7)) optimal

block durations for a given sequence δ . In this subsection, we assume that sequence

δ is fixed, so we suppress this superscript. We may solve problem SNV (x) using a
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dynamic programming approach; however, it is hard to prove optimality for a general

number of blocks, because x[k] appears in f[k](x[1]+· · ·+x[k]), . . . , and f[|K|](x[1]+· · ·+

x[|K|]) so that these functions are not separable. However, Proposition 2 establishes

separability of the transformed problem, SNV (y). Subsequently, we are able to solve

independent newsvendor problems NV[k](y[k]), k ∈ K, owing to separability.

Proposition 2. Define the unconstrained sequential newsvendor problem USNV (y)

by relaxing constraints (4.6) and (4.7) to obtain:

(USNV (y)) min
∑
k∈K

f[k](y[k]). (4.10)

Problem USNV (y) is separable with respect to y[k]:

min
{
f[1](y[1]) + f[2](y[2]) + · · ·+ f[|K|](y[|K|])

}
≡ min f[1](y[1]) + min f[2](y[2]) + · · ·+ min f[|K|](y[|K|]). (4.11)

Proof. After relaxing (4.6) and (4.7), problem USNV (y) is separable with respect

to y[k], k ∈ K because NV[k](y[k]), k ∈ K is independent of other variables y[k′], k
′(6=

k) ∈ K.

Based on Proposition 2, we can solve individual NV[k](y[k]), k ∈ K problems

independently to optimize USNV (y); any ŷ[k], k ∈ K, that satisfies FONC and SONC

optimizes USNV (y). NV[k](y[k]) is a newsvendor-type problem that prescribes the

planned end time of the [k]th block to minimize the sum of expected earliness and

lateness costs. Newsvendor problem NV[k](y[k]), which is associated with random

variable T[k], k ∈ K, can be solved independently according to Proposition 3, which

follows. Even though T[k]’s are not independent random variables, we can solve

problems NV[k](y[k]), k ∈ K independently after relaxing constraints (4.6) because

54



E[(y[k] − T[k])
+] and E[(T[k] − y[k])

+] are functions of y[k] and T[k] is essentially a

parameter that gives information about all surgeries through the kth block.

Proposition 3. Given random block duration B[k] with mean µ̄k and variance σ̄2
[k], k ∈

K, let T[k] be the sum of the independent, normally distributed random durations of

surgeries associated with sub-specialties, each assigned to a block [1] through [k] (i.e.,

T[k] := B[1] + · · ·+B[k]) and let FT[k]
be the normal distribution function of T[k], which

has mean ¯̄µ[k] := µ̄[1] + · · ·+ µ̄[k] and variance ¯̄σ2
[k] := σ̄2

[1] + · · ·+ σ̄2
[k].

(i) Problem NV[k](y), which prescribes the optimal planned end time of the kth

block, has optimal solution, ŷ[k] for each k ∈ K such that:

FT[k]
(ŷ[k]) =

cl

ce + cl
=

1

1 + β
= Φ(z), (4.12)

where T[k] ∼ N(¯̄µ[k], ¯̄σ
2
[k]); ŷ[k] = ¯̄µ[k] + z ¯̄σ[k], k ∈ K; Φ(z) is the standard

normal distribution function; and z is the normal score.

(ii) The corresponding, optimal block duration, x̂[k] for each k ∈ K, can be ob-

tained by definition: x̂[1] = ŷ[1], and x̂[k] = ŷ[k] − ŷ[k−1], k = 2, . . . , |K|.

Proof. (i) T[k] = B[1] + · · ·+B[k], ¯̄µk = E[T[k]] = E[B[1]]+ · · ·+E[B[k]] = µ̄1 + · · ·+ µ̄k

and ¯̄σ2
[k] = V [T[k]] = V [B[1]]+ · · ·+V [B[k]] = σ̄2

1 + · · ·+ σ̄2
k, k ∈ K. Because individual

B[k] are normally distributed, T[k] is also normally distributed. ŷ[k], as defined by

(4.12), is the optimal solution to newsvendor problem NV[k](y[k]) (Nahmias, 2008;

Porteus, 2002).

(ii) follows from the definition of the variable transformation from x to y.

4.2.2 Constrained Optimal Block Durations

Now, we solve constrained optimization problem SNV (y), focusing on constraints

(4.6) and (4.7), which require 0 ≤ y[k−1] ≤ y[k], k = 2, . . . , |K|, correspondingly, that
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0 ≤ x[k], k ∈ K. According to the Karush Kuhn Tucker (KKT) conditions, if the

optimal solution to unconstrained problem USNV (y) satisfies constraints (4.6) and

(4.7), it is the global optimal solution to constrained problem SNV (y) as shown

Figure 4.4(a). Otherwise, the optimal solution is on the boundary so that ŷδ[k−1] = ŷδ[k]

for one or more k ∈ K as shown Figure 4.4(b).

(a) Optimal solutions to SNV(y) and USNV(y)  

        are the same. 

(b) Optimal solutions to SNV(y) is  

      on the boundary. 

y2 

y1 

𝑓 𝑦1, 𝑦2  

y2 

y1 

𝑓 𝑦1, 𝑦2  

Optimal solution to 𝑆𝑁𝑉(𝑦) 

Optimal solution to 𝑆𝑁𝑉(𝑦) 

Figure 4.4: Graphical Depiction of KKT Conditions

We show the KKT conditions analytically. At the constrained optimal solution
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ŷ[k] to SNV (y), KKT conditions must hold (Bazaraa et al., 2006):



∂
∂y[1]

f[1](ŷ[1]) 0 . . . . . . 0

0 ∂
∂y[2]

f[2](ŷ[2]) 0 . . . 0

0 . . . ∂
∂y[k]

f[k](ŷ[k]) . . . 0

0 . . . . . . 0 ∂
∂y[|K|]

f[|K|](ŷ[|K|])



+u[1]



1 0 . . . . . . 0

0 −1 0 . . . 0

0 . . . . . . . . . 0

0 . . . . . . 0 0


+ u[2]



0 0 . . . . . . 0

0 1 0 . . . 0

0 0 −1 . . . 0

0 . . . . . . 0 0


+ · · ·

+u[|K|]



0 0 . . . . . . 0

0 0 0 . . . 0

0 . . . . . . 0 0

0 . . . . . . 0 −1


=



0 0 . . . 0

0 0 . . . 0

0 . . . 0 0

0 . . . 0 0


(4.13)

u[k−1](ŷ[k−1] − ŷ[k]) = 0 k = 2, . . . , |K|, (4.14)

where u[k] is a Lagrangian multiplier associated with constraint (4.6) of k ∈ K.

If the optimal solution to USNV (y) is feasible with respect to (4.6) and (4.7) as

shown in Figure 4.4 (a), ∂
∂y[k]

f[k](ŷ[k]) = 0 and u[k] = 0 hold for all k ∈ K. Because

u[k] = 0, ŷ[k] is not necessarily equal to ŷ[k+1]. If the optimal solution to unconstrained

problem USNV (y) violates either constraints (4.6) or (4.7) as shown Figure 4.4 (b),

∂
∂y[k]

f[k](ŷ[k]) 6= 0 and the optimal solution lies on the boundary, so that ŷ[k−1] = ŷ[k]

(i.e., x̂[k] = 0) and the Lagrangian multiplier u[k] is non-zero for some k ∈ K (Bazaraa

et al., 2006). In our analysis, we concentrate on the former case, which is depicted

by Figure 4.4 (a).
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Next, we derive a condition to assure that a solution to unconstrained problem

USNV (y) satisfies (4.6) and (4.7). Even though random variable T[k] has a larger

mean and variance than T[k−1], it is numerically possible, but not practically feasible,

for an optimal solution to violate (4.6) (i.e., ŷ[k] < ŷ[k−1] for some k). We first give

an example to demonstrate the relevant issues. Consider two normal distributions

representing block surgery durations with µ1 = 2, σ1 = 0.1 and µ2 = 1, σ2 = 0.7.

Then, for sequence 1→ 2, µ[1] = 2, µ[2] = 3, σ[1] = 0.1 and σ[2] =
√
.12 + .72. Assume

that β = 25. Optimal solutions ŷ[1] and ŷ[2] are such that

FT[1]
(y[1]) = FT[2]

(y[2]) =
1

1 + 25
= 0.038, (4.15)

so that z = −1.768. Then ŷ[1] = µ[1] − 1.768σ[1] = 1.823 and ŷ[2] = µ[2] − 1.768σ[2] =

1.749, so that y[1] > y[2] and these values are not feasible with respect to (4.6). In

this case, the planned end time of the second block is less than the planned end time

of the first block, which would mean that the planned duration of the second block

were negative, i.e., x̂[1] = 1.823 and x̂[2] = −0.074. This example is an extreme case

because T[2] has a much larger variance and a smaller mean than T[1]. Furthermore,

the ratio of the two costs, β, is huge because the cost of earliness is 25 times of the

cost of lateness.

Considering two consecutive blocks, Proposition 4 establishes restrictions on pa-

rameters to assure that mathematically feasible, optimal solutions are also practi-

cally feasible. Based on the definition of y[k] = ¯̄µ[k] + z ¯̄σ[k], we impose condition

µ̄k ≥ |z|σ̄k, k ∈ K, which, in turn, assures that y[k] ≥ 0 holds. Proposition 4 es-

tablishes that this condition also implies that y[1] ≤ y[2] relative to two independent

and normally distributed distributions and this result is extended to all k ∈ K by

Corollary 5.
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Proposition 4. Consider two block durations Bi, which are independent and nor-

mally distributed: N(µ̄i, σ̄
2
i ), i = 1, 2. We require that FB1(y[1]) = FB1+B2(y[2]) =

1/(1 + β) = Φ(z) so that y[1] = µ̄1 + zσ̄1 and y[2] = µ̄1 + µ̄2 + z
√
σ̄2

1 + σ̄2
2. If

µ̄i ≥ |z|σ̄i, i = 1, 2, then y[1] ≤ y[2]; in other words,

µ̄1 + zσ̄1 ≤ µ̄1 + µ̄2 + z
√
σ̄2

1 + σ̄2
2. (4.16)

Proof. Case (i): z ≥ 0. This case occurs if β ≤ 1. Using +|z| to denote z ≥ 0,

inequality (4.16) becomes

µ̄1 + |z|σ̄1 ≤ µ̄1 + µ̄2 + |z|
√
σ̄2

1 + σ̄2
2. (4.17)

In this case, equation(4.17) is trivially true.

Case (ii): z < 0. This case occurs if β > 1. Using −|z| to denote z < 0, the

equivalent of inequality (4.16) is

µ̄1 − |z|σ̄1 ≤ µ̄1 + µ̄2 − |z|
√
σ̄2

1 + σ̄2
2. (4.18)

We must now show that (4.16) holds in the form of (4.18) in case (ii).

Combining the fundamental relationship
√
σ̄2

1 + σ̄2
2 ≤ σ̄1 + σ̄2 with conditions,

µ̄i ≥ |z|σ̄i, i = 1, 2, the following inequality holds:

|z|(
√
σ̄2

1 + σ̄2
2 − σ̄1) ≤ |z|σ̄2 ≤ µ̄2.

Adding µ̄1 to the left- and right-most terms,

µ̄1 + |z|(
√
σ̄2

1 + σ̄2
2 − σ̄1) ≤ µ̄1 + µ̄2,
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which can be rearranged to establish (4.18) when z < 0, showing that inequality

(4.16) holds for both positive and negative z values.

We now generalize Proposition 3 to prescribe planned end times for all blocks,

relying on the Proposition 4, which deals with a two-block case.

Corollary 5. Given B[k] ∼ N(µ̄[k], σ̄
2
[k]) such that µ̄[k] ≥ |z|σ̄[k], k ∈ K, let T[k] :=

B[1] + · · ·+B[k] have mean ¯̄µ[k] = µ̄[1] + · · ·+ µ̄[k] and variance ¯̄σ2
[k] = σ̄2

[1] + · · ·+ σ̄2
[k].

Optimal block durations x̂[k], k ∈ K can be obtained from optimal planned end times

ŷ[k], k ∈ K as follows:

x̂[1] = ŷ[1] = ¯̄µ[1] + z ¯̄σ[1] = µ̄[1] + zσ̄[1] (4.19)

x̂[k] = ŷ[k] − ŷ[k−1]= ¯̄µ[k] + z ¯̄σ[k] − ¯̄µ[k−1] − z ¯̄σ[k−1]

= µ̄[k] + z

[√√√√ k∑
l=1

σ̄2
[l] −

√√√√k−1∑
l=1

σ̄2
[l]

]
, k ≥ 2 (4.20)

Proof. If condition µ̄[k] ≥ |z|σ̄[k], k ∈ K of Proposition 4 is satisfied, ŷ[k−1] ≤ ŷ[k], k =

2, . . . , |K|, because Proposition 4 can be applied to each pair of successive blocks

(e.g., [1] and [2], [2] and [3], and so on). The proof relies on the fact that each

T[k−1] is normally distributed (i.e., equivalent to B1 in Proposition 4) and each B[k]

is independent and normally distributed so that T[k] = T[k−1] + B[k] (i.e., equivalent

to B1 +B2 in Proposition 4), where B1 ∼ N(µ̄1 + · · ·+ µ̄[k−1], σ̄
2
[1] + · · ·+ σ̄2

[k−1]) and

B2 ∼ N(µ̄[k], σ̄
2
[k). The optimal planned end time ŷ[k] of the kth block is given by

ŷ[k] =
k∑
l=1

µ̄[l] + z

√√√√ k∑
l=1

σ̄2
[l].
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Optimal block duration x̂[k] can be obtained by definition: x̂1 = ŷ1 ≥ 0 and x̂[k] =

ŷ[k] − ŷ[k−1] ≥ 0, k ≥ 2.

If condition µ̄[k] ≥ |z|σ̄[k], k ∈ K is satisfied, ¯̄µ[k] ≥ |z|¯̄σ[k], k ∈ K is also satisfied

because µ̄[1] + · · · + µ̄[k] ≥ |z|(σ̄[1] + · · · + σ̄[k]) ≥ |z|
√
σ̄2

[1] + · · ·+ σ̄2
[k]. If condition

µ̄[k] ≥ |z|σ̄[k], k ∈ K is satisfied, both optimal planned end-times ŷ[k], k ∈ K and

optimal block durations x̂[k], k ∈ K will be non-negative; accordingly, 0 ≤ ŷ[k−1] ≤

ŷ[k], k = 2, . . . , |K|. If we use different cost parameter values for the last block

to reflect the fact that lateness for this block is actually overtime and earliness is

idleness, optimal solutions, x̂[|K|], k ∈ K are given as follows:

x̂[|K|] = ŷ[|K|]−ŷ[|K|−1] = µ̄[|K|]+z̄
√
σ̄2

[1] + · · ·+ σ̄2
[|K|]−z

√
σ̄2

[1] + · · ·+ σ̄2
[|K|−1], (4.21)

such that Φ(z̄) = c̄l

c̄l+c̄e
= 1

1+β̄
, where c̄l corresponds to lateness (i.e, overtime) cost; c̄e,

to earliness (i.e., idleness) cost. The optimal solutions depend mainly upon parame-

ters such as mean and variance, if two cost ratios (i.e., β and β̄) are not significantly

different.

4.2.3 Optimal Block Sequence

NV[k](y[k]) defines a newsvendor problem that prescribes the planned end time

of block [k]; SNV (y) seeks the sum of optimal solutions to all NV[k](y[k]), k ∈ K

and defines the g(δ) value for each permutation δ. Z∗ in (4.9) is the objective

function value associated with the optimal sequence of newsvendor solutions; i.e.,

the minimum of g(δ) over sequences δ ∈ ∆. Hence, the next problem we solve is to

determine the optimal sequence, δ̂, which we address as the sequential newsvendor

problem. In the previous subsection, we prescribe optimal block durations under a

fixed sequence. We want to find the minimum g(δ) over all δ ∈ ∆.
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We show that each g(δ) can be expressed in a closed form when surgery durations

assigned to each block are independent and normally distributed and use this form

to derive the optimal rule to sequence blocks. Consider the duration of the kth

block, y[k]. We suppress superscripts and subscripts for clarity, defining f(y) and

T ∼ N(¯̄µ, σ2), so that the objective function of NV[k](y[k]) becomes

f(y) = ceE[(y − T )+] + clE[(T − y)+].

We use Lemmas 6 - 8 to derive a closed form expression for the optimal value of

min f(y).

Lemma 6. For T ∼ N(¯̄µ, ¯̄σ2),

E[(y − T )+] =
¯̄σ√
2π
e−

(y− ¯̄µ)2

¯̄σ2 + (y − ¯̄µ)Φ(
y − ¯̄µ

¯̄σ
).

Proof. See the Appendix.

Lemma 7. For T ∼ N(¯̄µ, ¯̄σ2),

E[(T − y)+] =
¯̄σ√
2π
e−

(y− ¯̄µ)2

¯̄σ2 + (¯̄µ− y)(1− Φ(
y − ¯̄µ

¯̄σ
)).

Proof. See the Appendix.

Now, we simplify Z = miny f(y), expressing Z as an increasing function of ¯̄σ. We

invoke Lemma 8 for a single block.

Lemma 8. If TN(¯̄µ, ¯̄σ2), the optimal value Ẑ of the problem miny f(y) is defined

as:

Ẑ = (ce + cl)
¯̄σ√
2π
e−z

2

,
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where Φ(z) = 1
1+β

= cl

ce+cl
.

Proof. See the Appendix.

We next apply Lemma 8 to a particular sequence to obtain a closed-form for g(δ)

for a general number of blocks.

Proposition 9. Objective function g(δ1), evaluated for a particular sequence, say

δ1 : 1→ 2→ · → |K| (i.e., [k] = k, k ∈ K), can be expressed as

g(δ1) =
(ce + cl)√

2π
e−z

2{¯̄σ1 + ¯̄σ2 + · · ·+ ¯̄σ|K|},

=
(ce + cl)√

2π
e−z

2{σ̄1 +
√
σ̄2

1 + σ̄2
2 + · · ·+

√
σ̄2

1 + · · ·+ σ̄2
|K|}, (4.22)

where Φ(z) = 1
1+β

.

Proof. For sequence 1 → 2 → · → |K|, T[k] has variance σ̄2
1 + · · · + σ̄2

[k]. Apply

Lemma 8 to each block k ∈ K.

Proposition 10 analyzes (4.22) to prescribe the optimal block sequence.

Proposition 10. Let B[k] ∼ N(µ̄[k], σ̄
2
[k]) for each k ∈ K. The optimal sequence

with the optimal planned end-times that minimize the sum of expected earliness and

lateness (idleness and overtime associated with the last block, respectively) is the

smallest-variance-first-rule.

Proof. Without loss of generality, sequence B’s according to smallest variance first

and renumber so that σ[k−1] ≤ σ[k], k = 2, . . . , |K|. Define T[k] := B[1] + · · · + B[k]

with mean ¯̄µ[k] = µ̄[1] + · · · + µ̄[k] and variance ¯̄σ2
[k] = σ̄2

[1] + · · · + σ̄2
[k]. Swapping the
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first two blocks in the sequence without changing the sequence of other blocks, we

obtain

For sequence 1→ 2→ · · · → N,

Ẑ =
(ce + cl)√

2π
e−z

2
[
σ̄1 +

√
σ̄2

1 + σ̄2
2 + · · ·+

√
σ̄2

1 + σ̄2
2 + · · ·+ σ̄2

|K|

]
;

and, for sequence 2→ 1→ · · · → N,

Ẑ =
(ce + cl)√

2π
e−z

2
[
σ̄2 +

√
σ̄2

2 + σ̄2
1 + · · ·+

√
σ̄2

2 + σ̄2
1 + · · ·+ σ̄2

|K|

]
.

Corresponding terms in the two square brackets are the same, except for the first

ones. Thus, it can be seen that the SV rule optimally sequences the first two blocks.

So, fix the first block in position. In a similar manner, switching the blocks in the

second and third positions shows the SV rule optimally sequences these two blocks

as well. By comparing successive pairwise switches, the SV rule can be seen to give

the optimal permutation of all blocks.

Proposition 10 shows that the SV rule gives the optimal sequence of blocks when

surgery durations are independent and normally distributed. Based on our prelimi-

nary analysis, it does not appear possible to obtain a closed from of g(δ) for block

durations that follow a distribution other than the normal. The next section shows

that values E(T − y)+ and E(y − T )+ when T follows either the lognormal or the

gamma distribution do not differ by much from the values when T follows the normal

distribution with the same parameters, so and that one can apply the results from

the normal distribution with little error in these other cases.
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4.3 Numerical Study for the Objective Function Value

We have argued that using the representative surgery duration is appropriate for

tactical planning purposes. In other contexts in which other surgery durations are

appropriate, the lognormal or the gamma distribution may provide a better fit. If

block times are right-skewed, perhaps, representing the block times of a series of

surgery durations that follow the lognormal distribution. A special case would be

a block with a single surgery that follows the lognormal distribution. This section

compares expected earliness and lateness values that result if durations follow normal,

lognormal, or gamma distributions. This comparison must be done numerically

because it appears that a closed form solution can only be obtained for the normal

distribution.

Some studies (May et al., 2000; Strum et al., 2000a,b, 2003) have concluded

that the lognormal distribution fits actual surgery-duration data well. Depending

upon parameter values, the gamma distribution can be right-skewed, similar to the

lognormal. We include the gamma distribution in our study to compare both of

these right-skewed distributions. Although the normal distribution is analytically

tractable, closed form of solutions associated with other distributions (e.g., lognor-

mal, gamma) are not. Thus, we compare the values of lateness E(T − y)+ and

earliness E(y− T )+ for each of these distributions (lognormal, gamma and normal).

We conduct numerical tests about the values of E(T − y)+ and E(y − T )+ as func-

tions of y for the case of µ=2, 3, 4 and 5, and coefficient of variation (CV) =0.2,

0.3, 0.4 and 0.5. Because all four µ’s give similar results, we discuss only the case of

µ = 4 and CV = 0.2 (i.e., σ = 0.8), which is displayed in Table 4.2.

Column (1) gives the y values we selected from the range of (µ − 3σ, µ + 3σ);

columns (2)-(4) give the expected lateness of lognormal (LN), gamma (G) and normal
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(N) distributions, respectively; column (5) ((6)) gives the difference between the ex-

pected lateness of normal and lognormal (gamma) distribution, scaled by µ; columns

(7)-(9) give the expected earliness of LN, G and N distributions, respectively; col-

umn (10) ((11)) gives the difference between the expected earliness of normal and

lognormal (gamma) distribution scaled by µ. Because the relative differences (i.e.,

columns (5), (6), (10) and (11)) are so small, we assume that three distributions give

the same expected earliness and lateness to a close approximation.

Table 4.2: Expected values of Earliness and Lateness When µ = 4 and σ = 0.8.
Expected Lateness E[(T − y)+] Expected Earliness E[(y − T )+]

y LN G N |(2)−(4)|
µ

|(3)−(4)|
µ LN G N |(7)−(9)|

µ
|(8)−(9)|

µ

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
1.84 2.160 2.160 2.161 0.0 0.0 0.000 0.000 0.000 0.0 0.0
2.08 1.920 1.920 1.922 0.1 0.0 0.000 0.000 0.002 0.1 0.0
2.56 1.443 1.445 1.451 0.2 0.2 0.000 0.005 0.011 0.3 0.2
3.28 0.779 0.787 0.800 0.5 0.3 0.059 0.067 0.080 0.5 0.3
3.52 0.596 0.603 0.615 0.5 0.3 0.116 0.123 0.135 0.5 0.3
4.0 0.316 0.318 0.319 0.1 0.0 0.316 0.318 0.319 0.1 0.0
4.48 0.148 0.144 0.135 0.3 0.2 0.628 0.624 0.615 0.3 0.2
5.20 0.039 0.034 0.023 0.4 0.3 1.239 1.234 1.223 0.4 0.3
5.68 0.014 0.011 0.005 0.2 0.1 1.694 1.691 1.685 0.2 0.1
6.16 0.005 0.003 0.001 0.1 0.1 2.165 2.163 2.161 0.1 0.1

Figure 4.5 shows that the graphs of E(T − y)+ and E(y − T )+ are nearly the

same for all three of these distributions. Lateness E(T −y)+ is a decreasing function

of y, and earliness E(y− T )+ is a increasing function of y. When values of expected

earliness and tardiness are not small (e.g., given 2.56 ≤ y ≤ 5.20), all three distri-

butions incur approximately the small expected earliness and tardiness as shown by

the relatively small differences between distributions. We use µ as a denominator

to compare the relative differences, which are parameter-sensitive. When both val-

ues are small (e.g., y = 1.84, 2.08, 5.68, and 6.16), the absolute differences between

expected earliness (and tardiness) associated with the three distributions are small.

For example, in case of y = 2.08 in Table 4.2, columns (10) and (11) give small values
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that are nearly the same, but look different in Figure 4.5 (b).

(a) 𝜇 = 4, 𝜎 = 0.8 (b) 𝜇 = 4, 𝜎 = 2 

Figure 4.5: Expected Earliness and Lateness

Because the values of expected lateness and earliness are nearly the same for

each of these three distributions, we recommend applying the closed form solution

associated with the normal distribution as a close approximation to cases involving

either the gamma or lognormal distribution.

4.4 Extensions: No-Shows

Patient no-shows play a major role in deteriorating schedule performance (Lin

et al., 2011) because the no-show rate can be significant; for example, they have been

reported to be from 22% to more than 50% (Guse et al., 2003) in health-care clinics.

Surgery-patient no-shows may result from immediate cancellations before scheduled

surgery, due, for example, to failure of patients to prepare for surgery as instructed.

Hospital managers can overbook patients to minimize the expected idle time caused

by no-shows or employ the following analysis to manage planned block durations
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appropriately.

Let α denote the probability of a no-show, a discrete event, and h(di) denote

the probability distribution function (p.d.f.) for Di, the duration of a representative

surgery of sub-specialty i. Define a new p.d.f., h′(di) with discrete mass representing

a no-show and continuous random duration as follows:

h′(di) =

 α if di = 0,

(1− α)h(di) if di > 0.

The associated distribution function of surgery duration, considering the possi-

bility of a no-show, H ′(x), is defined as H ′(x) := α + (1 − α)H(x), where H(x) is

the distribution function of h(x). We have to use Lebesgue integration rather than

Riemann integration to form H ′(x), the distribution function of surgery duration

with the possibility of a no-show (Folland, 1999), because Riemann integration for

a no-show event is 0. For a single block, we can find the optimal duration x̂ as the

value at which distribution function H ′(x) is equal to the critical ratio:

H ′(x̂) = α + (1− α)H(x̂) =
1

1 + β
.

Let x̂O and x̂N denote the optimal solutions for the original case without no-

shows and the new case with no-shows, respectively. The corresponding distribution

functions are given by:

H(x̂O) =
1

1 + β
, (4.23)

and

H(x̂N) =
1− α− αβ

1− α− αβ + β
. (4.24)

Figure 4.6 gives the values of H(x̂) with ranges of 0 ≤ α ≤ .3 and 0.5 ≤ β ≤ 1.5
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to show how optimal block duration changes as a function of α and β. H(x̂) is a

decreasing function of both α and β. When there are no-shows, we may increase the

number of patients scheduled in a given block or decrease the optimal block duration

for a given number of patients.

Figure 4.6: Optimal Block Durations with No-show and without No-show

4.5 Managerial Insights

This paper provides managerial insights into MSS, based on the assumptions that

forecasts provide the expect number of surgeries to be performed by each surgical

subspecialty, that a representative surgery-duration distribution that is normally

distributed (according to the CLT) can be derived for each subspecialty based on

historical data, that all surgery durations are mutually independent, and that each

surgery begins when the previous one ends. Our analysis results in an easy way

to compute the optimal planned duration (equivalently, planned end time) of each
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time block and shows that time blocks can be optimally sequenced using the easy-

to-implement SV rule.

If each subspecialty were responsible for setting the planned duration of its block,

the uncertainty in surgery duration might be neglected, resulting in a naive planned

block duration equal to the sum of the expected durations of its surgeries. This

would parallel the current practice of scheduling the starting time of each surgery

to be the sum of the expected durations of surgeries that precede it. Alternatively,

each subspecialty might take a myopic approach, neglecting the impact of other

subspecialties on the schedule because they do not exchange information, but con-

sidering uncertainty by applying a newsvendor model to set planned block duration,

say x′[k], k ∈ K according to

x′[k] = µ̄[k] + zσ̄[k]

such that Φ(z) = 1
1+β

.

In contrast, the planned block durations (equivalently planned end times) that

our method prescribes deals optimally with uncertainty and depends upon β, the

ratio of earliness-to-lateness cost penalties. If β = 1 (i.e., ce = cl), the optimal

block durations for a given permutation can be specialized to x̂[1] = µ̄[1], x̂[2] =

µ̄[2], . . . , x̂[|K|] = µ̄[|K|]. This case actually corresponds to the naive approach and

shows that it is actually optimal if β = 1. If β < 1 (i.e., ce < cl), z is positive. In

other words, if the penalty cost of lateness is greater than that of earliness, the block

duration is longer than in the case of β = 1 (i.e., µ̄[k], k ∈ K) to minimize the risk of

delaying the next block. In this case, the planned block duration that our method

would prescribe, x̂[k], would be less than the duration that the myopic method would

prescribe, x′[k] (i.e., x̂[k] < x′[k]), indicating that our method is better able to manage

the risk of delaying the next block. If β > 1 (i.e., ce > cl), z is negative and the
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block duration is shorter than in the case of β = 1 to minimize the risk of idleness.

In this case, our method prescribes planned block durations that are longer than the

myopic approach (i.e., x̂[k] > x′[k]), indicating that our method is better able to deal

with the snowball effect created by variances accumulating for successive blocks. We

now formalize the relationship between the planned block durations that our method

and the myopic method prescribe.

Proposition 11. Consider the planned block duration for kth block as prescribed by

our method, x[k], and the myopic method, x′[k].

x̂[k] ≤ x′[k] if β ≤ 1

x̂[k] > x′[k] otherwise.

Proof. We use the following fundamental relationship for both cases (i) and (ii):

√
σ̄2

[1] + · · ·+ σ̄2
[k] ≤

√
σ̄2

[1] + · · ·+ σ̄2
[k−1] + σ̄[k].

Case (i) β ≤ 1. In this case, ce ≤ cl; i.e., z ≥ 0.

√
σ̄2

[1] + · · ·+ σ̄2
[k] −

√
σ̄2

[1] + · · ·+ σ̄2
[k−1] ≤σ̄[k]

µ̄[k] + z
(√

σ̄2
[1] + · · ·+ σ̄2

[k] −
√
σ̄2

[1] + · · ·+ σ̄2
[k−1]

)
≤µ̄[k] + zσ̄[k]

x̂[k] ≤x′[k].

Case (ii) β > 1. In this case ce > cl; i.e., z < 0. The proof parallels that of case
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(i).

The mean and variance of T[k], which determine the expected earliness and late-

ness of the last block, would be the same no matter which subspecialty is put in that

sequence position; i.e., f[|K|](ŷ
δ̂
[|K|]) = f[|K|](ŷ

δ
[|K|]), k ∈ K, δ ∈ ∆. Thus, the planned

end time of block [|K|], ŷ[|K|], which is the planned number of OR hours for the

day, does not depend on the sequence. In other words, the subspecialty with largest

variance comes for free in the last sequence position but would add to total cost if it

displaced another subspecialty with a lower variance in an earlier sequence position.

To hedge no shows, a primary question is whether planned block durations should

be lengthened or reduced. Our approach is different from an overbooking policy

that defines the optimal number of surgeries in a given block time, because we seek

the optimal block duration, given the forecast number of surgeries. Considering

no-shows reduces optimal block duration in comparison with the case without no-

shows. A hospital manager can apply criterion (4.24) to prescribe optimal planned

block durations to hedge no-shows.
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5. SEQUENCING SURGERIES IN A BLOCK

Surgeon-and-patient-waiting- and OR-idle-times are main sources of inefficiency

(Weiss, 1990; Wang, 1993, 1997). Inept sequences that cause excessive amounts

of overtime demoralize surgery teams and increase hospital costs. We study the

objective of minimizing the sum of the costs of the surgeon-and-patient-waiting- and

OR-idle-times analytically, and include any overtime (e.g., amount paid to surgery

team members) explicitly incurred in numerical evaluations. Henceforth, we use the

terms waiting-, idle-, and over-times, abbreviating these more descriptive phrases to

facilitate presentation.

The remainder of this chapter is organized as follows. Section 5.1 gives assump-

tions and preliminary results, which we apply subsequently. Section 5.2 devises

results for cases in which durations follow the lognormal, gamma, or normal distri-

bution to address research objectives (1)-(3). Section 5.3- 5.5 address research ob-

jectives (4)-(6) respectively. Section 5.3 analyzes the lognormal in combination with

the gamma or with the normal distribution. Section 5.4 extends to the three-surgery

case applying numerical results from the two-surgery case. Section 5.5 proposes a

heuristic to schedule multiple ORs.

5.1 Preliminaries

This section comprises five subsections. The first three describe our assumptions

about patient arrival and ready times, surgery duration, and performance measures,

respectively. The next subsection introduces notation and the objective function.

The last subsection analyzes some basic relationships.
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5.1.1 Patient Arrival and Ready Times

We assume that a patient arrives punctually at the time appointed by the sched-

uler, following Cayirli and Veral (2003), Kaandorp and Koole (2007) and other stud-

ies. Gupta (2007) also assumed that surgeons, other surgery team members, and all

patients arrive punctually at specified times, but that h = 0 so that surgeries must

be scheduled as early as possible in the day (i.e., time block). Both Gupta (2007)

and Pinedo (2009) assumed that each patient is ready at the expected completion

time of the previous surgery.

Kanich and Byrd (1996) described the scheduling of patient arrival times accord-

ing to surgery specialty: anesthesia types and genitourinary patients must arrive 1.5

hours and 2 hours before their scheduled starting times, respectively; and others, 1

hour. The OR scheduler determines the scheduled start time for patient j based on

the expected completion time of the previous surgery and then directs the patient

to arrive at time tj − rs, where rs is the time required to complete pre-operative

activities for specialty s.

5.1.2 Surgery Duration

In general, studies have assumed that surgery durations are i.i.d.; in particular,

numerous studies have assumed that surgery durations are exponentially distributed

(Cayirli and Veral, 2003) so that models are tractable. A number of studies (May

et al., 2000; Strum et al., 2000a,b, 2003) have concluded that the lognormal distri-

bution fits actual surgery-duration data well. After examining a large set of actual

surgery-duration data and testing the fit of both lognormal and normal distribu-

tions, Strum et al. (2000a) concluded that the lognormal, which is skewed to the

right (Casella and Berger, 2001), fits actual data better than the normal. However,

not all studies reinforce this conclusion. Tiwari and Berger (2010) found that no
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single distribution fits a wide range of surgery duration, and that the lognormal

distribution actually fits relatively few actual durations. Stepaniak et al. (2009) in-

vestigated the possible dependence of surgery duration on factors like age, surgeon’s

experience, and team composition.

Depending upon parameter values, the gamma distribution can be right-skewed,

similar to the lognormal. We include the gamma distribution in our study to compare

both of these right-skewed distributions. Chakraborty et al. (2010) used the gamma

distribution to match the mean and variance of the lognormal distribution. The nor-

mal distribution is symmetric and has been used commonly in analytical approaches

because of its tractability (Casella and Berger, 2001) and general applicability. We

compare and contrast the normal and lognormal distributions.

We assume that, once ready, the patient must complete the surgery. We allow the

second surgery to start if the first surgery ends after h, because the second patient

is ready at the expected completion time of the first one, µ1. If the second surgery

starts after h, it will incur waiting time as well as overtime.

5.1.3 Performance Measures

Some papers have employed only expected waiting- and idle-time penalties; oth-

ers, only the expected overtime penalty; yet others, all three. Weiss (1990), Wang

(1993) and Wang (1997) used the sum of expected waiting- and idle-time penalties.

Denton et al. (2010) ignored expected waiting- and idle-time penalties in favor of

expected overtime penalty. Gupta (2007), Kaandorp and Koole (2007), Gupta and

Denton (2008) and Denton and Gupta (2003) considered all three measures.

If the last surgery in a time block finishes before time h, we ignore this end-

of-block idle time because, if it were penalized in the objective function, surgeries

could be purposely scheduled later in the block to reduce it, undesirably increasing
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the likelihood of incurring overtime. Further, end-of-block idle time could also be

reduced by scheduling additional surgeries in the block; however, this would also

increase the likelihood of incurring overtime.

We analyze waiting- and idle-time for each of the three distributions and end-of-

block overtime for distributions that are tractable, resorting to a numerical tests in

cases for which end-of-block overtime cannot be expressed in closed form.

5.1.4 Notation

Let patient j be ready at time tj for a surgery of random duration Xj with mean

µj and variance σ2
j and consider sequencing patients j = 1, 2 in a time block of h

hours. Without loss of generality, consider the sequence in which patient 1 precedes

patient 2: X1 → X2, where X1 and X2 denote the independent and random surgery

durations of patients 1 and 2, respectively.

Let Zt2
1,2 denote the objective function value for the case in which the sequence of

surgeries is 1,2; patient 1 is ready at time t1 = 0; and patient 2, at time t2. Tardiness

W 2
1,2 := (X1−t2)+ corresponds to the waiting time associated with the second surgery.

Earliness I2
1,2 := (t2 −X1)+ corresponds to the idle time associated with the second.

Neither waiting- nor idle-time is associated with the first surgery, (i.e., W 1
1,2 = I1

1,2 =

0) because t1 = 0 and this surgery starts at time 0. Tardiness beyond the end of the

block time corresponds to the overtime O1,2 := [max(X1, t2)+X2−h]+. The subscript

on each of these symbols indicates the sequence of surgeries, the superscripts on W

and I indicate the surgery associated with the waiting- and idle-time, and superscript

on Z indicates the second surgery is scheduled to begin a time t2.

The analysis in this chapter involves costs per unit time for waiting cw, idleness ci,

and overtime co. Overtime cost is paid explicitly to the surgery team by the hospital,

but waiting and idleness costs are accrued implicitly as penalty costs, reflecting
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inefficiencies. The objective function for sequence X1 → X2, Zt2
1,2, is defined as (5.1):

Zt2
1,2 = cwE[W 2

1,2] + ciE[I2
1,2] + coE[O1,2]. (5.1)

We analyze the sum of expected waiting- and idle-time penalties (SWIP), cwE[W 2
1,2]+

ciE[I2
1,2], analytically and study the expected overtime penalty (OTP), coE[O1,2],

numerically in subsequent sections.

5.1.5 Analysis of Basic Relationships

We consider an extreme case in which the second patient arrives so early that

s/he is ready at time 0, and the surgeon for the second patient is also ready at time 0.

For example, a group of patients scheduled for cataract surgery may be directed to

arrive at the same time. In this case, which provides a bound, the objective function,

Zt2=0
1,2 specializes to (5.2):

Zt2=0
1,2 = cwE(X1)+ + ciE(0−X1)+ + coE[max(X1, 0) +X2 − h]+

= cwE[X1] + coE(X1 +X2 − h)+. (5.2)

The expected overtime, E(X1 + X2 − h)+, is independent of the sequence, because

it depends only on X1 + X2. The objective function value, Zt2=0
1,2 is increasing in

E(X1), the mean duration of the first surgery. Thus, equation (5.2) shows that the

SM rule minimizes SWIP when both ready times are 0.

If one considers scheduling the starting time of the second surgery, t2, and deal

only with SWIP, as Weiss (1990) did, Zt2
1,2 must be minimized with respect to (w.r.t.)

t2:

Zt2
1,2 = cw

∫ ∞
t2

(X1 − t2)fX1(x1)dx1 + ci
∫ t2

−∞
(t2 −X1)fX1(x1)dx1,
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This is the objective function of the newsvendor problem, for which the optimal

ready time for patient 2 is t∗2 such that FX1(t∗2) = cw/(cw + ci) (Weiss, 1990), where

FX1(t∗2) is the cumulative distribution function of random duration X1 evaluated at

X1 = t∗2. If cw = ci and X1 is described by the normal distribution, FX1(t∗2) = 0.5,

which means that optimal ready time t∗2 is µ1, the expected completion time of the

first patient, and that there is 50 percent chance of incurring both waiting- and

idle-times.

We now introduce a result for the general case in which t2 = µ1. Instead of

considering t∗2 as a decision variable, t2 = µ1 is specified. We invoke this result in

subsequent analysis.

Proposition 12. By definition of partial expected value, expected waiting time- and

idle- times associated with the second surgery are equal, i.e., E[W 2
1,2] = E[I2

1,2].

Proof. See the Appendix.

Again, with t2 = µ1, objective function (5.1) can be simplified as (5.3) by applying

Proposition 12.

Zµ1

1,2 = (cw + ci)E[W 2
1,2] + coE[O1,2]. (5.3)

We do not treat t2 as a decision variable; rather, we assume that the scheduler

uses a simple rule as Gupta (2007) and Pinedo (2009) did, setting t2 = µ1, the

expected completion time of the first surgery. In numerical tests in Section 5.2, we

compare expected overtime with only expected waiting time, since E[W 2
1,2] = E[I2

1,2]

by Proposition 12.

5.2 Analysis By Probability Distribution

Sequencing two surgeries can provide basic results that lend insights into larger

stochastic scheduling problems. Rules applicable to the two-surgery scheduling prob-
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lem (Gupta, 2007; Pinedo, 2009) may provide a foundation that can be extended to

the general N -surgery case(Weiss, 1990). We note that two-job problems related to

single-machine, flow shop, and job shop configurations have been studied similarly

to gain insights (Pinedo, 2008, 2009).

In the following subsections, we analyze three surgery-duration distributions (log-

normal, gamma, normal) for the two-surgery case as well as the three-surgery case for

the normal. We are able to express expected waiting time E[W 2
1,2] or E[W 2

2,1] to get

SWIP in closed form for each distribution, but expected overtime E[O1,2] or E[O2,1]

is intractable. We cannot determine the best sequencing rule from expected waiting

time for the lognormal and gamma distributions but can for the normal distribution.

Hence, we conduct numerical studies to analyze the effect of OTP in comparison

with that of SWIP and to specify the optimal sequencing rule for each distribution.

After analyzing actual hospital data for several years, Strum et al. (2000a) and

Stepaniak et al. (2009) reported that mean values of surgery durations range from

.5 to 6 hours; coefficient of variation (ρ), up to .5 . The numerical study in this

chapter deals with an even broader range of parameter values to cover even more

general instances. We restrict the sum of mean surgery durations (i.e., µ1 + µ2 ≤

h) to preclude excessive overtime and study 2,205 instances, which are formed by

combinations of 9 levels of µj, each stated in proportion to block duration h for each

j (i.e., µj = 0.1× h, 0.2× h, . . . , 0.9× h, j = 1, 2) and 7 levels of ρ, (0.1, 0.2, . . . , 0.7)

for each distribution. The total number of instances can be computed as 2, 205 =

45 × 7 × 7, where 45 is the number of µ1, µ2 combinations that are feasible with

respect to the µ1 + µ2 ≤ h restriction (see Table 5.1 in the next subsection) and the

first (second) 7 represents the number of levels of ρ for the first (second) duration. Of

the 2,205 instances, µ1 < µ2 (or µ1 > µ2) in 980 instances, µ1 = µ2 in 245 instances,

σ1 < σ2 (or σ1 > σ2) in 1,057 instances, σ1 = σ2 in 91 instances, and µ1 + µ2 = h in
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441 instances. We invoke the restriction µ1 + µ2 = h at several points in our study

because this case gives an upper bound on the amount of expected overtime and even

for this worst case in which OTP is larger than in other cases for which µ1 +µ2 < h,

SWIP contributes more in determining the optimal sequence than OTP does.

In following sections, we compare sequences X1 → X2 with X2 → X1, evaluating

the difference of objective functions Zµ1

1,2 and Zµ2

2,1, defined by ∆Z := Zµ1

1,2 − Z
µ2

2,1:

∆Z = (cw + ci){E[W 2
1,2]− E[W 2

2,1]}+ co{E[O1,2]− E[O2,1]}

= co∆E[W ]
[cw + ci

co
− γ
]
, (5.4)

where ∆E[W ] = E[W 2
1,2]−E[W 2

2,1], ∆E[O] = E[O1,2]−E[O2,1], and γ = ∆E[O]/∆E[W ].

We use γ to evaluate the impact of OTP in comparison with that of SWIP in numer-

ical studies. As γ goes to zero, decisions that determine ∆E[W ] specify the optimal

sequence. However, as γ increases, the cost ratio (cw + ci)/co may also influence the

objective function.

5.2.1 The Lognormal Distribution

The lognormal distribution has been shown to be a good fit for the durations

of many actual surgeries (May et al., 2000; Strum et al., 2000a,b, 2003), reflecting

non-negativity and right-skewness characteristics (Strum et al., 2000a). Consider

the two parameters, λ and δ, of the lognormal distribution, which are actually the

mean and the standard deviation of the associated random variable Y , which follows

the normal distribution. X = eY , has the lognormal distribution. The mean µ and

variance σ2 of X can be expressed in terms of the parameters of the distribution of

Y :

E[X] = µ = eλ+ 1
2
δ2

and V [X] = σ2 = µ2(eδ
2 − 1).
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Strum et al. (2000a) and Stepaniak et al. (2009) used the shifted lognormal distri-

bution to find a better fit than either the lognormal or normal distribution for some

surgery durations. If the distribution used to model surgery duration were shifted

to the right by amount s, its shifted mean would be E(X + s) = µ+ s and its vari-

ance would be V (X + s) = V (X). Such a location parameter does not influence our

analysis, because E(X+s−µ−s)+ = E(X−µ)+ and E(µ+s−X−s)+ = E(µ−X)+.

Consider two surgeries (j = 1, 2), each with lognormally distributed duration

Xj, mean µj, standard deviation σj, and associated parameters λj and δj, where

j = 1, 2. Proposition 13 establishes the objective function Zµ1

1,2 for a sequence of two

such surgeries:

Proposition 13. The objective function for a sequence of two lognormally distributed

durations is given by:

Zµ1

1,2 = (cw + ci)E(X1)
[
2Φ(

δ1

2
)− 1

]
+ coE[O1,2], (5.5)

where E(X1) = eλ1+ 1
2
δ2
1 .

Proof. See the Appendix.

Equation (5.5) does not clearly identify a sequencing rule. Both E(X)
[
2Φ( δ

2
)−1

]
and the standard deviation σ =

√
V (X) = E(X)

√
eδ2 − 1 are product forms of E[X]

and an increasing function of δ. Hence, we conjecture that the SV rule minimizes

SWIP.

We conduct numerical tests to assess which rule, SV or SM, gives better results

relative to SWIP in each of the 2,205 instances, leaving OTP for later analysis. We

analyze numerical tests in two-dimensional tabular form as follows. Table 5.1 shows

that the SV rule gives better results than the SM rule in a meaningful pattern of test
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Table 5.1: Comparison of SM and SV for Sequences of Two Lognormally Distributed
Surgeries

µ1 \µ2 1 2 3 4 5 6 7 8 9

1 NA,42
42

40
49 ,

46
46

44
49 ,

47
47

46
49 ,

48
48

47
49 ,

48
48

48
49 ,

48
48

49
49 ,

48
48

49
49 ,

49
49

49
49 ,

49
49

2 40
49 ,

46
46 NA,42

42
35
49 ,

47
47

40
49 ,

46
46

42
49 ,

48
48

44
49 ,

47
47

45
49 ,

48
48

46
49 ,

48
48 -

3 44
49 ,

47
47

35
49 ,

47
47 NA,42

42
33
49 ,

47
48

37
49 ,

47
48

40
49 ,

47
47

41
49 ,

48
48 - -

4 46
49 ,

48
48

40
49 ,

46
46

33
49 ,

47
48 NA,42

42
31
49 ,

48
48

35
49 ,

47
47 - - -

5 47
49 ,

48
48

42
49 ,

48
48

37
49 ,

47
48

31
49 ,

48
48 NA,42

42 - - - -

6 48
49 ,

48
48

44
49 ,

47
47

40
49 ,

46
46

35
49 ,

48
48 - - - - -

7 49
49 ,

48
48

45
49 ,

48
48

41
49 ,

48
48 - - - - - -

8 49
49 ,

49
49

46
49 ,

48
48 - - - - - - -

9 49
49 ,

49
49 - - - - - - - -

instances. The left-most column in Table 5.1 lists values of µ1; the top-most row,

µ2. Each of 45 cells represents a combination that is feasible w.r.t. the µ1 + µ2 ≤ h

restriction. Each cell represents 49 (i.e., 7 × 7) different variance levels. The left

(right) denominator in each cell represents the numbers of the valid instances related

to the SM (SV) rule. For example, when µ1 = µ2, the SM rule is not applicable

(NA) because both means have the same value; similarly, the SV cannot be applied

in 7 cases in which both variances are the same. The left (right) numerator in each

cell represents the number of valid instances in which the SM (SV) rule gives the

better value of SWIP (each of the two rules gives a SWIP measure - the same values

for many instances - and we identify the number on instances out of valid instances

which each rule gives the better result, without claiming that it is the optimal result.

For example, when µ1 = 4 and µ2 = 3 (or vice versa), the SV rule gives the better

result for 47 of 48 instances but the SM rule gives the better results for only 33 of 49

instances. In summary, the SV rule gives the better results in instances represented

by all cells in Table 5.1; the SM rule ties, giving the better result for many instances

represented by most cells, but never gives results that improve on those achieved by
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the SV rule.

We now describe our numerical tests, which we designed to evaluate the relative

impact of SWIP in comparison with that of OTP. Table 5.2 shows results for a

selected sample of 10 instances out of the 2,205 tested. Column (1) gives test instance

number, columns (2) and (3) give parameter values of each of two surgeries (i.e., µj

and σj, respectively), columns (4) and (6) give E[W 2
1,2] and E[W 2

2,1], respectively,

columns (5) and (7) give E[O1,2] and E[O2,1], respectively, columns (8)-(10) give

measures described in section : ∆E[W ], ∆E[O], and γ, respectively. The selected

sample shows typical cases: in instances 1-8, µ1 < µ2; in instances 1, 3, 5 and 9,

σ1 < σ2; in instances 2, 6, 7 and 10, σ1 > σ2; in instances 4 and 8, σ1 = σ2; and in

instances 9 and 10, µ1 + µ2 = h.

Both an ANOVA and a t-test show that SV and SM are both statistically sig-

nificantly effective in minimizing SWIP, each with a p − value of less than 0.0001.

We employ simple statistics (e.g., numbers of instances) to compare these two rules

in subsequent sections. If µ1 < µ2, sequence X1 → X2 is better w.r.t. SWIP than

X2 → X1 in 841 of 980 instances. If σ1 < σ2, sequence X1 → X2 is better w.r.t.

SWIP than X2 → X1 in 1,055 of 1,057 instances. In most instances ∆E[O] is very

small compared to ∆E[W ] (e.g., instances 1-6) so that γ is small and ∆E[W ] deter-

mines the best sequence (see (5.4)). In instances for which ∆E[O] ' ∆E[W ], ∆E[O]

is so small that γ is large; for example, instance 8 in Table 5.2. If |µ1 + µ2 − h| < ε

(e.g., instances 7-10), even in this worst case, OTP does not play a dominant role

in determining the optimal sequence. Although expected overtime is greater than

expected waiting time, ∆E[O] is less than ∆E[W ]. In other words, SWIP (i.e.,

∆E[W ]) dominates OTP (i.e., ∆E[O]) in all instances for which (cw + ci)/co is not

small (i.e., co is not bigger than the sum of other two costs).
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Table 5.2: Comparison of ∆E[O] with ∆E[W ] for Sequences of Two Lognormally Distributed Surgeries
Instance X1 ∼ X2 ∼ X1 → X2 X2 → X1 Difference

Index ( µ1, σ1) (µ2, σ2) E[W 2
1,2] E[O1,2] E[W 2

2,1] E[O2,1] ∆E[W ] ∆E[O] γ(%)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1 (1, 0.1) (2, 0.2) 0.040 0.000 0.080 0.000 -0.040 0.000 0.0
2 (1, 0.6) (2, 0.4) 0.218 0.000 0.158 0.000 0.061 0.000 0.0
3 (2, 0.2) (3, 0.3) 0.080 0.000 0.119 0.000 -0.040 0.000 0.0
4 (2, 0.6) (3, 0.6) 0.233 0.000 0.237 0.000 -0.003 0.000 0.0
5 (3, 0.3) (4, 0.4) 0.119 0.000 0.159 0.000 -0.040 0.000 0.0
6 (3, 0.9) (4, 0.8) 0.350 0.011 0.316 0.012 0.035 -0.001 2.3
7 (4, 0.8) (5, 0.5) 0.316 0.087 0.199 0.098 0.117 -0.011 9.3
8 (4, 2.0) (5, 2.0) 0.747 0.847 0.764 0.841 -0.017 0.006 37.3
9 (5, 0.5) (5, 1.0) 0.199 0.513 0.394 0.522 -0.195 -0.009 4.7
10 (5, 3.0) (5, 2.5) 1.092 1.768 0.934 1.741 0.159 0.027 17.284



For example, ∆Z = −0.017(cw+ci)+0.006co for instance 8. If (cw+ci)/co > 0.373,

SWIP dominates OTP. Otherwise (i.e., co is greater than 2.68 (=1/0.373) times of

cw + ci), SWIP contributes less in determining the optimal sequence than OTP does.

Hence, we recommend that the SV rule be used in the two-surgery case in which both

durations are lognormally distributed, because it gives better results in the majority

of instances, even though it is not globally optimal.

5.2.2 The Gamma Distribution

With certain parameter values, the gamma distribution has a shape similar to

the right-skewed form of the lognormal distribution. Because each surgery comprises

several small tasks, such as administering anesthesia, performing surgery and closing

the wound, the gamma distribution may be used in phase-type distributions to fit

service times in such a serial process. The gamma distribution with parameters n

and β has mean E(X) = nβ and variance V (X) = nβ2. If n is restricted to be

an integer, the gamma specializes to the Erlang distribution for which the objective

function can be expressed as follows.

Proposition 14. The total-cost objective function for a sequence of two surgeries,

each of which follows a gamma-distributed duration with parameters βj and integer

nj for j = 1, 2, is given by:

Zµ1

1,2 = (cw + ci)E(X1)
nn1

1

n1!
e−n1 + coE[O1,2]. (5.6)

Proof. See the Appendix.

Objective function (5.6) does not clearly identify a sequencing rule. Thus, we

conduct numerical tests to assess whether the SV rule is better w.r.t. SWIP than the

SM rule as it is for the lognormal distribution. Further, using (5.4) we evaluate the
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relative impact of SWIP in comparison with that of OTP for the gamma distribution

with general n (i.e., not restricted to an integer). Table 5.3 shows results of a selected

subset of 10 out of 2,205 instances tested. Each column in Table 5.3 records the same

information as the corresponding column of Table 5.2.

If µ1 < µ2, sequence X1 → X2 is better w.r.t. SWIP than X2 → X1 in 839 of 980

instances. If σ1 < σ2, sequence X1 → X2 is better w.r.t. SWIP than X2 → X1 in

1,056 of 1,057 instances. In most instances ∆E[O] is very small compared to ∆E[W ]

(e.g., instances 1-6) so that γ is small and ∆E[W ] determines the best sequence

(see (5.4)). In instances for which ∆E[O] ' ∆E[W ], ∆E[O] is so small that γ is

large (e.g., instance 8 in Table 5.2). If |µ1 + µ2 − h| < ε (e.g., instances 7-10), even

in this worst case, OTP does not play a dominant role in determining the optimal

sequence. Although expected overtime is greater than expected waiting time, ∆E[O]

is less than ∆E[W ]. In other words, SWIP dominates OTP in all instances for which

(cw + ci)/co is not small. Hence, we recommend that the SV rule be used in the two-

surgery case in which both surgery durations are gamma distributed, because it gives

better results in the majority of instances, even though it is not globally optimal.
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Table 5.3: Comparison of ∆E[O] with ∆E[W ] for Sequences of Two Gamma Distributed Surgeries
Instance X1 ∼ X2 ∼ X1 → X2 X2 → X1 Difference

Index ( µ1, σ1) (µ2, σ2) E[W 2
1,2] E[O1,2] E[W 2

2,1] E[O2,1] ∆E[W ] ∆E[O] γ(%)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1 (1, 0.1) (2, 0.2) 0.040 0.000 0.080 0.000 -0.040 0.000 0.0
2 (1, 0.6) (2, 0.4) 0.232 0.000 0.159 0.000 0.073 0.000 0.0
3 (2, 0.2) (3, 0.3) 0.080 0.000 0.120 0.000 -0.040 0.000 0.0
4 (2, 0.6) (3, 0.6) 0.238 0.000 0.239 0.000 -0.001 0.000 0.0
5 (3, 0.3) (4, 0.4) 0.120 0.000 0.159 0.000 -0.040 0.000 0.0
6 (3, 0.9) (4, 0.8) 0.356 0.007 0.318 0.007 0.038 -0.000 1.0
7 (4, 0.8) (5, 0.5) 0.318 0.083 0.199 0.093 0.119 -0.011 9.1
8 (4, 2.0) (5, 2.0) 0.781 0.860 0.787 0.856 -0.006 0.004 75.2
9 (5, 0.5) (5, 1.0) 0.199 0.518 0.398 0.524 -0.198 -0.006 3.2
10 (5, 3.0) (5, 2.5) 1.162 1.850 0.977 1.824 0.185 0.030 14.187



5.2.3 The Normal Distribution

The normal distribution is used in many applications because it is relatively math-

ematically tractable and, due to the Central Limit Theorem (Casella and Berger,

2001), finds wide application. The normal distribution admits negative values,

but surgery duration is strictly positive. However, with a coefficient of variation

σj/µj < 0.2 for j = 1, 2, the probability that a duration would have a negative value

is negligible. If surgery duration is determined as the sum of a number of random task

times (e.g., breathing tube insertion (i.e., intubation), anesthesia administration, a

series of procedures with different current procedure terminology (CPT) codes such

as discectomy and foramenotomy in spine surgery, wound closing, OR cleaning) that

are independent because, for example, they are performed by different personnel -

as in the case of a number of surgery types - its coefficient of variation would most

likely satisfy this condition.

Consider two surgeries with normally distributed durations, N(µ1, σ1) andN(µ2, σ2).

The total cost objective function, Zµ1

1,2, cannot be expressed in closed form because

the expected overtime term is intractable, but it can be computed numerically:

Zµ1

1,2 = (cw + ci)E[W 2
1,2] + coE[O1,2]. (5.7)

E[W 2
1,2] can be expressed in closed form:

Proposition 15. For a sequence X1 → X2 of two surgeries with normally distributed

durations, N(µ1, σ1) and N(µ2, σ2)

E[W 2
1,2] = E[I2

1,2] =
σ1√
2π
. (5.8)

Proof. See the Appendix.
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In general, E[O1,2] cannot be expressed in closed form, but it can be if either one

of two approximations is appropriate: (i) X1 +X2 < h a.s., or (ii) |X1 +X2−h| < ε.

Case (i) incurs no overtime a.s. Case (ii) occurs when the sum of the two surgery

durations is close to the end-of-block time h a.s. Proposition 16 establishes that Zµ1

1,2

can be approximated in closed form in each of these cases.

Proposition 16. The objective function for sequence X1 → X2 of two surgeries with

normally distributed durations is approximated by :

Zµ1

1,2 =

 (cw + ci) σ1√
2π

if X1 +X2 < h a.s.

(cw + ci) σ1√
2π

+ co(σ1+σ2

2
√

2π
+ σ1σ2

2π
) if |X1 +X2 − h| < ε.

(5.9)

Proof. See the Appendix.

E[W 2
1,2] in (5.9) is an increasing function of σ1 and not a function of mean µ1, so

the SV rule minimizes SWIP in this case. Numerical tests also show that if σ1 < σ2,

sequence X1 → X2 minimizes w.r.t. SWIP instances of 1,070 instances. We conduct

numerical tests to assess the relative impact of OTP on the objective function value

when the sum of surgery durations does not satisfy either (i) or (ii). Each column

in Table 5.4 records the same information reported by the corresponding column of

Table 5.2. Table 5.4 shows numerically that the SV rule gives better SWIP in all

cases. Instances 1 - 8 represent case (i), for which no overtime is incurred. Instances 9

and 10 represent case (ii), for which OTP contributes less in determining the optimal

sequence than SWIP does. In these cases, although expected overtime is greater than

expected waiting time, ∆E[O] is less than ∆E[W ]. If σ1 > σ2, sequence X1 → X2

(i.e., largest-variance-first-rule (LV)) is better w.r.t. OTP than X2 → X1 in 623 of

1,070 instances (e.g., instance 7); and the values of OTP have no difference in the

remaining 439 of 1,070 instances.
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Table 5.4: Comparison of ∆E[O] with ∆E[W ] for Sequences of Two Normally Distributed Surgeries
Instance X1 ∼ X2 ∼ X1 → X2 X2 → X1 Difference

Index ( µ1, σ1) (µ2, σ2) E[W 2
1,2] E[O1,2] E[W 2

2,1] E[O2,1] ∆E[W ] ∆E[O] γ(%)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1 (1, 0.1) (2, 0.2) 0.040 0.000 0.080 0.000 -0.040 0.000 0.0
2 (1, 0.6) (2, 0.4) 0.239 0.000 0.160 0.000 0.080 0.000 0.0
3 (2, 0.2) (3, 0.3) 0.080 0.000 0.120 0.000 -0.040 0.000 0.0
4 (2, 0.6) (3, 0.6) 0.239 0.000 0.239 0.000 0.000 0.000 0.0
5 (3, 0.3) (4, 0.4) 0.120 0.000 0.160 0.000 -0.040 0.000 0.0
6 (3, 0.9) (4, 0.8) 0.359 0.003 0.319 0.003 0.040 0.000 0.0
7 (4, 0.8) (5, 0.5) 0.319 0.072 0.199 0.082 0.120 -0.010 8.2
8 (4, 2.0) (5, 2.0) 0.798 0.824 0.798 0.824 0.000 0.000 0.0
9 (5, 0.5) (5, 1.0) 0.199 0.522 0.399 0.522 -0.199 0.000 0.0
10 (5, 3.0) (5, 2.5) 1.197 1.876 0.997 1.876 0.200 0.000 0.090



For two normally distributed surgery durations, each of which is symmetric and

bell-shaped, Proposition 16 establishes analytically that both two sequences X1 →

X2 and X2 → X1 give the same expected overtime when h = µ1 +µ2 (441 instances).

A numerical study for two normally distributed surgeries shows that 421 of 441

instances have no difference in expected overtime and the remaining 20 instances

have little difference.

5.3 Lognormal in Combination with Another Distribution

We assume that two surgeries follow the same distribution in previous sections;

however, two surgeries may follow different distributions, for example, because the

ages of the patients and/or the experience levels of surgeons are different. In this

section, we consider the lognormal in combination with other distributions.

Figure 5.1 shows probability distribution function of each of the three distribu-

tions with a common µ = 3 but three different levels of ρ, as a typical example.

When ρ is small as in Figure 5.1 (a), all three distributions have the same shape and

their graphs look as one because probability functions differ little. As ρ increases in

Figures 5.1 (b) and 5.1 (c), the lognormal and gamma distributions become more

right-skewed and continue to look like each other but less like the normal. However,

we expect that most surgery duration distributions have coefficients of variations at

the smaller end of this range of ρ values.
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(a) μ = 3, ρ = 0.1  (b) μ = 3, ρ = 0.3  (c) μ = 3, ρ = 0.7  

Figure 5.1: Comparison of the Shapes of Distributions with Common Mean = 3.
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We compare E[(X − µ)+] values for lognormal, gamma and normal distributions

because this term has a significant impact on determining the optimal sequence.

Our numerical tests involve 9 levels of µ and 7 levels of ρ as Section 5.2. Table 5.5

compares values of E[W 2
1,2] as a function of µ and σ to evaluate SWIP for each of

these distributions. Column (1) gives instance index; column (2) gives parameters

(µ, σ) tested; column (3) gives ρ; columns (4), (5), and (6) give E[W 2
1,2] for lognormal,

gamma, and normal distributions, respectively; and three right most columns give

the relative difference of E[W 2
1,2] values for each pair of distributions. Numerical

tests show that these relative differences depend on the value of ρ and are increasing

functions of ρ. Our analysis strongly suggests that lognormal, gamma, and normal

distributions all give similar values of E[W 2
1,2], leading us to conjecture that the SV

rule is effective relative to SWIP when the lognormal is combined with either the

gamma or the normal and, more generally, to the conjecture that any particular

distribution analyzed gives results that are similar for all three so that the most

convenient (i.e., tractable) distribution can be used in typical cases.

In the next subsections, we study combinations of the lognormal with either

the gamma or the normal distribution. Numerical tests are designed to assess the

efficacy of the SV rule relative to SWIP and to evaluate the relative impact of OTP

in comparison with that of SWIP.

93



Table 5.5: Comparison of Expected Waiting Times by Surgery Duration
Instance Parameter values E[W 2

1,2] Relative Difference
Index (µ, σ) ρ Lognormal Gamma Normal (5)−(4)

(4)
(%) (6)−(4)

(4)
(%) (6)−(5)

(5)
(%)

(1) (2) (3) (4) (5) (6)
1 (1, 0.1) 0.1 0.040 0.040 0.040 0.2 0.3 0.1
2 (1, 0.3) 0.3 0.117 0.119 0.120 1.8 2.6 0.7
3 (1, 0.5) 0.5 0.187 0.195 0.199 4.6 6.8 2.1
4 (1, 0.7) 0.7 0.248 0.268 0.279 8.2 12.7 4.1
5 (2, 0.2) 0.1 0.080 0.080 0.080 0.2 0.3 0.1
6 (2, 0.6) 0.3 0.233 0.238 0.239 1.8 2.6 0.7
7 (2, 1.0) 0.5 0.373 0.391 0.399 4.6 6.8 2.1
8 (2, 1.4) 0.7 0.496 0.536 0.559 8.2 12.7 4.1
9 (5, 0.5) 0.1 0.199 0.199 0.199 0.2 0.3 0.1
10 (5, 1.5) 0.3 0.583 0.594 0.598 1.8 2.6 0.7
11 (5, 2.5) 0.5 0.934 0.977 0.997 4.6 6.8 2.1
12 (5, 3.5) 0.7 1.239 1.341 1.396 8.2 12.7 4.1
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5.3.1 Lognormal in Combination with the Gamma Distribution

We consider one surgery with duration that follows the lognormal distribution

in combination with another that follows the gamma distribution, noting that both

distributions may have a similar shape for selected parameter values. The number

of instances and parameter values are the same as ones used in Section 5.2.

Table 5.6 gives results of our numerical tests, which show that the SV rule is better

w.r.t. SWIP than the SM rule, and that OTP contributes less in determining the

optimal sequence than SWIP does. When the variance of the lognormal is less than

the variance of the gamma, scheduling the lognormal duration first (i.e., according to

SV) is better than the alternative sequence w.r.t. OTP in all 1,057 instances. When

the variance of the gamma is less than that of the lognormal, scheduling the gamma

duration first (i.e., according to SV) is better than the alternative sequence w.r.t.

SWIP in 1,055 out of 1,057 instances, and SWIP contributes more in determining

the optimal sequence than OTP does in 2,184 of 2,205 instances. In the remaining

21 instances, ∆E[W ] ' ∆E[O]. If |µ1 + µ2 − h| < ε (e.g., instances 7-10), even

in this worst case, OTP does not play a dominant role in determining the optimal

sequence. Although expected overtime is greater than expected waiting time, ∆E[O]

is less than ∆E[W ]. In other words, SWIP dominates OTP in all instances for which

(cw + ci)/co is not small. In instances for which ∆E[O] ' ∆E[W ], ∆E[O] is so small

that γ is large (e.g., instance 10 in Table 5.6, see (5.4)).
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Table 5.6: Comparison of ∆E[O] and ∆E[W ] for Sequences of Lognormally(LN) and Gamma(G) Distributed Surgeries
Instance X1 ∼ X2 ∼ X1 → X2 X2 → X1 Difference

Index LN(µ1, σ1) G(µ2, σ2) E[W 2
1,2] E[O1,2] E[W 2

2,1] E[O2,1] ∆E[W ] ∆E[O] γ(%)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1 (1, 0.1) (2, 0.2) 0.040 0.000 0.080 0.000 -0.040 0.000 0.0
2 (1, 0.6) (2, 0.4) 0.218 0.000 0.159 0.000 0.060 0.000 0.0
3 (2, 0.2) (3, 0.3) 0.080 0.000 0.120 0.000 -0.040 0.000 0.0
4 (2, 0.6) (3, 0.6) 0.233 0.000 0.239 0.000 -0.005 0.000 0.0
5 (3, 0.3) (4, 0.4) 0.119 0.000 0.159 0.000 -0.040 0.000 0.0
6 (3, 0.9) (4, 0.8) 0.350 0.011 0.318 0.008 0.030 0.003 7.8
7 (4, 0.8) (5, 0.5) 0.316 0.098 0.199 0.084 0.120 0.014 12.2
8 (4, 2.0) (5, 2.0) 0.747 0.839 0.787 0.851 -0.040 -0.012 29.2
9 (5, 0.5) (5, 1.0) 0.199 0.523 0.398 0.513 -0.199 0.011 5.3
10 (5, 3.0) (5, 2.5) 1.092 1.757 0.977 1.810 0.120 -0.052 45.296



5.3.2 Lognormal in Combination with the Normal Distribution

We now consider a combination of surgery-duration distributions, one lognormal

and the other normal. Even though the lognormal is right-skewed and the normal

is symmetric, expected waiting times associated with both are nearly the same as

shown in Table 5.6. Hence, we conjecture that the SV rule is better than the SM

rule w.r.t. SWIP in this case as well.

Table 5.7 shows that the SV rule is better than the SM rule w.r.t. SWIP, and

that OTP contributes less in determining the optimal sequence than SWIP does if

(cw + ci)/co is not small. When the variance of the lognormal is less than that of the

normal, scheduling the lognormal first (i.e., according to the SV) is better than the

alternative sequence w.r.t. SWIP in all 1,057 instances. When the variance of the

normal is less than that of the lognormal, scheduling the normal first (i.e., according

to the SV) is better than the alternative sequence w.r.t. SWIP in 1,055 of 1,057

instances. SWIP contributes more in determining the optimal sequence than OTP

does in 2,177 of 2,205 instances. In the remaining 28 instances, ∆E[W ] ' ∆E[O].

If |µ1 +µ2−h| < ε (e.g., instances 7-10), even in this worst case, OTP does not play

a dominant role in determining the optimal sequence. Although expected overtime

is greater than expected waiting time, ∆E[O] is less than ∆E[W ]. In other words,

SWIP dominates OTP in all instances for which (cw + ci)/co is not small. When one

surgery duration is lognormally distributed and the other is normally distributed, we

recommend that the SV be used because of its efficacy relative to SWIP and OTP,

although the SV rule is not optimal globally.
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Table 5.7: Comparison of ∆E[O] with ∆E[W ] for Sequences of Lognormally(LN) and Normally(N) Distributed Surgeries

Instance X1 ∼ X2 ∼ X1 → X2 X2 → X1 Difference
Index LN(µ1, σ1) N(µ2, σ2) E[W 2

1,2] E[O1,2] E[W 2
2,1] E[O2,1] ∆E[W ] ∆E[O] γ(%)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1 (1, 0.1) (2, 0.2) 0.040 0.000 0.080 0.000 -0.040 0.000 0.0
2 (1, 0.6) (2, 0.4) 0.218 0.000 0.160 0.000 0.059 0.000 0.0
3 (2, 0.2) (3, 0.3) 0.080 0.000 0.120 0.000 -0.040 0.000 0.0
4 (2, 0.6) (3, 0.6) 0.233 0.000 0.239 0.000 -0.006 0.000 0.0
5 (3, 0.3) (4, 0.4) 0.119 0.000 0.160 0.000 -0.040 0.000 0.0
6 (3, 0.9) (4, 0.8) 0.350 0.009 0.319 0.005 0.031 0.004 14.2
7 (4, 0.8) (5, 0.5) 0.316 0.097 0.199 0.075 0.116 0.022 18.9
8 (4, 2.0) (5, 2.0) 0.747 0.809 0.798 0.818 -0.051 -0.009 17.4
9 (5, 0.5) (5, 1.0) 0.199 0.520 0.399 0.510 -0.200 0.010 5.1
10 (5, 3.0) (5, 2.5) 1.092 1.731 0.997 1.788 0.095 -0.057 60.3
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5.4 Three Surgeries

In describing procedures at a local hospital, our health care collaborator empha-

sized that, typically, only two or three surgeries are scheduled in each OR each day.

We provide analytical expression for the three-surgery case. For three surgeries, let

Zt2,t3
1,2,3 denote the objective function value for sequence X1 → X2 → X3 with succes-

sive patient ready times t1 = 0, t2 and t3. Waiting times W 2
1,2,3 := (X1 − µ1)+ and

W 3
1,2,3 := [max(X1, µ1)+X2−µ1−µ2]+ correspond to the second and third surgeries,

respectively. Idle times I2
1,2,3 := (µ1−X1)+ and I3

1,2,3 := [µ1+µ2−max(X1, µ1)−X2]+

correspond to the second and third surgeries, respectively. Neither waiting- nor idle-

time is associated with the first surgery, (i.e., W 1
1,2,3 = I1

1,2,3 = 0) because t1 = 0 and

this surgery starts at time 0. O1,2,3 := {max[max(X1, µ1) +X2, µ1 + µ2] +X3− h}+.

Consider three random surgery durations, X1, X2, and X3. E[W 2
1,2,3] = E[I2

1,2,3],

but E[W 3
1,2,3] 6= E[I3

1,2,3] because of the following:

E[I3
1,2,3] ≤ E(µ1 + µ2 −X1 −X2)+ = E(X1 +X2 − µ1 − µ2)+ ≤ E[W 3

1,2,3]. (5.10)

We have assumed that a second surgery would wait to its scheduled starting time

if the first surgery were completed early. If we relax that assumption, the second

surgery would begin as soon as the first one ends and the probability that the surgery

would incur waiting would be the same as the probability that it would incur idleness.

However, if operations held to the assumption, the waiting time associated with the

second surgery may influence the waiting time associated with that of the third; but

any idle time related to the second surgery would not affect the idle time associated

with the third. Proposition 17 establishes an exact relationship between waiting-

and idle-time associated with the third surgery.
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Proposition 17. For a sequence of three independently distributed surgeries X1 →

X2 → X3, waiting- and idle-times associated with the third surgery satisfy the fol-

lowing relationship:

E[I3
1,2,3] = E[W 3

1,2,3]− E[W 2
1,2,3]. (5.11)

Proof. See the Appendix.

The objective function for sequence X1 → X2 → X3, Zµ1,µ1+µ2

1,2,3 , can be formulated

as follows:

Zµ1,µ1+µ2

1,2,3 = cw{E[W 2
1,2,3] + E[W 3

1,2,3]}+ ci{E[I2
1,2,3] + E[I3

1,2,3]}+ coE[O1,2,3]. (5.12)

By invoking Propositions 12 and 17, objective function (5.12) can be re-expressed:

Zµ1,µ1+µ2

1,2,3 = cwE[W 2
1,2,3] + (cw + ci)E[W 3

1,2,3] + coE[O1,2,3]. (5.13)

Because we have been able to show numerically that E[O1,2] contributes less in

determining the optimal sequence than E[W 2
1,2] does for the two-surgery case, we

anticipate that expected overtime E[O1,2,3] contributes the least in determining the

optimal sequence for the three-surgery case.

Further, 441 instances represent the boundary case for which h = µ1 + µ2, the

scheduled start time of the third surgery. We observe that conditional expected

overtime E[Ō1,2] := E[O1,2|h = µ1 + µ2], which is the same as E[W 3
1,2,3], contributes

less in determining the optimal sequence than E[W 2
1,2] = E[W 2

1,2,3] does. We conclude

that E[W 2
1,2,3] contributes most in determining the optimal sequence.

In particular, Proposition 18 gives the objective function Zµ1,µ1+µ2

1,2,3 for three surg-

eries with i.i.d. normal distributions N(µ1, σ
2
1), N(µ2, σ

2
2) and N(µ3, σ

2
3):
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Proposition 18. For a sequence of three surgeries with independent durations that

have distributions N(µ1, σ
2
1), N(µ2, σ

2
2) and N(µ3, σ

2
3), Zµ1,µ1+µ2

1,2,2 can be formulated

as :

Zµ1,µ1+µ2

1,2,3 = cw
σ1√
2π

+ (cw + ci)
{σ1 + σ2

2
√

2π
+
σ1σ2

2π

}
+ coE[O1,2,3]. (5.14)

Proof. See the Appendix.

Equation (5.14) shows that the SV rule minimizes SWIP when each of three

surgery durations follows the normal distribution. The objective function increases

with σ1 and σ2, and the smaller of σ1 and σ2 should be used to designate the first

surgery in the sequence because the first term of (5.14) is an increasing function of

only σ1 and the second term of (5.14) is independent of the first two surgeries.

5.5 Application of Results to Scheduling N = 2k Surgeries in k ORs

We demonstrate how our results can be applied by using them as a basis for a

heuristic that assigns surgeries to multiple ORs and sequences them in each OR.

The typical hospital operates several ORs in each of which two or three surgeries

are scheduled. The optimal sequencing rule depends on the first surgery scheduled,

which determines SWIP. We conjecture that balancing workloads over ORs will result

in a favorable total expected overtime penalty.

Consider assigning two surgeries to each of k ORs with the objectives of mini-

mizing both SWIP and OTP. We deal with multiple ORs, each with a single time

block of duration h. Because SWIP dominates OTP, we assign the k surgeries with

smallest variance, one to each OR in the first round. After assigning k surgeries

according to the SV rule, each to one OR, the second round assigns successively the

surgery with the largest mean duration to the OR to which the surgery with the
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smallest mean duration has been assigned until two surgeries have been assigned to

each OR. The first round seeks favorable SWIP values; and the second, to balance

expected workloads over ORs and thus obtain favorable OTP values. Otherwise,

some ORs may incur large OTPs, while others incur none. Intuitively, balanced

workloads can be expected to be associated with a lower total expected (considering

all ORs) overtime than unbalanced workloads.

The following numerical example illustrates our heuristic using k = 4 ORs and

2k = 8 surgeries with each duration following either the lognormal (LN) or normal

(N) distribution. Means and variances are given in Table 5.8. The time unit is

an hour and h = 8; the sum of the expected durations of any three surgeries is

greater than h hours so that at most two surgeries are scheduled in each OR to

avoid excessive overtime. The number of possible sequences, excluding symmetric

instances, is 7× 5× 3 ×24 = 1, 680, in which 7× 5× 3 is the number of assignments

to four ORs and 24 is the number of possible sequences in the 4 ORs.

Table 5.8: Distributions of Eight Surgery Durations (Time Unit : Hour)
Surgery 1 2 3 4

Distribution N(2.5, 0.252) N(2.5, 0.52) LN(3, 0.32) LN(3, 0.62)

Surgery 5 6 7 8

Distribution LN(3.5, 0.352) LN(3.5, 0.72) N(4, 0.42) LN(4, 0.82)

Because the SV rule is better than the SM rule w.r.t. SWIP for two surgeries,

each with either lognormally or normally distributed durations, we select the k = 4

surgeries by the SV rule and assign each to an OR, to obtain favorable E[W 2
1,2]. Step

1 identifies the first four surgeries as X1, X3, X5 and X7, and assigns them to OR 1,

2, 3 and 4 (without loss of generality), respectively.

Now, our heuristic assigns a second surgery to each OR. The expected cost would

be decreased by assigning a surgery that leads to a low E[O1,2] value for each OR.
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Thus, our heuristic assigns the unassigned surgery with the largest mean duration

to the OR with the assigned surgery that has the smallest mean duration. Each row

in Table 5.9 gives the pair of surgeries assigned to each OR.

Table 5.9: Final Assignment and Sequence
OR First Surgery(Xf ) Second surgery(Xs) E(Xf − µf )+ E[OTf,s]

OR1 X1 ∼ N(2.5, 0.252) X8 ∼ LN(4, 0.82) 0.099 0.000

OR2 X3 ∼ LN(3, 0.32) X6 ∼ LN(3.5, 0.72) 0.119 0.018

OR3 X5 ∼ LN(3.5, 0.352) X4 ∼ N(3, 0.62) 0.139 0.004

OR4 X7 ∼ N(4, 0.42) X2 ∼ N(2.5, 0.52) 0.160 0.002

We have evaluated for all 6 possible pairwise switchings among the four surgeries

scheduled second in the ORs and have found that the current sequence in Table 5.9

gives is best. In general, our heuristic prescribes effective schedules because it seeks

favorable SWIP first and SWIP dominates OTP if (cw + ci)/co is not small. Further,

it balances expected OR workloads with the goal of obtaining favorable OTP.

5.6 Insights

One of our performance measures, SWIP is closely related to the variance, which

is a measure of deviation from the mean. Expected waiting time, E(X −µ)+, which

is the same as expected idle time, E(µ−X)+, is another measure of deviation from

the mean. These partial expectations are equivalent to the mean absolute deviations

from the mean: E(X − µ)+ = E(µ − X)+ = 1
2
E|X − µ|, which is related to the

variance: E|X − µ| = K
√
E[(X − µ)2], where K is a constant and particular for

each distribution (Kenney and Keeping, 1962). For example, it is well known that

the ratio of absolute mean deviation to standard deviation is
√

2
π

for the normal

distribution; that is, E|X − µ| = σ
√

2
π

as shown in Section 5.2. Intuitively, a rule

that is based on variance is recommendable to minimize SWIP. We observe that

the SV rule is better than the SM rule w.r.t. SWIP in the majority of instances

and gives equal results in the remaining cases. In particular, we have been able to
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show analytically that the SV rule minimizes SWIP for the case of two normally

distributed surgeries.

It is important that the first surgery scheduled in a block should be selected

judiciously. OTP does not impact the objective function value more than SWIP

for the three distributions and two combinations we study. Numerical tests show

that, when h = µ1 + µ2 (e.g., instances 9 and 10 in Tables 5.2, 5.3, 5.4, 5.6 and

5.7), E[Ō1,2] contributes less in determining the optimal sequence than E[W 2
1,2] does,

even though E[Ō1,2] is greater than E[W 2
1,2]. In particular, sequences X1 → X2 and

X2 → X1 have the same expected overtime if two surgery durations are normally

distributed and h = µ1 + µ2. E[W 3
1,2,3] contributes less in determining the optimal

sequence than E[W 2
1,2,3] does for the three-surgery case. The first surgery has a

larger impact on objective function values for both two- and three-surgery cases.

We conjecture that, as more surgeries are scheduled in a block, surgeries later in

the sequence contribute less in determining the optimal sequence than earlier ones,

even though surgeries scheduled later contribute more to the expected amount of

overtime.

When the exact distribution is not known, we may apply the SV rule to minimize

the total expected cost of waiting-, idle- and over-time penalties. For the majority

of (but not all) instances we tested, the SV rule is efficacious w.r.t. SWIP for all

distributions considered in this paper, expected waiting times E(X −µ)+ are nearly

the same regardless of the distribution of surgery duration, and OTP contributes less

in determining the optimal sequence than SWIP does.
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6. D/M̃/1 APPOINTMENT SYSTEM

This chapter investigates sequencing rules for a D/M̃/1 appointment system, as-

suming that customers arrive at deterministic times (denoted D) and are processed

according to independent, non-identical exponentially distributed service times (de-

noted M̃). In particular, it seeks to evaluate the efficacy of two common sequencing

rules - smallest-variance-first (SV) and smallest-mean-first (SM) - for cases that in-

volve either two or three customers. The objective is to minimize the sum of expected

costs of customer-waiting- and server-idle-times (WIT). The case we study represents

systems that, for example, schedule according to time blocks or deal with different

classes of customers, each involving few customers. To focus purely on the impact of

the sequencing rule, this paper does not consider no-shows or random arrival times.

Queueing models for appointment systems (e.g., D/M/1) usually assume that

customers arrive for service at pre-determined times rather than randomly (Wang,

1993) and that service times are i.i.d. exponential (denoted M). Jansson (1966)

studied the D/M/1 queueing model to prescribe the optimal inter-arrival time with

the objective of minimizing WIT, assuming that the service times of all customers

i.i.d. exponential. We assume that service times are independent, but not necessarily

identical. Weiss (1990) showed that, if surgery times are i.i.d. and the distribution

is symmetrical, the SV rule minimizes WIT. Gupta (2007) and Denton et al. (2007)

used stochastic ordering to sequence two surgeries with durations that have the same

mean but different variances with the objective of minimizing WIT.

6.1 Case 1: Two Customers

This section considers two customers with independent, non-identical exponential

service times, X1 and X2, with means µ1 and µ2, respectively. Let ti be the arrival
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time of the ith customer, i = 1, 2. Without loss of generality, consider the sequence

in which customer 1 precedes customer 2: X1 → X2.

Let Zt2
1,2 denote the objective function value for the case in which the first customer

is ready at time t1 = 0; and the second customer, at time t2. We assume that

the second customer begins service at time max(X1, t2). The amount of earliness,

(t2 − X1)+, represents the time during which the server is idle before the second

customer arrives. The amount of tardiness, (X1 − t2)+, represents the time during

which the second customer must wait for service to begin. Our analysis involves

costs per unit time for customer waiting, cw, and server idleness, ci. The objective

function value for sequence 1→ 2, Zt2
1,2, is:

Zt2
1,2 = cwE[(X1 − t2)+] + ciE[(t2 −X1)+]. (6.1)

We investigate two ways of specifying customer arrival time t2. The first approach

is based on a practical assumption; and the second, on optimizing arrival time.

6.1.1 Optimal Sequence with a Practical Assumption

Objective function (6.1) depends on arrival time, t2. Consider the specific as-

sumption that t2 = µ1, which is commonly used (Choi and Wilhelm, 2012a; Pinedo,

2009), for example, in scheduling surgeries. By definition of partial expected value,

E[(X1−µ1)+] = E[(µ1−X1)+] (Choi and Wilhelm, 2012a). So, under the assumption

that t2 = µ1, objective function (6.1) reduces to (6.2):

Zµ1

1,2 = (cw + ci)E[(X1 − µ1)+]. (6.2)

If service time X1 is exponentially distributed, objective function (6.2) can be
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further specialized:

Zµ1

1,2 = (cw + ci)

∫ ∞
µ1

(x1 − µ1)
1

µ1

e
− x1
µ1 dx1 = (cw + ci)

µ1

e
. (6.3)

Objective function, Zµ1

1,2 increases with µ1. Since the exponential distribution has

mean µ1 and variance µ2
1, both of which are functions of µ1, we conclude that both

SV and SM rules prescribe the same optimal sequence for two customers under the

assumption t2 = µ1.

6.1.2 Optimal Sequence with the Optimal Arrival Time

In this subsection, we determine the optimal sequence when the second customer

arrives at the optimal time, t∗2. First, we apply the newsvendor model to prescribe

the optimal arrival time:

min
t2
{Zt2

1,2|t2 ≥ 0}.

Proposition 19. Zt2
1,2 attains its minimum at t∗2 = µ1 ln cw+ci

ci
, which increases with

µ1.

Proof. The optimal solution t∗2 is defined as t∗2 = F−1
X1

(cw/(cw + ci)), where FX1(x) is

the distribution function of random variable X1. With X1 following the exponential

distribution, FX1(t2) = 1 − e−t2/µ1 . Combining, we obtain the optimal arrival time,

t∗2:

t∗2 = µ1 ln
cw + ci

ci
. (6.4)

To evaluate Zt
1,2 for general arrival time t (i.e., without the restriction that t2 =
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µ1), after suppressing subscripts, we obtain E[(X − t)+] and E[(t−X)+]:

E[(X − t)+] =

∫ ∞
t

(x− t) 1

µ
e−

x
µdx = µe−

t
µ (6.5)

and E[(t−X)+] =

∫ t

0

(t− x)
1

µ
e−

x
µdx = t− µ+ µe−

t
µ . (6.6)

Substituting t∗2 as defined in (6.4) for t in (6.5) and (6.6) and, in turn, substituting

these expected values in objective function (6.1), we obtain:

Z
t∗2
1,2 = cwµ1e

− t∗2
µ1 + ci{t∗2 − µ1 + µ1e

− t∗2
µ1 } = µ1c

i log
cw + ci

ci
, (6.7)

which is an increasing function of µ1.

We conclude that both SV and SM rules prescribe the same optimal sequence for

two customers, given that the second one arrives at the optimal time, t∗2.

6.2 Case 2: Three Customers

Consider three customers with independent, exponentially distributed service

times with means, µ1, µ2, and µ3, respectively. Given sequence X1 → X2 → X3,

we assume that the arrival time of the second customer is µ1 and that of the third

customer is µ1 + µ2. We do not prescribe optimal arrival times because the required

analysis is mathematically intractable. The following two subsections derive a closed

form of the objective function and evaluate the optimal sequencing rule, respectively.

6.2.1 Three-customer Objective Function

We evaluate the objective function value of the sequence X1 → X2 → X3 to

prescribe the optimal sequencing rule. The objective function for three customers,
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Zµ1,µ1+µ2

1,2,3 , is given by

Zµ1,µ1+µ2

1,2,3 = cw{E[(X1 − µ1)+] + E[(max(X1, µ1) +X2 − µ1 − µ2)+]}

+ ci{E[(µ1 −X1)+] + E[(µ1 + µ2 −max(X1, µ1)−X2)+]}. (6.8)

Choi and Wilhelm (2012a) have shown that the expected idle time associated with

the third customer is less than his/her expected waiting time. The exact relation is

given by (6.9).

E[(µ1+µ2−max(X1, µ1)−X2)+] = E[(max(X1, µ1)+X2−µ1−µ2)+]−E[(µ1−X1)+].

(6.9)

Incorporating (6.9), (6.8) can be reduced to the following:

Zµ1,µ1+µ2

1,2,3 = cwE[(X1 − µ1)+] + (cw + ci)E[(max(X1, µ1) +X2 − µ1 − µ2)+].

To express Zµ1,µ1+µ2

1,2,3 in closed form, we must evaluate E[(max(X1, µ1) + X2 − µ1 −

µ2)+].

Proposition 20. The waiting time of the third customer is given by:

E[(max(X1, µ1) +X2 − µ1 − µ2)+] =

 ∞ µ1 ≥ µ2

1
e2

(eµ2 + µ1 +
µ2

1

µ2−µ1
) otherwise.

(6.10)

Proof. E[(max(X1, µ1) +X2 − µ1 − µ2)+] can be decomposed into

∫ µ1

0

∫ ∞
0

(x2 − µ2)+ 1

µ1

e
− x1
µ1

1

µ2

e
− x2
µ2 dx2dx1

+

∫ ∞
µ1

∫ ∞
0

(x1 + x2 − µ1 − µ2)+ 1

µ1

e
− x1
µ1

1

µ2

e
− x2
µ2 dx2dx1. (6.11)
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If µ1 > µ2, second integral term in (6.11) is unbounded. Otherwise, (6.11) reduces

to a closed form:

E[(max(X1, µ1)+X2−µ1−µ2)+] =
e− 1

e2
µ2+

µ2
2

µ2 − µ1

e−2 =
1

e2

(
eµ2+µ1+

µ2
1

µ2 − µ1

)
. �

Hence, objective function value, Zµ1,µ1+µ2

1,2,3 , is given by (6.12) if µ1 < µ2:

Zµ1,µ1+µ2

1,2,3 = cw
µ1

e
+ (cw + ci)

1

e2

[
eµ2 + µ1 +

µ2
1

µ2 − µ1

]
. (6.12)

6.2.2 Optimal Sequencing Rule

We can determine the first customer to be the one with the smallest variance

(or mean), because if µ1 > µ2, Zµ1,µ1+µ2

1,2,3 goes to infinity. To determine an optimal

order of customers in sequence positions, define, term (6.12), fµ1(µ2) := [eµ2 + µ1 +

µ2
1/(µ2 − µ1)] and fix the value of µ1. eµ2 + µ1 is an affine function with slope e and

y-intersect µ1, and µ2
1/(µ2 − µ1) is a convex function of µ2.

Figure 6.1 graphs fµ1(µ2) over the range −∞ < µ2 <∞. We focus on the upper-

right curve of Figure 6.1 (a), which represents the range of µ2 ≥ µ1. Other figures

(b)-(e) depict selected subregions over the range of µ2 > µ1. fµ1(µ2) can be shown

to be a convex function of µ2 that attains its minimum at (1 + 1√
e
)µ1 ' 1.607µ1.

We compare two sequences: X1 → X2 → X3 and X1 → X3 → X2, accordingly,

fµ1(µ2) and fµ1(µ3). If µ1 ≤ µ2 ≤ 1.607µ1 and µ1 ≤ µ3 ≤ 1.607µ1 (Subregion I

in Figure 6.1 (b)) , fµ1(µ2) is a decreasing function of µ2. If µ2 > 1.607µ1 and

µ3 > 1.067µ1 (Subregion II in Figure 6.1 (c)), fµ1(µ2) is an increasing function of µ2.

For any t > (
√
e+1)2µ1, let αt and βt be the solutions to t = eµ2 +µ1 +µ2

1/(µ2−µ1)

such that αt < βt ((Subregion III and IV in Figures 6.1 (d) and (e), respectively).
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Figure 6.1: Graph of fµ1(µ2) and Separate Regions.

The optimal sequence can be summarized as follows:



1→ 3→ 2 if µ1 < µ2, µ3 < 1.607µ1, µ2 < µ3 (SubregionI)

1→ 2→ 3 if µ1 < µ2, µ3 < 1.607µ1, µ2 > µ3 (SubregionI)

1→ 2→ 3 if µ2, µ3 > 1.607µ1, µ2 < µ3 (SubregionII)

1→ 3→ 2 if µ2, µ3 > 1.607µ1, µ2 > µ3 (SubregionII)

1→ 3→ 2 if µ1 < µ2 < αt, βt < µ3 (SubregionIII)

1→ 2→ 3 if αt < µ2 < 1.607µ1, µ3 > βt (SubregionIV ).

(6.13)

Neither SV or SM prescribes the optimal sequence in this case. Given that the

sequencing rule for the three-customer case is so complex, we conclude that a single

criterion like SV or SM cannot prescribe the optimal sequence for the general case.

However, the customer with the smallest parameter (implementing both SV and SM

rules) must be sequenced in the first position.
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7. CONCLUSION

This chapter summarizes all findings from analytical and numerical studies at

each level, and provides several venues for the future research direction.

7.1 Summary

We present a prototypical model to optimize the allocation of surgical special-

ties to OR days and four adaptations (i.e., models), along with associated solution

approaches to facilitate solution: (NV-CA) news vendor-based capacity allocation,

(NV-SIP) news vendor-based stochastic integer programming, (SIP) stochastic inte-

ger programming, and (NS-SIP) stochastic integer programming without symmetry.

It reports numerical tests that compare the computational characteristics of the

models.

We obtain solutions with less variability within a few seconds using NV-CA and

NV-SIP. Hence, we recommend that NV-SIP be used to support detailed alloca-

tion decisions; and NV-CA, for rough-cut capacity planning. The NV-CA solution

could provide a better framework for MSS planning if it were disaggregated into the

allocation of individual specialties to OR days.

Comparing the run times required to resolve the (|N |, |M |) levels (5,5) and

(5,5)x(5,5) shows that it is better to decompose a problem into components κ ∈ K

for solution. (|N |, |M |) levels (5,5)x(5,5) and (10,10) both deal with ten specialties

and ten ORs, but the latter allows any of the specialties to be allocated to any of

the ORs. As to be expected, this flexibility allows somewhat better solutions to be

found, especially for larger surgery-duration CV. However, the run time required to

determine solutions with the same level of precision increases because more allocation

alternatives must be investigated.
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We present new methods to prescribe optimal planned duration and sequence of

time blocks, each of which reserves OR resources for a particular surgical subspecialty

at the tactical level. Further, rather than using an overbooking policy, it gives a

closed form to prescribe optimal planned block duration to hedge no shows. Results

lend considerable insights for managing OR resources.

The methods we propose for MSS can be implemented easily and, we expect,

would result in improved performance through managing the MSS process and op-

timizing the sum of expected earliness and lateness costs. Effectively planned block

durations can also be expected to facilitate scheduling of actual patients at the op-

erational level.

We confirm the efficacy of the SV rule to sequence surgeries in each time block at

the operational level. We examine rules for sequencing two surgeries with durations

that follow either the lognormal, gamma, or normal distribution. We are able to

obtain a closed form of E[W 2
1,2] for each of the three cases and to conclude analytically

that the SV rule is optimal if both surgeries follow the normal distribution. We show

numerically that the SV rule is better in determining the optimal sequence than the

SM rule for the majority of our test instances and that the two rules give the same

result in remaining instances.

We show numerically that lognormal, gamma and normal distributions all give

very similar values of E[W 2
1,2] and E[I2

1,2]. Thus one may pick the most tractable

distribution when we do not know the exact form. We study sequencing two surgeries

for cases in which the lognormal distribution is used in combination with either the

gamma or normal distribution. Numerical tests show that the SV rule is better than

the SM rule w.r.t. SWIP. If (cw + ci)/co is not small, ∆E[O] does not determine

the sequencing of surgeries, even when expected overtime is greater than expected

waiting time. We recommend that the SV rule be used to obtain favorable SWIP
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and OTP values.

We study the three-surgery case in which all durations are normally distributed,

conducting numerical tests to evaluate ∆E[O] and ∆E[W ]. The expected waiting

time associated with a third surgery has a lesser effect on determining the optimal

sequence than that associated with the second surgery. We conclude that scheduling

the first surgery is the most important and advocate use of the SV rule in making

this assignment.

To demonstrate how our results might be applied, we describe how they can be

used as the basis for a heuristic to assign surgeries to multiple ORs and sequence

them, assuming that only two surgeries can be accommodated in a time block. Be-

cause SWIP contributes more in determining the optimal sequence than OTP does,

the first surgery in each OR is more important in determining the optimal sequence

than the second, which contributes only to OTP, not SWIP.

7.2 Future Works

We suggest several avenues for future research. Future research could integrate

capacity allocation and expansion (e.g., addition of a new OR) decisions over with

a longer planning horizon. Another fruitful direction would develop improved algo-

rithms to solve SIP and NS-SIP. Future research could also could devise a superior

means for breaking the symmetry of model SIP, perhaps by including tighter con-

straints.

Our findings suggest several avenues for future research at the tactical level. For

example, an MSS may affect staff scheduling, PACU, and other relevant depart-

ments. Incorporating such ancillary departments in MSS planning is an opportunity

for the future research. Future research could fruitfully address the multi-OR prob-

lem. Finally, our model of the sequential newsvendor problem can be applied in
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time-sensitive environments other than health care (e.g., JIT delivery) because both

earliness and lateness must be minimized at the same time.

This work opens several avenues for future research in sequencing surgeries. We

assume that all patients arrive punctually, but this may not be possible in reality,

so modeling random patient arrivals provides an opportunity for future research.

Further, we do not considered no-shows. We use the sum of expected durations of

the previous surgeries as the ready time of the next patient. This has not been shown

to be optimal; but it facilitates analysis, follows prior research, and provides a rule

that can be followed easily in practice. Future research could optimize patient ready

times along with other performance measures such as waiting-, idle-, and over-time

penalties.
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APPENDIX A

PROOFS

Proof of Proposition 6

Proof.

E[(y − T )+] =

∫ y
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2σ2 dt
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Proof of Proposition 7

Proof.

E[(T − y)+] =
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Proof of Proposition 8

Proof. Let ŷ be the solution that minimizes f(y), and z be the standard normal score

z = ŷ−µ
σ

at the optimal solution, Φ(z) = Φ( ŷ−µ
σ

) = 1
1+β

= cl

ce+cl
, and ŷ = µ+ zσ.

f(ŷ) = ce
{ σ√

2π
e−
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+cl
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,

which is an increasing function of σ.

Proof of Proposition 12

Proof.

E[(X1 − µ1)+] =

∫ ∞
µ1

(x− µ1)f(x1)dx1

=

∫ ∞
−∞

(x1 − µ1)f(x1)dx1 −
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(x1 − µ1)f(x1)dx1

=

∫ µ1

−∞
(µ1 − x1)f(x1)dx1 = E[(µ1 −X1)+].
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Proof of Proposition 13

Proof. The probability density function, the cumulative distribution function, the

expected value and the partial expected value of the Lognormal distribution are well

known as follows: (Wikipedia, 2010):

f(x1 : µ1, σ1) =
1√

2πσ1x1

e
− (log x1−µ1)2

2σ2
1

F (x1 : µ1, σ1) = Φ
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E(X1) = eµ1+ 1

2
σ2

1

∫ ∞
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2
σ2

1Φ
(µ1 + σ2

1 − log k

σ1

)
.

Substituting these definitions into E[(X1 − E(X1))+] gives the following:

E[(X1 − E(X1))+] =

∫ ∞
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)
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Proof of Proposition 14

Proof. We note that the expected value E(X1) and c.d.f. F (x1) of the gamma

distribution are given as follows:

E(X1) =µ1 = nβ

F (x1) =

∫ x1
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The partial expected value E[(X1 − µ1)+] is given as follows:
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Proof of Proposition 15

Proof.

E[(X1 − µ1)+] =
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Proof of Proposition 16

Proof.

E[(max(X1, µ1) +X2 − d)+]

=
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Now, consider two cases as follow:

(i) X1 +X2 < h a.s.

P (X1 +X2 > h) = 0 a.s. and P (µ1 +X2 > h) = 0 a.s.

E[(max(X1, µ1) +X2 − h)+] ≈ 0.

129



(ii) |X1 +X2 − h| < ε, let X1 + µ2 = h and µ1 +X2 = h.
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The remaining term is simplified as follows:
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Proof of Proposition 17

Proof.
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Proof of Proposition 18

Proof.
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∫ ∞
µ1

(x1 − µ1)Φ(
x1 − µ1

σ2

)fX1(x1)dx1.

The second term of the above will be as follows:

∫ ∞
µ1

σ2√
2π
e
− (x1−µ1)2

2σ2
2 fX1(x1)dx1=

∫ ∞
µ1

σ2√
2π
e
− (x1−µ1)2

2σ2
2

1√
2πσ1

e
− (x1−µ1)2

2σ2
1 dx1

=
σ1σ

3
2

2π(σ2
1 + σ2

2)
.
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The last term will be as follows:

∫ ∞
µ1

(x1 − µ1)Φ(
x1 − µ1

σ2

)fX1(x1)dx1 =

∫ ∞
µ1

(x1 − µ1)
1√

2πσ1

e
− (x1−µ1)2

2σ2
1 Φ(

x1 − µ1

σ2

)dx1

=
[
− σ1√

2π
e
− (x1−µ1)2

2σ2
1 Φ(

x1 − µ1

σ2

)
]∞
µ1

+

∫ ∞
µ1

σ1√
2π
e
− (x1−µ1)2

2σ2
1

1√
2πσ2

e
− (x1−µ1)2

2σ2
2 dx1

=
σ1

2
√

2π
+

σ3
1σ2

2π(σ2
1 + σ2

2)

Thus, E[(max(X1, µ1) +X2− µ1− µ2)+] = σ1+σ2

2
√

2π
+ σ1σ2

2π
, which is increasing in σ2 at

fixed σ1.
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APPENDIX B

SUMMARY OF NOTATION

Notation for Chapter 3

Index Sets and Indices

M ORs m ∈M
N surgery specialties, (e.g., orthopedic, cardiovascular) n ∈ N
K compatible surgical specialties and ORs κ ∈ K
Mκ ORs dedicated to specialties n ∈ Nκ

Nκ specialties to be performed in ORs m ∈Mκ

D days (e.g., Monday through Friday) d ∈ D = {1, . . . , 5}

Parameters

Pn random, representative duration of each surgery

An forecast number of surgeries demanded each period

h standard OR-day

can penalties for each surgery of specialty n ∈ N that is not accom-
modated

cun penalties for under-usage of OR time relative to h

con penalties for over-usage of OR time relative to h

Decision Variables

Rn the number of OR days to which specialty n ∈ Nκ is allocated

Vn the number of representative surgeries requiring specialty n that are assigned each day
to each OR in set Mκ to which specialty n is allocated

Random Variables

Un := max(h− [Vn ∗ Pn], 0), under-usage of each OR day

On := max([Vn ∗ Pn]− h, 0), over-usage of each OR day

Ān := max(An − RnVn, 0), the number of patients requiring spe-
cialty n who are not accommodated

S̄n := min(An, RnVn), the number of patients requiring specialty
n who are accommodated
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Notation for Chapter 4

Index Sets and Indices

I sub-specialties i ∈ I
K sequence positions for time blocks k ∈ K
∆ permutations of time blocks δ ∈ ∆

Parameters

ce Earliness penalty cost

cl Lateness penalty cost

β Ratio of earliness cost to lateness cost, β = ce/cl

Bδ
[k] random block duration of kth block under sequence δ ∈ ∆

T δ[k] random block end time of kth block under sequence δ ∈ ∆

Decision Variables

xδ[k] planned block duration of kth block under sequence δ ∈ ∆

yδ[k] planned end time of kth block under sequence δ ∈ ∆

Notation for Chapter 5

Index Sets and Indices

J patients j ∈ J

Parameters

cw waiting time penalty cost

ci idle time penalty cost

co overtime penalty cost

h time block duration

tj ready-time associated with patient j ∈ J
Xj surgery duration for patient j ∈ J
W 2

1,2 := (X1 − t2)+, waiting time associated with the second surgery

I2
1,2 := (t2 −X1)+, idle time associated with the second

O1,2 := [max(X1, t2) +X2 − h]+, overtime

Zt21,2 objective function value for the case in which the sequence of surgeries is 1,2
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