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ABSTRACT 

 

The Antarctic Circumpolar Current (ACC) is well known for its multiple bands 

with large meridional property gradients in the upper waters, each associated with a 

deep-reaching current core.  A revised nineteen-year time series (1992−2011) of 

altimeter data from the CNES/CLS AVISO is analyzed to identify and trace the spatial 

distribution of ACC fronts.  Specific contours of sea surface height (SSH) are selected 

within narrow continuous bands of relative maxima SSH slope in the Southwest Atlantic 

Ocean sector, where they closely follow the distribution of ACC fronts derived from 

inspection of concurrent high-resolution profile data at hydrographic stations.  When 

applied to the full circumpolar belt, the frontal distribution derived from these new 

altimeter-based indicators also agrees well with the traces of current jets and in-situ 

dynamic height fields calculated from concurrent Argo profile data.    

The temporal variability of ACC fronts is analyzed in relation to dominant modes 

of atmospheric forcing variability in the Southern Ocean.  All three ACC fronts have 

experienced large seasonal to decadal variability throughout the satellite altimetry era.  

The general seasonal tendency for each of these jets, with respect to long-term mean 

positions, is to be located farther to the south during the austral summer and to north in 

the winter.  Circumpolar-mean annual frontal locations show a consistent linear trend of 

southward migration.  However, the estimated decadal variability of the frontal 

distributions is highly localized, and due to selective response mechanisms to 

atmospheric variability.  A persistent poleward drift of ACC fronts is observed in the 
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Indian sector consistent with increasing sea surface temperature trends.  In contrast, a 

vacillation in the meridional location of ACC fronts is observed in the Pacific sector in 

association to minor sea surface cooling trends.  Therefore, unlike in the Indian sector, 

the regional Pacific Ocean response is significantly sensitive to dominant atmospheric 

forcing indices. 

Mesoscale eddies derived from instabilities at strong current cores are 

successfully identified with specific SSH gradient criteria.  The new estimates of rings 

population in the Southern Ocean are tightly linked to interannual to decadal 

atmospheric variability.  Increased number of mesoscale eddies correlate with positive 

SAM forcing about two years earlier, or negative ENSO forcing two to three months 

earlier.  These cross-correlations might explain a prominent peak in rings abundance 

estimated during 2000 and 2001, and the short-lived maximum that appeared in 2010. 

There are no persistent trends in the estimated sea surface slope across Drake 

Passage, and therefore neither in the transport of the ACC.  High cross-correlation 

between the abundance of mesoscale eddies and atmospheric forcing suggests that the 

overall ACC system is in an eddy-saturated state.  However, Drake Passage positive sea 

level slope anomalies were two-year lagged with negative SAM forcing and with 

positive ENSO events.  These regional responses are characteristic of eastward-

propagating signals from a buoyancy-dominated Pacific sector of the Southern Ocean. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Antarctic Circumpolar Current System 

The Antarctic Circumpolar Current (ACC) is primarily driven by predominant 

westerly winds and is able to encircle Antarctica unconstrained by continents, therefore 

its flow represents an efficient zonal channel for seawater property.  The ACC also 

rapidly conveys regional climate signals to the adjacent ocean basins to the north.  The 

prominent downward tilt of isopycnal surfaces within the ACC facilitates the transfer of 

high latitude surface signals to mid-depths of low latitude regimes.  In this sense, the 

ACC system constitutes a key component of the global Meridional Overturning 

Circulation (MOC) [Sloyan and Rintoul, 2001; Toggweiler and Russell, 2008]. 

Upper waters carried eastward by the ACC are separated from relatively warmer 

subtropical regime waters by the Subtropical Front (STF) and from relatively colder 

subpolar regime waters by the Southern Boundary of the ACC (Bdy).  The ACC consists 

of three circumpolar jets [Orsi et al., 1995], from north to south: the Subantarctic Front 

(SAF), Polar Front (PF), and southern ACC front (sACCf).  Each of the ACC fronts 

separates narrow bands of relatively uniform water masses, and therefore the spatial 

distribution of the fronts correspond to sharp meridional gradients of water properties 

and steep isopycnals [Deacon, 1937; Nowlin and Clifford, 1982; Orsi et al., 1995; Belkin 

and Gordon, 1996; Cunningham et al., 2003].  In turn, this leads to jet-like deep-

reaching geostrophic current cores and large volume transport: 134 Sv (1 Sv = 106 m3s-1) 
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are carried by the ACC through Drake Passage, and mainly by the SAF (53 ± 10 Sv) and 

the PF (57.5 ± 5.7 Sv) [Cunningham et al., 2003].    

Frontal paths are mainly steered by prominent features in the ocean floor, in 

some places causing sharp meridional fluctuations to conserve potential vorticity 

[McCartney, 1976; Gille, 1994; Dong et al., 2006; Sallée et al., 2008], and they are also 

seemingly fixed along large-scale topographic features such as ridges, plateaus, and 

fracture zones.  However, recent studies [Sokolov and Rintoul, 2002, 2009a, 2009b; 

Dong et al, 2006; Sallée et al., 2008; Swart et al., 2010] have suggested that more 

intricate spatial distributions owing to selectively interact with the underlying 

topography: robust and persistent fronts are commonly observed over steep topography, 

whereas splitting of fronts into multiple filaments and substantial fluctuations are more 

evident over abyssal plains.  Over such plains, ACC fronts have undergone significant 

variability at a range of time scales, from less than three months to longer than a decadal 

[Sallée et al., 2008; Thompson et al., 2011].  Mechanism explaining these intricate 

frontal interactions and temporal variability are still unclear [Sokolov and Rintoul, 

2009b].  Teleconnection of tropical buoyancy forcing like ENSO to the Southern Ocean 

[L’Heureux and Thompson, 2006; Fogt et al., 2011; Ding et al., 2012] makes 

understanding the observed variability of the ACC system even more difficult.   

Small changes in the meridional location of ACC fronts not only directly have an 

impact on the net heat flux across the sea surface, but also indirectly affect the northward 

export of ventilated surface waters with Antarctic origin, feeding both the deep and 

bottom waters of the world ocean [Meredith et al., 2008; Gordon et al., 2011].  E.g., 
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compared to its climatological position [Orsi et al., 1995], fieldwork conducted in the 

austral summer of 2009 revealed a prominent poleward (2° of latitude) deflection of the 

sACCf path just east of the Shackleton Fracture Zone (Figure 1.1).  Similar southward 

migration of the Bdy was observed in the eastern Scotia Sea in response to low 

atmospheric pressure anomalies over the Weddell Sea [Meredith et al., 2008].  Steeper 

tilt of isopycnals within the Weddell Sea could prevent the coldest and densest outflows 

of Weddell Sea Deep Water (WSDW), but at the same time favor the overflow of lighter 

waters over the South Scotia Ridge [Meredith et al., 2008; Gordon et al., 2010].  

Oceanic responses to atmospheric variability like these affect the characteristics of 

bottom waters exported northward along deep western Boundary Currents in the 

Southern Hemisphere. 

By suppressing lateral (isopycnal) mixing in the top kilometer of the water 

column, the existence of a well-organized series of narrow and sharp density gradients 

around Antarctica acts as a dynamic bumper between the subtropical and subpolar gyres 

[Bower et al., 1985; Garabato et al., 2011].  Mesoscale eddies, however, play an 

important role in meridional exchange of waters across the ACC.  A frontal path 

deflected over rough topography tends to become unstable and to generate intensive 

rings on its wake.  The turbulent flow regime downstream of where ACC fronts interact 

with mayor topographic features constitutes an effective oceanic conduit for rings to 

cross from one climate region to another, thus carrying out significant meridional 

property transports. 
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Figure 1.1. Observed frontal shift during the austral summer of 2009.  Colored strait 

lines show the paths of the southern ACC front (red) and boundary (green) during the 

Antarctic Cross-Road Of Slope Streams (ACROSS) cruise in February−March 2009 (red 

dots), whereas the climatological frontal paths in Orsi et al. [1995] are shown as dashed 

lines.  

 

1.2 General Background 

1.2.1 Mapping of ACC fronts  

After Deacon [1937] tracked the northern limit of ACC waters by noticing a 

band (his Subtropical Convergence) enhanced surface temperature and salinity gradients, 

studies of ACC frontal distribution and their relationships to upper water masses 

followed more naturally based on modern hydrographic data [Nowlin and Clifford, 1982; 

Orsi et al., 1995; Peterson and Whitworth, 1989; Trathan et al., 2000; Garabato et al., 
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2002; Sokolov and Rintoul, 2002; Sprintall, 2003; Garabato et al., 2009].  For the first 

time, Orsi et al. [1995] mapped three continuous deep fronts within the domain of 

circumpolar streamlines, and provided a series of specific property indicators of each of 

them.  Note, however, that their climatological frontal distribution were based on a 

limited number of sections with coarsely spaced summer stations, and thus with a 

seasonal biased from the source historical hydrographic data.  Drake Passage is the 

location of the Southern Ocean with the most heavily repeated transects of high-density 

Acoustic Doppler Current Profilers (ADCP) and Expandable Bathy Thermograph (XBT) 

data.  By using these observed data, but Lenn et al. [2007] still found that subsurface 

criteria given in Orsi et al. [1995] are in general in accordance with the location of 

current jets.    

Following Orsi et al. [1995], the canonical location of the SAF is marked by the 

rapid diving of cold, fresh Antarctic Surface Water (AASW) to the north, feeding the 

salinity minimum layer of the Antarctic Intermediate Water (AAIW).  In certain areas 

just north of the SAF winter subduction of Subantarctic Surface Water (SASW) forms 

Subantarctic Mode Water (SAMW), which is characterized by oxygen maximum and 

potential vorticity minimum cores right above the AAIW.  The steep plunge of surface 

properties to depths greater than 400 m is a robust indicator of the SAF.  The PF is 

frequently identified as the northern limit to a subsurface tongue of temperature 

minimum from the AASW; specifically the PF location is indicated by the trace of the 

2°C isotherm at 200 m.  While the SAF and PF separate distinct surface water masses, 

the sACCf is indicated by a narrow property gradient at relatively deep levels.  It is 
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generally associated with the southernmost extension of the 1.8 °C isotherm along the 

deep temperature maximum of Upper Circumpolar Deep Water (UCDW).  The 

transitional band where the shoaling UCDW oxygen minimum signal crosses 200 m and 

enters the much colder, well-mixed and ventilated surface waters of the Subpolar regime, 

is used to mark the location of the southern Bdy.  Although sometime found adjacent to 

or even merged with the sACCf, the Bdy is not a current core with enhanced kinetic 

energy nor a peak in the sea surface height gradient.  In some places the southern Bdy of 

the ACC is located very close to the continental margins and within a narrow band of 

sluggish flow, with the strong westward-flowing Antarctic Slope Current (ASC) 

immediately to the south.   

To overcome the spatial and temporal restrictions inherent to in-situ 

hydrographic data, remotely sensed sea surface temperature (SST) [Moore et al., 1999; 

Dong et al., 2006], chlorophyll [Sokolov and Rintoul, 2007b], and height (SSH) [Gille 

1994, Sallée et al., 2008; Sokolov and Rintoul, 2002; 2007a; 2009a; 2009b; Swart et al., 

2008b; Billany et al., 2010] are used to trace bands with enhanced property gradients 

associated to particular ACC fronts, e.g. a maximum SST gradient tracks the PF location 

[Moore et al., 1997; 1999; Dong et al., 2006].  However, these remote sensing based 

methods do not resolve the characteristic subsurface property gradients of the PF, 

normally located farther to the south of their surface expression, and much larger 

discrepancies are found over the vast abyssal plains [Dong et al., 2006].  From the 

analysis of satellite data it is also technically difficult to distinguish ACC fronts from the 

mesoscale rings frequently generated from their interaction with bottom topography.   
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Studies of altimeter SSH data have found that ACC fronts are tightly aligned 

with a nearly consistent set of SSH values, even though exhibiting complex temporal 

and spatial variability.  In general, their results agree well with the climatological frontal 

distributions from Orsi et al. [1995].  In their global synthesis of fifteen years of SSH 

gradients, Sokolov and Rintoul [2009a] identified nine filaments to represent the ACC, 

and reported that detecting the Bdy is not feasible due to relatively low kinetic energy 

and large errors in SSH data near the Antarctic margins [Sura and Gille, 2010]. 

Sallée et al. [2008] used SSH and available hydrographic data, including Argo 

and the World Ocean Circulation Experiment (WOCE) Southern Ocean database 

(SODB), to track the SAF and PF.  However, not derived was the mean path of the SAF 

as it turns sharply to the northward and forms the Brazil-Falkland Confluence Zone, 

presumably due to increased statistical error, and therefore excluded the western South 

Atlantic in assessing frontal responses to atmospheric forcing variability. 

 

1.2.2 Oceanic variability due to atmospheric forcing 

The ACC system exhibits significant long-term trends and interannual 

fluctuations in its volume transport, mesoscale eddy field, and meridional distribution of 

fronts [Cunningham et al., 2003; Hogg and Blundell, 2006; Böning et al., 2008; Gille, 

2008; Sprintall, 2008; Sallée et al., 2008; Swart et al., 2008b; Sokolov and Rintoul, 

2009b; Billany et al., 2010].  These oceanic changes have been explained in relation to 

the two most dominant climate modes of atmospheric variability: changes in the 

symmetric global winds system, known as Southern Annular Mode (SAM) [Thompson 
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and Wallace, 2000; Marshall et al., 2009], and in the Pacific sector perturbations of sea-

level pressure, temperature, and sea ice remotely triggered by the El Niño-Southern 

Oscillation (ENSO) [Smith and Sardeshmukh, 2000]. 

 

a. Wind-driven variability 

A positive SAM index anomaly indicates that the southern subpolar westerly 

winds intensify and contract toward the pole relative to their long-term mean position.  

The characteristic changes in atmospheric and oceanic circulation during positive SAM 

are displayed in Figure 1.2.  The most noticeable change is enhanced meridional 

temperature gradients both in the atmosphere and within the ocean interior.  Among the 

expected changes in an ACC system due to the gradient are more vigorous currents due 

to increased wind energy input and a concurrent poleward drift in all frontal positions. 

Such direct oceanic responses are supported by simulations from numerical climate 

models [Hall and Visbeck, 2002; Sen Gupta and England, 2006] and Drake Passage 

transport estimates from direct subsurface pressure measurements [Meredith et al., 2004].  

Overall they imply that the Southern Ocean is a buoyancy-dominated regime, and that 

ACC transport is linearly related to wind stress. 

Simulations from eddy-resolving models [Hallberg and Gnanadesikan, 2006; 

Meredith and Hogg, 2006; Hogg et al., 2008; Screen et al., 2009; Farneti and Delworth 

2010] and eddy kinetic energy (EKE) fields derived from satellite altimetry data 

[Morrow et al., 2010] conclude that mesoscale rings, as a delayed response, release the 

additional momentum from changing winds.  They showed a peak in EKE about two-
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three years after a positive peak in the SAM index, with minimal change in transport and 

frontal locations, implying that the Southern Ocean is an eddy-saturated regime.   

 

 

Figure 1.2. Schematic atmospheric changes and oceanic responses during positive 

Southern Annular Mode months from Thompson et al. [2011].  Red (blue) shading 

indicates warming (cooling).  Solid arrows mean meridional or vertical motions.  

 

Temporal variability in ACC frontal locations has been explained by two 

conflicting arguments, i.e. by overall symmetric poleward drifts, and by regional 

asymmetric responses to intensified westerly winds.  Sokolov and Rintoul [2009b] 

estimated that the mean position of all the ACC fronts experienced a concurrent 

poleward migration of about 60 km, consistent with the pronounced hemispheric 
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warming and freshening of waters at surface to mid-depth levels since the 1950s [Aoki et 

al., 2003; Gille, 2008].  Based on reconstructed hydrographic data fields, Böning et al. 

[2008] determined a significant warming and freshening at 800 m – 1,000 m within the 

Polar Front Zone (PFZ), which they attributed to the ~50 m subsidence of isopycnals 

induced by the ~50 km–80 km poleward shift of the SAF and PF.  

In contrast, Sallée et al. [2008] revealed an asymmetric frontal response to the 

same symmetric variability in the wind systems, especially for a high frequency domain 

(less than three months).  During positive SAM anomalies, even though a poleward 

frontal migration is also shown in the Indian-Atlantic sector, an opposite equatorward 

migration was found in the central Pacific, and a stationary scenario (no apparent 

response) was apparent in the area between the Indian and Pacific sectors.  They 

explained this asymmetric oceanic response by means of the Ekman transport induced 

by the wind anomalies.  According to the Ekman theory, as depicted in Figure 1.2, 

stronger westerlies (i.e. during +SAM) generate an anomalously large northward Ekman 

transport sustained by enhanced upwelling at high latitudes, which results in the further 

uplifting of isopycnals and a negative sea level anomaly (SLA).  At low latitudes, an 

intensified Ekman convergence causes anomalous downwelling, further deepening of 

isopycnals and elevating sea level.  Along their paths around Antarctica, ACC 

streamlines are subject to different Ekman regimes.  On their transit through the Pacific 

(Indian−Atlantic) sector, where northward (southward) Ekman transport is predominant, 

a northward (southward) migration of the ACC may result.  However, relatively low 

correlations between the SAM index and the inferred frontal positions [Sokolov and 
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Rintoul, 2009b; Boehme et al., 2008], as well as the unresolved higher frequency 

responses (with periods shorter than three months), indicate a more hardwired frontal 

response to changes in wind types.   

 

b. ENSO-driven variability 

ENSO is a tropical phenomenon due to ocean-atmospheric interactions with a 

main frequency of two to seven years.  ENSO signals are transferred to the Southern 

Ocean by Rossby wave-trains.  They trigger a positive SLP anomaly (+SLPa) over the 

southwest Pacific during an El Niño period (+ ENSO) [Turner, 2004].  Winds rotating 

around the +SLPa enter bring relatively warm (cold) air from low (high) latitudes toward 

the area west (east) of the anomaly center.  Warmer (colder) air enhances (decreases) the 

heat flux across the sea surface, and results in a +SSTa (−SSTa) and a sea-ice retreat 

(advance) in the Pacific (Atlantic) sector [Kwok and Comiso, 2002] of the Southern 

Ocean.  The out-of-phase relationship in sea ice extent and SST between the Pacific and 

Atlantic sectors has been termed the Antarctic Dipole [Yuan, 2004].  These localized 

ENSO signals travel within the ACC domain and seem to dissipate after two to three 

years [Verdy et al., 2006]. 

The ENSO index quantifies the strength of ENSO events, and has experienced 

substantial variability on interannual-to-decadal time scales.  Between the 1920s and 

1960s, there were very few El Niño and La Niña events, except for a strong El Niño 

event between 1939 and 1941.  Since 1960 the ENSO index shows a tendency toward 



 

 12 

more frequent and stronger events, and consequently similar changes in the frequency 

and amplitude of the Antarctic Dipole.   

Sallée et al. [2008] indicate that low frequency variability in frontal positions has 

a much higher correlation with the ENSO index than with the SAM index.  This is 

particularly true in the Pacific sector of the Southern Ocean, where the ENSO response 

appears to be strongest.  

 

1.3 Overview 

This study investigates how the ACC system responds to atmospheric variability 

by looking at changes in the SST, SSH, frontal distributions, and mesoscale eddy fields.  

Data analyzed to address these questions are described in Chapter 2.  Characteristics of 

two main climate modes of atmospheric variability, and the SST responses are described 

in Chapter 3.  Chapter 4 introduces practical SSH indicators for the location of ACC 

fronts, validated against traditional water property indicators using concurrent high-

resolution in-situ hydrographic and Argo profile data.  The empirical relationship 

between variability in the ACC fronts and streamlines distribution derived from the 

analysis of altimetry data are also investigated.  A new climatological frontal path, 

inferred spatial and temporal variability are discussed in Chapter 5.  Chapter 6 describes 

the role of atmospheric variability on the observed frontal fluctuations, the spatial 

distribution and temporal evolution of mesoscale rings, and their responses to 

atmospheric change.  A summary of concluding remarks presented in Chapter 7. 
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CHAPTER II  

DATA AND METHOD 

 

2.1 Test Area 

ACC streamlines extend continuously around Antarctica but upon entering the 

Atlantic through Drake Passage, a chokepoint only about 7° of latitude wide (Figure 2.1), 

the Current’s hydrographic structure is squeezed and leads to intense frontal jets.  The 

paths are then more spread out in the south Atlantic, but still showing high topographic 

control.  Classic definitions of ACC fronts were based on water properties criteria first 

developed at Drake Passage [Nowlin and Clifford, 1982], and recently supported by 

current cores detected using subsurface current observations [Lenn et al., 2008].  In fact 

validation of Drake Passage frontal definitions has been confirmed almost everywhere in 

the Southern Ocean [Orsi et al., 1995].  In this study, I will seek empirical relationship 

between ACC fronts and sea surface streamlines in the southwest Atlantic area shown in 

Figure 2.1, and then apply them to the whole Southern Ocean.  This study take 

advantage of the large number of meridional hydrographic sections available in this area 

to test the accuracy of altimetry data while tracking ACC fronts (Figures 2.3). 

Test regions mainly consist of the Argentine Basin and the Scotia Sea, the latter 

showing several prominent topographic features and significant overall roughness 

(Figure 2.1).  Meridionally aligned ridges, i.e. Shachkleton Fracture Zone (SFZ), West 

Scotia Ridge (WSR), and South Scotia Arc (SSA), act as obstacles and steer the ACC 

northward to compensate for its loss of potential vorticity.  The zonally aligned 
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Figure 2.1. (a) Bottom topography (m) and (b) roughness (m) using 1-minute dataset 

[Smith and Sandwell, 1997].  Right panels show the detailed features within the test area 

(the blue box in the left panel).  The thin black line in the upper panel indicates the 2,500 

m isobath. 
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South Scotia Ridge (SSR) prevents newly ventilated deep and bottom waters from 

getting into the Scotia Sea directly from the Weddell Sea.  Maurice Ewing Bank (MEB) 

and South Georgia Island (SGI) are also important topographic obstacles to ACC 

streamlines, whose interaction generates frequent mesoscale rings [Meredith et al., 2003; 

Thorpe et al., 2002].  Also the large-scale and steep continental slope off Argentina 

effectively constrains the path and reduces the variability of the SAF [Gordon et al., 

1978; Dong et al., 2006; Sallée et al., 2008; Sokolov and Rintoul, 2009a].  In contrast, 

the test area south of Australia in Sokolov and Rintoul [2003; 2007a] is a rather wide 

gateway characterized by a relatively flat ocean floor, therefore the weak and multiple 

current filaments found in that region, as opposed to a robust and persistent frontal 

structure. 

The Argentine Basin is characterized by the confluence of waters carried 

northward along the SAF and southward by the Brazil Current, and I will investigate the 

influence of Atlantic tropical waters on the ACC system variability.  Contours of SSH 

are reliable indicators of sea surface streamlines, i.e. water parcels tend to follow the 

path of specific streamlines unless influenced by different source waters [Swart et al., 

2010]. 

 

2.2 Data 

2.2.1 SSH 

Absolute SSH is calculated by adding the Mean Dynamic Topography (MDT) to 

SLA fields obtained from CNES/CLS AVISO (http://www.aviso.oceanobs.com, [Ducet 
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and Le Traon, 2001]).  A weekly time series of SSH between 14 October 1992 and 19 

January 2011 was analyzed on a Mercator grid with zonal (meridional) resolution of 1/3° 

(1/6°, 18.5 km) at the Equator (60°S).  There is an up-to-dated (UTD) SLA product 

produced by merging all available missions from the TOPEX/Poseidon, the European 

Remote Sensing (ERS) satellite, Geosat, Jason-1, and Environmental Satellite (Envisat) 

[AVISO, 2009].  Lenn et al., [2008] noted that geostrophic current anomalies calculated 

from the recently revised UTD was more consistent with ADCP observations than the 

AVISO’s previous data set, which significantly underestimates the total variance, and 

only represents 3% of the variability at the wavelengths less than 100 km, which is a 

characteristic length for mesoscale eddies dominant in this study region.  Thus, this 

study uses the recently revised UTD data sets generated though an upgraded 

parameterization and editing process, which results in accuracy an improvement in 

accuracy, particularly along the coastal area [AVISO, 2009].   

This study takes advantage of recently released MDT_CNES_CLS09 [Rio et al., 

2009] from CNES/CLS AVISO for MDT data.  This data set was calculated based on 

4.5 years of GRACE data combined with fifteen years of altimetry and in-situ data (from 

hydrographic and Argo floats) relative to a seven-year (1993−1999) mean profile on a ¼° 

grid resolution.  Sokolov and Rintoul [2007a] suggested that the location of fronts is 

insensitive to the choice of climatological MDT maps.  However, climatological frontal 

positions chiefly depend on the MDT field because the long-term average of SLA 

approaches to zero.  Therefore, Lenn et al. [2008] emphasized that large discrepancies 

among climatological paths are likely due to the choice of MDT fields (see their figure 
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7).  According to the thermal wind balance, SST and SSH fields should resemble each 

other, and the MDT_CNES_CLS09 fields show higher coherence with the mean SST in 

our study area than MDTs used in the previous studies [Sallée et al., 2008; Sokolov and 

Rintoul, 2009a].  Here, the area-averaged root mean square (RMS) of objective-mapping 

error in the SLA is 1.84 dyn cm (Figure 2.2b), and most remarkable is just south and 

north of the ACC.  Errors increase up to 5 dyn cm along the Antarctic Peninsula due to 

inadequate data points for the mapping; and the maximum (8 dyn cm) around the 

Zapiola Anticyclone is likely the localized complex mesoscale eddy activity.  Also, the 

objective interpolation assuming a Gaussian type of data distribution for the probability 

distribution function (PDF) is a large source of these error fields [Sura and Gille, 2010], 

since it can wipe out extreme events, e.g. mesoscale eddies near the continental margin, 

thus, skewing the sea level distribution.  However, the overall RMS errors within the 

ACC are less than 1 dyn cm, i.e. minimal compared to the total surface change of about 

110 dyn cm, thus supporting the satellite altimetry use to reliably indicate ACC frontal 

positions.  

 

2.2.2 CTD profiles 

To validate whether a single value of SSH matches a particular ACC front, as 

identified based on in-situ properties [Orsi et al., 1995], this study examines all the 

available high-quality hydrographic data during the span of the SSH time series in the 

study area (Table 1, Figure 2.3).  It provides good spatial coverage and consists of 614 

CTD stations from 16 cruises by the US, Chile, and the UK extracted from the Southern 
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Ocean Data Base (available online at http://woceatlas.tamu.edu).  Although most cruises 

were conducted during the austral summer, more than a third of the total CTD stations 

(DOVETAIL, ALBATROSS, and A23) were from the fall or winter seasons, thus giving 

us confidence that the observed relationship between SSH and ACC fronts are not 

seasonally biased.   

 

2.2.3 Argo floats and drifters 

In addition to horizontal current maps, a total of 9,912 Argo profiles (Figure 2.3) 

from February 2002 to May 2010 were investigated (available at 

http://www.coriolis.eu.org) to study the spatial correspondence in remote sensing  

 

Figure 2.2. (a) The time-averaged map of absolute dynamic topography (dyn cm) and (b) 

its root mean square errors (dyn cm).  The overlaid white lines are the −3.5, −61, −98.5, 

and −114 dyn cm SSH contours, which represent the SAF, PF, sACCf, and Bdy 

respectively in this study (see text). 
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Table 1. Summary of the Cruises Used in This Study 

 

dynamic height and in-situ observations.  Argo profiles cover almost the whole area 

without seasonal bias, thus providing unique in-situ observational information in space 

and time.  Floats normally profile down to 2,000 m every 10.5 days, and drift at a 

parking level of 1,000 db.  Errors in displacement, and hence, in the estimation of deep 

Cruises Nation Vessel Date # of Stations 

A11 UK Discovery Dec. 1992 – Feb. 1993 41 

SR1a 1993 Chile Vidal Gormaz Nov. 1993 17 

SR1b 1993 UK James Clark Ross Nov.1993 30 

SR1a 1994 Chile Vidal Gormaz Nov. 1994 18 

SR1b 1994 UK James Clark Ross Nov. 1994 28 

A23 UK James Clark Ross Mar. – May 1995 50 

SR1a 1995 Chile Vidal Gormaz Dec. 1995 17 

SR1b 1996 UK James Clark Ross Nov. 1996 29 

SR1a 1996 Chile Vidal Gormaz Nov. – Dec. 1996 15 

SR1b 1998 UK James Clark Ross Dec. 1997– Jan. 1998 38 

DOVETAIL UK N. B. Palmer Aug. – Sep. 1997 45 

SR1a 1998 Chile Vidal Gormaz Dec. 1998 14 

ALBATROSS UK James Clark Ross Mar. – Apr. 1999 170 

SR1b 2000 UK James Clark Ross Feb. 2000 29 

SR1b 2002 UK James Clark Ross Dec. 2002 – Jan. 2003 30 

A16S USA Ronald H. Brown Jan. – Feb. 2005 47 
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current velocity are generally less than 0.5 cm/s [Park et al., 2005], which is one or two 

orders smaller than the deep ACC currents in this study region (Figures 4.7, 4.8, and 

5.1b).  This study used profiles deeper than 400 m that passed the Argo real-time quality 

control.  Remaining outliers and spikes were removed by checking the overall data 

ranges (126 data points; T ≥ 35°C and T ≤ −2°C, S ≥ 37 and S ≤ 10, P ≥ 2,100 db), 

standard deviations (7,621 data points; ≥ 3.5 σ), and neutral density instabilities (815 

data points; ΔN <−0.01 Kg/m3).  A final total of 8,147 Argo profiles were analyzed in 

this study. 

Surface velocity data was derived from 466 satellite-tracked surface drifting 

buoys drifters (Grodsky et al. [2011]; available at http://www.coriolis.eu.org) passing 

through this region between 2002 and 2011.  Drifter geographic position has an accuracy 

of 0.01° for a fixed time interval ranged between twenty-five minutes to twenty-four 

hours. 

 

2.2.4 SST 

SST data was analyzed to monitor sea surface variability due to atmospheric 

forcing.  The SST data source is an objectively interpolated SST data generated mainly 

from the AVHRR infrared satellite corrected using available in-situ data, including 

shipboard observations and buoys, and is available from the National Oceanic and 

Atmospheric Administration (NOAA) [Reynolds et al., 2007, 

http://www.ncdc.noaa.gov/oa/climate /research/sst/oi-daily.php].  Daily SST fields have 
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a spatial grid resolution of ¼° from September of 1981 to the present, thus spanning the 

SSH data period. 

 

Figure 2.3. Temporal and spatial distribution of the hydrographic profiles.  Squares show 

the location of analyzed a total of 610 CTD stations from 16 hydrographic cruises color-

coded by time.  Circles show the position of 9,912 profiles of ARGO floats passing 

through this region since 2002.  The thin black lines indicate the 2,500 m isobath. 

 

2.2.5 SAM and ENSO indices 

This study analyzes indices of two dominant climate modes of atmospheric 

variability in the Southern Ocean: the SAM index [Marshall, 2003, downloaded from 

http://www.nerc-bas.ac.uk/icd/gjma/sam.html] and a bivariate ENSO index [Smith and 

Sardeshmukh, 2000; downloaded from 
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http://www.cdc.noaa.gov/people/cathy.smith/best], whose details are discussed in the 

next chapter.   

 

2.3 Wavelet Analysis 

To investigate the dominant and most consistent frequencies in the source time 

series, spectral analysis methods such as Fast-Fourier Transformation (FFT) has 

traditionally been used under the assumption of stationary phenomena.  However, the 

observed geographic data sets often have significant time-dependent frequencies.  E.g. a 

a non-stationary time series like Niño 3 SST [Torrence and Compo, 1998] has the most 

power within the 2−8 year band, but also a reduced power period 1920−1960 between 

the two enhanced power periods (1985−1920 and 1960−1990).  This shows that wavelet 

spectral analysis is a useful tool in studying dominant frequencies and their time 

evolution.  Time series data in this study are sampled ( , n=1,2,… N; time index) at 

equal intervals (δt), e.g. atmospheric indices and frontal variability, and therefore 

suitable for examination following the practical wavelet analysis guide by Torrence and 

Compo [1998].  

This method breaks down a time-series into time-frequency space through a 

mathematical function called a wavelet, which plays the role of a band pass filter in the 

time-series.  The Morlet wavelet ( ) is suggested in the Wavelet toolbox developer’s 

manual, to capture general features of geophysical data sets [Moore et al., 2005].   is 

complex, thus the wavelet transform ( ) returns real and imaginary parts as a 

function of a wavelet scale (s).  The wavelet power spectrum is defined by multiplying 

xn

!

!

Wn (s)
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the real and imaginary parts of the wavelet transform: the square of the amplitude of the 

wavelet transform ( ).  The smallest resolvable scale (s) of the wavelet (2 δt) is 

used to obtain the finest resolution.  In this study, the common shortest temporal interval 

is a month, so 2 months is the resolvable wavelet scale.  In order to reduce edge effects 

at the beginning and end of the power spectrum, zeros are padded to the data prior to the 

wavelet transformation, and then are removed after analysis.  This technique introduces 

discontinuities at the start and end points, thus the amplitude near the edge is decreased.  

The cone of influence (COI) is defined as the region of the wavelet power spectrum 

where the edge effects are not negligible.  Thus, a peak in the wavelet spectrum lying 

below the COI may be generated artificially due to the zero padding effect. 

To examine the statistical significance in the wavelet power spectrum, time series 

are modeled assuming red-noise using the univariate lag-1 autoregressive process (AR1) 

, where is calculated with lag-1 and lag-2 autocorrelations of the data set, 

and is a random variable from a Gaussian-type white noise.  A background power 

spectrum is transformed with a modeled time-series.  The 95% confidence levels are 

determined by multiplying the background red-noise modeled spectrum by the 95% 

value for chi-squared.  The computed wavelet power spectra are simply averaged over 

the whole time period and defined as a global power spectrum, .  

Thus it can help to discern consistent spectrum peaks.   

 

Wn (s)
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CHAPTER III   

ATMOSPHERIC FORCING AND SEA SURFACE RESPONSE 

 

3.1 Climate Indices 

3.1.1 SAM 

Changes in the Southern Hemisphere winds have been monitored over time by 

means of particular indexes.  The SAM index indicates their general strength and is often 

calculated as the meridional difference of normalized mean sea level pressure (SLP) 

between mid (40°S) and high (65°S) latitudes [Gong and Wang, 1999].  Because it is the 

dominant atmospheric mode of variability, SAM index is also represented by the first 

principal component (PC) in the EOF of reanalysis SLP data south of 20°S, e.g. 

NCEP/NCAR and ERA-40 [Thompson and Wallace, 2000].  However, quality of 

reanalysis SLP data was low prior to 1979 and with relatively large errors due to scarcity 

of in-situ [Bromwich and Fogt, 2004].  To represent Southern Ocean wind forcing we 

adopt the more reliable SAM index in Marshall [2003] (Figure 3.1a), which is computed 

from differences in measured SLP at six station pairs [Gong and Wang, 1999] and still 

captures most of the variability in the PC-based index [Jones et al., 2009]. 

The monthly SAM index shows high frequency variability, and even though the 

mean wavelet spectrum (Figure 3.1c) shows statistically significant peaks (>95% 

confidence level) at periods of six months and one year, there are no continuous bands in 

the modulus (Figure 3.1b) to indicate that they are not stationary over time.  A decadal 

trend with increasing values from 1964 to 1999 is apparent in the 3-yr filtered time series 
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(green line of Figure 3.1a), with separate relative peaks in 1962/63 and 1939 (not shown) 

and also weaker trends [Jones et al., 2009], implying that there is certain natural 

variability in the winds system [Jones and Widmann, 2004; Arblaster and Meehl, 2006].  

The sharp downward spike in the SAM index in 1964 was associated to the eruption of 

tropical Mt. Agung in the previous year [Marshall, 2003], by decreasing mid-latitude 

temperature and sea level pressure.  In contrast, the recent decadal positive trend 

(1964−1999) is attributed to an increase in anthropogenic greenhouse gases [Marshall et 

al., 2004], the ozone depletion over Antarctica [Thompson and Solomon, 2002], or a 

combination of the two. 

 

Figure 3.1. (a) Monthly time series with the three-year low-pass filtered curve (green); (b) 

power spectrum of the wavelet analysis using the Morlet wavelet; and (c) mean power of 

the global spectrum for the SAM index since 1957.  The solid black (b) and dashed blue 

lines (c) indicate the 95% significance level.  The dashed black line in (b) is the cone of 

influence. 
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3.1.2 ENSO 

ENSO variability has traditionally been estimated based on two independent 

properties: the Niño 3.4 SST index for the oceanic component and the Southern 

Oscillation Index (SOI) for the atmospheric component.  The Niño 3.4 SST index is 

calculated using an area-averaged monthly SST over the Niño 3.4 region (120°−170°W, 

5°N−5°S), while the SOI index is calculated from the SLP difference between Tahiti and 

Darwin.  Although there is a high coherency between the two indices, they do not fully 

represent the ocean-air coupled characteristics of the ENSO [Torrence and Webster, 

1999].  To overcome such limits, Smith and Sardeshmukh [2000] introduced a Bivariate 

ENSO Time series (BEST) index (Figure 3.2a), calculated by averaging the separately 

standardized SST and SOI time series. 

The BEST shows a statistically significant variability in the 2 – 6 year band, with 

clear peaks at 3.8 years and 5.5 years (Figure 3.2c).  Also ENSO events have become 

more intense, frequent, and prolonged since the 1960s implying enhanced impact on the 

Southern Ocean in recent decades.  Time segments for which relatively high power is 

estimated at 95% confidence level (within black contours in Figure 3.2b) are those 

before 1920 and after 1960 [Torrence and Webster, 1999], but separated by the low-

power 1920−1960 period.  This pattern indicates decadal variability in the ENSO, as 

shown for the Niño3 SST index by Torrence and Compo [1998].  
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Figure 3.2. Same as Figure 3.1 but for ENSO index since 1871 with a one year low pass 

filtered line (green). 

 

3.2 Index Interactions  

Relatively strong cross-correlation between ENSO and SAM indexes has been 

reported in recent studies.  L'Heureux and Thompson [2006] found that 25% of SAM 

variability has a significant linear relationship with fluctuations in the ENSO index, 

especially during the austral summer.  The strong 1999 La Niña (2002 El Niño) was 

concurrent with the positive (negative) SAM peak during 1998−1999 (2002−2003).  

Even though the processes represented by the SAM and ENSO indexes are independent, 

the apparent resemblance in the out-of-phase patterns of SST responses (see Figure 3.5) 

may imply a cause and effect relationship between the two main modes of atmospheric 

variability.  We explore potential relationships and statistical significance between these 

two indices by plotting their joint probability distribution ( ) in Figure 3.3, P(! 2 )
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following Fogt et al. [2011], and chi-squared values for the observed and expected 

number of events in a specific region.  The expected number is simply calculated with a 

marginal probability assuming the null distribution, which is reasonable with more than 

5 events for each region.  E.g. large  with  smaller than 0.05 means there are 

substantial differences between the observed and expected events.  Each region is 

separated by ± 0.5 standard deviation of index values.  Events inside of the ± 0.5 of each 

index imply weak and neutral cases, and an event outside means strong and anomalous 

cases.  In general, Figure 3.3a reproduces well-known features [Fogt et al., 2011; 

L’Heureux and Thompson, 2006; Fogt and Bromwich, 2006].  Most notable is a 

preference for positive SAM events (+SAM) during La Niña, which means that the 

combination of +SAM/La Niña occurs more times than expected.  For this combination, 

instead of the 53.4 expected events, 65 actually happened over the last fifty years.  On 

the other hand, for both of the −SAM/La Niña and La Niña only combinations there 

were less observed than expected event. 

Fogt et al. [2011] found the highest correlation between atmospheric indices 

during the austral summer season (December−February, DJF).  Although we find a 

similar summer −SAM preference for El Niño (Figure 3.3b), it is with no statistical 

significance since our calculated chi-squared probabilities (0.17 for four seasons, 0.15 

for the austral summer, and 0.51 for the other three seasons, all since 1957) are much 

higher than in their study and the threshold for statistical significance (e.g. 0.05).  This 

indicates that any cause and effect relationship between SAM and ENSO would only be 

weak or with no statistical significance.   

! 2 P(! 2 )
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ENSO events may influence the SAM index as follows.  An ENSO-induced SLP 

anomaly in the south Pacific may lead to a change in the meridional SLP gradient, which 

in turn modifies the zonal westerly winds.  However, such effect is likely only local in 

extent, thus not strong enough to induce hemispheric-scale wind anomalies.  It is likely 

that the difference in source index alone, i.e. Nino 3.4 SST rather than BEST, may have 

limited the ability to represent the atmospheric component of ENSO in Fogt et al. [2011]. 

 

Figure 3.3. The distribution of monthly SAM and ENSO indices (a) during four seasons, 

(b) the austral winter, and (c) the other seasons since January 1957 with nine distinct 

regions.  The gray shaded region represents ± 0.5 of each index.  The first (second 

italicized) number within brackets is the total number of observed (expected) count of 

events for each region.  The expected numbers of events are calculated based on the 

marginal probabilities. 

 

Table 2 summarizes the temporal evolution of SAM and ENSO indices.  More 

frequent +SAM anomalies and strong ENSO (either El Niño or La Niña) events are seen 

after October 1992, whereas at the same time the cases of neutral ENSO and −SAM   
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Table 2. Number Of Months Based On the Joint ENSO−SAM Distribution Over January 

1957−September 1992 And October 1992−November 2009; Each Percentage Within the 

Brackets Represents a Fraction Of the Total Events For Easy Comparison Between 

Different Time Periods. 

 

Regions Definitions Jan. 1957 – 
Sep. 1992 

Oct. 1992 – 
Nov. 2009 

+SAM SAM > 0.5 113 (28.3%) 84 (41.0%) 

Neutral |SAM|<0.5 133 (33.3%) 82 (40.0%) 

−SAM SAM < 0.5 153 (38.4%) 39 (19.0%) 

El Niño ENSO >0.5 139 (34.8%) 86 (42.0%) 

Neutral |ENSO|<0.5 152 (38.1%) 55 (26.8%) 

La Nina ENSO <0.5 108 (27.1%) 64 (31.2%) 

−SAM/El Niño ENSO >0.5 SAM<−0.5 53 (13.3%) 18 (8.8%) 

El Niño only ENSO >0.5 |SAM|<0.5 50 (12.5%) 35 (17.1%) 

+SAM/El Niño ENSO>0.5 SAM>0.5 36 (9.0%) 33 (16.1%) 

−SAM only |ENSO|<0.5 SAM<−0.5 65 (16.3%) 12 (5.9%) 

Neutral |ENSO|<0.5 |SAM|<0.5 43 (10.8%) 24 (11.7%) 

+SAM only |ENSO|<0.5 SAM>+0.5 44 (11.0%) 19 (9.3%) 

−SAM/La Niña ENSO<−0.5 SAM<−0.5 35 (8.8%) 9 (4.3%) 

La Niña only ENSO<−0.5 |SAM|<0.5 40 (10.0%) 23 (11.2%) 

+SAM/La Niña ENSO<−0.5 SAM>0.5 33 (8.3%) 32 (15.6%) 

 

have significantly decreased.  Consequently, there were also more (less) months with 

+SAM/+ENSO and +SAM/−ENSO (−SAM/+ENSO, −SAM/−ENSO, and −SAM only) 

combinations during the past two decades.  Therefore, it is not clear if there is recent 
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preference for events with opposite signs as suggested by Fogt et al. [2011], in which 

case it likely would have happened by chance or biased by the more recent +SAM 

anomalies due to ozone depletion and anthropogenic warming. 

 

3.3 SST Response 

To infer the spatial distribution of the total temperature change at the sea surface 

in the past three decades, Figure 3.4a shows the overall linear change in SST anomaly 

(SSTa), after removing both the record-length mean and its seasonal cycle from SST 

data between 1981 and 2010.  It clearly shows that (a) the Subtropical regime (mid-

latitudes) has warmed on average by about 0.5°C, at a pace about three times larger than 

the global mean trend (0.62°C/100yr) in Wu et al. [2012], (b) the largest warming of up 

to 1.5°C is found east of New Zealand, as noted by Chambers et al. [1997],  (c) there is 

warming exceeding 1°C at all the subtropical Western Boundary Current (WBC) 

systems, and (d) the high-latitude band reveals a net cooling trend.   

Significant surface warming along WBCs has been inferred from various 

reconstructed and reanalysis SST products [Wu et al., 2012], but at rates two to three 

times lower than shown here.  Similar to our estimated net warming along the Agulhas 

System are those reported warming rates (for 0° and 35°E and the past 30−40 years) in 

recent syntheses of model simulations, satellite and in-situ hydrographic data [Alory et 

al., 2007; Biastoch et al., 2009; Rouault et al., 2009].  It is likely that the wind system 

changed in recent decades, causing an intensification of the wind stress curl over the 

Indian subtropical gyre and a poleward drift of the maximum westerly winds.  Such 
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anomalous wind stress curl pattern would accelerate the Agulhas Current, thus carrying 

more heat available to leak, in the form of warm core rings, into the South Atlantic and 

into the ACC.  The latter is by eddies shed at the Agulhas Return Current (ARC), so that 

the warm anomaly signal could reach to as far east as the Kerguelen Plateau (66°E – 

70°E), where the distinct core of the ARC has already faded away [Lutjeharms and 

Ansorge, 2001].  Concurrent southward displacement of the zero wind stress curl line 

[Biastoch et al., 2009; Beal et al., 2011] is the effective expansion of an Agulhas 

Retroflection and ARC more prone to leak warm Indian waters.  In turn, such induced 

warming of the South Atlantic interior intensifies the Brazil Current, and eventually the 

entire Atlantic Meridional Overturning Circulation (AMOC) [Lee et al., 2011].  This 

interaction, also called the Indian-Atlantic supergyre [de Ruijter et al., 1999; Ridgway et 

al., 2007], constitutes a positive feedback to further warming within the mid-latitudes.  

Another likely consequence of an expanded supergyre is the poleward contraction of the 

ACC frontal system.   

A clear overall cooling trend is observed at high latitudes, and even more 

pronounced when the SSTa time series is divided as illustrated in Figure 3.4c.  In 2011, 

mid-latitude waters were on average 0.5°C warmer than in 1981 (r=0.78), whereas the 

cooling of high-latitude waters was negligible (−0.03°C) and poorly correlated (r=0.06) 

to the linear regression line.  This implies substantial interannual variability in the ACC 

regime, likely modulated by a repeat pattern of gradual cooling followed by abrupt 

warming.  The first decade (1981−1990) cooling rate was rather gradual (−0.12°C/10yr) 

and interrupted by the abrupt warming of about 0.6°C in less than two years (January 
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1991 to December 1992).  The second cooling period was relatively shorter (~8 years) 

but stronger (−0.7°C/10yr), reaching a minimum in January 2000, before switching 

again to an abrupt warming of 0.8°C in just half a year.  By June 2000, any renewed 

cooling period thereafter was nevertheless negligible. 

The question arises as to whether the out-of-phase trends between mid- and high- 

latitudes might be related to the dominant atmospheric forcing represented by the SAM 

and ENSO indices.  To examine these effects independently, the monthly SSTa is 

regressed to each spontaneous index as shown in Figure 3.5.  These regression maps 

clearly show the significant inverse correlation (r=−0.72) computed between SAM and 

ENSO.  Therefore, the concurrence of opposite-sign index combinations (e.g. 

+SAM/−ENSO and −SAM/+ENSO) would reinforce the SSTa oceanic response, 

whereas same-sign combinations (e.g. +SAM/+ENSO, −SAM/−ENSO) would counter 

each other or even cancel out any potential SSTa.  Strong −ENSO during +SAM periods 

in 1999 and 2000 resulted in a record-high La Niña event simultaneous to a positive 

peak in the SAM index, and significant cooling of surface waters at high latitudes with a 

record-low SSTa in 2000 (Figure 3.4c).  Similarly, a strong El Niño (+ENSO) event 

during −SAM periods in 1991−1992 seem to have rendered the abrupt warming 

observed during the same period.  We conclude that the interaction between these two 

climate modes of variability modulates the observed interannual fluctuations in SSTa 

overriding the step-wise decade-long cooling trends observed at high latitudes. 
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Figure 3.4. Observations of the recent sea surface temperature anomaly change between 

1981 and 2010.  (a) Spatial map of the linear change (°C).  The overlaid red and magenta 

lines are the −3.5 and −114.0 dyn cm SSH contour, which are the position of the SAF 

and Bdy representing the northern and southern limit of the ACC (see next chapter for 

more information).  Zonally averaged monthly time series for (b) the mid-latitudes 

between 30°S and 50°S, and (c) the high latitudes between 50°S and 60°S.  Regression 

lines represent the linear trends for entire time periods (solid), and for the high-latitude 

region the periods between September 1981 and December 1990, January 1993 and June 

2000, and January 2001 and September 2011 (dashed).   
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In need of further study is the surprisingly steady warming trend observed in the 

Indian sector (60°E−150°E) between Kerguelen Plateau (KP) and Macquarie Ridge-

Hjort Trench.  Even though Aoki et al. [2005] reported such warming, it is somewhat 

unexpected because this analysis show negative SSTa regressed on +SAM in that 

location.  This suggests that a different oceanic process might be causing the observed 

regional warming.  One possibility is through eddy diffusion of increasingly warmer 

waters from the Subantarctic Zone crossing southward into the Polar Frontal Zone (PFZ) 

between 60°E and 70°E, where the STF and SAF tend to converge and generate the most 

energetic mesoscale rings [Sallée et al., 2006].  This localized input of extra heat to the 

PFZ can efficiently raise SST farther downstream, and eventually the Indian sector of 

the ACC regime. 

The signature of the Antarctic Dipole is also evident in Figure 3.5, i.e. the highly 

asymmetric SSTa response described in Yuan [2004].  During +SAM or −ENSO, 

negative SSTa extend to mid-latitudes in the central South Pacific sector, while positive 

SSTa enters the high-latitudes of the western South Atlantic.  It appears that these are the 

compounded effects of anomalous surface heat flux and ocean heat transport.  A 

negative SLP anomaly (−SLPa) extends to low latitudes in the Pacific sector during 

+SAM/−ENSO, and the anomalous cyclonic circulation induced in that area leads to 

additional transport of warm air into the Bellingshausen/Weddell seas with a retreat in 

sea-ice cover; whereas the additional transport of cold continental air into the 

Ross/Amundsen seas show an advance in sea-ice extent.  In addition, there is anomalous 

Ekman transport induced by the enhanced meridional gradient of SLP [Verdy et al., 
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2006], which selectively push cold waters farther to the north only in the Pacific sector. 

The lack of a pronounced STF in this sector, unlike along the Indian-Atlantic supergyre, 

facilitates the ‘unexpected’ expansion of the cold SSTa in the South Pacific.  Also the 

STF deflects prominently northward just downstream of the Campbell Plateau, which 

may induce more localized variability in response to atmospheric forcing than in other 

sectors where it runs parallel and closer to the SAF. 

 

 

Figure 3.5. Sea surface temperature anomaly regressed maps onto the (a) SAM, and (b) 

ENSO indices.  Regressed values indicate changes in °C corresponding to one standard 

deviation change in the indices.  The overlaid red and magenta circumpolar contours 

represent the climatological altimetry-based distribution of northern and southern limit 

of the ACC from this study, and the green line is the STF trace from Orsi et al. [1995]. 
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Figure 3.6 shows regression maps with multiple lags to describe the downstream 

propagation and fading of oceanic perturbations within the ACC domain: a SSTa in 

response to atmospheric forcing is initially imprinted to the central South Pacific and 

gradually dissipates farther downstream.  The perturbation induced by ENSO arrives at 

Drake Passage (65°W) about two years later with an average propagation speed of 7.3 

cm/s, almost identical (8 cm/s) to that suggested by Verdy et al. [2006].  

 

 

Figure 3.6. Sea surface temperature anomaly regressed maps onto the SAM (upper 

panel), and ENSO indices (bottom panel) with multiple lags (0 to 24 months; lags imply 

that the atmospheric forcing are leading).  Note that the leftmost maps are the same as 

Figure 3.5.  Black circles in the lower panel represent the maxima of the SSTa to 

calculate its propagation speed.  The overlaid red and magenta lines represent the 

northern and southern limit of the ACC. 
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An overall linear change in SSH between 1992 and 2011 is also estimated to 

investigate the SSTa contribution (Figure 3.7).  Unfortunately, sea surface salinity (SSS) 

data are not yet available at similar spatial and temporal resolutions to SST, thus its 

contribution to SSH change cannot be estimated.  However, SSS trends are generally 

inferred from SST trends, since e.g. cooling (warming) is generally associated to 

enhanced surface freshening (salinity) from increased precipitation (evaporation).  The 

estimated Southern Ocean average sea level rise is about 3.1 mm/year, which adds up to 

an expected total SSHa of up to 6 cm in the past two decades.   

However, as shown in Figure 3.7, the SSHa trend is also highly localized.  

Comparison of the spatial distributions of SSHa and SSTa (Figure 3.4a) trends reveals 

that the subtropical warming trend must be the main driving mechanism for the observed 

SSH rise.  However, the net effect of the high-latitude cooling trend seems to be either 

compensated or dominated by the SSSa contribution.  Freshening due to increase 

precipitation [Sen Gupta and England, 2006; Morrow et al., 2008] might outstrip 

cooling in the region between 150°E and 175°W, thus resulting in the observed regional 

rising trend, but it is almost compensated in both the Pacific sector (175°W−70°W) and 

upstream of the KP (30°E−60°E), therefore explaining the lack or weak falling trend in 

those areas.  
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Figure 3.7. Spatial map of linear trends in sea surface height anomaly during 1992 and 

2011.  The overlaid red and magenta lines represent the northern and southern limit of 

the ACC. 
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CHAPTER IV  

FRONTAL DISTRIBUTION IN THE SOUTHWEST ATLANTIC 

 

4.1 Altimetry-Based Frontal Indicators 

The principal indicators of ACC fronts are the relatively large tilt of isopycnals 

dynamically associated with geostrophic current cores, and the strong horizontal 

property gradients corresponding to upper water mass boundaries [Nowlin et al., 1977].  

Specific property values are commonly used to indicate the meridional extent of certain 

water mass characteristic (see table 3 in Orsi et al. [1995] for further details).  

Traditional tracing methods, however, particularly suffer from inadequate sampling, 

both spatial and temporal, in regions of large frontal variability [Park et al., 2009; Belkin 

and Gordon, 1996].   

With the launch of satellite altimeters, descriptive oceanographers gained access 

to global sustained measurements of SSH to study geostrophic currents and their 

relationship with the internal density field.  Sites with large SSH slope correspond to 

surface current cores and steep tilting of isopycnals at depths [Gille, 1994].  In the 

Australian sector of the Southern Ocean Sokolov and Rintoul [2002; 2007a] identified 

several bands with relatively large horizontal gradients of SSH (ΔSSH) that persistently 

aligned with the same SSH contours, albeit showing significant variability.  The latter is 

to be expected if those particular streamlines were in fact representative of ACC frontal 

locations, which are known to fluctuate in space.  Therefore, the adoption of frontal 
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indicators based on readily available SSH data has become common practice in recent 

years [Sallée et al., 2008; Swart et al., 2010; Billany et al., 2010].   

To find frontal indicators for the southwestern Atlantic Ocean (Figure 2.1), 

sorted time-averaged SSH and ΔSSH at all (11,582,178) grid point locations within that 

domain are plotted against each other (red line) and the frequency distribution of grid 

point vs. SSH (green line) are shown in Figure 4.1.  Four distinct peaks in ΔSSH 

correspond to frequency minima, at the specific SSH contours of −3.5, −38, −61, and 

−98.5 dyn cm.  They indicate four well-documented current cores in this area, while the 

wider and relatively higher plateaus in Figure 4.1 correspond to the vast less tilted 

(sluggish flow) areas adjacent to the ACC as well as the zones between its characteristic 

fronts.  Each peak in ΔSSH is lower than 2.5 m/1,000 km, the threshold used to track 

current filaments in Sokolov and Rintoul [2007a; 2009a], since this study includes only 

the temporally and spatially averaged gradient of SSH, thus filtering out much of the 

complexity and variability in this region’s frontal distribution.  Note also that a single 

SSH streamline does not necessarily need to match exactly the ACC frontal distributions 

derived from traditional in-situ indicators, since these frontal jets are turbulent motions 

known to also merge and split around the Southern Ocean. 

To validate the new altimetry-based frontal indicators with traditional water mass 

property criteria, all available high-quality hydrographic profiles (see Table 1, Figure 2.3) 

occupied during the span of the SSH time-series were examined and assigned to a 

particular Southern Ocean zone. This zonation of CTD profiles is based on traditional 

property indicators and characteristic T-S diagrams [Orsi et al., 1995], and named from 
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north to south, the Subantarctic Zone (SAZ), Polar Frontal Zone (PFZ), Antarctic Zone 

(AZ), Boundary Zone (BZ), and Subpolar Zone (SPZ).   

 

 

 

Figure 4.1. Relationship between time-averaged SSH values and its horizontal gradient 

(red line), and total number of grid points (green line) in the southwestern Atlantic 

Ocean.  

 

SSH values were assigned to individual profiles by applying a cubic spline 

(linear) interpolation for the spatial (temporal) domain.  Figure 4.2 shows a tight 

agreement between the two zonation criteria; almost all CTD profiles in the SAZ 

(92.6%), PFZ (90.9%), AZ (80.1%) assigned using traditional water mass criteria is 

resolved with the new SSH indicators.  The relatively low percentage for the AZ may be 

the result of frequently observed cold (warm) rings originated at the sACCf (PF).  

Because the Bdy is not associated with a surface current jet, there is not SSH indicator 

(peak in Figure 4.1) of its location.  For completeness only, the −114 dyn cm value was 

selected because it maximizes the percentage of the CTD profiles assigned to the BZ 
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(91.5%) and SPZ (86.6%).  That particular SSH contour does track the climatological 

distribution of the Bdy [Orsi et al., 1995] in the test region very well (see Figure 4.9). 

 

 

 

Figure 4.2. Relationship between sea surface height and frontal zones with the 610 CTD 

casts shown in Figure 2.3.   
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The −38 dyn cm peak in ΔSSH is not likely associated with the ‘permanent’ 

location of the PF, but nevertheless suggests a fairly persistent ‘local current filament’ 

located between the SAF and the PF as indicated by the path of that streamline (−38 dyn 

cm) along the northern flank of the Falkland Ridge.  There is no enhanced KE associated 

with the −38 dyn cm streamline in any of the three sections shown in (Figure 4.4). 

 

4.2 Validation 

4.2.1 Kinetic Energy 

Before studying spatial-temporal frontal variability based on the new altimetry 

criteria, it is important to explore their likely signals in climatological (KE) and eddy 

Kinetic Energy (EKE) fields (Figure 4.3), and in weekly time series at key locations 

within the study area (Figure 4.4).  Overlaid in Figure 4.3 are the four frontal traces 

extracted from 19-year averaged Absolute Dynamic Topography (ADT), to note that 

multiple narrow cores of enhanced of KE are closely distributed to frontal streamlines.  

In areas of active frontal interactions either with underlying topography, adjacent 

filaments or eddies, the intensity and width of these cores is expected to vary 

considerably more than elsewhere.  Intensified fronts tend to concentrate over very steep 

topography, like it is seen along the band exceeding 1,500 cm2 s-2 of KE and aligned to 

the SAF indicator (−3.5 dyn cm) streamline where it is likely ‘locked’ to the 1,500 m 

isobath off Argentina’s continental slope.  The lack of frontal interactions over abyssal 

plains is reflected by much lower KE values, e.g. KE levels over the Argentine and 

Yaghan basins are only about one half of those at the ‘locked’ SAF. 
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Figure 4.3. Averaged (a) kinetic energy, (b) and eddy kinetic energy field calculated 

from the absolute dynamic topography field.  The overlaid lines are SSH contours with 

−3.5, −38, −61, and −98.5, which are associated with enhanced gradient of sea surface 

height. 

 

More complex front-to-front interactions are the merging and splitting of jets into 

multiple filaments, and the shedding of mesoscale rings [Sokolov and Rintoul, 2002; 

Dong et al., 2006; Sallée et al., 2008].  The Drake Passage ‘squeeze’ and its rough 

underlying topography prompt ACC fronts to interact more readily.  The two streamlines 

associated with the PF converge near 56.5°W, where shedding of eddies is the most 

frequent within the PFZ, at the region immediately downstream centered at 52.5°W 

(EKE ≥ 600 cm2s-2 Figure 4.3b).  Much farther east at the southern Argentine Basin, all 

the high KE filaments merge into a single very intense current core, roughly centered 
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along the −38 dyn cm contour and right in front of the Falkland Gap near 39°W 

[Peterson and Whitworth, 1989;Whitworth et al., 1991; Orsi et al, 1995].  

On the eastern flank of the SAF retroflection there is a narrow high KE strip 

(Figure 4.3a) tracing the path of the STF right at the Malvinas/Brazil Currents 

Confluence [Peterson and Whitworth, 1989].  The wider south-protruding tongue of high 

EKE (>1,500 cm2s-2) and lower KE farther offshore results from large unconstrained 

meandering of the Brazil Current Retroflection in the interior of the Argentine Basin (see 

Figure 4.7a).  Enhanced EKE is also common immediately downstream of frontal 

divergences (Figure 4.3b) and of large-scale topographic features: within the PFZ, just 

east of 55°W in the eastern Scotia Sea and of 39°W in southeastern corner of the 

Argentine Basin.  Here the EKE peak bifurcates with one branch turning counter-

clockwise with the SAF, while the other to the southeast within the PF and sACCf.   

The PF streamline (−61 dyn cm) reaches the Falkland Ridge and continues into 

the Argentine Basin around the eastern flank of the MEB.  The sACCf streamline (−98.5 

dyn cm) shows the weakest levels of KE and in most areas is not clearly distinguished 

from background energy levels, except where the sACCf interacts with steep topography 

like the SFZ and the SGI. 

 

4.2.2 Temporal 

The dominant physical mechanism driving temporal variability in Southern 

Ocean SSH is still under debate [Morrow et al., 2008], but certainly the oceanic 

responses vary with regions: upward trend (10 mm/yr) in the southern Argentine Basin, 
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downward trend (-5 mm/yr) in the Yaghan Basin, where Chereskin et al. [2009] also 

reported abyssal cyclogenesis of energetic rings.  The Southern Ocean has an average 

trend of 3.3 mm/year (Figure 3.7), thus there was about 6 cm of mean SL in the past two 

decades.  Next we test the robustness of SSH frontal indicators over time. 

Figure 4.4 shows the temporal evolution of KE and frontal indicators at three 

fixed locations.  The fluctuating nature of KE peaks over these nineteen years implies a 

more complicated variability in the ACC system than the monotonic drifts suggested in 

previous studies.  In spite of its complexity, the three SSH frontal indicators track the 

current cores (maxima in KE) rather well since 1992.  Three distinct KE maxima 

remained aligned with the frontal streamlines at Drake Passage (30°S, Figure 4.4a).  We 

also note that the mean SAF latitude (57°S) shows 2° latitude fluctuations, thus often 

times the SAF and the PF have ‘merged’ into an intensified jet, whereas other times 

individual ACC fronts weakened as they split.  The central Scotia Sea section (47.5°S, 

Figure 4.4b) shows very similar features and a KE peak associated with the STF near 

40°S.  On the western section (30°W, Figure 4.4c) two distinct and persistent 

southernmost jets are revealed, but the northern branch is a lot more scattered suggesting 

larger and more often meandering or shedding of rings. 

 

4.2.3 Hydrographic 

Dynamic height (ϕ) based frontal indicators calculated from in-situ CTD profiles 

ought to mimic those based on satellite SSH.  Table 3 summarizes specific ϕ values and 

integration ranges used to trace ACC fronts in previous studies.  Orsi et al. [1995] also 
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selected the 0.9 dyn m (0.35 dyn m) to represent the northernmost (southernmost) 

continuous streamline within the ACC domain.  Recent studies use deeper reference 

level due to the increased availability of hydrographic profiles from Argo floats and 

gridded data products like the WOCE climatology.  A clear linear relationship 

 

 

Figure 4.4. A Hovmöller representation of the kinetic energy (cm2/s2) and satellite 

streamlines of −3.5, −61, and −98.5 dyn cm in (a) Drake Passage (65°W), (b) the central 

South Scotia Sea (47.5°W), and (c) the South Scotia Arc (30°W) since October 1992.  
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exists between ϕ and SSH data is indicated by the first order empirical fits (thick lines) 

overlaid in Figure 4.5.  The correlation is very high (r >= 0.98) and statistically 

significant at a 99% level using a student t-test.  

 

 

 
 

Figure 4.5. Scatter plot of dynamic height at the 50 db relative to 1,000 db (red dots), 

500 db relative to 1,500 db (blue dots), and surface relative to 2,000 db (green dots) 

versus the streamlines from satellites for the CTD profiles shown in Figure 2.3.  Thick 

colored straight lines represent the 1st order least square fit. 
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Table 3. Summary of ACC Frontal Indicators Based on Streamlines from Satellites and 

from CTD Stations Obtained from Figure 4.5 and Previous Studies. 

 
Front SSH (dyn cm) (dyn m) (dyn m) (dyn m) 

SAF −3.5 0.87 (0.9a) 0.70 (0.7c) 1.46 (1.73d) 

PF −61 0.62 0.50 (0.54c) 1.06 (1.43d) 

sACCf −98.5 0.45 (0.45b) 0.36 0.81 

Bdy −114 0.38 (0.35a) 0.31 0.70 

 

a Orsi et al. [1995] to represent the ACC in the Southern Ocean. 

b Thorpe et al. [2002] to identify the climatological location of the sACCf near the South 

Georgia Island.  
c Garabato et al. [2009] to identify the SAF and PF in Drake Passage. 
d Böning et al. [2008] to represent the climatological location of the ACC fronts using CARS 

gridded atlas in the Southern Ocean.  The unit is converted from m to dyn m for comparison 

purpose by dividing by the gravitational coefficient.  

 

Previously suggested contours for the tracing of ACC fronts match those 

corresponding to the SSH indicators determined in this study.  The ϕ indicator for the 

sACCf matches Thorpe et al. [2002]; for the SAF and Bdy fall within 0.03 dyn m of 

Orsi et al. [1995].  The indicator for the SAF matches Garabato et al. [2009], but their 

0.54 dyn m PF streamline is slightly slight different than in this study (0.50 dyn m).   

However, the climatological location of the 0.54 dyn m at Drake Passage is 57.7°S, thus 

likely associated with a northern expression of the PF [Lenn et al., 2007], whereas that 

for the 0.50 dyn m at 60°W is 58.9°S, consistent also with the PF location at Drake 

Passage derived from temperature indicators on five years of XBT observations 

!1,000db
50db !1,500db

500db !2,000db
0db
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[Sprintall, 2003] and from detecting enhanced velocity cores on Shipboard ADCP data 

[Lenn et al., 2007].  There is only one striking discrepancy, between this study and 

Böning et al. [2008] for the indicators (Table 3).  Their suggested SAF and PF values are 

significantly higher than in this study, implying that climatological positions extend 

farther north than in this study and in Orsi et al. [1995] (see also Figure 5.2 and Chapter 

5 for details on circumpolar paths suggested in Böning et al. [2008]). 

The dynamic height database is extended with about 10,000 Argo profiles to 

investigate the spatial distribution and temporal variability of ACC frontal indicators.  

The dynamic topography shown in Figure 4.6 is in remarkable agreement with the 

climatological SSH contours.  The few noticeable differences are in the regions north of 

the SGI and in the middle of the Argentine Basin.  Numerical simulations [Thorpe et al., 

2002] show the western retroflection of the sACCf to the north of the SGI, as the 

climatological path in Orsi et al. [1995], only intermittently: two occurrences in six 

modeled years.  The sACCf generally rounds the SGI counter-clockwise along the 

continental slope and the North Georgia Rise blocks its path.  Thus, the observed low 

dynamic height in this region seems to be an episodic western extension of the sACCf.  

Open water areas with relatively low dynamic heights in the Argentine Basin seem to be 

traces cold rings detached from the confluence of the SAF and PF just downstream of 

the Falkland Gap (36°W), which in turn feed the eastern limb of the Zapiola Anticyclone 

[Whitworth et al., 1991; Miranda et al., 1999; Fu, 2006; Volkov and Fu, 2008], with 

speeds up to 12.5 cm/sec at the intermediate depths (see Figure 4.8b).  Through the 

northward export of these cold rings, waters from the PFZ are entrained into the 
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subtropical regime in the Argentine Basin and thus slightly lower the SSH along the 

anticyclone’s perimeter (Figure 2.2a).  

 

 

 

 

Figure 4.6. Dynamic height (dyn m) calculated from individual Argo profiles at 50 db 

with respect to 1,000 db with climatological locations of the ACC fronts (thick black 

contours) derived from satellite altimetry criteria. 
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4.2.4 Argo floats and surface drifters 

Trajectories of Autonomous Lagrangian drifters and Argo floats provide velocity 

data to map currents at the sea surface and various parking levels with relatively high 

accuracy [Park et al., 2005], and also test the SSH frontal indicators with adequate 

spatial and temporal coverage and no seasonal biases.  Individual trajectories (Figure 4.7) 

have been objectively mapped onto a ¼° grid to generate climatological velocity and 

EKE fields at the sea surface and 1,000 db.  These maps (Figure 4.8) reveal narrow, 

filament-like structures at the surface and broad, frontal structures within the ACC at 

intermediate depths.  Overall the newly suggested frontal indicators in this study (thin 

black lines) trace some of the many surface filaments, but instead they follow very 

closely the observed intermediate current cores.  Sokolov and Rintoul [2009a] postulate 

that multiple current cores are widespread within the ACC domain under the assumption 

that sea surface velocity fields are useful frontal indicators.  Frontal distributions 

determined from direct current measurements at intermediate depths, however, indicate 

that traditional property based indicators are accurate and more reliable than transient-

prone surface currents.  In fact, as shown in Figure 4.8b, they can accurately depict the 

anticyclonic gyre around the Zapiola Rise and determine its mean velocity of about 12.5 

cm/s, which is almost the same as the local bottom velocities estimated from SADCP 

adjusted CTD data [Saunders and King, 1995].  
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Figure 4.7. Trajectory maps, color-coded based on current speeds, of (a) surface drifters, 

and Argo floats at different parking levels, i.e., (b) 800 db, (c) 1,000 db, and (d) 2,000 db; 

the climatological locations of the ACC fronts as defined by satellite altimetry criteria 

are overlaid as black lines.   
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Figure 4.8. Objectively mapped (a−b) mean velocities, and (c−d) mean eddy kinetic 

energy (cm2/s2) at the surface level from surface drifters (left column) and at the 1,000 

db from Argo floats (right column); the climatological locations of ACC fronts as 

defined by satellite altimetry criteria are overlaid as black lines.
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 4.3 Distribution 

Drake Passage is one of the most studied areas in the Southern Ocean for 

tracking the locations of the ACC fronts and their variability.  Mean frontal paths from 

different studies [Orsi et al., 1995; Sokolov and Rintoul, 2009a; Sallée et al., 2008] are 

shown in Figure 4.9.  Using hydrographic data, Orsi et al. [1995] traced fronts based on 

specific values of water properties that represent distinct water mass changes across the 

fronts.  Sokolov and Rintoul [2009a] used a 15-year time-series of the SLA with MDT 

relative to 2,500 db calculated from the WOCE hydrographic climatology [Gouretski 

and Koltermann, 2004].  They depict nine filaments for the ACC fronts (see their table 

1).  The middle branch of the SAF, northern branches of the PF and sACCf, and the Bdy 

among those 9 filaments are used to represent the traditional locations of the ACC fronts, 

(1.23 m for the SAF, 0.9 m for the PF, 0.64 m for the sACCf, and 0.51 m for the Bdy).  

Sallée et al. [2008] extend studies of Sokolov and Rintoul [2002; 2007a] based on a 

newly generated MDT field from combining the Argo data and the SODB data.  To 

describe the SAF and PF they selected the 1.20 m and 0.95 m contours relative to a 

1,500 db.  Curiously, did not derive a mean position for the SAF where its turns north 

sharply toward the BMC Zone, presumably due to increased statistical error in their 

MDT field.  Thus, they excluded the test area in this study while seeking the relationship 

between atmospheric forcing and its impact to the ACC frontal variability.  

The climatological path of the SAF derived in this study reveals tight constraint 

imposed by the bottom topography.  The −3.5 dyn cm contour (i.e., the northernmost 
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black line in Figure 4.9) flows over the northern shelf/slope in Drake Passage and then 

turns to the north at the Burdwood Bank, closely following the 1,500 m isobath on the 

western side of the Argentine Basin up to 40°S.  Here the SAF encounters the Brazil 

Current and returns south all the way to northern flank of the Falkland Ridge.  Farther 

downstream the SAF extends farther to the north than in previous studies [Orsi et al., 

1995; Sokolov and Rintoul, 2009a; Sallée et al., 2008].  Beyond 35°W, it follows the 

abyssal slope of the Argentine Basin and turns back east at about 43°S; whereas in Orsi 

et al. [1995] the SAF shows two meander-like loops, first to the south and then to the 

north.  Although they cannot be detected in this study, they may not be part of the 

climatological path either, but rather induced by transient meandering of the SAF 

captured during a particular hydrographic cruise.  Within the Argentine Basin, a path for 

the SAF in Sokolov and Rintoul [2009a] shows a ring-like feature (Figure 4.9) in an area 

here determined as the least energetic within the test region, and likely not due to errors 

in the MDT fields calculated from the WOCE climatology. 

Our climatological PF path corresponds well with the mean paths from pervious 

studies except near the Maureen Ewing Bank (MEB).  Orsi et al. [1995] and Sallée et al. 

[2008] place the PF at the northern flank of the MEB; and Peterson and Whitworth 

[1989] also reported the merging of the SAF and PF at the northern side of the MEB in 

their analysis of the 1986 R/V Melville cruise hydrographic data.  However, Sokolov and 

Rintoul [2009a] and this study locate mean paths of the PF at the southern side of this 

bank.  The southern path of the PF is supported by recent intense hydrographic 

observations from ALBATROSS 1999 [Garabato et al., 2002] and JR11 1996 [Trathan 
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et al., 2000] cruises.  Garabato et al. [2002] suggested that the PF passes south of the 

Bank, and the remnants of a meander of the PF north of the Bank.  The northern path of 

the PF suggested by Orsi et al. [1995] might be biased by poleward frontal drifts over 

long periods.  The test-area averaged path of the PF shows a significant poleward drift 

with a rate of 40.5 km/10yr, and probably enough to force the PF to move onto the 

southern flank. 

One of the major differences between Orsi et al. [1995] and this study is found 

south of the SGI, where their sACCf and Bdy extend farther south.  Their sACCf turns 

southeastward at 45°W and seems to follow the −114 dyn cm contour before aligning 

again with the −98.5 dyn cm.  The southward bias observed in climatological frontal 

locations can be explained by the coarse resolution of historical in-situ data as well as 

the strong seasonal bias in the vastly summer historical hydrography, when fronts tend to 

be displaced to the south.  This is consistent with the observed seasonal fluctuations of 

the sACCf in the test region: the maximum seasonal fluctuation recorded in this area is 

about 150 km, with a record-length mean of 34 km.  The climatological mean position of 

the Bdy from Sokolov and Rintoul [2009a] is located much farther south than both Orsi 

et al. [1995] and in this study, and up to 3° south of the SGI.  
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Figure 4.9. Mean distribution of ACC fronts derived from this study (black SSH 

contours).  Color contours indicate mean paths of the ACC fronts from Orsi et al. [1995, 

solid], Sokolov and Rintoul [2009a; dashed], and Sallée et al. [2008, dotted]. 
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CHAPTER V  

GLOBAL DISTRIBUTION AND VARIABILITY OF FRONTS 

 

5.1 Circumpolar Traces 

Global applicability of frontal SSH streamlines was implied by Swart et al. 

[2010], unless water particles following these particular paths would have undergone 

different physical process or have mixed with waters with contrasting characteristics.  

We will derive frontal distributions based on SSH streamlines for the entire Southern 

Ocean using two independent approaches.  First using in-situ dynamic height fields 

(Figure 5.1a), and then using objectively mapped velocity fields derived from the 

extended Argo floats database (Figure 5.1b).   

A high linear correlation between altimetry-derived and hydrography-derived 

dynamic height fields is also found almost everywhere in Southern Ocean.  E.g. the 

strong northward-flowing Bdy along the eastern flank of the KP is resolved by the Argo 

climatology with speeds > 15 cm/s at 1,000 db (Figure 5.1b).  This is the Deep Western 

Boundary Current (DWBC) of a cyclonic circulation in the Australian-Antarctic Basin 

described in analyses of synoptic hydrographic observations [Orsi et al., 1999; Park et 

al., 2009], long-term direct current measurements [Fukamachi et al., 2010], and 

instrumented elephant seals as well as climatological data sets [Roquet et al., 2009].  

Fukamachi et al. [2010] report a year-mean bottom intensified flow of about 20 cm/s at  

~3,500 m and the associated northward transport of AABW as 10.3 ± 4.3 Sv.   
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Figure 5.1. (a) Observed dynamic height at 50 db with respect to 1,000 db and (b) 

objectively mapped velocity at 1,000 db from Argo trajectories; the climatological 

location of ACC fronts (colored lines) are derived from satellite altimetry.   

 

The mean frontal paths from previous studies [Orsi et al., 1995; Sokolov and 

Rintoul 2009a; Böning et al., 2008; Sallée et al., 2008] are shown in Figure 5.2 and their 

indicators are summarized in Table 4.  There is significant discrepancy between the 

frontal locations in Böning et al. [2008] and those appearing in most recent studies.  

Their anomalous northern circumpolar-mean latitudes for the SAF and PF (see their 

figure 3a, 4a, and 5a), i.e. up to 7° (SAF) and 17° (PF) farther to the north in the 

Argentine Basin compare to this study, seriously influenced their selection of geographic 

boundaries, and thus also their conclusions while quantifying variability of water mass 

properties in the ACC since the 1960s. 
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Figure 5.2. Climatological locations of the (a) SAF, (b) PF, (c) sACCf (c), and (d) Bdy 

of the ACC derived in recent studies.  Thin black lines indicate the 2,500 m isobath.  
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Table 4. Circumpolar Mean Latitude (°S) for Fronts and Southern Boundary of the ACC 

from Different Studies. 

 

 SAF PF sACCf Bdy* 

This Study −50.05 −54.49 −58.92 −60.50 

Gille [1994] −49.76 −53.04 − − 

Orsi et al. [1995] −51.28 −54.93 −59.23 −60.79 

Sokolov and Rintoul [2009a] −50.84 −55.07 −60.23 − 

Böning et al., [2008] −48.70 −51.51 − − 

Sallée et al. [2008] −51.12 −54.22 − − 
 

* only for regions between 60°W−140°W. 

 

The mean frontal locations from all other studies show relatively good agreement 

with ours, especially in the vicinity of large topographic features (Figure 5.2).  All of 

them show the SAF (Figure 5.2a) extending along the northern side of the Southeast 

Indian Ridge (100°E−150°E) and crossing the Pacific-Antarctic Ridge through the 

Eltanin Fracture Zone; the PF (Figure 5.2b) passing through the Udintsev Fracture Zone 

(135°W−155°W); and the sACCf (Figure 5.2c) and Bdy (Figure 5.2d) extending 

together parallel to the northern flank of the Southwest Indian Ridge (10°E−30°E) and 

southern flank of the Pacific-Antarctic Ridge (160°E−150°W).  

The new frontal paths from this study are also significantly distinct at several 

locations.  Southeast of the Campbell Plateau (180°), and in agreement with Böning et al. 

[2008], the SAF extends northeastward along the steep continental slope before 
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returning south from about 50°S, and continuing eastward to the Eltanin Fracture Zone; 

whereas most other studies place its path farther south near 57°S.  The strong 

topographic constraint on our SAF path is compatible with hydrographic observations 

from the Eltanin Cruise 50 along 170°E.  Just south of the Campbell Plateau Escarpment 

Gordon [1975] depicts the start of the northward diving of the AAIW salinity minimum, 

i.e. the traditional indicator of the SAF location.  Independent regional studies have 

traced the SAF path using SST indicators, e.g. the 8°C−8.5°C isotherms [Uddstrom and 

Oien, 1999], or following deep current jets in numerical simulations [Tilburg et al., 

2002], and they also show the SAF northward deflection steered by the Plateau.  

Budillon and Rintoul [2003] did not rule out the SAF having two branches in this 

particular region.   

On the northern flank of the Kerguelen Plateau, the path of the SAF in the 

selected studies appears tightly constrained by such prominent topographic feature.  

Nonetheless, a few regional studies based on in-situ hydrographic observations have also 

shown different spatial distributions [Sparrow et al., 1996; Roquet et al., 2009; Park et 

al., 2008].  To partly understand complex discrepancies in the climatological locations of 

the SAF one must also contemplate that ACC jets undergo substantial seasonal 

fluctuations, and likely also long-term spatial drifts.   

Poleward (equatorward) excursions of ACC fronts are favored during the 

summer (winter) of recent (earlier) decades, with the PF showing the most remarkable 

temporal variability.  Inspection of monthly-mean altimetry data (Figure 5.7a) reveals 

that the PF is located south of Kerguelen Island (70°E) during the austral summer 
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(December to May), but it switches to north of the Island during the austral winter (June 

to November).  Yearly-mean traces (Figure 5.5a) indicate that the PF was located to the 

north of the Island until 1996, similar to the mean PF path in Orsi et al. [1995], but 

thereafter to the south of the Island (Figure 5.5).  Sokolov and Rintoul [2009] also 

described the local bifurcation of the PF, although suggesting a much larger meridional 

drift than shown in this study. 

The path of the sACCf through this KP region from previous studies shows a 

remarkable meridional discrepancy of about 10°.  Orsi et al. [1995] show the sACCf 

passing through the Princess Elizabeth Trough based on the 1.8°C indicator of the 

temperature maximum layer.  In this study, as in Sokolov and Rintoul [2009a] and 

studies of recent high-resolution hydrographic surveys [Park et al., 2009], it is suggested 

that the sACCf extends through the Fawn Trough separating the Southern and Northern 

portions of the KP.  

High correlation between SSH and in-situ based indicators of ACC frontal 

locations is found within the entire circumpolar belt, therefore warrantying the study of 

their spatial and temporal variability, as shown in the next section. 

 

5.2 Spatial Variability 

Figure 5.3 shows how often, at any give grid point location, the particular frontal 

SSH streamline pass through over time.  It reveals that spatial and temporal variability of 

ACC fronts are primarily determined by the underlying bottom topography.  Over 

prominent topographic features like mid-ocean ridges, arcs and plateaus, circumpolar 
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streamlines tend to be persistently aligned within narrow bands.  The local expressions 

of ACC fronts are usually enhanced, i.e. showing relatively larger gradients and lower 

temporal variability.  Fracture zones within the Pacific sector represent effective cross-

ridge gateways and means of exchange between ocean basins.  Sharp expressions of the 

SAF and the PF are observed to squeeze through the narrow Eltanin and Udintsev 

Fracture Zones.  Similarly, the sACCf passes through the narrows of the Fawn Trough 

between the southern and northern banks of the KP.  Along mid-ocean ridges frontal 

streamlines also display relatively fixed pathways.  Along the northern flank of the 

Southwest Indian Ridge (0°−30°E) the sACCf is estimated to appear up to 50% of the 

time with currents of about 15 cm/s at 1,000 m, and similarly along the southern flank, 

the Bdy appears up to 40% of the time.  Intensified currents associated to the sACCf and 

Bdy are also observed along the Pacific Antarctic Ridge (150°W−180°W).  Prominent 

obstacles and barriers to eastward flow of the ACC are the South Scotia Arc, the 

Kerguelen Plateau, and the Campbell Plateau.  Such topography disturbs and steers the 

path of the entire ACC sharply to the north to conserve potential vorticity.  The tight 

SAF looping at the western rim of the Argentine Basin (60°W−54°W) appears as a jet 

with currents larger than 25 cm/s appears up to 80% of time, i.e. the most recurrent 

current core with also the lowest variability. 

At the wake of large topographic features the spatial variability of ACC jets is 

larger over broader bands showing significantly lower reoccurrence rates.  These regions 

are favorable to produce mesoscale eddies through eddy mean-flow interactions 
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Figure 5.3. Reoccurrence in percentage of time for the (a) SAF, (b) PF, (c) sACCf, and 

(d) Bdy at each grid point.  Thin black lines indicate the 2,500 m isobath. 
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[Wilkin and Morrow,1994; Hogg and Blundell, 2006].  Basically the baroclinic 

instability energy extracted from the mean flow is frequently released downstream 

through mesoscale rings, which in turn effectively control the meridional location of 

fronts.  Over abyssal plains fronts are relatively free to meander and expected to have the 

largest spatial variability, as illustrated in Figure 5.3.  Their meridional location may be 

the result of more complex and highly nonlinear interactions between external 

atmospheric variability, e.g. including wind stress, buoyancy forcing and sea ice extent.  

 

5.3 Temporal Variability 

5.3.1 Decadal trends 

To infer temporal variability in the ACC frontal distribution, indicator SSH 

streamlines are traced on a weekly basis around the circumpolar belt, and their zonal 

average latitudes are subtracted to construct the weekly time series of meridional 

displacement shown in Figure 5.4.   

Linear fits to weekly frontal displacement data, shown as green straight lines in 

Figure 5.4, reveal significant trends of poleward progression in the location of all ACC 

fronts during the past nineteen years.  The estimated drift of the mean (circumpolar) 

position of the sACCf is 46 km to the south, whereas smaller drifts are inferred for the 

PF (28 km), and the SAF (30 km).  All estimated poleward drifts in the ACC fronts are 

statistically significant (p < 0.01), based on student’s t tests that incorporate the 

autocorrelation inherent to the time-series [Bretherton et al., 1999], and of magnitudes 

similar to suggested displacements in previous studies [Aoki et al., 2005; Gille, 2008; 
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Sprintall, 2008].  Böning et al. [2008] determined that their anomalous distribution of 

the SAF and PF moved about 50 km−80 km toward the south during the past 40 years 

due to systematic warming and freshening within the ACC domain, which leads to a 

deepening of subsurface (800−1000 m) isopycnal surfaces by about 50 m.  Sokolov and 

Rintoul [2009b] report a 60-km poleward displacement of all the ACC fronts between 

1992 and 2007, i.e. about twice as large as the total migration estimated in this study. 

This large discrepancy is presumably due to higher variability in their source SSH field 

[Sokolov and Rintoul, 2009a]: the range of frontal reoccurrence in this study is 1% to 50% 

(Figure 5.3), whereas theirs is only 0.4% to 10% (see figure 7 of Sokolov and Rintoul 

[2009a]).  

The one-year low-pass filtered distribution of ACC fronts, shown as blue lines in 

Figure 5.4, not only reveals interannual variability but also large fluctuations identifiable 

in certain years.  In 1998 all three fronts experienced large and abrupt poleward shifts 

when the positive trend of the SAM index reached its maximum, but also coinciding 

with one of the strongest recorded La Niña events between 1998 and 1999.  Although 

the inferred interaction between ENSO and SAM plays an important role in determining 

the meridional locations of the ACC fronts [Sallée et al., 2008; Morrow et al., 2008], the 

exact relationships between ACC fronts and atmospheric variability remains unclear. 
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Figure 5.4. Weekly time series of the circumpolar averaged meridional distance (km) of 

the (a) SAF, (b) PF, and (c) sACCf from its mean position.  Positive (red)/negative 

(black) means the frontal locations equatorward/poleward of mean path.  The green lines 

show the linear trends, and blue lines show the data after 1-year low-pass filtering. 
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Figure 5.5. (a) Annual mean paths of the SAF, PF, and sACCf for each of the years 

1993−2010, and (b) calculated total drift by assuming linear trend.  Dots indicate 

statistically significant values above the 95% confidence level using a student t-test. 

 

The total poleward drift of ACC fronts inferred from these estimates trends 

clearly shows some regional variability.  Near 40°E for the PF, 50°E for the sACCf, and 

150°W−120°W for the ACC fronts the annual-mean latitudes (Figure 5.5b) even 

migrated toward the Equator.  In contrast, there is an isolated maximum (150 km) in the 

poleward drift of the PF over Kerguelen Plateau (70°E), even though a 7° latitude 

change is estimated based on annual mean frontal paths; thus frontal drifts calculated 

using linear fits may be largely underestimated.  Such remarkable local shift in the PF 
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location suggests that even though frontal paths are highly constrained by the underlying 

topography, they may still abruptly adopt a different course over the years, even over 

large-scale topographic features.  Another example of bimodal distributions is that 

estimated for the SAF along the southern flank of the Campbell Plateau, where it used to 

tightly follow the plateau’s escarpment but in more recent years it is located much 

farther to the south than the mean position.  A possible bifurcation of the PF path is 

indicated near the Maurice Ewing Bank.  Analyses of synoptic hydrographic 

observations before 1990 placed the PF passing along the western flank of the Bank 

[Orsi et al., 1995], but since 1992 the location of the PF has been inferred on the eastern 

side. 

Over most of the eastern Indian sector (60°E−150°E) all fronts show substantial 

poleward drifts, ranging from about 100 km to 400 km.  Somewhat smaller but still 

statistically significant, are the frontal drifts inferred downstream of the South Sandwich 

Trench in the Atlantic sector (45°W−20°E).  In contrast, the vast eastern Pacific sector 

(150°W−75°W) shows a unique frontal behavior.  Here, a considerable vacillation in the 

location of fronts is found, i.e. with no apparent linear trend, which is unexpected over 

abyssal plains.  Everywhere else, however, the paths of ACC fronts are expected to have 

drifted to the south due to the sustained positive SAM index trend during the past couple 

of decades. 
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5.3.2 Seasonal variability 

Seasonality in all the ACC frontal distributions is noticeable in Figure 5.4.  To 

capture this apparent seasonal cycle more clearly, a one-year high-pass filter is applied 

to the circumpolar-averaged frontal locations, and the resulting time series are shown in 

Figure 5.6.  The striking tendency is for all the ACC fronts to migrate south (north) 

during the austral summer (winter) months, as indicated by the red (back) meridional 

deflections in Figure 5.6. 

The largest seasonal migration, of about 100 km, was undergone by the sACCf 

from the winter of 2000 to the summer of 2001, whereas a mean 42 km amplitude is 

derived using harmonic analysis.  The SAF shows the smallest seasonal fluctuation, 18 

km on average and with a seasonal maximum of 73 km, similar to the PF (20 km on 

average).  Significant seasonality in all the ACC frontal locations may partly explain the 

summer bias of the distributions in Orsi et al. [1995], which are generally located farther 

to the south than those presented in this study (see Table 4).   

The amplitude of this seasonal migration also varies regionally (Figure 5.7), but 

in most of the circumpolar regions is less than 10 km.  Relatively large seasonal 

fluctuations in ACC fronts are indicated in the South Atlantic (55°W−25°E) and near the 

Kerguelen Plateau (60°E−120°E).  The latter supports a local bifurcation of the PF path, 

where the PF passes north of the island during the summer and adopts a southern path 

during the longer winter months.  High variability is also found in the northernmost 

reach of the sACCf to the east of the KP, where sea ice normally extends to as far north 

as the Fawn Trough [Rintoul et al., 2008].  In the Atlantic sector, only the SAF shows 
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significant seasonal migrations, most likely induced by variability in the population of 

warm subtropical rings.  Matano et al. [1998] found strong seasonality in the EKE of the 

South Atlantic (55°W−25°E), i.e. a summer maximum (winter minimum), with as much 

as 30% of the annual mean energy.  Hypothetically, increased generation of 

northwestward-flowing warm-core rings at the Agulhas Retroflection rises SSH in the 

southwestern Atlantic, thus forcing the SAF to drift south in the summer.  

 

5.3.3 Response of ACC frontal locations to SAM and ENSO indices 

The cause and effect relationship between positive SAM anomalies and poleward 

migration of ACC fronts have been discussed in studies of historical hydrographic data 

[Gille, 2002; 2008; Aoki et al., 2005; Böning et al., 2008], satellite altimetry [Morrow et 

al., 2008; Sokolov and Rintoul, 2009b], and numerical simulations [Spence et al., 2010; 

Hall and Visbeck, 2002].  However, more complex response mechanisms are suggested 

by the zonal distributions of correlation coefficients between SAM and ENSO indices 

with the observed individual frontal displacements shown in Figure 5.8. 

A prominent out-of-phase frontal response to interannual atmospheric variability 

is mainly found in the southeast Pacific sector (160°W–100°W).  Here, the PF is 

consistently displaced northward (southward) during +SAM and –ENSO (−SAM and 

+ENSO).  The similar regional and out-of-phase response was inferred from regression 

maps of SSTa (Figure 3.5), thus indicative of a common atmospheric forcing mechanism.   
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Figure 5.6. 1-year high-pass filtered time series of the circumpolar averaged meridional 

distance (km).  Red/black indicates the austral summer (November−April)/winter 

(May−October). 
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Figure 5. 7. (a) Monthly mean paths of the SAF, PF, and sACCf during 1993 and 2010 

and the (b) amplitude of seasonal oscillations calculated using the Fast Fourier 

Transform analysis. 

 

 Since a −SLPa extends to mid latitudes in the Pacific sector, it renders a quite 

asymmetric SLP field that induces anomalous meridional circulation.  If a +SAMa 

occurs in addition to the –SLPa, the latter will remain centered at 100°W, a 

configuration that leads to anomalous equatorward (poleward) winds on the western 

(eastern) side, i.e. between 140°W–100°W (100°W–75°W).  Simultaneously, a weak 

+SLPa remains fixed in the Indian Ocean, leading to anomalous poleward (equatorward) 

winds in the eastern (western) sector. 
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An example of anomalous atmospheric circulations associated with SAM (red 

line in Figure 5.8) are the equatorward (poleward) winds to the west (east) of a −SLPa 

that deflect the ACC fronts to the north (south) in the eastern Pacific sector.  Anomalous 

poleward (equatorward) winds found to west (east) of the +SLPa; i.e. between 30°E and 

60°E (150°E–165°W), lead to the observed southward (northward) bend of the local 

paths of the PF and sACCf.  The SAF is less responsive to the +SLPa in the Indian and 

in the west Pacific sectors than the other ACC fronts, thus also more insensitive to 

interannual variability in large-scale atmospheric forcing, because it extends side by side 

to the Indian-Atlantic supergyre. 

Frontal location variability associated with ENSO variability is highly localized 

in the central Pacific sector.  Here a +SLPa, similar to that seen during a −SAM, induces 

a southward (northward) drift of ACC fronts in the southwest Pacific (Drake Passage).  

The higher correlation between frontal fluctuations and the ENSO index, compared to 

SAM’s, suggests a more dominant role in the south Pacific.  ENSO strongly influences 

the position of the PF, but there is a sharp correlation drop near 140°W, where the 

passage of the PF through the Udintsev Fracture Zone is more strongly controlled by the 

prominent local bottom topography.  Weak ACC frontal responses are also found over 

other fracture zones, plateaus, and ridges. 

A closer inspection of the patterns shown in Figures 5.5b and 5.8 reveals that the 

poleward drift of ACC fronts downstream of the KP (70°E–150°E) have relatively low 

to insignificant correlations with atmospheric forcing.  This indicates that at least in this 

region the observed oceanic response cannot be induced solely by atmospheric 
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variability.  In contrast, the central Pacific sector (150°W–60°W) shows considerable 

frontal vacillation, right where the most noticeable oceanic responses (SLPa and SSTa) 

to atmospheric forcing are found. 

 

 

Figure 5.8. Zonal distribution of correlation coefficients between meridional fluctuations 

(1-year low-pass filtered) of ACC fronts with SAM (red) and ENSO (blue) indices; large 

dots indicate values statistically significant above the 95% confidence level using a 

student t-test; positive (negative) correlation indicates northward (southward) 

displacement of fronts in response to interannual atmospheric variability forcing. 
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CHAPTER VI  

MESOSCALE EDDY FIELDS IN THE SOUTHERN OCEAN 

 

6.1 Introduction 

The great importance of mesoscale rings in the Southern Ocean has been 

revisited in recent studies of their role in the ACC cross-frontal exchange of subtropical 

and subpolar regime waters [Morrow et al., 2004], and as in the transfer of wind-induced 

momentum to the ocean interior.  Intensified westerly winds would excite mesoscale 

activity within the ACC domain; they would also drive a larger divergence (convergence) 

of Ekman transport to the south (north) of the wind stress maximum, which in turn 

would result in steeper tilting isopycnals within the interior of the ACC.  Such excess in 

available potential energy could support the generation of more vigorous or more 

frequent eddy activity with a certain time lag, effectively transferring momentum 

downward through interfacial form stress [Meredith and Hogg, 2006].  Evidence of 

enhanced eddy activity in the ACC has been reported by a number of recent studies 

[Meredith and Hogg, 2006; Böning et al., 2008; Screen et al., 2009; Liu and Curry, 

2010]. 

By analyzing hydrographic data from the past 40 years, Böning et al. [2008] 

could not find any significant increase in the meridional slope of ACC isopycnals,  

suggesting that enhanced Ekman transport is sufficient to compensate for the larger eddy 

flux of momentum from the winds, and therefore bear little effect on the total volume 

transport of an eddy saturated ACC regime [Meredith and Hogg, 2004].  Recent 
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numerical simulations [Karpechko et al., 2009; Screen et al., 2009; Spence et al., 2010] 

have also accentuated the importance of resolving mesoscale eddies by reducing model 

grid spacing: higher-resolution models were able to release the stored potential energy 

by producing eddies rather than enhancing the ACC transport, as coarse-resolution 

model tend to do (e.g., Hallberg and Gnanadesikan, 2006; Russell et al., 2006; Farnetti 

et al., 2010; Gent et al., 2011).   

Steeper isopycnals, through the geostrophic relationship, would lead to an 

increase in the total volume transport of the ACC.  Volume transport estimates through 

Drake Passage based on direct bottom pressure measurements [Hughes et al., 1999; 

Meredith et al., 2004] and low-resolution climate models [Hall and Visbeck, 2002; Fyfe 

and Saenko, 2005; Saenko et al., 2005; Sen Gupta and England, 2006] suggest a linear 

relationship to the wind stress, therefore predicting an increase in the ACC transport as a 

result of the recent upward trend in the SAM index.  This is the typical response to wind 

anomalies by a buoyancy-dominant Southern Ocean regime.  Curiously, studies of the 

Simple Ocean Data Assimilation (SODA) reanalysis dataset by Yang et al. [2007] found 

a significant correlation between ACC transport and the SAM index, but with no linear 

trend. 

In this chapter, I discuss the spatial distribution and temporal variability of 

mesoscale eddies in the Southern Ocean, and their relationship to variability in the 

atmospheric forcing. 
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6.2 Method 

To identify individual mesoscale eddies in the 19 years of SLA data (1992−2011), 

I used a simple threshold criteria of ±20 cm SSH anomalies, thus only selecting long-

lifetime and energetic rings and disregarding noise signals.  This threshold method has 

been successfully applied in the Drake Passage [Joyce et al., 1981; Sprintall, 2003; 

Barré et al., 2011], and in the Southeast Indian [Morrow et al., 2004; Swart et al., 

2008a], albeit with some limitations due to significant seasonal fluctuations and linear 

trends in SLA.  A larger number (fewer) of anticyclonic (cyclonic) eddies with SLA > 

20 cm (<−20 cm) are identified as time progresses and Southern Ocean sea level rises at 

a rate of 3.1 mm/yr.  Similarly, the seasonality in SLA increases (decreases) the number 

of anticyclonic (cyclonic) eddies during the summer (winter) months.  The long-term 

trend and annual cycle calculated using FFT analysis are removed from the SLA data to 

minimize these biases, prior to the ±20 cm threshold used to identify rings with at least 

~30 km radius.   

Figure 6.1 shows processed SLA data for the days when an extreme number of 

particular types of mesoscale eddies were identified.  The maps with the most abundant 

warm (17 December 1997) and cold (27 October 2010) rings readily illustrate that the 

most energetic (EKE) regions of the Southern Ocean are well represented by detected 

mesoscale rings using a 20 cm threshold in SLA.  Automatic ring-tracking techniques, 

although useful to study the behavior of individual rings, are beyond the scope of this 

study.   
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Figure 6.1. Maps of SSH on days with a particular extreme number of mesoscale rings, 

(a) 27 October 2010 and (b) 10 March 1993 with the maximum and minimum number of 

cold cyclones, and (c) 17 December 1997 and (d) 28 September 1994 with the maximum 

and minimum number of warm anticyclones; the total number of each type of rings are 

shown for each panel.  The red and magenta circumpolar contours represent the 

climatological altimetry-based distribution of the SAF and PF.  
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6.3 Results 

6.3.1 Spatial distribution of mesoscale eddies 

On average between 1992 and 2011, a daily total of 79 warm anticyclones and 88 

cold cyclones were identified south of 30°S.  The slight dominance of cyclones agrees 

with Chelton et al. [2011] results based on detection methods independent of SSH 

thresholds.  Maps of mesoscale eddy reoccurrence (Figure 6.2) reveal regions with the 

highest frequency of rings, both cold and warm types, mainly along and downstream of 

the three subtropical western boundary current systems.  The Agulhas Retroflection 

region, in particular, showed mesoscale eddied during up to 30% of the total altimeter 

measurements period.  Within the domain of the ACC, regions of high reoccurrence of 

rings are to concentrate downstream of large topographic features. 

Regional excess of baroclinic energy is gained from non-zonal surface motions, 

e.g. large meanders develop when ACC fronts interact with prominent topographic 

features, and release to the ocean interior through localized generation and pinching off 

rings.  Therefore these areas are pivotal conduits for mid to high latitude eddy transport 

of heat, salt, and nutrients across the ACC.  The most notorious conduits are found 

immediately downstream of: the 30°E gap in the Southwest Indian Ridge, the Kerguelen 

Plateau (80°–100°E), the gap between the Tasmania Rise and Southeast Indian Ridge 

(145°E), the Macquarie Ridge−Hjort Trench (160°E–175°E), the Eltanin−Udintsev near 

(145°W–120°W), and the Falkland Ridge near 25°W (Figures 6.2−6.3).  E.g. the 

triangular-shaped area (Figure 6.2) centered between Del Caño Ridge and Conrad Rise is 
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well known for its enhanced variance in the SLA [Swart et al., 2008a; Ansorge and 

Lutjeharms, 2003], and the frequent meandering of the SAF and PF.  Locally generated 

cyclonic eddies carry cold, fresh AASW from the Antarctic Zone along the southern 

flank of Crozet Ridge, and injected it to the subtropical Indian Ocean.  Likewise, 

anticyclonic eddies carry warm, salty SASW southeastward [Ansorge and Lutjeharms, 

2003], leading to the observed anomalous warming in this region. 

 

Figure 6.2. Maps of reoccurrence, in percentage of time span, (a) anticyclonic and (b) 

cyclonic eddies.  The red and magenta circumpolar contours represent the climatological 

altimetry-based distribution of the SAF and PF. 
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Figure 6.3. (a) Map and (b) zonally averaged profile of eddy type dominance, calculated 

as the difference between the reoccurrence of anticyclonic and cyclonic eddies.  The red 

and magenta circumpolar contours represent the climatological altimetry-based 

distribution of the SAF and PF from this study, whereas the green line is the STF trace 

from Orsi et al. [1995]. 

 

The band of maximum ring occurrence seen along the Agulhas Return Current 

(ARC) extends to near 72°E [Belkin and Gordon, 1996].  Lutjeharms and Ansorge, 

[2001] suggest that near 66°E–70°E there is a relatively larger number of rings detach 

from the ARC, thus more effectively transferring heat and salt from the subtropical 

Indian to the northern ACC [Sallée et al., 2006].  This eddy conduit explains the 
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observed warming (SSTa), sea level rise trend, and poleward migration of ACC fronts 

downstream of the KP. 

Another well-known area of relatively high eddy activity is near the Falkland 

Gap [Whitworth et al., 1991], where the SAF and PF converge (Figure 4.8).  Cold rings 

injected to the Argentine Basin at this site propagate northward along the western side of 

the Zapiola Rise Anticyclone, whereas warm rings from the BMC move southward 

along the eastern limb [Fu, 2006]. 

Figure 6.3a shows the domains of prevalence for anticyclonic (red) and cyclonic 

(blue) eddies, as the difference between the corresponding reoccurrence (Figure 6.2).  

Both, the Subantarctic Zone (SAZ) and the Subtropical Zone (STZ) south of 30°S, reveal 

the same pattern of alternating eddy prevalence: anticyclonic (warm) rings prevail at the 

northern band, switching to cyclonic (cold) rings prevalence in the southern band.  This 

pattern is more apparent in the zonally-averaged distribution of Figure 6.3b: these two 

zones incorporate relatively more anticyclones from the north and cyclones from the 

south. 

The zonal distribution of eddy-type prevalence (Figure 6.4) shows a rather 

localized nature of cross-frontal exchange.  The pattern for the entire region south of 

30°S (Figure 6.4a) is almost entirely controlled by exchanges within the band to the 

north of the SAF (Figure 6.4b), which in turn reflects the influence of the most vigorous 

and persistent anticyclones generated along the subtropical western boundary currents.  

Preference for anticyclones (0°–30°E) coincides with the Agulhas Retroflection Current, 

whereas cyclones associated with the ARC dominate 
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Figure 6.4. Meridionally averaged eddy preference for (a) the Southern Ocean (south of 

30°S), (b) the subtropical regions (north of the SAF), and (c) within the ACC (south of 

the SAF). 
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between 40°E and 80°E.  Anticyclones are predominant in the BMC zone (60°W), 

whereas cyclones prevail within the Zapiola Anticyclone (40°W).   

In general, warm anticyclonic eddies dominate the ACC domain (Figure 6.4c), 

most likely due to the incorporation of relatively warmer subtropical rings.  

 

6.3.2 Temporal variability in the number of eddies  

Since the seasonal cycle and linear trend have been removed from the time series 

shown in Figure 6.5, the remaining signals are mainly due to interannual variability in 

the atmospheric forcing.  Satistical analysis of the 1-year low-passed filtered data sets 

reveals links to +SAM with a 21-month lag, an overall correlation coefficient of 0.45, 

and marginally significant at the 90% confidence levels.  It is estimated that a peak in the 

number of eddies most commonly occurs about 2 years after a peak of +SAM index, 

consistent with the increase in annual-mean EKE in an eddy-permitting simulation of 

satellite altimetry data  [Morrow et al., 2010].  The number of anticyclonic eddies is 

insensitive to the ENSO index.  Enhanced momentum at the sea surface is slowly (~ 2 

years) transferred downward through interfacial stress to the ocean floor, where rings are 

generated by topographic interaction with strong currents [Meredith and Hogg, 2006; 

Hogg et al., 2008; Screen et al., 2009].  A similar but inverse correlation (r= −0.52) 

between number of cyclonic eddies is found to ENSO with a quasi-instantaneous 

response (3-month lag).  It is hypothesized that if a strong La Niña event occurs after a 

robust +SAM anomaly, the eddy field is amplified, e.g. there were prominent peaks in 
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the number of rings identified during 2000 and 2001 and the overall maximum was in 

2010. 

In the south Pacific, out-of-phase oceanic responses to SAM and ENSO have 

been found both in SSTa (Figure 3.5) and in frontal locations (Figure 5.8).  The extreme 

population of cyclones (Figure 6.1a,b) within the ACC (150°W–60°W), i.e. the 21 (4) 

cold rings detected on 27 October 2010 (10 March 1993), points to another pivotal 

conduit for the exchange of waters between middle and high-latitudes.  

Increase in concurrent +SAM anomalies and La Niña events will export more 

cyclonic eddies to the Subantarctic Zone (SAZ), thus further cooling, freshening, and 

lightening the SAMW.  Garabato et al. [2009] conclude that  southeast Pacific SAMW 

has undergone cooling and freshening trends due to the shutdown in production of 

AAIW during 1998/99, a period that coincides with the estimated rapid increase in both 

the number of cold rings exported northward and concurrent northward Ekman transport. 

In contrast, the population of anticyclonic eddies (Figure 6.5b) increased from 

1994 to 2000 and remained relatively constant thereafter, and there is a lack of any 

significant correlation and weak cross-correlation with the atmospheric indices.  

Therefore the population of warm eddies seems insensitive to the atmospheric forcing. 
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Figure 6.5. Monthly population of (a) cyclonic, (b) anticyclonic, (c) total eddies, and (d) 

mean sea level slope at Drake Passage over time, with 1-year low-pass filtered time 

series overlaid (red line); and their corresponding lagged correlation to SAM and ENSO 

indices are shown on the right.  Red (black) dots are correlations above 95% (99%) 

confidence levels.  The highest correlation coefficients (r) are indicated with their 

corresponding lags. 
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CHAPTER VII   

SUMMARY AND CONCLUSIONS 

 

The goal of this research is to elucidate some aspects of the linkages between 

dominant atmospheric modes of interannual variability and the observed responses in the 

Southern Ocean during the past few decades.  New estimates and descriptions of the 

spatial and temporal variability in sea surface properties (SSTa, SLPa), frontal 

distributions, and mesoscale eddy activity are presented to address these objectives.  

These oceanic responses time series are analyzed to establish the extent of 

interdependence with SAM and ENSO variability.  Improved understanding of 

teleconnections between mid-latitude processes and varying Southern Ocean circulation 

and stratification will render new ground for their accurate representation in global 

climate models. 

 

7.1 Atmospheric Forcing 

Main trends in Southern Hemisphere atmospheric variability over the past five 

decades have intensified circumpolar westerly winds (+SAM anomaly), and increased 

the frequency and intensity of anomalous warming in the eastern tropical Pacific (bipolar 

ENSO events).  The Pacific Ocean responses are similar and localized, but with an out-

of-phase relationships: amplified (cancelled) during concurrent +SAM anomalies and a 

La Niña (El Niño) events.  This explains, e.g., the extreme La Niña event of 1999/2000, 
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when high-latitude cooling and poleward drift of ACC fronts were the largest, and the 

largest increase in eddy population the following year (2000/2001) as a delayed response. 

 

7.2 Oceanic Responses 

7.2.1 SST  

The persistent mid-latitude trends of SST warming (0.16°C/10yr) and SL rise 

(3.6 cm/10yr) are in sharp contrast to the highly fluctuating responses in the Southern 

Ocean, superimposed to only negligible cooling (−0.03°C/10yr) and slower rising (2.2 

cm/10yr) trends.  Whereas concurrent out-of-phase SSTa and SLPa between high and 

mid latitudes are induced during +SAM over the past three decades, the 1998/1999  

+SAM maximum showed highly fluctuating oceanic responses.  Furthermore, the 

observed warming of subtropical gyres exceeds SAM’s regression, and could be partly 

explained by oceanic processes.  A likely candidate mechanism supported by results 

from this study is the intensification of the Indian-Atlantic ‘supergyre’ due to 

anomalously warming at the western boundary current systems.  

Southern Ocean SST has progressively cooled during the past three decades, and 

at a faster rate in recent years.  Furthermore, the long-term cooling has not been 

monotonic either: period of large and rapid SST warming were observed during 1991–

1992 and 2000–2001.  Both reversals are attributed to the magnified contribution of 

concurrent –SAM and +ENSO. 

The Pacific sector shows the largest cooling rates in the Southern Ocean, whereas 

warming has been more extreme in the Indian sector.  Whereas the former cooling is due 
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to localized atmospheric forcing in the Pacific, enhanced poleward heat flux in the 

Indian is attributed to a large number of anticyclonic eddies shed at the ARC that enter 

the ACC regime downstream of the Kerguelen Plateau, causing the observed SST 

increase of 0.5°C in the last three decades.  Southeast Pacific SSTa and SLPa drift within 

the ACC and reach Drake Passage two years later, influencing the overall slope of the 

sea surface and total volume transport across the Passage.  The two-year lag between 

either +ENSO or –SAM, and the positive sea surface slope anomaly at Drake Passage 

indicates that the Pacific sector is a buoyancy-dominated regime. 

 

7.2.2 ACC fronts 

Specific contours of SSH are found to closely follow multiple bands with 

maxima SSH slope in the southwestern Atlantic Ocean.  Inspection of a series of 

concurrent CTD lines, Argo floats, surface drifters, and results from several recent 

studies, all confirm their correspondence to the location of ACC fronts, namely the SAF, 

PF and sACCf, in the southwestern Atlantic Ocean.  Further validation of the selected 

altimeter streamlines as ACC frontal indicators was achieved through the analysis of 

traditional property indicators and location of currents core.   

Overall the global ACC frontal distributions based on altimetric data derived in 

this study are very similar to the classical maps in previous studies [Orsi et al., 1995; 

Sokolov and Rintoul, 2009a; Sallée et al., 2008].  This indicates that the underlying 

bottom topography exerts the most influential control on the location of ACC fronts.  



 

 94 

Fronts appear to be fixed, sharpened and the associated currents intensified at locations 

with major bathymetric features. 

Additional non-circumpolar current cores are apparent over some regions of the 

Southern Ocean, in particular where ACC fronts experience complex interactions with 

adjacent current cores, convergences and divergences, and mesoscale rings.  Large 

discrepancies with previous frontal distributions are commonly observed over abyssal 

plains, where topographic influence is the least.  Other significant differences are noticed 

over seamounts, where a particular front seems to follow paths on opposite sides or even 

due to slight changes in atmospheric forcing.  The most prominent change in frontal 

paths found is that for the PF around Kerguelen Island: to the north (south) of the Island 

during winter (summer) months, and in earlier (most recent) of the 20-year period 

examined in this study.  Abrupt shifting in frontal positions correspond to the frequent 

splitting of fronts encountering prominent topographic features. 

All of the SSH streamlines indicative of ACC frontal locations reveal a seasonal 

oscillation with northward (southward) winter (summer) migrations.  This study also 

shows that circumpolar-mean frontal positions have monotonically drifted southward 

since 1992: the sACCf by ~46 km, while both the PF and SAF by ~30 km.  Interannual 

variability in the atmospheric forcing has likely influenced the major southward 

migration of ACC fronts between 1997 and 1999, but more evident is the different 

regional responses to the two major modes of interannual atmospheric variability: from a 

clear poleward drift in the southeastern Indian (70°E−150°E), to a weak drift in the 
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central Atlantic (30°W−30°E), and no drift but high vacillation in the south Pacific 

(150°W−75°W) and southwestern Indian (30°E−60°E).   

It is postulated in this study that there are two regional mechanisms determining 

the ACC frontal response to atmospheric interannual variability.  One is the large 

vacillation in frontal locations with no linear trend that results from the interaction 

between the SAM and ENSO indices.  In the Pacific such response is characterized by 

being out-of-phase.  Thus, the main atmospheric forcing controlling factor is the 

anomalous winds induced by SLPa.  Meridional location of fronts is statistically 

correlated to ENSO and SAM.  The second response is the significant poleward drifting 

of ACC fronts insensitive to atmospheric variability, thus ruled by regional oceanic 

influences.  E.g. high eddy heat flux downstream of the KP drives the major polar drift 

of ACC fronts in the Indian sector. 

 

7.2.3 Mesoscale eddies 

Oceanic response to interannual variability in the atmospheric forcing includes 

the adjustment of the mesoscale eddy population.  The total number of identified rings in 

the Southern Ocean systematically increased, albeit with a delay of two years, during 

periods of +SAM,, but it also has decreased on much shorter notice during +ENSO.  

These results confirm simulations from eddy-resolving numerical model studies 

[Meredith and Hogg, 2006; Screen et al., 2009; Morrow et al., 2010]. 

The shorter time lag of Southern Ocean response to ENSO related forcing 

suggests that the mechanism for eddy momentum release is relatively more efficient than 
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for SAM variability, and most likely due to the main direction of induced wind 

anomalies.  A −SLPa induces northward current in the central Pacific sector, thus 

increasing its instability and likelihood to generate mesoscale rings.   

Time series of mean SSH slope (ΔSSH) and baroclinic transport computed on the 

SR1 section at Drake Passage [Swart et al., 2008b; Cunningham and Pavic, 2007; 

Rintoul et al., 2000] show high-frequency and inter-annual variability.  ΔSSH shows no 

linear trend and only a weak instantaneous response to SAM (r=0.27 with zero lag).  

These results point to a Southern Ocean in an eddy saturated state. 

Although above 99% significance level, only weak cross-correlations (−0.20) 

were estimated between monthly ΔSSH with the SAM index with 23-month lag as well 

as with ENSO (0.24) with 22-month lag.  These correlations are slightly higher for the 1-

yr low pass filtered time-series than for the monthly time-series, but statistically 

insignificant.  A positive SST/SSH anomaly localized within the central Pacific sector 

during a strong El Niño, propagated eastward with the ACC and about 2 years later 

arrived at Drake Passage.  The opposite response was inferred from a +SAM anomaly, 

when decreased tilting of isopycnals associated with smaller transport was found about 

two years after a positive SAM event.  A significant correlation between sea level slope 

and climate modes suggests that the Pacific sector, including Drake Passage, is 

buoyancy-dominated. 

Specific regions of the Southern Ocean show more frequent energetic rings 

transporting heat, salt, and nutrients across the ACC domain.  Warm anticyclones 

generated at the ARC are incorporated into the ACC domain downstream of the KP, 
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where they contribute to the observed three decades of warming (0.5°C) between 60°W 

and 150°W.  Other sectors of the Southern Ocean reveal only negligible cooling 

responses, e.g. −0.01°C over thirty years.  Therefore enhanced eddy poleward heat 

transport by warm subtropical rings outpaces the initial cooling response to SAM within 

the Indian sector.  
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