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ABSTRACT

Synthesis and Design of PID Controllers. (December 2004)

Hao Xu, B.S., Zhejiang University;

M.S., Zhejiang University

Chair of Advisory Committee: Dr. Aniruddha Datta

This dissertation presents research results on the synthesis and design of PID

controllers for discrete-time systems and time-delayed systems. By using bilinear

transformation and orthogonal transformation, earlier research results obtained in

the continuous-time case are extended to discrete-time situation. The complete set of

stabilizing PID controllers for the discrete-time systems is thus obtained. Moreover,

this set remains to be a union of convex sets when one particular parameter is fixed.

Thus a method to design robust and non-fragile digital PID controllers is proposed

by following a similar design procedure for the continuous-time systems. In order to

find the stabilizing controller set for systems with time-delays, the relationship be-

tween the Nyquist Criterion and Pontryagin’s theory is investigated. The conditions

under which one can correctly apply the Nyquist Criterion to time-delayed systems

are derived. Then, the complete set of stabilizing PID controllers for arbitrary order

LTI systems with time-delay up to a given value is obtained. Furthermore, the sta-

bility issue of a system with fixed-delay is also studied and a formula which provides

complete knowledge of the distribution of the closed-loop poles is presented. Based

on this formula, stabilizing P and PI controller sets for the system with fixed-delay

can be computed.
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CHAPTER I

INTRODUCTION

This dissertation will develop methods to produce the set of all stabilizing digital PID

controllers for a given Linear Time-Invariant (LTI) discrete-time plant and the set of

all stabilizing PID controllers for an arbitrary order LTI plant with time-delay.

A. Background

Although many advanced control strategies have been developed over the last several

decades, most real control systems in the world are operated by PID (Proportional-

Integral-Derivative) controllers. In fact, more than 95% of the controllers used in

process control applications are of the PID type [1]. Some of the reasons that PID

controllers are so widely used in industry are its simple structure (fixed, low order),

robustness to modeling errors, relatively good tracking and disturbance rejection.

Despite the popularity of PID controllers, as a result of the gap rising between control

theory and control engineering practice since the late 1950’s [2], the theory related to

PID designs did not receive much consideration until recently. Empirical techniques

like Ziegler-Nichols tuning method are still used in most of the industrial PID designs

while some of those techniques are known to give poor results in many cases [3, 4].

In an effort to bridge the gap between control theory and practice, in [2], the

set of all stabilizing PID controllers for a given LTI plant described by a rational

transfer function was computed. This was the first step to design an optimal PID

controller. During this process, a generalized Hermite-Biehler Theorem was derived

and used to compute the controller set. It turned out that the resulting set has

The journal model is IEEE Transactions on Automatic Control.
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some nice properties. For a given proportional gain kp, the stabilizing set in the

space of the two other parameters (ki-kd space) is a union of convex sets defined by

groups of linear inequalities. Thus, the design of the optimal PID controller became a

linear constrained optimization problem. In addition, the knowledge of this complete

stabilizing set can be used to avoid the choice of controllers that are fragile. Several

different designs, such as H2, H∞ optimum designs and robust non-fragile design,

were carried out using that set.

B. Problems

Naturally, the above result should be extended to the following two cases:

1. discrete-time systems, and

2. time-delay systems.

For the first case, the reason we should consider discrete-time systems is the fact

that the implementation of the PID is now based on a digital design [5]. However, even

with a discrete-time version of the generalized Hermite-Biehler Theorem, in [2], only

the constant gain case was solved. In this dissertation, instead of directly applying

the generalized Hermite-Biehler Theorem, we convert the discrete-time problem to

a continuous-time problem by using the bilinear transformation and then use the

continuous-time generalized Hermite-Biehler Theorem to solve it.

For the second case, since almost all plants encountered in process control contain

time-delays, finding the complete set of PID controllers that stabilize a given plant

with time-delay is of considerable importance, both from the point of view of theory

and practice. However, the synthesis results proposed in [2] cannot be applied directly

to plants with time-delay because the generalized Hermite-Biehler Theorem presented

there is for plants with rational transfer functions. Motivated by this, in [6], a version
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of Hermite-Biehler Theorem applicable to quasi polynomials [7, 8, 9] was used to

compute the set of stabilizing PID parameters for a given first-order plant with time-

delay. The resulting set is a trapezoid, a triangle or a quadrilateral in ki-kd space

for different kp’s. Although this result was a breakthrough, the approach does not

readily extend to the case of higher order plants with time-delay.

On the other hand, Nyquist Criterion ([10] in [11]) has often been used to analyze

arbitrary order plants with time-delay. Its graphical simplicity provides a promising

tool for attacking the synthesis problem of PID controllers. However, unlike Pontrya-

gin’s theory, the generalization of the Nyquist Criterion presented in the literature

[10] lacks solid theoretical justification. This is because the proof of the generaliza-

tion given in [10] may be inappropriate if the closed-loop system has an unbounded

number of right half plane poles. In this dissertation, the conditions under which one

can use the Nyquist Criterion are derived based on Pontryagin’s theorems. Then a

method to find the complete set of PID controllers to stabilize a given arbitrary order

plant with time-delay is developed. As a starting point to design PID controllers for

plants with interval delays or embedded delays, the complete set of stabilizing P, PI

controllers for a plant with fixed-delay is also computed.
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CHAPTER II

PREVIOUS RESULTS

In this chapter, we recall previous results on the computation of the complete set of

stabilizing Proportional, Proportional-Integral (PI) and PID controllers for continuous-

time systems without time-delay. These results can be found in [12, 13, 2, 14].

The system considered here is a simple feedback control system shown in Fig. 1.

Here C(s) is the controller while G(s) is the plant with

G(s) =
N(s)

D(s)
.

N(s) and D(s) are coprime polynomials.

A. Stabilization Using P, PI Controllers

For Proportional controller

C(s) = kp,

the closed-loop characteristic polynomial is

δ(s, kp) = D(s) + kpN(s). (2.1)

G(s)

−
+

R Y
C(s)

Fig. 1. Feedback control system.
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Suppose N(s) and D(s) have degrees m and n respectively with m ≤ n. Let N(s)

and D(s) have the following even-odd decompositions:

N(s) = Ne(s
2) + sNo(s

2)

D(s) = De(s
2) + sDo(s

2).

Define

N∗(s) = N(−s) = Ne(s
2)− sNo(s

2).

Multiply both sides of (2.1) by N∗(s) and substitute s = jω, we have

δ∗(jω, kp) = δ(jω, kp)N
∗(s) = p(ω, kp) + jq(ω),

where

p(ω, kp) = p1(ω) + kpp2(ω)

p1(ω) = De(−ω2)Ne(−ω2) + ω2Do(−ω2)No(−ω2)

p2(ω) = Ne(−ω2)Ne(−ω2) + ω2No(−ω2)No(−ω2)

q(ω) = ω[Ne(−ω2)Do(−ω2)−De(−ω2)No(−ω2)].

Also define

pf (ω, kp) =
p(ω, kp)

(1 + ω2)(m+n)/2

qf (ω) =
q(ω)

(1 + ω2)(m+n)/2
.

The statement of the result requires the introduction of the following definitions.

Definition 1 Let m, n and qf (ω) be as already defined. Let

0 = ω0 < ω1 < ω2 < · · · < ωl−1
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be the real, non-negative, distinct finite zeroes of qf (ω) with odd multiplicity. Define

a sequence of numbers i0, i1, i2, · · · , il as follows:

1. If N∗(jωt) = 0 for some t = 1, 2, · · · , l − 1, then define

it = 0;

2. If N∗(s) has a zero of multiplicity kn at the origin, then define

i0 = sgn[p
(kn)
1f (0)]

where

p1f (ω) =
p1(ω)

(1 + ω2)(m+n)/2
;

3. For all other t = 0, 1, 2, · · · , l,

it ∈ {−1, 1}.

With above definition of it, we define the set A as

A :=


{{i0, i1, · · · , il}} if n+m is even

{{i0, i1, · · · , il−1}} if n+m is odd.

Definition 2 Let m, n, q(ω) and qf (ω) be as already defined. Let

0 = ω0 < ω1 < ω2 < · · · < ωl−1

be the real, non-negative, distinct finite zeroes of qf (ω) with odd multiplicity. Also

define ωl = ∞. For each string

I = {i0, i1, · · ·}

in A, let γ(I) denote the “imaginary signature” associated with the string I defined
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by

γ(I) :=



[i0 − 2i1 + 2i2 + · · ·+ (−1)l−12il−1 + (−1)lil] · (−1)l−1sgn[q(∞)]

for m+ n even

[i0 − 2i1 + 2i2 + · · ·+ (−1)l−12il−1] · (−1)l−1sgn[q(∞)]

for m+ n odd

Definition 3 The set of strings in A with a prescribed imaginary signature γ = ψ

is denoted by A(ψ). The feasible strings for the Proportional controller stabilization

problem is defined as

F ∗ = A(n− (l(N(s))− r(N(s)))),

where l(N(s)), r(N(s)) are the number of roots of N(s) in the open left half and open

right half planes, respectively.

Now we state the final result.

Theorem 1 [2] The Proportional controller feedback stabilization problem is solvable

for a given plant with transfer function G(s) if and only if the following conditions

hold:

1. F ∗ is not empty where F ∗ is as already defined, i.e., at least one feasible string

exists and

2. There exists a string I = {i0, i1, · · ·} ∈ F ∗ such that

max
it∈I,it>0

[
− 1

G(jωt)

]
< min

it∈I,it<0

[
− 1

G(jωt)

]

where ω0, ω1, ω2, · · · are as already defined. Furthermore, if the above condition

is satisfied by the feasible strings I1, I2, · · · , Is ∈ F ∗, then the set of all stabilizing
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Proportional gains is given by K = ∪s
r=1Kr, where

Kr =

(
max

it∈I,it>0

[
− 1

G(jωt)

]
, min
it∈I,it<0

[
− 1

G(jωt)

])
, r = 1, 2, · · · , s.

For PI controller

C(s) = kp +
ki

s
=
kps+ ki

s
.

For each fixed kp, it becomes a one parameter case. Then we can use the above

method to obtain the stabilizing region of ki for that kp. By sweeping kp, the complete

stabilizing PI controller set can be obtained.

B. Stabilization Using PID Controllers

When the controller C(s) is a PID controller, that is

C(s) = kp +
ki

s
+ kds =

kds
2 + kps+ ki

s
,

the closed-loop characteristic polynomial becomes

δ(s, kp, ki, kd) = sD(s) + (kds
2 + kps+ ki)N(s). (2.2)

Suppose the degree of δ(s, kp, ki, kd) is n and the degree of N(s) is m. As before, with

the same even-odd decompositions of D(s) and N(s), we multiply both sides of (2.2)

by N∗(s) = N(−s) and substitute s = jω to obtain

δ∗(jω, kp, ki, kd) = δ(s, kp, ki, kd)N
∗(jω) = p(ω, ki, kd) + jq(ω, kp),

where

p(ω, ki, kd) = p1(ω) + (ki − kdω
2)p2(ω)

q(ω, kp) = q1(ω) + kpq2(ω)
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p1(ω) = −ω2[Ne(−ω2)Do(−ω2)−De(−ω2)No(−ω2)]

p2(ω) = Ne(−ω2)Ne(−ω2) + ω2No(−ω2)No(−ω2)

q1(ω) = ω[De(−ω2)Ne(−ω2) + ω2Do(−ω2)No(−ω2)]

q2(ω) = ω[Ne(−ω2)Ne(−ω2) + ω2No(−ω2)No(−ω2)]

Also define

pf (ω, ki, kd) =
p(ω, ki, kd)

(1 + ω2)(m+n)/2

qf (ω, kp) =
q(ω, kp)

(1 + ω2)(m+n)/2
.

Now, for each fixed kp, we have following definitions.

Definition 4 Let m, n and qf (ω, kp) be as already defined. For a given fixed kp, let

0 = ω0 < ω1 < ω2 < · · · < ωl−1

be the real, non-negative, distinct finite zeroes of qf (ω, kp) with odd multiplicity. De-

fine a sequence of numbers i0, i1, i2, · · · , il as follows:

1. If N∗(jωt) = 0 for some t = 1, 2, · · · , l − 1, then define

it = 0;

2. If N∗(s) has a zero of multiplicity kn at the origin, then define

i0 = sgn[p
(kn)
1f (0)]

where

p1f (ω) =
p1(ω)

(1 + ω2)(m+n)/2
;
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3. For all other t = 0, 1, 2, · · · , l,

it ∈ {−1, 1}.

With above definition of it, we define the set Akp as

Akp :=


{{i0, i1, · · · , il}} if n+m is even

{{i0, i1, · · · , il−1}} if n+m is odd.

Definition 5 Let m, n, q(ω, kp) and qf (ω, kp) be as already defined. For a given fixed

kp, let

0 = ω0 < ω1 < ω2 < · · · < ωl−1

be the real, non-negative, distinct finite zeroes of qf (ω, kp) with odd multiplicity. Also

define ωl = ∞. For each string

I = {i0, i1, · · ·}

in Akp, let γ(I) denote the “imaginary signature” associated with the string I defined

by

γ(I) :=



[i0 − 2i1 + 2i2 + · · ·+ (−1)l−12il−1 + (−1)lil] · (−1)l−1sgn[q(∞, kp)]

for m+ n even

[i0 − 2i1 + 2i2 + · · ·+ (−1)l−12il−1] · (−1)l−1sgn[q(∞, kp)]

for m+ n odd

Definition 6 The set of strings in Akp with a prescribed imaginary signature γ = ψ

is denoted by Akp(ψ). For a given fixed kp, the feasible strings for the PID controller

stabilization problem is defined as

F ∗
kp

= Akp(n− (l(N(s))− r(N(s)))).

Following is the main result.
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Theorem 2 [2] The PID controller feedback stabilization problem, with a given fixed

kp, is solvable for a given plant with transfer function G(s) if and only if the following

conditions hold:

1. F ∗
kp

is not empty where F ∗
kp

is as already defined, i.e., at least one feasible string

exists and

2. There exists a string I = {i0, i1, · · ·} ∈ F ∗
kp

and values of ki and kd such that

∀t = 0, 1, 2, · · · for which N∗(jωt) 6= 0

p(ωt, ki, kd)it > 0, (2.3)

where p(ω, ki, kd) is as already defined. Furthermore, if there exist values of

ki and kd such that the above condition is satisfied for the feasible strings

I1, I2, · · · , Is ∈ F ∗
kp

, then the set of stabilizing (ki, kd) values corresponding to

the fixed kp is the union of the (ki, kd) values satisfying (2.3) for I1, I2, · · · , Is.

Remark 1 The admissible set for (2.3) is convex since the constraint set is linear.

Thus, for each fixed kp, the stabilizing controllers set in (ki, kd) space is a union of

convex sets.

C. Summary

In this chapter, previous research results on the characterization of stabilizing P,

PI and PID controllers for a linear time-invariant continuous-time delay-free plant

have been recalled. In the next several chapters of the dissertation, they are used

as a starting point for computing the stabilizing controller set for discrete-time and

time-delayed plant.
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CHAPTER III

STABILIZING DIGITAL PID CONTROLLERS∗

In [2], we obtained a complete characterization of the set of all stabilizing PID con-

troller parameters for a continuous-time plant of arbitrary order by using the Gen-

eralized Hermite-Biehler Theorem. Extension of this result to the discrete-time case

posed several problems [2]. First, a discrete-time version of the Generalized Hermite-

Biehler Theorem applicable to rational functions had to be developed; even with this

result in hand, only constant gain stabilization results could be obtained. In this chap-

ter, we show that the discrete-time analogues of our earlier results on continuous-time

PID stabilization can be obtained by applying our earlier results to a bilinearly trans-

formed discrete-time system. It is remarkable to note that the linear programming

nature of the continuous-time solution is preserved under the bilinear transformation

and a suitable reparametrization.

The chapter is organized as follows. In Section A, we present some general results

that can be used to ascertain the stability of a closed loop discrete-time system using

a bilinear transformation. These results are specialized to the case of proportional

(P), proportional-integral (PI) and PID controllers in Section B. Some illustrative

examples are presented in Section C. Section D concludes this chapter.

A. Closed Loop Stability via the Bilinear Transformation

In the analysis of discrete-time systems, the problem of determining the Schur stability

of a given polynomial can be converted to the problem of determining the Hurwitz

∗ c©2004 IEEE. Reprinted, with permission, from “Computation of all stabilizing
PID gains for digital control systems” by H. Xu, A. Datta and S. P. Bhattacharyya,
IEEE Trans. on Automatic Control, Vol. 46, No. 4, pp. 647-652, April 2001.



13

stability of another polynomial using what is called a bilinear transformation [15].

There are several different bilinear transformations that can be used. Let us focus

on a particular bilinear transformation W defined as follows. Given any polynomial

X(z),

W(X(z)) = X(
w + 1

w − 1
) = Y (w)

where Y (w) is a rational function of w.

As we will show in Lemma 1, the bilinear transformation W maps the roots of

X(z) located inside (on or outside) the unit circle to the zeros of Y (w) in the open

LHP (on the imaginary axis or in the open RHP). Additionally, a root or roots of

X(z) at z = 1 is mapped to a zero or zeros of Y (w) at w = ∞. Thus the Schur

stability of a polynomial X(z) is equivalent to the Hurwitz stability of the numerator

of Y (w), provided the numerator and denominator of Y (w) are of the same degree.

Furthermore, provided X(z) has no roots at z = 1, the root distribution of X(z)

with respect to the unit circle is identical to the root distribution of the numerator

of Y (w) with respect to the imaginary axis. These facts will play an important role

in the sequel.

Let

δz(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0

be a given polynomial of degree n. Then W(δz(z)) is given by

W{δz(z)} =
δ(w)

(w − 1)n
(3.1)

where δ(w) = bmw
m+bm−1w

m−1+ · · ·+b1w+b0 is a polynomial in w of degree m ≤ n.

Lemma 1 Let ni, no, nb be the numbers of roots of δz(z) located inside, outside and

on the unit circle respectively. Furthermore, let ml,mr be the numbers of roots of

δ(w) located in the open left half and open right half planes, and let mb be the number
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of roots of δ(ω) located on the imaginary axis. Then, we have

1. n−m = the number of roots of δz(z) at z = 1;

2. ni = ml,no = mr;

3. nb = mb + (n−m).

Proof: Let us rewrite the polynomial δz(z) in the factored form

δz(z) = K
n∏

i=1

(z − zi)

where zi i = 1, 2, · · · , n are the roots of δz(z). Clearly,

W(δz(z)) = K
n∏

i=1

W(z − zi).

Let us now concentrate on the factor W(z − zi). First, let us assume that zi 6= 1.

Then, from the definition of W , we have

W{z − zi} =
w + 1

w − 1
− zi

=
(1− zi)w + 1 + zi

w − 1

=
(1− zi)(w − zi+1

zi−1
)

w − 1

= ci
w − wi

w − 1

(3.2)

where ci = 1− zi, and wi = (zi + 1)/(zi − 1). If we assume zi = xi + jyi, then

wi =
zi + 1

zi − 1

=
xi + 1 + jyi

xi − 1 + jyi

=
x2

i + y2
i − 1

(xi − 1)2 + y2
i

− j
2yi

(xi − 1)2 + y2
i

(3.3)
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Now, we consider the following three cases:

1. zi is inside the unit circle.

Then x2
i + y2

i < 1 so that from (3.3), it follows that Re[wi] < 0.

2. zi is outside the unit circle.

In this case, x2
i + y2

i > 1 so that from (3.3), it follows that Re[wi] > 0.

3. zi is located on the unit circle.

In this case, x2
i + y2

i = 1 so that from (3.3), it follows that Re[wi] = 0 and wi

lies on the imaginary axis.

Let us now consider the case zi = 1. In this case, direct computation yields

W{z − zi} =
2

w − 1
.

Thus in this case, the numerator ofW(z−zi) has degree one less than its denominator.

The proof of the lemma is obtained by applying the above observations to each of the

factors z − zi. ♣

We next examine how Lemma 1 can be used to study the closed loop stability of

a discrete-time system. Suppose that the plant and the controller in a standard unity

feedback discrete-time system are described by Pz(z) = Nz(z)/Dz(z) and Cz(z) =

Bz(z)/Az(z) respectively where Nz(z), Dz(z), Bz(z), Az(z) are polynomials in z.

Hence the characteristic equation of the closed loop system is given by

δz(z) = Az(z)Dz(z) +Bz(z)Nz(z). (3.4)

Suppose that the polynomials Az(z), Bz(z), Dz(z), Nz(z) have degrees nc, mc, n, m

respectively. Furthermore, let us assume that Pz(z) and Cz(z) are proper so that

mc ≤ nc,m ≤ n. (3.5)
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Now applying the bilinear transformation to Pz(z) and Cz(z) we obtain

P (w) = W{Pz(z)} =
N(w)

D(w)

C(w) = W{Cz(z)} =
B(w)

A(w)

where, A(w), B(w), D(w) and N(w) are polynomials in w, and P (w), C(w) represent

the new plant and controller in the w-domain.

Similarly, applying the bilinear transformation to δz(z) and taking into account

the degree relationships in (3.5), we obtain

W{δz(z)} = W{Az(z)}W{Dz(z)}+W{Bz(z)}W{Nz(z)}

=
A0(w)

(w − 1)nc
· D0(w)

(w − 1)n
+

B0(w)

(w − 1)mc
· N0(w)

(w − 1)m

=
A0(w) ·D0(w) +B0(w)(w − 1)nc−mc ·N0(w)(w − 1)n−m

(w − 1)n+nc
. (3.6)

The following relationships are easily verified:

A(w) = A0(w),

B(w) = B0(w)(w − 1)nc−mc ,

D(w) = D0(w),

N(w) = N0(w)(w − 1)n−m.

Hence, the numerator of (3.6) can be expressed as

δ(w) = A(w)D(w) +B(w)N(w). (3.7)

This allows us to state the following result.

Lemma 2 Suppose δz(z) in (3.4) has no roots at z = 1. Then the (Pz(z),Cz(z))

closed loop system in the z-domain is Schur stable if and only if the (P (w), C(w))
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closed loop system in the w-domain is Hurwitz stable.

In the next section, we will make use of the above lemma to characterize the set of

stabilizing P, PI and PID gains for a given discrete-time plant.

B. Computation of the Set of Stabilizing Gains: P, PI and PID

In this section, we derive discrete-time P, PI and PID stabilization results by apply-

ing our earlier approach developed for the continuous-time case [2] to appropriate

bilinearly transformed systems in the w-domain.

To this end, we consider discrete-time P, PI and PID controllers defined by

P : Cz(z) = kp,

PI : Cz(z) = kp + ki
1

1− z−1
=

(kp + ki)z − kp

z − 1
,

PID : Cz(z) = kp + ki
1

1− z−1
+ kd

1− 2z−1 + z−2

1− z−1

=
(kp + ki + kd)z

2 − (kp + 2kd)z + kd

z2 − z
.

Also consider their w-domain counterparts obtained by substituting z = w+1
w−1

:

P :
B(w)

A(w)
=

kp

1
,

PI :
B(w)

A(w)
=

kiw + 2kp + ki

2
,

PID :
B(w)

A(w)
=

kiw
2 + 2(kp + ki)w + 2kp + ki + 4kd

2w + 2
.

According to (3.7), the corresponding w-domain closed loop characteristic poly-

nomials are:

P : δ(w) = D(w) + kpN(w),

PI : δ(w) = 2D(w) + (kiw + 2kp + ki)N(w),
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PID : δ(w) = (2w + 2)D(w) + [kiw
2 + 2(kp + ki)w + 2kp + ki + 4kd]N(w).

In view of Lemma 2, it follows that as long as δz(z) has no roots at z = 1, the Hurwitz

stability of each of the above w-domain polynomials will guarantee the Schur stability

of the corresponding closed loop system. The pathological case of δz(z) having a root

at z = 1 arises when a PI or a PID controller is being used and the plant has a zero at

z = 1. However, in such a situation, there is an unstable pole-zero cancellation and so

the discrete-time closed loop system is anyway internally unstable, regardless of the

controller parameter values. Thus these cases can be handled by concluding instability

directly without having to go through any bilinear transformation or subsequent

procedures in the w-domain. For all other cases, we proceed as follows to find the

controller parameter values that make δ(w) Hurwitz stable.

As in [2], in order to separate the parameters and prevent them from all showing

up in both the real and imaginary parts of the w-domain characteristic polynomial,

we multiply (3.7) by the factor N(−w) to obtain

δ∗(w) = N(−w)δ(w).

We next provide the particular expressions for δ∗(w) corresponding to each of the three

controllers being considered here. In the expressions to follow, the subscripts e and

o indicate the polynomials corresponding to the even and odd parts of a polynomial,

e.g. N(w) = Ne(w
2) + wNo(w

2), etc. For polynomials with two subscripts, the

second subscript p, i or d indicates that the term represented by that polynomial

depends on kp, ki or kd; a second subscript of c indicates that the term represented

by that polynomial is independent of kp, ki and kd. Using this notation, we obtain

the following expressions for δ∗(w):
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(i) for a Proportional controller (P),

δ∗(w) = δ∗e(w
2, kp) + wδ∗o(w

2)

= [kpδep(w
2) + δec(w

2)] + wδoc(w
2),

where

δep(w
2) = N2

e − w2N2
o

δec(w
2) = DeNe − w2DoNo

δoc(w
2) = DoNe −DeNo;

(ii) for a Proportional-Integral controller (PI),

δ∗(w) = δ∗e(w
2, kp, ki) + wδ∗o(w

2, ki)

= [kpδep(w
2) + kiδei(w

2) + δec(w
2)] + w[kiδoi(w

2) + δoc(w
2)],

where

δep(w
2) = 2(N2

e − w2N2
o )

δei(w
2) = N2

e − w2N2
o

δec(w
2) = 2(DeNe − w2DoNo)

δoi(w
2) = N2

e − w2N2
o

δoc(w
2) = 2(DoNe −DeNo);

(iii) for a Proportional-Integral-Derivative controller (PID),

δ∗(w) = δ∗e(w
2, kp, ki, kd) + wδ∗o(w

2, kp, ki)

= [kpδep(w
2) + kiδei(w

2) + kdδed(w
2) + δec(w

2)]

+w[kpδop(w
2) + kiδoi(w

2) + δoc(w
2)],
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where

δep(w
2) = 2(N2

e − w2N2
o )

δei(w
2) = (1 + w2)(N2

e − w2N2
o )

δed(w
2) = 4(N2

e − w2N2
o )

δec(w
2) = 2(NeDe + w2NeDo − w2NoDe − w2NoDo)

δop(w
2) = 2(N2

e − w2N2
o )

δoi(w
2) = 2(N2

e − w2N2
o )

δoc(w
2) = 2(NeDe +NeDo −NoDe − w2NoDo).

Note that for a proportional controller, kp appears only in the even part of δ∗(w)

and so we can use the approach of [2] to obtain the set of all kp that make δ(w)

Hurwitz stable. Similarly, we note that for a PI controller, the appearance of ki in

both the even and odd parts of δ∗(w) does not affect our computation using the

method proposed in [2] for the continuous-time PI controller. All that one has to do

is to sweep over ki and find the stabilizing set of kp’s at each stage.

1. Reparametrization for the PID Case

In the case of the PID controller, the situation is a little more involved. Now there are

two parameters, kp and ki which appear in both the even and odd parts. To simplify

matters, we proceed as follows. Note that since δop(w
2) = δoi(w

2), we can combine kp

and ki together by using the substitution

ki = ks − kp.
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With this substitution, we have

δ∗(w) = δ′e(w
2, kp, ks, kd) + wδ′o(w

2, ks)

= [kpδ
′
ep(w

2) + ksδ
′
es(w

2) + kdδ
′
ed(w

2) + δ′ec(w
2)]

+w[ksδ
′
os(w

2) + δ′oc(w
2)], (3.8)

where

δ′ep(w
2) = (1− w2)(N2

e − w2N2
o )

δ′es(w
2) = (1 + w2)(N2

e − w2N2
o )

δ′ed(w
2) = 4(N2

e − w2N2
o )

δ′ec(w
2) = 2(NeDe + w2NeDo − w2NoDe − w2NoDo)

δ′os(w
2) = 2(N2

e − w2N2
o )

δ′oc(w
2) = 2(NeDe +NeDo −NoDe − w2NoDo).

From (3.8), it is clear that we can now proceed as in [2], i.e. fix ks, then use linear

programming to solve for the stabilizing values of kp and kd. Now
kp

kd

ks

 =


1 0 0

0 0 1

1 1 0

 ·

kp

ki

kd

 ,

i.e. the triple (kp, kd, ks) is a linear transformation on the triple (kp, ki, kd). Further-

more, this transformation is invertible. Thus, once the stabilizing values of (kp, kd, ks)

have been obtained, the stabilizing values of (kp, ki, kd) can be obtained using the fol-
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lowing inverse transformation:
kp

ki

kd

 =


1 0 0

−1 0 1

0 1 0

 ·

kp

kd

ks

 . (3.9)

C. Examples

Example 1 Consider a Proportional controller to stabilize the discrete-time system

Nz(z)/Dz(z) where

Nz(z) = 100z3 + 2z2 + 3z + 11

Dz(z) = 100z5 + 2z4 + 5z3 − 41z2 + 52z + 70.

Solution: Using the bilinear transformation, we obtain

N(w) = 116w5+ 34w4− 88w3− 300w2+ 148w+ 90

D(w) = 188w5 + 46w4 + 1880w3 + 308w2 + 652w + 126.

Applying the method of [2] to the above w-domain plant, we found that the set of

stabilizing kp’s is given by

kp ∈ (−0.4178,−0.1263).

This agrees with the result obtained in Example 9.5.3 of [2] where a discrete-time

Generalized Hermite-Biehler Theorem was used. ♣

Example 2 Consider a Proportional-Integral controller to stabilize the discrete-time

system Nz(z)/Dz(z) where

Nz(z) = z + 1

Dz(z) = z2 − 1.5z + 0.5.
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Fig. 2. The stabilizing region of (ki,kp).

Solution: Using the bilinear transformation, we obtain the w-domain plantN(w)/D(w)

where

N(w) = 2w2 − 2w

D(w) = w + 3.

As in the continuous-time case [2], we can determine the range of ki values to be

swept over by examining the odd part of δ∗(w). The range of ki so determined is

0 < ki < 0.0718.

For each value of ki in this range, we obtained the set of stabilizing kp values. The

resulting stabilizing region is sketched in Fig. 2. ♣

Example 3 Let us now use a PID controller to stabilize the same plant considered

in Example 2.
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Fig. 4. The stabilizing region in the space of (kp,ki,kd).
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Solution: Fig. 3 shows the stabilizing regions in the space of (kp,kd,ks), where

ks = kp + ki. After linear transformation as in (3.9), we obtained the stabilizing

regions in the space of (kp,ki,kd). These regions are sketched in Fig. 4. ♣

D. Summary

In this chapter, we have provided a complete solution to the problem of character-

izing all PID gains that stabilize a given discrete-time plant of arbitrary order. The

solution was obtained by applying our earlier continuous-time results to a bilinearly

transformed system. This represents a significant advance over our earlier work [2]

where, for the discrete-time case, only the constant gain problem could be tackled.

For the PID case, after the reparametrization, the achieved set is also defined by a

set of linear inequalities as in continuous-time case. In the next chapter, we will use

this result to design the robust discrete-time PID controllers.
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CHAPTER IV

DESIGN OF ROBUST NON-FRAGILE DIGITAL PID CONTROLLERS∗

In previous chapter, we have obtained complete characterizations of the set of all

stabilizing PID controllers for discrete-time plants [16] in addition to the continuous-

time plants [2]. Also, in [14], it was shown that the results in [2] could be exploited

to design robust and “non-fragile” PID controllers for continuous-time plants of the

interval type. Such ”non-fragile” designs can also be termed as controller-robust. In

this chapter, we show how analogous results can be derived for the discrete-time case.

The proposed approach makes use of a standard bilinear transformation followed by

a special linear orthogonal one.

This chapter is organized as follows. In Section A, we develop a procedure for

characterizing all stabilizing PID gains for discrete-time plants of both the fixed as

well as the interval types. A method for designing non-fragile PID controllers for

such plants is proposed in Section B. Section C contains an illustrative example and

Section D summarizes this chapter.

A. Computation of Stabilizing PID Parameters for a Discrete-time Plant

For the discrete-time PID controller and Plant given in the previous chapter, we come

to the point where the Hurwitz stability of the polynomial

δ(w) = (2w + 2)D(w) + [kiw
2 + 2(kp + ki)w + 2kp + ki + 4kd]N(w), (4.1)

decides the Schur stability of the discrete-time PID controlled system.

∗ c©2004 IEEE. Reprinted, with permission, from “Plant-robust and controller-
robust discrete-time PID design” by H. Xu, A. Datta and S. P. Bhattacharyya, Pro-
ceedings of 2002 American Control Conference, Vol. 5, pp. 3529-3533, May 2002.
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As we did previously, consider the even-odd decomposition

N(w) = Ne(w
2) + wNo(w

2).

Multiplying both sides of (4.1) by

N(−w) = Ne(w
2)− wNo(w

2),

we obtain

δ∗(w) = N(−w)δ(w)

= δ∗e(w
2, kp, ki, kd) + wδ∗o(w

2, kp, ki)

= [kpδep(w
2) + kiδei(w

2) + kdδed(w
2) + δec(w

2)]

+w[kpδop(w
2) + kiδoi(w

2) + δoc(w
2)], (4.2)

where

δep(w
2) = 2(N2

e − w2N2
o )

δei(w
2) = (1 + w2)(N2

e − w2N2
o )

δed(w
2) = 4(N2

e − w2N2
o )

δec(w
2) = 2(NeDe + w2NeDo − w2NoDe − w2NoDo)

δop(w
2) = 2(N2

e − w2N2
o )

δoi(w
2) = 2(N2

e − w2N2
o )

δoc(w
2) = 2(NeDe +NeDo −NoDe − w2NoDo).

1. Alternative Reparametrization of the PID Controllers

Observe from (4.2) that both the even and odd parts of δ∗(w) depend on at least

two of the parameters kp, ki, kd. Furthermore, from the fact that δop(w
2) = δoi(w

2),
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we note that the coefficients of kp and ki appearing in the odd part of δ∗(w) are one

and the same. Hence, we can reparametrize the PID parameters such that kp + ki

is defined to be a new parameter, say ks. Thereafter, the approach developed in [2]

for the continuous-time case can be used. This was the strategy followed in previous

chapter. In this chapter, in addition, we would like to preserve the shape and size of

the stabilizing regions. This can be achieved using the orthogonal transformation
k1

k2

k3

 =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 ·

kp

ki

kd

 , (4.3)

where θ ∈ [0, 2π). The corresponding inverse transformation is given by
kp

ki

kd

 =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 ·

k1

k2

k3

 . (4.4)

To make cos θ = sin θ, we choose θ = π/4 so that the above transformation and its

inverse become: 
k1

k2

k3

 =



√
2/2 −

√
2/2 0

√
2/2

√
2/2 0

0 0 1

 ·

kp

ki

kd

 (4.5)

and 
kp

ki

kd

 =



√
2/2

√
2/2 0

−
√

2/2
√

2/2 0

0 0 1

 ·

k1

k2

k3

 . (4.6)

Using (4.5), (4.2) can be rewritten as

δ∗(w) = δ′e(w
2, k1, k2, k3) + wδ′o(w

2, k2)
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= [k1δ
′
e1(w

2) + k2δ
′
e2(w

2) + k3δ
′
e3(w

2) + δ′ec(w
2)]

+w[k2δ
′
o2(w

2) + δ′oc(w
2)],

where

δ′e1(w
2) =

1√
2
(1− w2)(N2

e − w2N2
o )

δ′e2(w
2) =

1√
2
(3 + w2)(N2

e − w2N2
o )

δ′e3(w
2) = 4(N2

e − w2N2
o )

δ′ec(w
2) = 2(NeDe + w2NeDo − w2NoDe − w2NoDo)

δ′o2(w
2) = 2

√
2(N2

e − w2N2
o )

δ′oc(w
2) = 2(NeDe +NeDo −NoDe − w2NoDo).

Now for each fixed k2, the stabilizing set of (k1, k3) parameters can be obtained by

solving a linear programming problem defined by a set of linear inequalities as in [2].

Then by sweeeping over k2 and repeating the procedure at each stage, the entire set

of stabilizing (k1, k2, k3) values can be obtained.

2. Stabilizing PID Parameters for an Interval Plant Family

The approach developed in the last two subsections for a fixed plant can be easily

extended to an interval plant family. Indeed, according to the Edge Theorem [17, 9],

one particular set of controller parameters stabilizes the entire interval plant family

if and only if it stabilizes the exposed edges of the polytope. So, when we are given

an interval plant family and we compute the intersection of the stabilizing regions

corresponding to each plant along the possible exposed edges, we will obtain the set

of controller parameters that stabilize the entire plant family. Computationally, the

only difference is that now for every fixed k2, k1 and k3 will have to be determined
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by solving a linear programming problem with many more linear inequalities — one

set coming from each of the “exposed edge plants.”

B. PID Settings for a Controller-Robust Design

In this section, we consider the problem of designing PID controllers for which the

closed loop systems are not destabilized by small perturbations in the PID settings.

A controller for which the closed loop system is destabilized by small perturbations

in the controller coefficients is said to be “fragile” [18]. Any controller that is to be

practically implemented must necessarily be non-fragile (controller-robust) so that

(1) round-off errors during implementation do not destabilize the closed loop; and (2)

tuning of the parameters about the nominal design values is allowed. To carry out a

controller-robust PID design, we will exploit the characterization of all stabilizing PID

controllers for fixed and interval discrete-time plants developed in the last section.

Since we know the set of stabilizing PID controller parameters for a given plant

or an interval plant family, we can choose the PID parameters to be at the center of

the three dimensional ball of largest radius inscribed within that stabilizing region.

The radius of this ball is the maximal l2 parametric stability margin in the space of

(k1,k2,k3) and, indeed, in the space of (kp,ki,kd), the latter being due to the orthogonal

nature of the transformation (4.5). The method developed in [14] for finding the

largest ball inside the PID stabilizing set for continuous-time plants can also be used

here because, for a given plant (interval or otherwise) and a fixed value of k2, the

stabilizing regions of (k1, k3) are either convex polygons or intersections of half-planes

[2, 16]. Even though the center of the largest ball inscribed inside the stabilizing

region cannot be determined in closed form, it can be computed using the following

algorithm.
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Before presenting the algorithm, we first introduce some concepts. Consider a

sphere B(x, r) in the three dimensional (k1,k2,k3) space with radius r and centered

at x
∆
= (xk1 , xk2 , xk3). Given any angle θ ∈ [−π/2, π/2], let C(x, r, θ) denote the circle

with radius r cos θ, centered at (xk1 , xk2 +r sin θ, xk3) and parallel to the (k1, k3) plane.

The sphere and circle are illustrated in Fig. 5. It is clear that

B(x, r) =
⋃

θ∈[−π/2,π/2]

C(x, r, θ). (4.7)

r

r

r

θ

(x, r) θcos

C

B

xk1
xk2

xk3( )

xk 1
xk2

xk3( ), ,

, ,

�k 2

k 3

k 1

(x, r, θ)

�

r θsin�+

Fig. 5. A sphere B(x, r) and the definition of the circle C(x, r, θ).

Now consider C(x, r, θ) with fixed xk2 , r and θ so that k2 = xk2 + r sin θ is fixed.

Let the stabilizing (k1, k3) region associated with this fixed k2 be given by the set of

linear inequalities

Pθ = {x|aT
θi
x ≤ bθi

, i = 1, . . . ,mθ} (4.8)

where aθi
∈ R2, bθi

∈ R and each inequality represents a half plane. Define xc =

[xk1 , xk3 ]
T . Then, from [14], C(x, r, θ) lies inside the stabilizing region Pθ if and only
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if

aT
θi
xc + r cos θ‖aθi

‖ ≤ bθi
, (i = 1, . . . ,mθ) (4.9)

holds. Let Sθ denote the set of feasible solutions of (4.9). From the geometrical

structure, we know that for all θ ∈ [−π/2, π/2], the centers of circles C(x, r, θ) have

the same (k1, k3) coordinates. Since Sθ is the set of feasible (k1, k3) coordinates of

the centers associated with C(x, r, θ), it follows that B(x, r) lies inside the stabilizing

(k1, k2, k3) region if and only if

⋂
θ∈[−π/2,π/2]

Sθ 6= ∅. (4.10)

The above observations suggest a bisection algorithm for determining the maxi-

mum l2 parametric stability margin while k2 is fixed. Let rub be the upper bound for

r. Since we have the complete characterization of all stabilizing (k1, k2, k3) values,

we are able to determine the stabilizing range of k2 explicitly. Let us assume that

all stabilizing k2 ∈ [k2min
, k2max ]. Then for a fixed k2, rub is given by the following

formula:

rub = min(k2 − k2min
, k2max − k2).

We propose the following bisection algorithm:

Step 1: Set rL = 0 and rU = rub;

Step 2: Set r = rL+rU

2
;

Step 3: Sweep over all θ ∈ [−π
2
, π

2
] and determine the set of all feasible solu-

tions Sθ for (4.9) at each stage;

Step 4: If ∩θ∈[−π
2
, π
2
]Sθ 6= ∅, then set rL = r; otherwise set rU = r;

Step 5: If |rU − rL| ≤ specified level then STOP; otherwise GOTO Step 2.
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The above algorithm can be applied to determine the maximum l2 parametric

stability margin for any fixed k2. Moreover, we can sweep over k2 and choose that

value of k2 that gives the largest radius of the inscribed ball. Setting the (k1, k2, k3)

values at the center of this ball will yield the maximum l2 parametric stability margin

in the space of (k1, k2, k3). The corresponding (kp, ki, kd) values can be easily

obtained from (4.6) to yield a maximally controller-robust PID controller having an

l2 parametric stability margin identical to that determined in the space of (k1, k2, k3).

C. Example

Consider a PID controller to stabilize the discrete-time plant Nz(z)/Dz(z) where

Nz(z) = z + 1.5

Dz(z) = z2 − 1.5z + 0.5. (4.11)

Using the bilinear transformation, the w-domain plant model becomes

N(w)

D(w)
=

2.5w2 − 3w + 0.5

w + 3
.

Applying the results of Section A, we obtain the set of stabilizing controller parame-

ters in the space of (k1, k2, k3). This set is shown in Fig. 6. The corresponding set in

the space of the original PID parameters (kp, ki, kd) is also shown in Fig. 7.

Next we design a controller-robust PID controller for this plant using the results

of Section B. The maximally controller-robust PID parameters are (kp, ki, kd) =

(0.2220, 0.0532, 0.3571) and the corresponding stability margin is 0.0516. If ∆kp,

∆ki, ∆kd denote the perturbations from these optimal values, then as long as

∆k2
p + ∆k2

i + ∆k2
d ≤ 0.05162,
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Fig. 6. The stabilizing region in the space of (k1,k2,k3).
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Fig. 7. The stabilizing region in the space of (kp,ki,kd).
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the closed loop system will remain stable.

Instead of the fixed plant (4.11), suppose we are now given the interval plant

family

Nz(z)

Dz(z)
=

b1z + b0
z2 + a1z + a0

,

where b1 = 1, b0 ∈ [1.4, 1.6], a1 ∈ [−1.6,−1.3], a0 ∈ [0.3, 0.6]. Using the results

of Section B, we obtain the robust, optimally non-fragile PID settings (kp, ki, kd) =

(0.1906, 0.0405, 0.1840) with a corresponding stability margin of 0.0405.

D. Summary

In this chapter, we have presented a procedure for designing robust and non-fragile

PID controllers for discrete-time interval plant families. These results significantly

extend the earlier results [14] for the continuous-time case. It is our hope that these

results will spur further research activity leading to effective approaches for addressing

the issue of controller-robustness for other controller structures.
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CHAPTER V

STABILIZING PID CONTROLLERS FOR SYSTEMS WITH INTERVAL

TIME-DELAY∗

In this chapter, the precise conditions under which one can use the generalized Nyquist

Criterion are derived based on Pontryagin’s theorems. Furthermore, a method to

compute the complete set of PID controllers to stabilize a given arbitrary order plant

with interval time-delay is developed.

A. Connection Between Pontryagin’s Theory and the Nyquist Criterion

First, we will use an example to show that applying Tsypkin’s results, which are

standard in the control literature, to an arbitrary LTI plant with time-delay can lead

to misleading conclusions, if not used carefully.

Example 4 Given a system with nominal open-loop transfer function

G(s) =
2s+ 1

s+ 2
,

we can draw its Nyquist plot, as shown in Fig. 8. The closed-loop system is stable

with unity negative feedback and the Nyquist plot intersects the unit circle at ω0 = 1.

Thus, from the graph, using Tsypkin’s result, it would appear that the closed-loop

system can tolerate a time-delay up to L0 = π+arg[G(jω0)]
ω0

= 3.7851. However, when we

add a 1 second delay to the nominal transfer function, the closed-loop system becomes

unstable, as shown in Fig. 9.

∗ c©2004 IEEE. Reprinted, with permission, from “PID stabilization of LTI plants
with time-delay” by H. Xu, A. Datta and S. P. Bhattacharyya, Proceedings of 42nd
IEEE Conference on Decision and Control, Vol. 4, pp. 4038-4043, December 2003.
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In this section, we use Pontryagin’s Theorems to derive conditions under which a

modified generalized Nyquist Criterion can be used to correctly analyze the stability

of a system. This connection is important in its own right.

Let h(z, t) be a polynomial in the two variables z and t with constant coefficients,

h(z, t) =
r∑

m=0

s∑
n=0

amnz
mtn. (5.1)

The term arsz
rts is called the principal term of the polynomial if ars 6= 0 and the

exponents r and s each attain their maximum; that is for each other term amnz
mtn

in (5.1), for amn 6= 0, either r > m, s > n, or r = m, s > n, or r > m, s = n. We can

also write (5.1) as

h(z, t) = χ(s)
r (t)zr + χ

(s)
r−1(t)z

r−1 + · · ·+ χ
(s)
1 (t)z + χ

(s)
0 (t),

where χ
(s)
j (t), j = 0, 1, 2, . . . , r are polynomials in t with degree at most equal to s.

We will use the following two theorems of Pontryagin [7] to clarify conditions

under which the Nyquist Criterion can be used to study the stability of systems with

time-delay.

Theorem 3 [7] If the polynomial (5.1) has no principal term, then the function

H(z) = h(z, ez) (5.2)

has an unbounded number of zeros with arbitrarily large positive real part.

Theorem 4 [7] Let H(z) = h(z, ez), where h(z, t) is a polynomial with principal

term arsz
rts. If the function χ(s)

r (ez) has roots in the open right half plane, then the

function H(z) has an unbounded set of zeros in the open right half plane. If all the

zeros of the function χ(s)
r (ez) lie in the open left half plane, then the function H(z)

has no more than a bounded set of zeros in the open right half plane.
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Remark 2 We note that in Theorem 4, the situation when χ(s)
r (ez) has zero(s) on

the imaginary axis is not mentioned. We will look into this more deeply. Let us look

at the distribution of the zeros of H(z) when |z| → ∞. As |z| → ∞, H(z) = 0 can

be approximated as χ(s)
r (ez) = 0. That means the roots of χ(s)

r (ez) = 0 determine the

zeros of H(z) at infinity. According to [8, 19], those roots form certain chains and

they go deep into the left half plane, the right half plane or go to infinity within strips

with finite real parts. Thus, if χ(s)
r (ez) has zeros on the imaginary axis, H(z) has root

chains that approach the imaginary axis at infinity.

The following theorem based on the above results gives us the conditions which

should be satisfied when using the Nyquist Criterion with the conventional Nyquist

contour (the contour consisting of the imaginary axis and a semicircle of arbitrarily

large radius in the right half plane).

Theorem 5 Given a unity feedback system with an open-loop transfer function

G(s) = G0(s)e
−Ls =

N(s)

D(s)
e−Ls

where N(s) and D(s) are real polynomials of degree m and n respectively and L is a

fixed delay, we have the following conclusions:

1. If n < m, or, n = m and | bn

an
| ≥ 1, where an, bn are the leading coefficients of

D(s) and N(s) respectively, then the system is unstable according to Pontrya-

gin’s theorems.

2. If n > m, or, n = m and | bn

an
| < 1, the conventional Nyquist Criterion is

applicable and we can use it to check the stability of the closed-loop system.

Proof: The characteristic equation of the closed-loop system is

δ(s) = D(s) +N(s)e−Ls. (5.3)
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Multiply (5.3) by eLs and let z = Ls to obtain

δ∗(z) = Dz(z)e
z +Nz(z), (5.4)

here

Dz(z) = anL
−nzn + an−1L

−n+1zn−1 + · · ·+ a1L
−1z + a0

Nz(z) = bmL
−mzm + bm−1L

−m+1zm−1 + · · ·+ b1L
−1z + b0.

Note that both the above operations do not affect the number of RHP roots of the

original equation with L > 0.

Now we will discuss the possible stability of (5.4) in the following three cases.

1. deg[Dz(z)] < deg[Nz(z)], i.e., n < m.

In this case, δ∗(z) does not have a principal term. According to Theorem 3, it

has an unbounded number of RHP roots. The Nyquist Criterion is inapplicable

but we already know that δ∗(z) is unstable.

2. deg[Dz(z)] > deg[Nz(z)], i.e., n > m.

δ∗(z) has the principal term anL
−nznez. The coefficient of zn is

χ(1)
n (ez) =

an

Ln
ez,

which does not have roots in RHP and on the imaginary axis. Therefore, by

Theorem 4, δ∗(z) can only have a bounded set of RHP zeros. This bounded set

is also a finite set [8, 19], and the Nyquist Criterion can be used for stability

analysis.

3. deg[Dz(z)] = deg[Nz(z)], i.e., n = m.

δ∗(z) has the principal term anL
−nznez in this case too. However, the coefficient
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of zn is

χ(1)
n (ez) =

an

Ln
ez +

bn
Ln
.

To make χ(1)
n (ez) = 0, we must have ez = − bn

an
. Let z = x + jy and x, y ∈ R,

then we have exejy = − bn

an
. The solutions are

• Case 1: bn

an
> 0. Then ex = | bn

an
|, ejy = −1 so that

x = ln | bn
an

|, y = 2kπ + π, k ∈ Z,

• Case 2: bn

an
< 0. Then ex = | bn

an
|, ejy = 1 so that

x = ln | bn
an

|, y = 2kπ, k ∈ Z.

Depending on the value of | bn

an
|, we will arrive at different conclusions:

(a) If | bn

an
| > 1, then χ(1)

n has RHP zeros. So, δ∗(z) has an unbounded set of

RHP zeros. Again, the Nyquist Criterion is inapplicable but the closed-

loop system is unstable.

(b) If | bn

an
| < 1, then χ(1)

n only has LHP zeros. So, δ∗(z) has no more than

a bounded and finite set of RHP zeros and the closed-loop stability is

determinable from the Nyquist Criterion.

(c) If | bn

an
| = 1, then χ(1)

n has zeros on the imaginary axis. So, δ∗(z) has

root chains approaching the imaginary axis, so it is unstable [8, 19]. The

Nyquist Criterion is inapplicable in this case.

Since δ∗(z) has the same number of RHP zeros as δ(s) for fixed L > 0, from the above

analysis, we can see that in cases (1), (3a) and (3c), δ(s) is unstable, while in cases

(2) and (3b), δ(s) has no more than a bounded set of zeros in the RHP, hence it is

possibly stable.
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So, only in cases (2) and (3b), the Nyquist Criterion can be used to ascertain

possible stability. Thus Tsypkin’s results and the proof of the Generalized Nyquist

Criterion as given in [10] are valid only for these two cases. ♣

Remark 3 In all fairness, it is appropriate to point out that most likely Tsypkin

assumed the plant to be strictly proper, though he did not state it explicitly in the

literature. Here, attaching a PID controller to a proper or strictly proper plant opens

up the very real possibility of ending up with an improper or a proper open-loop transfer

function. This is the reason that the above investigation had to be undertaken.

Remark 4 In case (1), (3a) and (3c), if we plot the Nyquist curve of the open-loop

transfer function, the curve will encircle the unit circle, which includes the −1 +

j0 point, an infinite number of times in clockwise direction. As a root counting

procedure, the Nyquist Criterion is therefore unable to handle this situation. Some

generalizations of the Nyquist Criterion can be found in [20, 21, 22], which addressed

certain aspects of this issue. Here, we clarify the usage of the traditional Nyquist

Criterion with the help of Pontryagin’s Theorems.

Remark 5 In [20, 23, 24, 25], the discussion of “well-posedness” of the systems has

reached a similar condition. Theorem 5 shows that this condition is valid not only for

arbitrarily small delay but also for any value of delay. This condition also appears in

[26].

The above clarification sets the stage for determining all stabilizing P, PI and

PID controllers for plants with time-delay using the Nyquist Criterion, which is the

main purpose of this chapter.
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B. Problem Formulation and Solution Approach

Problem Description: Consider a given LTI plant with time-delay L,

P (s) = P0(s)e
−Ls =

N(s)

D(s)
e−Ls

and a controller with a unity feedback fixed-structure, C(s,k), where k is the vector

of adjustable parameters of the controller. The problem of interest is to find the

complete set of k’s which can stabilize the system for any L ∈ [0, L0].

The approach developed in this chapter to solve this problem involves the fol-

lowing steps:

1. Find the complete set of k’s which stabilize the delay-free plant P0(s) and denote

this set as S0.

2. Define the set SN , which is the set of k’s such that either C(s,k)P0(s) is an im-

proper transfer function or lims→∞ |[C(s,k)P0(s)]| ≥ 1. Note that the elements

in SN make the closed-loop system unstable after the delay is introduced (The-

orem 5). Exclude SN from S0 and denote the new set by S1, i.e. S1 = S0\SN .

3. Compute the set SL:

SL = {k|k /∈ SN and ∃L1 ∈ [0, L0], ω1 ∈ R, s.t.C(jω1)P0(jω1)e
−jL1ω1 = −1}.

From this definition, SL is the set of k’s which make C(s,k)P (s) have a minimal

critical delay that is less than or equal to L0 [10].

4. The set SR
∆
= S1\SL is the solution to our problem.

Theorem 6 The set of controllers C(s,k) denoted by SR is the complete set of con-

trollers in the unity feedback configuration that stabilize the plant P (s) with delay L

from 0 up to L0.
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Proof: For any k0 ∈ SR, since SR ⊆ S1 ⊆ S0, k0 ∈ S0, i.e. there is no closed-loop

RHP pole when the controller C(s,k0) is applied to the plant P (s) with L = 0.

Since k0 /∈ SN , with the increase of L, there is no unbounded RHP closed-loop pole

(Theorem 5) and the possible RHP closed-loop poles are the poles that come from

the LHP by crossing the imaginary axis [10]. However, from k0 /∈ SL, we know that

there are no boundary crossing poles. So, the closed-loop system does not have RHP

poles with L ranging from 0 to L0 and it is, therefore, stable for those L’s.

For any k1 /∈ SR, it must fall into one or more of following categories.

1. k1 /∈ S0, which means the controller cannot even stabilize the delay-free plant

(L = 0).

2. k1 ∈ SN , the closed-loop system is unstable with any amount of delay (Theorem

5).

3. k1 ∈ SL, some closed-loop poles are on the imaginary axis for certain L1 ≤ L0.

These poles will either go into the RHP or return to the LHP. However, the

stability at that L1 has already been destroyed.

We can see from the above analysis that SR is exactly the complete set of stabi-

lizing controller parameters that we are looking for. ♣

Remark 6 In the above procedures, if we have the knowledge of the complete stabi-

lizing set for the system with a fixed delay Lmin, where 0 < Lmin < L0, and let S1 be

this set. Also, let SL be the set of k’s which make C(s,k)P (s) have a critical delay

between Lmin and L0, i.e.

SL = {k|k ∈ S1 and ∃L1 ∈ [Lmin, L0], ω1 ∈ R, s.t.C(jω1)P0(jω1)e
−jL1ω1 = −1}.
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Then the result SR
∆
= S1\SL is the complete stabilizing controllers set for the family

of plants with interval delay [Lmin, L0].

Remark 7 In [27], the stability of a family of time-delay plants is analyzed by check-

ing the boundary crossing of roots. Here, the same idea is used in the synthesis

problem.

In the following sections, we apply this general method to the special case of PID

controllers to find all PID controllers which can stabilize a given plant with time-delay

up to a certain value.

C. Proportional Controllers for Time-Delay Systems

Let us first consider using proportional controllers to stabilize an arbitrary plant

with time-delay. We will then extend the result to PI and PID controllers. For a

proportional controller, we have

C(s) = kp,

and the plant is:

P (s) = P0(s)e
−Ls =

N(s)

D(s)
e−Ls.

Our objective is to find all the kp’s which stabilize P (s) with time-delay L ∈ [0, L0].

To implement the method proposed in Section B, the key is to find SL. The

Nyquist curve of the system crossing (−1, 0) is equivalent to C(jω)P0(jω)e−jLω = −1

for certain L and ω. This, in turn, is equivalent to the following two conditions:

arg[kpP0(jω)]− Lω = 2hπ − π, h ∈ Z (5.5)

|kpP0(jω)| = 1. (5.6)

Here the argument function arg(·) ∈ [−π, π) by convention. Also we only need to
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consider ω > 0 since the Nyquist plot for ω < 0 is symmetric. We are only interested

in the minimal non-negative L which satisfies (5.5), so the phase condition(5.5) can

be rewritten as

arg[kpP0(jω)]− Lω = −π.

Note that such a reasoning also applies to the PI and PID cases, to be considered

later.

The two conditions above yield

L(ω, kp) =
arg[kpP0(jω)] + π

ω
(5.7)

kp(ω) = ± 1

|P0(jω)|
. (5.8)

For kp > 0, we have

L(ω, kp) = L(ω) =
arg[P0(jω)] + π

ω
.

Solve L(ω) ≤ L0 to get a set of ω, say Ω+. From the magnitude condition (5.8), we

can get a set of positive kp’s corresponding to Ω+, and let us call this set S+
L . This

set consists of all the positive kp’s that make the system have poles on the imaginary

axis for some L ≤ L0.

Similarly, for kp < 0, we will have a set Ω− and a corresponding set S−L .

Now, the combination of S+
L and S−L is the complete set SL, i.e. SL = S+

L ∪ S−L .

The above discussion leads to the following steps for computing SR.

1. Compute the delay-free stabilizing kp set, S0, either by the Routh-Hurwitz Cri-

terion or the method proposed in [2].

2. Find SN .

• If deg[N(s)] > deg[D(s)], SN = R, which means SR = ∅.
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• If deg[N(s)] < deg[D(s)], SN = ∅.

• If deg[N(s)] = deg[D(s)], SN = {kp| |kp| ≥ |an

bn
|}, where an, bn are the

leading coeffients of D(s) and N(s) respectively.

3. Compute S1 = S0\SN .

4. Compute SL according to the analysis in this section.

5. Compute SR = S1\SL.

D. PI Controllers for Time-Delay Systems

For a PI controller

C(s) = kp +
ki

s
=
kps+ ki

s

and the open-loop transfer function becomes

G(s) = C(s)P (s) = C(s)P0(s)e
−Ls = G0(s)e

−Ls

where,

G0(s) = C(s)P0(s)

=
kps+ ki

s
· N(s)

D(s)

= (kps+ ki) ·
N(s)

sD(s)

= (kps+ ki) ·R0(s),

with R0(s)
∆
= N(s)

sD(s)
.

The magnitude and phase conditions

arg[(ki + jkpω)R0(jω)]− Lω = −π

|(ki + jkpω)R0(jω)| = 1
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can be written as

L(ω, kp, ki) =
arg[(ki + jkpω)R0(jω)] + π

ω
(5.9)

ki = ±
√

1

|R0(jω)|2
− k2

pω
2. (5.10)

We can first fix kp and define

M(ω) =
1

|R0(jω)|2
− k2

pω
2.

Thus

ki = ±
√
M(ω). (5.11)

Note that since ki ∈ R, only those ω’s with M(ω) ≥ 0 need consideration when we

compute SL.

Substituting (5.11) into (5.9), we will have

L(ω) =
arg{[±

√
M(ω) + jkpω]R0(jω)}+ π

ω

Before proceeding further, we need to introduce some notation. For a given

set in the controller parameter space, if one of the controller parameters appears

as a subscript, then the new set represents the subset of the original one with that

parameter fixed at some value. For example, SR,kp is a subset of SR with kp fixed at

some value.

Based on the above discussion, the following steps can be used for computing

SR:

1. Compute S0 using the results of [2].

2. Find SN .

• If deg[N(s)] > deg[D(s)], SN = R2, which means SR = ∅.
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• If deg[N(s)] < deg[D(s)], SN = ∅.

• If deg[N(s)] = deg[D(s)], SN = {(kp, ki)|kp, ki ∈ R and |kp| ≥ |an

bn
|}, where

an, bn are the leading coeffients of D(s) and N(s) respectively.

3. Compute S1 = S0\SN .

4. For a fixed kp, find SR,kp .

• First determine the sets Ω+ and S+
L,kp

:

Ω+ = {ω|ω > 0 and M(ω) ≥ 0 and

L(ω) =
arg{[

√
M(ω) + jkpω]R0(jω)}+ π

ω
≤ L0}

S+
L,kp

= {ki|ki /∈ SN,kp and ∃ ω ∈ Ω+ s.t. ki =
√
M(ω)}.

• Next determine the sets Ω− and S−L,kp
:

Ω− = {ω|ω > 0 and M(ω) ≥ 0 and

L(ω) =
arg{[−

√
M(ω) + jkpω]R0(jω)}+ π

ω
≤ L0}

S−L,kp
= {ki|ki /∈ SN,kp and ∃ ω ∈ Ω− s.t. ki = −

√
M(ω)}.

Compute SL,kp = S+
L,kp

∪ S−L,kp
and SR,kp = S1,kp\SL,kp .

5. By sweeping over kp, we will have the complete set of PI controllers that stabilize

all plants with delay up to L0:

SR =
⋃
kp

SR,kp .
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E. PID Controllers for Time-Delay Systems

Here the PID controller takes the form

C(s) = kp +
ki

s
+ kds =

kds
2 + kps+ ki

s
,

and the open-loop transfer function becomes

G(s) = C(s)P (s) = C(s)P0(s)e
−Ls = G0(s)e

−Ls

where

G0(s) = C(s)P0(s)

=
kds

2 + kps+ ki

s
· N(s)

D(s)

= (kds
2 + kps+ ki) ·

N(s)

sD(s)

= (kds
2 + kps+ ki) ·R0(s),

with R0(s)
∆
= N(s)

sD(s)
.

The phase and magnitude conditions

arg[(ki − kdω
2 + jkpω)R0(jω)]− Lω = −π

and |(ki − kdω
2 + jkpω)R0(jω)| = 1

can be further reduced to:

L(ω, kp, ki, kd) =
π + arg{[(ki − kdω

2) + jkpω] ·R0(jω)}
ω

(5.12)

ki − kdω
2 = ±

√
1

|R0(jω)|2
− (kpω)2. (5.13)
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Similar to the PI case, for fixed kp, we define

M(ω) =
1

|R0(jω)|2
− (kpω)2.

Then

ki − kdω
2 = ±

√
M(ω). (5.14)

As in the PI case, we only need to consider ω’s with M(ω) ≥ 0 when we compute SL.

Substituting (5.14) into (5.12), we have

L(ω, kp, ki, kd) = L(ω) =
π + arg{[±

√
M(ω) + jkpω] ·R0(jω)}

ω
.

The following steps can then be used for computing SR:

1. Compute S0 using the results of [2].

2. Find SN .

• If deg[N(s)] > deg[D(s)]− 1, SN = R3, which means SR = ∅.

• If deg[N(s)] < deg[D(s)]− 1, SN = ∅.

• If deg[N(s)] = deg[D(s)] − 1, SN = {(kp, ki, kd)|kp, ki, kd ∈ R and |kd| ≥

| an

bn−1
|}, where an, bn−1 are the leading coefficients of D(s) and N(s) respec-

tively.

3. Compute S1 = S0\SN .

4. For a fixed kp, determine the set SR,kp as follows:

• First determine the sets Ω+ and S+
L,kp

:

Ω+ = {ω|ω > 0 and M(ω) ≥ 0 and

L(ω) =
π + arg{[

√
M(ω) + jkpω] ·R0(jω)}

ω
≤ L0}
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S+
L,kp

= {(ki, kd)|(ki, kd) /∈ SN,kp

and ∃ ω ∈ Ω+ s.t. ki − kdω
2 =

√
M(ω)}.

Note that S+
L,kp

is a set of straight lines in the (ki, kd) space.

• Next determine the sets Ω− and S−L,kp
:

Ω− = {ω|ω > 0 and M(ω) ≥ 0 and

L(ω) =
π + arg{[−

√
M(ω) + jkpω] ·R0(jω)}

ω
≤ L0}

S−L,kp
= {(ki, kd)|(ki, kd) /∈ SN,kp

and ∃ ω ∈ Ω− s.t. ki − kdω
2 = −

√
M(ω)}.

Compute SL,kp = S+
L,kp

∪ S−L,kp
and SR,kp = S1,kp\SL,kp .

5. By sweeping over kp, we will have the complete set of PID controllers that

stabilize all plants with delay up to L0:

SR =
⋃
kp

SR,kp .

Remark 8 The real PID controller has a small time constant stable pole which makes

it proper. In addition, the real plant is usually strictly proper. Thus, step 2 and 3 can

be omitted. The small time constant pole can be grouped with the transfer function of

the plant and the above procedure can then be used to solve the PID problem.

F. Examples

Here we present two numerical examples to illustrate the procedures in the previous

sections. The first example computes proportional controllers to stabilize a third-

order plant. The second one demonstrates the application of PID controllers to a

fifth-order plant.
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Example 5 Find all proportional controllers that stabilize the plant

P (s) =
s2 + 3s− 2

s3 + 2s2 + 3s+ 2
e−Ls

with delay up to L0 = 1.8.

Solution: For the delay-free plant, the stabilizing kp range is

S0 = (−0.4093, 1).

Since deg[N(s)] = 2 < 3 = deg[D(s)],

SN = ∅,

and

S1 = S0.

For kp > 0,

Ω+ = [1.5129,+∞),

(see Fig.10) and the corresponding

S+
L = [0.4473,+∞),

(see Fig.11).

For kp < 0,

Ω− = [0.7359, 1.3312] ∪ [2.6817,+∞),

(see Fig.12) and the corresponding

S−L = [−0.6025,−0.4082] ∪ (−∞,−1.3691],

(see Fig.13).
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Fig. 14. Stabilizing region of(ki, kd) with kp = 1 for delay free plant.

So, the stabilizing kp for the plant with time-delay up to 1.8 is

SR = S1\SL

= (−0.4093, 1)\([0.4473,+∞) ∪ [−0.6025,−0.4082] ∪ (−∞,−1.3691])

= (−0.4082, 0.4473). ♣

Example 6 Find all PID controllers that stabilize the plant

P (s) =
s3 − 4s2 + s+ 2

s5 + 8s4 + 32s3 + 46s2 + 46s+ 17
e−Ls

with L up to L0 = 1, i.e., for all L ∈ [0, 1].

Solution: Fix kp = 1. First, we can use the method proposed in [2] to get the

stabilizing ki, kd values for the delay-free plant, S0,kp , shown in Fig.14.

Since deg[D(s)]− deg[N(s)] > 1,

SN = ∅,
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and

S1 = S0.

For ki − kdω
2 =

√
M(ω) > 0, the set of ω where L(ω) ≤ L0 is

Ω+ = [0.524825, 0.742302] ∪ [2.57318,+∞),

(see Fig.15). Also, we can find the corresponding values of
√
M(ω) (see Fig.16) and

S+
L,kp

, i.e. the straight lines defined by

ki − kdω
2 =

√
M(ω)

for ω ∈ Ω+.

For ki − kdω
2 = −

√
M(ω) < 0,

Ω− = [1.35894, 1.8659] ∪ [4.37326,+∞),
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(see Fig.17). Then we can get S−L,kp
.

Finally, we can exclude S+
L,kp

and S−L,kp
from S1,kp to get SR,kp (see Fig.18). ♣

G. A Special Case: First-Order Plant with Time-Delay

In this section, we show how the approach presented can be used to recover the results

of [6].

Here, the problem is to determine all PID controllers that stabilize a first-order

plant with time-delay up to L0. To this end, consider the first-order plant with

time-delay:

P (s) =
k

Ts+ 1
e−Ls, L ∈ [0, L0].

The stabilizing PID parameters for the delay-free plant are:

S0 = {(kp, ki, kd)|kp > −1

k
, ki > 0, kd > −T

k
or kp < −1

k
, ki < 0, kd < −T

k
}
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Since deg[D(s)]− deg[N(s)] = 1, SN = {(kp, ki, kd)|kp, ki, kd ∈ R and |kd| ≥ |T
k
|}.

Without loss of generality, let us assume that k > 0. Then

S1 = S0\SN = {(kp, ki, kd)|kp > −1

k
, ki > 0,

T

k
> kd > −T

k
}

for T > 0, and

S1 = {(kp, ki, kd)|kp < −1

k
, ki < 0,

T

k
< kd < −T

k
}

for T < 0.

For the first-order plant

R0(s) =
N(s)

sD(s)
=

k

Ts2 + s

and for a fixed kp

M(ω) =
1

|R0(jω)|2
− (kpω)2 =

T 2ω4 + (1− k2k2
p)ω

2

k2

For M(ω) ≥ 0, we must have T 2ω2 + (1− k2k2
p) ≥ 0

• When 1 − k2k2
p ≥ 0, i.e., |kp| ≤ 1/k, all ω satisfy the requirement, that means

we need to consider all ω > 0.

• When 1 − k2k2
p < 0, i.e., |kp| > 1/k. In this case, we only need to consider

ω ≥ ωs, where ωs =
√
k2k2

p − 1/|T | and M(ωs) = 0.

Let us consider T > 0. Now we have two cases to consider.

1. Case 1: ki − kdω
2 =

√
M(ω). In this case,

L(ω) =
π + arg[(ω

k

√
T 2ω2 + 1− k2k2

p + jkpω) · k
−Tω2+jω

]

ω
=:

α+(ω)

ω

where α+(ω) ∈ [0, 2π).
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First, let us check L(ω). Define

α+
1 (ω) := arg(

ω

k

√
T 2ω2 + 1− k2k2

p + jkpω) = tan−1 kkp√
T 2ω2 + 1− k2k2

p

α+
2 (ω) := π + arg[

k

−Tω2 + jω
] = tan−1 1

Tω
,

where α+
1 (ω) ∈ (−π/2, π/2) and α+

2 (ω) ∈ (0, π/2).

• For kp ≥ 0, α+
1 (ω) ∈ [0, π/2), thus

α+
1 (ω) + α+

2 (ω) ∈ (0, π) ⊂ [0, 2π).

• For − 1
k
< kp < 0, α+

1 (ω) ∈ (−π/2, 0) and |α+
1 (ω)| < |α+

2 (ω)|, thus

α+
1 (ω) + α+

2 (ω) ∈ (0, π/2) ⊂ [0, 2π).

Thus L(ω) can be decomposed as

L(ω) =
α+(ω)

ω
=
α+

1 (ω) + α+
2 (ω)

ω
. (5.15)

Furthermore

• For kp ≥ 0, α+
1 (ω) and α+

2 (ω) are decreasing functions of ω. So L(ω) is

also a decreasing function of ω.

• For − 1
k
< kp < 0, let us consider

tan[α+
1 (ω) + α+

2 (ω)] =
tanα+

1 (ω) + tanα+
2 (ω)

1− tanα+
1 (ω) tanα+

2 (ω)

=
kkpTω +

√
T 2ω2 + 1− k2k2

p

Tω
√
T 2ω2 + 1− k2k2

p − kkp

.

Taking its derivative, we obtain

d tan[α+
1 (ω) + α+

2 (ω)]

dω
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=
T (1 + T 2ω2)(−kkpTω −

√
T 2ω2 + 1− k2k2

p)

(Tω
√
T 2ω2 + 1− k2k2

p − kkp)2
√
T 2ω2 + 1− k2k2

p

<
T (1 + T 2ω2)(Tω −

√
T 2ω2 + 1− k2k2

p)

(Tω
√
T 2ω2 + 1− k2k2

p − kkp)2
√
T 2ω2 + 1− k2k2

p

< 0.

Since α+
1 (ω) + α+

2 (ω) ∈ (0, π/2), we have α+
1 (ω) + α+

2 (ω) is a monotoni-

cally decreasing function of ω. So L(ω) is also a monotonically decreasing

function of ω.

From the above analysis, we know, that for any given kp in S1, L(ω) is a

monotonically decreasing function of ω. This implies, there is only at most one

ω which satisfies L(ω) = L0. We denote this ω when it exists by ω+
1 (see Fig.19,

Fig.20 and Fig.21). The quantity ω+
1 along with the quantity ωs, defined earlier,

enables us to characterize Ω+:

• For − 1
k
< kp ≤ 1

k
, Ω+ = [ω+

1 ,+∞).

• For kp >
1
k

and L0 ≤ L(ωs), Ω+ = [ω+
1 ,+∞).

• For kp >
1
k

and L0 > L(ωs), Ω+ = [ωs,+∞).

Now, let us check the straight lines defined by ki−kdω
2 =

√
M(ω) in the (ki, kd)

plane. The straight line

ki = ω2kd +
ω
√
T 2ω2 + 1− k2k2

p

k

intersects the lines kd = T
k

and kd = −T
k

at (k+
i,ω,

T
k
) and (k−i,ω,−T

k
) respectively,

where

k+
i,ω =

ω

k
(
√
T 2ω2 + 1− k2k2

p + Tω) (5.16)

k−i,ω =
ω

k
(
√
T 2ω2 + 1− k2k2

p − Tω). (5.17)
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Fig. 21. First-order plant: L(ω) vs. ω for kp >
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and L0 > L(ωs).

The derivative of k−i,ω is

dk−i,ω
dω

=
(
√
T 2ω2 + 1− k2k2

p − Tω)2

k
√
T 2ω2 + 1− k2k2

p

≥ 0.

From (5.16) and (5.17), it follows that
dk+

i,ω

dω
is also non-negative. Thus k−i,ω and

k+
i,ω are both monotonically increasing functions of ω. From this, it follows that

the set

S+
L,kp

∆
= {(ki, kd)|ki − kdω

2 =
√
M(ω), ω ∈ Ω+} ∩ S1,kp

can be described as follows corresponding to the different values of kp and L0:

• For − 1
k
< kp ≤ 1

k
,

S+
L,kp

= {(ki, kd)|ki ≥ kd(ω
+
1 )2 +

√
M(ω+

1 )} ∩ S1,kp . (5.18)
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• For kp >
1
k

and L0 ≤ L(ωs),

S+
L,kp

= {(ki, kd)|ki ≥ kd(ω
+
1 )2 +

√
M(ω+

1 )} ∩ S1,kp .

• For kp >
1
k

and L0 > L(ωs),

S+
L,kp

= {(ki, kd)|ki ≥ kd(ωs)
2 +

√
M(ωs)} ∩ S1,kp

= {(ki, kd)|ki ≥ kd(ωs)
2} ∩ S1,kp (since M(ωs) = 0, by definition)

2. Case 2: ki − kdω
2 = −

√
M(ω). Here we first check the positions of these lines.

They intersect kd = T
k

and kd = −T
k

at (k+
i,ω,

T
k
) and (k−i,ω,−T

k
) respectively,

where

k+
i,ω =

ω

k
(−
√
T 2ω2 + 1− k2k2

p + Tω)

k−i,ω =
ω

k
(−
√
T 2ω2 + 1− k2k2

p − Tω).

Here, for − 1
k
< kp ≤ 1

k
, k+

i,ω ≤ 0, which means that the lines ki − kdω
2 =

−
√
M(ω) lie outside S1,kp . So, S−L,kp

= ∅ for these kp’s.

On the other hand, for kp >
1
k
, k+

i,ω > 0, i.e. the lines ki − kdω
2 = −

√
M(ω)

have a non-empty intersection with S1,kp and, therefore, affect the set of all

stabilizing PID controllers for the system with time-delay.

We next proceed to determine this intersection. Now, the derivative of k+
i,ω is

dk+
i,ω

dω
= −

(
√
T 2ω2 + 1− k2k2

p − Tω)2

k
√
T 2ω2 + 1− k2k2

p

≤ 0.

So k+
i,ω and k−i,ω are monotonically decreasing functions of ω and k+

i,ω tends to

zero as ω → ∞. This result will be used to determine S−L,kp
. In order to do
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that, we also need to examine L(ω) when kp >
1
k
. Now, in this case,

L(ω) =
π + arg[(−ω

k

√
T 2ω2 + 1− k2k2

p + jkpω) · k
−Tω2+jω

]

ω
=:

α−(ω)

ω

where α−(ω) ∈ [0, 2π). Define

α−1 (ω) = arg(−ω
k

√
T 2ω2 + 1− k2k2

p + jkpω)

= π − tan−1 kkp√
T 2ω2 + 1− k2k2

p

(5.19)

= π − α+
1 (ω)

α−2 (ω) = π + arg[
k

−Tω2 + jω
]

= tan−1 1

Tω
(5.20)

= α+
2 (ω)

where α−1 (ω) ∈ (π/2, π) and α−2 (ω) ∈ (0, π/2) for kp >
1
k
. Thus α−1 (ω)+α−2 (ω) ∈

(π/2, 3π/2) ⊂ [0, 2π), so that L(ω) can be decomposed as

L(ω) =
α−(ω)

ω
=
α−1 (ω) + α−2 (ω)

ω
. (5.21)

We first evaluate tan[α−1 (ω) + α−2 (ω)]:

tan[α−1 (ω) + α−2 (ω)] =

√
T 2ω2 + 1− k2k2

p − kkpTω

Tω
√
T 2ω2 + 1− k2k2

p + kkp

and its derivative:

d tan[α−1 (ω) + α−2 (ω)]

dω

=
T (1 + T 2ω2)(kkpTω −

√
T 2ω2 + 1− k2k2

p)

(Tω
√
T 2ω2 + 1− k2k2

p + kkp)2
√
T 2ω2 + 1− k2k2

p

>
T (1 + T 2ω2)(Tω −

√
T 2ω2 + 1− k2k2

p)

(Tω
√
T 2ω2 + 1− k2k2

p + kkp)2
√
T 2ω2 + 1− k2k2

p

(since kkp > 1)
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> 0

Since α−1 (ω)+α−2 (ω) ∈ (π/2, 3π/2), α−1 (ω)+α−2 (ω) is a monotonically increasing

function of ω. Next, we evaluate the derivative of L(ω).

dL(ω)

dω
=

d

dω
[
α−1 (ω) + α−2 (ω)

ω
]

=
1

ω2
[

kkpT
2ω2

(1 + T 2ω2)
√
T 2ω2 + 1− k2k2

p

− Tω

1 + T 2ω2

−(π − tan−1 kkp√
T 2ω2 + 1− k2k2

p

+ tan−1 1

Tω
)]

=
1

ω2
{ Tω

1 + T 2ω2
(

kkpTω√
T 2ω2 + 1− k2k2

p

− 1)− [α−1 (ω) + α−2 (ω)]}

=
1

ω2
{β(ω)− [α−1 (ω) + α−2 (ω)]}

where

β(ω) =
Tω

1 + T 2ω2
(

kkpTω√
T 2ω2 + 1− k2k2

p

− 1)

For ω ≤ 1/T ,

dβ(ω)

dω

=
T

(1 + T 2ω2)2
[kkp(1 + T 2ω2)

Tω√
T 2ω2 + 1− k2k2

p

(1− T 2ω2

T 2ω2 + 1− k2k2
p

)

+(1− T 2ω2)(
kkpTω√

T 2ω2 + 1− k2k2
p

− 1)]

<
T

(1 + T 2ω2)2
[(1− T 2ω2

T 2ω2 + 1− k2k2
p

) + (
kkpTω√

T 2ω2 + 1− k2k2
p

− 1)]

(using ωT ≤ 1 and kkp > 1)

=
T 2ω

(1 + T 2ω2)2(T 2ω2 + 1− k2k2
p)

(kkp

√
T 2ω2 + 1− k2k2

p − Tω)



68

Since

(kkp

√
T 2ω2 + 1− k2k2

p)
2 − (Tω)2 = k2k2

p(1− k2k2
p) + k2k2

pT
2ω2 − T 2ω2

= (k2k2
p − T 2ω2)(1− k2k2

p)

< 0,

we have

dβ(ω)

dω
< 0.

For ω > 1/T , Tω
1+T 2ω2 and kkpTω√

T 2ω2+1−k2k2
p

− 1 are both positive while their deriva-

tives are both negative so that when ω > 1/T , we have dβ(ω)/dω < 0.

Thus, for all values of ω, β(ω) is a monotonically decreasing function of ω. At

ω = ωs,

β(ωs)− [α−1 (ωs) + α−2 (ωs)] = ∞− (
π

2
+ tan−1 1

Tωs

) = ∞ > 0,

and at ω = ∞,

β(∞)− [α−1 (∞)− α−2 (∞)] = 0− (π − 0) = −π < 0.

Also as already shown, α−1 (ω) + α−2 (ω) is a monotonically increasing function

of ω. So, there is only one finite solution for the equation

β(ω)− [α−1 (ω) + α−2 (ω)] = 0

in the interval (ωs, ∞). The above analysis suggests that dL(ω)/dω has only

one finite zero, which indicates only one maximum point for L(ω) (see Fig.20

and Fig.21). Depending on the value of L0, the sets S−L,kp
can be characterized

as follows:
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• For L0 ≤ L(ωs), there is only one solution for L(ω) = L0, denoted by

ω−1 and Ω− = [ω−1 ,+∞). With the knowledge about the positions of

ki − kdω
2 = −

√
M(ω) that we acquired earlier (recall the monotonicity

property of k+
i,ω and k−i,ω), we have

S−L,kp
= {(ki, kd)|ki − kdω

2 = −
√
M(ω), ω ∈ Ω−} ∩ S1,kp

= {(ki, kd)|ki ≤ kd(ω
−
1 )2 −

√
M(ω−1 )} ∩ S1,kp . (5.22)

• For L(ωs) < L0 < maxω∈(ωs,∞) L(ω) , there are two solutions for L(ω) = L0,

denoted as ω−1 and ω−2 with ω−1 < ω−2 . So Ω− = [ωs, ω
−
1 ] ∪ [ω−2 ,+∞), and

S−L,kp
= {(ki, kd)|kd(ω

−
1 )2 −

√
M(ω−1 ) ≤ ki ≤ kd(ωs)

2

or ki ≤ kd(ω
−
2 )2 −

√
M(ω−2 )} ∩ S1,kp . (5.23)

• For L0 > maxω∈(ωs,∞) L(ω), there is no solution for L(ω) = L0 and we have

Ω− = [ωs,+∞) and

S−L,kp
= {(ki, kd)|ki ≤ kd(ωs)

2} ∩ S1,kp .

Now, we can compute SR,kp = S1,kp\(S+
L,kp

∪ S−L,kp
).

• For − 1
k
< kp ≤ 1

k
, SR,kp is defined by:

ki > 0

−T
k

< kd <
T

k

ki < (ω+
1 )2kd +

√
M(ω+

1 ) (using (5.18))

where ω+
1 satisfies

L0 = [α+
1 (ω+

1 ) + α+
2 (ω+

1 )]/ω+
1 (see (5.15)).
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Fig. 22. First-order plant: stabilizing region of(ki, kd) with different kp.

This region SR,kp is a trapezoid (see Fig.22(a)).

• For kp >
1
k

and L0 ≤ L(ωs) = (π
2
+tan−1 1

Tωs
)/ωs ( see (5.19), (5.20) and (5.21))

SR,kp is given by:

ki > 0

kd <
T

k

ki < (ω+
1 )2kd +

√
M(ω+

1 ) (using (5.18))

ki > (ω−1 )2kd −
√
M(ω−1 ), (using (5.22))

where ω+
1 and ω−1 satisfy

L0 = [α+
1 (ω+

1 ) + α+
2 (ω+

1 )]/ω+
1 ,

and

L0 = [α−1 (ω−1 ) + α−2 (ω−1 )]/ω−1 ,
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respectively. This set SR,kp is a quadrilateral (see Fig.22(b)).

• For kp >
1
k

and L(ωs) < L0 < maxω∈(ωs,∞)[
α−1 (ω)+α−2 (ω)

ω
], SR,kp is given by:

ki > 0

kd <
T

k

ki < (ω−1 )2kd −
√
M(ω−1 )(using (5.23))

ki > (ω−2 )2kd −
√
M(ω−2 ), (using (5.23))

where ω−1 < ω−2 are solutions of the equation:

L0 = [α−1 (ω) + α−2 (ω)]/ω.

This set SR,kp is also a quadrilateral (see Fig.22(c)).

• For kp >
1
k

and L0 > max
α−1 (ω)+α−2 (ω)

ω
, SR,kp = ∅

The results show that with different kp values, the stabilizing regions of (ki, kd)

take on different but simple shapes. They agree with those in [6]

As for the case of an open-loop unstable plant, i.e., T < 0, the procedure to

obtain the stabilizing regions is similar to the case when T > 0 and kp >
1
k
.

H. Summary

In this chapter, we first clarified the conditions under which the Nyquist Criterion can

be applied to time-delay systems. Based on this clarification, a method to compute

the set of all P, PI and PID controllers to stabilize a given plant with time-delay was

proposed. The procedure is simple and easy to understand. With this known PID

stabilizing set in hand, further optimization (design) can be undertaken to satisfy

various performance specifications, while meeting the stability constraint.
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CHAPTER VI

STABILIZING PI CONTROLLERS FOR SYSTEMS WITH FIXED

TIME-DELAYS

PID controllers are widely used in process control applications, and in many cases the

plants have time-delays. For some systems with time-delay, Smith predictor combined

with PID controllers can simplify the design procedure and achieve good results. The

performance of such systems relies on the accurate modeling of the delay. In fact,

they will not reject a d.c. load disturbance when there is a modeling error in the dead

time [28] while pure PI or PID controllers will still keep this property. Thus, using

direct PID controllers where applicable is still a good choice. In previous chapters,

the complete set of PID controllers that stabilize a system with time-delay up to a

given value L0 was obtained. For that case, the delay is usually viewed as a modeling

error. However, if the delay L0 is very large, the obtained controllers set might be

very small or even disappear since this set must stabilize all the systems with delay

less than L0, including the delay-free system. Designs based on such sets may not

yield satisfactory result because of the extremely limited choice of available controller

parameters. If we know there is also a lower bound of the delay Lmin and the problem

of finding the stabilizing set for [Lmin, L0] instead of [0, L0], a better controller might

be found in this larger set. This is the case when there are embedded delays in the

systems such as a flow-rate control system where the delay is caused by a long pipe.

The thickness control in rolling mills (Example 8.3 in [29]) is also such a case. The

general procedures proposed in the previous chapters can be used to achieve this

provided we have the complete stabilizing controller set at a fixed delay L = Lmin

instead of the stabilizing controller set of the delay-free system.

The procedures to generate the stabilizing controller set for systems with fixed
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delays developed in this chapter are based on a direct analysis method in [26, 30].

This method is based on the fact that under certain conditions, we can count the

RHP poles of the closed-loop system by tracking the number of roots crossing the

imaginary axis at a finite number of frequencies. In [31], a formula has been given to

compute the RHP poles. However, [31] did not include the situations where there are

multiple closed-loop pure imaginary poles at the same frequency at a certain delay.

Although [30] considered those situations, it did not clearly indicate the movement of

the poles. By applying the Nyquist Criterion to the time-delay systems, which was

validated previously in this dissertation, this chapter shows a complete picture of the

crossing poles in different cases and gives the general formula to compute the number

of RHP poles of the closed-loop system. Based on this formula complete stabilizing

sets for P and PI controllers for embedded delay systems are found.

A. Stability Analysis of Time-Delay Systems

Consider a unity feedback system with open-loop transfer function:

P (s) = P0(s)e
−Ls =

N(s)

D(s)
e−Ls, (6.1)

where

N(s) = bms
m + bm−1s

m−1 + · · ·+ b0,

D(s) = ans
n + an−1s

n−1 + · · ·+ a0.

The closed-loop characteristic quasi-polynomial is

δ(s, L) = D(s) +N(s)e−Ls. (6.2)

From the discussion in previous chapters, we know that the necessary condition
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for this system with positive delay to be stable is

m < n

or m = n and |bn| < |an|. (6.3)

Under this condition, we have

1. With the introduction of delay, an infinite number of new roots of (6.2) appear

in the LHP.

2. For a given delay, the number of RHP roots is finite and those roots are in a

finite or bounded region.

3. With the increase of delay, root crossings between LHP and RHP only happen

at the imaginary axis.

4. The Nyquist Criterion with the conventional contour can be used for stability

analysis of the time-delay system.

Thus, we can calculate the number of RHP poles of the system with delay L by using

the following guideline:

NL = N0 +N+ −N−, (6.4)

where NL is the number of RHP poles of the system with delay L, N0 is the number of

RHP poles of the delay-free system, and N+ (N−) is the number of the poles crossing

from LHP (RHP) to RHP (LHP) when the delay is increased from 0 to L.

When the Nyquist plot crosses the −1 point, i.e. there are pure imaginary closed-

loop poles, from [26], we know that the solutions of the magnitude condition

W (ω2) ≡ |D(jω)|2 − |N(jω)|2 = D(jω)D(−jω)−N(jω)N(−jω) = 0 (6.5)
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are possible crossing frequencies at those delays L which satisfies

cosωL = Re

{
−D(jω)

N(jω)

}
, sinωL = Im

{
D(jω)

N(jω)

}
. (6.6)

Here, the corresponding values of L (critical delays) can also be written as

L = Lm(ω) + 2lπ/ω, l = 0, 1, 2, ...,

while Lm(ω) = is the smallest non-negative solution of (6.6), and for each ω satisfing

(6.5) there are an infinite number of values of L. On the other hand, for a given

L0 > 0, we can define a σ for each crossing frequency ω:

σ(ω) =

⌈
L0 − Lm(ω)

2π/ω

⌉
, (6.7)

where d·e is the ceiling function. Obviously, σ(ω) is the number of times when root

crossing happens at jω with the delay increasing from 0 to L0 (including the root

crossing at L = 0 if there are root crossing when the delay is introduced).

Remark 9 A special case here is when W (ω2) = 0 has ω = 0 as one of its roots. In

this case, if a0 = −b0, this means the closed-loop system will always have a pole at

the origin with or without delay. Thus the system is always unstable. On the other

hand, if a0 = b0, it does not give us a Lm and will not affect our analysis.

Equation (6.5) gives us a finite number of real roots. We only need to consider those

positive real ω’s since the Nyquist plot and the distribution of the closed-loop poles are

symmetric for systems with real coefficients. These roots can be classified according

to the behavior of the function W (ω2) at those points. The following lemma describes

the movement of the closed-loop poles.

Lemma 3 Suppose at a certain L > 0, the closed-loop system has poles on the imagi-

nary axis at ±jωs (Nyquist plot crosses −1 point at ±ωs). When the delay is changed
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from L− dL to L+ dL (dL is a infinitesimal positive value), the root crossings occur

as following:

1. If W (ω2) crosses the ω-axis from above to below (Nyquist plot cuts the unit

circle from inside), one pair of poles cross from RHP to LHP. Such an ωs is a

“stabilizing” frequency.

2. If W (ω2) crosses the ω-axis from below to above (Nyquist plot cuts the unit

circle from outside), one pair of poles cross from LHP to RHP. Such ωs is a

“destabilizing” frequency.

3. If W (ω2) touches the ω-axis without crossing it, there is no pole crossing the

imaginary axis. Such ωs is a “touching” frequency.

Proof: From the Nyquist plot for positive ω, the presence of positive delay will make

the plot shift by an angle of Lω clockwisely while preserving the magnitude of the

plot. The larger the delay and the frequency, the larger the phase-shift. Thus for

case 1, the Nyquist plot shifts as in Fig. 23. We can see obviously that the movement

of the plot gives us −1 change in the number of clockwise encirclements around −1

point. Thus the complete Nyquist plot has a −2 change in the number of clockwise

encirclements, which means that two RHP poles cross the imaginary axis into the

LHP for increasing L at that value. Similarly, for case 2, as in Fig. 24, the number of

clockwise encirclements increases by 2, i.e. the number of RHP poles increases by 2.

For case 3, the change of delay from L− dL to L+ dl does not change the number of

encirclements and the number of RHP poles remains the same (see Fig. 25 and Fig.

26). ♣

Remark 10 From the proof of the lemma, we can see that the directions of the root

crossings at the solutions of W (ω2) = 0 are fixed and they are independent of the delay.
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Fig. 23. Nyquist plot cuts the unit circle from inside.
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Fig. 24. Nyquist plot cuts the unit circle from outside.
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Fig. 25. Nyquist plot touches the unit circle from inside.
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Fig. 26. Nyquist plot touches the unit circle from outside.
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Closed-loop poles will always move from RHP into LHP at stabilizing frequencies and

from LHP into RHP at destabilizing frequencies. The crossing frequencies (stabilizing

or destabilizing frequencies) are the roots of W (ω2) = 0 with odd multiplicity and the

touching frequencies are roots with even multiplicity.

Remark 11 Under condition (6.3), the Nyquist plot of the system will end inside

the unit circle when ω = ∞. If there are crossing frequencies, at the largest crossing

frequency, the Nyquist plot will always cut the unit circle from outside. Thus the

largest crossing frequency is always a destabilizing frequency. Because W (ω2) crosses

the ω-axis at different directions for two adjacent crossing frequencies, those crossing

frequencies are successively destabilizing, stabilizing, etc. in descending order.

If the system has pure imaginary closed-poles, the following lemma can be used

to determine their movement when an infinitesimal positive delay dL is introduced.

Lemma 4 Suppose the delay-free system has a pair of pure imaginary closed-loop

poles at ±jωs, each with multiplicity m. With the introduction of an infinitesimal

positive delay dL

1. If ωs is a stabilizing frequency, then there will be m − 1 new RHP closed-loop

poles.

2. If ωs is a destabilizing frequency, then there will be m+ 1 new RHP closed-loop

poles.

3. If ωs is a touching frequency, then there will be m new RHP closed-loop poles.

Proof: We will use a modified Nyquist contour as in Fig. 27. The delay-free Nyquist

plot will have m/2 counter-clockwise encirclements around the −1 point. For case

1, m is odd. Suppose m = 2n + 1 as shown in Fig. 28. With the presence of the
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Fig. 27. A modified Nyquist contour.

delay dL, the number of counter-clockwise encirclements will decrease by n, i.e. the

number of clockwise encirclements will increase by n. Thus, the complete Nyquist

plot will have 2n = m− 1 more clockwise encirclements. So, m− 1 closed-loop poles

enter the area enclosed by the modified Nyquist contour or the open RHP. For case 2,

m is also odd. Let m = 2n+1 as in Fig. 29. Similarly, we can see that number of the

clockwise encirclements will increase by 2(n+ 1) = m+ 1, i.e. m+ 1 new closed-loop

poles appear in the open RHP. For case 3, m is even. Suppose m = 2n as in Fig. 30

and Fig. 31, we can conclude that m closed-loop poles will enter the open RHP. ♣

Assume that the system has open loop transfer function (6.1). The corresponding

W (ω2) = 0 has following positive roots which are crossing frequencies,

0 < ω1 < ω2 < · · · < ωp < +∞,
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Fig. 28. Nyquist plot at stabilizing frequency.
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Fig. 29. Nyquist plot at destabilizing frequency.
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Fig. 30. Nyquist plot at touching frequency, case 1.
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Fig. 31. Nyquist plot at touching frequency, case 2.



83

and following positive roots which are touching frequencies,

ν1, ν2, · · · , νq.

The delay-free system has pure imaginary closed-loop poles at ±jµk with multiplicity

nk, k = 1, 2, · · · , t. Note that

{µ1, µ2, · · · , µt} ⊆ {ω1, ω2, · · · , ωp, ν1, ν2, · · · , νq}.

Let r be the number of the µk’s which are destabilizing frequencies, and s be the

number of the stabilizing frequencies among µk’s.

Theorem 7 Let ∆ be the number of RHP closed-loop poles of the system (6.1) at

delay L = L0 > 0. Assume system satisfies condition (6.3) and L0 is not a critical

delay, then

∆ = ∆0 + ∆X , (6.8)

where

∆X =
t∑

k=1

nk + s− r + 2
p∑

k=1

(−1)p−kσk

=
t∑

k=1

nk + s− r + 2
p∑

k=1

(−1)p−k

⌈
L0 − Lm(ωk)

2π/ωk

⌉
,

∆0 is the number of RHP closed-loop poles of the delay-free system, Lm(ωk) is the

smallest non-negative solution of (6.6) with ω = ωk, and σk = σ(ωk) is as defined in

(6.7).

Proof: With the introduction of time-delay, if µk is a stabilizing frequency, nk − 1

poles will move into RHP at ±jµk according to Lemma 4. Similarly, nk + 1 or nk

poles will move into RHP if µk is a destabilizing frequency or touching frequency.
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Thus, at that moment, the number of RHP poles will increase by

t∑
k=1

nk + r − s. (6.9)

As analyzed before, the largest crossing frequency ωp is destabilizing frequency when

the system satisfies (6.3), and the crossing frequencies are successively destabilizing,

stabilizing, etc. in descending order. From the definition, σk represents the number

of times when root crossing happens at jωk with the delay increasing from 0 to L0.

Thus with the increase of the delay, there are 2
∑p

k=1(−1)p−kσk poles moving into

RHP. However, if some ωi = µj is a destabilizing frequency, 2 RHP poles which

were included in (6.9) have been counted again here and they should be subtracted.

Similarly, for some ωi = µj which is a stabilizing frequency, 2 extra RHP poles

have been subtracted here and they should be added back. Thus, when the delay is

introduced and then increases to L0, the change of the number of RHP poles is

t∑
k=1

nk + r − s+ 2
p∑

k=1

(−1)p−kσk − 2r + 2s

=
t∑

k=1

nk + s− r + 2
p∑

k=1

(−1)p−kσk

= ∆X

Following the root counting guideline (6.4), combine ∆X with the number of original

RHP poles of the delay-free plant, ∆0, we will have the number of RHP poles when

delay is L0. So ∆ = ∆0 + ∆X . ♣

Remark 12 Since the poles move into RHP in pairs, it is obvious that if the delay-

free closed-loop system has an odd number of RHP poles, it will not be stable at any

amount of positive delay L.
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B. Stabilization of Time-Delay Systems with Proportional Controllers

Now we will use a proportional controller

C(s) = kp

to stabilize a given plant

P (s) = P0(s)e
−Ls =

N(s)

D(s)
e−Ls,

at L = L0.

Let us first consider the delay-free system. kp space can be divided into a finite

number of open sets

K0,1, K0,2, · · · , K0,r,

s.t. for any kp ∈ K0,i, i = 1, 2, · · · , r, the number of open RHP poles of the delay-free

system is constant; this number is denoted as ∆0,i.

W (ω2) = 0 is equivalent to

kp = ± 1

|P0(jω)|
,

or

U(ω2) + k2
pV (ω2) = 0 (6.10)

where

U(ω2) = D(jω)D(−jω),

V (ω2) = −N(jω)N(−jω).

The approach used in [2] can be used here to determine the number of positive real

roots of (6.10) and the corresponding range of k2
p. Note that except on those finite
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Fig. 32. Illustrative partition of kp.

number of breakaway points, for all other kp values, the positive real roots of (6.5)

are simple roots, i.e. they are all crossing frequencies.

Thus, we can divide kp space into disjoint open intervals

K1, K2, · · · , Kt,

(see Fig. 32) s.t. for any kp ∈ Ki, i = 1, 2, · · · , t, the number of crossing frequencies

is constant; this number is denoted as ni.

For such an interval Ki, if ni > 0, the corresponding ni frequencies distribute in

ni disjoint open intervals in ω space

Ω1
i , Ω2

i , · · · , Ωni
i ,

(see Fig. 32 and Fig. 33) s.t. Ωj
i is on the left side of Ωj+1

i and for a fixed kp ∈ Ki,

there is one and only one crossing frequency in each of such interval. These intervals
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are called frequency segments.

Each frequency segment Ωj
i can be further divided into disjoint open intervals,

or frequency subsegments

Ωj,1
i , Ωj,2

i , · · · ,

(see Fig. 33) s.t. Ωj,l
i is on the left side of Ωj,l+1

i and over each subsegment σ is

constant. The number of subsegments of Ωj
i is denoted as nj

i . The number σ corre-

sponding to the subsegment Ωj,l
i , l = 1, 2, · · · , nj

i , is denoted as σj,l
i . Also denote the

kp corresponding to Ωj,l
i as Kj,l

i , which is also an open interval and ∪nj
i

l=1K
j,l
i = Ki (see

Fig. 32).

Pick one frequency subsegment from each of these ni frequency segments

Ω1,h1
i , Ω2,h2

i , · · · , Ω
ni,hni
i ,

where hj ∈ [1, 2, · · · , nj
i ], j = 1, 2, · · · , ni. A string I = {h0, h1, h2, · · · , hni

} is a
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selection of ni subsegments. If

Ki(I) =
ni⋂

j=1

K
j,hj

i 6= ∅,

then

∆X(I) = 2
ni∑

j=1

(−1)ni−jσ
j,hj

i

is the increase in the number of RHP poles of the closed loop system when the delay

is increased from 0 to L0 for a fixed kp ∈ Ki(I).

If ni = 0, there is no crossing frequency for any kp ∈ Ki, then I = ∅, Ki(I) = Ki

and ∆X(I) = 0.

If there is a K0,s, s = 1, 2, · · · , r, s.t. the corresponding ∆0,s = −∆X(I) and

K∗
i (I) = K0,s

⋂
Ki(I) 6= ∅,

then for any kp ∈ K∗
i (I), the number of RHP poles with delay L0 is 0. Such a string

I is called an admissible string and the set of all the admissible strings with respect

to Ki is denoted as Fi.

The final set is

K =
t⋃

i=1

 ⋃
I∈Fi

K∗
i (I)

 =
t⋃

i=1

K∗
i . (6.11)

Theorem 8 The set K defined in (6.11) is the complete stabilizing controller set

except on the boundary points of

K0,1, K0,2, · · · , K0,r,

and

Kj,l
i , i = 1, 2, · · · , t; j = 1, 2, · · · , ni; l = 1, 2, · · · , nj

i .

Proof: For a kp0 ∈ Ki, suppose kp0 ∈ K0,s. W (ω2) of this system then has ni simple
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positive real roots, according to the definition of Ki. Denote them as

0 < ω1 < ω2 < · · · < ωni
,

and ωj ∈ Ω
j,hj

i .

If kp0 can stabilize the system, according to Theorem 7, provided the fact that

in this case there is no touching frequency and no imaginary closed-loop poles for the

delay-free system. For this string

I = {h1, h2, · · · , hni
},

the number of RHP poles is ∆0,s + ∆X(I) = 0. Thus ∆0,s = −∆X(I). Also, since

K∗
i (I) = K0,s

⋂
Ki(I) = K0,s

⋂ ni⋂
j=1

K
j,hj

i

 3 kp0,

K∗
i (I) 6= ∅. I is an admissible string of Ki.

On the other hand, if k∗p ∈ K∗
i (I∗) for some admissible string

I∗ = {h∗1, h∗2, · · · , h∗ni
},

then k∗p ∈ K
j,h∗j
i , j = 1, 2, ..., ni and there exists some s∗, s∗ ∈ {1, 2, · · · , r}, s.t.

k∗p ∈ K0,s∗ and

∆X(I∗) = 2
ni∑

j=1

(−1)ni−jσ
j,h∗j
i = −∆0,s∗

From the definition of frequency subsegments, there is one and only one ω∗j in each

Ωj
i s.t. W (ω∗j

2) = 0. So ω∗j ’s are crossing frequencies and σ(ω∗j ) = σ
j,h∗j
i . For this k∗p,

∆ = ∆0,s∗ + 2
ni∑

j=1

(−1)ni−jσ
j,h∗j
i = ∆0,s∗ + ∆X(I∗) = 0,

so the system is stable. ♣

Now for those kp’s which are the terminals of K0,i and Kj,l
i , we can check their
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stability individually or simply using the following analysis.

1. If kp’s are terminals of K0,i, they can be classified as

(a) The one when the delay-free closed-loop system has poles at the origin.

There will be poles at the origin with or without delay as analysed before.

So it is unstable.

(b) The one lowers the order of the closed-loop system. Such situation is

usually classified as unstable.

(c) The one when there are pure imaginary poles for the delay-free closed-loop

system. It is actually the situation 2b. We will check it there.

2. For terminals of Kj,l
i .

(a) If it is introduced because one of its corresponding ω is at the intersection

of L(ω) and L = L0, the system is unstable because there are poles on the

imaginary axis.

(b) If it is introduced because one of its corresponding ω is at the intersection

of L(ω) and L = 0, then there is no imaginary axis poles and we can decide

the stability by the stability of the adjacent region.

(c) If it is one of terminals of Ki’s, we will check it in the following case.

3. For the terminals of Ki, if the corresponding ω’s are not the intersection points

of L(ω) and L = L0 as in 2a, the stability or instability of the system is the

same as that of the adjacent region.
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C. Stabilization of Time-Delay Systems with PI Controllers

Here we will use a PI controller

C(s) = kp +
ki

s
=
kps+ ki

s

to control the time-delay plant.

For a fixed kp, we will have

ki = ±

√√√√ ω2

|P0(jω)|2
− k2

pω
2 = ±

√
M(ω2), (6.12)

Lm(ω) =
arg{[±

√
M(ω2) + jkpω]P0(jω)/jω}+ π

ω
, (6.13)

where

M(ω2) =
ω2

|P0(jω)|2
− k2

pω
2.

Furthermore, (6.12) is equivalent to

U(ω2) + k2
i V (ω2) = 0, (6.14)

where

U(ω2) = ω2[D(jω)D(−jω)− k2
pN(jω)N(−jω)],

V (ω2) = −N(jω)N(−jω).

Now as a one-parameter problem, we can use the exaxct approach we used in

proportional controller case to get the stabilizing set of ki for this fixed kp. By

sweeping over kp, we then have the complete stabilizing set of PI controllers for the

plant.
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D. Example

In the following example, we will use Proportional controllers to stabilizing a system

with fixed time-delay. It is used here to demonstrate the procedures proposed in

Section C.

Example 7 Find all the Proportional controllers which stabilize the plant

P (s) =
s2 + 3s− 2

s3 + 2s2 + 3s+ 2
e−Ls,

with L = L0 = 1.8.

Solution: First, kp can be divided into K0,i according to the RHP poles of the

delay-free closed-loop system.

i K0,i ∆0,i

1 (−∞,−0.4093) 2

2 (−0.4093, 1) 0

3 (1,+∞) 1

For kp > 0, it can also be divided into Ki according to the number of real positive

roots of W (ω), Fig. 34.

i Ki ni

1 (0, 0.4082) 0

2 (0.4082, 1) 2

3 (1,∞) 1

1. For K1, since n1 = 0, the set of all possible strings is

{∅}.
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For I = ∅, K1(I) = K1 and ∆X(I) = 0. There exists K0,2 with ∆0,2 = 0 and

K∗
1(I) = K0,2 ∩K1(I) = (0, 0.4082) 6= ∅.

Thus the set of admissible strings is

F1 = {∅} ,

and

K∗
1 = (0, 0.4082).

2. For K2, from Fig. 35, we have following subsegments

n1
2 = 1 Ω1,1

2 = (0, 1.2948) K1,1
2 = (0.4082, 1) σ1,1

2 = 0

n2
2 = 2 Ω2,1

2 = (1.2949, 1.5129) K2,1
2 = (0.4082, 0.4473) σ2,1

2 = 0

Ω2,2
2 = (1.5129, 2.2967) K2,2

2 = (0.4473, 1) σ2,2
2 = 1

So, the set of all possible strings is

{{1, 1}, {1, 2}}.

For I = {1, 1},

K2(I) = K1,1
2 ∩K2,1

2 = (0.4082, 1) ∩ (0.4082, 0.4473) = (0.4082, 0.4473),

and ∆X(I) = 0. There exists K0,2 with ∆0,2 = 0 and

K∗
2(I) = K0,2 ∩K2(I) = (0.4082, 0.4473) 6= ∅.

Thus, this string is an admissible string.

For I = {1, 2},

K2(I) = K1,1
2 ∩K2,2

2 = (0.4082, 1) ∩ (0.4473, 1) = (0.4473, 1),
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and ∆X(I) = 2. Since ∆X(I) > 0, there does not exist a ∆0,s = −∆X(I) < 0.

Thus, this string is not an admissible string.

So set of the admissible strings is

F2 = {{1, 1}} ,

and

K∗
2 =

⋃
I∈F2

K∗
2(I) = (0.4082, 0.4473).

3. For K3, the subsegments are

n1
3 = ∞ Ω1,1

3 = (2.2967, 4.3194) K1,1
3 = (1, 3.1288) σ1,1

3 = 1

Ω1,2
3 = (4.3194, 7.8000) K1,2

3 = (3.1288, 6.9608) σ1,2
3 = 2

· · · · · · · · ·

The set of all possible strings is

{{1}, {2}, {3}, · · ·}.

Since for any possible string I, ∆X(I) > 0, there does not exist an admissible

string in the above set. Thus, the set of the admissible strings is

F3 = ∅,

and

K∗
3 = ∅.

Thus, for kp > 0 we have

K =
3⋃

i=1

K∗
i = (0, 0.4082) ∪ (0.4082, 0.4473).
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For kp < 0, similarly we have,

i Ki ni

1 (−0.4082, 0) 0

2 (−1,−0.4082) 2

3 (−∞,−1) 1

1. For K1, the set of all possible strings is

{∅}.

For I = ∅, K1(I) = K1 and ∆X(I) = 0. There exists K0,2 with ∆0,2 = 0 and

K∗
1(I) = K0,2 ∩K1(I) = (−0.4082, 0) 6= ∅.
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Thus the set of admissible strings is

F1 = {∅} ,

and

K∗
1 = (−0.4082, 0).

2. For K2, from Fig. 36, there are following subsegments

n1
2 = 2 Ω1,1

2 = (0, 0.7359) K1,1
2 = (−1,−0.6025) σ1,1

2 = 0

Ω1,2
2 = (0.7359, 1.2948) K1,2

2 = (−0.6025,−0.4082) σ1,2
2 = 1

n2
2 = 2 Ω2,1

2 = (1.2948, 1.3312) K2,1
2 = (−0.4093,−0.4082) σ2,1

2 = 1

Ω2,2
2 = (1.3312, 2.2967) K2,2

2 = (−1,−0.4093) σ2,2
2 = 0

The set of all possible strings is
{1, 1} {1, 2}

{2, 1} {2, 2}

 .

For I = {1, 1}, ∆X(I) = 2 > 0. Thus it is not an admissible string.

For I = {1, 2}, K2(I) = (−1,−0.6025) and ∆X(I) = 0. There exists K0,2 with

∆0,2 = 0 but

K∗
2(I) = K0,2 ∩K2(I) = ∅.

Thus, it is not an admissible string.

For I = {2, 1}, K2(I) = (−0.4093,−0.4082) and ∆X(I) = 0. There exists K0,2

with ∆0,2 = 0 and

K∗
2(I) = K0,2 ∩K2(I) = (−0.4093,−0.4082) 6= ∅.

Thus, it is an admissible string.
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For I = {2, 2}, K2(I) = (−0.6025,−0.4093) and ∆X(I) = −2. There exists

K0,1 with ∆0,1 = 2 and

K∗
2(I) = K0,1 ∩K2(I) = (−0.6025,−0.4093) 6= ∅.

Thus, it is an admissible string.

So the set of the admissible strings is

F2 = {{2, 1}, {2, 2}} ,

and

K∗
2 =

⋃
I∈F2

K∗
2(I) = (−0.4093,−0.4082) ∪ (−0.6025,−0.4093).

3. For K3, the subsegments are

n1
3 = ∞ Ω1,1

3 = (2.2967, 2.6817) K1,1
3 = (−1.3691,−1) σ1,1

3 = 0

Ω1,2
3 = (2.6817, 6.0516) K1,2

3 = (−5.0516,−1.3691) σ1,2
3 = 1

Ω1,3
3 = (6.0516, 9.5508) K1,3

3 = (−8.8355,−5.0516) σ1,3
3 = 2

· · · · · · · · ·

The set of all possible strings is

{{1}, {2}, {3}, · · ·}.

For I = {1}, K3(I) = (−1.3691,−1) and ∆X(I) = 0. There exists K0,2 with

∆0,2 = 0 but

K∗
3(I) = K0,2 ∩K3(I) = ∅.

Thus, it is not an admissible string.

For any other string I, ∆X(I) > 0. Thus they are not admissible strings.
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So the set of the admissible strings is

F3 = ∅,

and

K∗
3 = ∅.

Thus, for kp < 0 we have

K =
3⋃

i=1

K∗
i = (−0.4082, 0) ∪ (−0.4093,−0.4082) ∪ (−0.6025,−0.4093).

The final set is

K = (−0.6025,−0.4093) ∪ (−0.4093,−0.4082) ∪ (−0.4082, 0)

∪(0, 0.4082) ∪ (0.4082, 0.4473)

Among those terminals, 0.4082 and −0.4082 are of case 3 and −0.4093 is of case 1c.

The regions surrounding them are stablizing regions, thus they are stable parameters.

If we include the trivial point kp = 0, we will have the complete stabilizing kp set,

K = (−0.6025, 0.4473)

If we compare this result with the result of the same example in previous chapter

where the stabilizing kp range for delay from 0 to 1.8 is (−0.4082, 0.4473), the set

obtained here is larger. It includes some region where delay-free system or systems

with less delay are unstable. The simulation results verified this. With kp = −0.5,

the system is stable at L = 1.8, Fig. 37, but unstable at L = 0.5, Fig. 38. ♣
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E. Summary

In this chapter, a direct method to analyze the stability of LTI systems with fixed

time-delay has been investigated. This approach has been used to develop the pro-

cedures to find the stabilizing P, PI controllers set for systems with fixed time-delay.

Further extension to PID controllers will be sought after. Combined with the results

of the previous chapter, the stabilizing PID controllers set for systems with interval

time-delay can also be computed.
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CHAPTER VII

CONCLUSION

In [2], the characterization of the entire set of stabilizing PID controllers gave us not

only the starting point of the designs of PID controllers, but also the insight into

the structure of such sets. Thus, there are two kinds of approaches to design a PID

controller based on the stabilizing controllers set obtained.

1. Choose PID controllers which optimize given performance indices from the en-

tire stabilizing PID controllers set, for example, the design of H2 and H∞

optimal PID controllers [2]. These methods involve the solutions of nonlin-

ear programming problems (usually linear constrained nonlinear programming

problems).

2. Integrate the design of PID controllers with certain stability requirements (ro-

bustness, non-fragility, stability margins) into the procedures of seeking sta-

bilizing controllers set. These methods utilize the structure properties of the

stabilizing PID controllers set (a union of convex sets for a fixed parameter)

and usually involve the solutions of series of linear programming problems. For

example, the design of a PID controller which has an optimal position in the

stabilizing controllers set. [2, 14].

Following the strategy in [2], this dissertation aimed to address the synthesis

and design issues of discrete-time PID control systems and PID control systems with

time-delays by investigating the entire stabilizing PID controllers set for these two

types of systems.

For discrete-time systems, we used bilinear transformation to convert the discrete-

time controllers and plants from z-domain to w-domain. Then we studied the Hurwitz
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stability of the characteristic polynomials in that domain instead of the Schur stability

of the original discrete-time characteristic polynomials. After the reparametrization

of the PID controllers with the orthogonal transformation, we applied the same pro-

cedure used in continuous-time case and obtained the stabilizing set with the same

shape and size of the set in original parameters space. In addition, this set has the

same property of the continuous-time case, that is, it is also a union of convex sets for

a fixed parameter. Naturally, the design approaches mentioned before can both be

used here. Particularly, we presented the design of a robust and non-fragile discrete-

time PID controller. Given some performance indices, we can also find the optimal

PID controllers within this stabilizing controllers set.

For time-delay case, we used a generalized Nyquist Criterion to find the stabi-

lizing PID controllers set for a given plant with interval delay up to certain value.

The procedure is to exclude all the controllers which make the system marginally

stable at a lesser delay than L0 from the stabilizing controller set for the delay-free

system. Thus, given some suitable performance indices, the optimal PID controllers

can be found on this set. Although the obtained stabilizing PID controllers set is

not a set defined by groups of linear inequalities with a fixed parameter, such set can

be approximated by groups of linear inequalities. Such approximation will of course

simplify the search of a optimal controller. Furthermore, systems with embedded

delays are also considered in this dissertation. We introduce a formula to analyze

the stability of a LTI system with a fixed-delay. This formula gives the complete

information of the distribution of the closed-loop poles. Based on that, the solutions

for Proportional and Proportional-Integral controllers have been given.

Future research work can be conducted in the following aspects:

1. Synthesis of PID controllers for systems with multiple delays, especially com-
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mensurate delays.

The distributed systems with delays are common control subjects. The com-

puter network control problems fall in this category. Thus, the synthesis prob-

lems of systems with commensurate delays are of practical meaning.

2. Further designs of PID controllers for time-delayed systems.

The ultimate objective to seek the complete stabilizing PID controllers set is

to design optimal PID controllers. In [26], various integral of a squared error

(ISE) type performance indices for time-delayed systems were investigated. Op-

timal controllers can be designed by minimizing these indices over the available

stabilizing region.
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