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ABSTRACT

Concatenated Codes for the Multiple-Input Multiple-Output Quasi-static Fading

Channel. (December 2004)

Vivek Gulati, B. Tech.(Hons.), Indian Institute of Technology, Kharagpur, India

Chair of Advisory Committee: Dr. Krishna R. Narayanan

The use of multiple antennas at the transmitter and/or the receiver promises

greatly increased capacity. This can be useful to meet the ever growing demand

of wireless connectivity, provided we can find techniques to efficiently exploit the

advantages of the Multiple-Input Multiple-Output (MIMO) system.

This work explores the MIMO system in a flat quasi-static fading scenario. Such

a channel occurs, for example, in packet data systems, where the channel fade is con-

stant for the duration of a codeword and changes independently from one transmission

to another. We first show why it is hard to compute the true constrained modulation

outage capacity. As an alternative, we present achievable lower bounds to this capac-

ity based on existing space-time codes. The bounds we compute are the fundamental

limits to the performance of these space-time codes under maximum-likelihood decod-

ing, optimal outer codes and asymptotically long lengths. These bounds also indicate

that MIMO systems have different behavior under Gaussian signaling (unconstrained

input) and under the finite alphabet setting. Our results naturally suggest the use of

concatenated codes to approach near-capacity performance. However, we show that a

system utilizing an iterative decoder has a fundamental limit – it cannot be universal

and therefore it cannot perform arbitrarily close to its outage limit.

Next, we propose two different transceiver structures that have good perfor-

mance. The first structure is based on a novel BCJR-decision feedback decoder which

results in performance within a dB of the outage limit. The second structure is based
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on recursive realizations of space-time trellis codes and uses iterative decoding at the

receiver. This recursive structure has impressive performance even when the chan-

nel has time diversity. Thus, it forms the basis of a very flexible and robust MIMO

transceiver structure.
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CHAPTER I

INTRODUCTION

A signal propagating through a wireless channel experiences a multiplicative noise, or

fade. The statistical properties of the fade depend on the frequency and bandwidth of

the signal and may vary with time. In an equivalent baseband model of the channel, a

fade is often represented by a circularly symmetric complex random variable with zero

mean and unit variance. A common and well understood method of exploiting the

randomness of the channel is to employ multiple antennas at the receiver (also called

receive diversity). This enables the receiver to average out the bad fades, so to speak.

The exponent of the signal-to-noise ratio at which the probability of a bit error at the

receiver decreases is called the diversity order of the system. With receive diversity,

it is possible to obtain a diversity order equal to the number of receive antennas [3].

In many practical scenarios, however, employing multiple antennas at the re-

ceiver is not feasible. A common example is the down-link channel in a cellular

system. This has sparked interest in the possible use of multiple-antennas at the

transmitter, or, transmit-diversity systems. The challenge of transmit-diversity sys-

tems is that the signals transmitted from different antennas interfere with each other

at the receiver. Some of the fundamental questions one may ask are as follows. What

is the capacity of a transmit diversity system? Is it more useful to avoid interfer-

ence (e.g. by using antenna selection)? How does one design codes to achieve close

to capacity performance? What is the diversity order that a transmit-diversity sys-

tem may achieve? How are the diversity order and the capacity related? How does

one design codes to achieve a given diversity order? Is this design the same as that

The journal model used is IEEE Transactions on Information Theory.
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for achieving close-to-capacity performance? Is there a trade-off in complexity and

achievable diversity-order? Is there a trade-off in the achievable rate and the diver-

sity order? Do the answers to these questions change depending on how the channel

changes with time or whether or not the channel is known at the receiver? How does

the imperfectness of the channel estimates affect the capacity and the performance

of the system?

All these questions carry over to a more general system in which multiple an-

tennas are used at both the transmitter and the receiver. Such a system is called a

multiple-input multiple-output (MIMO) system. Researchers have focused on mainly

on the case where the channel is known perfectly at the receiver (also called perfect

channel state information at receiver, or, perfect CSI-R). It is also common to as-

sume one of the three cases (a) the channel remains constant for the period of one

transmission (quasi-static) (b) the fades change independently from one symbol to

the next (fast-fading or infinitely interleaved) (c) the channel changes in a block fash-

ion, taking on an independent value in each block and there being multiple blocks

in a transmission (block-fading). Of these, the quasi-static channel and the block

fading channel (with a fixed number of blocks in a transmission) has a zero Shannon

capacity and so the concept of outage capacity [4] is used. In other words, no matter

what rate of transmission we choose, the channel realization may not support the

rate and so we must consider the probability with which this outage event occurs.

The fast-fading case is relatively uninteresting from the code design perspective due

to the availability of large temporal diversity.

In [5, 6] the outage information rates for i.i.d. Gaussian signaling in quasi-static

fading (QSF) with CSI-R have been computed. These results are often called outage

capacity of the MIMO-QSFC, though there is no proof yet of the optimality of iid

Gaussian signaling. In [7], Marzetta and Hochwald compute the capacity in the
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absence of CSI-R and show that there is no capacity increase if the number of transmit

antennas exceeds the coherence interval of the channel. They further provide insights

into the structure of capacity achieving space-time codes in this scenario. The case

of perfect channel information at the transmitter (perfect CSI-T) and perfect CSI-

R has been treated in [8] for block-fading channels. The key result therein is that

the capacity increases with SNR as the minimum of transmit and receive antennas,

independent of the number of fading blocks.

This thesis deals almost exclusively with the case of quasi-static fading with no

CSI-T and perfect CSI-R. Note that the capacity in this case is a random variable de-

pending on the channel realization. In [9] it has been shown that this random capacity

has a Gaussian distribution about its mean, especially as the number of transmit and

receive antennas becomes large. The diversity order and the given channel realization

are related through the Demmel condition number in [10]. Reference [11] relates the

three variables – rate, SNR and diversity order – of the MIMO system. Zheng and Tse

explore the trade-off between rate and diversity at high SNR [12]. The case of finite

modulation is treated in [13–15] for quasi-static fading and in [16] for fast-fading.

The code design for the MIMO-QSFC is studied in great details in [2, 17]. It is

shown that the diversity order achieved by a channel code is related to the minimum

rank of the codeword difference matrices. Some hand crafted example codes have

also been provided therein. Improvements in the design criterion and improved codes

found using computer searches have been presented in [1, 18, 19]. The cases of large

number of receive antennas and low SNRs have been treated in [20–23]. In [24], the

diversity criterion is given in terms of the binary rank and techniques to achieve full

diversity using convolutional codes are presented.

A different approach to achieving full spatial diversity is taken in [25] wherein

a simple block code that achieves full diversity with two transmit antennas for any
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constellation is proposed. This idea is extended to multiple transmit antennas using

Hurwitz-Radon theory in [26]. It is shown that orthogonal designs (that achieve full

spatial diversity) with linear processing maximum-likelihood decoding exist only for

select cases and may incur a rate-loss. That these codes incur a capacity loss as well

has been shown in [27, 28]. Many researchers have also explored the option of doing

away with one or more of the three conditions – linear processing, orthogonality for

all constellations and using identical constellations at all the transmit antennas – to

obtain full spatial diversity for arbitrary number of transmit and receive antennas.

See, for example, [29–31]. Trading off diversity of block codes for obtaining higher

rate is considered in [32,33].

Foschini et al have proposed the use of spatial multiplexing at the transmitter to

obtain very high data rates with a MIMO system [34,35]. The underlying principle is

to arrange the output of a channel code into a space-time matrix (often called space-

time modulation) and transmit this matrix. There have been various proposals on

how this formatting should be done, for example, spatial multiplexing [34], threaded

space-time codes [36] and wrapped space-time codes [37] etc. The receiver typically

performs some signal processing (some form of interference cancellation) followed

by decoding. Full diversity is obtained either through constraints on the channel

code [24,38] or on the formatting [37].

The space-time modulator may be replaced by a space-time block or trellis code

to obtain a concatenated system. In [39], the Alamouti scheme [25] is concatenated

with a turbo-TCM outer code. The performance of such a system is analyzed in [40].

The use of differential encoders on each transmit antenna is proposed in [41]. The use

of recursive realizations of space-time trellis codes as inner codes in a serial concate-

nation is proposed in [42] and analyzed in [42, 43]. The use of recursive realizations

of the codes from [24] is proposed in [44].
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The fundamental questions we address in this thesis are the following. Given a

fixed number of transmit (Nt) and receive (Nr) antennas, an overall rate R, a con-

stellation Ax (which may differ for each transmit antenna) and an outage probability

Pout, how does one choose the space-time code or modulator? What is the limiting

performance of the system once this choice has been made? What outer code should

be used so that this limiting performance may be approached? Are iterative coding

techniques well suited to this problem? Is there a non-iterative system that we can

apply?

A. Limiting Performance of Space-time Encoders or Modulators

The Shannon capacity of the quasi-static fading channel is zero and so we must

consider the outage probability – that given a transmission rate, the channel cannot

support this rate [4]. In [5,6] the outage information rates for iid Gaussian signaling

have been computed. These are usually taken to be upper bounds on the performance

of any space-time system with finite modulations [2]. Since practical systems use fi-

nite modulations, there is a need to determine the outage capacity with a modulation

constraint. This in itself is a hard problem since the capacity computation involves

a maximization of mutual information over the distribution of input sequences x,

conditioned on the channel realization H [13]. Instead, we can compute the mu-

tual information rates for specific space-time encoders/modulators. These serve as

achievable lower bounds on the outage capacity of the MIMO-QSF channel. Further,

our results of these computations indicate significant differences between the infinite

alphabet (Gaussian signaling) and the finite alphabet case. For example, whereas in

the former case iid signaling is optimal, this no longer holds in the latter case.

The added advantage of this computation is that information rate is a more fun-
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damental parameter (than, say the frame error rate or the bit error rate) to quantify

and compare the performance of space-time systems. This is so because the frame

error rate performance of many space-time codes depends on the length of the code-

word and an appropriate choice of the length may make the same code look good or

bad.

B. Code Design

Once the limiting performance with a given space-time encoder or modulator is

known, the next question that arises is how to achieve this limiting performance.

We first investigate a serial concatenation structure that naturally arises out of the

computations of the limiting performance. We find that any (serial) concatenation

structure that utilizes iterative decoding is intrinsically lossy. If we want to have a

universal design – a scheme that works well for a variety of channel realizations H

– then iterative decoding schemes do not fit the bill. We must look for alternative

designs.

One such non-iterative design is proposed. This design is based on the fact that

perfect decision feedback is optimal in terms of mutual information. This structure

easily obtains close to limit performance.

We also propose and analyze a robust and flexible design based on recursive

realizations of space-time trellis codes. This design works well not only for the quasi-

static channel but also for independent fading and block fading channels. This idea is

further extensible to the case of parallel concatenation and automatic repeat request

systems.
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C. Thesis Organization

Chapter II deals with the constrained modulation outage capacity of a MIMO-QSF

channel. Section II.B presents the problem formally and explains why capacity com-

putation under constrained modulation is a much harder problem than the uncon-

strained case. In Section II.C, achievable lower bounds to this capacity are computed

by considering spatial multiplexing, space-time block codes and space-time trellis

codes.

In Chapter III, the problem of designing an “optimal” outer code for a serial

concatenation scheme with a given inner space-time code is considered. Low density

parity check (LDPC) codes are considered as potential candidates for the outer code.

The results of this chapter immediately point to a fundamental limitation of iterative

decoding. This limitation is explained and characterized in Chapter IV. It is shown,

using EXIT charts as a tool, that iterative decoding based systems cannot be universal

in the sense of approaching outage limits.

Chapter V presents a novel transceiver architecture which approaches the fun-

damental limits of space-time trellis codes computed in Chapter II. Two variations

are presented, both of which have near capacity performance.

The idea of recursive space-time trellis codes is introduced in Chapter VI. In

Section VI.B, it is shown that most space-time trellis codes have a recursive realiza-

tion. A serial concatenation scheme based on these recursive realizations is analyzed

in Section VI.C. Extensions of this idea to ARQ systems and channels with time

variations are considered in Chapter VII.

The material in Chapter II has been presented in part in [13] and is under review

in [45]. The contents of Chapters III,V are in preparation for publication in [46]. The

material in Chapter VI has been published in [47].
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CHAPTER II

CONSTRAINED OUTAGE INFORMATION RATES

In this chapter, we look at constrained modulation outage capacity. We show that

an iid input distribution is not always optimal (unlike the unconstrained case). The

actual outage capacity is hard to compute. We find achievable lower bounds by

computing outage information rates assuming specific input distributions – (i) iid

(spatial multiplexing) (ii) block dependence (space-time block codes) and (iii) Markov

dependence (space-time trellis codes). We observe interesting differences between the

constrained and the unconstrained case.

Mutual information rate between the transmit sequence and the received se-

quence is a more fundamental quantity than frame-error rate especially for systems

whose performance depends on length (e.g. trellis codes). The former is also inde-

pendent of the decoding algorithm and the outer code. Thus, our results are the

fundamental limit on the performance of specific space-time codes. Mutual informa-

tion rate is also a more robust measure to compare different space-time codes. We will

use these limits in the subsequent chapters on code design to see how well a system

performs in comparison to its ultimate limit.

A. System Model

(t)x
i (t)

j
y

NrNt

1

Encoder

Outer
Space−time
modulator
or encoder

1

Space−time
demod.
or decoder Decoder

Outer

Fig. 1. System model with Nt transmit and Nr receive antennas. The various systems

considered in this chapter are special cases of this scheme.
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We consider a system equipped with Nt antennas at the transmitter and Nr

antennas at the receiver (see Fig. 1) operating over a flat Rayleigh fading channel.

Data is transmitted in frames of length Nf symbols. It is assumed that the transmitter

does not know the channel and the receiver has perfect knowledge of the channel

gains (that is, no CSI-T and perfect CSI-R). All channels gains are assumed to be

statistically independent. While antenna separation and the propagation geometry

heavily influence this assumption, it is often justified in practice. We denote the

transmitted signals by Xi(t), i = 1, . . . , Nt and hence the complex baseband receive

signals may be written as:

Y[k] =

√
ρ

Nt

HX[k] + N[k]. (2.1)

The entries of the Nr×Nt matrix H, Hji, represent the complex channel gains between

receive (j)-transmit (i) antenna pairs and Nj(t) is an additive white Gaussian noise

(AWGN). The multiplicative term
√

ρ
Nt

is a normalization introduced in order to

make the SNR, ρ, at each receive antenna independent of the number of transmit

antennas. All simulation results refer to this quantity as the SNR. We assume that

the noise is independent at each receive antenna. The channel gains are assumed

to remain constant for the duration of transmission of a codeword and then change

independently to a different realization for the next codeword.

B. Constrained Modulation Information Rates

1. Problem Formulation

Consider the problem of transmitting an Nt×Nf matrix X of symbols over a MIMO-

QSFC. For a fixed rate of transmission R, an outage is defined as the event that the

mutual information between the received matrix Y and X conditioned on the channel
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realization H is less than R. In order to find the outage information rate, one needs

to find the a priori distribution p(X) that minimizes the outage probability. That is,

Pout = min
p(X)

lim
Nf→∞

Pr

(
I(X;Y|H)

Nf

≤ R

)
. (2.2)

An alternate formulation for outage capacity may be written in terms of maximizing

the rate at a given outage probability:

CPout(ρ) = max
p(X)

R : Pr

(
I(X;Y|H)

Nf

≤ R

)
= Pout,

where the limit has been absorbed into the probability. It should be noted that in

the case of ergodic channels, the problem is that of maximizing the expected mutual

information E [I(X;Y|H)] and has been addressed in [6, 16,48].

2. Unconstrained Modulation

Let us first consider the case when the symbols in X are not restricted to be from

any finite sized constellation. Let the Nt × Nf transmit vector �x be given by �x =

[x11 x12 . . . x1Nt . . . xNf Nt ]
t = [x̄t

1 x̄t
2 . . . x̄t

Nf
]t. The correlation matrix of �x is given

by:

Q = E [�x�xH ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 . . . Q1Nf

Q21 Q22 . . . Q2Nf

...
...

QNf1 QNf2 . . . QNf Nf

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where Qij = E [x̄ix̄
H
j ] is the correlation matrix between the vectors x̄i and x̄j transmit

at times i and j. Clearly, Qij = QH
ji .

In Appendix A we outline the steps involved in proving that it suffices to choose

p(X) such that the vector of symbols x̄k transmitted at time k is independent of

x̄j, j �= k (i.e., temporal independence). Moreover, within each time instant, it suffices
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to choose the symbols to be independent of each other (i.e., spatial independence).

Hence, a diagonal correlation matrix Q (i.i.d elements in the vector x̄) suffices to

optimize the outage probability. This proof of sufficiency relies on two facts about

I(X;Y|H):

• It has a closed form:

I(X;Y|H) = Nf × log det(INr + HQHH), (2.3)

which allows for the use of Fischer’s inequality [49].

• Its distribution is invariant under a unitary transformation of the input:

p (I(X;Y|H)) = p (I(VX;Y|H)) ; Vunitary (2.4)

The importance of these two observations will become obvious when we attempt to

prove a similar result in the constrained modulation case.

As a last remark, recall that in [6] there is a conjecture that the Q should be of

the form Q = (P/k)diag{1, 1, . . . , 1, 0, 0, . . . , 0}, where P is the power constraint and

k out of Nt transmit antennas are used.

3. Constrained Modulation

In practice, the elements of X have to be chosen from a constellation, usually finite

sized, such that it possesses the required peak to average power ratio. In this case,

we attempt to shed insight into what type of p(X) are good in terms of minimizing

the outage probability defined in (2.2). We also compute I(X;Y|H) for some specific

p(X) when the symbols in X are restricted to be M -PSK symbols.

Unlike the unconstrained case (2.3), the conditional mutual information I(X;Y|H)

does not have a closed form when X is restricted to a finite alphabet. Hence, it is not
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always possible to use Fischer’s inequality to show that it suffices to consider trans-

mission of independent vectors in time (see Appendix A). Secondly, it is also not

possible to use unitary transformations such as (2.4) since a transformation applied

to the transmitted signals will change the input constellation. Therefore, in general,

we cannot say anything about the optimality (or otherwise) of iid signaling from a

given constellation to achieve outage capacity for the constrained modulation case.

In fact, our results will show that iid signaling is not optimal.

One has to solve (2.2) in its most general form. The optimization must be carried

out over the distribution of the Nt ×Nf matrix X, and over the ensemble of channel

matrices H. Further, the simplifying assumptions made in the unconstrained case

do not carry over to the constrained case. The sheer dimensionality of this problem

makes it quite hard.

Instead, we consider specific class of distributions of the transmit matrix X and

compute the achievable information rate for a given outage probability and SNR.

These provide a lower bound on the true outage capacity. Although the computa-

tions are mainly numerical, the results provide insight into what type of space-time

constellations (or, space-time codes) provide good performance in what range of the

SNR. For a wide range of rates, the computed lower bounds are close to the un-

constrained case (which may be treated as an upper bound) and, hence, show near

optimal space-time constellations for these range of rates.

C. Computing Constrained Modulation Information Rates

In this section, we consider three different distributions of the transmit matrix X.

First, we assume that the elements of X are all independent and identically dis-

tributed, taking values from a finite (say M -PSK) constellation and each value occur-
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ring with equal probability. This corresponds to spatial multiplexing. Next, space-

time block codes are considered. These block codes lend a certain correlation to the

transmit matrix. For example, the Alamouti scheme [25] makes two adjacent trans-

missions dependent on each other. Finally, we turn our attention to space-time trellis

codes and their punctured versions, which lend a Markov structure to the transmit

matrix X.

In each of the these cases, the achievable mutual information rate is computed

numerically. The information rate conditioned on knowing the channel matrix H is

computed first. A quantile plot of this conditional information rate is then generated

for a fixed channel SNR by simulating a large number (10,000) of channels. The

outage information rate is then read off this quantile plot.

1. Spatial Multiplexing: i.i.d. Transmission

Consider the case when the transmit matrix X has entries that are i.i.d. and drawn

equally-likely from a finite alphabet Ax. In other words, we have:

Pr(X) =
Nt∏
i=1

Nf∏
j=1

Pr(xij)

Such a case arises, for example, when random-like codes (Turbo codes, LDPC codes

etc) are transmit using spatial multiplexing. Given this correlation structure, we can

consider X and Y to be, respectively, Nt × 1 transmit and Nr × 1 receive vectors,

instead of Nt × Nf and Nr × Nf matrices. The mutual information between these

vectors, conditioned on knowing the channel H, is given by:

I(�x; �y|H) = h(�x|H) − h(�x|�y,H) = h(�x) − En[log Pr(�x|�y,H)],
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where h() represents the differential entropy function and the subscript n indicates

the expectation over the noise realization. With this formulation, the aposteriori

probability (APP) of the input given the output, Pr(�x|�y,H), can be computed for

each channel and noise realization. The average entropy associated with the APP can

be computed and averaged over the noise realization and this quantity determines the

resultant information rate. It should be noted that this APP computation requires an

evaluation of the distance spectrum of the constrained modulation set, conditioned

on the channel. When large sets are considered, for example when Nt ≥ 3, this

computation becomes numerically intensive.

Returning to the computation itself, the quantity h(�x) is simply Nt × log(|Ax|).
The APP is obtained easily since the received vector has a multi-variate Gaussian

distribution. It is easy to see that [16]:

I iid
Nt,Nr

(H) = Nt log(|Ax|) −
1

|Ax|Nt
E
[∑

�x

log
∑
�x′

exp

[
−1

2

(
‖�n‖2 −

∥∥∥∥�n −
√

ρ

2
h(�x − �x′)

∥∥∥∥
2
)]]

,

(2.5)

where the dependence of I(�x; �y|H) on Nt, Nr and H has been made explicit and the

superscript iid indicates the distribution of X. The expectation in (2.5) is over the

noise vector �n. Monte Carlo simulations are used to evaluate the mutual information.

The first interesting result from these computations is illustrated in Fig. 2 where

the densities of the achievable mutual information are plotted for BPSK and QPSK

modulations and Nr = 2. Note that the difference in the 1% outage information

rates for the two constellations is much smaller than the difference in the average

information rates. Thus, when outage is of interest, it is perhaps more beneficial (in

terms of receiver complexity) to use a smaller constellation per transmit antenna.
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Fig. 2. The densities of the instantaneous information rate for spatial multiplexing

using Nt = Nr = 2, Rayleigh fading, SNR = 4 dB.
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When average mutual information is of interest, such as in the ergodic case, it makes

more sense to employ as large a signal constellation as possible. More results and

discussion about the achievable information rates for spatial multiplexing schemes

compared to other space-time codes are presented in the following sections.

2. Space-time Block Codes

Recall that we are considering the effect upon mutual information of the distribution

of the transmit matrix X. When space-time block codes (STBCs) are used, the

correlation among the entries of the transmit matrix X is specified by the code. For

example, the Alamouti code [25], given by the code matrix:

X(s0, s1) =

⎡
⎢⎣ s0 s1

−s∗1 s∗0

⎤
⎥⎦ ,

makes the symbols transmitted from Nt = 2 antennas in Nf = 2 successive symbol

intervals dependent on each other. In particular, we can write the 4 × 1 transmit

vector as �x = [s0 s1 − s∗1 s∗0], where s0, s1 ∈ Ax. This corresponds to the input

distribution given by p(�xi) = 1
|Ax|2 if �xi = [s0 s1 − s∗1 s∗0], for any s0, s1 ∈ Ax and

p(�xi) = 0 otherwise. Further �xi is independent of �xj for i �= j. For other space-time

block codes also a similar input distribution can be found. An alternate way to look

at it is in terms of the correlation introduced by the block code. For the Alamouti

scheme it is given by the Kronecker product of the matrix Q and the (Nf/2)Nt sized

identity matrix, where:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 a

0 1 −a 0

0 −a 1 0

a 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,



17

and a = E(s2); s ∈ Ax.

If s0(k) and s1(k) are transmitted in the time intervals k and k + 1 via the code

matrix above, then we have:

yi(k) =

√
ρ

Nt

h̃si(k) + ñi(k), i = 0,

The quantity h̃ =
∑Nr

i=1(|hi1|2 + |hi2|2) is the sum of the squares of the channel gains

and ñi(k) ∼ N (0, h̃); i = 0, 1, are samples of white Gaussian noise. The information

rate of this instantaneously AWGN channel depends only on the distribution of the

effective SNR (or, equivalently, of h̃). For all linear processing orthogonal space-time

block codes, the effective SNR has a closed form distribution (for example the Alam-

outi code has ρeff = λρ/2; λ ∼ χ2
2Nr

(0.5)). Since good closed form approximations to

the constrained input capacity of the AWGN channel are available in literature [50],

these may be used to find an analytical expression of the mutual information rate of

such space-time block codes. For example, for the binary input AWGN channel with

SNR ρeff, a good approximation of the capacity is given by [50]

C(ρeff) = 1 − e−1.24ρeff

The outage capacity can then be easily computed without Monte Carlo methods by

integrating the above expression over the pdf of ρeff which is χ2
2Nr

(0.5). In case a

closed form distribution is not available, Monte Carlo methods [51] may be used.

This method is fairly general and can be used to compute the information rate

of, for example, the entire class of linear processing space-time block codes [26]. In

the absence of a linear processing ML decoder (for example, for the code described

in [30], or the code space spanned by super-orthogonal matrices [52, 53]), the infor-

mation rate can be computed by an exhaustive search over the conditional distance

spectrum of the received signal. This computation is similar to (2.5) but numerically
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Fig. 3. Constrained modulation information rate: The space-time code is fixed to be

the Alamouti scheme. The input to the Alamouti scheme is equi-probable iid

M-PSK and the number of receive antennas is Nr = 1.

more intensive for the general block code due to the fact that multiple symbols are

transmitted over multiple time slots.

It is instructive to look at the results of these computations. Fig. 3 shows the

10% outage information rates for the Alamouti scheme when different constellation

sizes are used with Nr = 1. Note that for the entire range of rates between 0.2 b/s/Hz

and 1 b/s/Hz, the QPSK and 8-PSK curves are near-optimal (almost on top of the

unconstrained curve) whereas the BPSK curve is much worse. This motivates the

use of expanded signal sets. That is, in order to achieve a target information rate,

it suffices to expand the signal constellation used on each antenna and to use Alam-



19

outi’s scheme. This can be thought of as the analogy of bandwidth efficient coding

but applied to multiple transmit antennas. Note that the receiver complexity does

not increase with increase in the constellation size and, hence, provides a practical

solution.

Further, note that the iid QPSK curve is worse than the Alamouti QPSK curve

up to 1.7 b/s/Hz. This shows that at low spectral efficiencies, introducing specific

correlation structure (both in time and across transmit antennas) to the transmit

matrix X outperforms a diagonal correlation structure (spatial multiplexing of iid

symbols) significantly. This shows that at low rates the overall space-time code must

be a concatenation of an outer code and a inner space-time code rather than being a

code followed by spatial multiplexing such as in [38]. On the other hand for the range

1.7 b/s/Hz and higher, the iid QPSK outperforms the Alamouti scheme. This shows

neither the Alamouti scheme nor spatial multiplexing is optimal for the entire range

of rates. Contrast this with the unconstrained case where both iid and Alamouti

scheme result in identical mutual information rates [28, 54] and both are optimal for

the entire range of rates. The optimality of the Alamouti’s scheme for the constrained

case must be interpreted as follows - if the rate of transmission is significantly smaller

than the maximum achievable rate, Alamouti’s scheme is near optimal.

With more than one receive antennas, Nr ≥ 2, the Alamouti scheme is no longer

optimal even in the unconstrained case [28, 48]. Therefore, it is not surprising that

in the constrained modulation case, there is a gap between the information rate

achievable by the Alamouti scheme and the unconstrained modulation upper bound.

This gap is shown in Fig. 4 for Nr = 2.
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3. Space-time Trellis Codes

In this section we consider the case when the transmit matrix X is the output of a

Markov chain. This is the case for all trellis codes. The Markov structure of the code

forces the signals transmitted during a given time instant to be dependent on what

was transmit during previous time instants. Consider, for example, the 4-state 4-PSK

space-time trellis code from [2] (Fig. 5). Let the set of QPSK symbols be indexed by

{0, 1, 2, 3}. Let xk1, xk2 be the indices of the symbols transmit from the two antennas

at time k. This 4-state code corresponds to a first order Markov chain with transition

probabilities of the indices transmitted during the k + 1-th symbol interval given by:

Pr(x(k+1)1 = i|xk2 = j) =

⎧⎪⎨
⎪⎩

1 i = j

0 i �= j

Pr(x(k+1)2 = i|xk2 = j) = 0.25.

Different space-time trellis codes correspond to Markov chains with different transi-

tion matrices. The method of computing the mutual information for a given transition

matrix conditioned on the channel is explained in details in Appendix B.

In Fig. 6, we compare the outage information rates for Nt = 2, Nr = 1 with

QPSK for space-time trellis codes of different constraint lengths. It can be seen that

space-time trellis codes provide higher information rates than the Alamouti scheme

for the medium range of rates and increasing the constraint length (higher correlation

in time) provides better performance. In Fig. 7, we compare the information rates

for some space-time trellis codes for QPSK modulation with Nt = 2 and Nr = 2.

The space-time trellis codes compared are the AT&T codes [2], the codes by Chen,

Yuan and Vucetic (CYV) [1] and super-orthogonal codes [53]. It can be seen that the

CYV code provides better outage capacity performance than the AT&T code and the

performance is quite close to the unconstrained outage capacity for rates below 1.5
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Fig. 6. 1% outage information rates of QPSK based space-time trellis codes for Nt = 2

and Nr = 1.

b/s/Hz.

4. Punctured Space-Time Trellis Codes

Here we compute information rates for some space-time trellis codes whose outputs

are punctured in order to increase the data rate. Punctured space-time trellis codes

also introduce a Markov structure to the transmitted signals. However, it makes

the probability transition matrix time dependent. In Appendix C, we describe the

modifications necessary to compute the mutual information rate for a punctured

space-time trellis code.

In Fig. 8, we compare the 1% outage information rates of the 4-state CYV code
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Fig. 7. A comparison of 1% outage information rates of different QPSK based

space-time trellis codes for Nt = 2 and Nr = 2.

with puncturing p = 3 (one of three trellis stages are punctured) and Nr = 2. We

can see that for the range of rates between 1.5 b/s/Hz and 2.4 b/s/Hz, the punctured

space-time code performs better than the mother code and the spatial multiplexing.

It performs fairly close to the unconstrained outage capacity. Note that the punctured

space-time code does not give full diversity but still provides near optimal performance

for a range of rates. This shows that for concatenated schemes with inner space-time

codes, it is not essential that full diversity be provided by the space-time code. In

fact, for a range of rates, it is better to use space-time codes that do not provide full

diversity. The decoding complexity for punctured space-time codes is similar to that

of the mother code and, hence, puncturing is a practical approach to extending the
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range of rates over which space-time trellis codes perform well.

Finally, consider Fig. 9, where the densities of mutual informations achieved by

different Nt = 2, Nr = 2 space-time codes at SNR = 4 dB are shown. Notice that

if the target outage probability is small, the difference among the various space-time

codes is not significant. On the other hand, when average mutual information is of

interest, the choice of the space-time code being used becomes much more critical.



27

D. Conclusions

In this chapter we have considered different space-time coding and modulation schemes

from a capacity perspective. We have shown that in the constrained modulation set-

ting, temporal correlation among the transmit signals can achieve higher mutual in-

formation than the iid case. This is unlike the unconstrained case. The computation

of the true constrained outage capacity of a multiple-input multiple-output system

used over a quasi-static Rayleigh fading channel is a hard problem. This is primar-

ily because such a computation involves determining the distribution of a matrix of

transmit symbols which minimizes the outage probability. Instead, we compute the

mutual information achieved by specific space-time systems.

We find that depending upon the target rate, different space-time systems are

optimal in the mutual information rate sense. At low rates, space-time block codes

and space-time trellis codes achieve mutual information that is close to the uncon-

strained case. Hence, it is wiser to use a system which has the least complexity. For a

range of low-to-medium rates, imposing a Markov-like temporal correlation provides

a better outage than using either block codes or spatial multiplexing. At high rates,

both block codes and trellis codes offer limited choices and spatial multiplexing be-

comes an attractive option. A punctured space-time trellis codes does not promise

full spatial diversity but it still offers near-optimal information rates for a range of

SNRs. Further, just like the AWGN case, these results also indicate the advantage of

using expanded constellations. In particular, for the two transmit antenna case, our

results provide a strong motivation for using expanded constellations in conjunction

with the Alamouti scheme.

From a practical stand-point, we have shown that the best choice (in terms of

mutual information) of the space-time code to be employed depends on a number of
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factors – whether outage or average mutual information is of interest, the target rate,

the complexity that the receiver can afford etc.
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CHAPTER III

CODE DESIGN FOR THE MULTIPLE-INPUT MULTIPLE-OUTPUT FLAT

QUASI-STATIC FADING CHANNEL

In the previous chapter, we computed the constrained modulation information rates

for various space-time codes. The next obvious question to ask is how to obtain

system performance close to these constrained modulation limits. One frame-work

that is obvious from the outage computations is that of a concatenated code (Fig. 10).

We just slap an appropriate outer code on top of the inner space-time code. In

this chapter, we discuss this strategy for the three space-time codes considered in

Chapter II. We use low-density parity-check (LDPC) codes as outer codes. For

spatial multiplexing, we find that there is a slight advantage in using codes that are

designed for a channel that is a mixture of an erasure channel and an AWGN channel.

When an orthogonal space-time block code, such as the Alamouti scheme, is used,

an LDPC code designed for the AWGN channel is optimal and can have performance

arbitrarily close to the constrained limit of the block code. In the case of space-time

trellis codes, the performance of this concatenation scheme is far away from outage

capacity. The reason for this gap from the limit will be the topic of the next chapter.

We begin this chapter with a brief description of the system. Thereafter, we

consider spatial multiplexing, space-time block codes and finally space-time trellis

codes. We conclude with a brief summary of the results from this chapter.

A. System Model and Motivation

Once again, assume that there are Nt transmit and Nr receive antennas. The channel

is flat Rayleigh fading, with the channel coefficients unknown at the transmitter (no

CSI-T) and perfectly known at the receiver (perfect CSI-R). The data is transmitted
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Fig. 10. A serial concatenation model with Nt transmit antennas and Nr receive an-

tennas.

in frames of length Nf . The Nr × Nt fade coefficients are assumed statistically inde-

pendent, an assumption that is often justified in practice. When linear modulation

is used, the received signal at time k may be written in a matrix notation as:

Yk =

√
ρ

Nt

HXk + Nk, k = 0, 1, . . . , Nf − 1, (3.1)

where H is the Nr × Nt matrix of channel gains with complex, zero-mean, unit

variance, i.i.d. Gaussian entries. The vector Nk is the additive noise with zero-mean,

unit variance, iid complex Gaussian entries. The ensures that ρ is the received SNR

at each receive antenna, independent of the number of transmit antennas.

The concatenated system is shown in Fig. 10. The primary challenge in designing

an outer code that enables the serial concatenation to have a performance close to

the theoretical limit is the following. A capacity achieving design would lead to a

concatenated code that decodes successfully each time the channel realization can

support the rate of the overall code. Conversely, the only time the decoder makes an

incorrect decision is when there is an outage (i.e. channel cannot support the desired

rate). Practical code design techniques, such as those using density evolution [55] or

EXIT charts [56], will work well if either the design were for one channel realization

or if we could average over the channel realization (i.e. ergodic case). In order to get

around this problem, we make an assumption that the channels are ordered according

to achievable mutual information. In other words, if a code decodes successfully for
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a given channel realization, we assume that it will decode successfully for all channel

realizations with a higher mutual information as well. So, our strategy is the following.

We pick a code, find a channel realization whose mutual information is higher than

the desired rate but the code decodes incorrectly. For this channel realization, we

design a new code that would decode correctly. Finally we iterate this process.

We can design a low-density parity check (LDPC) outer code using density evo-

lution [55] but this process is computationally involved. A much simpler, albeit less

accurate, design process utilizes extrinsic information transfer (EXIT) charts in con-

junction with a non-linear optimization process such as differential evolution [57,58].

B. Spatial Multiplexing

When spatial multiplexing is done, the system looks very similar to a bit-interleaved

coded modulation (BICM) system. It is shown in Fig. 11. At the encoder, the

outputs of the binary rate Ro LDPC code are mapped on to some constellation (say,

an M−PSK alphabet) and multiplexed on to the Nt transmit antennas. The overall

rate is, therefore, R = RoNt

log M
. At the decoder, the space-time demodulator and the

LDPC decoder iteratively exchange soft information1.

The first obvious thing to do is to see how well an LDPC code optimized for

the Gaussian channel works. On a closer look we find that the equivalent channel

as seen by the LDPC decoder resembles a mixture of Gaussian channels. This is

not surprising at all since the MIMO channel may be decomposed into independent

parallel spatial channels via a singular value decomposition (SVD) of the channel

matrix. Each of these spatial channels is an AWGN channel and has an effective

channel SNR, given by the respective singular value.

1For details of these operations, please refer to chapter IV
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Fig. 11. Spatial multiplexing of a binary LDPC code with Nt transmit and Nr receive

antennas.

In the extreme case, if the effective channel SNR for a particular sub-channel is

close to zero, this sub-channel resembles an erasure channel. If all the sub-channels

are “erased”, we have an outage. In the Nt = 2 case, we can use this insight to design

the outer code. We can use as the outer code an LDPC code that has been optimized

for a mixture of an AWGN channel and an erasure channel. Such an optimization

has been done in literature in the context of magnetic recording channels [59].

In Fig. 12, we present the results for a Nt = Nr = 2 system with QPSK modu-

lation and an outer rate 1/2 LDPC code. The overall rate of this scheme is R = 2

b/s/Hz. The decoder performs 5 (outer) iterations between the space-time demod-

ulator and the LDPC decoder. The LDPC decoder performs 25 iterations for each

such outer iteration.

As expected, the mixture code is slightly better than the AWGN code. The

performance is about 1 dB from its fundamental limit. The reason for this gap from

constrained outage will be explored in the following chapter.

In Fig. 13, we use a rate 1/4 LDPC code optimized for the AWGN channel (in

place of the rate 1/2 code in Fig. 12), so that the overall rate is 1 b/s/Hz. Again, the
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Fig. 12. Spatial multiplexing: Nt = Nr = 2, rate 1/2 outer LDPC code, QPSK mod-

ulation. Overall rate 2 b/s/Hz.

gap from the fundamental limit is 1–1.25 dB.

C. Space-time Block Codes

Orthogonal space-time block codes have the property that they convert the MIMO

fading channel to an instantaneous AWGN channel [25,28,40]. The effective SNR at

the output of the space-time (block) decoder equals the MIMO channel SNR scaled by

the sum of the channel gains squared. It follows that codes that achieve capacity on

the AWGN channel are optimal in the MIMO case as well. Furthermore, the channel

as seen by the outer-code is ordered with respect to mutual information. The import

of this fact will be become apparent when we discuss trellis codes in the next section.
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Fig. 13. Spatial multiplexing: Nt = Nr = 2, rate 1/4 outer LDPC code, QPSK mod-

ulation. Overall rate 1 b/s/Hz.

LDPC codes, if designed carefully, can achieve close to capacity performance on

the binary input AWGN channel [60]. If a higher modulation format is employed,

binary-AWGN codes can still be used with Gray mapping. If a non-Gray mapping

is used, similar design procedures lead to different designs [61]. We can borrow the

AWGN designs for use over the MIMO channel in conjunction with orthogonal space-

time block codes.

An advantage of using LDPC codes is the ease with which the performance of

this concatenation scheme can be predicted. Since LDPC codes exhibit a threshold

phenomenon, we can assume that if the effective SNR ρeff is below the threshold of

the code ρcode, the decoder will always make an error. Otherwise, the decoder can
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be assumed to decode to the correct codeword. Since the closed form distribution of

the effective SNR fρeff
(x) is known, the codeword error rate of the concatenation is

simply the integral of this distribution from the threshold of the code to infinity:

Pw(ρ) =

∫ ∞

ρcode

fρeff
(x)dx. (3.2)

As a particular case, consider the Alamouti scheme where the received signal

may be written as [25]:

ŝ =

√
ρ

Nt

(
Nr∑
i=1

2∑
j=1

|hij|2
)

s + n. (3.3)

The noise is complex Gaussian with zero-mean and variance λ =
∑Nr

i=1

∑2
j=1 |hij|2.

So, the effective SNR of the instantaneous AWGN channel is ρeff = ρλ
Nt

. Assume

that a binary rate R outer code is used with an M -ary modulation. Let γ be the

SNR above which we can achieve reliable communication on the M -ary input AWGN

channel at a rate R b/s/Hz (i.e., capacity). The probability of frame error is given

by:

Pf = Pr(
Eb

N0

< γ)

= Pr(
1

R log2(M)

Es

N0

< γ)

= Pr(λ <
RNt log2(M)

ρ
γ)

= Pr(λ < α)

where λ =
∑Nr

i=1

∑2
j=1 |hij|2 is χ2 distributed with n = 2NtNr degrees of freedom and

variance σ2 = 1/2. Letting m = n/2 = 2Nr (since Nt = 2 for Alamouti scheme), we

get:

Pf = 1 − exp(−α)
m−1∑
i=0

αi

i!
. (3.4)
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In Fig. 14, we show the agreement between the prediction and the performance

for a concatenation of a LDPC code with the Alamouti scheme. The modulation is

QPSK and both Nr = 1 and Nr = 2 are considered.
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Fig. 14. Concatenation of an irregular rate-1/2 LDPC code with Alamouti scheme.

The code length is 8192 bits. The code threshold is about a dB away from

the BIAWGN capacity and the actual code performance is less than 0.5 dB

away from the threshold. As the code length is increased, this gap between

threshold and performance will close.

The mutual information rates for orthogonal space-time block codes also suggest

the use of expanded signal sets. At low rates, the Alamouti scheme offers information

rates that are close to the unconstrained case (which is an upper bound) when one

receive antenna is used (see Fig. 3 in Chapter II). In order to achieve a target infor-
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mation rate, a computationally simple way is to use expanded signal constellations

on each of the transmit antennas and to use Alamouti’s scheme. This can be thought

of as the analogy of bandwidth efficient coding but applied to multiple transmit an-

tennas. As an example of this, consider that we wish to transmit at 2 b/s/Hz. We

save in terms of power efficiency if we use 8-PSK (with a rate-2/3 outer code) instead

of (uncoded) QPSK. This is shown in Fig. 15. The important point to note is that

no matter what modulation format is used, it is easy to design an outer code which

will perform close to the outage information rate of the space-time block code.
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Fig. 15. Bandwidth efficient coding using Alamouti scheme: Nt = 2, overall rate 2

b/s/Hz. An outer code of rate 2/3, length 6144 bits is used with 8-PSK and

it is compared against uncoded Alamouti with QPSK.



38

When more than one receive antennas are used, the Alamouti scheme (and other

block codes) is no longer optimal in the capacity sense [28]. Even so it is easy to find

outer codes that perform close to this (non-optimal) limit. Thus, the concatenation

of LDPC codes with space-time block codes in general (and the Alamouti scheme in

particular) is a practical and computationally simple method to achieve performance

close to the outage limits of the specific block codes. It is simple to design good outer

LDPC codes and their performance can be predicted easily and accurately. When

expanded signal constellations are used, the decoder does not have to iterate between

the space-time decoder and the LDPC decoder. If Gray mapping is used, then we

also do not need to iterate between the symbol de-mapper and the LDPC decoder.

D. Space-time Trellis Codes

We have seen before that space-time trellis codes offer better information rates than

block codes but it is more difficult to achieve this information rate. In the search for

outer codes that will perform close to outage limits, we seek to design low-density

parity-check codes which are matched to a particular inner code and a particular

channel realization. This is to be contrasted with the ergodic channel case [62] where

one can design the code based on an average over different channel realizations. We

characterize the iterative decoding using extrinsic information transfer (EXIT) charts.

These charts plot the input-output characteristics of the various components of the

receiver (e.g. inner and outer codes) in terms of the mutual information [56].

For a particular channel realization:

H =

⎡
⎢⎣ 0.904371 + 0.709265i −0.586554 − 0.30.958i

−0.109425 + 0.152505i 0.0631015 − 0.472781i

⎤
⎥⎦

with mutual information 1.367 b/s/Hz, the EXIT charts are computed at an SNR of
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2 dB. The averaged trajectory of extrinsic mutual information is also plotted. The

EXIT charts are seen to be optimistic by about 0.25 dB. This is shown in Fig. 16.
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Fig. 16. EXIT charts for a serial concatenation scheme with [2 3] outer convolutional

code and an inner recursive space-time trellis code. As shown, these charts

are slightly optimistic.

We observe that the achievable mutual information does not provide a strict

ordering of the channels. In other words, it is possible for the decoder to converge

when the channel realization has a low mutual information and have a decoding

failure when the channel has a higher mutual information. This is surprising since

one would expect the achievable mutual information to be a robust and ordered
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measure of performance. The robustness of this (or any other) measure is a property

of the channel model and this is seen in the ergodic channel case (where the mutual

information is ordered). Other measures like condition number, Demmel condition

number, least singular value etc also show similar “non-ordering” behavior.

This “non-ordering” arises from the fact that the space-time trellis code itself is

an information rate transformer. This transformation, however, is non-linear in the

following sense. Consider two channel realizations H1,H2, with mutual information

rates R1 and R2; R1 > R2. After this transformation is applied R′
1 = f(R1,H1); R

′
2 =

f(R2,H2), there is no guarantee that R′
1 > R′

2. This is precisely the reason for the

non-ordering behavior. In other words, if, under maximum likelihood decoding, the

concatenation of an LDPC code with the space-time trellis code decodes successfully

on channel 1 and not on channel 2, it is necessary that R′
1 > R′

2 but it is not necessary

that R1 > R2. The problem is now compounded by the fact that the decoding is sub-

optimal. In this case even the ordering R′
1 > R′

2 under the transformed mutual

information rate may also not be preserved. This is shown with the help of an

example in Fig. 17. We have considered a serial concatenation scheme with a rate-

1/2 [2 3] outer convolutional code and recursive inner space-time CYV code. At

a given SNR (say 2 dB), we plot the pdf of mutual information between u and z

(refer Fig. 10), Iinner(ρ,H) = I(u; z|H). However, we make a distinction between the

channel realizations H where the decoding is successful and where it is not. As seen in

Fig. 17, there is an overlap between the two pdfs. In other words, there are instances

where data sent over a channel realization with lower Iinner(ρ,H) is decoded correctly

while data sent over a channel with a higher Iinner(ρ,H) is not decoded correctly.

A similar behavior is observed with other measures such as highest singular value,

condition number, Demmel condition number etc.

These observations reinforce our claim in Chapter II that the conditional mutual
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Fig. 17. Mutual information does not impose strict ordering.
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Fig. 18. Different rate 1/2 outer LDPC codes concatenated to a 4-state, 4-PSK

space-time trellis code [1]. Overall rate is 1 b/s/Hz.

information (of the effective channel) is a more fundamental quantity than either the

frame error rate or the Gaussian mutual information rate of the channel.

Finally, we compare the concatenation of different outer LDPC codes with the

same inner space-time trellis code (from [1] and [2]) to their ultimate limits. The

LDPC codes chosen are an AWGN optimized code [63] and a code optimized for

the a Gaussian channel with erasures (marked Mixture code) [59]. The length of the

LDPC code chosen is 8192. The results are presented in Fig. 18-19. We see that there

is a significant gap of about 2.5 dB between the performance and the outage limit

with the CYV code and of about 2 dB with the delay diversity code. There is only



43

0 1 2 3 4 5 6
10

−3

10
−2

10
−1

10
0

SNR (dB)

F
ra

m
e 

E
rr

or
 R

at
e

Unconstrained capacity
Constrained outage
AWGN code
Mixture code
Mixture code length 32768

Fig. 19. Different rate 1/2 outer LDPC codes concatenated to a 4-state, 4-PSK delay

diversity trellis code [2]. Overall rate is 1 b/s/Hz.
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a slight improvement when the LDPC code is changed (from one optimized for the

AWGN channel [63] to the one optimized for an AWGN channel with erasures [59]).

Also, increasing the length (to 32768) gives very little improvement (about 0.2 dB).

The reason for this significant gap is the fundamental limitation of iterative decoding,

which is explored in more details in the next chapter.

E. Conclusions

In this chapter we have considered the serial concatenation structure, consisting of an

outer LDPC code and an inner space-time code. When the inner space-time code is a

simple spatial multiplexer, we find that LDPC codes optimized for a Gaussian channel

with erasures performs slightly better than a code optimized for the pure Gaussian

channel. While this can be explained by the fact that the equivalent channel (as seen

by the outer decoder) is a mixture channel, this method does not give much insight

into a general design with more than 2 transmit antennas. We do not know apriori

whether such designs will exist or not. These issues point toward a fundamental limit

of iterative decoding which will be discussed in the next chapter.

Space-time block codes, inspite of their capacity limitations, are much easier to

handle since they reduce the MIMO channel into an equivalent AWGN channel. We

are able to predict the performance easily. Furthermore, bandwidth efficient coding

is achieved easily (and this is similar to the concept of TCM in AWGN channels).

Specifically for the case of one receive antenna and at low rates, this scheme is near-

optimal among all space-time systems. This is so because first the outage capacity is

close to the unconstrained case and second we are able to achieve this capacity. For

multiple receive antennas, the latter part of the statement still holds.

In the case of space-time trellis codes, the code design problem is compounded
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by the fact that under sub-optimal (iterative) decoding, the conditioned mutual in-

formation is not ordered. This again points to a fundamental limitation of iterative

systems which is explored in the next chapter. Furthermore, we must look for al-

ternative transceiver structures to bridge the gap between performance and outage

limit. Such an alternative design is presented in Chapter V.
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CHAPTER IV

LIMITS ON ITERATIVE DECODING

In Chapter II, we computed the outage limits under a constrained modulation setting.

Theory tells us that if we have a “good” code design and we do maximum likelihood

decoding, we should be able to approach the outage limits computed before. In prac-

tice, however, maximum likelihood decoding is not always computationally feasible.

Often times an iterative set up is employed. In the background material for this

chapter, we first explain what is iterative decoding. A commonly employed technique

to study any iterative set-up is the extrinsic information transfer (EXIT) chart. We

explain briefly the concept of an EXIT chart and the assumptions commonly made in

using this technique. Next we employ this technique to study iterative decoding of a

concatenated space-time system. We find that iterative decoding has a fundamental

limitation – it cannot be universal. In other words, on quasi-static channels, a single

outer code cannot give near capacity performance with iterative decoding.

A. Background

1. Iterative Decoding and Demodulation

We can consider the channel code and the space-time modulator as a serial concatena-

tion (Fig. 20). The binary data uk, k = 1, 2, . . . , Nu is encoded by the channel code to

produce the binary sequence ck, k = 1, 2, . . . , Nc, where Nc = Nu/Ro and Ro is the rate

of the channel code. This coded sequence is mapped to an M−ary sequence of sym-

bols xk, k = 1, 2, . . . , Nm, where Nm = Nc

m
, m = log M and xk ∈ Ax. This sequence is

then serial to parallel converted to obtain transmit vectors xk, k = 1, 2, . . . , Nf , where

Nf = (Nm/Nt) = Nc

mNt
, Nt is the number of transmit antennas and xk ∈ ANt

x . So, the
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Fig. 21. Iterative decoding of space-time modulation.

overall rate of the space-time system is R = Ro ×Nt ×m bits per channel use, where

m = log M .

The receive vector at time k is given by yk =
√

ρ
Nt

Hxk + nk; k = 1, 2, . . . , Nf ,

where H is the Nr × Nt matrix of channel coefficients, ρ is the SNR and nk is the

Nr × 1 noise vector. As before, all components of H and n are independent and have

a CN (0, 1) distribution.

The receiver operates in an iterative fashion. The space-time demodulator looks

at the receive vector y and the apriori information about the bits ck (which is obtained

from the decoder, and is zero initially), and generates an extrinsic information LST (ck)

about the bits ck. The channel decoder treats this extrinsic information as apriori
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information and generates additional information LD(ck) about the coded bits ck.

This LD(ck) is treated as apriori by the demodulator in the next iteration. This

simple procedure for information exchange is shown in Fig. 21. The mathematical

details of the demodulator operation are described below.

Consider that the coded bit-vector c = [c1 . . . cmNt ]; ci ∈ {0, 1} is divided

into Nt groups of m bits each and then modulated to form the symbol vector x =

[x1 x2 . . . xNt ]; xi ∈ Ax. There are ANt
x possible such vectors and if y and H are

known, the probability of x = �x is given by:

log Pr(x = �x|y,H) = −1

2
||y −

√
ρ

Nt

H�x||2 + constant. (4.1)

At the demodulator, let the apriori log-likelihood ratio be denoted by Lap(ck), so that:

Lap(ck) = log
Prap(ck = 0)

Prap(ck = 1)
,

or, conversely,

log Pr ap(ck = 0) =
exp (Lap(ck))

1 + exp (Lap(ck))
; log Pr ap(ck = 1) =

1

1 + exp (Lap(ck))
.

The extrinsic information generated by the demodulator is then given by:

LST (ck) =
∑

�x:ck=0

[
log Pr(x = �x|y,H) +

mNt∏
i=1;i�=k

log Pr ap(ci = �ci)

]

−
∑

�x:ck=1

[
log Pr(x = �x|y,H) +

mNt∏
i=1;i�=k

log Pr ap(ci = �ci)

]
, (4.2)

where �ci is the i−th component of �c.

2. EXIT Charts

In order to study the behavior of this iterative demodulator-decoder, we use the tech-

nique of transfer function charts. The two components (the space-time demodulator
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and the outer-code-decoder, in our case) are treated as amplifiers/transformers. The

quantity that we track can be the signal-to-noise ratio (SNR) or some monotonic

function of the LLRs [64]. A robust measure commonly employed in such studies

is the mutual information between the binary data ck and the log-likelihood ratios

Lap(ck) and LST (ck), i.e.,

IA,ST = I
(
cmNt
1 ; Lap(ck)

)
; IE,ST = I

(
cmNt
1 ; LST (ck)

)
. (4.3)

The plot of IA against IE is called an EXtrinsic Information Transfer (EXIT) chart

[56]. In order to compute the EXIT chart, one must track the probability densities

of Lap(ck), LST (ck) etc.

We can now easily track the progress of the iterative set-up as follows. We first

plot the EXIT chart of the inner module (the space-time decoder in this case). Next,

we super-impose the EXIT chart of the outer module with its axis reversed. A stair-

case plot tracks the actual evolution of mutual information as iterations proceed. If

these two plots cross each other, then there is a fixed-point in the iterations and

the decoder will not converge. If these plots do not converge, then the decoder will

converge to a codeword. This is illustrated in Fig. 22.

a. Gaussian Assumption

Usually, the apriori LLRs Lap(ck) are assumed to have a Gaussian distribution with

variance that is twice the mean [56]:

Lap(ck) ∼ N (ckm, 2m).



50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input MI

O
ut

pu
t M

I

Fig. 22. Progress of iterations in an iterative decoder can be tracked via an EXIT

chart.

In many cases, especially when the channel is AWGN, this assumption is fairly accu-

rate1. Even when the LLRs are not Gaussian, the transfer functions drawn with the

Gaussian assumption are found to be fairly accurate [56, 65]. The real advantage of

using this assumption is that a single variable (the mean of the Gaussian) describes

the density completely. Instead of computing and tracking the entire densities of

1The special relationship between the mean and the variance originated from the
symmetry condition in [63]. If the message densities satisfy this condition, then low-
density parity check codes can be designed to have good performance on the given
channel.
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messages, now one needs only to track one variable.

In the ergodic MIMO case, EXIT charts have been used to design good codes [62].

b. Area Property

In [65], the authors prove that if the decoder’s apriori information comes from a

binary erasure channel (BEC) then the area under the EXIT function is one minus a

conditional entropy. The practical implication of this property is that the code design

for the BEC reduces to a curve-fitting problem for several classes of codes (e.g. LDPC

codes, turbo-codes, RA codes etc).

This area property holds approximately for a large class of channels, though there

is no proof in the literature yet. The curve-fitting approach to code-design has been

used by many researchers in a variety of problems [62,66].

B. Iterative Decoding and Demodulation of MIMO Systems in QSFC

When the channel has a quasi-static behavior, as has been assumed throughout this

work, each realization of the channel H results in a different EXIT chart for the space-

time demodulator. Analysis and code-design becomes extremely time consuming and

tedious if one has to track actual densities of apriori and extrinsic messages for each

channel realization. We circumvent this problem by invoking the Gaussian assump-

tion. As we show by examples, the received density is more closely approximated by a

mixture of two Gaussian densities. However, for the purposes of this chapter, we still

make the Gaussian assumption while computing the EXIT charts. Even though the

EXIT charts themselves become inaccurate (in terms of predicting code convergence

thresholds etc), the behavior (i.e. the shapes of the EXIT charts) of the demodulator

and the decoder is still well characterized.
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1. Message Densities at the Output of Space-time Demodulator

Consider a system with Nt = 2 transmit antenna that uses BPSK (M = 2) modu-

lation. The maximum achievable rate is 2 b/s/Hz with uncoded transmission. We

assume that the rate of the outer code is Ro = 1/2, so that the overall rate is

R = 1 b/s/Hz.

It is easy to see that the receive signal y =
√

ρ/2(h1x1 + h2x2) + n yields the log

likelihood ratio of the bit b1 (corresponding to the symbol x1) as:

L(x1) =
1

2
L1(x1) +

1

2
L−1(x1), (4.4)

where

L1(x1) = log
Pr(x1 = 1|x2 = 1)

Pr(x1 = −1|x2 = 1)

= log exp

(
−1

2
||y −

√
ρ/2(h2 + h1)||2 +

1

2
||y −

√
ρ/2(h2 − h1)||2

)

= 2
[
R(h1) R(y −

√
ρ/2h2) + I(h1) I(y −

√
ρ/2h2)

]
.

Here R() and I() represent the real and imaginary parts of the argument, respectively.

Similarly,

L−1(x1) = log
Pr(x1 = 1|x2 = −1)

Pr(x1 = −1|x2 = −1)

= log exp

(
−1

2
||y −

√
ρ/2(−h2 + h1)||2 +

1

2
||y −

√
ρ/2(−h2 − h1)||2

)

= 2
[
R(h1) R(y +

√
ρ/2h2) + I(h1) I(y +

√
ρ/2h2)

]
.

Thus (4.4) becomes:

LST (b1) =
√

2ρ [R(h1)R(y) + I(h1)I(y)] . (4.5)

The real and the imaginary parts of y have a Gaussian distribution. Thus, atleast
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Fig. 23. Probability densities of received LLRs for different channel realizations. BPSK

modulation, Nt = Nr = 2, ρ = 6dB. All these channels have iid BPSK

information rate ≈ 1 b/s/Hz.

in the Nr = 1 case with BPSK we can show that the output of the space-time

demodulator is a sum of two Gaussians distributed random variables.

In Figs. 23-24, we show empirically that the density of the received likelihoods

at the output of the space-time demodulator can be well approximated as a mixture

of two Gaussian distributed random variables, each with a variance that is twice its

mean. Further, this property holds even for higher number of receive antennas and

for higher modulation order.
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Fig. 24. Probability densities of received LLRs for different channel realizations.

QPSK modulation, Nt = Nr = 2, ρ = 9 dB. All these channels have iid

QPSK information rate ≈ 2 b/s/Hz.
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2. EXIT Charts

In this sub-section, we study the behavior of the space-time demodulator in greater

detail. We use the technique of EXIT charts mentioned before. We make the following

assumptions:

• The bits c = [c1 . . . cmNt ]; ci ∈ {0, 1} that are generate the transmit vector

x = [x1 x2 . . . xNt ]; xi ∈ Ax are independent and equally likely.

• The apriori messages received by the space-time demodulator are Gaussian with

a variance that is twice the mean:

LD(ck) ∼ N (m, 2m). (4.6)

• The apriori messages to the outer decoder are Gaussian distributed with a

variance that is twice the mean:

LST (ck) ∼ N (m, 2m). (4.7)

The first of these conditions is easily satisfied if the outer code is a random-like code

(e.g. LDPC code, turbo code etc) or by assuming that the output of the outer code

passes through a long (ideally infinite length) interleaver before the grouping occurs.

While (4.7) is different from what we observed in the previous sub-section, it does

not change the behavior of the transfer charts. The accuracy of the EXIT charts is

sacrificed only slightly. Once (4.7) is assumed, (4.6) holds for most codes [56,67].

Once again, we assume a Nt = Nr = 2 system with BPSK modulation. Recall

that the EXIT chart depends on the channel realization H and the channel SNR

ρ. We choose a set of channels wherein the i.i.d. BPSK information rate is ≈ 1

b/s/Hz. We simulate a large number of bits and compute the log-likelihoods LST (ck).
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Fig. 25. EXIT charts for Nt = Nr = 2 system with BPSK modulation, ρ = 6 dB. The

two channels H1 and H2 have a constrained i.i.d. BPSK mutual information

≈ 1 b/s/Hz.

Finally the extrinsic mutual information I (ck; LST (ck)) is plotted as a function of

I (ck; LD(ck)).

As an example, we consider different channel realizations with the same con-

strained modulation information rate. We expect the same area under the curves and

we want to see how the shape of the curve changes. In Fig. 25, we show the EXIT

charts for two channels

H1 =

⎡
⎢⎣ 0.3449 + j0.1697 0.3987 − j0.4771

−0.1311 + j0.1540 0.1008 − j0.3759

⎤
⎥⎦ ,



57

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
D

(c
k
)

I S
T
(c

k)

channel 3
channel 4

Fig. 26. EXIT charts for Nt = Nr = 2 system with QPSK modulation, ρ = 9 dB. The

two channels H3 and H4 have a constrained i.i.d. QPSK mutual information

≈ 2 b/s/Hz.
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and

H2 =

⎡
⎢⎣ −0.3993 − j0.0498 0.5103 + j0.1865

0.2888 − j0.0364 −0.6031 + j0.2014

⎤
⎥⎦ ,

which have an iid BPSK mutual information rate of ≈ 1 b/s/Hz at an SNR of ρ = 6

dB. In Fig. 26, we show the EXIT charts when the modulation is QPSK. The two

channels

H3 =

⎡
⎢⎣ 0.6529 + j0.2634 0.4807 − j0.0366

0.3382 + j0.1496 0.1139 + j0.2011

⎤
⎥⎦ ,

and

H4 =

⎡
⎢⎣ −0.1296 − j0.0018 0.1205 − j0.7093

0.3612 − j0.0392 −0.3088 + j0.4162

⎤
⎥⎦ ,

have an iid QPSK mutual information rate of ≈ 2 b/s/Hz at an SNR of ρ = 9 dB.

We observe that the area under these plots exceeds the corresponding mutual

information rate by about 11 to 15 percent. Thus, inspite of the assumptions, these

curves are reasonably accurate to draw meaningful conclusions about the systems we

are considering.

3. Limits on Iterative Decoding and Demodulation

Recall from Chapter II the way the unconstrained outage capacity is computed. We

simulate a large number of channels and compute the information rate for each channel

realization at a given the SNR. Given the desired outage probability, the supported

rate is found from the quantile plot of the information rates.

This procedure also suggests that the outage-capacity achieving outer code has

the following property: This code will be decoded successfully for all channel realiza-

tions that have an information rate, C(H), higher than the desired rate, R.

If we assume that the outer code mimics this behavior of the unconstrained case
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in the constrained modulation case also, then ideally we need to find an outer code

whose EXIT chart (when plotted with the axes interchanged) has the following two

properties:

• It lies strictly below the EXIT charts of all the channels with the same mutual

information rate.

• It has the maximum possible area below it.

This is illustrated in Fig. 27. The boundary of the lower shaded area is how the

transfer curve of the “optimal” outer code should look like. This shaded area is equal

to the rate of the outer code (to within the accuracy of these EXIT charts).

The upper shaded area represents the loss in rate that is incurred because the

receiver has separated demodulation and decoding. This is to be contrasted to a joint

maximum-likelihood demodulation and decoding wherein the receiver would be able

to recover codewords transmit over both H1 and H2, without this rate-loss.

The real importance of recognizing this rate-loss is in the following conclusion.

Given any scenario where the (equivalent) channel seen by the iterative decoder is

non-ergodic and varies from one codeword to the next, the system employing the

iterative decoder cannot be universal. All quasi-static channels fall into this category.

Also note that this conclusion is not dependent on what the inner and the outer codes

are. So, for example, if we were to concatenate an outer LDPC code with an inner

space-time trellis code (such as has been done in section III.D), the same conclusion

about non-universality will hold.

To corroborate this claim for space-time trellis codes, consider Fig. 28. We plot

the EXIT charts for a specific space-time trellis code [1] for two channel realizations

which have about the same constrained information rates. Once again, we point

out that the overlap in the EXIT charts is the cause of rate-loss and hence iterative
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Fig. 27. An example of the sub-optimality of iterative decoding.
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Fig. 28. EXIT charts for Nt = Nr = 2, 4-state, 4-PSK space-time trellis code [1] at

SNR = 4 dB. Both channel realizations have a constrained information rate

of about 1 b/s/Hz.
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decoding and demodulation will be sub-optimal. This explains the gap between the

performance and the outage limit in Fig. 18-19.

C. Conclusion

In this chapter, we studied the i.i.d. transmission of constrained modulation symbols

over the multiple-input multiple-output (MIMO) flat quasi-static fading channel using

extrinsic information transfer (EXIT) charts. We showed that the pdf of the received

log likelihoods is well represented by a mixture of Gaussian random variables, each

with a variance that is twice its mean. We have also shown that iterative decoding

and demodulation has an inherent rate-loss. In other words, no matter how good

the design of the outer code is, iterative decoding will not be able to achieve the

constrained modulation information rate for any non-ergodic channel model.
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CHAPTER V

SPACE-TIME TRELLIS CODES: A BCJR-DECISION FEEDBACK DECODING

BASED SCHEME

We have seen before that space-time trellis codes (STTCs) offer a higher mutual

information rate than, for example, space-time block codes and spatial multiplexing

schemes. This higher rate comes at the price of decoding complexity.

The more important issue is that of designing practical schemes which will come

close to the outage information rate of the STTC. We have the insight from Chap-

ter IV that iterative decoding is not the best strategy. In this chapter, we consider a

system where an outer binary error-correction code is concatenated to an inner STTC.

The structure of the transmit data block allows for a step-by-step near-optimal BCJR

decision-feedback decoder to decode the STTC. The outer decoder in turn passes

near-optimal decisions to the STTC decoder for the next step of equalization. This

serial-parallel decoding achieves near outage performance.

In the following sections, we explore the various components of this scheme – the

theory behind the scheme, the transmitter structure, the decoder structure and the

achieved performance. We also present a variant of the scheme which also achieves

close to capacity performance.

A. Background

The structure that we consider here is an extension of what is proposed in [68] for use

in ISI channels. There are two main components to this structure. First, a compu-

tationally efficient BCJR-decision feedback decoder (BCJR-DFD) for the space-time

trellis code which produces optimal soft estimates of the input to the STTC, given the

past P symbols exactly (where P is the memory of the STTC) and the observation
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from the channel. Second, the encoder and decoder for the outer codes are used in

such a manner that allows the past P symbols to be fed to the BCJR-DFD in an

error free manner, through the use of a code that achieves capacity on the memoryless

channel.

A system with multiple-transmit antennas presents a channel which looks very

similar to the inter-symbol interference (ISI) channel and the multi-user channel .

There has been a lot of work in these areas that can be applied in some manner to

the MIMO case. It is well known that MMSE feedback equalization with error free

feedback is a canonical structure and can be used to predict the performance for any

ISI channel accurately [69, 70]. In the multi-user scenario, the optimality of ideal

decision feedback is also well known [71]. This has been used to prove the optimality

of D-BLAST in the diversity-multiplexing trade-off sense [12].

Recently it has been shown that if the MMSE is replaced by a BCJR algorithm,

ideal feedback can lead to achieving capacity for any SNR and any input constellation

[68]. Further, this scheme does not require the knowledge of the ISI channel at the

transmitter and performs close to capacity for several ISI channel realizations. This

scheme, therefore, is a good candidate for use in the MIMO quasi-static flat fading

case where the channel realization is not known apriori and we want the scheme to

perform well on a number of channel realizations.

In order to adapt the scheme to the case we are considering, we replace the ISI

channel with an STTC. The binary decision feedback equalizer (DFE) is replaced

by a symbol-based decision feedback decoder (DFD). Since the STTC operates in a

non-binary domain, we use a BICM-like approach for the outer code. In other words,

the output of a binary code is interleaved and mapped on to symbols, which are then

fed to the STTC. This is explained in more details in the following sections.



65

B. Transmitter Structure
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Space time trellis code

Fig. 29. Transmitter structure for the proposed BCJR-DFD based scheme.

The transmitter structure is shown in Fig. 29. It consists of n LDPC encoders

arranged in parallel followed by a symbol-mapper for each of the LDPC codes. Let

cij denote the j-th coded bit of the i−th LDPC encoder. The mapper combines

m consecutive coded bits to form the k-th symbol xik ∈ Ax, where |Ax| = M , for

example, Ax is the M -PSK alphabet.

Next, the output of these mappers is converted to a serial stream. So, the

k−th block of data input to the space-time trellis code, Uk, consists of symbols

xik, i = 1, 2, . . . , n and p pilot symbols xp
ik, i = 1, 2, . . . , p. The purpose of the pilots

is to enforce that the space-time trellis code is terminated in a known state (say,

state S∗). Therefore, p equals P , the memory of the space-time trellis code. The

space time trellis code encodes this data Uk to form the k−th transmission block Tk

. If N be the length of each LDPC code, the number of such transmission blocks is

K = (N/m). The codeword, C for this overall scheme is the concatenation of the K

transmission blocks Tk, k = 1, 2, . . . , K.
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We can graphically represent the data blocks as shown in Fig. 30. Since, for

a system with Nt transmit antennas and Nr receive antennas, the STTC outputs a

vector of Nt symbols for every xik input to it, we can write the transmission blocks

Tk if we replace each xik by xik in Fig. 30. For each xik, the transmission through

the channel may be represented as:

yik =

√
ρ

Nt

Hxik + nik, (5.1)

where yik is a vector of Nr received symbols, rho is the SNR, H is the channel

realization and nik is the noise vector with zero mean complex Normal entries. For

ease of notation, we can collect the samples corresponding to a row in Fig. 30 into a

vector/matrix and write:

Xk = {xik}; i = 1, . . . , n

Xk = {xik}; i = 1, . . . , n

Yk = {yik}; i = 1, . . . , n

etc.

C. Receiver Structure

The receiver structure is shown in Fig. 31. The underlying algorithm used in this

block is the maximum a posteriori probability algorithm of Bahl, Cocke, Jelinek and

Raviv [72]. Since the STTC is a Markov chain, if the previous state is known, the a

posteriori probability of a symbol depends only on the signal received in that time

instant:

Pr(xik|Yk, Si,k) = Pr(xik|yik, Si,k). (5.2)

Note that due to the presence of pilots, the states S0,k and Sn+1,k are known and fixed

(equal to S∗). Consequently, the received values of the symbols for row k + 1 do not
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Fig. 30. Data matrix representing the operations at the transmitter of the proposed

BCJR-DFD based scheme.
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affect the soft outputs of symbols in row k.

As a result of (5.2), we can run K BCJR decoders in parallel, one for each row

in Fig. 30. Without loss of generality, consider the k-th BCJR module. In order to

describe the working of this modified decoder, we define the following quantities [73]:

1. The a priori probability on the input to the decoder:

P (Xk; I) = (Pi(xik; I))1≤i≤n,

where Pi(xik; I) is the probability that the i-th symbol in the k-th data block

is xik.

2. The a priori probability of the coded symbols:

P (Xk; I) = (Pi(xik; I))1≤i≤n,

where Pi(xik; I) is the probability that the i-th symbol in the k-th transmission

block is xik. Since the channel is additive white Gaussian (5.1), we have:

Pi(xik; I) = Pr(xik|yik,H)

=
1√
π

exp

(
−1

2

∣∣∣∣yik −
√

ρ

Nt

Hxik

∣∣∣∣
2
)

. (5.3)

3. Corresponding to the a priori probabilities (input to the decoder), we define

the a posteriori probabilities (output of the decoder) by replacing I with O as

below:

P (Xk; O) P (xk; O),

which are computed by the decoder.

4. For a given edge e on the trellis, define its starting state sS(e), the ending

state sE(e), the corresponding input x(e) ∈ Ax and the corresponding output
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x(e) ∈ ANt
x . Let the set of states be denoted by S so that sS(e), sE(e) ∈ S.

The usual BCJR algorithm is then described by these equations [72,73]:

Pi(xik; O) = Nu

∑
e:x(e)=xik

αi−1[s
S(e)]Pi(x(e); I)βi[s

E(e)]; (5.4)

αi[s] =
∑

e:sE(e)=s

αi−1[s
S(e)]Pi(x(e); I)Pi(x(e); I); i = 1, 2, . . . , n; (5.5)

βi[s] =
∑

e:sS(e)=s

βi+1[s
E(e)]Pi+1(x(e); I)Pi+1(x(e); I); i = 1, 2, . . . , n.(5.6)

The normalization factor Nu ensures that
∑

xik∈Ax
Pi(xik; O) = 1. At any time i, if

the state is known (say s = Ŝ), we can write:

αi[s] =

⎧⎪⎨
⎪⎩

1 s = Ŝ

0 otherwise
(5.7)

βi[s] =

⎧⎪⎨
⎪⎩

1 s = Ŝ

0 otherwise
(5.8)

So, the presence of pilots allows us to initialize both α0 and βn since the initial and

final states of the trellis are S∗. Since the output of the LDPC code is approximately

iid, the input to the STTC encoder is also iid. Thus, Pi(xik; I) = 1/M .

Assuming that we have the symbol extrinsic Pi(xik; O) for all xik ∈ Ax, we can

compute the bit extrinsic probabilities easily. Assume that the symbol x ∈ Ax is

associated with bits uj, 1 ≤ j ≤ m. We have [73]:

Pij(uikj; O) = Nub

∑
x:uk=uikj

Pi(xik; O)
∏
l �=j

Pij(uikl; I) (5.9)

where the a priori bit probabilities Pij(uikl; I) are all equal to 1/2 (since the bits are

iid) and uikj represents the j-th bit of the symbol xik. The normalization factor Nub

ensures that the resulting bit probabilities sum up to one as they should. The log
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likelihood ratio is then computed as:

λikj = log
Pij(uikj = 1; O)

Pij(uikj = 0; O)
, (5.10)

and for ease of notation we re-index the λs to λik such that 1 ≤ i ≤ N and 1 ≤ k ≤ K.

The computations in (5.3)-(5.9) can also be all done in the log domain by work-

ing with logarithm of probabilities. This makes the computations numerically less

intensive and this is what we implement.

The decoding algorithm can now be summarized as below:

1. Initialization: From the received signal Yk; 1 ≤ k ≤ K, compute Pi(xik; I)

using (5.3). Initialize the variable Sp(k) = S∗ for 1 ≤ k ≤ K.

2. Backward recursion: For each of the K equalizers, compute the backward re-

cursion via (5.6) for all time instants 1 ≤ i ≤ n.

3. Serial-parallel decoding: For each time instant 1 ≤ i ≤ n, do the following:

(a) For each of the K decoders 1 ≤ k ≤ K:

• One-step BCJR DFD: Compute one step of the forward recursion via

(5.5) and (5.7) with Ŝ = Sp(k). Compute the extrinsic information on

the symbols via (5.4).

• Bit estimates: From the symbol extrinsic information Pi(xik; O), com-

pute the bitwise extrinsic LLRs λik using (5.9) and (5.10).

(b) LDPC decoding: Using the λik, run the LDPC decoding for the i-th LDPC

code. Make hard decisions on the output.

(c) Symbol decisions: From the LDPC decoder output bits, compute hard

estimates of the symbols x̂ik; 1 ≤ k ≤ K.

(d) Decision feedback: For each equalizer k:
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• Compute the edge e on the trellis that corresponds to the (known)

previous state Sp(k) and the input x̂ik.

• Update Sp(k) = sE(e).

An important implication of this encoding and decoding strategy is that at each

time instant i, the trellis section is reduced to only one state Sp(k) and so there

are only |Ax| transitions to consider. This set of transitions or trellis edges is given

by E = {e : sS(e) = Sp(k)}. The output of the BCJR DFD depends on the set

of distances D[Sp(k)] = {|x(e1) − x(e2)| : e1, e2 ∈ E}. If this set is identical for

all Sp(k) ∈ S, we expect a uniform error protection and therefore good frame error

rate performance. Otherwise, the performance of the scheme will depend on the input

sequence and since we are interested in frame-error rates, the performance may suffer.

This is verified by simulation results presented in the next section.

D. Simulation Results

We consider a system with Nt = Nr = 2. The modulation used is 4-PSK. The outer

binary LDPC code is chosen to be a rate-1/2 code, whose profile is optimized for the

AWGN channel (Table II, code with dv = 20 in [63]). The threshold for this profile is

0.11 dB away from AWGN capacity. A length N = 8192 code constructed using the

bit-filling method [74] is used. The LDPC decoder performs 100 iterations.

We use two different 4-state, 4-PSK space-time trellis codes – the delay diversity

(DD) code of [2] and the code (CYV) from [1]. The latter code is the best known

4-state 4-PSK code space-time trellis code. The set of distances D[s] is identical for

all the states for DD code but not for the CYV code. Only one pilot column P = 1

is needed for each of these codes. We use a block length of n = 10 for simulations.

The performance does not change if the value of n is made larger and therefore the
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bandwidth loss due to the presence of pilots is neglected.

The scheme is simulated for an ensemble of 10000 channels. In order to find the

threshold performance of this scheme (i.e. performance in the limiting case of N → ∞
and infinite number of iterations), we look at the subset of channels where the system

with the finite length code results in an error. For each channel in this subset, we first

compute the probability density function (pdf) of the received bit likelihood ratios

(i.e. pdf of λik) assuming perfect decision feedback. Density evolution [63] is then

used to determine whether the chosen LDPC profile will be able to correctly decode

or not, given the channel realization. We assume that during the actual construction

of the code, the degree 2 variable nodes can all be made parity bits and so the density

evolution looks only at the bit error rate in non-degree-2 nodes. If this error rate

is low (less than 1e-6), we consider the frame error free. The number of channel

realizations still in error determine the threshold performance of the system.

The results are presented in Figs. 32-33. The code performance is within a dB of

the constrained outage for both the DD and the CYV codes. The thresholds is 0.25

dB for the DD code and 0.4 dB for the CYV code. This difference arises since the

set of distances D[s] for the CYV code depends on the state s.

E. A Variation Based on Multilevel Encoding

We can also look at a variant of the transmitter where the bits that are input to

the symbol mapper come from different LDPC codes, in a manner similar to tra-

ditional multi-level coding [75]. The key difference here is that we do not use dif-

ferent codes for the various bits that enter the symbol mapper. In comparison to

the previous scheme, now we have m × n LDPC encoders and we index them as

{(1, 1), . . . , (1,m), . . . , (n, 1), . . . , (n,m)}. This scheme is shown in Fig. 34 and the
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Fig. 32. Performance of the BCJR-DFD scheme with Nt = Nr = 2, 4-state delay

diversity, QPSK with a rate 1/2 outer LDPC code. The overall rate is 1

b/s/Hz.
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Fig. 33. Performance of the BCJR-DFD scheme with Nt = Nr = 2, 4-state code

from [1], QPSK with a rate 1/2 outer LDPC code. The overall rate is 1

b/s/Hz.
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corresponding data matrix is shown in Fig. 35.

Serial

Parallel

to

LDPC Code #1,1

LDPC Code #1,m

LDPC Code #n,1

LDPC Code #n,m

Bits to Symbols

Pilot Symbols

Bits to Symbols

Space time trellis code

Fig. 34. A variation in the transmitter structure for the BCJR-DFD based scheme.

The decoding algorithm can be easily modified and is summarized below:

1. Initialization: From the received signal Yk; 1 ≤ k ≤ K, compute Pi(xik; I)

using (5.3). Initialize the variable Sp(k) = S∗ for 1 ≤ k ≤ K.

2. Backward recursion: For each of the K equalizers, compute the backward re-

cursion via (5.6) for all time instants 1 ≤ i ≤ n.

3. Serial-parallel decoding: For each time instant 1 ≤ i ≤ n, do the following:

(a) For each of the K decoders 1 ≤ k ≤ K:

• One-step BCJR DFD: Compute one step of the forward recursion via

(5.5) and (5.7) with Ŝ = Sp(k). Compute the extrinsic information on

the symbols via (5.4).

• Bit estimates: From the symbol extrinsic information Pi(xik; O), com-

pute the bitwise extrinsic LLRs λikj using (5.9) and (5.10).
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Fig. 35. Data matrix representing the operations at the transmitter of the proposed

variation to the BCJR-DFD based scheme.
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(b) LDPC decoding: For each 1 ≤ j ≤ m:

• Using the λikj, run the LDPC decoding for the (i, j)-th LDPC code.

Make hard decisions on the output.

(c) Symbol decisions: From the outputs of the m LDPC decoders {(i, 1), . . . , (i,m)},
compute hard estimates of the symbols x̂ik; 1 ≤ k ≤ K.

(d) Decision feedback: For each equalizer k:

• Compute the edge e on the trellis that corresponds to the (known)

previous state Sp(k) and the input x̂ik.

• Update Sp(k) = sE(e).

The performance of this scheme for the delay diversity code is shown in Fig. 36.

In order to keep the simulation complexity low, we reduce the length of the frame

n to 5 (instead of 10). It should be noted that even though the two schemes have

similar performance, for fixed n, the original BICM based scheme has an advantage

over the MLC based variant. In the former, we can afford to increase the length of the

LDPC code to m times that of the latter scheme and still keep the same complexity.

In general, the performance of an LDPC code improves with length. Further, the

hardware for the MLC based scheme requires m LDPC decoders to work in parallel

whereas the BICM-based scheme requires only one LDPC decoder.

F. Conclusions

In this chapter we looked at a novel encoding and decoding structure for use with

space-time trellis codes. The structure is inspired by the fact that error-free decision

feedback achieves capacity in the ISI channel case. The decoder for the space-time

trellis code is implemented as a decision-feedback BCJR algorithm (BCJR-DFD).
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80

The receiver structure ensures that the decisions being fed back are error-free (due

to the use of a capacity achieving LDPC code). The performance is within a dB of

the constrained outage of the given space-time trellis code. The thresholds are within

0.25 dB of the constrained outage for the delay diversity scheme and within 0.4 dB

of the CYV code.

We also propose a multi-level variant of this scheme. The performance is very

similar to the original proposal, although this variant has a higher receiver complexity.
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CHAPTER VI

SPACE-TIME TRELLIS CODES: A SERIAL CONCATENATION SCHEME

BASED ON RECURSIVE REALIZATIONS†

In this chapter, we consider a serial-concatenation/iterative-decoding approach to

achieving constrained outage information rates of space-time trellis codes. We propose

and analyze a class of codes which are a serial concatenation of an outer binary code

with an inner recursive space-time code such as considered in [76]. These codes can

be decoded using an iterative (turbo) decoding procedure and, hence, we call this

family of concatenated codes as Turbo Space-time Codes (TSTC). Two solutions are

proposed - codes to primarily improve power efficiency where the outer code is of

fairly low rate, and codes to improve power efficiency with minimal loss in spectral

efficiency (when the outer code is of very high rate). We show that several classes of

space-time codes have equivalent recursive realizations. Since the inner code is still

essentially a space-time code, the overall code delivers the promised spatial diversity.

Analysis of serial concatenated space-time codes such as what are considered here has

recently appeared in [43]. The analysis here and in [43] are similar since they are both

based on deriving the union bound for SCCC over the ensemble of all interleavers.

We also provides more specific results when the inner code is a differential encoder

based space-time code. In addition to the above results, we show that single parity

check based turbo codes are a good candidate for high rate outer codes.

† c©2003 IEEE. The material in Chapter VI and VII has been reprinted, with
permission, from “Concatenated codes for fading channels based on recursive space-
time trellis codes”, V. Gulati and K. R. Narayanan, IEEE Trans. Wireless Commun.,
vol. 2, no. 1, pp. 118-128, Jan 2003.
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A. System Model

We consider the transmission of data in frames of length N . As shown in Fig. 37, a

block of data is encoded using a rate k/n outer code, interleaved, and then encoded

using a space-time inner code. In the next section, we will show that many space-time

trellis encoders can be realized using recursive encoders. The output of the space-

time encoder at every epoch is a group of n 2p-ary symbols which are transmitted

using Nt = n transmit antennas thereby making the overall spectral efficiency (pk/n)

bits/sec/Hz. At the receiver, each of the m antennas receive a noisy super-position of

the transmitted signals. Specifically, the signal received by the j-th antenna is given

by:

rj(t) =
√

ρt

n∑
i=1

αi,j(t)si(t) + n(t) (6.1)

where si(t) is the signal transmitted from the i-th antenna, αi,j(t) is the channel gain

from the i-th transmit antenna to the j-th receive antenna and n(t) is an additive

white Gaussian noise process. The channel gains and the noise process are normalized

to unit power so that ρt = ρ/n is the average SNR per receive antenna, independent of

the number of transmit antennas. All the results in this chapter, with the exception

of the figure on page 113, are for two transmit antennas and one receive antenna

(n = 2 and m = 1).

(n,k)
Outer
Code

Parallel
to

Serial
Interleaver

Serial
to

Parallel

Recursive
Space−time

Code

Memory−less
Mapper

k−bits
n−bits p−bits

Tx 1

Tx 2

M−ary
symbols

p−bits

p−bits

Fig. 37. Encoder structure for the serial concatenation scheme.

We use an iterative procedure [77,78] for decoding. First, the log-likelihood ratios
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(LLRs) of the 2p bits generated by the recursive space-time encoder are computed.

A general procedure for this computation from complex received signals is described

in [38]. These LLRs are then fed to the inner decoder. The space-time code, being a

trellis based code, can be decoded using the MAP decoding rule [72,78,79]. Extrinsic

information is then passed to the outer decoder. For the outer codes considered in this

chapter, computationally efficient soft output decoding algorithms exist. The outer

decoder then processes the extrinsic information of the inner decoder (which is the

apriori information for this outer decoder) to generate extrinsic information about

both the information bits and the coded bits. This serves as the apriori information

for the inner decoder for the next iteration.

In the case of parallel concatenation, a block of N symbols and its (symbol) in-

terleaved version are encoded using identical recursive space-time codes. The outputs

of these codes are transmitted at two successive time instants. The overall rate of

this code is 1/2. The decoding procedure is similar to that described above. In this

case, since we use a symbol interleaver, all operations are on symbol likelihoods.

For any particular channel realization, the samples of αi,j(t) are complex, zero-

mean, Gaussian distributed random variables with a variance of 1/2 in each dimen-

sion. Further, throughout this chapter, we assume knowledge of perfect channel state

information at the receiver (perfect CSI-R).

B. Recursive Realization of Space-time Trellis Codes

Space-time trellis codes can be represented using a linear shift register (LSR) followed

by a signal mapper or directly in terms of a trellis diagram which shows the output

signals along each branch in the trellis. We refer to the former case as LSR based

space-time trellis codes. For LSR based space-time trellis codes, the concept of a
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recursive realization is well understood. In order to include the Non-LSR based

space-time trellis codes, we define recursive realization as follows:

Definition 1 (Recursive Space-Time Trellis Codes) A space-time trellis code

is said to be recursive if the minimum Hamming distance between two input words

(sequences) that produces a finite length error event is 2.

For the case of LSR based codes, this means that feedback shift registers are

used in the encoder. For any space-time trellis code (including non-LSR space-time

codes), following two conditions on the structure of the trellis are sufficient for the

code to be recursive:

1. All transitions originating from a particular state are caused by different inputs.

2. All transitions terminating at a particular state are caused by different inputs.

These conditions ensure that any finite length error event includes atleast two tran-

sitions where the input symbols are different. The first condition is always true;

otherwise the code is not uniquely decodable. In most cases, the second condition is

easy to satisfy by a suitable re-labeling of the mapping from inputs to outputs.

In the following discussion we first show how a LSR based space-time trellis code

may be realized in a recursive fashion. Then, we show an example of how re-labeling

the trellis can make it recursive.

1. LSR (Linear Shift Register) Based Space-time Trellis Codes

A space-time trellis encoder takes in an M -ary (M = 2p) symbol and outputs a set

of n M -ary symbols. For the class of LSR based codes, this can also be viewed as an

(np, p) binary convolutional encoder followed by a memory-less mapper that maps the

np bits to n M -ary symbols. Given this perspective, we can show that all space-time
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trellis codes based on LSR’s can be realized using recursive encoders. This includes

the space-time trellis codes proposed by Baro [80], El Gamal [24] etc.

Let xk be the symbol input to the space-time trellis encoder at time k which can

be de-multiplexed into a set of p bits: xk = [x1k x2k . . . xpk]. At each time instant this

group of p bits selects one of the 2p possible branch transitions. The outputs along

the selected transition are transmitted using n antennas. The encoder is equivalent

to n separate binary rate-1 encoders followed by a memory-less mapper. The output

of the i-th encoder at time k is a p-tuple denoted by yk = [y1,i,k y2,i,k . . . yp,i,k]. The

D transform of yi for 1 ≤ i ≤ n can be expressed in matrix form as

Yi(D) = X(D) Gi(D) (6.2)

where

Yi(D) = [y1,i(D) y2,i(D) . . . yp,i(D)]

X(D) = [x1(D) x2(D) . . . xp(D)]

Gi(D) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g1,1,i(D) g1,2,i(D) · · · g1,n,i(D)

g2,1,i(D) g2,2,i(D) · · · g2,n,i(D)

...
...

...

gp,1,i(D) gp,2,i(D) · · · gp,n,i(D)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.3)

where gr,s,t(D) is the generator polynomial linking the r-th input stream to the s-th

output stream for the t-th transmit antenna. Let the degree of gr,s,t(D) be denoted

by deg(gr,s,t(D)) and let νr = maxs,t deg(gr,s,t(D)). Clearly,
∑p

r=1 νr = J , where

the states in the trellis diagram of the space-time code denote the content of the

J shift registers. Let G(D) = [G1(D) G2(D) . . . Gi(D) . . . Gn(D)] denote the

overall generator matrix which is the concatenation of the individual Gi(D). Now,

consider a generator matrix GR(D) obtained by dividing the j-th row of G(D) by any
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polynomial Tj(D). Then, the new generator matrix represents a recursive encoder

for generating the same set of codewords as that of the original space-time code.

It is easy to see that if the input X(D) = [x1(D) x2(D) . . . xp(D)] generates a

codeword y(D) with the generator matrix G(D), then the input sequence XR(D) =

[T1(D)x1(D) T2(D)x2(D) . . . Tp(D)xp(D)] generates the same codeword using the

recursive encoder with generator matrix GR(D). If the degree of Tj(D) is chosen

to be less than νj corresponding to every Gi, then the resulting encoder has exactly

the same number of states as that of the non-recursive encoder and, hence, there is

no increase in decoding complexity. For this recursive encoder a weight one input

sequence generates an infinite weight output sequence and every finite output weight

error event corresponds to an input weight of at least 2. In general, the recursive codes

generated thus are not systematic. Since it is the recursive nature of the encoders that

is important in a concatenated scheme, we do not bother about the non-systematic

nature of these realizations.

These ideas are explained more clearly using the following two examples. First,

consider the 4-state, 4-PSK space-time1 code employed by a 2-antenna transmitter as

described in [2] and shown in Fig. 38. It may be represented by the following transfer

function matrix:

G(D) =

⎡
⎢⎣ D 0 1 0

0 D 0 1

⎤
⎥⎦

The transfer function matrix of the recursive form (Fig. 38) of this code is given by:

GR(D) =

⎡
⎢⎣ D

1+D
0 1

1+D
0

0 D
1+D

0 1
1+D

⎤
⎥⎦

1The term “space-time code,” in this chapter, would refer to space-time trellis
codes unless otherwise stated.
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1/10, 0/11, 3/12, 2/13

0/00, 1/01, 2/02, 3/03

3/30, 2/31, 1/32, 0/33

+

+

Fig. 38. 4-state, 4-PSK space-time code: Trellises, non-recursive and recursive realiza-

tions.
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D
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0/00, 1/10

0/01, 1/11

0/00, 1/10

0/11, 1/01

Tx 2

Tx 1

Tx 2

Tx 1

Non-recursive

Recursive

+ C

Fig. 39. 2-state, BPSK delay diversity: Trellises, non-recursive and recursive realiza-

tions.
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0/10 1/11 2/12 3/13

0/00 1/01 2/02 3/03

0/20 1/21 2/22 3/23

0/30 1/31 2/32 3/33

0/22 1/23 2/20 3/21

0/32 1/33 2/30 3/31

0/02 1/03 2/00 3/01

0/12 1/13 2/10 3/11

3/10 0/11 1/12 2/13

0/00 1/01 2/02 3/03

2/20 3/21 0/22 1/23

1/30 2/31 3/32 0/33

0/22 1/23 2/20 3/21

3/32 0/33 1/30 2/31

2/02 3/03 0/00 1/01

1/12 2/13 3/10 0/11

Recursive mappingNon−recursive mapping

Fig. 40. 8-state, 4-PSK space-time code: Non-recursive and recursive labeling of the

trellis.
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Both these codes produce exactly the same set of codewords, though the input pro-

ducing a particular codeword may be different. Similarly, a simple BPSK based two

antenna delay diversity scheme [81] (Fig. 39) has the following non-recursive and

recursive generator matrices:

G(D) =

[
D 1

]

GR(D) =

[
D

1+D
1

1+D

]

Several known space-time codes are LSR based and hence their recursive versions

are easy to find.

2. Trellis Re-labeling for Non-LSR Based STTC (Space-time Trellis Codes)

Some space-time codes such as those in [2] are directly specified in terms of the trellis.

That is, the output symbols to be transmitted along each branch in the trellis specify

the code, without specifying a particular encoder structure. We refer to these as Non-

LSR based space-time codes. In some cases, it is possible to obtain an equivalent LSR

based structure for a Non-LSR based space-time code. However, the technique we

discuss here is more general and encompasses such codes as well. Recall that for a

given trellis, we wish to redefine the mapping from the input symbols to the set of

output symbols such that the resulting code is recursive. As an example, consider

the 8-state, 4-PSK space-time code of [2]. In reference [2], the mapping from the

input to the trellis transition has not been defined explicitly. Fig. 40 shows both the

non-recursive and recursive representations of this code. It should also be noted that

there may exist more than one recursive versions of a given code. In this chapter we

do not consider the effect of this choice on the performance of the proposed system.
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C. Performance Analysis

In this section we derive the union bound on the codeword error probability for

a simple code belonging to the class of serial Turbo space-time codes. The code

consists of a concatenation of an outer convolutional code and an inner space-time

code which is a recursive delay-diversity scheme and the modulation is BPSK. Further,

two transmit antennas and one receive antenna are considered. The recursive delay

diversity scheme is nothing but a differential encoder followed by a delay diversity

scheme as shown in Fig. 39. Let CS denote the overall concatenated code i.e. the

set of all possible codewords at the output of the differential encoder (sequence C in

Fig. 39).

We start with the pairwise error probability between two codewords C and E for

a quasi-static fading channel for any space-time code given by [2, Eqn 10]:

P (C → E) ≤
(

r∏
i=1

λi

)−m (
Es

4N0

)−rm

(6.4)

where

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1
1 c1

2 · · · c1
N

c2
1 c2

2 · · · c2
N

...
...

. . .
...

cn
1 cn

2 · · · cn
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

is the transmit codeword,

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

e1
1 e1

2 · · · e1
N

e2
1 e2

2 · · · e2
N

...
...

. . .
...

en
1 en

2 · · · en
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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is the (erroneous) decision made by the maximum-likelihood decoder, m is the number

of receive antennas, λi are the non-zero eigenvalues of the matrix A(C,E) and r =

min(n,m) is the rank of the matrix B(C,E), where:

B(C,E) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

e1
1 − c1

1 e1
2 − c1

2 · · · · · · e1
N − c1

N

e2
1 − c2

1 e2
2 − c2

2 · · · · · · e2
N − c2

N

...
...

. . . . . .
...

en
1 − cn

1 en
2 − cn

2 · · · · · · en
N − cn

N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= E − C

A(C,E) = (E − C)(E − C)H

= CCH + EEH − ECH − CEH

For the case of a delay-diversity code, as is what is of interest here, it is easy

to see that the rows of B(C,E) are linearly independent and, hence, the matrix

A has rank n, thus guaranteeing full diversity. For the particular case of n = 2,

m = 1 and BPSK, the product of the determinant of the Eigenvalues can be reduced

to certain parameters of the codewords as shown in [82] and explained below. For

BPSK modulation, the Hermitian is just the transpose. The elements of C and E are

either +1 or −1. Let c(i)(i = 1, 2) be the binary codeword to be transmitted over the

i-th antenna if the codeword C is being transmitted. Further, since the inner code

is a linear code, we can assume that the binary transmit codeword C is the all zeros

codeword, i.e. c(i) = 0, (i = 1, 2). We define the following quantities:

d1(E) = dH(c(1) ⊕ e(1)) = dH(e(1))

d2(E) = dH(e(2))

d3(E) = dH(e(1) ⊕ e(2))
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where dH(a) refers to the Hamming weight of a and ⊕ is the modulo two sum operator.

Thus, we may write:

CCH = N

⎡
⎢⎣ 1 1

1 1

⎤
⎥⎦

EEH =

⎡
⎢⎣ N N − 2d3(E)

N − 2d3(E) N

⎤
⎥⎦

ECH =

⎡
⎢⎣ N − 2d1(E) N − 2d1(E)

N − 2d2(E) N − 2d2(E)

⎤
⎥⎦

CEH =

⎡
⎢⎣ N − 2d1(E) N − 2d2(E)

N − 2d1(E) N − 2d2(E)

⎤
⎥⎦

⇒ A(C,E) = 2

⎡
⎢⎣ 2d1(E) (d1(E) + d2(E) − d3(E))

(d1(E) + d2(E) − d3(E)) 2d2(E)

⎤
⎥⎦

The product of the eigenvalues of the matrix A(C,E):

λ1λ2 = 2
(
2d1(E) × 2d2(E) − (d1(E) + d2(E) − d3(E))2

)
= 2

[
(d1(E) + d2(E) + d3(E))2 − d2

1(E) − d2
2(E) − d2

3(E)
]

For the case of delay-diversity, since e(2)(D) = D e(1)(D) (that is, the sequence

transmitted from one antenna is a time-shifted version of the other for all codewords),

d1(E) = d2(E). The union bound on the probability of word error is given by

P (e) ≤
∑
E

P (C → E) (6.5)

which can be expressed as

P (e) ≤
∑

d

∑
E:d1(E)=d

P (C → E) (6.6)
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Since each codeword E is a serially concatenated codeword it corresponds to an

outer-codeword, say Eo of Hamming weight do(E) = l. Then, the union bound can

be re-expressed as

P (e) ≤
∑

l

∑
d

∑
E:d1(E)=d,do(E)=l

P (C → E) (6.7)

Now, we will show that for the particular case of a recursive delay diversity inner code,

do(E) is directly related to d3(E). The differential encoder has a transfer function

T i(X,Y, Z) =
X2Y Z2

1 − Y Z
= X2Y Z2[1 + Y Z + Y 2Z2 + Y 3Z3 + . . . +] (6.8)

where the powers of X, Y and Z denote the input weight, output weight and length

of the error event. It is clear that every error event for the inner code corresponds

to an input-weight of 2. That is, an outer codeword of weight l produces exactly l/2

error events if l is even and an infinite output weight if l is odd. Since the blocks are

terminated, we can assume that the number of error events is �l/2�. It can also be

seen from (6.8) that the output weight of an error event is the same as the length.

That is, all error events are of the form (1, 1, 1, . . . , 1). Since each codeword E can be

thought of as the concatenation of one or more error events (since the code is linear),

it follows that E and e(2) have the form:

E = e(1) = (0, 0, . . . , 1, 1, . . . , 1, 0, 0, . . . , 1, 1, 1, . . . , 1, . . . , 0, 0) (6.9)

e(2) = (0, 0, . . . , 0, 1, 1, . . . , 1, 0, 0, . . . , 1, 1, 1, . . . , 1, . . . , 0, 0) (6.10)

where there are exactly l/2 concatenations of strings of 1s. The second equality follows

since e(2)(D) = De(1)(D). Recalling that d3(E) is the Hamming distance between the

coded streams transmitted from the two antennas, it follows that d3(E) = 2× (l/2) =

l. Here we have excluded those codewords which are concatenations of error events
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such that one error event begins at the next time instant another error event ends.

In that case, both error events together would appear to be a longer error event. A

simple counting exercise will show that the probability of such error events occurring

decreases with increasing N and tends to zero for large N and, hence, can be ignored.

Therefore, the union bound can be rewritten as

P (e) ≤
∑

l

∑
d

ACs(l, d)
1

(2d + l)2 − 2d2 − l2

(
Es

4No

)−2

=
∑

l

∑
d

ACs(l, d)
1

2d(d + 2l)

(
Es

4No

)−2

(6.11)

where ACs(l, d) is the number of codewords with outer code weight l and overall

codeword weight d. For a serially concatenated code with a uniform interleaver,

ACs(l, d) is given by

ACs(l, d) =
ACo(l) × ACi(l, d)(

N
l

) (6.12)

where ACo(l) is the number of codewords of the outer code with weight l and ACi(l, d)

is the number codewords of the inner code (differential encoder) with weight d cor-

responding to an input of weight l. Using the result in [77] this can be expressed

as:

ACs(l, d) ≤
∑

l

∑
d

∑
no

∑
ni

Nno+ni−l−1 lll!

no!ni!
ACo(l, no)ACi(l, d, ni) (6.13)

where ACo(l, no) is the number of codewords of the outer code with weight l corre-

sponding to exactly no concatenations of error events and ACi(l, d, ni) is the number

of codewords of the inner code with input weight l, output weight d and ni concate-

nations of error events. This when substituted in (6.11) yields:

P (e) ≤
∑

l

∑
d

∑
no

∑
ni

Nno+ni−l−1 lll!

no!ni!

ACo(l, no)ACi(l, d, ni)

4d(d + 2l)

(
Es

4No

)−2

(6.14)
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Following the derivations in [77], we consider the maximum exponent of the

codeword length N . For a non-recursive code, ni = l, and so the exponent of N is

always positive. Since ni ≤ l/2 for a recursive code and no ≤ l/do
min for any code, the

maximum exponent of N is negative only if min(l) = do
min ≥ 3. This key result can

be summarized as follows.

If the inner code is a recursive delay diversity scheme with BPSK modulation

and the outer code has a minimum distance do
min ≥ 3, the concatenation scheme is

guaranteed to achieve full diversity and the union bound on the probability of word

error decreases exponentially in the length N . Though we have not derived a closed

form expression for the union bound when other recursive space-time codes are used

or a higher modulation format is used, the proof above provides an indication of the

expected results.

D. Simulation Results

For simulations, we use the recursive form of the 4-state code (Fig. 38) and the 8-state

code (Fig. 40) with QPSK modulation, as the inner code. An s-random interleaver

[83] is used to interleave the bits between the outer and the inner code. Before

transmission, the symbols to be transmitted on a particular antenna are interleaved

using a block interleaver. In order to demonstrate that it is the recursive nature of

these codes that provides the interleaving gains, results for the non-recursive version

of the 4-state code are also included.

1. Convolutional Outer Code

We study the performance of the proposed scheme with a 2-state ([1, 1 + D]) and a

4-state ([1 + D2, 1 + D + D2]), rate-1/2 convolutional codes as outer codes. Since the
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rate of the outer code is 1/2, this setup achieves a spectral efficiency of 1 bits/sec/Hz

with QPSK modulation. All simulation setups have 2 transmit antennas, 1 receive

antenna, QPSK modulation and transmission block length of 1024 symbols.

Figure 41 shows the performance of the proposed scheme over a quasi-static fad-

ing channel. Seven iterations were used in the decoder. The recursive inner code

performs about 4 dB better than the non-recursive scheme. No significant improve-

ment was observed by using a more complex outer code or a more complex inner

code.

In Fig. 42, we show the performance of the serial concatenation scheme when a

recursive realization of the CYV code [1] is used. We choose Nt = Nr = 2 so that

we can compare these results to those in Figs. 18,33. Once again, observe that the

non-recursive inner code does not give good performance. A simpler outer code is

better and increasing the information block length from 1024 to 32678 gives only a

slight improvement in performance. The performance of this scheme is about 2 dB

away from the constrained limit.

2. Single Parity Check Turbo Product Outer Code

In this section, we consider the concatenation of recursive space-time codes with a

very high rate outer code (say 0.9 or higher). The objective is to get improved power

efficiency with minimal sacrifice in data rate. From Section C, we can see that in order

to get an interleaving gain, the minimum distance of the outer code in a concatenation

scheme should be at least 3. Since the decoder is an iterative decoder, we need to

find codes which have dmin ≥ 3 for very high rates (0.9 or higher) and that are

easily decodable. One approach is to puncture convolutional codes to rates around

0.9. However, obtaining dmin ≥ 3 with such high puncturing rates would require the

constraint length to be very high. This, in turn, will result in an exponential increase
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Fig. 41. Performance of a serial concatenation of [1, 1 + D] convolutional outer code

with a recursive realization of the 4-state delay diversity code. Nt = 2, Nr = 1,

QPSK, 1 b/s/Hz.
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with a recursive realization of the CYV code. Nt = Nr = 2, QPSK, 1 b/s/Hz.
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in the decoding complexity.

As an alternative, we propose to use two dimensional product codes where each

of the dimensions is a K/K + 1 single parity check code. Hence, the overall rate is

(K/K + 1)2. In general, the input stream can be divided into several such blocks

of length K2 to obtain a higher interleaving gain while maintaining the same rate.

We consider an example with K = 31 and concatenation of two such blocks. Hence,

the length of the product code is 2048 bits. A spectral efficiency of 0.94 b/s/Hz is

achieved with BPSK or 1.88 b/s/Hz with 4-PSK assuming independent coding on

the I and Q channels. This is a very small reduction in data rate. The motivation

for the choice of single parity check based product codes are that (i) For any rate the

minimum distance of these codes is 4 [84] and, hence, we expect an interleaving gain

(ii) they can be soft-decoded using a belief propagation algorithm with very little

decoding complexity since each of the dimensions in this code is a single parity check.

Here, each iteration of the decoder consists of 3 iterations within the product code.

This is sufficient since the outer code is 2-dimensional [84].

Fig. 43 compare this scheme with the 16-state and 32-state 4-PSK based space-

time trellis codes from [2] which achieve a spectral efficiency of 2 b/s/Hz. Although

we are comparing two codes with marginally different spectral efficiencies, the main

point is that for a small sacrifice in spectral efficiency (9% here, for QPSK), significant

improvement in power efficiency can be achieved with the proposed scheme. Further,

it should be noted that the decoding complexity of the proposed scheme is lesser than

that for Viterbi decoding of the 32-state 4-PSK codes. The Alamouti scheme does

not perform well in comparison to these higher complexity trellis codes and so we

omit plotting its performance.

The proposed scheme performs better than the 8-state and 32-state codes by

about 2.5 dB and 2 dB respectively.
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E. Conclusions

We have proposed concatenation schemes based on recursive realizations of space-time

codes. The concatenation scheme is based on serial concatenation of convolutional

codes where the inner code is a space-time code. We have shown that on the quasi-

static fading channel full diversity can be achieved and an increase in coding gain

results from the concatenation. We will later show that this scheme provides signif-

icant gains on time varying channels (even when there are as low as 4 independent

fading blocks per codeword) and independent fading channels. We have also shown

that turbo product codes based on single parity check codes can be used as high rate

codes that provide these advantages at very minimal reduction in data rate.

From the application point of view, the proposed family of codes offers a wide

variety of choices. Consider, for example, the mobile users receiving data from a

base station. Different users have different priorities. Some users may be willing

to sacrifice both data rate and performance to keep the complexity of the receiver

low. Other users may require a better performance at the cost of reduced data rate

and/or a more complex receiver. The proposed class of codes offers an easy and

natural way to provide such differentiated services with the same encoder structure.

In another scenario, a transmitter can dynamically change the outer code being used

to make a more effective use of the channel conditions. The scheme also provides

a natural differentiation among various users based upon the decoding complexity

they can afford. For example, if a user cannot afford the latency of 4 iterations, just

one iteration may be used. Finally, since most space-time trellis codes have recursive

realizations, users who are able to afford the complexity may use space-time codes

with larger number of states, higher constellation size and/or more than one receive

antennas to obtain improved performance.
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CHAPTER VII

EXTENSIONS†

In this chapter, we consider various extensions of the ideas presented in the previous

chapters. First, we extend the idea of recursive space-time trellis codes to the case

of parallel concatenated codes and apply it to an automatic repeat-request (ARQ)

system. In the second half of the chapter, we present results for the independent

(ergodic) and block fading channels.

A. ARQ Scheme Using Recursive Space-time Trellis Codes

Data transmission systems will most likely use re-transmission schemes (ARQ) to

reduce the frame error rate and, hence, it is important to design efficient ARQ schemes

for use with space-time codes. Recursive realizations of space-time encoders provide

a convenient way to design ARQ schemes based on the turbo coding principle. In

the proposed ARQ scheme the first transmission uses a recursive space-time encoder

to encode the information x. The output of the space-time encoder from the ith

transmit antenna Si,k is transmitted over a fading channel with instantaneous gain

α1
i,k. The signal at the receive antenna is given by:

r1
k =
∑

i

α1
i,kSi,k + nk (7.1)

The received signal vector r1 = (r1
0, r

1
1, . . . , r

1
N−1) is decoded and checked for errors

(an error detection code such as cyclic redundancy check code is assumed). If the re-

sulting vector has any errors, a re-transmission is requested. At the encoder, the data

† c©2003 IEEE. The material in Chapter VI and VII has been reprinted, with
permission, from “Concatenated codes for fading channels based on recursive space-
time trellis codes”, V. Gulati and K. R. Narayanan, IEEE Trans. Wireless Commun.,
vol. 2, no. 1, pp. 118-128, Jan 2003.
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sequence x is interleaved and encoded using the same recursive encoder as shown in

Fig. 44. It can be readily seen that the two transmissions together represent a parallel

concatenated convolutional code with recursive component codes. The receiver uti-

lizes both the received frames r1 and r2 to iteratively decode the data [76,78]. Decod-

ing proceeds in an iterative fashion until either the frame is correctly decoded or the

number of iterations crosses a threshold. In the latter case, another re-transmission

is requested and the set-up now becomes similar to multi-level parallel concatenated

codes of [85]. Thus, after each re-transmission, the overall code corresponds to a lower

rate code.

Recursive

Space−Time

Code

Code

Space−Time

Recursive

First 
Transmission

Interleaver

Retransmission

During

Fig. 44. Encoder structure for the ARQ system.

B. Performance of the ARQ Scheme

The set of codewords for the recursive and non-recursive space-time encoder are iden-

tical and, hence, the probability of frame error (or probability of a re-transmission) is

identical to both encoders. That is, the use of recursive space-time encoder does not



105

affect the performance during the first transmission whereas after two transmissions,

provides significant improvement in performance due to the parallel concatenated

code structure. Since the component encoders are recursive, a significant interleaving

gain results. Without the recursive realization, after two transmissions, the parallel

concatenated code has non-recursive component encoders and, hence, no interleaving

gain will result. In order to show the efficacy of the proposed scheme, we compare

this scheme to ARQ schemes with non-recursive space-time encoders and also to a

system where the re-transmission is identical to the original transmission. The latter

system allows for a maximum-likelihood combining of the two transmissions using a

Viterbi decoder with a modified metric. The received signal during the k-th stage of

the trellis during the two transmissions may be written in a matrix form as:

⎡
⎢⎣ r1

k

r2
k

⎤
⎥⎦ =

⎡
⎢⎣ α1

0,k α1
1,k · · · α1

m−1,k

α2
0,k α2

1,k · · · α2
m−1,k

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

S0,k

S1,k

...

Sm−1,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎣ n1

k

n2
k

⎤
⎥⎦ (7.2)

Rk = Ak Sk + Nk (7.3)

The noise terms n1
k and n2

k are i.i.d. complex, zero-mean, Gaussian random variables

with variance N0/2 in each dimension. So, the covariance of Nk is given by:

M =

⎡
⎢⎣ N0 0

0 N0

⎤
⎥⎦ (7.4)

The maximum-likelihood (ML) decoding rule may be written as:

S̃k = arg max
S

1

(2π)|M| exp

(
−1

2
(Rk − Ak S)

′
M−1 (Rk − Ak S)

)
(7.5)
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In the case of a two-transmit, one-receive antenna system, (7.5) simplifies to:

(S̃0,k, S̃1,k) = arg min
s0,s1

[(
r1
k − α1

0,ks0 − α1
1,ks1

)2
+
(
r2
k − α2

0,ks0 − α2
1,ks1

)2]
(7.6)

This is the modified metric used in the Viterbi algorithm for jointly decoding the two

received frames.
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Fig. 45. ARQ scheme over quasi-static fading channel.

The proposed scheme has been simulated using the recursive realizations of the

4-state, 4-PSK code (Fig. 38) and the 8-state, 4-PSK code (Fig. 40) proposed in [2].

The data frame length, and hence the interleaver length as well as the transmitted

frame length, is 4096 symbols. An s-random interleaver operating on a symbol basis
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(as opposed to a bit interleaver) is used. The proposed scheme is compared to the

ARQ scheme where no interleaver is used and the Viterbi algorithm is used to jointly

decode the received frames. In order to demonstrate that it is the recursive nature

of the code being used that yields interleaving gains, comparison with an identical

scheme that uses the non-recursive realization of the same space-time codes is also

done.

The performance measure used to make these comparison is the frame error rate

after two transmissions (that is, one original transmission and one re-transmission).

In case of iterative decoding, frame errors are compared after the first, the fourth iter-

ation and the tenth iteration. Simulation results indicate that all the performance is

achieved in about 4 iterations for quasi-static fading and in about 10 iterations for the

independently fading channel. Figure 45 shows that on quasi-static fading channels,

the joint Viterbi decoding performs worse than even the first iteration of the recur-

sive codes. The non-recursive code (not shown in Fig. 45) performs almost the same

as the joint Viterbi decoder and, as expected, their performance does not improve

with iterations. At a frame error rate of 10−1, the proposed scheme outperforms the

Viterbi decoder by 1 dB after 1 iteration and by 4 dB after 4 iterations.

C. Serial Concatenation of Recursive Space-time Trellis Code over Independent Fad-

ing Channel

The independent fading channel is characterized by fast fading, such that fading

experienced by adjacent symbols is independent. In practice such a channel model

is useful when the channel is varying with time and a channel interleaver is used to

break any correlation in channel variations. In the following we present a fast-fading

analysis of the system presented in Chapter VI.sec:perfanal. The analysis is then
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supported by simulation results.

1. Performance Analysis

When fading is rapid that two adjacent transmitted bits experience independent

fading, then the pairwise error probability is given by [2, Eqn 17]:

P (C → E) ≤
∏

t∈ν(C,E)

(
|ct − et|2 Es

4No

)−m

(7.7)

where ν(C,E) denotes the set of time instants where the code matrices C and E

differ. For linear codes, we can choose C to be the all-zeroes codeword. For BPSK

constellations |ct − et|2 = 4 for the starting and ending time periods of each error

event and |ct − et|2 = 8 for all time instants in between. To get an upper bound we

simply consider |ct − et|2 = 4 for all t ∈ ν(C,E). Also, the cardinality of the set

ν(C,E) in this case is bounded below by d1(E) + 1 and bounded above by 2d1(E).

Therefore, the pairwise error probability can be expressed as:

P (C → E) ≤
(

Es

No

)−(d1(E)+1)m

(7.8)

Therefore, the union bound on the probability of error can be shown to be:

Pe ≤
∑

d

(
Es

No

)−(d+1)m

(7.9)

=
∑

d

∑
l

ACs(l, d)

(
Es

No

)−(d+1)m

(7.10)

Pe =

(
Es

No

)−m ∑
d=dmin

∑
l

∑
no

∑
ni

Nno+ni−l−1 lll!

no!ni!

× ACo(l, no)ACi(l, d, ni)

(
Es

No

)−md

(7.11)

We see that the diversity order is m (dmin + 1), where dmin is the minimum

distance of the overall code. The interleaving gain assures us that the number of



109

codewords at a given distance d (and hence a diversity order m(d + 1)) decreases

exponentially in N if the inner code is recursive and do
min ≥ 3. Equivalently, if a

particular interleaver is chosen, the probability of obtaining a large diversity order

will be high. In [86], Kahale and Urbanke have shown that the minimum distance of

a serially concatenated code with a recursive inner code increases with the length N

by the factor:

dmin ∝ N
do
min−2

do
min (7.12)

Therefore, as N increases we can conclude that the diversity order also increases at

the same rate, namely N
do
min−2

do
min , resulting in significant improvement in performance.

It should be noted here that increasing N does not increase the decoding complexity

per decoded bit and, hence, diversity advantage results at the expense of latency.

Similar to the case of quasi-static fading, we have shown that in independent

fading, the concatenated scheme with a recursive delay diversity as the inner code,

an outer code with a large minimum distance and BPSK as the modulation format,

it is possible to obtain asymptotically good performance. Since quasi-static and

independent fading represents two extreme cases of block fading, these codes can be

expected to perform well on the general block fading channel also.

The above results are useful when a maximum likelihood decoder is used and

the performance with an actual iterative decoder is quite hard to characterize mathe-

matically. Therefore, we study the performance through simulations in the following

subsection.

2. Simulation Results

We study the performance of the proposed scheme with a 2-state ([1, 1 + D]) and a

4-state ([1 + D2, 1 + D + D2]), rate-1/2 convolutional codes as outer codes. Since the
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rate of the outer code is 1/2, this setup achieves a spectral efficiency of 1 bits/sec/Hz

with QPSK modulation. All simulation setups have 2 transmit antennas, 1 receive

antenna, QPSK modulation and transmission block length of 1024 symbols.

Fig. 46 shows the performance over the independently fading channel. Ten turbo

iterations are needed to realize all the gains. It is observed that for the 2-state

“weaker” outer code, the performance improves by having a stronger inner code. On

the other hand, the performance of the 4-state outer code degrades when a stronger

inner code is used. This is due to the nature of the iterative decoding algorithm

rather than the code structure.

In Fig. 47, we demonstrate the performance over the block fading channel. Seven

turbo iterations are used. While the recursive code has about a 4 dB gain over the non-

recursive code, the performance of the iterative decoder is between the quasi-static

fading performance and the independent fading performance. When the 4-state outer

code is used, a weaker inner code performs better at low SNR whereas a stronger

inner code performs better at high SNR. Again, this is an artifact of the iterative

decoding algorithm.

Another advantage of the proposed class of codes is that it can be easily extended

to more than two transmit antennas. We demonstrate this for three transmit antennas

by considering three concatenated schemes based on delay diversity scheme. In all

three cases, the outer code is a 2-state convolutional code with generator polynomial

[1, 1 + D]. The inner codes for the three cases are - delay diversity scheme (non-

recursive), delay diversity with recursive realization with feedback polynomial [1+D2],

and, delay diversity with recursive realization with feedback polynomial [1+D+D2],

respectively. The performance of these concatenation schemes for QPSK modulation

and data frame size of 1024 bits, over independently fading channel is shown in Fig. 48.

It is easily seen that the recursive delay diversity schemes are able to achieve greater
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diversity benefit (steeper slope) than their non-recursive counterpart. Among the two

recursive realizations, the [1+D2] does slightly better (about 0.5 dB) better. Note that

for the 3-transmit antenna case, it is not possible to obtain simple orthogonal codes

such as the Alamouti’s scheme [26] and, therefore, it is not possible to concatenate a

simple orthogonal block code with a more complex outer code, for example as in [87],

to obtain good performance.
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Fig. 46. Convolutional outer code: Performance over independent fading channel.

We also consider the concatenation of recursive space-time trellis codes with

single-parity check turbo-product codes (SPC/TPC) in independent and block fading

channels. We consider an example with K = 31 and concatenation of two such blocks.
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Fig. 47. Convolutional outer code: Performance over block fading channel - 4 fading

blocks per codeword.
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[1, 1 + D] 2-state outer code; over independent fading channel.
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Hence, the length of the product code is 2048 bits. A spectral efficiency of 0.94 b/s/Hz

is achieved with BPSK or 1.88 b/s/Hz with 4-PSK assuming independent coding on

the I and Q channels. This is a very small reduction in data rate. The motivation

for the choice of single parity check based product codes are that (i) For any rate the

minimum distance of these codes is 4 [84] and, hence, we expect an interleaving gain

(ii) they can be soft-decoded using a belief propagation algorithm with very little

decoding complexity since each of the dimensions in this code is a single parity check.

Here, each iteration of the decoder consists of 3 iterations within the product code.

This is sufficient since the outer code is 2-dimensional [84].
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Fig. 49. SPC/TPC outer code: Performance over block-fading channel – 4 fading

blocks per frame.
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Figures 49-50 compare this scheme with the 16-state and 32-state 4-PSK based

space-time trellis codes from [2] which achieve a spectral efficiency of 2 b/s/Hz. Al-

though we are comparing two codes with marginally different spectral efficiencies, the

main point is that for a small sacrifice in spectral efficiency (9% here, for QPSK), sig-

nificant improvement in power efficiency can be achieved with the proposed scheme.

Further, it should be noted that the decoding complexity of the proposed scheme

is lesser than that for Viterbi decoding of the 32-state 4-PSK codes. The Alamouti

scheme does not perform well in comparison to these higher complexity trellis codes

and so we omit plotting its performance.

For a block-fading channel with 4 fading blocks per frame, at a frame error rate

of 0.1, the proposed scheme outperforms the 16-state code by about 3 dB after 7

iterations. In Fig. 50, the performance is compared over independent fading chan-

nels. The concatenated scheme achieves more diversity than the 32-state code after

5 iterations and the gain is between 2 dB (4-state inner code) to 3 dB at a frame

error rate of 0.1. It is clear from the slope that even higher gains will be achievable

at lower FERs.

D. Conclusions

In this chapter we have shown that serial concatenation of recursive space-time trellis

codes with convolutional and SPC/TPC codes performs well in independent and

block fading channels as well. We have shown before that on the quasi-static fading

channel full diversity can be achieved and an increase in coding gain results from the

concatenation. However, this is not the main advantage of the proposed scheme. The

main advantage is that in addition to providing marginally improved performance

to other more complex concatenated schemes on quasi-static fading channels, these
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schemes provide significant gains on time varying channels (even when there are as

low as 4 independent fading blocks per codeword) and independent fading channels.

We have also shown that turbo product codes based on single parity check codes can

be used as high rate codes that provide these advantages at very minimal reduction

in data rate.

In general, the performance of the proposed codes will improve with increase

in the length, whereas the performance of other schemes such as concatenation with

an outer convolutional code, Reed-Solomon code or that of a simple space-time code

will deteriorate with increase in length. Hence, the proposed scheme will offer higher

advantage as the length of the codewords increases.

We have also proposed the use of recursive space-time codes for use in a turbo-

type ARQ scheme when employing multiple transmit antennas. The advantage of this

scheme is that iterative decoding is used only when needed. For example, if a more

complex code is used to bring down the number of re-transmissions required and the

channel happens to be “good”, it will not justify the complex decoding required. On

the other hand, if the channel happens to be “bad”, a re-transmission will be needed

anyway. Again the complexity is not justified. However, the proposed scheme would

do better (in terms of complexity) in both these cases. Also, the proposed scheme

is able to effectively utilize any time variations in the channel. For example, we

observe that the gains over independent fading channels are very high. The scheme

also provides a natural differentiation among various users based upon the decoding

complexity they can afford. For example, if a user cannot afford the latency of 4

iterations, just one iteration may be used. Finally, since most space-time trellis codes

have recursive realizations, users who are able to afford the complexity may use space-

time codes with larger number of states, higher constellation size and/or more than

one receive antennas to obtain improved performance.
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CHAPTER VIII

CONCLUSIONS

This work focused on the multiple-input multiple-output (MIMO) flat quasi-static

fading channel (QSFC). Prior to this work, the unconstrained outage capacity (with

iid Gaussian signaling) was known [5, 6]. The code design for MIMO-QSFC was

limited to designing schemes that achieve full spatial diversity. Such schemes cover

a wide variety from space-time trellis codes [1, 2, 17–24] to space-time block codes

[25, 26, 29–31] to spatial multiplexing and its variations [24, 34–38] There had been

sporadic attempts to achieve higher rate by sacrificing diversity, for example in [32,33],

or achieving lower rate by concatenating a space-time code with an outer code code,

for example in [39–41,43,44].

The present work is the first to analyze the capacity of the MIMO-QSFC in a

constrained modulation setting. We have shown why it is hard to compute this ca-

pacity exactly. We have presented achievable lower bounds on this capacity. These

lower bounds also serve as fundamental limits on the performance of some known

space-time codes. We have shown that the optimality of iid signaling does not carry

over from the infinite alphabet (Gaussian signaling) case to the finite alphabet case.

The suitability of orthogonal space-time block codes in low-rate, low-complexity set-

ting has been established from an information theoretic perspective. We have shown

that space-time trellis codes are near optimal for a wide range of rates.

This work has established an important negative result – systems that employ

iterative decoding between the space-time demodulator/decoder and an outer code

cannot have performance arbitrarily close to constrained modulation outage limit.

This conclusion is especially significant since over the past few years iterative decoding

has been considered the panacea to all communication problems. At the same time,
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a word of caution. The technique used to arrive at this conclusion (namely, EXIT

charts) is an approximate one. Whereas it can predict the trends, specific conclusions

must be drawn carefully and cross-checked with actual simulations.

We have proposed a non-iterative transceiver structure based on the fact that

perfect decision feedback is optimal in terms of mutual information. The encoding and

decoding structures ensure that perfect decisions are available thanks to a capacity

achieving low-density parity check (LDPC) code. These decisions are then utilized

by a low-complexity space-time trellis decoder based on the BCJR algorithm. The

system performance is within a dB of the constrained limit of the trellis code while

the threshold (performance in the limit of infinite decoding complexity and decoding

delay) is within 0.25 dB of the limit.

Finally, we have proposed and analyzed a serial concatenation scheme con-

sisting of an outer convolutional code or a single-parity-check turbo-product-code

(SPC/TPC) and an inner recursive space-time trellis code. Even though this scheme

is 1.5-2 dB away from the outage limit, this proposed system is robust and flexible.

It offers multiple choices in terms of rate and decoding complexity. It provides good

performance even if the channel has very little time variations. The system is scalable

in terms of the number of transmit as well as receive antennas. The idea of recursive

trellis codes is also useful when implementing automatic repeat request (ARQ) in

packet-data systems.

1. Thesis Contributions

The main contributions of this work are summarized below:

• Achievable lower bounds to the constrained modulation outage capacity of

MIMO systems in a flat quasi-static fading channel have been computed.
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• Fundamental limits on some known space-time systems, viz. spatial multiplex-

ing, space-time block codes and space-time trellis codes have been established.

• Non-optimality of iid signaling has been established in the constrained modu-

lation scenario.

• Optimality of space-time trellis codes for a range of rates and SNRs has been

established.

• Non universality of iterative decoding based systems has been established.

• Two variants of a non-iterative transceiver have been proposed. Both of these

have performance close to the outage limit.

• It has been shown that almost all space-time trellis codes have recursive real-

izations.

• Serial concatenation scheme with a recursive realization of a space-time trellis

code has been proposed and analyzed. Its flexibility in terms of rate and receiver

complexity has been demonstrated.

• The idea of recursive space-time trellis codes has been extended to parallel

concatenated codes and to automatic repeat request systems.

2. Future Work

We propose the following future research:

• Capacity achieving schemes for spatial multiplexing, especially in the high rate

regime.

• Extending the decision-feedback scheme to higher constellations.
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• The gap from constrained capacity of the decision-feedback scheme depends on

the exact trellis code being used. A detailed study can be done with an aim to

find if and how we can predict this gap.

• Even though the two schemes – spatial multiplexing and the concatenation of

a trellis code with an LDPC code – use iterative decoding, the former suffers a

smaller loss from its constrained capacity than the latter. A detailed study can

be done to explain this phenomenon.

• Studying the effect of recursive encoders on the EXIT charts of space-time trellis

codes and the performance analysis of serial concatenation scheme using EXIT

charts.

• Constrained modulation capacity analysis for MIMO block fading and delay

limited channels.

• The effect of channel knowledge at the transmitter upon the constrained mod-

ulation outage capacity.

• Good system designs for very short block lengths.
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APPENDIX A

DIAGONAL CORRELATION SUFFICES TO OPTIMIZE OUTAGE FOR

GAUSSIAN SIGNALING

Let the Nt × Nf transmit matrix X be re-written as a vector:

�x = [x11 x12 . . . x1Nt . . . xNf Nt ]
t = [x̄t

1 x̄t
2 . . . x̄t

Nf
]t.

The correlation matrix of �x is given by:

Q = E [�x�xH ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 . . . Q1Nf

Q21 Q22 . . . Q2Nf

...
...

QNf1 QNf2 . . . QNf Nf

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where Qij = E [x̄ix̄
H
j ] is the correlation matrix between the vectors x̄i and x̄j transmit

at times i and j. Clearly, Qij = QH
ji .

The baseband receive signal may now be written as �y = A�x + �n, where the

matrix A = INf
⊗ H is the Kronecker product of the channel matrix H with the

identity matrix. With this formulation and assuming Gaussian distributions for �x

and �y, the instantaneous mutual information between �x and �y may be written as

Ψ(Q,A) = log det(INrNf
+AQAH) [5,6]. The quantity AQAH has a block structure:

AQAH =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

HQ11H
H HQ12H

H . . . HQ1Nf
HH

(HQ12H)H HQ22H
H . . . HQ2Nf

HH

...
...

(HQ1Nf
H)H (HQ2Nf

H)H . . . HQNf Nf
HH

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,
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since Qij = QH
ji . This form is exactly the one required by Fischer’s inequality for

semi-positive definite matrices [49], and so we have:

1

Nf

Ψ(Q,A) =
1

Nf

log det(INrNf
+ AQAH)

≤ 1

Nf

Nf∑
i=1

log det(INr + HQiiH
H)

=
1

Nf

Nf∑
i=1

Ψ(Qii,H)

Note that the upper bound corresponds to the mutual information when the signal

vectors are chosen to be independent in time. Hence, it is optimal to choose the

components of X to be vectors which are independent in time. Further, within

each time instant, we can choose the symbols to be independent of each other (no

spatial correlation). This can be shown as follows. The mutual information between

the transmit vector �x and the received vector �y at a given time instant is [5, 6]:

Ψ(Q,H) = log det(INr + HQHH), where Q = E [�x�yH ]. In this case, the distribution

of Ψ(Q,H)remains the same if Q is replaced by a diagonal matrix V = U Q UH ,

where U is unitary transformation. Since Q is the correlation matrix, it is always

diagonalizable [6]. Hence, a diagonal correlation matrix Q (independent elements in

the vector x̄) suffices to optimize the outage probability.
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APPENDIX B

INFORMATION RATE COMPUTATION FOR A SPACE-TIME TRELLIS CODE

The information rate computation is based on the ideas in [88–90] and is de-

scribed in [13]. Recall that the space-time trellis codes output Nt symbols per branch

of the trellis and the corresponding received signal, at time k, is given by:

�y[k] = H�x[k] + �n[k] = �a[k] + �n[k]

When the channel is known, the noiseless received signal is �a = [a1, a2, . . . aNr ]
t = H�x

and the received signal at the i-th receive antenna is yi = ai + ni, where ni is the i-th

component of the complex Gaussian noise vector �n. We now wish to compute the

mutual information between the time series �x and �y given H, or equivalently, between

�A and �y: Isttc
Nt,Nr

(h) = I( �X; �Y |h) = h(�Y |h)−h( �N |h), where the superscript sttc refers

to a space-time trellis code. The quantity h( �N |h) = Nr

2
log(2πe) since the Nr entries

of �n have unit variance. In order to estimate h(�Y |h), we extend the ideas from [88–90].

For any given block length Nf and any given channel output �y � [�y[1], �y[2], . . . , �y[Nf ]],

the probability of Pr (�y) can be computed using the forward recursion of the BCJR

algorithm [91] which operates on the trellis of the code. To emphasize this similarity

we define:

αk(s) = Pr (σ[k] = s|�y(k − 1))

and use the shorthand notation {σ[k] = s} = {s[k]}. The forward recursion to com-

pute αk(s) is:

αk(s) =
∑

s′∈Ωσ

αk−1(s
′)f (�y[k − 1]|s[k], s′[k − 1])
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The summation can be evaluated by noting that:

p (s[k], �y[k − 1]|s′[k − 1]) = Nαp (�y[k]|s′[k − 1], s[k]) ,

where Nα is a normalization factor. The trellis representation simplifies this to:

Pr (s[k]|s′[k − 1], �y(k − 1)) = Nαp (�y[k]|s[k], x(k − 1)) . (B.1)

Note that the RHS of (B.1) is a Gaussian density. Finally observing that:

p (�y(Nf )) =

Nf∏
k=0

p (�y[k]|�y(k − 1))

log p (�y(Nf )) =

Nf∑
k=0

log p (�y[k]|�y(k − 1))

p (�y[k]|�y(k − 1)) =
∑
s∈Ωσ

αk(s)p (�y[k]|s[k])

p (y(k)|s[k]) =
∑

x(k−1)

p (y(k)|s(k), x(k − 1))

=
∑

x(k−1)

p (y(k)|�a[k])) ,

the recursion can be completed. Hence the calculation of log p (�y) has exactly the

same structure as implementing the BCJR algorithm.

The BCJR algorithm operating on long blocks of data can approximate the re-

quired ensemble average with a time averaging (ergodicity). An estimate of h(�y) =

−E [log (Pr(�y))] is thus obtained by simulating the channel N times, each time start-

ing with a stationary state distribution, simulating Nf inputs �xi and corresponding

outputs �yi and computing Pr(�yi) using the BCJR algorithm. Now, the quantity

− 1
N

∑
i Pr(�yi) log (Pr(�yi)) is an estimate of h(�Y) that converges with probability 1

to the true value for Nf → ∞. Since the Markov process is stationary and ergodic,

− 1
Nf

log Pr(�y) also converges to h(�Y) and hence a single long simulation of �y and the
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corresponding single forward BCJR recursion also gives a good estimate of h(�y|h).
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APPENDIX C

INFORMATION RATE COMPUTATION FOR PUNCTURED SPACE-TIME

TRELLIS CODES

In this appendix we show that the Shannon-McMillan-Briemann theorem can also

be applied to the information rate computation of punctured space-time trellis codes.

However, with puncturing the trellis must be modified to make the Markov process

stationary. This is explained in more details below with the help of an example. It

should be noted that by puncturing of space-time codes we mean the omission the

transmission of signals (from all transmit antennas) at a given time instant. There

are other ways of puncturing but we do not consider them here.

Consider the simple example of the 4-state AT&T code [2] for Nt = 2 transmit

antennas and QPSK modulation. The trellis structure of this code is shown in Fig. 5.

At each time instant one QPSK symbol is input to the encoder and a vector of two

QPSK symbols is transmitted. The overall rate of this code is 2 b/s/Hz. Now suppose

that we want to achieve 3 b/s/Hz with the same code by omitting the transmission

of output vector once every three time instants. In the trellis representation, now we

consider the input of the encoder to be of length 3 and the output to be of length 4

(2 transmit antennas, 2 time instants). The resulting (stationary) trellis also has the

same number of states (four in this case) as the original code but the number of paths

out of each state increases to 64 (instead of 4 in the unpunctured case). Similarly,

if we puncture the symbols every other time instant, the number of paths per state

is 16. Note, again, the parallel transitions do not affect the algorithm to compute

information rates. The resulting trellis is also shown in Fig. 5. In general, if the

puncturing rate is once every p-time instants, the number of paths in the modified
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trellis would be Mp, where M is the cardinality of the signal set being used. It should

be noted, though, that all this complexity is in the computation of information rates

only. The decoding is still only as complex as that for the unpunctured trellis.

Once we have the modified trellis, we can use the method of Appendix B to

compute the i.i.d. information rates for punctured space-time trellis codes. While

conceptually this is pretty straightforward, the computations become numerically

very intensive, even for p ≥ 3.
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