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ABSTRACT

Reduced Order Modeling for Transport Phenomena

Based on Proper Orthogonal Decomposition. (December 2003)

Tao Yuan, B.E., Tsinghua University

Chair of Advisory Committee: Dr. Paul G. A. Cizmas

In this thesis, a reduced order model (ROM) based on the proper orthogonal

decomposition (POD) for the transport phenomena in fluidized beds has been de-

veloped. The reduced order model is tested first on a gas-only flow. Two different

strategies and implementations are described for this case. Next, a ROM for a two-

dimensional gas-solids fluidized bed is presented. A ROM is developed for a range of

diameters of the solids particles. The reconstructed solution is calculated and com-

pared against the full order solution. The differences between the ROM and the full

order solution are smaller than 3.2% if the diameters of the solids particles are in the

range of diameters used for POD database generation. Otherwise, the errors increase

up to 10% for the cases presented herein. The computational time of the ROM varied

between 25% and 33% of the computational time of the full order solution. The com-

putational speed-up depended on the complexity of the transport phenomena, ROM

methodology and reconstruction error. In this thesis, we also investigated the accu-

racy of the reduced order model based on the POD. When analyzing the accuracy, we

used two simple sets of governing partial differential equations: a non-homogeneous

Burgers’ equation and a system of two coupled Burgers’ equations.
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NOMENCLATURE

dps − Solid particle diameter

Fgs − Coefficient for the interphase force between gas and solid phases

g − Gravity acceleration

M − Number of snapshots

Mw − Average molecular weight of gas

N − Number of discrete spatial grid points

p − Pressure

R − Universal gas constant

Re − Reynolds number

T − Temperature

(u, v) − Components of velocity vector

~v − Velocity vector

(x, y) − Cartesian coordinates

α − Time coefficients

ε − Volume fraction, error measurement

µ − Viscosity

ρ − Density

¯̄τ − Viscous stress tensor

ξ − Convection factor
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Subscripts

g − Gas phase

s − Solid phase

Superscripts

∗ − Tentative values

o − Old values
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CHAPTER I

INTRODUCTION

A. Statement of the Problem

Reduced order modeling based on the proper orthogonal decomposition (POD) is a

conceptually novel and computationally efficient technique for computing unsteady

transport phenomena. Compared to the full models which numerically solve the

governing partial differential equations (PDEs) of the transport phenomena, POD-

based reduced order models (ROMs) contain a smaller number of ordinary differential

equations (ODEs). Consequently, the order reduction is achieved by (1) reducing the

number of equations, and (2) replacing PDEs by ODEs. The focus of this research is

to develop POD-based ROMs for the transport phenomena in fluidized beds and to

investigate the accuracy of the POD-based ROMs.

B. Background

This section provides the background information of this study. The background

information includes a literature review of the reduced order modeling, an outline

of the POD technique, and a description of the gas-solid transport phenomena in

fluidized beds.

1. Reduced Order Modeling

The goal of reduced order modeling is to replace the large number of governing PDEs

by a smaller number of ODEs. Over the years, investigators have developed a number

The journal model is Journal of Propulsion and Power.
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of techniques for constructing ROMs. Most of the previous work is concentrated on

fluid-only flow phenomena. A review of the status of the reduced order modeling can

be found in the article of Dowell et al.1

In structural dynamics, to solve the unsteady vibration problems, a conventional

method is to construct ROMs using the eigenmodes of the structure as basis func-

tions.2 The same technique developed for structural dynamic problems has been

applied to the transport phenomena. Florea et al.3 have developed a ROM based

on eigenmodes of an unsteady viscous flow in a compressor cascade. Thomas et al.4

have constructed ROMs based on eigenmodes of flows about an isolated airfoil and

an aeroelastic wing. Their studies are based on flow simulations in frequency domain

using small perturbations. A static/dynamic correction technique has been imple-

mented in their studies in order to improve the accuracy of the eigenmodes based

ROMs. Romanowski et al.5 have also constructed ROMs for the Euler equations

based on fluid eigenmodes.

POD is an attractive alternative and/or complement to the use of eigenmodes

in terms of computational cost and convenience.1 POD is a procedure for extracting

an optimal basis from an ensemble of signals.6 POD is also called Karhunen-Loéve

decomposition, singular value decomposition, principal components analysis, and sin-

gular systems analysis.

POD was first introduced to model coherent structures in turbulent flows by

Lumley. Using the technique of POD, a series of snapshots obtained from experi-

mental measurements and/or computational simulations, each at a different instant

of time, are examined. These solution snapshots are used to form an eigenvalue prob-

lem that is solved to determine a set of optimal basis functions for representing the

flow field. POD-based ROMs are generated by projecting the governing PDEs onto

a space spanned by a small number of POD basis functions. Thus the flow field is
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described by a small number of ODEs. Background information on POD and POD-

based reduced order modeling can be found in the review articles of Berkooz et al.6

and Sirovich.7

POD-based ROMs for various systems have been constructed, e.g., Burgers’

model of turbulence,8 Euler equations,9 and Navier-Stokes equations.10–14 POD-based

ROMs have been developed in the time domain for a number of flows. Deane et al.10

have applied the POD-based ROMs to two two-dimensional flow fields: flow in a pe-

riodically grooved channel and wake of an isolated circular cylinder. The short- and

long-term accuracy of the POD-based ROMs have been studied through simulation,

continuation and bifurcation analysis. Sahan et al.11 have studied the POD-based

ROMs applied to non-isothermal transitional grooved-channel flow. In their study,

the POD-based ROMs have been derived for transitional flow and heat transfer. Ma

et al.12 have studied the POD-based ROM for simulating three-dimensional cylinder

flow. Cazemier et al.13 have investigated the POD-based ROMs for driven cavity

flows. Rediniotis et al.14 have applied the POD-based ROM to synthetic jets which

are essential for flow control applications. Studies in the above references are based

on low-speed flows.

POD-based ROMs have also been investigated in high-speed flows. For example,

Lucia et al.15 have shown that the POD-based ROM can accurately recreate a flow

solution with strong shocks, given that the appropriate data is presented in the snap-

shots. POD has also been applied in the frequency domain. For example, Hall et al.16

have generated a POD-based ROM for a small-disturbance unsteady two-dimensional

inviscid flow about an isolated airfoil.

The application of POD/ROM to flow control, aeroelastic analysis, and iterative

design is currently an active field of research. Romanowski17 has applied the POD-

based ROMs to aeroelastic analysis. Ravindran18 has designed reduced order adaptive
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controllers for fluids. LeGresley et al.9 have investigated airfoil design optimization

using the POD-based ROMs.

2. Proper Orthogonal Decomposition

Suppose we have an ensemble of observations {u(x, ti)}. These observations are as-

sumed to form a linear infinite-dimensional Hilbert space L2 on a spatial domain D.19

From that ensemble of observations, POD extracts time-independent orthonormal ba-

sis functions {φk(x)} and time-dependent orthonormal time coefficients {αk(ti)}, such

that the reconstruction

u(x, ti) =
∑

k

αk(ti)φk(x) (1.1)

is optimal in the sense that the average least-square truncation error

εm =

〈∥

∥

∥

∥

∥

u(x, ti)−
m
∑

j=1

αj(ti)φj(x)

∥

∥

∥

∥

∥

2〉

(1.2)

is a minimum for any given number m of basis functions over all possible sets of basis

functions.19 Herein || · || denotes the L2-norm given by

||f || = (f, f)
1
2 ,

where (, ) denotes the Euclidean inner product. 〈 · 〉 denotes an ensemble average

over a number of observations

〈 f 〉 = 1

N

N
∑

j=1

f(x, tj).

The optimum condition specified by (1.2) is equivalent to finding functions φ

that maximize the normalized averaged projection of u onto φ

max
φ∈L2(D)

〈|(u, φ)|2〉
||φ||2 , (1.3)
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where | · | denotes the modulus.19

The optimum condition specified by equation (1.3) reduces to6

∫

D

〈u(x)u∗(x′)〉φ(x′)dx′ = λφ(x), (1.4)

The POD basis is therefore composed of the eigenfunctions {φj} of the integral equa-

tion (1.4). The kernel function of the integral equation (1.4) is the averaged autocor-

relation function

〈u(x)u∗(x′)〉 ≡ R(x, x′).

In practice, the state of a numerical model is only available at discrete spatial

grid points. Thus the observations in the ensemble are vectors instead of continuous

functions. The autocorrelation function in the discrete case is replaced by the tensor

product matrix19

R(x, x′) =
1

M

M
∑

i=1

u(x, ti)u
T (x′, ti), (1.5)

where M is the number of observations contained in the ensemble.

The derivation of the integral equation (1.3) can be generalized to vector-valued

functions such as the three-dimensional velocity fields u(x, t), where u = (u, v, w)

and x = (x, y, z). In this case, R(x, x′) is replaced by

R(x,x′) =
1

M

M
∑

i=1

u(x, ti)u
T (x′, ti). (1.6)

The eigenfunctions φj(x) are also vector valued.

Off-Reference Condition

The POD basis functions are optimal at the reference condition. Herein the

reference condition, also called design condition, represents the condition at which

the basis functions are obtained. Take the flow field as an example, the POD basis
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functions are optimal at a special set of flow parameters (e.g., the Reynolds number

Re). When the flow parameters are not at their reference values, the POD basis func-

tions obtained at the reference condition are no longer optimal. It is straightforward

to generate the new set of optimal basis functions at the new condition. It is not

computationally practical to provide the matrix R at each condition. There are two

situations in which the POD basis functions can be used at off-reference conditions.20

First, the POD basis functions can be used at off-reference conditions, if the basis

functions are sufficiently insensitive to the flow parameters. For example, the work

of Sahan et al.11 showed that the POD-based ROM constructed for simulating non-

isothermal transitional grooved-channel flow at reference Re = 430 could successfully

predict the flow field at Reynolds numbers in the range of 430 ≤ Re ≤ 1050. One

approach to extend the range of off-reference conditions in which the POD-based

ROMs are valid is to generate databases by combining snapshots from different flow

conditions (e.g., the work of Ma et al.12).

Second, if the basis functions possess a property of universal similarity, the POD

basis functions can be used at off-reference conditions. The work of Chambers et al.8

explored this possibility by using the Burgers’ model of turbulence. They showed that

the POD basis functions in the inhomogeneous spatial variables were similar over a

range of Reynolds numbers if they were scaled on outer variables. The work of Liu

et al.20 also provided experimental evidence of the basis functions similarity. Their

results indicated that the POD basis functions of three-dimensional wall turbulence

exhibit Reynolds number independence, when scaled properly on outer variables.

3. Transport Phenomena in Fluidized Beds

Fluidization is the phenomenon in which solid particles display fluid-like properties

due to the flow of fluids.21 Figure 1 demonstrates the typical behavior of a fluidized
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bed. The fluidized bed consists of a vessel containing solid particles and a bottom

(a) (b) (c)

Fig. 1. Typical behavior of a fluidized bed

plate through which gas is injected. At low gas flow velocities as shown in Figure 1(a),

the gas percolates through the void spaces between the solid particles and the solid

remains a packed bed. When the gas velocity increases over a certain threshold, called

the minimum fluidization velocity, the solid particles display fluid-like properties as

show in Figure 1(b). This state is called fluidization. If the gas flow velocity is

increased beyond the terminal velocity of the solid particles, the solid particles will

be swept out of the bed as shown in Figure 1(c).21

C. Outline of this Thesis

Chapter II describes the transport equations and boundary conditions used to model

the transport phenomena in fluidized beds. Chapter III presents the full numerical

model used to simulate the transport equations. Chapter IV describes the general

methodology used to construct POD-based ROMs. Chapter V presents the derivation

of the POD-based ROMs for approximating the transport equations in fluidized beds.

Chapter VI presents the analysis of the accuracy of the POD-based ROMs using two
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cases of Burgers’ equations. Chapter VII presents the results of POD-based ROMs

applied to two cases of transport phenomena in fluidized beds. The conclusions and

future work are presented in Chapter VIII. Appendix A describes the constitutive

models used to close the transport equations. Appendix B presents the algorithm

for calculating the convection factors in the full numerical model. Appendixes C-E

present samples of input files for the POD-based ROMs.
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CHAPTER II

PHYSICAL MODEL

This chapter presents the physical model of the transport phenomena in fluidized

beds. This chapter begins with the governing equations used to model the transport

phenomena in fluidized beds. Next, the boundary conditions are described.

A. Governing Equations

Under isothermal conditions, the governing equations that model the gas-solid trans-

port phenomena in fluidized beds are the mass and momentum balance equations

given below:

• Gas mass balance

∂εgρg
∂t

+5 · (εgρg~vg) = 0 (2.1)

• Solid mass balance

∂εsρs
∂t

+5 · (εsρs~vs) = 0 (2.2)

• Gas momentum balance

∂(εgρg~vg)

∂t
+5 · (εgρg~vg~vg) = −εg 5 pg +5 · ¯̄τg + εgρg~g + Fgs(~vs − ~vg) (2.3)

• Solid momentum balance

∂(εsρs~vs)

∂t
+5· (εsρs~vs~vs) = −εs5pg−5ps+5· ¯̄τs+ εsρs~g−Fgs(~vs−~vg) (2.4)

where ε, ρ, and ~v denote the volume fraction, density, and velocity vector. The

subscripts g and s denote the gas phase and solid phase, respectively. Expressions

for the gas-phase viscous stress ¯̄τg, gas-solid drag Fgs, granular stress ¯̄τs, and solid
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pressure ps are needed to close the governing equations. Constitutive models for

these variables can be found in Appendix A and are also given in Syamlal et al.22

and Syamlal.23 The gas phase is modeled as a gas obeying the ideal gas law

ρg =
pgM
RTg

(2.5)

or as an incompressible fluid with constant density. HereinM, R, and Tg denote the

average molecular mass of gas, the universal gas constant, and the gas temperature,

respectively.

B. Boundary Conditions

Figure 2 illustrates the geometry of a fluidized bed. The left and right boundaries

are no-slip walls. At the bottom (inlet) of the bed, gas is injected with steady or

unsteady, uniform or nonuniform velocities. At the top (outlet) of the bed, a constant

gas pressure is specified.

solid
walls

velocity inlet

pressure outlet

Fig. 2. Geometry and boundary conditions of a fluidized bed
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CHAPTER III

FULL NUMERICAL MODEL

The full numerical model represents the traditional numerical model used to solve the

transport equations given by equations (2.1)-(2.4). In this study, the numerical al-

gorithm developed at the U.S. Department of Energy’s National Energy Technology

Laboratory (Syamlal et al.22) is used to solve the transport equations. The com-

puter code, written in FORTRAN 90, is MFIX (Multiphase Flow with Interphase

eXchanges). This chapter presents the discretization used in MFIX.

A. Discretization

MFIX uses a staggered grid arrangement as shown in Figure 3. Scalars are stored at

the cell centers. Components of velocity vectors are stored at the cell faces. Equations

for scalar variables are solved on the main grid. Equations for velocity components

are solved on the staggered grids. If the velocity components and pressure are solved

on the same grid, a checkboard pressure field could result. The staggered grid ar-

rangement is used for preventing such unphysical solutions.23 Using the staggered

grid arrangement, MFIX uses three grids, which will be discribed in the following

section, to solve a two-dimensional problem.

(i, j)

(i, j + 1)

(i+ 1, j)

v

u
p

Fig. 3. Grid arrangement in MFIX
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B. Discretized Governing Equations

This section describes the two-dimensional discretized governing equations in MFIX.

MFIX uses the control volume method to discretize the governing equations.

Mass balance

P EW

N

S

n

s

ew

Fig. 4. Control volume for mass balance

For convenience, let us write the mass balance equations (2.1) and (2.2) as

∂εmρm
∂t

+5 · (εmρm~vm) = 0, (3.1)

where the subscript m indicates the phase (g or s). Figure 4 shows a control volume

for the mass balance equations. P is the center of the control volume. E, W , N , and

S represent the east, west, north, and south neighbor cells of the control volume. e,

w, n, and s represent the east, west, north, and south faces of the control volume.

Volume fraction εm and density ρm are stored at the cell centers P , E, W , N ,

and S. In order to discretize the convection terms, volume fraction and density values

at the cell faces e, w, n, and s must be evaluated. MFIX uses a convection weighting

factor ξ to calculate the volume fraction and density at each face. For example,
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(εmρm) at the east face is calculated as23

(εmρm)e = (ξm)e(εmρm)E+(1−(ξm)e)(εmρm)P = (ξm)e(εmρm)E+(ξ̄m)e(εmρm)P , (3.2)

where (ξm)e is the convection weighting factor for (εmρm) at the east face and (ξ̄m)e =

1− (ξm)e. The algorithm for calculating the convection weighting factor is presented

in Appendix B.

Using the convection weighting factor, the mass balance equations are discretized

as23

(am)P (εmρm)P =
∑

nb

(am)nb(εmρm)nb + (bm)P , (3.3)

where the subscript nb represents E, W , N , and S. Herein (am)P , (am)nb, and (bm)P

are defined as

(am)E = −(ξm)e(um)eAe, (3.3a)

(am)W = (ξ̄m)w(um)wAw, (3.3b)

(am)N = −(ξm)n(vm)nAn, (3.3c)

(am)S = (ξ̄m)s(vm)sAs, (3.3d)

(am)P = ∆V
∆t

+ ((um)eAe − (um)wAw + (vm)nAn − (vm)sAs)

+
∑

nb(am)nb, (3.3e)

(bm)P = (εmρm)
o
P
∆V
∆t
, (3.3f)

where A, ∆V , and ∆t denote the face area, cell volume, and time step size, respec-

tively. The superscript o denotes old (previous) time step values.

Momentum balance

Figures 5(a) and 5(b) show the control volumes used to discretize the x-momentum

balance equation and y-momentum balance equation, respectively. In Figures 5(a)
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p EW

N

S

n

s

ew

NW NE

SW SE

(a) x-momentum balance

p EW

N

S

n

s

ew

NENW

SW SE

(b) y-momentum balance

Fig. 5. Control volume for momentum balance

and 5(b), p denotes the center of the control volume; e, w, n, and s represent the

east, west, north, and south neighbor cells of the control volume; E, W , N , and S

denote the east, west, north, and south faces of the control volume; NE, NW , SE,

and SW denote the four corners of the control volume.

In MFIX, the gas and solid x-momentum equations are discretized as23

(aum)p(um)p =
∑

nb

(aum)nb(um)nb + (bum)p

−Ap(εm)p ((pg)E − (pg)W ) + (Fgs(ul − um)p)∆V, (3.4)
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where m is used to indicate the phase (gas g or solid s). l denotes the phase other

than m. (aum)p, (a
u
m)nb, and (bum)p are defined as

(aum)e = (µm)EAE

∆x
− (ξum)e(εmρm)e(um)EAE, (3.4a)

(aum)w = (µm)WAW

∆x
+ (ξ̄um)w(εmρm)w(um)WAW , (3.4b)

(aum)n = (µm)NAN

∆y
− (ξum)n(εmρm)n(vm)NAN , (3.4c)

(aum)s = (µm)SAS

∆y
+ (ξ̄um)s(εmρm)s(vm)SAS, (3.4d)

(aum)p =
∑

nb(a
u
m)nb + (aum)

o
p, (3.4e)

(aum)
o
p =

(εmρm)op∆V

∆t
, (3.4f)

(bum)p = (aum)
o
p(um)

o
p + Sum, (3.4g)

Sum = ((λm)Etr(Dm)E − (λm)W tr(Dm)W )Ap

+(µm)E
(um)e−(um)p

∆x
AE − (µm)W

(um)p−(um)w
∆x

AW

+(µm)N
(vm)NE−(vm)NW

∆x
AN − (µm)S

(vm)SE−(vm)SW
∆x

AS. (3.4h)

Similarly, the y-momentum equations are discretized as23

(avm)p(vm)p =
∑

nb

(avm)nb(vm)nb + (bvm)p

−Ap(εm)p ((pg)N − (pg)S) + (Fgs(vl − vm)p)∆V, (3.5)
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where

(avm)e = (µm)EAE

∆x
− (ξvm)e(εmρm)e(um)EAE, (3.5a)

(avm)w = (µm)WAW

∆x
+ (ξ̄vm)w(εmρm)w(um)WAW , (3.5b)

(avm)n = (µm)NAN

∆y
− (ξvm)n(εmρm)n(vm)NAN , (3.5c)

(avm)s = (µm)SAS

∆y
+ (ξ̄vm)s(εmρm)s(vm)SAS, (3.5d)

(avm)p =
∑

nb(a
v
m)nb + (avm)

o
p, (3.5e)

(avm)
o
p =

(εmρm)op∆V

∆t
, (3.5f)

(bvm)p = (avm)
o
p(vm)

o
p + Svm − (εmρm)pg∆V, (3.5g)

Svm = ((λm)N tr(Dm)N − (λm)Str(Dm)S)Ap

+(µm)E
(um)NE−(um)SE

∆y
AE − (µm)W

(um)NW−(um)SW
∆y

AW

+(µm)N
(vm)n−(vm)p

∆y
AN − (µm)S

(vm)p−(vm)s
∆y

AS. (3.5h)

Gas pressure correction

An important step in the algorithm of MFIX is the discretization of a gas pres-

sure correction equation. MFIX does not solve the gas mass balance equation. MFIX

solves the gas pressure correction equation instead. The gas pressure correction equa-

tion is derived from the discretized gas mass balance equation and the discretized mo-

mentum balance equations. The gas pressure correction is solved to determine the gas

pressure correction, p′g. The control volume for the gas pressure correction equation

is identical to the control volume used for discretizing the mass balance equations.

The gas pressure correction equation can be written in the standard form23

apP (p
′

g)P =
∑

nb

apnb(p
′

g)nb + bpP , (3.6)



17

where

apE = ((εgρg)Eξ
p
e + (εgρg)P ξ̄

p
e )dgeAe, (3.6a)

apW = ((εgρg)P ξ
p
w + (εgρg)W ξ̄

p
w)dweAw, (3.6b)

apN = ((εgρg)Nξ
p
n + (εgρg)P ξ̄

p
n)dgnAn, (3.6c)

apS = ((εgρg)P ξ
p
s + (εgρg)S ξ̄

p
s )dgsAs, (3.6d)

apP =
∑

nb a
p
nb, (3.6e)

bpP = −{
(

(εgρg)P−(εgρg)oP
∆t

)

∆V

+
(

(εgρg)Eξ
p
e + (εgρg)P ξ̄

p
e

)

(u∗g)eAe

−
(

(εgρg)P ξ
p
w + (εgρg)W ξ̄

p
w

)

(u∗g)wAw

+
(

(εgρg)Nξ
p
n + (εgρg)P ξ̄

p
n

)

(v∗g)nAn

−
(

(εgρg)P ξ
p
s + (εgρg)S ξ̄

p
s

)

(v∗g)sAs}. (3.6f)

Herein, the superscript ∗ indicates tentative velocities (i.e., velocities before correc-

tion). The velocity corrections along the x-direction are given by23

(um)p = (u∗m)p − dmp((p
′

g)E − (p′g)W ), (3.7)

where

dgp =
Ap

(

(εg)p +
(εs)pFgs∆V

(aus )p+Fgs∆V

)

(aug )p+
Fgs∆V (aus )p
(aus )p+Fgs∆V

, (3.8)

dsp =
Ap

(

(εs)p +
(εg)pFgs∆V

(aug )p+Fgs∆V

)

(aus )p+
Fgs∆V (aug )p

(aug )p+Fgs∆V

. (3.9)

Note that in Equations (3.7), (3.8), and (3.9), p is the control volume center shown

in Figure 5(a). Similarly, the velocity corrections along the y-direction are given by

(vm)p = (v∗m)p − dmp((p
′

g)N − (p′g)S), (3.10)
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where p now is the control volume center shown in Figure 5(b).

Solid volume fraction correction

In order to successfully handle dense packing of solids, MFIX derives a solid

volume fraction correction equation by including the effect of solid pressure in the

discretized solid mass balance equation.23 In the algorithm of MFIX, the solid volume

fraction correction equation is solved instead of the solid mass balance equation. The

solid volume fraction equation is written as23

aεP (ε
′

s)P =
∑

nb

aεnb(ε
′

s)nb + bεP , (3.11)

where

aεE = [(εmρm)
∗
eee(Ks)E − ξεe(ρs)E(u

∗
s)e]Ae, (3.11a)

aεW =
[

(εmρm)
∗
wew(Ks)W + ξ̄εw(ρs)W (u∗s)w

]

Aw, (3.11b)

aεN = [(εmρm)
∗
nen(Ks)N − ξεn(ρs)N(v

∗
s)n]An, (3.11c)

aεS =
[

(εmρm)
∗
ses(Ks)S + ξ̄εs(ρs)S(v

∗
s)s
]

As, (3.11d)

aεP = (ρs)P [ξ̄
ε
e(u

∗
s)eAe − ξ̄εw(u

∗
s)wAw

+ξ̄εn(v
∗
s)nAn − ξ̄εs(v

∗
s)sAs]

+(Ks)P [(ρsε
∗
s)eeeAe + (ρsε

∗
s)wewAw

+(ρsε
∗
s)nenAn + (ρsε

∗
s)sesAs] + (ρs)P

∆V
∆t
, (3.11e)

bεP = −(ρsε∗s)e(u∗s)eAe + (ρsε
∗
s)w(u

∗
s)wAw

−(ρsε∗s)n(v∗s)nAn + (ρsε
∗
s)s(v

∗
s)sAs

− [(ε∗sρs)P − (εsρs)
o
P ]

∆V
∆t
. (3.11f)

Herein Ks =
∂ps
∂εs

.
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CHAPTER IV

METHODOLOGY FOR REDUCED ORDER MODELING BASED ON PROPER

ORTHOGONAL DECOMPOSITION

This chapter presents the general methodology for generating the POD-based ROMs.

The methodology for generating the POD-based ROMs consists of three steps: (1)

database generation; (2) modal decomposition; and (3) Galerkin projection. For

convenience, let us use the following governing PDE to illustrate these three steps:

∂u

∂t
= D(u), in Ω× (0, T ], (4.1)

where u(x, t) is the state vector; Ω is the spatial domain; (0, T ] is the temporal

domain. Equation (4.1) can represent the Burgers’ equation, the Euler equations, the

Navier-Stokes equations, or the transport equations (2.1)-(2.4). Additionally, proper

boundary conditions and initial conditions must be specified.

A. Database Generation

The database is an ensemble of data that represent solutions of the governing equation

(4.1). The database can be numerical solutions of (4.1), experimental measurements,

or combination of numerical and experimental data. In this study, the database

contains a number of snapshots, each at different momentum of time, obtained from

numerical simulations of the governing equation (4.1). MFIX was used to gene-

rate the database for the transport equations (2.1)-(2.4) which model the transport

phenomena in fluidized beds.
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B. Modal Decomposition

Let us assume that a number of snapshots u(x, ti), i ∈ [1,M ] have been generated

during the database generation step. Herein M is the total number of snapshots. In

the modal decomposition step, POD is applied to the database to extract the basis

functions of u. First, u is decomposed into the mean ū(x) and the fluctuation u′(x, t),

i.e.,

u(x, t) = ū(x) + u′(x, t), (4.2)

where

ū(x) =
1

T

∫ T

0

u(x, t)dt =
1

M

M
∑

i=0

u(x, ti)

and

u′(x, ti) = u(x, ti)− ū(x), i ∈ [1,M ].

The tensor product matrix R is calculated as

R(x,x′) =
1

M

M
∑

i=1

u′(x, ti)u
′T (x′, ti).

The basis functions φk are the eigenvectors of the matrix R(x,x′). Using the basis

functions, u(x, t) is reconstructed as

u(x, t) = ū(x) +
M
∑

j=1

αj(t)φj(x) =
M
∑

j=0

αj(t)φj(x), (4.3)

where the zeroth basis function φ0(x) is the mean ū(x) and α0(t) ≡ 1.

Method of snapshots

A popular technique for finding eigenvalues and eigenvectors of Equation (1.6) is

the method of snapshots proposed by Sirovich.7 The method of snapshots is efficient

when the resolution of the spatial domain N is higher than the number of snapshots

M . The method of snapshots is based on the fact that the data vectors ui and the
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eigenvectors φk are spanning the same linear space.24 As a result, the eigenvectors

can be written as a linear combination of the data vectors

φk =
M
∑

i=1

vki ui, k ∈ [1,M ]. (4.4)

If (4.4) is introduced in the eigenvalue problem R(x,x′)φ(x) = λφ(x′) we obtain7

Cv = λv, (4.5)

where vk = (vk1 , v
k
2 , . . . , v

k
M) is the kth eigenvector of (4.5); C is a symmetric M ×M

matrix defined by7

Cij =
1

M
(u′(x, ti), u

′(x, tj)) . (4.6)

Thus the eigenvectors of the N ×N matrix R are calculated by computing the eigen-

vectors of theM×M matrix C. In this study, a code due to Paul Cizmas and Antonio

Palacios is used to perform POD using the method of snapshots.

C. Galerkin Projection

The eigenvalues are ordered such that λ1 ≥ λ2 ≥ · · · ≥ λM ≥ 0. The basis functions

are also ordered according to their corresponding eigenvalues. If most of the energy

is contained in the first m (m < M) POD modes, such that
∑m

j=1 λj '
∑M

j=1 λj, it is

reasonable to approximate u′(x, t) using the first m POD modes:

u(x, t) ' ū(x) +
m
∑

j=1

αj(t)φj(x) =
m
∑

j=0

αj(t)φj(x). (4.7)

Let us substitute the approximation of u(x, t) given by equation (4.7) into the

governing equation (4.1),

m
∑

j=1

dαj(t)

dt
φj(x) = D(

m
∑

j=0

αj(t)φj(x)). (4.8)
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When equation (4.8) is projected along the basis function, φk(x),

(

φk,
m
∑

j=1

dαj(t)

dt
φj(x)

)

=

(

φk, D(
m
∑

j=0

αj(t)φj(x))

)

, (4.9)

we obtain the ordinary differential equations,

dαk
dt

= Fk(α1, . . . , αm), k ∈ [1,m], (4.10)

where the unknowns are the time coefficients αk(t), k ∈ [1,m]. When deriving equa-

tion (4.10) from equation (4.9), we have used the orthonormal property of the basis

functions,

(φk, φj) = δkj =











1 if k = j

0 if k 6= j
.

Order reduction has been achieved by (1) replacing the PDEs (4.1) by a system

of ODEs (4.10), and (2) reducing the number of equations from N to m. The ODEs

(4.10) can be integrated using appropriate ODE solvers, e.g., the fourth-order Runge-

Kutta method to predict the time history of αj, j ∈ [1,m]. With the time coefficients

obtained from the ODEs (4.10), u(x, t) can be reconstructed using the approximation

(4.7). We can also obtain the values of αj by directly projecting the database onto

the jth basis function,

αPODj (tk) = (φj(x), u
′(x, tk)) , j ∈ [1,m], k ∈ [1,M ]. (4.11)

αPOD can be used as reference to examine the accuracy of the POD-based ROM at

the reference condition.
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D. Summary

This chapter presented the general methodology for generating the POD-based ROMs.

The governing equation (4.1) was used to illustrate this methodology. The POD-based

ROM generated in this chapter consists of a system of ODEs.
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CHAPTER V

REDUCED ORDER MODELS BASED ON PROPER ORTHOGONAL

DECOMPOSITION FOR TRANSPORT PHENOMENA

This chapter describes the POD-based ROMs generated to approximate the transport

equations (2.1)-(2.4). Two catalogs of POD-based ROMs have been generated. The

first catalog includes two POD-based ROMs constructed for gas-only flow phenomena.

The second catalog includes one POD-based ROM constructed for gas-solid transport

phenomena. These POD-based ROMs are derived from the discretized governing

equations described in Section III.B.

A. Reduced order models based on proper orthogonal decomposition for gas-only

flow phenomena

For a two-dimensional gas-only flow problem, MFIX solves the gas x-momentum

equation (3.4), the gas y-momentum equation (3.5), and the gas pressure correction

equation (3.6). For gas-only flow problems, εg ≡ 1, εs ≡ 0, and Fgs ≡ 0. The

dependent field variables are the gas pressure pg and the gas velocities ug and vg.

When describing the POD-based ROMs for gas-only flows, the subscript g is dropped

for convenience. Table I lists the features of the two POD-based ROMs generated for

gas-only flows.

1. ODExMFIX

ODExMFIX is a POD-based ROM generated to model gas-only flows. ODExMFIX

is derived from the discretized momentum equations (3.4), (3.5) and the gas pressure

correction equation (3.6). The discretized momentum equations and the gas pressure
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Table I. Reduced order models for gas-only flows

Model Governing Equations Unknowns of the ODEs

ODExMFIX x-momentum balance αu, αv, αp

y-momentum balance

pressure correction

ODEx3 x-momentum balance αu, αv, αρ

y-momentum balance

mass balance

correction equation are rearranged as

aupup −
∑

nb

aunbunb = bup −∆y(pE − pW ), (5.1)

avpvp −
∑

nb

avnbvnb = bvp −∆x(pN − pS), (5.2)

apPp
′

P −
∑

nb

apnbp
′

nb = bpP . (5.3)

In ODExMFIX, p, u, and v are approximated using the POD basis functions as

u(x, t) = ū(x) + u′(x, t) ∼= φu0(x) +
mu
∑

i=1

αui (t)φ
u
i (x), (5.4)

v(x, t) = v̄(x) + v′(x, t) ∼= φv0(x) +
mv
∑

i=1

αvi (t)φ
v
i (x), (5.5)

p(x, t) ∼= φp0(x) +
mp
∑

i=1

αpi (t)φ
p
i (x). (5.6)
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where mu, mv, and mp are the number of POD modes used to approximate u, v, and

p, respectively. The correction of the pressure, p′, is approximated as

p′(x, t) ∼=
mp
∑

i=1

(αpi )
′(t)φpi (x). (5.7)

Substituting the approximations of u, v, and p′ given by (5.4), (5.5), and (5.7) into

equations (5.1), (5.2), and (5.3), respectively, yields

aup

mu
∑

i=0

αui φ
u
i −

∑

nb

aunb

mu
∑

i=0

αui φ
u
i,nb = bup −∆y(pE − pW ), (5.8)

avp

mv
∑

i=0

αvi φ
v
i −

∑

nb

avnb

mv
∑

i=0

αvi φ
v
i,nb = bvp −∆x(pN − pS), (5.9)

apP

mp
∑

i=1

(αpi )
′φpi −

∑

nb

apnb

mp
∑

i=1

(αpi )
′φpi,nb = bpP . (5.10)

Projecting equations (5.8), (5.9), and (5.10) onto the basis functions φuk , φ
v
k, and φpk,

respectively, generates three systems of linear equations:

Ãuαu = B̃u, (5.11)

Ãvαv = B̃v, (5.12)

Ãpαp = B̃p, (5.13)

where

Ãu
ij =

(

(aupφ
u
j −

∑

nb

aunbφ
u
j,nb), φ

u
i

)

,

B̃ui =

(

[bup −∆y(pE − pW )− (aupφ
u
0 −

∑

nb

aunbφ
u
0,nb)], φ

u
i

)

,

Ãv
ij =

(

(avpφ
v
j −

∑

nb

avnbφ
v
j,nb), φ

v
i

)

,
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B̃vi =

(

[bvp −∆x(pN − pS)− (avpφ
v
0 −

∑

nb

avnbφ
v
0,nb)], φ

v
i

)

,

Ãp
ij =

(

(appφ
p
j −

∑

nb

apnbφ
p
j,nb), φ

p
i

)

,

B̃pi =
(

bpp, φ
p
i

)

.

Herein the dimensions of Ãu, Ãv and Ãp are mu × mu, mv × mv, and mp × mp,

respectively. The dimensions of B̃u, B̃v and B̃p are mu × 1, mv × 1, and mp × 1,

respectively. These matrices are calculated using the field variables from the previous

iteration. The systems of linear equations (5.11), (5.12), and (5.13) are solved using

the LU decomposition method.

ODExMFIX uses an iterative algorithm which is similar to the algorithm used

in MFIX. An outline of the solution algorithm in ODExMFIX is given below:

• Using the time coefficients from the previous iteration, reconstruct the field

variables p, u and v. For compressible flows, calculate the density ρ using the

ideal gas law.

• Solve the system of linear equations (5.11) and obtain the tentative values of

αui (t), i ∈ [1,mu]. The values are called tentative values because they are

calculated based on the previous pressure field and they will be corrected based

on the pressure correction.

• Solve the system of linear equations (5.12) and obtain the tentative values of

αvi (t), i ∈ [1,mv].

• Solve the system of linear equations (5.13) and obtain (αpi )
′(t), i ∈ [1,mp].

• Correct the time coefficients of p, u and v.

• Check the convergence. If converged, advance to the next time step.
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The input data for ODExMFIX are the basis functions of the velocities and the

pressure. The solutions of ODExMFIX are αui , i ∈ [1,mu], αvi , i ∈ [1,mv], and αpi ,

i ∈ [1,mp]. An example of the input file of ODExMFIX is presented in Appendix C.

2. ODEx3

ODEx3 is a POD-based ROM generated to model compressible gas flows. ODEx3 is

derived from the discretized gas mass equation (3.3) and the discretized gas momen-

tum equations (3.4) and (3.5). For gas-only flows the dependent variables in MFIX

are the pressure p and the velocities u and v. The density field is calculated from

the pressure field using the ideal gas law (2.5). ρ is approximated using the basis

functions φρi , i ∈ [1,mρ] as

ρ ∼= φρ0 +
mρ
∑

i=1

αρi (t)φ
ρ
i . (5.14)

Consequently, the pressure p is approximated as

p ∼= RT

Mw

(

φρ0 +
mρ
∑

i=1

αρi (t)φ
ρ
i

)

. (5.15)

Using equations (3.3a)-(3.3f), the discretized gas mass equation (3.3) is rear-

ranged as

∆V · ρP − ρoP
∆t

= −(ξeρE + ξ̄eρP )ue∆y + (ξwρP + ξ̄wρW )uw∆y

−(ξnρN + ξ̄nρP )vn∆x+ (ξsρP + ξ̄sρS)vs∆x, (5.16)

where ∆y = Ae = Aw and ∆x = An = As for two-dimensional flows. Replacing

ρP−ρ
o
P

∆t
by ∂ρ

∂t
and substituting the approximations given by (5.4), (5.5), and (5.14)
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into equation (5.16), one obtains

∆V
mρ
∑

i=1

α̇ρiφ
ρ
i = −

mρ
∑

i=0

mu
∑

j=0

(ξeφ
ρ
i,E + ξ̄eφ

ρ
i )φ

u
j · αρiαuj +

+
mρ
∑

i=0

mu
∑

j=0

(ξwφ
ρ
i + ξ̄wφ

ρ
i,W )φuj,w · αρiαuj −

−
mρ
∑

i=0

mv
∑

j=0

(ξnφ
ρ
i,N + ξ̄nφ

ρ
i )φ

v
j · αρiαvj +

+
mρ
∑

i=0

mv
∑

j=0

(ξsφ
ρ
i + ξ̄sφ

ρ
i,S)φ

v
j,s · αρiαvj . (5.17)

Projecting equation (5.17) onto the basis functions φρk, k ∈ [1,mρ], generates mρ

ODEs with the form of

Ǎρ
kkα̇

ρ
k =

mρ
∑

i=0

mu
∑

j=0

F̌ρ
kijα

ρ
iα

u
j +

mρ
∑

i=0

mv
∑

j=0

Ǧρkijα
ρ
iα

v
j , (5.18)

where

Ǎρ
ij = δij ·∆V,

F̌ρ
kij = −

(

(ξeφ
ρ
i,E + ξ̄eφ

ρ
i )φ

u
j , φ

ρ
k

)

+
(

(ξwφ
ρ
i + ξ̄wφ

ρ
i,W )φuj,w, φ

ρ
k

)

,

Ǧρkij = −
(

(ξnφ
ρ
i,N + ξ̄nφ

ρ
i )φ

v
j , φ

ρ
k

)

+
(

(ξsφ
ρ
i + ξ̄sφ

ρ
i,S)φ

v
j,s, φ

ρ
k

)

.

For compressible gas flows, the discretized momentum equations are

aupup =
∑

nb

aunbunb + bup −∆y(pE − pW ), (5.19)

avpvp =
∑

nb

avnbvnb + bvp −∆x(pN − pS). (5.20)

Substituting equations (3.4e)-(3.4g) into equation (5.19) and substituting equations (3.5e)-

(3.5g) into equation (5.20) yields

(

∑

nb

aunb +
ρop∆V

∆t

)

up =
∑

nb

aunbunb +
ρop∆V

∆t
uop + Su −∆y(pE − pW ), (5.21)
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(

∑

nb

avnb +
ρop∆V

∆t

)

vp =
∑

nb

avnbvnb+
ρop∆V

∆t
vop− ρpg∆V +Sv−∆x(pN − pS). (5.22)

Equations (5.21) and (5.22) are rearranged as

ρop∆V
up − uop

∆t
=
∑

nb

aunb(unb − up) + Su −∆y(pE − pW ), (5.23)

ρop∆V
vp − vop
∆t

=
∑

nb

avnb(vnb − vp)− ρpg∆V + Sv −∆x(pN − pS). (5.24)

Replacing
up−u

o
p

∆t
and

vp−v
o
p

∆t
by ∂up

∂t
and ∂vp

∂t
, respectively, yields

ρop∆V
∂up
∂t

=
∑

nb

aunb(unb − up) + Su −∆y(pE − pW ), (5.25)

ρop∆V
∂vp
∂t

=
∑

nb

avnb(vnb − vp)− ρpg∆V + Sv −∆x(pN − pS). (5.26)

Substituting the approximations of u, v, ρ and p given by equations (5.4), (5.5),

(5.14), and (5.15) and the definitions of aunb and avnb given by equations (3.4a)-(3.4d)
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and equations (3.5a)-(3.5d) into equations (5.25) and (5.26), yields

ρop∆V ·
mu
∑

i=1

α̇ui φ
u
i = −

mρ
∑

i=0

mu
∑

j=0

mu
∑

k=0

ξuEφ
ρ
i,eφ

u
k,E(φ

u
j,e − φuj )∆yα

ρ
iα

u
jα

u
k

+
mρ
∑

i=0

mu
∑

j=0

mu
∑

k=0

ξ̄uWφ
ρ
i,wφ

u
k,W (φuj,w − φuj )∆yα

ρ
iα

u
jα

u
k

−
mρ
∑

i=0

mu
∑

j=0

mv
∑

k=0

ξuNφ
ρ
i,nφ

v
k,N(φ

u
j,n − φuj )∆xα

ρ
iα

u
jα

v
k

+
mρ
∑

i=0

mu
∑

j=0

mv
∑

k=0

ξ̄uSφ
ρ
i,sφ

v
k,S(φ

u
j,s − φuj )∆xα

ρ
iα

u
jα

v
k

+
mu
∑

i=0

µE∆y

∆x
(φui,e − φui )α

u
i +

mu
∑

i=0

µW∆y

∆x
(φui,w − φui )α

u
i

+
mu
∑

i=0

µN∆x

∆y
(φui,n − φui )α

u
i +

mu
∑

i=0

µS∆x

∆y
(φui,s − φui )α

u
i

+Su −∆y
RT

Mw

mρ
∑

i=0

(φρi,E − φρi,W )αρi , (5.27)
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ρop∆V ·
mv
∑

i=1

α̇vi φ
v
i = −

mρ
∑

i=0

mu
∑

j=0

mv
∑

k=0

ξvEφ
ρ
i,eφ

u
j,E(φ

v
k,e − φvk)∆yα

ρ
iα

u
jα

v
k

+
mρ
∑

i=0

mu
∑

j=0

mv
∑

k=0

ξ̄vWφ
ρ
i,wφ

u
j,W (φvk,w − φvk)∆yα

ρ
iα

u
jα

v
k

−
mρ
∑

i=0

mv
∑

j=0

mv
∑

k=0

ξvNφ
ρ
i,nφ

v
j,N(φ

v
k,n − φvk)∆xα

p
iα

v
jα

v
k

+
mρ
∑

i=0

mv
∑

j=0

mv
∑

k=0

ξ̄vSφ
ρ
i,sφ

v
j,S(φ

v
k,s − φvk)∆xα

ρ
iα

v
jα

v
k

+
mv
∑

i=0

µE∆y

∆x
(φvi,e − φvi )α

v
i +

mv
∑

i=0

µW∆y

∆x
(φvi,w − φvi )α

v
i

+
mv
∑

i=0

µN∆x

∆y
(φvi,n − φvi )α

v
i +

mv
∑

i=0

µS∆x

∆y
(φvi,s − φvi )α

v
i

+Sv − g∆V
mρ
∑

i=0

φρiα
ρ
i −∆x

RT

Mw

mρ
∑

i=0

(φρi,N − φρi,S)α
ρ
i . (5.28)

Project (5.27) onto the basis function φul , l ∈ [1,mu] and obtain mu ODEs

Ǎu
llα̇

u
l =

mρ
∑

i=0

mu
∑

j=0

mu
∑

k=0

F̌u
lijkα

ρ
iα

u
jα

u
k +

mρ
∑

i=0

mu
∑

j=0

mv
∑

k=0

Ǧulijkαρiαujαvk +

+
mu
∑

i=0

Ȟu
liα

u
i +

mρ
∑

i=0

P̌u
liα

ρ
i + Šul , (5.29)

where

Ǎu
ij = δij ·

(

ρopφ
u
j∆V, φ

u
i

)

,

F̌u
lijk =

(

[−ξuEφρi,eφuk,E(φuj,e − φuj )∆y + ξ̄uWφ
ρ
i,wφ

u
k,W (φuj,w − φuj )∆y], φ

u
l

)

,

Ǧulijk =
(

[−ξuNφρi,nφvk,N(φuj,n − φuj )∆x+ ξ̄uSφ
ρ
i,sφ

v
k,S(φ

u
j,s − φuj )∆x], φ

u
l

)

,

Ȟu
li =

(

µE∆y

∆x
(φui,e − φui ), φ

u
l

)

+

(

µW∆y

∆x
(φui,w − φui ), φ

u
l

)

+

(

µN∆x

∆y
(φui,n − φui ), φ

u
l

)

+

(

µS∆x

∆y
(φui,s − φui ), φ

u
l

)

,
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P̌u
li = −

RT

Mw

∆y
(

(φρi,E − φρi,W ), φul
)

,

Šul = (Su, φul ) .

Project (5.28) onto the basis function φvl , l ∈ [1,mv] and obtain mv ODEs

Ǎv
llα̇

v
l =

mρ
∑

i=0

mu
∑

j=0

mv
∑

k=0

F̌v
lijkα

ρ
iα

u
jα

v
k +

mρ
∑

i=0

mv
∑

j=0

mv
∑

k=0

Ǧvlijkαρiαvjαvk +

+
mv
∑

i=0

Ȟv
liα

v
i +

mρ
∑

i=0

P̌v
liα

ρ
i +

mρ
∑

i=0

M̌v
liα

ρ
i + Švl , (5.30)

where

Ǎv
ij = δij ·

(

ρopφ
v
j∆V, φ

v
i

)

,

F̌v
lijk =

(

[−ξvEφρi,eφuj,E(φvk,e − φvk)∆y + ξ̄vWφ
ρ
i,wφ

u
j,W (φvk,w − φvk)∆y], φ

u
l

)

,

Ǧulijk =
(

[−ξvNφρi,nφvj,N(φvk,n − φvk)∆x+ ξ̄vSφ
ρ
i,sφ

v
j,S(φ

v
k,s − φvk)∆x], φ

v
l

)

,

Ȟu
li =

(

µE∆y

∆x
(φvi,e − φvi ), φ

v
l

)

+

(

µW∆y

∆x
(φvi,w − φvi ), φ

v
l

)

+

(

µN∆x

∆y
(φvi,n − φvi ), φ

v
l

)

+

(

µS∆x

∆y
(φvi,s − φvi ), φ

v
l

)

,

P̌v
li = −

RT

Mw

∆x
(

(φρi,N − φρi,S), φ
v
l

)

,

M̌v
li = −g∆V (φρi , φ

v
l ) ,

Švl = (Sv, φvl ) .

ODEx3 consists of mρ ODEs (5.18), mu ODEs (5.29), and mv ODEs (5.30). The

input data of ODEx3 are the basis functions of ρ, u, and v. The solutions of ODEx3

are αρi , i ∈ [1,mρ], αui , i ∈ [1,mu], and αvi , i ∈ [1,mv]. An example of the input file

of ODEx3 is presented in Appendix D.
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B. Reduced order model based on proper orthogonal decomposition for gas-solid

transport phenomena

For two-dimensional gas-solid transport phenomena, MFIX solves the discretized x-

momentum equations of the gas-phase and the solid-phase (3.4), the discretized y-

momentum equations of the gas-phase and the solid-phase (3.5), the gas pressure

correction equation (3.6), and the solid volume fraction correction equation (3.11).

The dependent field variables in MFIX are the gas pressure pg, the void fraction εg,

and the velocity components of the gas-phase and the solid-phase, ug, vg, us, and vs.

Let us assume that the database containing a number of snapshots of pg, εg, ug,

us, vg, and vs has been generated and the POD basis functions φ
pg
i , φ

ug
i , φ

vg
i , φusi , and

φvsi have been extracted from this database. Herein the POD basis functions of εg are

not computed, because in MFIX, an intermediate variable, the solid volume fraction

εs is introduced and the solid volume fraction correction equation (3.11) is used to

solve the corrections of εs. εg is computed from εs as

εg = 1− εs. (5.31)

In this thesis, the POD-based ROM generated to model the gas-solid transport phe-

nomena is called ODExS. In ODExS, the solid volume fraction εs is also introduced

as an intermediate variable. ODExS uses the same solid volume fraction correction

equation as used in MFIX. Thus we call ODExS a hybrid model, because the order

of the solid volume fraction correction equation has not been reduced in ODExS.

Another reason for keeping the solid volume fraction correction equation in

ODExS is that void fraction εg should belong to [0, 1]. If εg was approximated using

the POD basis functions of φεg , at some grid points, the reconstructed void fraction

values were larger than 1 because of the approximation using POD basis functions.
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Using the approach presented for constructing ODExMFIX, the discretized x-

momentum equations, the discretized y-momentum equations, and the discretized gas

pressure correction equation are projected onto the basis functions φum , φvm , and φpg ,

respectively. Five systems of linear algebraic equations are obtained:

Ãumαum = B̃um , (5.32)

Ãvmαvm = B̃vm , (5.33)

Ãpgαpg = B̃pg , (5.34)

where m denotes the phase g or s. The definitions of Ã and B̃ were presented in

Section A.1.

The input data of ODExS consist of φ
pg
i , φ

ug
i , φ

vg
i , φusi , φvsi , and the initial field

of εg. The solutions of ODExS include α
pg
i , α

ug
i , α

vg
i , αusi , αvsi , and εg. An outline of

the solution algorithm in ODExS is described below:

• Using the time coefficients from the previous iteration, reconstruct the field vari-

ables pg, ug, vg, us, and vs. Calculate physical properties ρg and ρs. Calculate

transport properties µg, µs, and Fgs.

• Solve the systems of linear algebraic equations (5.32) and obtain the tentative

values of α
ug
i (t), i ∈ [1,mug ] and αusi (t), i ∈ [1,mus ].

• Solve the systems of linear algebraic equations (5.33) and obtain the tentative

values of α
vg
i (t), i ∈ [1,mvg ] and αvsi (t), i ∈ [1,mvs ].

• Solve the system of linear equations (5.34) and obtain (α
pg
i )′(t), i ∈ [1,mp].

• Correct α
ug
i , αusi , α

vg
i , αvsi , and α

pg
i .
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• Solve the solid volume fraction correction equation (3.11) and obtain (εs)
′. Cor-

rect εs, α
us
i , and αvsi .

• Calculate the void fraction using equation (5.31).

• Check the convergence. If converged, advance to the next time step.

An example of the input file for ODExS is presented in Appendix E.

C. Summary

This chapter described the POD-based ROMs generated for the transport phenomena

in fluidized beds. Two models for gas-only flows and one model for gas-solid transport

phenomena have been presented.
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CHAPTER VI

ACCURACY OF REDUCED ORDER MODELS BASED ON PROPER

ORTHOGONAL DECOMPOSITION

The proper orthogonal decomposition extracts a set of orthonormal basis functions

from a given ensemble of observations. The errors contained in these observations

inevitably affect the accuracy of the POD-based ROMs. In this chapter, the accu-

racy of the POD-based ROMs is analyzed. In order to measure the accuracy, it is

better to use some governing equations whose analytical solutions are known. Thus,

in this chapter, the accuracy analysis is based on two simple sets of PDEs: a non-

homogeneous Burgers’ equation and a system of two coupled Burgers’ equations.

While the Burgers’ equation is a significantly simplified model of the transport equa-

tions, it is suitable for investigating the properties of the POD-based ROMs applied

to the transport phenomena.

A. Non-homogeneous Burgers’ Equation

Consider the non-homogeneous Burgers’ equation

∂u(x, t)

∂t
+ u(x, t) · ∂u(x, t)

∂x
= f(x, t), (6.1)

where u(x, t) is the dependent variable and

f(x, t) = 0.5 sin(πx) sin(t)− 0.2 sin(2πx) sin(2t) + 0.1 sin(5πx) sin(5t) +

+ (x− 0.5 sin(πx) cos(t) + 0.1 sin(2πx) cos(2t)− 0.02 sin(5πx) cos(5t)) ∗

∗ (1− 0.5π cos(πx) cos(t) + 0.2π cos(2πx) cos(2t)− 0.1π cos(5πx) cos(5t)).
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Equation (6.1) satisfies the following boundary conditions

u(0, t) = 0,

u(1, t) = 1

and the initial condition

u(x, 0) = x− 0.5 sin(πx) + 0.1 sin(2πx)− 0.02 sin(5πx).

The non-homogeneous term f(x, t) has been chosen such that the analytical solution

of equation (6.1) is

uanalytic(x, t) = x− 0.5 sin(πx) cos(t) + 0.1 sin(2πx) cos(2t)− 0.02 sin(5πx) cos(5t).

(6.2)

1. Database Generation

To generate a database for equation (6.1), we need to obtain a solution of equation

(6.1). In general, an analytical solution may not be available for equation (6.1). For

this reason, a numerical solution must be obtained.

To generate a numerical solution for equation (6.1), let us discretize the spatial

domain [0, 1] using a mesh with 100 cells of constant length ∆x. If the spatial deriva-

tive ∂u
∂x

is approximated using a centered, second-order discretization, at each node i

in the spatial domain, the PDE (6.1) can be converted into a pseudo-ODE

dui
dt

= −ui
ui+1 − ui−1

2∆x
+ f(xi, t), i ∈ [1, N ], (6.3)

where N = 99. By using this approach, the numerical solution of the PDE has been

replaced by the numerical solution of a set of N first-order ODEs. Consequently, the

order of that system is N .
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The LSODI package due to Jeffrey F. Painter and Alan C. Hindmarsh is used to

solve the system of ODEs (6.3). The system of ODEs (6.3) is integrated from t = 0s

to t = 50s. Snapshots are stored every ∆t = 0.1s. Thus there are M = 501 snapshots

in the numerical solution of PDE (6.1).

In order to analyze how the numerical errors contained in the databases influence

the accuracy of the POD-based ROMs, the system of ODEs (6.3) has been solved

at four different accuracy levels. In the LSODI package, the accuracy is controlled

by specifying the relative tolerance parameter rtol and/or the absolute tolerance

parameter atol. The convergence criteria in the LSODI package is

√

√

√

√

1

N

N
∑

i=1

(

u(j)(xi, tk)− u(j−1)(xi, tk)

rtol · |u(j)(xi, tk)|+ atol

)2

< 1, (6.4)

where u(j)(xi, tk) and u
(j−1)(xi, tk) denote u(xi, tk) at current iteration j and previous

iteration j−1, respectively. Herein the absolute tolerance parameter atol was zero for

pure relative error control and the four rtol values corresponding to the four accuracy

levels were 0.01%, 0.3%, 5%, and 50%, respectively.

Because equation (6.4) and rtol are not straightforward for measuring the nu-

merical errors contained in the databases, let us define an error ε as

ε =
|LHS− RHS|
√

LHS2 +RHS2
, (6.5)

where LHS and RHS are the left-hand-side and right-hand-side of equation (6.3).

The errors corresponding to above four relative tolerance levels were 0.78%, 4.80%,

17.3% and 30.5%, respectively. The errors ε were averaged in space and time, and

the spatial and temporal average error is ε̄. Herein, the time interval was 50s. Let

us use DB
(ε̄)
N to denote the database corresponding to the error of ε̄. u

(ε̄)
N,PDE(x, ti)

represents the ith snapshot in DB
(ε̄)
N .
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Additionally, because the analytical solution of the PDE (6.1) is known, a database

called DBA has been generated. The subscript A indicates that the snapshots in DBA

are calculated from the analytical solution (6.2). The kth component of the ith snap-

shot in DBA is

uA(xk, ti) = uanalytical(xk, ti) = uanalytical(k∆x, i∆t),

where i ∈ [1,M ] and k ∈ [1, N ].

2. Modal Decomposition

We decompose the dependent variable u(x, t) into the mean ū(x) and the fluctuation

u′(x, t):

u(x, ti) = ū(x) + u′(x, ti), i ∈ [1,M ].

POD is applied to the fluctuation u′(x, ti) to extract the basis functions.

There are two options for computing the basis functions. The first option is to

use the method described in Section I.B.2 to directly extract the eigenfunctions of

the tensor product matrix R. R is a N ×N matrix given by

Rij =
1

M

M
∑

k=1

u′(xi, tk)u
′T (xj, tk), i, j ∈ [1, N ].

Another option for computing the POD basis functions is to use the method of snap-

shots presented in Section IV.B. The kernel matrix C is computed as

Cij =
1

M

N
∑

k=1

u′(xk, ti)u
′T (xk, tj), i, j ∈ [1,M ],

and C is a M ×M matrix. In general, N À M , the method of snapshots is more

computational efficient. Since in this case, N = 99 andM = 501, it is computationally

more efficient to use the first option to compute the basis functions. Herein, we still
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used the method of snapshots. The PODDEC package due to Paul Cizmas and

Antonio Palacios has been applied.

Let us denote the ith basis functions obtained from DBA and DB
(ε̄)
N by φiA

and φ
(ε̄)
iN
, respectively. Note that the PODDEC package also produces a set of time

coefficients α(t) by directly projecting the snapshots onto the basis functions. We use

αiA,POD
and α

(ε̄)
iN,POD

to denote such time coefficients obtained from DBA and DB
(ε̄)
N ,

respectively.

3. Galerkin Projection

Using the basis functions, the dependent variable u(x, t) is approximated using the

first m basis functions:

u(x, t) = ū(x) + u′(x, t) ∼= ū(x) +
m
∑

i=1

αi(t)φi(x) =
m
∑

i=0

αi(t)φi(x), (6.6)

where φ0(x) = ū(x) and α0(t) ≡ 1. The total number of basis functions M is equal

to the number of snapshots, i.e., M = 501. Substituting the approximation of u(x, t)

given by (6.6) into the Burgers’ equation (6.1), yields:

m
∑

i=1

dαi(t)

dt
φi(x) +

m
∑

i=0

m
∑

j=0

αi(t)αj(t)φi(x)
dφj(x)

dx
= f(x, t), (6.7)

where
dφj(x)

dx
is calculated using the centered, second-order discretization. Projecting

equation (6.7) onto the basis functions φk(x),

m
∑

i=1

dαi
dt

(φi, φk) = −
m
∑

i=0

m
∑

j=0

αiαj

(

φi
dφj
dx

, φk

)

+ (f, φk) , k ∈ [1,m], (6.8)

generates a system of first-order ODEs

dαk
dt

= −
m
∑

i=0

m
∑

j=0

αiαj

(

φi
dφj
dx

, φk

)

+ (f, φk) , k ∈ [1,m]. (6.9)
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The unknowns of the ODEs (6.9) are the time coefficients αi(t), i ∈ [1,m]. Order

reduction is achieved if m¿ N . Herein the LSODI package is also used to solve the

reduced order system of ODEs (6.9). After solving the time coefficients α(t) from the

ODEs (6.9), u(x, t) is reconstructed using the approximation given by (6.6).

Let us use αiA,ROM
and α

(ε̄)
iN,ROM

to denote the solutions of ODEs (6.9) using φiA

and φ
(ε̄)
iN
, respectively. The reconstructed u are represented by uA,ROM and u

(ε̄)
N,ROM .

4. Accuracy Analysis

Because the analytical solution of the Burgers’ equation (6.1) is given by (6.2), the

analytical expressions of the basis functions and their corresponding time coefficients

can be derived. These analytical expressions are used as references for the accuracy

analyzing.

Here the analytical expressions of the basis functions and time coefficients are

derived in the discretized spatial domain. The spatial domain was discretized into

N + 1 uniform cells with ∆x = 1
N+1

. The analytical expression of the zeroth basis

function is found as

φ0analytical(x) = ūanalytical(x) = lim
T→∞

∫ T

0

uanalytical(x, t) = x. (6.10)

Consequently,

u′analytical(x, t) = −0.5 sin(πx) cos(t) + 0.1 sin(2πx) cos(2t)− 0.02 sin(5πx) cos(5t).

(6.11)

Note that
N
∑

n=1

sin(iπn∆x) sin(jπn∆x) =











0 if i 6= j

1
2∆x

if i = j
, (6.12)

thus {±
√
2∆x sin(iπx)} forms an orthonormal basis in the discretized spatial domain.
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Herein, we chose the {−
√
2∆x sin(iπx)} to form the basis in order to compare to the

numerical basis functions obtained from the PODDEC package. The expression (6.11)

implies that u′analytical consists of three modes. The analytical expressions of these

basis functions and their corresponding time coefficients are listed below:

φ0analytical(x) = x, α0analytical(t) = 1,

φ1analytical(x) = −
√
2∆x sin(πx), α1analytical(t) = 0.5 cos(t)/

√
2∆x,

φ2analytical(x) = −
√
2∆x sin(2πx), α2analytical(t) = −0.1 cos(2t)/

√
2∆x,

φ3analytical(x) = −
√
2∆x sin(5πx), α3analytical(t) = 0.02 cos(5t)/

√
2∆x.

(6.13)

a. Accuracy of basis functions

Using PODDEC, five sets of basis functions have been computed from DBA and

DB
(ε̄)
N . Including the analytical basis functions given by (6.13), six sets of basis

functions are compared in this section. Table II lists these six set of basis functions

and their corresponding databases. In order to measure how well the basis functions

Table II. Six sets of basis functions and corresponding databases

Basis Function Database

φianalytical

φiA DBA

φ
(0.78)
iN

DB
(0.78)
N

φ
(4.80)
iN

DB
(4.80)
N

φ
(17.3)
iN

DB
(17.3)
N

φ
(30.5)
iN

DB
(30.5)
N
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agree with the analytical basis functions, we define an error of the basis function as

ε̄φi =
1
N

∑N

k=1

∣

∣φi(xk)− φianalytical(xk)
∣

∣

∥

∥φianalytical
∥

∥

2

× 100%, (6.14)

where N is the number of components of the basis vectors, which is 99 for the current

case. ε̄φi is normalized using the L2-norm of φianalytical .

• Accuracy of φiA

Table III lists the errors ε̄φi of φiA with respect to φianalytical . These errors are

Table III. Errors of φiA , i ∈ [0, 3]

Basis Functions φ0A φ1A φ2A φ3A

Error 0.0178% 0.0118% 0.0137% 0.0094%

generated by the approximations made while solving the eigenvalue problem using

the PODDEC package. Table III shows that φiA agrees with the analytical basis

functions very well. One can conclude that the errors due to the PODDEC package

are negligible.

• Accuracy of φ(ε̄)iN

Figure 6 shows the first four basis functions of φ
(ε̄)
iN

compared against the ana-

lytical basis functions φianalytical . There is an excellent agreement between φianalytical

and φ
(0.78)
iN

corresponding to ε̄ = 0.78%. φ
(4.80)
0N

, φ
(4.80)
1N

, and φ
(4.80)
2N

corresponding to

ε̄ = 4.80% agree well with the analytical basis functions. Small differences are noticed

between φ
(4.80)
3N

and φ3analytical . When the numerical error ε̄ increases to 17.3%, φ
(17.3)
0N

,

φ
(17.3)
1N

and φ
(17.3)
2N

have slight oscillations around the analytical values and φ
(17.3)
3N

has

obvious differences compared against φ3analytical . For ε = 30.5%, large differences were
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iN

for the Burgers’ equation
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observed between φ
(30.5)
iN

and φianalytical . From the above comparisons, we can conclude

that: (1)the accuracy of φ
(ε̄)
iN

decrease as the numerical error ε̄ increases; and (2) basis

functions that correspond to smaller eigenvalues are more sensitive to the numerical

errors of the databases.

Table IV presents the errors of φ
(ε̄)
iN

with respect to φianalytical . The errors listed

in Table IV consist of the following two components: (1) numerical errors introduced

by the eigenvalue problem solver of the PODDEC package, and (2) numerical errors

due to the database DB
(ε̄)
N . In order to analyze the contribution of the errors of the

database DB
(ε̄)
N , let us compute the errors of φ

(ε̄)
iN

with respect to φiA . Table V lists

these errors. Table V proves that the accuracy of φ
(ε̄)
iN

decreases as ε̄ increases.

Table IV. Errors of φ
(ε̄)
iN

with respect to φianalytical , i ∈ [0, 3]

ε̄ φ0N φ1N φ2N φ3N

0.78% 0.0180% 0.0125% 0.0147% 0.0217%

4.80% 0.0158% 0.0174% 0.0242% 0.2234%

17.3% 0.0741% 0.1376% 0.1818% 1.8900%

30.5% 5.0377% 3.2211% 10.3701% 11.1122%

• Cumulative energy

The effect of the numerical errors of the databases on the basis functions can also

be observed from the cumulative energy spectrum. Table VI shows the cumulative

energy captured by different number of modes used to approximate u′(x, t). Note

that ε̄ = 0.00% represents the database of DBA. For the analytical basis functions,
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Table V. Errors of φ
(ε̄)
iN

with respect to φiA , i ∈ [0, 3]

ε̄ φ0N φ1N φ2N φ3N

0.78% 0.0003% 0.0009% 0.0019% 0.0210%

4.80% 0.0046% 0.0113% 0.0262% 0.2225%

17.3% 0.0752% 0.1325% 0.1711% 1.8903%

30.5% 4.9980% 3.2204% 10.3672% 11.1066%

Table VI. Cumulative energy for the Burgers’ equation

ε̄ 1 mode 2 modes 3 modes 4 modes

Analytical 96.003% 99.846% 100.00% N/A

0.00% 96.005% 99.846% 100.00% 100.00%

0.78% 96.000% 99.845% 99.999% 99.999%

4.80% 95.975% 99.840% 99.997% 99.998%

17.3% 95.639% 99.626% 99.765% 99.855%

30.5% 49.860% 94.681% 97.025% 97.841%

the total energy E is defined as

Eanalytical =

∫ T

0

∫ 1

0

(u′analytical)
2dxdt

and the relative energy captured by the kth mode is defined as

Ekanalytical =
1

Eanalytical

∫ T

0

∫ 1

0

(αkanalyticalφkanalytical)
2dxdt.
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In this analysis, the time interval is T = 50 seconds. For φiN and φiA , the total energy

E is defined as the sum of all the eigenvalues21

E =
M
∑

k=1

λk

and the relative energy captured by the kth mode is defined as

Ek =
λk
E
.

It can be seen from Table VI that as the error ε̄ increases, the cumulative energy

decreases for the same number of modes. For the analytical solution, φ4analytical does

not exist because u′analytical(x, t) consists of only three modes. When ε̄ > 0, the energy

captured by the fourth mode is not zero due to the numerical errors of the databases.

b. Accuracy of time coefficients

Because
∑3

k=1Ekanalytical = 100%, the number of equations is reduced from 99 to 3

by setting m = 3 in ODEs (6.9). The number of equations, however, can be reduced

further to 2 by neglecting the third mode. The third mode can be neglected because

it captures a relatively small portion of the total energy. As shown in Table VI, the

third mode only covers about 0.15% of the total energy when ε̄ < 30.5%. Even for an

error of 30.5%, the energy of the third mode is 2.3% of the total energy and it could

be acceptable to neglect it. In this section, results for both m = 3 and m = 2 are

analyzed. For convenience, ROM(3) and ROM(2) are used to denote the ROM with

m = 3 and m = 2, respectively.

To measure the accuracy of the time coefficients obtained from the ROMs, the
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error of the time coefficients is defined as

ε̄αi =
1
M

∑M

k=1

∣

∣αi(tk)− αianalytical(tk)
∣

∣

√

∑M

k=1 αianalytical(tk)
2

× 100%. (6.15)

Note this error is defined with respect to the analytical time coefficients. In the

following comparisons, some errors were calculated with respect to time coefficients

other than the analytical time coefficients.

• Accuracy of αianalytical,ROM

If the ROM (6.9) is generated using the analytical basis functions φianalytical , the

time coefficients obtained from solving (6.9) are denoted by αianalytical,ROM
. Tables VII

Table VII. Errors of αianalytical,ROM(3)

Time coefficients α1analytical,ROM(3)
α2analytical,ROM(3)

α3analytical,ROM(3)

Error 0.0006% 0.0037% 0.0179%

Table VIII. Errors of αianalytical,ROM(2)

Time coefficients α1analytical,ROM(2)
α2analytical,ROM(2)

Error 0.0174% 0.1753%

and VIII present the errors ε̄αi of αianalytical,ROM
with respect to αianalytical for ROM(3)

and ROM(2), respectively. In Table VII, the errors are generated by solving the

ODEs (6.9). As seen from Table VII, the errors caused by solving the ODEs (6.9) are

negligible. In Table VIII, the errors are generated by two sources: solving the ODEs

(6.9) and neglecting the third mode. The errors caused by neglecting the third mode

are also negligible.
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• Accuracy of αiA,ROM

If the ROM is generated using the basis functions of φiA , the time coefficients

obtained from the ODEs (6.9) are called αiA,ROM
. Tables IX and X present the

errors ε̄αi of αiA,ROM
with respect to αianalytical . Compared to the errors in Tables VII

Table IX. Errors of αiA,ROM(3)
with respect to αianalytical

Time coefficients α1A,ROM(3)
α2A,ROM(3)

α3A,ROM(3)

Error 0.0202% 0.0277% 0.0201%

Table X. Errors of αiA,ROM(2)
with respect to αianalytical

Time coefficients α1A,ROM(2)
α2A,ROM(2)

Error 0.0224% 0.1775%

and VIII, the errors in Tables IX and X increased. The error increase is caused by the

errors contained in the basis functions φiA . The errors in φiA are due to the numerical

errors introduced by the eigenvalue problem solver of the PODDEC package.

• Accuracy of α(ε̄)
iN,ROM

If the ROM is generated using the basis functions of φ
(ε̄)
iN
, the time coefficients

obtained from the ODEs (6.9) are called α
(ε̄)
iN,ROM

. Figures 7, 8 and 9 show the results

of α
(ε̄)
iN,ROM

compared against the analytical time coefficients.

As shown in Figure 7, when the error ε̄ is as small as 0.78%, the time coefficients

obtained from ROM(3) agree very well with the analytical time coefficients. ROM(2)

shows slight errors in α
(0.78)
2N,ROM

(t). Similar results are obtained for the case with an
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error ε̄ of 4.8%. This proves that the ROMs provide a high accuracy approximation

for the Burgers’ equation with a dramatical reduction of order if a set of well-resolved

basis functions is used. Figure 8 shows the results corresponding to ε̄ = 17.3%.

Differences between the analytical time coefficients and time coefficients from ROMs

are noticed, especially for the third time coefficient. The results corresponding to

ε̄ = 30.5% are shown in Figure 9. At this error level, the time coefficients obtained

from ROMs show large errors compared against the analytical time coefficients.

Table XI presents the errors ε̄αi of α
ε̄
iN,ROM

with respect to αianalytical . In Table XI,

the errors of αε̄iN,ROM(3)
consists of three components: (1) numerical errors due to the

database DB ε̄
N ; (2) errors due to the eigenvalue problem solver of the PODDEC

package; and (3) errors due to the ODE solver. The errors of αε̄iN,ROM(2)
have an

additional error source due to neglecting of the third mode. In order to analyze how

the errors of the databases affect the accuracy, we calculated the errors of αε̄iN,ROM

with respect to αiA,ROM
. Table XII presents these errors. Table XII shows that

Table XI. Errors of αε̄iN,ROM
with respect to αianalytical , i ∈ [0, 3]

ε̄ αε̄1N,ROM(3)
αε̄2N,ROM(3)

αε̄3N,ROM(3)
αε̄1N,ROM(2)

αε̄2N,ROM(2)

0.78% 0.0206% 0.0288% 0.0234% 0.0226% 0.1778%

4.80% 0.0181% 0.0473% 0.1478% 0.0221% 0.1797%

17.3% 0.0288% 0.2490% 1.6055% 0.0549% 0.3267%

30.5% 1.3119% 12.059% 18.270% 1.1303% 12.407%

the accuracy of αε̄iN,ROM
decreases as ε̄ increases. As ε̄ increases, the accuracy of the

time coefficients corresponding to smaller eigenvalues decrease faster than the time

coefficients corresponding to larger eigenvalues.
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Table XII. Errors of αε̄iN,ROM
with respect to αiA,ROM

, i ∈ [0, 3]

ε̄ αε̄1N,ROM(3)
αε̄2N,ROM(3)

αε̄3N,ROM(3)
αε̄1N,ROM(2)

αε̄2N,ROM(2)

0.78% 0.0004% 0.0030% 0.0178% 0.0005% 0.0039%

4.80% 0.0037% 0.0231% 0.1536% 0.0025% 0.0228%

17.3% 0.0221% 0.2331% 1.6042% 0.0367% 0.2963%

30.5% 1.3005% 12.036% 18.260% 1.1234% 12.370%

c. Accuracy of reconstructed solution u

Using the time coefficients obtained by solving the ODEs (6.9), the dependent variable

u(x, t) is reconstructed using the approximation given by (6.6). In this section, the

errors are calculated and compared for u(x, t) at x = 0.5. Similar to (6.14) and

(6.15), the error of the reconstructed u(0, 5, t) with respect to the analytical solution

uanalytical(0, 5, t) is defined as

ε̄u =
1
M

∑M

k=1 |u(0.5, tk)− uanalytical(0.5, tk)|
‖uanalytical(0.5, t)‖2

× 100%. (6.16)

• Accuracy of reconstructed solution uanalytical,ROM (0.5, t)

The solution uanalytical,ROM (0.5, t) is reconstructed using αianalytical,ROM
and φianalytical .

Table XIII presents the errors ε̄u of uanalytical,ROM (0.5, t) with respect to uanalytical(0.5, t).

The error of uanalytical,ROM(3)(0.5, t) is caused by solving the ODEs (6.9) and is only

0.0005%. This proves that the reconstructed solution uanalytical,ROM(3) provides a very

accurate approximation for the Burgers’ equation if the analytical basis functions are

used in the ROM(3). If the third mode is neglected, the error of uanalytical,ROM(2)(0.5, t)

is 0.0865% and still negligible. The contribution of the third mode to u(x, t) is negli-

gible compared to the first mode and the second mode because the third mode only
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captures 0.15% of the total energy (see Table VI).

Table XIII. Errors of uanalytical,ROM (0.5, t) with respect to uanalytical(0.5, t)

uanalytical,ROM (0.5, t) uanalytical,ROM(3)(0.5, t) uanalytical,ROM(2)(0.5, t)

Error ε̄u 0.0005% 0.0865%

• Accuracy of reconstructed solution uA,ROM (0.5, t)

The solution uA,ROM (0.5, t) is reconstructed using αiA,ROM
and φiA . Table XIV

presents the errors ε̄u of uA,ROM (0.5, t) with respect to uanalytical(0.5, t). Compared

to errors in Table XIII, the errors of Table XIV have one additional error source:

the errors of eigenvalue problem solver of the PODDEC package. By comparing the

values of Table XIII and Table XIV, one concludes that the errors introduced by the

PODDEC package have almost no influence on the reconstructed solution u(0, 5, t).

Table XIV. Errors of uA,ROM (0.5, t) with respect to uanalytical(0.5, t)

uA,ROM (0.5, t) uA,ROM(3)(0.5, t) uA,ROM(2)(0.5, t)

Error ε̄u 0.0005% 0.0865%

• Accuracy of reconstructed solution u
(ε̄)
N,ROM (0.5, t)

The solution u
(ε̄)
N,ROM (0.5, t) is reconstructed using α

(ε̄)
iN,ROM

and φ
(ε̄)
iN
. Table XV

presents the errors ε̄u of u
(ε̄)
N,ROM (0.5, t) with respect to uanalytical(0.5, t). Table XV

shows that the errors of u
(ε̄)
N,ROM (0.5, t) increase as ε̄ increases. These errors, how-

ever, are all smaller than 1%. Figure 10 shows u
(ε̄)
N,ROM (0.5, t) compared against
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Table XV. Errors ε̄u of u
(ε̄)
N,ROM (0.5, t) with respect to uanalytical(0.5, t)

ε̄ u
(ε̄)
N,ROM(3)(0.5, t) u

(ε̄)
N,ROM(2)(0.5, t)

0.78% 0.0004% 0.0866%

4.80% 0.0058% 0.0867%

17.3% 0.0565% 0.0885%

30.5% 0.1210% 0.4108%

uanalytical(0.5, t) and u
(ε̄)
N,PDE(0.5, t) at ε̄ = 0.78%, 17.3% and 30.5%, respectively. As

seen in Figure 10, u
(ε̄)
N,ROM(3)(0.5, t) and u

(ε̄)
N,ROM(2)(0.5, t) agrees with the analytical

solution very well when ε̄ = 0.78% and 17.3%. When ε̄ = 30.5%, small differences

between u
(30.5)
N,ROM (0.5, t) and uanalytical(0.5, t) are observed. Compared to the accuracy

of the basis functions and the time coefficients, the accuracy of the reconstructed

solution u is less sensitive to the numerical errors of the databases. This result is not

surprising since the basis functions errors are compensated by the time coefficients α.

B. “Double” Burgers’ Equations

Let us consider a case which consists of two non-homogeneous Burgers’ equations.

The Burgers’ equations for the dependent variables u(x, t) and v(x, t) are given by

∂u

∂t
+ v

∂u

∂x
= f(x, t), (6.17)

∂v

∂t
+ u

∂v

∂x
= g(x, t). (6.18)
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The right side term f(x, t) and g(x, t) are defined as

f(x, t) = x sin(t) + 0.5 sin(πx) cos2(t)− 0.02 sin(3πx) cos(3t) cos(t), (6.19)

g(x, t) = 0.5 sin(πx) sin(t)− 0.06 sin(3πx) sin(3t) + (1− x cos(t)) ·

· (−0.5π cos(πx) cos(t) + 0.06π cos(3πx) cos(3t)). (6.20)

Thus the analytical solutions of equations (6.17) and (6.18) are

uanalytical(x, t) = 1− x cos(t), (6.21)

vanalytical(x, t) = −0.5 sin(πx) cos(t) + 0.02 sin(3πx) cos(3t). (6.22)

1. Database Generation

To obtain a numerical solution of the PDEs (6.17) and (6.18), let us discretize the

spatial domain [0,1] using a mesh with 100 uniform cells and approximate the spatial

derivative ∂u
∂x

and ∂v
∂x

using the centered, second-order discretization. Thus at each

node i in the spatial domain, the PDEs (6.17) and (6.18) are converted into the

pseudo-ODEs

dui
dt

= −vi
ui+1 − ui−1

2∆x
+ f(xi, t), i ∈ [1, N ] (6.23)

and

dvi
dt

= −ui
vi+1 − vi−1

2∆x
+ g(xi, t), i ∈ [1, N ], (6.24)

where N = 99. The numerical solution of the PDEs (6.17) and (6.18) has been

replaced by the numerical solution of a set of 2×N first-order ODEs. Consequently,

the order of that system is 2 × N . The ODEs (6.23) and (6.24) are integrated from

t = 0s to t = 50s using the LSODI package. Snapshots are stored every 0.1s. Thus

there are 501 snapshots for u and 501 snapshots for v in the database.

For the “double” Burgers’ equations, two relative tolerance levels were used:
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rtol = 1 × 10−3 and rtol = 1 × 10−4. For a relative tolerance parameter larger than

rtol = 1 × 10−3, the LSODI package diverged before t = 50s. Similar to the error

ε defined by equation (6.5), two errors εu and εv are defined for equation (6.23) and

(6.24), respectively:

εu =
|LHSu − RHSu|
√

LHS2u +RHS2u
,

εv =
|LHSv − RHSv|
√

LHS2v +RHS2v
,

where LHSu and RHSu are the left-hand-side and right-hand-side of equation (6.23);

LHSv and RHSv are the left-hand-side and right-hand-side of equation (6.24). Ta-

ble XVI presents the average error ε̄u for equation (6.23) and ε̄v for equation (6.24).

For convenience, let us use DB
(ε̄u;ε̄v)
N to denote the the database corresponding to the

Table XVI. ε̄u and ε̄v

rtol ε̄u ε̄v

1× 10−4 0.03% 0.7%

1× 10−3 0.1% 1.5%

errors of ε̄u and ε̄v. Additionally, using the analytical solutions (6.21) and (6.22), the

database DBA is generated. The snapshots in DBA are calculated as

uA(x, tk) = uanalytical(x, tk) = uanalytical(x, k∆t), k ∈ [1,M ],

vA(x, tk) = vanalytical(x, tk) = vanalytical(x, k∆t), k ∈ [1,M ],

where M = 501 and ∆t = 0.1s.
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2. Model Decomposition

Three databasesDBA, DB
(0.03;0.7)
N andDB

(0.1;1.5)
N have been generated. Each database

consists of M snapshots u(x, ti), i ∈ [1,M ] and M snapshots v(x, ti), i ∈ [1,M ]. We

decompose u(x, ti) and v(x, ti) into the means and the fluctuations:

u(x, ti) = ū(x) + u′(x, ti), i ∈ [1,M ],

v(x, ti) = v̄(x) + v′(x, ti), i ∈ [1,M ].

The method of snapshots was applied to u′(x, ti) and v′(x, ti) to extract the basis

functions of φu and φv, respectively. The kernel matrices are computed as

Cu
ij =

1

M

N
∑

k=1

u′(xk, ti)u
′T (xk, tj), i, j ∈ [1,M ]

and

Cv
ij =

1

M

N
∑

k=1

v′(xk, ti)v
′T (xk, tj), i, j ∈ [1,M ].

3. Galerkin Projection

Using the basis functions φui and φvi , the dependent variables u(x, t) and v(x, t) are

approximated as

u(x, t) ∼= ū(x) +
mu
∑

i=1

αui (t)φ
u
i (x) =

mu
∑

i=0

αui (t)φ
u
i (x), (6.25)

v(x, t) ∼= v̄(x) +
mv
∑

i=1

αvi (t)φ
v
i (x) =

mv
∑

i=0

αvi (t)φ
v
i (x), (6.26)

where mu and mv are the number of POD modes used to approximate u′(x, t) and

v′(x, t), respectively.

Substituting the approximations of u and v given by (6.25) and (6.26) into the



62

PDEs (6.23) and (6.24), yields

mu
∑

i=1

dαui
dt

φui = −
mu
∑

i=0

mv
∑

j=0

αui α
v
jφ

v
j

dφui
dx

+ f, (6.27)

mv
∑

i=1

dαvi
dt

φvi = −
mv
∑

i=0

mu
∑

j=0

αujα
v
i φ

u
j

dφvi
dx

+ g, (6.28)

where dφ

dx
is computed using the centered, second-order discretization. Now, let us

project equation (6.27) onto the basis function φuk and equation (6.28) onto φvk. We

obtain the ODEs

dαuk
dt

= −
mu
∑

i=0

mv
∑

j=0

αui α
v
j

(

φvj
dφui
dx

, φuk

)

+ (f, φuk) , k ∈ [1,mu], (6.29)

dαvk
dt

= −
mu
∑

j=0

mv
∑

i=0

αujα
v
i

(

φuj
dφvi
dx

, φvk

)

+ (g, φvk) , k ∈ [1,mv]. (6.30)

Thus, the POD-based ROM consists of mu first-order ODEs given by (6.29) and mv

first-order ODEs given by (6.30). Consequently, the order of the POD-based ROM is

mu +mv. The LSODI package is used to solve the POD-based ROM.

4. Accuracy Analysis

Because the analytical solutions of the PDEs (6.17) and (6.18) are given by (6.21) and

(6.22), the analytical expressions of the basis functions and the time coefficients were

derived using the approach described in Section A.4. The analytical basis functions

and time coefficients for u(x, t) are

φu0analytical(x) = 1, αu0analytical(t) = 1,

φu1analytical(x) = −
√
3∆xx, αu1analytical(t) = cos(t)/

√
3∆x,

(6.31)
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and for v(x, t) they are

φv0exact(x) = 0, αv0exact(t) = 1,

φv1analytical(x) = −
√
2∆x sin(πx), αv1analytical(t) = 0.5 cos(t)/

√
2∆x,

φv2analytical(x) = −
√
2∆x sin(3πx), αv2analytical(t) = −0.02 cos(3t)/

√
2∆x.

(6.32)

These analytical basis functions and time coefficients are used as references for the

following accuracy analyses.

a. Accuracy of basis functions

Table XVII presents the errors εφi of φiA with respect to φianalytical . Herein the error

εφi is defined by equation (6.14). The errors of φiA are generated by the PODDEC

package and are negligible.

Table XVII. Errors of φuiA and φviA

Basis Functions φu1A φv1A φv2A

Error 0.0639% 0.0021% 0.0022%

Table XVIII presents the errors εφi of φ
(ε̄u;ε̄v)
iN

with respect to φianalytical . Figure 11

Table XVIII. Errors of φ
u,(ε̄u;ε̄v)
iA

and φ
v,(ε̄u;ε̄v)
iA

ε̄u ε̄v φ
u,(ε̄u;ε̄v)
1N

φ
v,(ε̄u;ε̄v)
1N

φ
v,(ε̄u;ε̄v)
2N

0.03% 0.7% 0.0639% 0.0051% 0.1976%

0.1% 1.5% 0.0681% 0.0338% 1.1576%

shows the basis functions φ
(ε̄u;ε̄v)
iN

compared against the analytical basis functions. The
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errors of φ
(ε̄u;ε̄v)
iN

are generated by the PODDEC package and the numerical errors of

the databases. As shown in Table XVIII and Figure 11, the accuracy of the basis

functions decreases as the numerical errors of the databases increase. Basis functions

which correspond to smaller eigenvalues are more sensitive to the numerical errors

of the databases. Herein the second basis function of v is the most sensitive to the

numerical errors of the databases.

b. Accuracy of time coefficients

The analytical solutions (6.21) and (6.22) imply that u(x, t) and v(x, t) consist of two

modes and three modes, respectively. Herein the zeroth modes are counted. Thus

when generating the POD-based ROMs, we choose mu = 1 and mv = 2. The number

of equations is reduced from 2×N to mu +mv.

Four sets of basis functions are used to generate the POD-based ROMs. These

four sets of basis functions are φianalytical , φiA , φ
(0.03;0.7)
iN

and φ
(0.1;1.5)
iN

. The time coef-

ficients obtained from the POD-based ROM using these four sets of basis functions

are denoted by αianalytical,ROM
, αiA,ROM

, α
(0.03;0.7)
iN,ROM

and α
(0.1;1.5)
iN,ROM

, respectively. Table XIX

presents the errors of the time coefficients obtained from the POD-based ROM with

respect to the analytical time coefficients. Herein the error of the time coefficients is

defined by equations (6.15). As shown in Table XIX, the errors of the time coefficients

obtained from the POD-based ROM increase when the errors of the basis functions

increases. Figure 12 shows the time coefficients of α
(0.1;1.5)
iN,ROM

and α
(0.03;0.7)
iN,ROM

compared

against aianalytical . At the error level of ε̄u = 0.03% and ε̄v = 0.7%, α
u,(0.03;0.7)
1N,ROM

and

α
v,(0.03;0.7)
1N,ROM

agree very well with αu1analytical and αv1analytical , respectively. Small differ-

ences between α
v,(0.03;0.7)
2N,ROM

and αv2analytical are noticed. When the errors increase to

ε̄u = 0.1% and ε̄v = 1.5%, only α
u,(0.1;1.5)
1N,ROM

agrees very well with αu1analytical . There are

small differences between α
v,(0.1;1.5)
1N,ROM

and αv1analytical . Large differences between α
v,(0.1;1.5)
2N,ROM
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Table XIX. Errors of time coefficients obtained from the POD-based ROM for “dou-
ble” Burgers’ equations

Basis functions used in the ROM αu1ROM
αv1ROM

αv2ROM

φianalytical 0.0028% 0.0043% 0.2258%

φiA 0.0337% 0.0228% 0.2125%

φ
(0.03;0.7)
iN

0.0344% 0.0412% 0.6746%

φ
(0.1;1.5)
iN

0.0928% 0.2185% 4.6546%

and αv2analytical are observed. Thus the time coefficients which correspond to smaller

eigenvalues are more sensitive to the errors of the basis functions.

c. Accuracy of reconstructed dependent variables

Let us reconstruct u
(ε̄u;ε̄v)
N,ROM (0.5, t) and v

(ε̄u;ε̄v)
N,ROM (0.5, t) using α

(ε̄u;ε̄v)
iN,ROM

and φ
(ε̄u;ε̄v)
iN

. Ta-

ble XX lists the errors of u
(ε̄u;ε̄v)
N,ROM (0.5, t) and v

(ε̄u;ε̄v)
N,ROM (0.5, t) with respect to the an-

alytical solutions. Herein the error is defined by equation (6.16). Figure 13 shows

Table XX. Errors of reconstructed u
(ε̄u;ε̄v)
N,ROM (0.5, t) and v

(ε̄u;ε̄v)
N,ROM (0.5, t)

ε̄u ε̄v u
(ε̄u;ε̄v)
N,ROM (0.5, t) v

(ε̄u;ε̄v)
N,ROM (0.5, t)

0.03% 0.7% 0.0052% 0.0445%

0.1% 1.5% 0.0279% 0.2626%

u
(ε̄u;ε̄v)
N,ROM (0.5, t) and v

(ε̄u;ε̄v)
N,ROM (0.5, t) compared against the analytical and numerical so-

lutions of the PDEs (6.17) and (6.18). At both error levels, u
(ε̄u;ε̄v)
N,ROM (0.5, t) agree very

well with the analytical solutions. v
(0.03;0.7)
N,ROM (0.5, t) agree very well with the analytical

solutions. Small differences are noticed between v
(0.1;1.5)
N,ROM (0.5, t) and vanalytical(0.5, t).
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C. Summary

In this chapter, the POD-based ROMs have been constructed for two cases based

on the Burgers’ equation. The first case was an non-homogeneous Burgers’ equation

and the second case consists of two coupled non-homogeneous Burgers’ equations. For

both cases, the accuracy of the basis functions, the time coefficients obtained from the

POD-based ROMs and the reconstructed dependent variables were analyzed. For the

POD basis functions, the errors consist of two components: the errors caused by the

PODDEC package (i.e., the eigenvalue solver) and the errors of the databases. The

errors caused by the PODDEC package are negligible. As the errors of the databases

increase, the errors of the basis functions increase. The basis functions corresponding

to smaller eigenvalues are more sensitive to the errors of the databases. For the time

coefficients, the errors consist of four components: the errors of PODDEC package,

the errors of the database, the errors of solving the POD-based ROMs, the errors of

neglecting the POD modes corresponding to smaller eigenvalues. The errors caused

by the ROMs solver, the PODDEC package and neglecting the POD modes corre-

sponding to smaller eigenvalues are negligible. As the errors of the databases increase,

the errors of the time coefficients increases. The time coefficients which correspond

to smaller eigenvalues are more sensitive to the errors of the basis functions. For

the reconstructed dependent variables, the errors are caused by all the sources that

cause the errors of the basis functions and the time coefficients. Compared to the

basis functions and the time coefficients, the errors of the reconstructed dependent

variables are less sensitive to the errors of the databases.
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CHAPTER VII

RESULTS

This chapter presents the results of the POD-based ROMs applied to the transport

phenomena in fluidized beds. Two cases are used to investigate the performance of

these POD-based ROMs. The first case is a compressible gas-only flow problem. The

second case consists of a gas phase and a solid phase.

A. Case I: compressible gas-only flow

The flow in case I is a compressible gas-only flow. The geometry and boundary

conditions of case I are shown in Figure 14(a). Figure 14(b) shows the uniform

computational grid used in case I. The parameters of case I are listed in Table XXI.

xlength
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ylength

(a) Geometry and

boundary conditions
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Fig. 14. Case I: geometry, boundary conditions, and computational grid



71

Note that MFIX uses CGS units and dimensional variables.

Table XXI. Parameters of case I

Parameter Description Value

xlength Length of the domain in x-direction 25.4cm

ylength Length of the domain in y-direction 76.5cm

imax Number of cells in x-direction 50

jmax Number of cells in y-direction 76

v1, v2 Gas inflow velocities 12.6cm/s, 1.0cm/s

ps Static pressure at outlet 1.01× 106g/(cm · s2)

T0 Gas temperature 297K

µ0 Gas viscosity 1.8× 10−4g/(cm · s)

tstart Start time 0s

tstop Stop time 13s

The flow in case I was simulated from t = 0s to t = 13s using MFIX. Snapshots

were stored every 0.05s. Thus 260 snapshots were stored in the database generated

by MFIX. POD basis functions of u, v, and p were calculated using the PODDEC

package. Figures 15, 16, and 17 show the first six basis functions of u, v, and p,

respectively. Figure 18 shows the cumulative energy retained by different number of

POD modes.

Results of POD-based ROMs at the reference condition

Let us apply ODExMFIX to the flow in case I at the reference condition. Fig-

ures 19, 20, and 21 show the first four time coefficients of u, v, and p obtained from

ODExMFIX using different number of POD modes. In these figures, the reference
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Fig. 15. Case I: first six basis functions of u
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Fig. 16. Case I: first six basis functions of v

φp0 φp1 φp2 φp3 φp4 φp5

Fig. 17. Case I: first six basis functions of p
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Fig. 19. Case I: the first four time coefficients of v

time coefficients were obtained by directly projecting the snapshots generated by

MFIX onto the POD basis functions. ODExMFIX(2+19+11) denotes the model of

ODExMFIX with mp = 2, mu = 19, and mv = 11.

As shown in Figures 19 and 20, increasing the number of POD modes used by

ODExMFIX significantly improved the accuracy of the time coefficients of u and v

predicted by ODExMFIX. The time coefficients of u and v predicted by ODExM-

FIX(15+30+20) agreed very well with the reference time coefficients. By using these
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number of POD modes, about 99.99% of the total energy was retained by the POD

modes used in ODExMFIX.

Figure 21 demonstrates that the time coefficients of p are more difficult to be

captured by ODExMFIX. At the beginning period (t ∈ [0s, 3s]), ODExMFIX pro-

duced large oscillations in αp. When t > 3s, the time coefficients obtained from

ODExMFIX(15+30+20) agreed well with the reference time coefficients.

One possible reason that caused the large wiggles in αp predicted by ODExM-

FIX is that the number of snapshots in the database is not enough. To prove that

reason, we stored the snapshots every 0.01s instead of every 0.05s. Thus the number

of snapshots increased from 260 to 1195. Figure 22 shows αp1 predicted by ODExM-

FIX(15+30+20) using these two sets of snapshots. Figure 22 shows that increasing

the number of snapshots in the database did not improve the prediction of αp1 using

ODExMFIX.

The average magnitude of φp0 is 1010043.89 and the average magnitude of φp1

is 0.0143. The average magnitude of φp1 is 0.0000014% of the average magnitude of

φp0. Thus most of the spatial characteristics of the pressure field are captured by φp0.

Because of the large magnitude difference between φp0 and φp1, ODExMFIX could not

provide predictions of φpi which agreed very well with the reference time coefficients

of p.

Figures 23, 24, and 25 show the reconstructed flow fields compared against the

results of MFIX at t = 1.25s, t = 7.00s, and t = 13.00s. As shown in Figures 23

and 24, the accuracy of the reconstructed u and v using time coefficients obtained from

ODExMFIX increased as the number of POD modes used in ODExMFIX increased.

For p, since almost all the spatial characteristics of the pressure field are captured by

φp0, all the reconstructed pressure fields are close to φp0.

The computational cost for simulating the flow in case I using MFIX was 13187
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seconds of CPU time. The computational cost of ODExMFIX(15+30+20) was 3352

seconds of CPU time. The computational cost of ODExMFIX(15+30+20) was 25.4%

of the cost of MFIX. Computational cost reduction has been achieved by using

ODExMFIX.

ODEx3 has also been applied to case I. ODEx3, however, failed to produce a

converged result. In ODEx3, the unknowns are αρ, αu, and αv. The magnitudes of

αρ1, α
u
1 and αv1 are of the order of 10−10, 10, and 100, respectively. Compared to u

and v, the time coefficients of ρ are too small to be properly captured.

Results of POD-based ROMs at the off-reference conditions

Now, let us apply ODExMFIX at some off-reference conditions of case I. Herein

we changed the gas viscosity µ0 and used several different values of µ0. ODExMFIX

was generated using the POD basis functions obtained at µ0 = 1.8×10−4g/(cm·s). In

order to measure the accuracy of ODExMFIX applied at the off-reference conditions,

let us define an error εvar as

εvar =

√

∑N

i=1(var
MFIX
i − varROMi )2

∑N

i=1 |varMFIX
i |

, (7.1)

where var represents the field variables p, u, or v. N is the total number of spatial

grid points.

Table XXII lists the errors of εp, εu, and εv at eight different values of µ0 including

the reference value. In Table XXII, all the errors were calculated at t = 13s. As seen

from Table XXII, the errors of pressure, εp, for all the eight conditions are very small,

because the speed of the gas flow in case I is very low and the pressure variations are

very small. Figure 26 shows the errors of εu and εv at different values of µ0. As seen

from Figure 26, at each condition, εv is always smaller than εu because the flow in

case I mainly concentrates in y−direction and it is easier for ODExMFIX to capture
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Table XXII. Case I: errors of ODExMFIX at different values of µ0

µ0 [g/(cm · s)] εp [%] εu [%] εv [%]

0.8× 10−4 3.60× 10−8 1.907 0.449

1.0× 10−4 3.72× 10−8 0.965 0.258

1.1× 10−4 3.82× 10−8 1.05 0.263

1.3× 10−4 2.04× 10−8 0.721 0.163

1.5× 10−4 5.99× 10−9 0.307 0.075

1.6× 10−4 7.71× 10−9 0.253 0.062

1.8× 10−4 1.10× 10−8 0.201 0.055

2.0× 10−4 8.36× 10−9 0.220 0.072

2.2× 10−4 1.21× 10−8 0.232 0.090

2.4× 10−4 2.21× 10−8 0.230 0.107

2.6× 10−4 1.54× 10−8 0.285 0.132

2.8× 10−4 3.32× 10−8 0.320 0.148

3.0× 10−4 3.07× 10−8 0.376 0.166



84

0.5 1.5 2.5 3.5
0

0.5

1

1.5

2

ug

vg

µ0, [10−4g/(cm · s)]

ε v
a
r
[%

]

Fig. 26. Case I: εu and εv at different values of µ0



85

(a) µ0 = 0.8 ×
10−4g/(cm · g)

(b) µ0 = 1.8 ×
10−4g/(cm · g)

(c) µ0 = 3.0 ×
10−4g/(cm · g)

Fig. 27. Case I: field of ug at different conditions

the details of vg than the details of ug. At the reference µ0, both εv and εu have the

minimum values. As µ0 increased or decreased from the reference value, both εv and

εu increased. εv and εu increased more rapidly when µ0 decreased from the reference

µ0 than when µ0 increased from the reference µ0, because smaller µ0 caused larger

Reynolds number and more complicated flow fields. Figures 27 and 28 compare the

flow fields at µ0 = 0.8×10−4g/(cm ·g), 1.8×10−4g/(cm ·g), and 3.0×10−4g/(cm ·g).

B. Case II: gas-solid transport phenomena in a fluidized bed

Case II models the gas-solid transport phenomena in a fluidized bed. The geometry

and boundary conditions of case II are shown in Figure 29(a). Figure 29(b) illustrates
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(a) µ0 = 0.8 ×
10−4g/(cm · g)

(b) µ0 = 1.8 ×
10−4g/(cm · g)

(c) µ0 = 3.0 ×
10−4g/(cm · g)

Fig. 28. Case I: field of vg at different conditions
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the uniform computational grid used in case II. Table XXIII lists the parameters of

xlength

v1
v2 v2
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hs0
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(b) Computational grid

Fig. 29. Case II: geometry, boundary conditions, and computational grid

case II. In Table XXIII, ρso, Dp, hs0, and ε∗g denote the constant solid density, solid

particle diameter, initial packed bed height, and packed bed void fraction, respec-

tively.

MFIX simulated the transport phenomena in case II from t = 0s to t = 1s. From

t = 0s to t = 0.2s, v1 = v2 = 1cm/s. At t = 0.2s, v2 was increased to 120.0cm/s.

From t = 0.2s to t = 1.0s, snapshots were stored every 0.0025s, thus 320 snapshots

were stored in the database. POD was applied to the database to calculate the POD

basis functions. Figures 30-34 show the first six POD basis functions of pg, ug, vg, us,

and vs, respectively. Table XXIV lists the number of POD modes needed to retain

certain portions of the total energy.

Results of ODExS at the reference condition
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Table XXIII. Parameters of case II

Parameter Value

xlength 25.4cm

ylength 76.5cm

imax 50

jmax 78

v1 120.0cm/s

v2 1.0cm/s

pgs 1.01× 106g/(cm · s2)

Tg0 297K

µg0 1.8× 10−4g/(cm · s)

tstart 0.2s

tstop 1s

∆t 1× 10−4s

ρso 1.0g/cm3

Dp 0.05cm

hs0 14.7cm

ε∗g 0.4
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Fig. 33. Case II: first six basis functions of us

φvs0 φvs1 φvs2 φvs3 φvs4 φvs5

Fig. 34. Case II: first six basis functions of vs

Table XXIV. Case II: POD energy vs number of modes for pg, ug, vg, us, and vs

POD Number of modes

energy pg ug vg us vs

99% 2 4 3 4 2

99.9% 3 7 5 6 3

99.99% 4 11 7 7 5
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Let us examine the results of ODExS applied to case II at the reference condition.

Herein, we chose mpg = 4, mug = 11, mvg = 7, mus = 7, and mvs = 5 such that

99.99% of the total energy was retained by the POD modes used in ODExS. The

computational cost of using MFIX to simulate the transport phenomena in case II was

23008 seconds of CPU time. The computational cost of using ODExS to simulate the

transport phenomena in case II was 7595 seconds of CPU time. The cost of ODExS

was 33.01% of the cost of MFIX.

Figures 35 and 36 show the first four time coefficients of ug and vg obtained from

ODExS compared against the directly projecting results. Figures 37 and 38 show the

first four time coefficients of us and vs obtained from ODExS compared against the

directly projecting results. Figures 39-44 show the field variables obtained from

ODExS compared against the results of MFIX at t = 1s. Table XXV lists the errors

εvar of the field variables obtained from ODExS compared against the results of MFIX

at t = 1s. The error εvar was defined by Equation (7.1) and herein var represents εg,

pg, ug, us, or vs. As seen from Figures 39-44 and Table XXV, the results of ODExS

agree very well with the results of MFIX at the reference condition.

Table XXV. Case II: errors of the results of ODExS at reference condition

Variable Error, εvar [%]

εg 0.0000356

pg 0.000000578

ug 0.01035

vg 0.01026

us 0.505

vs 0.765
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Fig. 35. Case II: first four time coefficients of ug obtained from ODExS
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Fig. 36. Case II: first four time coefficients of vg obtained from ODExS
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Fig. 37. Case II: first four time coefficients of us obtained from ODExS
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Fig. 38. Case II: first four time coefficients of vs obtained from ODExS
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(a) MFIX (b) ODExS

Fig. 39. Case II: εg at t = 1s

(a) MFIX (b) ODExS

Fig. 40. Case II: pg at t = 1s
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(a) MFIX (b) ODExS

Fig. 41. Case II: ug at t = 1s

(a) MFIX (b) ODExS

Fig. 42. Case II: vg at t = 1s
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Fig. 43. Case II: us at t = 1s
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Fig. 44. Case II: vs at t = 1s
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Results of ODExS at the off-reference conditions

When studying ODExS applied at the off-reference conditions, we generated the

database by combining the numerical results of MFIX at three different values of solid

particle diameters: Dp = 0.05cm, Dp = 0.07cm, andDp = 0.10cm. At each condition,

320 snapshots were calculated using MFIX. The database was generated by combining

the snapshots of these three conditions. Thus, there were 960 snapshots contained in

the database. POD was applied to the database containing 960 snapshots to extract

the POD basis functions. Using these POD basis functions, ODExS was generated

and used to simulate the transport phenomena in case II at 13 different values of Dp.

Herein, we chose mpg = 2, mug = 15, mvg = 11, mus = 10, and mvs = 5 such that

99.99% of the total energy were retained by the POD modes used in ODExS.

Table XXVI lists the errors of the field variables obtained from ODExS com-

pared against the numerical results of MFIX at t = 1s. These errors are also shown

in Figure 45. As seen from Table XXVI and Figure 45, ODExS generally provided

good predictions of the field variables at Dp ∈ [0.05cm, 0.10cm]. When Dp > 0.10cm,

the errors of ODExS increased as Dp increased. When Dp < 0.05cm, the errors of

ODExS increased as Dp decreased. The errors of ODExS increased more rapidly

as Dp decreased when Dp < 0.05cm than as Dp increased when Dp > 0.10cm, be-

cause the physics of the transport phenomena has significantly changed when Dp

decreased below 0.05cm. Figure 46 shows the fields of εg at t = 1s with Dp = 0.03cm,

Dp = 0.08cm, and Dp = 0.12cm. At Dp = 0.03cm, some bubbles appeared and this

phenomenon is called bubbling fluidization. ODExS generated in this section could

not capture the very complicated features of the bubbling fluidization phenomenon.
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Table XXVI. Case II: errors of the results of ODExS at off-reference conditions

Dp [cm] εεg [%] εpg [%] εug [%] εvg [%] εus [%] εvs [%]

0.03 0.0733 0.00051 9.71 2.41 8.61 9.09

0.04 0.0137 0.000077 2.495 0.389 10.45 4.713

0.05 0.00186 0.0000022 0.0686 0.0517 1.08 3.18

0.055 0.00158 0.00000272 0.102 0.044 1.08 2.967

0.06 0.00136 0.0000045 0.166 0.0494 1.57 2.73

0.07 0.00100 0.0000044 0.191 0.0578 1.52 2.16

0.08 0.00073 0.0000024 0.122 0.0423 0.679 1.50

0.09 0.00054 0.00000027 0.0298 0.0235 0.766 0.807

0.10 0.00042 0.00000027 0.161 0.0191 2.29 0.194

0.11 0.000376 0.0000051 0.323 0.0524 3.917 0.841

0.12 0.000368 0.0000072 0.487 0.1005 5.53 1.75

0.13 0.000374 0.0000091 0.654 0.129 7.56 2.711

0.14 0.000451 0.0000107 0.819 0.191 9.128 3.736
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Fig. 45. Case II: errors of the results of ODExS at off-reference conditions
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(a) Dp = 0.03cm (b) Dp = 0.08cm (c) Dp = 0.12cm

Fig. 46. Case II: field of εg at t = 1s with different Dp

C. Summary

In this chapter, the POD-based ROMs have been applied to two cases of transport

phenomena in fluidized beds. The first case modeled a compressible gas-only flow.

The second case modeled a gas-solid interaction. In both cases, the POD-based ROMs

have been applied to the reference conditions and the off-reference conditions.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

This chapter presents the conclusions derived from this work. In addition, recom-

mendations for future work are presented.

A. Conclusions

In this thesis, POD-based ROMs have been applied for simulating the transport

phenomena in fluidized beds. Two and one POD-based ROMs have been generated for

gas-only flows and gas-solid transport phenomena, respectively. Results have proven

that the POD-based ROMs are capable of capturing the details of the transport

phenomena at both reference conditions and a range of off-reference conditions with

large reductions of orders and computational costs.

In this thesis, we also analyzed the accuracy of the POD-based ROMs. The

accuracy analysis was based on two sets of simple PDEs whose analytical solutions

are known. Accuracy analysis demonstrated that the errors of the basis functions and

time coefficients increase as the errors of the databases increase. The basis functions

and time coefficients which correspond to smaller eigenvalues are more sensitive to the

numerical errors of the databases. The errors of the reconstructed dependent variables

also increase when the errors of the databases increase. The reconstructed dependent

variables, however, are less sensitive to the errors of the databases compared against

the basis functions and the time coefficients.
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B. Future Work

In this thesis, the POD-based ROMs have been applied to the transport phenomena

in fluidized beds. The geometry of the fluidized bed is simple. The challenge for the

future is to extend the POD-based ROMs to complex geometry.
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APPENDIX A

CONSTITUTIVE MODELS

Gas phase stress tensor

The gas viscous stress tensor ¯̄τg is assumed to be of the Newtonian form

¯̄τg = 2µg
¯̄Dg − λgtr(

¯̄Dg)
¯̄I,

where µg is the gas phase viscosity; λg = −2/3µg; ¯̄I is an identity tensor; ¯̄Dg is the

gas phase strain rate tensor, given by

¯̄Dg =
1

2

[

5~vg + (5~vg)T
]

.

Solid phase stress tensor

MFIX uses the following model to compute the solid phase stress tensor

¯̄τs =











¯̄τPs if εg ≤ ε∗g: Plastic Regime

¯̄τVs if εg > ε∗g: Viscous Regime
,

where ε∗g is the packed-bed void fraction at which a granular flow regime transition is

assumed to occur and ε∗g is usually set to the void fraction at minimum fluidization.22

The superscript P stands for plastic regime and V for viscous regime.

• Plastic Regime:

pPs = 1025(ε∗g − εg)
10

¯̄τPs = 2µP

s
¯̄Ds
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µP

s =
pPs sinφ

2
√

I2Ds

Herein ¯̄Ds denotes the solid phase strain rate tensor. φ is the angle of internal friction.

I2Ds
is the second invariant of the deviator of ¯̄Ds:

I2Ds
=

1

6

[

(Ds11 −Ds22)
2 + (Ds22 −Ds33)

2 + (Ds33 −Ds11)
2
]

+D2
s12 +D2

s23 +D2
s31.

• Viscous Regime:

pVs = K1sε
2
sΘs

¯̄τVs = 2µV

s
¯̄Ds + λVs tr(

¯̄Ds)
¯̄I

λVs = K2sεs
√

Θs

µV

s = K3sεs
√

Θs

K1s = 2(1 + es)ρsg0s

K2s = 4dpsρs(1 + es)εsg0s/(3
√
π)− 2

3
K3s

K3s =
dpsρs

√
π

6(3− es)
[1 + 0.4(1 + es)(3es − 1)esg0s ] +

dpsρs8εsg0s(1 + es)

10
√
π

K4s =
12(1− e2s)ρsg0s

dps
√
π

g0s =
1

1− εs
+ 1.5εs

(

1

1− εs

)2

+ 0.5ε2s

(

1

1− εs

)3

Herein es is the coefficient of restitution for particle-particle collisions. dps is the solid

particle diameter. The granular temperature Θs is given by

Θs =















−K1sεstr(
¯̄Ds) +

√

K2
1str

2( ¯̄Ds) + 4K4sεs

[

K2str
2( ¯̄Ds) + 2K3str(

¯̄D2
s)
]

2εsK4s















2

Gas-solid momentum transfer
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Fgs =
3ρgεsεg
4V 2

rsdps

(

0.63 + 4.8
√

Vrs/Res

)2

|~vs − ~vg|

Vrs = 0.5
(

A− 0.06Res +
√

(0.06Res)2 + 0.12Res(2B − A) + A2
)

A = ε4.14g

B =











0.8ε1.28g if εg ≤ 0.85

ε2.65g if εg > 0.85

Res =
dps |~vs − ~vg| ρg

µg
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APPENDIX B

CONVECTION FACTOR OF SUPERBEE SCHEME

Let us use the control volume P shown in the following figure to illustrate the

calculation of ξe, such that the field variable φ at the east face, φe is computed as

φe = ξeφE + (1− ξe)φP .

The following figure shows two cases according to the flow direction at the east face.

W P E EEe

ue

U C D

(a) ue ≥ 0

W P E EEe

ue

UCD

(b) ue < 0

In this figure, C, U and D denote the central node, upwind node and downwind node,

respectively. The calculation of the convection factor ξe using the superbee scheme is

presented below:

φ̃C =











φC−φU
φD−φU

if φC 6= φD

0 if φC = φD

,

dwf =























1
2
max[0,min(1, 2θ),min(2, θ)], θ = φ̃C

1−φ̃C
if 0 ≤ φ̃C < 1

1 if φ̃C = 1

0 otherwise

,

ξe =











dwf if ue ≥ 0

1− dwf if ue < 0
.
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APPENDIX C

SAMPLE INPUT FILE FOR ODEXMFIX

#

# odexmfix.dat

# ODExMFIX input file for case I

# 1.1 Run control section

#

TSTART = 0.02

TSTOP = 5.0

DT = 1.D-3

MAX_NIT = 20

DT_MAX = 1.D0

DT_MIN = 1.D-6

DT_FAC = 0.9D0

TOL_RESID = 1.D-3

TOL_DIVERGE = 1.D+2

#

# 1.2 Geometry and discretization section

#

XLENGTH = 25.4D0 IMAX = 50

YLENGTH = 76.5D0 JMAX = 76

DISCRETIZE = 2

#

# 1.3 physical properties section

#

MU_g0 = 1.8D-2

MW_g0 = 29.D0

T_g0 = 297.D0

#

# 1.4 pod section

#

NP = 3

NU = 7

NV = 5
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APPENDIX D

SAMPLE INPUT FILE FOR ODEX3

#

# ODEx3 input file for case II

#

# 1.1 Run control section

#

TIME = 0.2

TSTOP = 13.0

DT = 1.D-5

ATOL = 1.D-3

#

# 1.2 Geometry and discretization section

#

XLENGTH = 25.4D0 IMAX = 50

YLENGTH = 76.5D0 JMAX = 76

DISCRETIZE = 1

#

# 1.3 physical properties section

#

MU_g0 = 1.8D-4

MW_g0 = 29.D0

T_g0 = 297.D0

#

# 1.4 pod section

#

NR = 9

NU = 11

NV = 7
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APPENDIX E

SAMPLE INPUT FILE FOR ODEXS

#

# Hybrid_puv input file for case II

#

# 1.1 Run control section

#

TSTART = 0.20

TSTOP = 1.0

DT = 2.D-4

MAX_NIT = 20

DT_MAX = 1.D0

DT_MIN = 1.D-6

DT_FAC = 0.9D0

TOL_RESID = 1.D-3

TOL_DIVERGE = 1.D1

#

# 1.2 Geometry and discretization section

#

XLENGTH = 25.4D0 IMAX = 50

YLENGTH = 76.5D0 JMAX = 78

DISCRETIZE = 2

#

# 1.3 physical properties section

#

MU_g0 = 1.8D-4

MW_g0 = 29.D0

T_g0 = 297.D0

RO_s0 = 1.0

D_p = 0.05

C_e = 0.8

Phi = 30.0

EP_star = 0.44

#

# 1.4 POD section

#

nP_g = 4

nU_g = 11

nV_g = 7

nU_s = 7

nV_s = 5
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