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ABSTRACT

Reduced Order Modeling for Transport Phenomena
Based on Proper Orthogonal Decomposition. (December 2003)
Tao Yuan, B.E., Tsinghua University

Chair of Advisory Committee: Dr. Paul G. A. Cizmas

In this thesis, a reduced order model (ROM) based on the proper orthogonal
decomposition (POD) for the transport phenomena in fluidized beds has been de-
veloped. The reduced order model is tested first on a gas-only flow. Two different
strategies and implementations are described for this case. Next, a ROM for a two-
dimensional gas-solids fluidized bed is presented. A ROM is developed for a range of
diameters of the solids particles. The reconstructed solution is calculated and com-
pared against the full order solution. The differences between the ROM and the full
order solution are smaller than 3.2% if the diameters of the solids particles are in the
range of diameters used for POD database generation. Otherwise, the errors increase
up to 10% for the cases presented herein. The computational time of the ROM varied
between 25% and 33% of the computational time of the full order solution. The com-
putational speed-up depended on the complexity of the transport phenomena, ROM
methodology and reconstruction error. In this thesis, we also investigated the accu-
racy of the reduced order model based on the POD. When analyzing the accuracy, we
used two simple sets of governing partial differential equations: a non-homogeneous

Burgers’ equation and a system of two coupled Burgers’ equations.
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NOMENCLATURE

Solid particle diameter

Coefficient for the interphase force between gas and solid phases
Gravity acceleration

Number of snapshots

Average molecular weight of gas
Number of discrete spatial grid points
Pressure

Universal gas constant

Reynolds number

Temperature

Components of velocity vector
Velocity vector

Cartesian coordinates

Time coefficients

Volume fraction, error measurement
Viscosity

Density

Viscous stress tensor

Convection factor
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Subscripts

g — Gas phase

S — Solid phase

Superscripts

* —

o —

Tentative values

Old values
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CHAPTER I

INTRODUCTION

A. Statement of the Problem

Reduced order modeling based on the proper orthogonal decomposition (POD) is a
conceptually novel and computationally efficient technique for computing unsteady
transport phenomena. Compared to the full models which numerically solve the
governing partial differential equations (PDEs) of the transport phenomena, POD-
based reduced order models (ROMs) contain a smaller number of ordinary differential
equations (ODEs). Consequently, the order reduction is achieved by (1) reducing the
number of equations, and (2) replacing PDEs by ODEs. The focus of this research is
to develop POD-based ROMs for the transport phenomena in fluidized beds and to

investigate the accuracy of the POD-based ROMs.

B. Background

This section provides the background information of this study. The background
information includes a literature review of the reduced order modeling, an outline
of the POD technique, and a description of the gas-solid transport phenomena in

fluidized beds.

1. Reduced Order Modeling

The goal of reduced order modeling is to replace the large number of governing PDEs

by a smaller number of ODEs. Over the years, investigators have developed a number

The journal model is Journal of Propulsion and Power.



of techniques for constructing ROMs. Most of the previous work is concentrated on
fluid-only flow phenomena. A review of the status of the reduced order modeling can
be found in the article of Dowell et al.t

In structural dynamics, to solve the unsteady vibration problems, a conventional
method is to construct ROMs using the eigenmodes of the structure as basis func-
tions.? The same technique developed for structural dynamic problems has been
applied to the transport phenomena. Florea et al.® have developed a ROM based
on eigenmodes of an unsteady viscous flow in a compressor cascade. Thomas et al.*
have constructed ROMs based on eigenmodes of flows about an isolated airfoil and
an aeroelastic wing. Their studies are based on flow simulations in frequency domain
using small perturbations. A static/dynamic correction technique has been imple-
mented in their studies in order to improve the accuracy of the eigenmodes based
ROMs. Romanowski et al.®> have also constructed ROMs for the Euler equations
based on fluid eigenmodes.

POD is an attractive alternative and/or complement to the use of eigenmodes
in terms of computational cost and convenience.! POD is a procedure for extracting
an optimal basis from an ensemble of signals.® POD is also called Karhunen-Loéve
decomposition, singular value decomposition, principal components analysis, and sin-
gular systems analysis.

POD was first introduced to model coherent structures in turbulent flows by
Lumley. Using the technique of POD, a series of snapshots obtained from experi-
mental measurements and/or computational simulations, each at a different instant
of time, are examined. These solution snapshots are used to form an eigenvalue prob-
lem that is solved to determine a set of optimal basis functions for representing the
flow field. POD-based ROMs are generated by projecting the governing PDEs onto

a space spanned by a small number of POD basis functions. Thus the flow field is



described by a small number of ODEs. Background information on POD and POD-
based reduced order modeling can be found in the review articles of Berkooz et al.’
and Sirovich.”

POD-based ROMs for various systems have been constructed, e.g., Burgers’
model of turbulence,® Euler equations,? and Navier-Stokes equations.'® 4 POD-based
ROMs have been developed in the time domain for a number of flows. Deane et al.'”
have applied the POD-based ROMs to two two-dimensional flow fields: flow in a pe-
riodically grooved channel and wake of an isolated circular cylinder. The short- and
long-term accuracy of the POD-based ROMs have been studied through simulation,
continuation and bifurcation analysis. Sahan et al.'! have studied the POD-based
ROMs applied to non-isothermal transitional grooved-channel flow. In their study,
the POD-based ROMs have been derived for transitional flow and heat transfer. Ma
et al.'?> have studied the POD-based ROM for simulating three-dimensional cylinder
flow. Cazemier et al.'® have investigated the POD-based ROMs for driven cavity
flows. Rediniotis et al.'* have applied the POD-based ROM to synthetic jets which
are essential for flow control applications. Studies in the above references are based
on low-speed flows.

POD-based ROMs have also been investigated in high-speed flows. For example,
Lucia et al.'® have shown that the POD-based ROM can accurately recreate a flow
solution with strong shocks, given that the appropriate data is presented in the snap-
shots. POD has also been applied in the frequency domain. For example, Hall et al.'¢
have generated a POD-based ROM for a small-disturbance unsteady two-dimensional
inviscid flow about an isolated airfoil.

The application of POD/ROM to flow control, aeroelastic analysis, and iterative
design is currently an active field of research. Romanowski!” has applied the POD-

based ROMs to aeroelastic analysis. Ravindran'® has designed reduced order adaptive



controllers for fluids. LeGresley et al.” have investigated airfoil design optimization

using the POD-based ROMs.

2. Proper Orthogonal Decomposition

Suppose we have an ensemble of observations {u(z,t;)}. These observations are as-
sumed to form a linear infinite-dimensional Hilbert space L? on a spatial domain D.?
From that ensemble of observations, POD extracts time-independent orthonormal ba-
sis functions {¢x(z)} and time-dependent orthonormal time coefficients {«(¢;)}, such

that the reconstruction
u(z,t;) = Zak(ti)¢k($> (1.1)
k

is optimal in the sense that the average least-square truncation error

Em = < > (1.2)

is a minimum for any given number m of basis functions over all possible sets of basis

u(w,t;) — Z a;(ti) ¢;(x)

functions.' Herein || - || denotes the L?>-norm given by

If1] = (. )2,

where (,) denotes the Euclidean inner product. ( - ) denotes an ensemble average

over a number of observations

The optimum condition specified by (1.2) is equivalent to finding functions ¢

that maximize the normalized averaged projection of u onto ¢

e M@ O)%) (1.3)

ser2(p) |[¢]]?



where | - | denotes the modulus.®

The optimum condition specified by equation (1.3) reduces to°

/D (u(e)u* (@) b(e)dz' = Ap(z), (1.4)

The POD basis is therefore composed of the eigenfunctions {¢;} of the integral equa-
tion (1.4). The kernel function of the integral equation (1.4) is the averaged autocor-

relation function

(u(z)u*(2")) = R(x,2").

In practice, the state of a numerical model is only available at discrete spatial
grid points. Thus the observations in the ensemble are vectors instead of continuous
functions. The autocorrelation function in the discrete case is replaced by the tensor

product matrix!?
M

R(x,2') = % Zu(m,ti)uT(x/,ti), (1.5)

i=1

where M is the number of observations contained in the ensemble.

The derivation of the integral equation (1.3) can be generalized to vector-valued
functions such as the three-dimensional velocity fields u(x,t), where u = (u,v,w)
and x = (z,y, z). In this case, R(x,z’) is replaced by

M

R(x,x') = % Zu(x, tou’ (X', t;). (1.6)

i=1

The eigenfunctions ¢,(x) are also vector valued.
Oft-Reference Condition

The POD basis functions are optimal at the reference condition. Herein the
reference condition, also called design condition, represents the condition at which

the basis functions are obtained. Take the flow field as an example, the POD basis



functions are optimal at a special set of flow parameters (e.g., the Reynolds number
Re). When the flow parameters are not at their reference values, the POD basis func-
tions obtained at the reference condition are no longer optimal. It is straightforward
to generate the new set of optimal basis functions at the new condition. It is not
computationally practical to provide the matrix R at each condition. There are two
situations in which the POD basis functions can be used at off-reference conditions.?

First, the POD basis functions can be used at off-reference conditions, if the basis
functions are sufficiently insensitive to the flow parameters. For example, the work
of Sahan et al.'’ showed that the POD-based ROM constructed for simulating non-
isothermal transitional grooved-channel flow at reference Re = 430 could successfully
predict the flow field at Reynolds numbers in the range of 430 < Re < 1050. One
approach to extend the range of off-reference conditions in which the POD-based
ROMs are valid is to generate databases by combining snapshots from different flow
conditions (e.g., the work of Ma et al.'?).

Second, if the basis functions possess a property of universal similarity, the POD
basis functions can be used at off-reference conditions. The work of Chambers et al.®
explored this possibility by using the Burgers’ model of turbulence. They showed that
the POD basis functions in the inhomogeneous spatial variables were similar over a
range of Reynolds numbers if they were scaled on outer variables. The work of Liu
et al.?% also provided experimental evidence of the basis functions similarity. Their
results indicated that the POD basis functions of three-dimensional wall turbulence

exhibit Reynolds number independence, when scaled properly on outer variables.

3. Transport Phenomena in Fluidized Beds

Fluidization is the phenomenon in which solid particles display fluid-like properties

due to the flow of fluids.?! Figure 1 demonstrates the typical behavior of a fluidized



bed. The fluidized bed consists of a vessel containing solid particles and a bottom

(a)
Fig. 1. Typical behavior of a fluidized bed

U

plate through which gas is injected. At low gas flow velocities as shown in Figure 1(a),
the gas percolates through the void spaces between the solid particles and the solid
remains a packed bed. When the gas velocity increases over a certain threshold, called
the minimum fluidization velocity, the solid particles display fluid-like properties as
show in Figure 1(b). This state is called fluidization. If the gas flow velocity is
increased beyond the terminal velocity of the solid particles, the solid particles will

be swept out of the bed as shown in Figure 1(c).?!

C. Outline of this Thesis

Chapter II describes the transport equations and boundary conditions used to model
the transport phenomena in fluidized beds. Chapter III presents the full numerical
model used to simulate the transport equations. Chapter IV describes the general
methodology used to construct POD-based ROMs. Chapter V presents the derivation
of the POD-based ROMs for approximating the transport equations in fluidized beds.

Chapter VI presents the analysis of the accuracy of the POD-based ROMs using two



cases of Burgers’ equations. Chapter VII presents the results of POD-based ROMs
applied to two cases of transport phenomena in fluidized beds. The conclusions and
future work are presented in Chapter VIII. Appendix A describes the constitutive
models used to close the transport equations. Appendix B presents the algorithm
for calculating the convection factors in the full numerical model. Appendixes C-E

present samples of input files for the POD-based ROMs.



CHAPTER II

PHYSICAL MODEL
This chapter presents the physical model of the transport phenomena in fluidized
beds. This chapter begins with the governing equations used to model the transport

phenomena in fluidized beds. Next, the boundary conditions are described.

A. Governing Equations

Under isothermal conditions, the governing equations that model the gas-solid trans-
port phenomena in fluidized beds are the mass and momentum balance equations

given below:

e (Gas mass balance

Oe .
—(;f)g +7 - (eypyTy) = 0 (2.1)
e Solid mass balance
8 SHSs —
;tp 7 - (espstls) = 0 (2.2)

e (Gas momentum balance

(€447, - = 7 0, — 1,
(g(ng) + V- (€9pgUgly) = —€4 NV Dy + V7 + Ty + €9pgG + Fys(Us — U)  (2.3)

e Solid momentum balance

O(€espsUs)

ot + V- (€5psUsTs) = —¢€5 VPg—VDPs+\V- Ts +e€spsf — ng(ﬁs - 179) (2.4)

where €, p, and U denote the volume fraction, density, and velocity vector. The
subscripts g and s denote the gas phase and solid phase, respectively. Expressions

for the gas-phase viscous stress 7,, gas-solid drag Fy, granular stress 7,, and solid

gs»
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pressure p, are needed to close the governing equations. Constitutive models for
these variables can be found in Appendix A and are also given in Syamlal et al.??

and Syamlal.?> The gas phase is modeled as a gas obeying the ideal gas law

_ pM

or as an incompressible fluid with constant density. Herein M, R, and T, denote the

average molecular mass of gas, the universal gas constant, and the gas temperature,

respectively.

B. Boundary Conditions

Figure 2 illustrates the geometry of a fluidized bed. The left and right boundaries
are no-slip walls. At the bottom (inlet) of the bed, gas is injected with steady or
unsteady, uniform or nonuniform velocities. At the top (outlet) of the bed, a constant

gas pressure is specified.

pressure outlet

solid
walls ZJ

T T T\ velocity inlet

Fig. 2. Geometry and boundary conditions of a fluidized bed
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CHAPTER III

FULL NUMERICAL MODEL
The full numerical model represents the traditional numerical model used to solve the
transport equations given by equations (2.1)-(2.4). In this study, the numerical al-
gorithm developed at the U.S. Department of Energy’s National Energy Technology
Laboratory (Syamlal et al.??) is used to solve the transport equations. The com-
puter code, written in FORTRAN 90, is MFIX (Multiphase Flow with Interphase

eXchanges). This chapter presents the discretization used in MFIX.

A. Discretization

MFIX uses a staggered grid arrangement as shown in Figure 3. Scalars are stored at
the cell centers. Components of velocity vectors are stored at the cell faces. Equations
for scalar variables are solved on the main grid. Equations for velocity components
are solved on the staggered grids. If the velocity components and pressure are solved
on the same grid, a checkboard pressure field could result. The staggered grid ar-
rangement is used for preventing such unphysical solutions.?> Using the staggered
grid arrangement, MFIX uses three grids, which will be discribed in the following

section, to solve a two-dimensional problem.

Fig. 3. Grid arrangement in MFIX
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B. Discretized Governing Equations

This section describes the two-dimensional discretized governing equations in MFIX.

MFIX uses the control volume method to discretize the governing equations.

Mass balance

P= 02

<
®
SQ_
°
Y
g
°
&

0

Fig. 4. Control volume for mass balance

For convenience, let us write the mass balance equations (2.1) and (2.2) as

O€m Pm

. U.) = 1
ot +Vv (Empmvm) 0, (3 )

where the subscript m indicates the phase (g or s). Figure 4 shows a control volume
for the mass balance equations. P is the center of the control volume. £, W N, and
S represent the east, west, north, and south neighbor cells of the control volume. e,
w, n, and s represent the east, west, north, and south faces of the control volume.
Volume fraction ¢,, and density p,, are stored at the cell centers P, £, W, N,
and S. In order to discretize the convection terms, volume fraction and density values
at the cell faces e, w, n, and s must be evaluated. MFIX uses a convection weighting

factor & to calculate the volume fraction and density at each face. For example,
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(€mpm) at the east face is calculated as®?

(€mpm)e = (Em)e(€mpm) B+ (1= (Em)e) (€mpm) P = (Em)e(€mpm) B+ (Em)e(€mpm)p; (3.2)

where (£,,). is the convection weighting factor for (e,,pm) at the east face and (&,,). =
1 — (&n)e- The algorithm for calculating the convection weighting factor is presented
in Appendix B.

Using the convection weighting factor, the mass balance equations are discretized

aS23

(am)P<€mpm)P = Z(am)nb(empm)nb + (bm)Pv (3'3)

nb

where the subscript nb represents £, W, N, and S. Herein (a,)p, (@m)ns, and (by,)p

are defined as

(am)e = —(&m)e(um)eAe, (3.3a)
(@m)w = (Em)w(tm)wAuw, (3.30)
(@m)n = —(&n)n(vim)nAn, (3.3¢)
(am)s = (Em)s(vm)sAs, (3.3d)

(am)P = AA_‘t/ + ((um)eAe - (um>wAw + (Um>nAn - (Um)sAS)
+ an(am)nba (336)
(bm)P = (empm)%%v (3.3f)

where A, AV, and At denote the face area, cell volume, and time step size, respec-

tively. The superscript o denotes old (previous) time step values.

Momentum balance

Figures 5(a) and 5(b) show the control volumes used to discretize the z-momentum

balance equation and y-momentum balance equation, respectively. In Figures 5(a)
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(a) z-momentum balance (b) y-momentum balance

Fig. 5. Control volume for momentum balance

and 5(b), p denotes the center of the control volume; e, w, n, and s represent the
east, west, north, and south neighbor cells of the control volume; E, W, N, and S
denote the east, west, north, and south faces of the control volume; NE, NW, SE,
and SW denote the four corners of the control volume.

In MFIX, the gas and solid z-momentum equations are discretized as®?

(am)p(tm)p = Z(aum)nb(um)nb+(bum)p

nb

—Ap(em)p (Pg) = (Pg)w) + (Fys (w1 — um)p) AV, (3.4)
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where m is used to indicate the phase (gas g or solid s). [ denotes the phase other

than m. (a?),, (a

U Vnbs and (b)), are defined as

(28 — () e(Empm)e(m) £ AR,
W AW (0 (o )uo ()i Aryry
] NAN — (&t ) (€mPm)n(Vm) N A,
)8 4 (68 o(Empm) s (Um)sAs,

an( )nb + ( ) )

(empm)gAV
At ’

(am)p(um)p + S,
((Am)etr(Dm) e — ()‘m)Wtr(Dm)W)Ap
+(Hm)E(um)eAix(UM)p AE - (:um) (UM)pA tim ) AW

+(Mm)NwAN — (Mm)swzéls.

Similarly, the y-momentum equations are discretized as®?

(an)p(m)p = D (an)un(vm)as + (Br)y

nb

_Ap(em)p ((pg)N - (pg)S) + (ng<vl - Um)p) A‘/;

(3.42)
(3.4b)
(3.4¢)
(3.4)

(3.4e)

(3.4f)

(3.4h)

(3.5)



where

88 — (8 e(Empm)e(m) £ Ap,
UnWAW (0 (€mPrm ) (U ) w A,
U BN— (&0 ) (EmPm)n(Vm) N AN,
Wn)S28 4 (€9) a(€mPm)s(Vm)sAs,

an( )nb+( )7

(empm);AV
At ’

(alr;z);;(vm)z + Sy, = (€mpm)pgAV,

(M) ntr(Dm)n = (Am)str(Dm)s) Ay

Ay

+(ﬂm)NWAN — (Nm)SMAS.

Ay

Gas pressure correction

+(um)EMAE — (Mm)wwm

16

(3.5a)
(3.50)
(3.5¢)

(3.5d)

(3.5h)

An important step in the algorithm of MFIX is the discretization of a gas pres-

sure correction equation. MFIX does not solve the gas mass balance equation. MFIX

solves the gas pressure correction equation instead. The gas pressure correction equa-

tion is derived from the discretized gas mass balance equation and the discretized mo-

mentum balance equations. The gas pressure correction is solved to determine the gas

pressure correction, p;. The control volume for the gas pressure correction equation

is identical to the control volume used for discretizing the mass balance equations.

The gas pressure correction equation can be written in the standard form?

ap(P)p =D aby(Pl)s + U,

nb

(3.6)
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where
adp = ((6gpg)EEL + (€gpy) PEL)dge Ae, (3.6a)
aty = ((€gpg) PEL + (€gg) WD) dueAw, (3.60)
ay = ((egpg)NEL + (€4pg) PER)dgn An, (3.6¢)
i = ((egpg) P&l + (€gpy)s&l)dysAs, (3.6d)
ap = D (3.6¢)
W = _{((egpg)PA—t(egpg)‘}:> AV

+ ((€909) EEE + (€gpg) PER) (uf)cAc
( 69109 P§ + Egpg)W§ )( )wAw

+( €gPg)NEL + Egpg)P5 )( ) Ay

- ((

(€gpg) PEL + Egpg)Sg ) (U;)SAS}' (3.6f)

Herein, the superscript * indicates tentative velocities (i.e., velocities before correc-

tion). The velocity corrections along the z-direction are given by?3

(um)p = (un)p — dimp((Dg) 2 — (D)), (3.7)
where
€s)pFgs AV
Ap ((Gg)p + Mw)
dgp = 5 NG (3.8)
(9P + @7 Fay
€g)pFgs AV
Ay ((es)p + éﬁw)
dsp = (39)

Fys AV (ay)
( ) +(a5)p+nggA];/

Note that in Equations (3.7), (3.8), and (3.9), p is the control volume center shown

in Figure 5(a). Similarly, the velocity corrections along the y-direction are given by

(Om)p = (U5)p = dmp((Py) v — (1)), (3.10)
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where p now is the control volume center shown in Figure 5(b).

Solid volume fraction correction

In order to successfully handle dense packing of solids, MFIX derives a solid
volume fraction correction equation by including the effect of solid pressure in the
discretized solid mass balance equation.?® In the algorithm of MFIX, the solid volume
fraction correction equation is solved instead of the solid mass balance equation. The

solid volume fraction equation is written as??

ap(e)p = Zb: (€ + by, (3.11)
where ”
a = [(empm)iec(Ks)p — & (ps)p(uh)e] Ae, (3.11a)
ay = [(empm)iew(EKs)w + & (p)w (ul)w] Au, (3.11b)
ay = [(empm)nen(Is)n — & (ps)n (V5)n] An, (3.11¢)
a5 = [(empm)ies(Ks)s + € (ps)s(vD)s] As, (3.11d)

ap = (pS)P[gé(u:)eAe - gfu(“i)thw
+g761(v:)n14n - 52 (v3)sAs]

+(Ks) pl(ps€s)ceAc + (Ps€5)wewAw

H(ps€)nenAn + (psel)ses A] + (p5) P AT (3.11¢)
bp = —(ps€s)e(ul)eAe + (ps€2)w(U})wAu

—(Ps€5)n(U3)nAn + (ps€5)s(v5)sAs

—[(exps)p — (€sps)p] 2% (3.11f)

Herein K, = gﬁs.
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CHAPTER IV

METHODOLOGY FOR REDUCED ORDER MODELING BASED ON PROPER
ORTHOGONAL DECOMPOSITION

This chapter presents the general methodology for generating the POD-based ROMs.

The methodology for generating the POD-based ROMs consists of three steps: (1)

database generation; (2) modal decomposition; and (3) Galerkin projection. For

convenience, let us use the following governing PDE to illustrate these three steps:

0

M _ D), Qx0T (4.1)
ot

where u(x,t) is the state vector; Q is the spatial domain; (0,7] is the temporal
domain. Equation (4.1) can represent the Burgers’ equation, the Euler equations, the

Navier-Stokes equations, or the transport equations (2.1)-(2.4). Additionally, proper

boundary conditions and initial conditions must be specified.

A. Database Generation

The database is an ensemble of data that represent solutions of the governing equation
(4.1). The database can be numerical solutions of (4.1), experimental measurements,
or combination of numerical and experimental data. In this study, the database
contains a number of snapshots, each at different momentum of time, obtained from
numerical simulations of the governing equation (4.1). MFIX was used to gene-
rate the database for the transport equations (2.1)-(2.4) which model the transport

phenomena in fluidized beds.
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B. Modal Decomposition

Let us assume that a number of snapshots u(x,t;), i € [1, M] have been generated
during the database generation step. Herein M is the total number of snapshots. In
the modal decomposition step, POD is applied to the database to extract the basis

functions of u. First, u is decomposed into the mean u(x) and the fluctuation u’(x, t),

ie.,
u(x,t) = a(x) + u'(x, t), (4.2)
where
1 (7 1 —
a(x) = /0 u(x, t)dt = - ;u(x, t)
and

w(x,t) = u(x,t) (), i € [1, M)
The tensor product matrix R is calculated as
| XM
R(x,x') = Wi ZZI ' (x, 6w’ (X, ).
The basis functions ¢, are the eigenvectors of the matrix R(x,x’). Using the basis

functions, u(x,t) is reconstructed as

ulx.t) = 66 + Y ay()65(x) = D s (1)05(x) (4.3

where the zeroth basis function ¢y(x) is the mean u(x) and ay(t) = 1.
Method of snapshots

A popular technique for finding eigenvalues and eigenvectors of Equation (1.6) is
the method of snapshots proposed by Sirovich.” The method of snapshots is efficient
when the resolution of the spatial domain NN is higher than the number of snapshots

M. The method of snapshots is based on the fact that the data vectors u; and the
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eigenvectors ¢, are spanning the same linear space.?* As a result, the eigenvectors

can be written as a linear combination of the data vectors
M
dr =Y vfw, ke[l M) (4.4)
i=1

If (4.4) is introduced in the eigenvalue problem R(x,x’)¢(x) = Ap(x’) we obtain’

Cv = \v, (4.5)
where vF = (vF 05, ... v%,) is the kth eigenvector of (4.5); C' is a symmetric M x M
matrix defined by’
1
Cij = M (u’(x, tl), u'(x, t])) . (46)

Thus the eigenvectors of the N x N matrix R are calculated by computing the eigen-
vectors of the M x M matrix C. In this study, a code due to Paul Cizmas and Antonio

Palacios is used to perform POD using the method of snapshots.

C. Galerkin Projection

The eigenvalues are ordered such that Ay > Ay > --- > A3y > 0. The basis functions

are also ordered according to their corresponding eigenvalues. If most of the energy

is contained in the first m (m < M) POD modes, such that " | \; ~ Zj\il Aj, it is
reasonable to approximate u'(x,t) using the first m POD modes:
u(x, ) = a(x) + » a(t)e;(x) = Y a;(t);(x). (4.7)
j=1 =0

Let us substitute the approximation of u(x,t) given by equation (4.7) into the

governing equation (4.1),

> 50, () = DY o, (116,00 s

J=0
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When equation (4.8) is projected along the basis function, ¢y (x),

(9% %p%(x)) = <¢k7 D) Oéj(t)éf)j(x))) 7 (4.9)

j=1 7=0

we obtain the ordinary differential equations,

%:Fk(al,...,am), ke [1,m], (4.10)
where the unknowns are the time coefficients ay(t), k € [1,m]. When deriving equa-
tion (4.10) from equation (4.9), we have used the orthonormal property of the basis
functions,
1 itk =
(Pr, @5) = Ok = :
0 ifk+#j
Order reduction has been achieved by (1) replacing the PDEs (4.1) by a system
of ODEs (4.10), and (2) reducing the number of equations from N to m. The ODEs
(4.10) can be integrated using appropriate ODE solvers, e.g., the fourth-order Runge-
Kutta method to predict the time history of a;, j € [1,m]. With the time coefficients
obtained from the ODEs (4.10), u(x,t) can be reconstructed using the approximation

(4.7). We can also obtain the values of a; by directly projecting the database onto

the jth basis function,

ool (1) = (¢;(x), W (x,t)), je[l,m], kel,M]. (4.11)

J

aPOP can be used as reference to examine the accuracy of the POD-based ROM at

the reference condition.
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D. Summary

This chapter presented the general methodology for generating the POD-based ROMs.
The governing equation (4.1) was used to illustrate this methodology. The POD-based

ROM generated in this chapter consists of a system of ODEs.
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CHAPTER V

REDUCED ORDER MODELS BASED ON PROPER ORTHOGONAL
DECOMPOSITION FOR TRANSPORT PHENOMENA
This chapter describes the POD-based ROMs generated to approximate the transport
equations (2.1)-(2.4). Two catalogs of POD-based ROMs have been generated. The
first catalog includes two POD-based ROMs constructed for gas-only flow phenomena.
The second catalog includes one POD-based ROM constructed for gas-solid transport
phenomena. These POD-based ROMs are derived from the discretized governing

equations described in Section III.B.

A. Reduced order models based on proper orthogonal decomposition for gas-only

flow phenomena

For a two-dimensional gas-only flow problem, MFIX solves the gas x-momentum
equation (3.4), the gas y-momentum equation (3.5), and the gas pressure correction
equation (3.6). For gas-only flow problems, ¢, = 1, ¢, = 0, and Fy;, = 0. The
dependent field variables are the gas pressure p, and the gas velocities u, and v,.
When describing the POD-based ROMs for gas-only flows, the subscript g is dropped
for convenience. Table I lists the features of the two POD-based ROMs generated for

gas-only flows.

1. ODExMFIX

ODExMFIX is a POD-based ROM generated to model gas-only flows. ODExMFIX
is derived from the discretized momentum equations (3.4), (3.5) and the gas pressure

correction equation (3.6). The discretized momentum equations and the gas pressure
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Table I. Reduced order models for gas-only flows

Model Governing Equations | Unknowns of the ODEs

ODExMFIX | z-momentum balance | a*, a”, aP
y-momentum balance

pressure correction

ODEx3 r-momentum balance | a*, oV, o
y-momentum balance
mass balance
correction equation are rearranged as
ayuy = Y atiny = by — Ay(pe — pw), (5.1)
nb
apUp — Z AppUnb = by — Az(pn — ps), (5.2)
nb
applp =Y by, = bp. (5.3)

nb
In ODExMFIX, p, u, and v are approximated using the POD basis functions as

mY

u(, ) = () + u'(x,1) 2 ¢ (x) + 3 af ()0} (x), (5.4)
v, 1) = (%) + V(%) 2 95(x) + 3 af (16} (x), (5.5)

p(x,t) = ¢(x) + Z a; ()¢ (x). (5.6)
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where m", m", and m? are the number of POD modes used to approximate u, v, and

p, respectively. The correction of the pressure, p’, is approximated as

mP

Px,t) 2y (af) (1)e] (x). (5.7)

i=1
Substituting the approximations of u, v, and p’ given by (5.4), (5.5), and (5.7) into

equations (5.1), (5.2), and (5.3), respectively, yields

ar > aror =3 ak S arer., = bt — Ay(pe — pw), (5.8)
=0 nb i=0

by alor =3 al, > alel,, = b — Ax(py — ps), (5.9)
1=0 nb =0

ap Y (aFYOF = an, D ()], = . (5.10)
i=1 i=1

nb
Projecting equations (5.8), (5.9), and (5.10) onto the basis functions ¢}, ¢y, and ¢,

respectively, generates three systems of linear equations:

Aot = B, (5.11)
Ava? = B, (5.12)
APaP = P, (5.13)

where

nb

Al = ((a;fsb;‘ =) adt). cbé‘) ,
nb

A?j = ((a§§¢§ - Zaﬁbcb}{nb), be) )

nb
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BZ.J = ([b; — A:L‘(pN — ps) - (a;¢8 - ZaZbd)g,nb)]? ¢f) )
nb

A} = ((aﬁqﬁ? =Y ahy ), O ) 7
nb

Herein the dimensions of A*, A” and AP are m* x m*, m® x m”, and mP x mP,
respectively. The dimensions of B, B” and BP are m* x 1, m* x 1, and m? x 1,
respectively. These matrices are calculated using the field variables from the previous
iteration. The systems of linear equations (5.11), (5.12), and (5.13) are solved using
the LU decomposition method.

ODExMFIX uses an iterative algorithm which is similar to the algorithm used

in MFIX. An outline of the solution algorithm in ODExMFIX is given below:

e Using the time coefficients from the previous iteration, reconstruct the field
variables p, u and v. For compressible flows, calculate the density p using the

ideal gas law.

e Solve the system of linear equations (5.11) and obtain the tentative values of

al

“(t), i € [1,m"]. The values are called tentative values because they are

calculated based on the previous pressure field and they will be corrected based

on the pressure correction.

e Solve the system of linear equations (5.12) and obtain the tentative values of

af(t), 1 € [1,m"].
e Solve the system of linear equations (5.13) and obtain (af)'(t), i € [1,m?].
e Correct the time coefficients of p, u and v.

e Check the convergence. If converged, advance to the next time step.
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The input data for ODExMFIX are the basis functions of the velocities and the
pressure. The solutions of ODExMFIX are o, i € [1,m"], of, i € [1,m"], and of,

1 79

i € [1,m?]. An example of the input file of ODExMFIX is presented in Appendix C.

2. ODEx3

ODEx3 is a POD-based ROM generated to model compressible gas flows. ODEx3 is
derived from the discretized gas mass equation (3.3) and the discretized gas momen-
tum equations (3.4) and (3.5). For gas-only flows the dependent variables in MFIX
are the pressure p and the velocities v and v. The density field is calculated from
the pressure field using the ideal gas law (2.5). p is approximated using the basis
functions ¢7, i € [1,m”] as

PP+ al(t)g. (5.14)
=1

Consequently, the pressure p is approximated as

p= Z—Z ((bg + ;af(t)cbf) : (5.15)

Using equations (3.3a)-(3.3f), the discretized gas mass equation (3.3) is rear-

ranged as

AV - pPA_tpP — _(gepE + gepp)ueAy + (prp + éuﬂW)UwAy

—(&npn + Enpp)Un AT + (Espp + Eops )V A, (5.16)

where Ay = A, = A, and Ax = A, = A, for two-dimensional flows. Replacing

% by % and substituting the approximations given by (5.4), (5.5), and (5.14)
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into equation (5.16), one obtains

Avid%f = —Zf} (6t + &)oY - afal +
i=1 =0 7=0
+ i;f;(émf + &) O - Al —
1= 1=
- ﬁ;i@n f,N + gnﬁbf)ﬁb; . Oéfa;? +
1= J=
+ Z mz Etf + &l )0y, - bl (5.17)
=0 7=0

Projecting equation (5.17) onto the basis functions ¢}, k € [1,m”], generates m”

ODEs with the form of

mP
vgkall{; = szl,:z]al ] + Z gkzg i ]7 (518)

i=0 j=0 i=0 j=0

where

Fliy == (6t g+ E00) e, 07) + ((€wd + Eudlw) Dl OF)
Griy = = (6t + &)Y, 0F) + (€0 + &b )05 OF) -

For compressible gas flows, the discretized momentum equations are

atu, = alyug, + b — Ay(ps — pw), (5.19)
nb

vy = Z AppyUn + by — Az (pn — ps). (5.20)
nb

Substituting equations (3.4e)-(3.4g) into equation (5.19) and substituting equations (3.5e)-
(3.5g) into equation (5.20) yields

VAN % " pyAvV. o
(Zanb—l— o )up:Zanbunb—l— LU+ S = Aylpp —pw),  (5:21)
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(]

PeAV . PRAV .
pt )vp:;anbvnb+ pAt vy — ppgAV + 5" — Az(py — ps). (5.22)

px

Equations (5.21) and (5.22) are rearranged as

Z anp(Unp — up) + S — Ay(pr — pw), (5.23)
OAV Z app(Unp — Vp) — ppg AV + 8 — Az(pn — ps). (5.24)
Replacing pAt “ and p Up by 8“” and 2 m , respectively, yields
(% aup u
ppAV Z aty(uny — up) + S — Ay(pp — pw), (5.25)
o (%p v v
ppAVE = % app(Unp — Vp) — ppg AV + 8 — Az(pn — ps). (5.26)

Substituting the approximations of u, v, p and p given by equations (5.4), (5.5),
(5.14), and (5.15) and the definitions of al, and a?, given by equations (3.4a)-(3.4d)



31

and equations (3.5a)-(3.5d) into equations (5.25) and (5.26), yields

mP m% m"

PAV Y arer = = NN Ehdl o (ol — 6 Ayalalal

i=1 szOkO

+ZZZsW¢ WO (04, — %) Ayalatay

i=0 j=0 k=0

mP m% mY

=2 D &R0 (@, — 8 Azalajay
=0 7=0 k=0

mP m¥ mY

)DLl s(oh, — o) Avalalal,

i=0 j=0 k=0
+mZ“EAy(¢” a0 G o
: AZL‘ i,e 1
uNAm ,uSAx
Z 1n_¢u : Z zs_ ;L)Oé;t
RT &
8" = Ay > (s — dw)a, (5.27)

=0



mY mP m* mY
AV Y aier = = Y D il
i=1 1= O] 0 k=0

DR ITRN

i=0 j=0 k=0

mP

m¥ mY

ke ¢Z)Aya5a7az

kw ¢z)Aya5a;‘az

=N Kl (dh, — dh)Azalalay

i=0 j:O k=0
+ZZ Zfsqb i 5(Prs — Op)Arajalay
=0 7=0 k=0
2 UNAT ) ,uSA:v
+; Ry (9t —9Da Z
mP mP
R INO I 5-m% &y —
i=0 Y i=0

Project (5.27) onto the basis function ¢}, I € [1,m"] and obtain m* ODEs

At = SN Fatatar + 330
par e =0 520 k=0
mzu Hiaol +ZP P+ S
where
Ay = b5 - (85 AV, 6})
Fitiw = (€50l 0k p(0Y. — 65) Ay + &bl 01w (0
Gitie = (€000 a0k v (D% — 05 AT + E800 67 5(04

u EAy U u
li_(Am( ¢)¢l)+(A:p
= 1), ¢z>+<Ay(z‘,5_

NA.CC<
Ay

i

P

u

pow Ay

v

— gzﬁqj)Ax

p . u, v
Uka a; oy

— ") Ay), ¢1),
I, 1),

(6t - t). ot

_(bv) v
,s - (bf)&;)

Zs)%p-

_|_

o). ¢;‘) |
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(5.28)

(5.29)
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- RT
Pit = — 3 A (0 = o). o).
St = (5", 6.

Project (5.28) onto the basis function ¢}, [ € [1, m"] and obtain m” ODEs

mP mY mY

mP m* mv
Avdv — ap U v+ ap v v
1= lzgk lz]k
=0 7=0 k=0 =0 j=0 k=0

mvY

* Z o+ Z Piiof + ZMW +5/, (5.30)
i=0 i=0

where

Al =65 (p9gUAV, ¢Y)
Fiae = (6500 08 p(8h . — B0 AY + & 8L 0w (85 — d0)AY], 1),
Gitire = ([—ER 00 0Y N (07 — G0 Az + E207 08 (0}, — dp) Az, ),

. A A
b= (M oo + (M et - o0, o)
pnAz vy o psAr vy v
# (Mot - e o ) + (M5S0t - o, o).

RT

Py = —MAZ' ((¢? in— Pis)s )

St =(8" 97).
ODEXx3 consists of m?” ODEs (5.18), m* ODEs (5.29), and m* ODEs (5.30). The
input data of ODEx3 are the basis functions of p, u, and v. The solutions of ODEx3
[1,m"], and o, ¢ € [1,m"]. An example of the input file

are of i € [1,m"], o¥, i €

of ODEx3 is presented in Appendix D.
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B. Reduced order model based on proper orthogonal decomposition for gas-solid

transport phenomena

For two-dimensional gas-solid transport phenomena, MFIX solves the discretized z-
momentum equations of the gas-phase and the solid-phase (3.4), the discretized y-
momentum equations of the gas-phase and the solid-phase (3.5), the gas pressure
correction equation (3.6), and the solid volume fraction correction equation (3.11).
The dependent field variables in MFIX are the gas pressure p,, the void fraction €,
and the velocity components of the gas-phase and the solid-phase, ugy, vy, us, and v;.

Let us assume that the database containing a number of snapshots of p,, €4, u,,
g, vy, and vs has been generated and the POD basis functions ¢?, ¢;, ¢;?, ¢, and
¢;° have been extracted from this database. Herein the POD basis functions of €, are
not computed, because in MFIX, an intermediate variable, the solid volume fraction
€s is introduced and the solid volume fraction correction equation (3.11) is used to

solve the corrections of €,. €, is computed from e, as
€, =1—c¢,. (5.31)

In this thesis, the POD-based ROM generated to model the gas-solid transport phe-
nomena is called ODExS. In ODExS, the solid volume fraction ¢, is also introduced
as an intermediate variable. ODExS uses the same solid volume fraction correction
equation as used in MFIX. Thus we call ODExS a hybrid model, because the order
of the solid volume fraction correction equation has not been reduced in ODEXS.
Another reason for keeping the solid volume fraction correction equation in
ODEXS is that void fraction €, should belong to [0, 1]. If ¢, was approximated using
the POD basis functions of ¢, at some grid points, the reconstructed void fraction

values were larger than 1 because of the approximation using POD basis functions.
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Using the approach presented for constructing ODExMFIX, the discretized x-
momentum equations, the discretized y-momentum equations, and the discretized gas
pressure correction equation are projected onto the basis functions ¢", ¢V, and ¢Ps,

respectively. Five systems of linear algebraic equations are obtained:

Avm gt = B, (5.32)
Avmotm = Bom, (5.33)
APsaPs = BPo (5.34)

where m denotes the phase g or s. The definitions of A and B were presented in
Section A.1.

The input data of ODExS consist of ¢}?, ¢, &7, ¢i*, ¢?*, and the initial field
of €,. The solutions of ODExS include af?, i, o;;?, o}, a*, and €,. An outline of

AR Rt A et S Mt A

the solution algorithm in ODEXS is described below:

e Using the time coefficients from the previous iteration, reconstruct the field vari-
ables py, ug, V4, us, and vs. Calculate physical properties p, and ps. Calculate

transport properties pg, (s, and Fi.

e Solve the systems of linear algebraic equations (5.32) and obtain the tentative

values of o, (t), i € [1,m"] and o (t), i € [1, m"].

e Solve the systems of linear algebraic equations (5.33) and obtain the tentative

values of «;?(t), i € [1,m%] and o*(t), i € [1,m®].

e Solve the system of linear equations (5.34) and obtain (a}?)(t), i € [1, mP].

Ug Us Vg Vs Dg
e Correct o;?, o*, o7, o, and a;”.
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e Solve the solid volume fraction correction equation (3.11) and obtain (e4)’. Cor-

Us
7 0

rect €, a;, and a;”.
e Calculate the void fraction using equation (5.31).
e Check the convergence. If converged, advance to the next time step.

An example of the input file for ODEXS is presented in Appendix E.

C. Summary

This chapter described the POD-based ROMs generated for the transport phenomena
in fluidized beds. Two models for gas-only flows and one model for gas-solid transport

phenomena have been presented.
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CHAPTER VI

ACCURACY OF REDUCED ORDER MODELS BASED ON PROPER
ORTHOGONAL DECOMPOSITION
The proper orthogonal decomposition extracts a set of orthonormal basis functions
from a given ensemble of observations. The errors contained in these observations
inevitably affect the accuracy of the POD-based ROMs. In this chapter, the accu-
racy of the POD-based ROMs is analyzed. In order to measure the accuracy, it is
better to use some governing equations whose analytical solutions are known. Thus,
in this chapter, the accuracy analysis is based on two simple sets of PDEs: a non-
homogeneous Burgers’ equation and a system of two coupled Burgers’ equations.
While the Burgers’ equation is a significantly simplified model of the transport equa-
tions, it is suitable for investigating the properties of the POD-based ROMs applied

to the transport phenomena.

A. Non-homogeneous Burgers’ Equation

Consider the non-homogeneous Burgers’ equation

ou(zx,t)
ot

4 u(x,t)~augz’t) = f(x,1), (6.1)

where u(z,t) is the dependent variable and
f(z,t) = 0.5sin(mx)sin(t) — 0.2sin(27x) sin(2t) + 0.1 sin(57x) sin(5t) +

+ (z — 0.5sin(mz) cos(t) + 0.1 sin(27x) cos(2t) — 0.02sin(5mrx) cos(5t)) *

% (1 — 0.57 cos(mz) cos(t) + 0.2m cos(2mzx) cos(2t) — 0.17 cos(5mx) cos(5t)).
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Equation (6.1) satisfies the following boundary conditions
u(0,t) =0,

u(l,t) =1

and the initial condition
u(z,0) =z — 0.5sin(rz) + 0.1sin(27z) — 0.02sin(57x).

The non-homogeneous term f(z,t) has been chosen such that the analytical solution

of equation (6.1) is

Ugnatytic(T,t) = x — 0.5sin(mz) cos(t) + 0.1sin(27x) cos(2t) — 0.02 sin(5mx) cos(5t).
(6.2)

1. Database Generation

To generate a database for equation (6.1), we need to obtain a solution of equation
(6.1). In general, an analytical solution may not be available for equation (6.1). For
this reason, a numerical solution must be obtained.
To generate a numerical solution for equation (6.1), let us discretize the spatial
domain [0, 1] using a mesh with 100 cells of constant length Az. If the spatial deriva-
du

tive 5% is approximated using a centered, second-order discretization, at each node i

in the spatial domain, the PDE (6.1) can be converted into a pseudo-ODE

du; o Uil — Ui—1

dt Ui 2Ax

+ f(z;t), 1€ [1,N], (6.3)

where N = 99. By using this approach, the numerical solution of the PDE has been
replaced by the numerical solution of a set of N first-order ODEs. Consequently, the

order of that system is N.
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The LSODI package due to Jeffrey F. Painter and Alan C. Hindmarsh is used to
solve the system of ODEs (6.3). The system of ODEs (6.3) is integrated from ¢ = Os
to t = 50s. Snapshots are stored every At = 0.1s. Thus there are M = 501 snapshots
in the numerical solution of PDE (6.1).

In order to analyze how the numerical errors contained in the databases influence
the accuracy of the POD-based ROMs, the system of ODEs (6.3) has been solved
at four different accuracy levels. In the LSODI package, the accuracy is controlled
by specifying the relative tolerance parameter rtol and/or the absolute tolerance
parameter atol. The convergence criteria in the LSODI package is

N . . 2

1 w9 (2, tr) — w1V (24, 1)

> ( <1, (6.4)
i=1

rtol - |u9) (x;, ty.)| + atol

where u'9) (x;,t;,) and uV =Y (x4, t;) denote u(x;,1;) at current iteration j and previous
iteration j — 1, respectively. Herein the absolute tolerance parameter atol was zero for
pure relative error control and the four rtol values corresponding to the four accuracy
levels were 0.01%, 0.3%, 5%, and 50%, respectively.

Because equation (6.4) and rtol are not straightforward for measuring the nu-

merical errors contained in the databases, let us define an error € as

LHS — RH
€= [LHS — RHS| (6.5)

V/LHS? + RHS?’

where LHS and RHS are the left-hand-side and right-hand-side of equation (6.3).

The errors corresponding to above four relative tolerance levels were 0.78%, 4.80%,
17.3% and 30.5%, respectively. The errors € were averaged in space and time, and
the spatial and temporal average error is €. Herein, the time interval was 50s. Let
us use DBJ(\? to denote the database corresponding to the error of €. ug\?PDE(x,ti)

represents the ith snapshot in DB](Vg).
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Additionally, because the analytical solution of the PDE (6.1) is known, a database
called D B4 has been generated. The subscript A indicates that the snapshots in DB 4

are calculated from the analytical solution (6.2). The kth component of the ith snap-

shot in DB 4 is

'LLA(.ﬁIfk, tz) = Uanalytical ($k7 tz) = uanalytical(kAx7 ZAt)a

where i € [1, M] and k € [1, N].

2. Modal Decomposition

We decompose the dependent variable u(z,t) into the mean u(x) and the fluctuation

uw(x,t):
u(z, t;) = u(x) +u'(x,t;), i€[l, M].

POD is applied to the fluctuation u/(z,¢;) to extract the basis functions.
There are two options for computing the basis functions. The first option is to
use the method described in Section 1.B.2 to directly extract the eigenfunctions of

the tensor product matrix R. R is a N x N matrix given by

UZMZ (zs, i)' (x5, 1), 4,7 € [1,N].

Another option for computing the POD basis functions is to use the method of snap-

shots presented in Section IV.B. The kernel matrix C' is computed as

1 N
i' Zu/ ZEk, mkat)7 i7j€[1aM]a
k’:l

and C'is a M x M matrix. In general, N > M the method of snapshots is more
computational efficient. Since in this case, N = 99 and M = 501, it is computationally

more efficient to use the first option to compute the basis functions. Herein, we still
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used the method of snapshots. The PODDEC package due to Paul Cizmas and
Antonio Palacios has been applied.

Let us denote the #th basis functions obtained from DB, and DB by ¢i,
and qﬁz;, respectively. Note that the PODDEC package also produces a set of time
coefficients «(t) by directly projecting the snapshots onto the basis functions. We use

(€)

Qiy pop and aZN »op U0 denote such time coefficients obtained from DBy and DBy,

respectively.

3. Galerkin Projection

Using the basis functions, the dependent variable u(x,t) is approximated using the

first m basis functions:

m m

u(z,t) = a(e) + (2, t) = a(z) + Y ai(t)oi(x) = Y ait)i(z),  (6.6)

i=1 i=0
where ¢g(z) = u(x) and ag(t) = 1. The total number of basis functions M is equal
to the number of snapshots, i.e., M = 501. Substituting the approximation of u(x,t)

given by (6.6) into the Burgers’ equation (6.1), yields:

" doy(t T - do;(x
S W )+ 0 ey D — peny, 6)
i=1 i=0 j=0

where d%—ff) is calculated using the centered, second-order discretization. Projecting

equation (6.7) onto the basis functions ¢ (z),

m

Z d;: (¢is Or) = ZZO@O@' (¢z‘%, ¢k) +(f, ér), kell,m], (6.8)

generates a system of first-order ODEs

%Z—ZZ%% (cbz 95 m) (f. &), ke Lml. (6.9)
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The unknowns of the ODEs (6.9) are the time coefficients «;(t), ¢ € [1,m]. Order
reduction is achieved if m < N. Herein the LSODI package is also used to solve the
reduced order system of ODEs (6.9). After solving the time coefficients «/(t) from the
ODEs (6.9), u(z,t) is reconstructed using the approximation given by (6.6).
Let us use a;, p,,, and aEiROM to denote the solutions of ODEs (6.9) using ¢,
Q)

and gbg, respectively. The reconstructed u are represented by w4 rom and uy poyy-

4. Accuracy Analysis

Because the analytical solution of the Burgers’ equation (6.1) is given by (6.2), the
analytical expressions of the basis functions and their corresponding time coefficients
can be derived. These analytical expressions are used as references for the accuracy
analyzing.
Here the analytical expressions of the basis functions and time coefficients are
derived in the discretized spatial domain. The spatial domain was discretized into
1

N + 1 uniform cells with Az = 57+ The analytical expression of the zeroth basis

function is found as

T
¢0analytical (CB) = ﬁ'analytical(x) = jllm uanalytical(xa t) =T (610)
Consequently,
Uppatyticat (T, 1) = —0.5sin(mx) cos(t) + 0.1sin(27x) cos(2t) — 0.02 sin(57x) cos(5t).
(6.11)
Note that
N 0 ifi#y
Z sin(imnAx) sin(jrnAx) = , (6.12)
n=1 s ifi=j

thus {£v2Az sin(imx)} forms an orthonormal basis in the discretized spatial domain.
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Herein, we chose the {—+v2Axsin(irx)} to form the basis in order to compare to the

numerical basis functions obtained from the PODDEC package. The expression (6.11)

/

implies that Ugnalytica

, consists of three modes. The analytical expressions of these
basis functions and their corresponding time coefficients are listed below:
¢0analytical (x) =T, aoanalytical (t) = 17
¢1analytical (x) =V 2A$ Sln(ﬂ-x>7 alanalytical (t) = 05 COS(t>/ v 2AI7
(6.13)
¢2analytical (I) =V 2Ax Sln(Qﬂ-x)7 a2analytical (t) = _O]' COS<2t)/ v 2ACC’

¢3analytical (Z’) ==V 2AJ; Sln(5ﬂ-$), a3analytical (t) = 002 COS(5t)/ \ 2A'I"

a. Accuracy of basis functions

Using PODDEC, five sets of basis functions have been computed from DB, and
DB](\?. Including the analytical basis functions given by (6.13), six sets of basis
functions are compared in this section. Table II lists these six set of basis functions

and their corresponding databases. In order to measure how well the basis functions

Table II. Six sets of basis functions and corresponding databases

Basis Function | Database
Dianatytical

Piy DBy
¢1(10v.78) DB](\([)JS)
qblgi.so) DB](\AIL.SO)
d)z(}v?.:s) DB](\}T?’)
¢Z(]3V0.5) DB](\:;O.@
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agree with the analytical basis functions, we define an error of the basis function as

N
— _ % Zk:l |¢Z(l‘k) - ¢ianalytical (xk>‘

€p; =

x 100%, (6.14)

’ ’ ¢ianalytical 2
where N is the number of components of the basis vectors, which is 99 for the current

case. €, is normalized using the Lo-norm of ¢, ., .....-
o Accuracy of ¢;,

Table III lists the errors €,, of ¢;, with respect to These errors are

gbianu.lytical :

Table III. Errors of ¢;,, i € [0, 3]

Basis Functions b0, o1, P2, O3,

Error 0.0178% | 0.0118% | 0.0137% | 0.0094%

generated by the approximations made while solving the eigenvalue problem using
the PODDEC package. Table IIT shows that ¢;, agrees with the analytical basis
functions very well. One can conclude that the errors due to the PODDEC package

are negligible.
e Accuracy of ¢SV)

Figure 6 shows the first four basis functions of (bl(? compared against the ana-

lytical basis functions ¢, ., .....- Lhere is an excellent agreement between ¢;,, . ...

(4.80)

Oy gzﬁ%v'so), and ¢g‘jv'8°> corresponding to

and gbg?ng) corresponding to € = 0.78%. ¢

€ = 4.80% agree well with the analytical basis functions. Small differences are noticed

)

between gbéiso) and ¢3 When the numerical error € increases to 17.3%, qb&?'g ;

analytical *

qbg‘g) and (bgvm) have slight oscillations around the analytical values and qbgv?'?’) has

obvious differences compared against ¢3 For e = 30.5%, large differences were

analytical *
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observed between ¢§]3V°'5)

and @;,,, ;.- From the above comparisons, we can conclude
that: (1)the accuracy of qﬁfv) decrease as the numerical error € increases; and (2) basis
functions that correspond to smaller eigenvalues are more sensitive to the numerical
errors of the databases.

Table IV presents the errors of QSSV) with respect t0 @;,,.; - Lhe errors listed
in Table IV consist of the following two components: (1) numerical errors introduced
by the eigenvalue problem solver of the PODDEC package, and (2) numerical errors
due to the database DB](\?. In order to analyze the contribution of the errors of the

database DBJ(\?, let us compute the errors of qbf\? with respect to ¢;,. Table V lists

these errors. Table V proves that the accuracy of d)f\? decreases as € increases.

Table IV. Errors of qﬁz(? with respect t0 @i, var ¢ € [0, 3]

€ (z)ON (blN (2521\] ¢3N
0.78% | 0.0180% 0.0125% 0.0147%  0.0217%

4.80% | 0.0158% 0.0174%  0.0242%  0.2234%
17.3% | 0.0741% 0.1376%  0.1818%  1.8900%
30.5% | 5.0377% 3.2211% 10.3701% 11.1122%

e Cumulative energy

The effect of the numerical errors of the databases on the basis functions can also
be observed from the cumulative energy spectrum. Table VI shows the cumulative
energy captured by different number of modes used to approximate u'(x,t). Note

that € = 0.00% represents the database of DB,. For the analytical basis functions,
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Table V. Errors of gbfv) with respect to ¢;,, i € [0, 3]
€ Poy D1y P2y D3y
0.78% | 0.0003% 0.0009% 0.0019%  0.0210%

4.80% | 0.0046% 0.0113%  0.0262%  0.2225%
17.3% | 0.0752% 0.1325% 0.1711%  1.8903%

30.5% | 4.9980% 3.2204% 10.3672% 11.1066%

Table VI. Cumulative energy for the Burgers’ equation

€ 1 mode 2 modes 3 modes 4 modes

Analytical | 96.003% 99.846% 100.00% N/A
0.00% 96.005% 99.846% 100.00% 100.00%
0.78% 96.000% 99.845% 99.999%  99.999%
4.80% 95.975% 99.840% 99.997%  99.998%
17.3% 95.639% 99.626% 99.765% 99.855%
30.5% 49.860% 94.681% 97.025% 97.841%

the total energy E is defined as

T 1
/ 2
Eanalytical :/ / (uanalytical) dxdt
0 0

and the relative energy captured by the kth mode is defined as

1 T 1
— 2
Ekanalytical - / / (akanalytical d)kanalytical) d‘rdt
0 0

Eanalytical
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In this analysis, the time interval is 7" = 50 seconds. For ¢;, and ¢;,, the total energy

F is defined as the sum of all the eigenvalues?!

M
F=Yon
k=1
and the relative energy captured by the kth mode is defined as

A
Ek:Ek.

It can be seen from Table VI that as the error € increases, the cumulative energy
decreases for the same number of modes. For the analytical solution, ¢4 does

analytical

3 /
not exist because g, q1,1ical

(x,t) consists of only three modes. When € > 0, the energy

captured by the fourth mode is not zero due to the numerical errors of the databases.

b. Accuracy of time coefficients

Because 22:1 By = 100%, the number of equations is reduced from 99 to 3

analytical
by setting m = 3 in ODEs (6.9). The number of equations, however, can be reduced
further to 2 by neglecting the third mode. The third mode can be neglected because
it captures a relatively small portion of the total energy. As shown in Table VI, the
third mode only covers about 0.15% of the total energy when € < 30.5%. Even for an
error of 30.5%, the energy of the third mode is 2.3% of the total energy and it could
be acceptable to neglect it. In this section, results for both m = 3 and m = 2 are
analyzed. For convenience, ROM(3) and ROM(2) are used to denote the ROM with
m = 3 and m = 2, respectively.

To measure the accuracy of the time coefficients obtained from the ROMs, the
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error of the time coeflicients is defined as

M
— . % Zkil ‘az(tk) - aianalytical (tk)’

€a; = —
\/Zk‘zl Oéianalytical (tk)Q

Note this error is defined with respect to the analytical time coefficients. In the

x 100%. (6.15)

following comparisons, some errors were calculated with respect to time coefficients

other than the analytical time coefficients.
hd Accuracy Of aianalytical,ROM

If the ROM (6.9) is generated using the analytical basis functions ¢i,, ., .;.;» the

time coefficients obtained from solving (6.9) are denoted by a1, icarron - Lables VII

Table VII. Errors of oy

analytical , ROM(3)

Tlme CoefﬁClents alanalytical,ROI\/I(S) a2analytical,RO]W(3) aganalytical,ROlW@)

Error 0.0006% 0.0037% 0.0179%

Table VIII. Errors of «;

analytical , ROM (2)

Time coefficients || oy 9

analytical, ROM(2) analytical L, ROM (2)

Error 0.0174% 0.1753%

and VIII present the errors €., of @i, ..,vica.ron With respect to as, ., ..., for ROM(3)
and ROM(2), respectively. In Table VII, the errors are generated by solving the
ODEs (6.9). As seen from Table VII, the errors caused by solving the ODEs (6.9) are
negligible. In Table VIII, the errors are generated by two sources: solving the ODEs
(6.9) and neglecting the third mode. The errors caused by neglecting the third mode

are also negligible.
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e Accuracy of &, nou,

If the ROM is generated using the basis functions of ¢;,, the time coefficients
obtained from the ODEs (6.9) are called o, ,,,. Tables IX and X present the

eITors €q, Of iy o), With respect to i, ,,.....,- Compared to the errors in Tables VII

Table IX. Errors of a;, .., With respect t0 &,

Time coeflicients My pors | “2arone | ¥Barome

Error 0.0202% | 0.0277% | 0.0201%

Table X. Errors of ai, p,,,,, With respect t0 &, .1 ica

Time coeflicients Ny pore | O2arome

Error 0.0224% | 0.1775%

and VIII, the errors in Tables IX and X increased. The error increase is caused by the
errors contained in the basis functions ¢;,. The errors in ¢;, are due to the numerical

errors introduced by the eigenvalue problem solver of the PODDEC package.

©

e Accuracy of o

If the ROM is generated using the basis functions of qbfv), the time coefficients

obtained from the ODEs (6.9) are called al? Figures 7, 8 and 9 show the results

IN,ROM "’
(e

in.OM compared against the analytical time coefficients.

of «
As shown in Figure 7, when the error € is as small as 0.78%, the time coefficients
obtained from ROM(3) agree very well with the analytical time coefficients. ROM(2)

shows slight errors in aé?vjs)OM (t). Similar results are obtained for the case with an
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error € of 4.8%. This proves that the ROMs provide a high accuracy approximation
for the Burgers’ equation with a dramatical reduction of order if a set of well-resolved
basis functions is used. Figure 8 shows the results corresponding to € = 17.3%.
Differences between the analytical time coefficients and time coefficients from ROMs
are noticed, especially for the third time coefficient. The results corresponding to
€ = 30.5% are shown in Figure 9. At this error level, the time coefficients obtained

from ROMs show large errors compared against the analytical time coefficients.

Table XI presents the errors €, of o, with respect to a;,,,,;,.;..;- In Table XI,
the errors of f consists of three components: (1) numerical errors due to the
N,ROM (3)

database DBY; (2) errors due to the eigenvalue problem solver of the PODDEC

package; and (3) errors due to the ODE solver. The errors of afN rOME) have an

additional error source due to neglecting of the third mode. In order to analyze how

€

the errors of the databases affect the accuracy, we calculated the errors of of

with respect to ;, ,,,- Table XII presents these errors.  Table XII shows that

é . . .
Table XI. Errors of af =~ with respect t0 ci,, .00 @ € [0, 3]
= € € € € €
€ alN,ROM(B) a2N,ROM(3) a?’N,ROJW(S) alN,ROM(2) aQN,ROM@)

0.78% | 0.0206%  0.0288%  0.0234% | 0.0226%  0.1778%
4.80% | 0.0181%  0.0473%  0.1478% | 0.0221%  0.1797%
17.3% | 0.0288%  0.2490%  1.6055% | 0.0549%  0.3267%

30.5% | 1.3119%  12.059%  18.270% | 1.1303%  12.407%

the accuracy of af, .~ decreases as € increases. As € increases, the accuracy of the

time coefficients corresponding to smaller eigenvalues decrease faster than the time

coefficients corresponding to larger eigenvalues.
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E . .
Table XII. Errors of o5, with respect to a;, 10, @ € [0, 3]
= € € € € €
€ Ole,RO]W(:%) Oé2N,RO]vI(3) a3N,ROJ\/I(3) alN,ROIM(Q) CYQN,ROJ\/I(Q)

0.78% | 0.0004%  0.0030%  0.0178% | 0.0005%  0.0039%
4.80% | 0.0037%  0.0231%  0.1536% | 0.0025%  0.0228%
17.3% | 0.0221%  0.2331%  1.6042% | 0.0367%  0.2963%
30.5% | 1.3005%  12.036%  18.260% | 1.1234%  12.370%

c. Accuracy of reconstructed solution «

Using the time coefficients obtained by solving the ODEs (6.9), the dependent variable
u(z,t) is reconstructed using the approximation given by (6.6). In this section, the
errors are calculated and compared for w(z,t) at « = 0.5. Similar to (6.14) and
(6.15), the error of the reconstructed u(0,5,t) with respect to the analytical solution

uanalytical(07 5, t) is defined as

1 M
- 0.5,1 analytica 057t
€ = MEkzl (0.5, k) — Uanatypicar( 2l x 100%. (6.16)

“ ||uanalytical(0'5a t) ||2

e Accuracy of reconstructed solution Uanaiyticat,Ron (0.5, 1)

The solution Uanaiyticat,rom (0.5, t) is reconstructed using Qi nargticat. rons AN Pigir i
Table XIII presents the errors €, of Uanatytical, Ror (0.5, t) with respect to Uanaiyticar (0.5, ).
The error of Uanaiyticar, oM (3)(0-5, 1) is caused by solving the ODEs (6.9) and is only
0.0005%. This proves that the reconstructed solution wanaiyticat, RO M(3) Provides a very
accurate approximation for the Burgers’ equation if the analytical basis functions are
used in the ROM(3). If the third mode is neglected, the error of wanaiyticar, Ro(2) (0.5, 1)
is 0.0865% and still negligible. The contribution of the third mode to u(z,t) is negli-

gible compared to the first mode and the second mode because the third mode only
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captures 0.15% of the total energy (see Table VI).

Table XIII. Errors of wanaiyticar,ron (0.5, 1) with respect to wanaiyticar (0.5, 1)

Uanalytical, ROM (057 t) Uanalytical,ROM(?)) (057 t) uanalytical,ROM(Z) (057 t)

Error €, 0.0005% 0.0865%

e Accuracy of reconstructed solution us ron(0.5,1)

The solution u4,roa(0.5,1) is reconstructed using o, ,,, and ¢;,. Table XIV
presents the errors €, of ua roam(0.5,t) with respect to wanaiyticar(0.5,t). Compared
to errors in Table XIII, the errors of Table XIV have one additional error source:
the errors of eigenvalue problem solver of the PODDEC package. By comparing the
values of Table XIII and Table XIV, one concludes that the errors introduced by the

PODDEC package have almost no influence on the reconstructed solution u(0, 5, ).

Table XIV. Errors of ua goa(0.5,) with respect to wanaiyticar(0.5,1)

ua,rom(0.5,1) || warom3)(0.5,1)  waroMm(2)(0.5,1)

Error €, 0.0005% 0.0865%

e Accuracy of reconstructed solution uS\E,?RO 1 (0.5,1)

The solution ug\? roam (0.5, 1) is reconstructed using af\? nony and (;552 Table XV
presents the errors €, of uﬁ?m 1(0.5,¢) with respect t0 Uanaiyticar(0.5,1). Table XV
shows that the errors of ug\?ROM(O.S,t) increase as € increases. These errors, how-

ever, are all smaller than 1%. Figure 10 shows US?ROM(O.E),t) compared against
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Table XV. Errors €, of UE?ROM(OB, t) with respect to wanaiyticar (0.5, 1)

e | Ul ronn (05.8) U o (05,1)
0.78% 0.0004% 0.0866%
4.80% 0.0058% 0.0867%
17.3% 0.0565% 0.0885%
30.5% 0.1210% 0.4108%

Uanatytical (0.5, 1) and uE\E,?PDE(O.E),t) at € = 0.78%, 17.3% and 30.5%, respectively. As
seen in Figure 10, usé?ROM(?))(OE,t) and uS\E,?ROM(Q)(O.E),t) agrees with the analytical
solution very well when € = 0.78% and 17.3%. When ¢ = 30.5%, small differences
between ug\?,o;o) 1(0.5,%) and wanaiyticar (0.5, 1) are observed. Compared to the accuracy
of the basis functions and the time coefficients, the accuracy of the reconstructed

solution w is less sensitive to the numerical errors of the databases. This result is not

surprising since the basis functions errors are compensated by the time coefficients a.

B. “Double” Burgers’ Equations

Let us consider a case which consists of two non-homogeneous Burgers’ equations.

The Burgers’ equations for the dependent variables u(x,t) and v(x,t) are given by

ou ou
ov ov
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The right side term f(x,t) and g(z,t) are defined as

f(z,t) = xsin(t) + 0.5sin(nz) cos®(t) — 0.02sin(3wx) cos(3t) cos(t), (6.19)
g(xz,t) = 0.5sin(mz)sin(t) — 0.06 sin(37z) sin(3t) + (1 — x cos(t)) -

- (—0.57 cos(mz) cos(t) 4+ 0.06m cos(3mz) cos(3t)). (6.20)
Thus the analytical solutions of equations (6.17) and (6.18) are
Uanalytical (T, 1) = 1 — z cos(t), (6.21)

Vanalytical (€, 1) = —0.5sin(mx) cos(t) + 0.02sin(37x) cos(3t). (6.22)

1. Database Generation

To obtain a numerical solution of the PDEs (6.17) and (6.18), let us discretize the

spatial domain [0,1] using a mesh with 100 uniform cells and approximate the spatial

derivative g—z and % using the centered, second-order discretization. Thus at each
node i in the spatial domain, the PDEs (6.17) and (6.18) are converted into the

pseudo-ODEs

du; - Uj41 — Ui—1

= — . ] 1,N .2
and
dv; Vit1 — Ui—1 .
By s . 1, N 24
yr ui— oy T9@t), 1€[LN] (6.24)

where N = 99. The numerical solution of the PDEs (6.17) and (6.18) has been
replaced by the numerical solution of a set of 2 x N first-order ODEs. Consequently,
the order of that system is 2 x N. The ODEs (6.23) and (6.24) are integrated from
t = 0s to t = 50s using the LSODI package. Snapshots are stored every 0.1s. Thus
there are 501 snapshots for v and 501 snapshots for v in the database.

For the “double” Burgers’ equations, two relative tolerance levels were used:
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rtol =1 x 1073 and rtol = 1 x 10~*. For a relative tolerance parameter larger than
rtol = 1 x 1073, the LSODI package diverged before t+ = 50s. Similar to the error
¢ defined by equation (6.5), two errors €, and €, are defined for equation (6.23) and

(6.24), respectively:

__ |LHS, —RHS,|
*  /LHS? +RHS?’
_|LHS, — RHS,)|

6U )
v/LHS? + RHS?

where LHS,, and RHS,, are the left-hand-side and right-hand-side of equation (6.23);
LHS, and RHS, are the left-hand-side and right-hand-side of equation (6.24). Ta-
ble XVI presents the average error €, for equation (6.23) and €, for equation (6.24).

For convenience, let us use DBJ(S“;E”) to denote the the database corresponding to the

Table XVI. €, and €,

rtol €u €

1x107* | 0.03% | 0.7%
1x1073 | 0.1% | 1.5%

errors of €, and €,. Additionally, using the analytical solutions (6.21) and (6.22), the

database DB, is generated. The snapshots in DBy are calculated as
UA(Z', tk) = uanalytical<x> tk) = uanalytical(x> kAt)? ke [17 M]?

UA<J:7 tk) - Uanalytical<xa tk) = Vanalytical (I‘, ]fAt), ke [17 M]a

where M = 501 and At = 0.1s.
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2. Model Decomposition

Three databases DBy, DB and DB have been generated. Each database
consists of M snapshots u(z,t;), i € [1, M| and M snapshots v(z,t;), i € [1, M]. We

decompose u(z,t;) and v(x,t;) into the means and the fluctuations:
uw(x, t;) = u(z) +u'(z,t;), € [l,M],

v(z, t;) =0(x) +0'(x,t;), €[l,M].

The method of snapshots was applied to u'(x,t;) and v'(z,t;) to extract the basis

functions of ¢" and ¢", respectively. The kernel matrices are computed as

N

1
OZ“] - M Zu/(xkuti)ulT(xk7tj>7 i,] € [1’M]
k=1
and
X
Cii =37 > v (w0 (s ty), iy € (L M.
k=1

3. Galerkin Projection

Using the basis functions ¢} and ¢}, the dependent variables u(x,t) and v(x,t) are

approximated as

u(e,t) = a@) + Y al(B)o(a) = 3 al(t)s (@) (6:25)
(o t) = o) + ) alBel(x) = 3 al(t)6! (a), (6.26)

where m" and m? are the number of POD modes used to approximate u/(z,t) and
v'(z, 1), respectively.

Substituting the approximations of v and v given by (6.25) and (6.26) into the
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PDEs (6.23) and (6.24), yields

mu da{l’ll:b u 'U v ¢u
E _dt g ooyl e + f, (6.27)
i—1 0 j=0

1=

o~ S et v 529
i=1

=0 7=0

where % is computed using the centered, second-order discretization. Now, let us

project equation (6.27) onto the basis function ¢} and equation (6.28) onto ¢}. We
obtain the ODEs

@ ( 61), ke lLm, (6.20)

m“-ZZwa@¢WQ<aw,mle (6.30)

7=0 =0
Thus, the POD-based ROM consists of m* first-order ODEs given by (6.29) and m"

first-order ODEs given by (6.30). Consequently, the order of the POD-based ROM is
m" 4+ m". The LSODI package is used to solve the POD-based ROM.

4. Accuracy Analysis

Because the analytical solutions of the PDEs (6.17) and (6.18) are given by (6.21) and
(6.22), the analytical expressions of the basis functions and the time coefficients were
derived using the approach described in Section A.4. The analytical basis functions

and time coefficients for u(zx,t) are

¢ganalytical (SE) = 17 O[ganalytical <t) = 17

oy (x)=—V3Azxx, at (t) = cos(t)/V3Axz,

lanalytzcal analytical

(6.31)



and for v(z,t) they are

¢Sezact (m) = 07

(bq]{analytical (:C) = QA:U Sin(ﬂ'l’),
gzsgmlyml (x) = =V2Azsin(3rz), of

2analytical

v
Oea;act

v

]-analytical

(t) =1,
(t) = 0.5cos(t)/V2Ax,

(t) = —0.02cos(3t)/V2Ax.
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(6.32)

These analytical basis functions and time coefficients are used as references for the

following accuracy analyses.

a. Accuracy of basis functions

Table XVII presents the errors €4, of ¢;, with respect to

¢ianalytical ‘

Herein the error

€s, 1s defined by equation (6.14). The errors of ¢,, are generated by the PODDEC

package and are negligible.

Table XVII. Errors of ¢} and ¢},

Basis Functions

u
14

v
1a

b3,

Error

0.0639%

0.0021%

0.0022%

Table XVIII presents the errors €4, of ¢E?;€”) with respect to

Table XVIIL. Errors of ¢!(“) and ¢}«

¢ianalytical °

Eu EU qb?llf;\ggu;gv) (Zﬁ’i);\(lguiv) (ﬁ;;\(]gu;gv)
0.03% 0.7% || 0.0639% | 0.0051% | 0.1976%
0.1% 1.5% | 0.0681% || 0.0338% | 1.1576%

shows the basis functions gbgi;”gv)

Figure 11

compared against the analytical basis functions. The
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€u§€1;)
N

errors of ¢§ are generated by the PODDEC package and the numerical errors of
the databases. As shown in Table XVIII and Figure 11, the accuracy of the basis
functions decreases as the numerical errors of the databases increase. Basis functions
which correspond to smaller eigenvalues are more sensitive to the numerical errors

of the databases. Herein the second basis function of v is the most sensitive to the

numerical errors of the databases.

b. Accuracy of time coefficients

The analytical solutions (6.21) and (6.22) imply that u(z,t) and v(z,t) consist of two
modes and three modes, respectively. Herein the zeroth modes are counted. Thus
when generating the POD-based ROMs, we choose m* = 1 and m” = 2. The number
of equations is reduced from 2 x N to m"* + m?".

Four sets of basis functions are used to generate the POD-based ROMs. These
four sets of basis functions are ¢;,, ., icarr Pins gbl(gos;o.?) and gbggl;m). The time coetf-
ficients obtained from the POD-based ROM using these four sets of basis functions
are denoted by a, ., icui ronrs Qiaron &E}%f{ﬁj) and 0452711%22, respectively. Table XIX
presents the errors of the time coefficients obtained from the POD-based ROM with
respect to the analytical time coefficients. Herein the error of the time coefficients is

defined by equations (6.15). As shown in Table XIX, the errors of the time coefficients

obtained from the POD-based ROM increase when the errors of the basis functions

. . . . 0.1;1.5 0.03;0.7
increases. Figure 12 shows the time coefficients of ag ) and al ) compared
N,ROM IN,ROM
. _ _ u,(0.03;0.7)
against i, ... e At the error level of €, = 0.03% and €, = 0.7%, Q1% ron - and

v,(0.03;0.7)
1N rROM

agree very well with af and of respectively. Small differ-

analytical analytical ’

v,(0.03;0.7)

ences between sy " "

and a3 are noticed. When the errors increase to

analytical

€&, = 0.1% and €, = 1.5%, only a?}iogﬁi;5)
,(0.151.5

N,ROM

agrees very well with of There are

analytical :

v,(0.1;1.5)

Large differences between a7

small differences between o ) and af

analytical *



—— Analytical
-~ Errors=(0.03%; 0.7%)
---- Errors=(0.1%; 1.5%)
-0.05 1
T -1t 1
-0.15 1
_02 Il Il 1 L
0 0.2 0.4 0.6 0.8 1
T
0
—— Analytical
- Errors=(0.03%; 0.7%)
~0.05 - ---- Errors=(0.1%; 1.5%) i
K -0alb .
-0.15 1
_02 Il Il 1 L
0 0.2 0.4 0.6 0.8 1
T
0.2
Jhh )
el
01} } (RN |
- ) W
4 \
1 “
N
) i “‘v.
58 0 j "\ ,
\
A‘\ ' A 4 4
1, |
t \ i
[/ \ el
-0.1 A
AVl
—— Analytical EN W A
- Errors=(0.03%; 0.7%)| ‘ *F
-~~~ Errors=(0.1%; 1.5%)
_02 I I I L
0 0.2 0.4 0.6 0.8 1

x
Fig. 11. Basis functions for the double Burgers’ equations



—— Analytical
-~ Errors=(0.03%; 0.7%)
---- Errors=(0.1%;1.5%)

10

20 30 40

Time [s]

50

—— Analytical
- Errors=(0.03%; 0.7%)
---- Errors=(0.1%; 1.5%)

0.8

0.6

0.4

Fig. 12. Time coefficients for the double Burgers’ equations

10 20 30 40 0
Time [s]
—— Analytical
e Errors=(0.03%; 0.7%)
- - -~ Errors=(0.1%; 1.5%) i
I ' T
n "
] 1
" “I ]'
n N ho hos
n VAR A
N | 7
B " H IR Lvay b h
i i A vl,-[\ Y | o
a i\ i Hy Wiy
AR AR R AN ATA ! TV
ANENLELNOENY | 11 \ 1)
IRV RN AN M b | !
RYEVE IR L I
RV VI [V | i ih) v V
KR LA v | Y
o wotbe I [ v
VI VR U PR y M ! il
v \ v
‘ \
20 40
Time [s]

66



Table XIX. Errors of time coefficients obtained from the POD-based ROM for “dou-

ble” Burgers’ equations

Basis functions used in the ROM T our O rour s,
Divmatytiat 0.0028% | 0.0043% | 0.2258%
Piy 0.0337% | 0.0228% | 0.2125%
00T 0.0344% || 0.0412% | 0.6746%
P H?) 0.0928% || 0.2185% | 4.6546%

and of

analytical

eigenvalues are more sensitive to the errors of the basis functions.

c. Accuracy of reconstructed dependent variables

(Eu§€v)

Let us reconstruct uy'ps 1 (0.5,t) and UJ\EI“RO M

i€v)

Eu fv

ble XX lists the errors of ug\e,“ﬁ%M(O 5,t) and vN"RoN

alytical solutions. Herein the error is defined by equation (6.16).

(€u;€v)

(0.5,t) using «

(€usév)

IN,ROM

Table XX. Errors of reconstructed uy'gé,

are observed. Thus the time coefficients which correspond to smaller

(0.5,t) with respect to the an-

Figure 13 shows

(0.5, ) and v (0.5,1)

€u €v u]\efuRe(gM(O 5,1) U](\?R%M(O 5,1)
0.03% 0.7% 0.0052% 0.0445%
0.1% 1.5% 0.0279% 0.2626%

(Eu§€v)

well with the analytical solutions. v

solutions. Small differences are noticed between v

(€u;Ev)

uproa (0.5, 1) and vy"ro)y

lutions of the PDEs (6.17) and (6.18). At both error levels, u

(0.03;0.7)
N,ROM

(0
N?

(€u§€v)
N,ROM

(0.5,t) compared against the analytical and numerical so-

(0.5,t) agree very well with the analytical

122%]?[(057 t) and Uanalytical(0-5, t)

and qb(g“;g”).

(0.5,t) agree very
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C. Summary

In this chapter, the POD-based ROMs have been constructed for two cases based
on the Burgers’ equation. The first case was an non-homogeneous Burgers’ equation
and the second case consists of two coupled non-homogeneous Burgers’ equations. For
both cases, the accuracy of the basis functions, the time coefficients obtained from the
POD-based ROMs and the reconstructed dependent variables were analyzed. For the
POD basis functions, the errors consist of two components: the errors caused by the
PODDEC package (i.e., the eigenvalue solver) and the errors of the databases. The
errors caused by the PODDEC package are negligible. As the errors of the databases
increase, the errors of the basis functions increase. The basis functions corresponding
to smaller eigenvalues are more sensitive to the errors of the databases. For the time
coefficients, the errors consist of four components: the errors of PODDEC package,
the errors of the database, the errors of solving the POD-based ROMs, the errors of
neglecting the POD modes corresponding to smaller eigenvalues. The errors caused
by the ROMs solver, the PODDEC package and neglecting the POD modes corre-
sponding to smaller eigenvalues are negligible. As the errors of the databases increase,
the errors of the time coefficients increases. The time coefficients which correspond
to smaller eigenvalues are more sensitive to the errors of the basis functions. For
the reconstructed dependent variables, the errors are caused by all the sources that
cause the errors of the basis functions and the time coefficients. Compared to the
basis functions and the time coefficients, the errors of the reconstructed dependent

variables are less sensitive to the errors of the databases.
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CHAPTER VII

RESULTS
This chapter presents the results of the POD-based ROMs applied to the transport
phenomena in fluidized beds. Two cases are used to investigate the performance of
these POD-based ROMs. The first case is a compressible gas-only flow problem. The

second case consists of a gas phase and a solid phase.

A. Case I: compressible gas-only flow

The flow in case I is a compressible gas-only flow. The geometry and boundary
conditions of case I are shown in Figure 14(a). Figure 14(b) shows the uniform

computational grid used in case I. The parameters of case I are listed in Table XXI.

‘ Tlength

Yiength
RRITREE N
Rhiiad
U1
(a)  Geometry  and (b) Computational grid

boundary conditions

Fig. 14. Case I: geometry, boundary conditions, and computational grid
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Note that MFIX uses CGS units and dimensional variables.

Table XXI. Parameters of case I

Parameter | Description Value

Tlength Length of the domain in z-direction 25.4cm

Yiength Length of the domain in y-direction 76.5cm

max Number of cells in z-direction 50

Jjmazx Number of cells in y-direction 76

V1, Vg Gas inflow velocities 12.6¢m/s, 1.0cm/s
Ds Static pressure at outlet 1.01 x 10%g/(cm - %)
T Gas temperature 297K
Lo Gas viscosity 1.8 x 107%g/(em - 5)
tstart Start time Os

tstop Stop time 13s

The flow in case I was simulated from ¢t = 0s to ¢t = 13s using MFIX. Snapshots

were stored every 0.05s. Thus 260 snapshots were stored in the database generated

by MFIX. POD basis functions of u, v, and p were calculated using the PODDEC

package. Figures 15, 16, and 17 show the first six basis functions of u, v, and p,

respectively. Figure 18 shows the cumulative energy retained by different number of

POD modes.

Results of POD-based ROMs at the reference condition

Let us apply ODExMFIX to the flow in case I at the reference condition. Fig-

ures 19, 20, and 21 show the first four time coefficients of u, v, and p obtained from

ODExMFIX using different number of POD modes. In these figures, the reference
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Fig. 15. Case I: first six basis functions of u
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Flg. 17. Case I: first six basis functions of p
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Fig. 19. Case I: the first four time coefficients of v

time coefficients were obtained by directly projecting the snapshots generated by
MFIX onto the POD basis functions. ODExMFIX(2+19+11) denotes the model of
ODExMFIX with m? =2, m* =19, and m" = 11.

As shown in Figures 19 and 20, increasing the number of POD modes used by
ODExMFIX significantly improved the accuracy of the time coefficients of v and v
predicted by ODExMFIX. The time coefficients of v and v predicted by ODExM-

FIX(15+30+20) agreed very well with the reference time coefficients. By using these
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number of POD modes, about 99.99% of the total energy was retained by the POD
modes used in ODExMFIX.

Figure 21 demonstrates that the time coefficients of p are more difficult to be
captured by ODExMFIX. At the beginning period (¢t € [0s,3s]), ODExMFIX pro-
duced large oscillations in o?. When t > 3s, the time coefficients obtained from
ODExMFIX(15+304-20) agreed well with the reference time coefficients.

One possible reason that caused the large wiggles in of predicted by ODExM-
FIX is that the number of snapshots in the database is not enough. To prove that
reason, we stored the snapshots every 0.01s instead of every 0.05s. Thus the number
of snapshots increased from 260 to 1195. Figure 22 shows «f predicted by ODExM-
FIX(15+30+20) using these two sets of snapshots. Figure 22 shows that increasing
the number of snapshots in the database did not improve the prediction of o using
ODExMFIX.

The average magnitude of ¢f is 1010043.89 and the average magnitude of ¢f
is 0.0143. The average magnitude of ¢} is 0.0000014% of the average magnitude of
¢p. Thus most of the spatial characteristics of the pressure field are captured by ¢h.
Because of the large magnitude difference between ¢f and ¢}, ODExMFIX could not
provide predictions of ¢! which agreed very well with the reference time coefficients
of p.

Figures 23, 24, and 25 show the reconstructed flow fields compared against the
results of MFIX at ¢ = 1.25s, t = 7.00s, and ¢t = 13.00s. As shown in Figures 23
and 24, the accuracy of the reconstructed u and v using time coefficients obtained from
ODExMFIX increased as the number of POD modes used in ODExMFIX increased.
For p, since almost all the spatial characteristics of the pressure field are captured by

0, all the reconstructed pressure fields are close to ¢f.

The computational cost for simulating the flow in case I using MFIX was 13187
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Fig. 23. Case I: comparison of u between MFIX and ODExMFIX
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seconds of CPU time. The computational cost of ODExMFIX(15+30+20) was 3352
seconds of CPU time. The computational cost of ODExMFIX(15+30+4-20) was 25.4%
of the cost of MFIX. Computational cost reduction has been achieved by using
ODExMFTIX.

ODEx3 has also been applied to case I. ODEx3, however, failed to produce a

U

converged result. In ODEx3, the unknowns are o”, a*, and . The magnitudes of

of, oy and a? are of the order of 10719, 10, and 100, respectively. Compared to u

and v, the time coefficients of p are too small to be properly captured.
Results of POD-based ROMs at the off-reference conditions

Now, let us apply ODExMFIX at some off-reference conditions of case I. Herein
we changed the gas viscosity po and used several different values of pg. ODExMFIX
was generated using the POD basis functions obtained at po = 1.8 x107%g/(cm-s). In
order to measure the accuracy of ODExMFIX applied at the off-reference conditions,

let us define an error ,,, as

VI (var)FIX yarfon):

Sy foarFIX] ’

i

(7.1)

Evar =

where var represents the field variables p, u, or v. N is the total number of spatial
grid points.

Table XXII lists the errors of €, €,,, and ¢, at eight different values of 1 including
the reference value. In Table XXII, all the errors were calculated at ¢t = 13s. As seen
from Table XXII, the errors of pressure, €,, for all the eight conditions are very small,
because the speed of the gas flow in case I is very low and the pressure variations are
very small. Figure 26 shows the errors of €, and ¢, at different values of jy. As seen
from Figure 26, at each condition, ¢, is always smaller than ¢, because the flow in

case I mainly concentrates in y—direction and it is easier for ODExMFIX to capture



Table XXII. Case I: errors of ODExMFIX at different values of p

po lg/(em-s)] | &[] eu [A] &[]
0.8x107* |3.60x 1078 1.907 0.449
1.0x107* | 3.72x10"% 0.965 0.258
1.1x107* |3.82x107% 1.05 0.263
1.3x107* | 204x10"% 0.721 0.163
1.5x107* |5.99x 107" 0.307 0.075
1.6 x 107 | 7.71 x 107 0.253  0.062
1.8x107* | 1.10x10"® 0.201 0.055
2.0x 107 836 x 107 0.220 0.072
22x107% 121 x10™® 0.232 0.090
2.4x107* | 221 x10°% 0.230 0.107
2.6x107% | 1.54x107% 0.285 0.132
2.8x107* [332x10"% 0.320 0.148
3.0x 107 |3.07x107% 0.376 0.166
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(a) pup = 0.8 x (b) po = 1.8 x (¢) wo = 3.0 x
107*g/(em - g) 107*g/(em - g) 10~*g/(em - g)

Fig. 27. Case I: field of u, at different conditions

the details of v, than the details of u,. At the reference pg, both ¢, and ¢, have the
minimum values. As pg increased or decreased from the reference value, both ¢, and
g, increased. ¢, and ¢, increased more rapidly when py decreased from the reference
fto than when g increased from the reference p, because smaller iy caused larger
Reynolds number and more complicated flow fields. Figures 27 and 28 compare the

flow fields at po = 0.8 x 107%g/(cm - g), 1.8 x 107*g/(em - g), and 3.0 x 10~*g/(cm - g).

B. Case II: gas-solid transport phenomena in a fluidized bed

Case II models the gas-solid transport phenomena in a fluidized bed. The geometry

and boundary conditions of case II are shown in Figure 29(a). Figure 29(b) illustrates
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the uniform computational grid used in case II. Table XXIII lists the parameters of

Llength

Yiength

(a)  Geometry  and (b) Computational grid
boundary conditions

Fig. 29. Case II: geometry, boundary conditions, and computational grid

case II. In Table XXIIL, ps,, Dy, hso, and €; denote the constant solid density, solid
particle diameter, initial packed bed height, and packed bed void fraction, respec-
tively.

MFIX simulated the transport phenomena in case Il from ¢t = Os to t = 1s. From
t =0stot=02s v =vy=1lem/s. At t = 0.2s, vy was increased to 120.0cm/s.
From t = 0.2s to t = 1.0s, snapshots were stored every 0.0025s, thus 320 snapshots
were stored in the database. POD was applied to the database to calculate the POD
basis functions. Figures 30-34 show the first six POD basis functions of py, ug, vg, us,
and vy, respectively.  Table XXIV lists the number of POD modes needed to retain

certain portions of the total energy.

Results of ODExS at the reference condition



Table XXIII. Parameters of case 11

Parameter Value
Tlength 25.4cm
Yiength 76.5¢cm
imax 50
Jjmax 78
vy 120.0cm/s
Vg 1.0cm/s
Dy 1.01 x 10%g/(cm - s?)
Tyo 297K
[440 1.8 x 107%g/(cm - 5)
tstart 0.2s
Lstop 1s
At 1x107s
Pso 1.0g/em?
D, 0.05cm
hso 14.7cm

0.4
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Fig. 30. Case II: first six basis functions of p,
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Fig. 32. Case II: first six basis functions of v,
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Fig. 33. Case II: first six basis functions of wu

Us Us Us Us Vs Us
0 1 2 3 4 5

Fig. 34. Case II: first six basis functions of vy

Table XXIV. Case II: POD energy vs number of modes for p,, u4, vy, us, and v

POD Number of modes

energy  py, Uy Vg Us Vs
99% 2 4 3 4 2
99% 3 7 5 6 3
99.99% 4 11 7 7 5
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Let us examine the results of ODExS applied to case II at the reference condition.
Herein, we chose mPs = 4, m" = 11, m" = 7, m" = 7, and m" = 5 such that
99.99% of the total energy was retained by the POD modes used in ODExS. The
computational cost of using MFIX to simulate the transport phenomena in case Il was
23008 seconds of CPU time. The computational cost of using ODExS to simulate the
transport phenomena in case II was 7595 seconds of CPU time. The cost of ODExS
was 33.01% of the cost of MFIX.

Figures 35 and 36 show the first four time coefficients of u, and v, obtained from
ODEXS compared against the directly projecting results. Figures 37 and 38 show the
first four time coefficients of u, and v, obtained from ODExS compared against the
directly projecting results. Figures 39-44 show the field variables obtained from
ODEXS compared against the results of MFIX at ¢ = 1s. Table XXV lists the errors
€var Of the field variables obtained from ODExS compared against the results of MFIX
at t = 1s. The error €,,, was defined by Equation (7.1) and herein var represents €,
Dg, Ug, Us, OF Us. As seen from Figures 39-44 and Table XXV, the results of ODExS

agree very well with the results of MFIX at the reference condition.

Table XXV. Case II: errors of the results of ODExS at reference condition

Variable | Error, &,q, [%]
€g 0.0000356
Dg 0.000000578
u 0.01035
v, 0.01026
Usg 0.505
Vs 0.765
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Fig. 41. Case II: uy at t = 1s
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Results of ODExS at the off-reference conditions

When studying ODExS applied at the off-reference conditions, we generated the
database by combining the numerical results of MFIX at three different values of solid
particle diameters: D, = 0.05¢m, D, = 0.07cm, and D,, = 0.10cm. At each condition,
320 snapshots were calculated using MFIX. The database was generated by combining
the snapshots of these three conditions. Thus, there were 960 snapshots contained in
the database. POD was applied to the database containing 960 snapshots to extract
the POD basis functions. Using these POD basis functions, ODExS was generated
and used to simulate the transport phenomena in case II at 13 different values of D,,.
Herein, we chose mP¢ = 2, m" = 15, m" = 11, m* = 10, and m" = 5 such that
99.99% of the total energy were retained by the POD modes used in ODExS.

Table XXVI lists the errors of the field variables obtained from ODExS com-
pared against the numerical results of MFIX at ¢ = 1s. These errors are also shown
in Figure 45. As seen from Table XXVI and Figure 45, ODExS generally provided
good predictions of the field variables at D,, € [0.05¢m, 0.10cm]. When D,, > 0.10cm,
the errors of ODEXS increased as D, increased. When D, < 0.05cm, the errors of
ODEXS increased as D, decreased. The errors of ODExS increased more rapidly
as D, decreased when D, < 0.05cm than as D, increased when D, > 0.10cm, be-
cause the physics of the transport phenomena has significantly changed when D,
decreased below 0.05cm. Figure 46 shows the fields of €, at t = 1s with D, = 0.03cm,
D, = 0.08cm, and D, = 0.12cm. At D, = 0.03cm, some bubbles appeared and this
phenomenon is called bubbling fluidization. ODExS generated in this section could

not capture the very complicated features of the bubbling fluidization phenomenon.



100

Table XXVI. Case II: errors of the results of ODExS at off-reference conditions
Dy [em] | e, [%] Epy [N0]  Euy [N]  Eu, ] eu, (%] €0, [%)]
0.03 0.0733 0.00051 9.71 2.41 8.61 9.09

0.04 0.0137 0.000077 2495 0389 1045  4.713
0.05 0.00186  0.0000022  0.0686 0.0517  1.08 3.18
0.055 0.00158  0.00000272  0.102  0.044 1.08 2.967
0.06 0.00136  0.0000045  0.166  0.0494  1.57 2.73
0.07 0.00100  0.0000044  0.191 0.0578  1.52 2.16
0.08 0.00073  0.0000024  0.122  0.0423  0.679 1.50
0.09 0.00054  0.00000027 0.0298 0.0235 0.766  0.807
0.10 0.00042  0.00000027  0.161 0.0191  2.29 0.194
0.11 0.000376  0.0000051  0.323  0.0524 3.917  0.841
0.12 0.000368  0.0000072  0.487  0.1005  5.53 1.75
0.13 0.000374  0.0000091  0.654  0.129 7.56 2.711

0.14 0.000451 0.0000107  0.819  0.191  9.128  3.736
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(a) D, = 0.03cm (b) D, = 0.08cm (¢) D, =0.12em
Fig. 46. Case II: field of ¢, at t = 1s with different D,
C. Summary

In this chapter, the POD-based ROMs have been applied to two cases of transport
phenomena in fluidized beds. The first case modeled a compressible gas-only flow.
The second case modeled a gas-solid interaction. In both cases, the POD-based ROMs

have been applied to the reference conditions and the off-reference conditions.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK
This chapter presents the conclusions derived from this work. In addition, recom-

mendations for future work are presented.

A. Conclusions

In this thesis, POD-based ROMs have been applied for simulating the transport
phenomena in fluidized beds. Two and one POD-based ROMs have been generated for
gas-only flows and gas-solid transport phenomena, respectively. Results have proven
that the POD-based ROMs are capable of capturing the details of the transport
phenomena at both reference conditions and a range of off-reference conditions with
large reductions of orders and computational costs.

In this thesis, we also analyzed the accuracy of the POD-based ROMs. The
accuracy analysis was based on two sets of simple PDEs whose analytical solutions
are known. Accuracy analysis demonstrated that the errors of the basis functions and
time coefficients increase as the errors of the databases increase. The basis functions
and time coefficients which correspond to smaller eigenvalues are more sensitive to the
numerical errors of the databases. The errors of the reconstructed dependent variables
also increase when the errors of the databases increase. The reconstructed dependent
variables, however, are less sensitive to the errors of the databases compared against

the basis functions and the time coefficients.
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B. Future Work

In this thesis, the POD-based ROMs have been applied to the transport phenomena
in fluidized beds. The geometry of the fluidized bed is simple. The challenge for the

future is to extend the POD-based ROMs to complex geometry.
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APPENDIX A

CONSTITUTIVE MODELS

Gas phase stress tensor

The gas viscous stress tensor 7, is assumed to be of the Newtonian form
Ty = 2/~Lg59 - Agtr(l:)g)i
where p, is the gas phase viscosity; A\, = —2/3pg; I is an identity tensor; l:)g is the

gas phase strain rate tensor, given by

— 1 . .
Dy = B [va + (V”g)T] .

Solid phase stress tensor

MFIX uses the following model to compute the solid phase stress tensor

:P . * . . .
~ 7. if ¢, < € Plastic Regime
Ts = )
70 if e, > €i: Viscous Regime

where € is the packed-bed void fraction at which a granular flow regime transition is
assumed to occur and €} is usually set to the void fraction at minimum fluidization.??
The superscript P stands for plastic regime and V for viscous regime.

e Plastic Regime:
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P pf sin ¢
* 2y/Dp,

Herein l:?s denotes the solid phase strain rate tensor. ¢ is the angle of internal friction.

1

Irp, is the second invariant of the deviator of l:)s:

Lp, = [(Dsll — Dy23)* + (Ds22 — Dygs)?* + (Dgs3 — Dg11) } + D?, + D%y + D2

| =

e Viscous Regime:

p}: = Kls€§®s
= 2uY Dy + N tr(D)T
)\;) = K2s€s\/@
N}: = K3s€s\/@
Kis = 2(1 4+ es)psgo,

2
Kos = 4d,sps(1 + €5)esgo, /(3VT) — gKgs

dpspsﬁ d 505865905 (]— + 65)

Ks, = 140.4(1 4 e,)(3es — 1)e, P

12(1 — €2)psgo.

dps /T

1 1\’ 1 \?
— 1.5¢, 0.5¢2
90 1—es+ ‘ <1—es> 096 (1—65)

Herein e is the coefficient of restitution for particle-particle collisions. d,, is the solid

K4s -

particle diameter. The granular temperature ©; is given by

~Kuetr(Dy) + | K2412(D,) + 4K e, [KgstrQ(l:) ) + 2K y,tr(D?)
o, =

265 K4s

Gas-solid momentum transfer
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3pg€s e o
Fpo = 12522 (0,63 + 4.8y/V[Rey) |5, — 3|
rs—ps

Vi = 0.5 (A — 0.06Re, + /(0.06Re,)2 + 0.12Re, (2B — A) + A2>

414
A= €,

o) 086 ife, <085

63'65 if e, > 0.85

Re, = dps |17s - 779’ Py
Hg
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APPENDIX B
CONVECTION FACTOR OF SUPERBEE SCHEME

Let us use the control volume P shown in the following figure to illustrate the

calculation of &, such that the field variable ¢ at the east face, ¢, is computed as

(be = €e¢E + (1 - §e>¢P-

The following figure shows two cases according to the flow direction at the east face.

Ue Ue
W L e § Ef W L e § Ef
U C D D C U
(a) ue >0 (b) ue <0

In this figure, C', U and D denote the central node, upwind node and downwind node,

respectively. The calculation of the convection factor &, using the superbee scheme is

presented below:

; se=or it oc # ép
C =

0 if pc = ¢p

L max[0, min(1, 26), min(2, 0)], 0 = lfgc if0< o<1
dwf =14 1 if g =1 ,

0 otherwise

dwf if ue >0
1—dwf ifu.<0
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APPENDIX C

SAMPLE INPUT FILE FOR ODEXMFIX

odexmfix.dat
ODExMFIX input file for case I
1.1 Run control section

TSTART 0.02
TSTOP = 5.0

DT 1.D-3
MAX_NIT = 20

DT_MAX .DO
DT_MIN .D-6
DT_FAC .9D0
TOL_RESID 1.D-3
TOL_DIVERGE = 1.D+2

| | A | I | R
O = =

1.2 Geometry and discretization section

XLENGTH = 25.4DO0 IMAX
YLENGTH = 76.5D0 JMAX
DISCRETIZE = 2

50
76

1.3 physical properties section

1.8D-2
29.D0
297.D0

MU_gO0
MW_gO0
T_g0

1.4 pod section

NP = 3
NU =7
NV =5
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APPENDIX D

SAMPLE INPUT FILE FOR ODEX3

ODEx3 input file for case II
1.1 Run control section

TIME
TSTOP
DT
ATOL

0.2
13.0
1.D-5
1.D-3

1.2 Geometry and discretization section

XLENGTH = 25.4D0 IMAX
YLENGTH = 76.5D0 JMAX
DISCRETIZE = 1

50
76

1.3 physical properties section

1.8D-4
29.D0
297.D0

MU_gO0
MW_gO0
T_gO0

1.4 pod section

NR
NU
NV

9
11
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APPENDIX E

SAMPLE INPUT FILE FOR ODEXS

Hybrid_puv input file for case II
1.1 Run control section

TSTART = 0.20

TSTOP = 1.0

DT = 2.D-4

MAX_NIT = 20

DT_MAX = 1.DO

DT_MIN = 1.D-6

DT_FAC = 0.9DO

TOL_RESID = 1.D-3

TOL_DIVERGE = 1.D1

1.2 Geometry and discretization section
XLENGTH = 25.4D0 IMAX = 50
YLENGTH = 76.5D0 JMAX = 78
DISCRETIZE = 2

1.3 physical properties section
MU_g0 = 1.8D-4

MW_g0 = 29.DO

T_g0 = 297.D0

RO_sO =1.0

D_p = 0.05

C_e = 0.8

Phi = 30.0

EP_star = 0.44

1.4 POD section

nP_g =4

nU_g =11

nV_g =7

nU_s =7

nV_s =5

114



115

VITA

Tao Yuan, was born in May 1977 in Wuhan, Hubei Province, China. He re-
ceived his Bachelor of Engineering degree in Thermal Engineering from the Tsinghua
University, Beijing, China in July 2000.

He began his graduate study at Texas A&M University in September 2001 and
received his Master of Science degree in Aerospace Engineering in December 2003. His
research interests focused on the reduced order modeling for the transport phenomena.

Tao Yuan’s permanent address is No.1 Yangluo Main Street, Xinzhou District,

Wuhan, Hubei Province 430415, China.

The typist for this thesis was Tao Yuan.



