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We consider the evolution of dx2−y2 pairing, mediated by nearly critical spin fluctuations, with the coupling
strength. We show that the onset temperature for pairing, T�, smoothly evolves between weak and strong
couplings passing through a broad maximum at intermediate coupling. At strong coupling, T� is of order of the
magnetic exchange energy J. We argue that for all couplings, pairing is confined to the vicinity of the Fermi
surface. We also find that thermal spin fluctuations only modestly reduce T�, even at criticality, but they
substantially smooth the gap anisotropy. The latter evolves with coupling being the largest at weak coupling.
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I. INTRODUCTION

Understanding the origin of the pseudogap in high-Tc cu-
prate superconductors is a key problem.1 Some argue that the
pseudogap originates from �quasi-�long-range order in a non-
pairing channel �two-gap scenario�.2 Others argue instead
that the pseudogap is a phase in which fermions already form
singlet pairs, but long-range superconducting coherence is
not yet established �one-gap scenario�.3,4

The theories within the one-gap scenario can be broadly
separated into two classes—“strong-coupling” theories
which consider a doped Mott insulator and “weak-coupling”
theories which assume a normal metallic state at large dop-
ings. It is widely accepted that the cuprates display a cross-
over from Mott-type behavior in the underdoped regime to
Fermi-liquid-like behavior in the overdoped regime with the
superconducting dome straddling these two regimes. Quanti-
tatively, strong and weak couplings are the limits of small
and large values of the dimensionless coupling u, which
scales as U /W, where U is the effective Hubbard interaction
and W is the bandwidth. For u�1, it is natural to assume that
pairing is confined to near the Fermi surface and can be
thought of as mediated by a bosonic “glue,” the most natural
candidate being collective excitations in the spin channel,
enhanced around Q= �� /a ,� /a� �i.e., antiferromagnetic spin
fluctuations�. For u�1, it has been argued5 that the notion of
a bosonic glue is meaningless since the dynamics of the su-
perexchange interaction, J, occurs only for energy scales of
order U, but this has been challenged based on simulations of
the Hubbard model,6 which found that pairing originates
mostly from energies of order J.

In this Rapid Communication, we argue that the nature of
the pairing is similar for both small and large u. We show
that the onset temperature for pairing, which is the
pseudogap T� in a one-gap scenario, smoothly evolves be-
tween weak and strong couplings, passing through a broad
maximum at intermediate coupling, where T� is a fraction of
the Fermi energy �Fig. 1�. At large u, T��J. Still, we find
that even in this limit, pairing is confined to the vicinity of
the Fermi surface. The only real difference between weak
and strong couplings is the range of the Fermi-surface mo-
menta involved in pairing—for u�1, pairing comes from

regions around the hot spots �Fermi momenta connected by
Q�, while for u�1 the whole Fermi surface is involved in
pairing. We show that T� weakly depends on the magnetic
correlation length � and can easily reach 300–500 K for u
�O�1�.

We also discuss the special role of static thermal fluctua-
tions, which scatter with zero energy transfer and therefore
act as nonmagnetic impurities that are pairbreaking for dx2−y2

symmetry.7,8 Static fluctuations are particularly relevant for
�=� when their contributions to the mass renormalization
and the pairing vertex diverge. We found that static thermal
fluctuations do reduce T� somewhat, but T� still remains fi-
nite for �=�.

Finally, we discuss the anisotropy of the dx2−y2 gap. We
find that for small u, the gap is anisotropic and drops in
magnitude upon deviation from the hot spots. At large u, the
gap is close to the cos�kxa�−cos�kya� form.

II. MODEL

We consider an approach to pairing from the Fermi-liquid
region of large dopings. We assume that the strongest
fermion-fermion interaction is in the spin channel for mo-
mentum transfers near Q. The low-energy physics of such a
Fermi liquid is captured by a semiphenomenological spin-
fermion model, which reduces the interaction between low-
energy fermions to the exchange of two-particle collective
modes in the spin channel.9 The model describes fermions
interacting via an effective four-fermion vertex �q���
= �U /2�Dq���, where U is the irreducible Hubbard interac-
tion and Dq��� is the dynamic spin susceptibility. The phe-
nomenological input is the static Dq�0�, which comes from
fermions with high energies of the order of the bandwidth.
The frequency dependence of Dq��� comes from low-energy
fermions and is computed within the model. In earlier work,
Dq�0� was assumed to have an Ornstein-Zernike �OZ� form
Dq

−1�0�=�−2+ �q−Q�2, where � is the magnetic correlation
length. We will use this form of Dq�0�, and also a related
form Dq

−1�0�=�−2+ �q−Q�2+b��qx−� /a�4+ �qy −� /a�4� with
b�0, to model inelastic neutron-scattering experiments that
show that the spin fluctuations decrease faster with deviation
from Q than the OZ form predicts.10
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The effective four-fermion vertex gives rise to fermion
and boson self-energies and to an attractive pairing interac-
tion in the dx2−y2 channel.11 We will adopt Eliashberg theory
which has been justified earlier on the basis that collective
bosons are slow compared to fermions.9,12 In this theory, the
boson self-energy reduces to the Landau damping term

Dq
−1�m� = Dq

−1�0� +
2�T�m�

�
, � =

3a

16

vF

u
, �1�

where �=2�Tm and u=3Ua / �8�vF� is the dimensionless
coupling with vF the nodal velocity. The linearized gap equa-
tion has the form

	k�n� = −
ua

�
�
m
� dk�
k�

	k��m� + 	k�n�
2m + 1

2n + 1

�2m + 1�

�
1

��/a�−2 + a2�k − k� − Q�2 + 2��n − m�
a2T

�

�2�

where �=�T�2m+1�, the integration over k� is along the
Fermi surface, and 
k is the density of states normalized such
that 
=1 along the nodal direction. We emphasize that the
boson self-energy and the pairing come from the same inter-
action and � contains the same dimensionless coupling u as
the pairing kernel.

The temperature only appears explicitly in Eq. �2� in the
Landau damping term; hence T�� /a2, where the prefactor
depends on u and �. Using the definition of �, we then obtain

T� =
vF

a
f��u� , �3�

where f��u�, a function of u and �, is evaluated below.
We also consider the fermionic self-energy �K���

=�k�n� and the mass renormalization Zk�n�=1
+�k�m� / ��T�2m+1��. The latter effectively measures the
coupling strength along the Fermi surface and is given by

Zk�n� = 1 +
u

a�
�
m
� dk�
k�

sgn�2m + 1�
2n + 1

Dk−k���n − m�� . �4�

One can easily verify that Zk�0�=1
+ (u / �a��)	dk�
k�Dk−k��0� is independent of the Landau
damping. For large u, Z�1 along the entire Fermi surface;
for small u, but large �, it is still large near the hot spots k
=kh, where Zkh

�0�=1+u�� /a�. We verified that for ��a, fer-
mions relevant for pairing have Zk�1, i.e., pairing in the
critical regime ��1 is a strong-coupling phenomenon for all
u.

III. RESULTS

The results of the numerical calculations for T��u�, 	k�n�,
and Zk�n� for the OZ form of Dq�0� are presented in Figs.
1–3 �we used a t− t� model for the dispersion and 142 Mat-
subara frequencies�. 	k�n� monotonically decreases with in-
creasing frequency �not shown�. The dependences of 	k�n�
and Zk�n� for k along the Fermi surface are similar for dif-
ferent n, so we only present the results for the lowest n=0
��=�T�.

In Fig. 1 we show the dependence of T� on the dimen-
sionless coupling u. We see that T� initially increases with u,
passes through a broad maximum at u�1, and then de-
creases eventually as 1 /u.
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FIG. 1. �Color online� The onset temperature T� for dx2−y2 pair-
ing vs the dimensionless coupling u for an Ornstein-Zernike form
for the static spin propagator near Q and various values of the
magnetic correlation length � with vF /a=1 eV. The shading in the
insets represents those parts of the Brillouin zone where pairing is
confined to. For both small and large u, pairing is confined to the
vicinity of the Fermi surface.
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FIG. 2. �Color online� The mass renormalization Zk�0� and the
pairing gap 	k�0� for small u=0.2. Panels �a� and �b� show the
results for two different �; panel �c� shows the angular dependence
of the gap compared to the cos�kxa�−cos�kya� form; panel �d�
shows 	k�0� for �=4.8a with and without the pairbreaking contri-
bution from the static spin fluctuations �the term with n=m in Eq.
�2��. Without the static contribution, Zk�0�
1.

0

2

4

6

Z
∆

ξ/a=20
ξ/a=10
ξ/a=4.8
ξ/a=2.4
cos(2φ)

0 π/16 π/8 3π/16 φ
0

5

10

15

20
∆
Z

0 π/16 π/8 3π/16 π/4φ

full
no ω=ω’

ξ/a=2.4

ξ/a=9.6

ξ/a=4.8

a

b

c

d

FIG. 3. �Color online� Same as Fig. 2 but for large u=2.
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In Fig. 2 we show the results for Zk�0� and 	k�0� for small
u=0.2. We see that Zk�0� is enhanced near the hot spots and
then drops to near its noninteracting value �Z=1�, which im-
plies that only the hot regions are relevant for pairing. 	k�0�
also has a maximum at the hot spots, leading to a significant
deviation from the cos�kxa�−cos�kya� form. Moreover, the
slope of 	k�0� near the node is smaller than this form.

In Fig. 3 we show the results for large u=2. We see that Z
is enhanced along the entire Fermi surface. The deviation of
the gap anisotropy from the cos�kxa�−cos�kya� form is much
weaker than at small u, and the slope of 	k�0� near the node
is larger than this form.

In Fig. 4 we show how T��u� changes with the deviation
of the static susceptibility from the OZ form. We see that the
magnitude of T��u� increases for b�0, i.e., when Dq�0�
drops faster from Q than the OZ form.

IV. ANALYTICAL REASONING

All these results can be understood analytically. Consider
first why T� remains finite when � diverges despite the fact
that thermal spin fluctuations are pairbreaking for a d-wave
gap. We recall that Eliashberg theory is a set of two coupled
equations for the pairing vertex ��n� and self-energy ��n�.
They reduce to independent equations for 	�n� and Z�n� by
exploiting the definitions ��n�=	�n�Z�n� and ��n�=�T�2n
+1��Z�n�−1�. The static thermal contribution to Eq. �2� �the
term with n=m� has the form

−
ua

��2n + 1�� dk�
k�

	k��n� + 	k�n�

��/a�−2 + a2�k − k� − Q�2
, �5�

where the terms with 	k and 	k� are the contributions from �
and �, respectively. Each diverges at �=�, and taken alone,
would drive T� to zero. However, the sum of the two remains
finite because by symmetry 	k+Q=−	k and T� does not van-
ish at �=�. Note that there is no such cancellation for Zk�n�,
which diverges at a hot spot when �=�.

Consider next the dependence of T� on u for �=�. At
small u, pairing is confined to hot regions �k�kh�, and the
momentum dependence of the static Dk−k� can be approxi-
mated by �kh−k��2. The integral over k� in Eq. �2� can then
be evaluated analytically, and Eq. �2� reduces to a one-
dimensional integral equation for 	kh

�n�. Simple power
counting then yields T�=B�� /a2�u2, where B is a constant. A
numerical solution gives13 T��0.68�� /a2�u2=0.13�vF /a�u,
i.e., f��u�1��0.13u.

The reduction in T��u� at large u is peculiar to d-wave
pairing. The argument is that, as u increases, T� initially also
increases, and at some u the dynamic term in Dk−k��n−m�
becomes comparable to a typical �k−k�−Q�2 term along the
Fermi surface, which determines the attractive d-wave com-
ponent of the static interaction. A further increase in T would
make the effective interaction less momentum dependent and
hence would reduce the d-wave attraction. The balance is
reached when T� /� is a constant, i.e., when f��u�1 /u. Nu-
merically, f��u��0.056 /u for the OZ form of Dq�0�. This
can be re-expressed as T��0.47�vF /a�2 /U�0.5J, where J
��vF /a�2 /U is the exchange integral of the underlying

Heisenberg model at half filling.14 We interpret this as evi-
dence that pairing of incoherent fermions in the spin-fermion
model and the creation of singlet pairs upon doping a Mott-
Heisenberg insulator describe the same physics from differ-
ent perspectives.

This conclusion is only valid, though, if the pairing re-
mains confined to the vicinity of the Fermi surface. To verify
this, from the integral over �k which leads to Eq. �2�, we can
estimate a typical �k−kF� transverse to the Fermi surface
from vF�k−kF���T��2n+1�Z�n�, with typical n of order 1
for all u. For Z�n� we use the quantum critical, �=�, form9

Z�n��2a−1u�� / ��T��2n+1��. Substituting it, we find that
for large u, �k−kF���3 /8���T� /��0.1�� /a�. This �k−kF�
is numerically much smaller than kF�0.8�� /a�, i.e., even
for large u pairing involves fermions from a narrow shell
around the Fermi surface.

Consider next the variation of the gap along the Fermi
surface. For small u, the anisotropy of the gap is a conse-
quence of the fact that the pairing problem is confined to a
region near the hot spots with width �k�kFu. At strong cou-
pling, the nonconfinement of 	k to hot spots is due to a
cancellation between the anisotropies of � and Z when di-
viding to form 	. The extent to which the residual nonsin-
gular pairbreaking contribution from thermal spin fluctua-
tions affects the shape of the gap can be verified numerically.
In the last panels in Figs. 2 and 3, we show the gap variation
along the Fermi surface with and without the pairbreaking
contribution to the gap equation. We see that 	k near the
node becomes larger than the cos�kxa�−cos�kya� form when
the pairbreaking contribution is included.

Finally, we consider the variation of the overall scale for
T� with b �Fig. 4�. To understand this, we recall that for the
OZ form of Dq�0�, a strong reduction in T� compared to the
asymptotic small u form T��0.13�vF /a�u was due to the
interplay between the 2�T��n−m� /� term and the maximum
�k−k��2 along the Fermi surface. Once Dq�0� becomes
steeper with deviation from Q �b�0�, the typical k and k�
get closer to the hot spots, the restriction on �k−k�� becomes
less relevant, and T� increases. For b�0, the situation is the
opposite, geometrical restrictions become more relevant, and
T� rapidly decreases.

V. COMPARISON WITH EARLIER STUDIES

Several groups did extensive studies of T� within the
Eliashberg theory for the spin-fermion model.12,15 They
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FIG. 4. �Color online� The onset temperature T��u� for different
forms of the static susceptibility Dq�0� �see text�. The magnitude of
T��u� increases as Dq�0� drops faster with deviation from Q.
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treated � as an independent parameter, i.e., they did not ex-
press it in terms of u. Our results agree with these studies if
we use the same vF, u, and � as they did. Monthoux and
Pines11 studied T��u� at small u and noticed that its slope
decreases as the coupling increases, which is consistent with
Fig. 1. Schuttler and Norman15 found a saturation of T� when
measured in units of �, but for a model in which D�q ,�� had
the factorized form D1�q�D2���, and a strong T dependence
of � is introduced phenomenologically. Within the spin-
fermion model, though, the T dependence of � is weak. Our
results also agree with FLEX calculations for the Hubbard
model.16–18 In these calculations, � is obtained self-
consistently, as in our theory. For U=4t and vF /a�2t
�u�0.25�, our T��0.02t is in good agreement with Refs.
16–18. This value is also in good agreement with two-
particle self-consistent calculations,19 dynamical cluster
approximation,20 and cluster DMFT,21 which also yield that
the d-wave order parameter scales as J at large u.22

VI. COMPARISON WITH THE CUPRATES

Both � and u increase with underdoping, leading to an
initial increase and eventual saturation of T�. To find the
value of T� at saturation, we use vF /a�1 eV, noting that vF
is the “bare” velocity as obtained in band theory. For the OZ
form of the static Dq�0�, we obtain T��0.02vF /a
�200–250 K for u�O�1�. For b=1, this temperature in-
creases to over 350 K �Fig. 4� and becomes even larger for
larger b. This shows that a spin-mediated pairing interaction
is strong enough to account for experimental values of T�

even in the underdoped regime. We emphasize that the maxi-
mum T� depends weakly on u for u�O�1�; hence, a precise

value of u is not necessary for an estimate of T�.
In addition, for optimal and underdoped cuprates, we find

a gap close to the cos�kxa�−cos�kya� form. This is consistent
with photoemission23 below Tc and with the scenario that the
Fermi arcs above Tc appear because of thermal broadening of
the spectral function.4

VII. CONCLUSIONS

In this Rapid Communication, we analyzed how dx2−y2

pairing mediated by nearly critical spin fluctuations varies
with the coupling strength. We argued that the onset tempera-
ture for pairing T���vF /a�f��u� smoothly evolves between
weak and strong couplings, passing through a shallow maxi-
mum at u�1. At large u, T��vF /u�J. For all u, pairing is
confined to the vicinity of the Fermi surface. We also argued
that singular pairbreaking contributions from static spin fluc-
tuations cancel out in the gap equation, while the residual
pairbreaking terms only modestly reduce T� and at the same
time smooth the angular dependence of the gap.

As Mott physics is certainly present near half filling,
where T� reaches its largest values, our T��u� should only be
taken as an estimate. Still, the fact that T� is in the experi-
mental range is in support of a one-gap scenario in which the
instability at T� occurs in the particle-particle channel due to
interactions with spin fluctuations.
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