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Flux motion in anisotropic type-II superconductors near H, 2
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Flux motion in anisotropic type-II superconductors is studied in the framework of the time-
dependent Ginzburg-Landau theory. Expressions for the Hux-6ow resistivity tensor (including all
the longitudinal and Hall elements) are obtained for the case that the applied magnetic field H is
parallel to one of the principal axes of the sample and H is near the upper critical Beld H 2. A simple
method is proposed for obtaining the anisotropy ratios from the H dependences of the longitudinal
resistivities.

It is generally believed that the energy dissipation in
the flux-flow state of a type-II superconductor is due
to (i) Joule heating of normal excitations, and (ii) re-
laxation of the order parameter. The time-dependent
Ginzburg-Landau (TDGL) theory3 accounts for both
of these two dissipation mechanisms. Many works
have been carried out using the TDGL theory to study
the transport properties and the dynamic structures of
vortices. " With a slight generalization by allowing the
order parameter relaxation constant to be complex, the
TDGL theory can also be used to study the Hall efI'ect
in the flux-flow state. The present efI'ort is an exten-
sion of the previous works to the case of anisotropic
superconductors. In this paper we restrict ourself to the
simplest case that the applied magnetic field I is parallel
to one of the principal axes of the sample and H is near
the upper critical field H 2.

In a simple version of the TDGL theory for an
anisotropic superconductor, the equation of motion for
the order parameter Q is

E is the electric field. The convention of summing over
repeated indices is employed. We use the usual dimen-
sionless units (with a slight generalizationi ), which
corresponds to measuring the magnitude of the order pa-
rameter in units of (~n~/P) ~ (where n and P are the
Ginzburg-Landau coefFicients ), length in units of the
mean penetration depth A = (Mc P/16ae ~n~) ~, time
in units of h/~ci~, magnetic field in units of ~2H, (H, is
the thermodynamic critical field), electric field in units of
~n~r/2eA, vector potential in units of ~2H, A, scalar po-
tential in units of ~n~/2e, electric current density in units
of v 2H, c/4nA, and conductivity in units of Mc /hr
The mean coherence length ( and the Ginzburg-Landau
parameter K are defined in terms of the mean mass M
by the usual relations ( = Po/2vr~2H, A (i)'io ——hc/2e is
the fiux quantum) and r = A/(.

The flux-flow conductivity tensor 0.,~ is defined by the
relation

where II = (ir) V'+ a; the electric current density is

J J{'A) + J(s) (2)

where the normal current density J{ ) and supercurrent
aensity J{') obey

and

J, ' = —p,;,Re (Q*II~Q) .

Here p = pi + ip2 (pi ) 0) is the complex order pa-
rarneter relaxation constant. c)&

——c)/ctt and c), = c)/c)x,
(i = 1, 2, 3). P and a are the scalar and vector po-
tentials, respectively. p;~ is the inverse of the nor-
malized effective mass tensor m;z ——M;i/M with M;i
the effective mass tensor and M = det(M, ~)
[Note that p;~m~i, = i);k and det(p, i) = det(m;~)
pjppp3 —mim2m3 ——1, where p, = 1/m; and m;
(i = 1, 2, 3) are the principal values of p,~. and m;~, re-

spectively. ] o, . is the normal state conductivity tensor.

where J = (J) is the transport current density and the
angular brackets indicate spatial average.

The component of 0;z due to normal current is easily
obtained as follows. Assuming a uniform translation with
the velocity v, we have Bza = —v . Va, where a is the
static solution. The electric field can then be expressed
as

1E= —vxb+V ——P+v a ~,
rK

where b = V x a is the local magnetic flux density. The
second term on the right-hand side of Eq. (6) contributes
to the local electric field, ' but it does not contribute to
the spatial average, since the integration can be converted
to a vanishing surface term. Therefore, we have

(E) = -v x B,
where B = (b), and

(J(n)) (n) (@ )

To compute J('), it is necessary to solve Eq. (1) for the
moving order parameter. In the system of coordinates
whose axes coincide with the principal axes, the tensor
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p(v . V + iKv a)g = —g + p, ,II, Q, (9)

p, is diagonalized, i.e. , p;~ = p, b, ~
=. (1/m;)8, ~. To the

lowest order in (Ql, Eq. (1) becomes
B, =B; (B; =Bb;3),
&i = QP3Pi &i)

K = K/~Pg .

(ia)
(14)
(»)

where a uniform translation (0&
———v V') is assumed

and the potentials P = Kv a and a correspond to uni-
form fields (E) and B [since the amplitudes of the spatial
variations of E and b are of o(li/)l2)].

It is easy to show that Eq. (9) can be converted to an
isotropic form by a simple transformation of variables.
For B(le3 [here e, (i = 1, 2, 3) are the unit vectors along
the principal axes], the transformation reads

p(v V +iKv a)@ = —g+ II @, (16)

This transformation [except the addition of Eq. (14)] is
the same as that of Ref. 16 (when Blle3), which was
proposed for the study of time-independent problems.
Note that the above transformation preserves the rela-
tions V . B = 0 and B = V x a.

The transformed form of Eq. (9) is exactly the same
as its isotropic counterpart:

~* = gu3S'**,
~i = ~i/y P3Pi )

a, = a;/~p;,

(io)

(»)
(12)

t

where II = (iK) V'+a, and a = e2Bxl. The solution of
Eq. (16) is obtained immediately by slightly generalizing
that of Ref. 5 to allow an imaginary part of p:

g = ) C~ exp — xl(t) + + +i q—KB Q ZK(+2Vl —Pi'U2)

2 rB 2B
V (YIV1+ Y2V2) —

( ))2
Z2

where x(t) = x —vt From .this result we first obtain the
"isotropic supercurrent density" J(') = —Re(@*II@):

upper critical Beld along the x, axis.
Combining Eqs. (8) and (20), we obtain the Hux-flow

conductivity tensor
&" = &o'+ -" [-~iv «3+ ~2vl lwl2,

2

where Jo' is the "isotropic equilibrium vortex current
density, " of which the spatial average is zero. The super-
current density J~'~ is related to the quantity J~'~ by

It' (~) + &i~(IVI')
oui +
(&)»~(I4 I') v'm

2B

(~) +»~(IV'I') v'~~ )12 2B
~(~) + ~i~(l@l') )

'

22 2Bmp

(23)

J(~) ~ J(8) (i9)

A straightforward calculation then gives

(J2' ) ) 2B (—'Y2v™3
q, gm, ) f (Z)
pi/m2 ) ( (E2)

(20)

K(l@l')
2B

K2 ( B
(2K —1)P~ + 1 ( Hc2II3)

B
2' (, Hc2II3)

(for K))1), (22)

where the Abrikosov constant P~ = 1.16 and H, 2II; is the

where we have used Eqs. (7) and (14) to express v in
terms of )a; = 1/m; and (E), and the quantity K(l@l )/2B
is the same as its isotropic counterpart except v is re-
placed by k:

det(o;, ) ( (24)

or, to the lowest order in (l@l ),

Note that the Onsager relation alone gives o.2i(B)
ol2( —B); but most anisotropic superconductors have ad-
ditional symmetries when m;~ is diagonal in the chosen
coordinate system and B is along a principal direction
(i.e. , twofold rotation or inversion about the xl or z2
axis). We then have o l2 (—B) = —o l2 (B), and therefore
(721(B) = —o l2(B), which we will assume in the following
analysis. Since p~ & 0, the two terms in each of the longi-
tudinal conductivities (oil and o 22) add constructively.
However, depending on the properties of the material,
p2 may be positive or negative. Therefore, the two
terms in the Hall conductivity ol2 (or o2l ———ol2 ) add
constructively if o.

zz and p2 have the same sign; the
opposite is the case otherwise.

The inverse of o,.~ is the Hux-fl. ow resistivity tensor

s» 1 K(l@l') (pg') '
p

) 2Y) (2 () + (v("))2/v( )v( )) $72) $Y)

( )lmy o'g2

m, o(")) (25)

p(") 2Y) (2()~(V("))2(V( )V( )) LY, Y (Y1

(~) 3m2 og2

m, o(")) (26)
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p», K(14'I ) 1 &1 ~2 7& ~1~21 (~12 ) /~11 ~22
2B 1 + (g( ))2/g( )g( ) Cy (2 'Yl Cl(2 ( )/ ( ) ( )

(27)

&22 P11

= tang2 1 ——
2 1 ——~(l&l')4 tan g2

2B~2 71 ml

and p21
——p12, where (, = (/1/m, , and (, = cr;, /fair ((, = A g, , 6/piMc in conventional units) are,

respectively, the coherence length and the electric field screening length along the z, axis. Note that, in the above
expressions [Eqs. (25)—(27)], the terms of O(p22, p2giz, (criz ) ) are usually small and can be neglected; then, these
expressions can be further simplified [for example, see Eq. (37) below].

The Hall angle is readily obtained from g,i or p;~. If 3 llei, we have

( 2) g12 P21
(2s)(Ei)

where the subscript i of the angles 0, and 0, indicates that the Hall component of (E) is parallel to the T, axis.
(The Hall angle is measured counter clockwise relative to the orientation of 3 .)

If 3+Ile2, we have

tan 01 ———
(&2)

P21

P22

~(l&l')&l, » ~, 0(-))
'

)2B(1 Pi m2

(3o)

The viscosity of the flux motion in anisotropic super-
conductors is a tensor quantity: g;~. The relation be-
tween g,~ and 0,.~ is found as follows. The viscous force
(per unit length) f acting on a single vortex is given by

gV Iiv (32)

Since we are using the coordinates whose axes coincide
with the principal axes, the tensor g;~ is diagonalized:
q;z

—g;b, i, where i = 1, 2 for Biles. The density of the
dissipation rate is (in conventional units)

W = nf v = —(1)i—vi + g2v2),
B
4o

sistivity along the b axis {we allow the possibility that
m and mbmay , be different). Note that [in Eqs. (25)
and (26)] the ratios g b /gbb, orb, /g, etc. , are usu-
ally small [ O(10 )], and so is the ratio p2/pi
[ O(k~T, /E:~), where T, is the critical temperature and
b~ is the Fermi energy]. s io Therefore, we can neglect
the g, (i g j) and p2 terms (although they play irnpor-
tant roles for the Hall efFect), and obtain the longitudinal
resistivity for JTllb,

pbb (b2 (1 —6)

where n = B/Po is the density of vortices. This should
be equivalent to

where the reduced field

I1 = B/H 2(0); (3s)

gi = (goB/c')g22,
1)2 = ((t)oB/c )g 11.

(35)
(36)

So far, Biles is assumed. If B is aligned parallel to ei
or e2, the corresponding results can be obtained by cyclic
permutation: 1 —+ 2 —+ 3 —+ 1. Purther consideration for
the case that B is oriented arbitrarily with respect to the
principal axes will be given elsewhere.

We now point out a way for obtaining the anisotropy
—1/2 —1/2 —1/20 2)(1 ~ 2)[2 . ~ 2[33 j ~2 ' ~3

(H~2~~; =P = r/1/m;), from the B dependences of the
longitudinal flux-flow resistivities. We consider a high-
temperature superconductor [of which v. O(10 ) » 1].
The anisotropy ratio, for example, between the a and
c axis, I = H 2)~ /H, 2~~,

= gm /vn, can be ob-
tained from the B dependence of the longitudinal re-

W = J (E) = Oii(E1) + g22(E2) .

From Eqs. (33) and (34), and with the help of Eq. (7),
we obtain

pbb(»Bllc) = pbb(r. .B;Bllg) (39)

which means, for example, that pgg for B = 1 T and
Bllc is the same as that for B = I', T and B[la. This
scaling relation can be used to obtain I' . In particular,
the ratio between the initial (B ~ H, 2) slopes measures
directly the anisotropy ratio, i.e.,

(~pbb(Bllc)/»]~. „,. H.„,.
[~pbb( II )/ ]~.„).

(4o)

By the same way, one finds similar scaling relations for

g is the angle between the c axis and B in the ac plane,
i e , H, 2(0) =. H. ,2~~, and H, 2(m/2) = H, 2~~

. Note that
Eq. (37) [with I1 given by Eq. (3S)] is derived in the
present paper only for B parallel to a principal axis (i.e. ,
0 = 0 or vr/2); a further analysis shows that it is also
valid for 0 ( 0 ( ~/2.

The weak field dependence of pb& is usually negligible;
then, Eq. (37) implies the relation.
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p (B) and p„(B),which can be used to obtain I'b, and
I' b, respectively. The same scaling relation as Eq. (39)
for the longitudinal Aux-How resistivities has been real-
ized in Ref. 27, based mainly on the analysis of various
experimental data; the present work provides a theoreti-
cal justification for the empirical result of Ref. 27 within
the mean-field Ginzburg-Landau regime.

In summary, we have considered the Aux motion in
anisotropic type-II superconductors near H 2 by using
the time-dependent Ginzburg-Landau theory. We have
obtained expressions for the Aux-How resistivity tensor

(including all the longitudinal and Hall elements) for
the case that the vortices are aligned parallel to one of
the principal axes. We have proposed a simple method
for obtaining the anisotropy ratios from the field depen-
dences of the longitudinal Aux-Bow resistivities.
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