
MODELING AND CONTROL OF NETWORK TRAFFIC FOR PERFORMANCE

AND SECURE COMMUNICATIONS

A Dissertation

by

YONG XIONG

Submitted to the Office of Graduate Studies of

Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2004

Major Subject: Computer Science

MODELING AND CONTROL OF NETWORK TRAFFIC FOR PERFORMANCE

AND SECURE COMMUNICATIONS

A Dissertation

by

YONG XIONG

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

Jyh-Charn (Steve) Liu
(Chair of Committee)

Dmitri Loguinov
(Member)

Wei Zhao
(Member)

Zixiang Xiong
(Member)

Valerie E. Taylor
(Head of Department)

December 2004

Major Subject: Computer Science

iii

ABSTRACT

Modeling and Control of Network Traffic for Performance and Secure

Communications. (December 2004)

Yong Xiong, B.S., Tsinghua University (China);

M.S., Chinese Academy of Space Technology (China)

Chair of Advisory Committee: Dr. Jyh-Charn (Steve) Liu

The objective of this research is to develop innovative techniques for modeling

and control of network congestion. Most existing network controls have discontinuous

actions, but such discontinuity in control actions is commonly omitted in analytical

models, and instead continuous models were widely adopted in the literature. This

approximation works well under certain conditions, but it does cause significant dis-

crepancy in creating robust, responsive control solutions for congestion management.

In this dissertation, I investigated three major topics. I proposed a generic discontin-

uous congestion control model and its design methodology to guarantee asymptotic

stability and eliminate traffic oscillation, based on the sliding mode control (SMC)

theory. My scheme shows that discontinuity plays a crucial role in optimization of

the I-D based congestion control algorithms. When properly modeled, the simple I-D

control laws can be made highly robust to parameter and model uncertainties. I dis-

cussed applicability of this model to some existing flow or congestion control schemes,

e.g. XON/XOFF, rate and window based AIMD, RED, etc.

It can also be effectively applied to design of detection and defense of distributed

iv

denial of service (DDoS) attacks. DDoS management can be considered a special

case of the flow control problem. Based on my generic discontinuous congestion con-

trol model, I developed a backward-propagation feedback control strategy for DDoS

detection and defense. It not only prevents DDoS attacks but also provides smooth

traffic and bounded queue size.

Another application of the congestion control algorithms is design of private

group communication networks. I proposed a new technique for protection of group

communications by concealment of sender-recipient pairs. The basic approach is

to fragment and disperse encrypted messages into packets to be transported along

different paths, so that the adversary cannot efficiently determine the source/recipient

of a message without correct ordering of all packets. Packet flows among nodes are

made balanced, to eliminate traffic patterns related to group activities. I proposed

a sliding window-based flow control scheme to control transmission of payload and

dummy packets. My algorithms allow flexible tradeoff between traffic concealment

and performance requirement.

v

To My Wife and Parents

vi

ACKNOWLEDGMENTS

I would like to thank Dr. Jyh-Charn Liu for his guidance, support and patience

through my graduate study. He has been the constant source of inspiration and help.

This dissertation would not be finished without his support and encouragement.

I would like also to express my appreciation to the members of my committee,

Dr. Dmitri Loguinov, Dr. Wei Zhao and Dr. Zixiang Xiong. They gave me very

helpful suggestions on improving the quality of this thesis. I am grateful to them for

their guidance and support. They spent time to discuss with me about my research

although they were very busy.

I must also appreciate my beautiful wife, Yan Sun, and my parents for their

dedication and patience. Without their love, understanding and support, I would not

have finished my Ph.D. study.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II MODEL AND DESIGN OF DISCONTINUOUS NETWORK

CONGESTION CONTROL SYSTEMS 5

A. Introduction . 6

B. Sliding Mode Control . 10

C. I-D Flow Control Models 11

1. XON/XOFF Protocol 14

2. Window-Based AIMD Protocol 14

3. Rate-Based AIMD Protocol 15

4. Random Early Detection (RED) Protocol 16

5. A Simple Example . 17

D. General Design Methodology 21

E. Main Results . 25

1. Rate-Based AIMD . 25

2. Window-Based AIMD 30

F. Analysis for Rate-Based Systems 32

1. Rate-Based Network Model 33

2. System Properties . 33

3. Parameter Setting . 35

G. Analysis for Window-Based Systems 38

1. Window-Based Network Model 38

2. Window-Based Parameter Setting 41

H. Transient Behavior and Delay Effects 42

I. Conclusion . 43

III DEFENSE OF THE DISTRIBUTED DENIAL OF SERVICE

ATTACKS . 44

A. Introduction . 44

B. System Model . 47

1. Fluid Dynamic Model [1] 50

C. Backward Propagation Feedback Control 52

1. Rate-Based Control Algorithm 54

viii

CHAPTER Page

2. Queue-Based Control Algorithm 59

D. Implementation and Simulation 63

E. Conclusion . 68

IV ANTI-EAVESDROPPING GROUP COMMUNICATION PRO-

TOCOLS . 72

A. Introduction . 72

B. Anti-Eavesdropping Broadcasting (AEB) Protocols 75

1. Design Goals . 75

2. Dispersed Packet Transport 76

3. Pattern-Free Packet Flows 77

C. Adaptive Packet Padding 81

1. Distributed Sliding-Window for Packet Padding 82

2. Adaptability Analysis 85

3. Window Adjustment 87

D. Evaluation . 88

1. Implementation . 88

E. Simulation . 89

1. Experiment 1: Workload pattern concealment 91

2. Experiment 2: Performance of the static sliding

window scheme . 91

3. Experiment 3: Performance of the adaptive sliding

window scheme . 95

4. Experiment 4: Performance impact of delays 95

5. Experiment 5: Robustness of the adaptive sliding

window scheme . 96

F. Conclusion . 99

V SUMMARY . 101

REFERENCES . 103

APPENDIX A . 114

APPENDIX B . 116

VITA . 119

ix

LIST OF TABLES

TABLE Page

I Events in experiment 5. 99

x

LIST OF FIGURES

FIGURE Page

1 Two-dimensional case. (a) the attraction effect of the switching

surface s(x) = 0; (b) a state trajectory with an idea sliding mode;

(c) chattering behavior when switching does not take place exactly

on the switch surface. 10

2 An FIFO queuing model for congestion control. 12

3 A general I-D controller networking model. 12

4 The state and temporal trajectories with switching function S = y

(K = 40). Delay is ignored. The switching line is defined by S = 0. . 18

5 The state and temporal trajectories with switching function S =

−y + ẏ (K = 200). Delay is ignored. The switching line is defined

by S = 0. 19

6 The state and temporal trajectories with switching function S =

y + ẏ (K = 40). Delay is ignored. The switching line is defined

by S = 0. 20

7 The state trajectory of the simple FIFO queue example under

control law (2.13), where S = y + ẏ, K = 40 and with delay 50 ms. . 24

8 Instant queue length traces based on SF1 and SF2. 27

9 State trajectory for SF1. 27

10 State trajectory for SF2 with c1 = 1. 28

11 Traces of queue lengths for SF1 with different α and β values. 29

12 Traces of queue lengths for SF2 with different α and β values. 29

13 Queue length traces based on SF1 and SF2 in window-based con-

gestion control. 31

xi

FIGURE Page

14 State trajectory for SF1 (window-based case). 31

15 State trajectory for SF2 with c1 = 1 (window-based case). 32

16 The network model for backward propagation, feedback control,

and the generic switch architecture and its packet flow model in

the network. 48

17 The flow balance diagram within a cluster. 55

18 The queue-based congestion control model. 60

19 A smooth, simplified control strategy to reduce chattering. 64

20 Dual leaky bucket scheme for PCR and SCR conformation. 66

21 Queue length with the non-smoothed control rule. 68

22 Queue length with the smoothed control rule. 69

23 Switching function and throttling level with the non-smoothed

control rule. 69

24 Switching function and throttling level with the smoothed control rule. 70

25 Throughput with the non-smoothed control rule. 70

26 Throughput with the smoothed control rule. 71

27 An example on the double shuffling and slicing of packets (p = 4). . . 77

28 Illustration of depth-first permutation ring. 79

29 An overlay ring vs. a TCP session. 83

30 Traffic volume statistics at each node. 90

31 Simulation topology. 90

32 Traffic rates on each link in experiment 1. 92

33 Congestion queue dynamics in experiment 2. 93

xii

FIGURE Page

34 Padded traffic rate at each link in experiment 2. 94

35 Workload traffic rate on each link in experiment 2 (with eternal

sessions). 94

36 Padded traffic rate on each link in experiment 3. 95

37 Queue length of each link in experiment 3. 96

38 Padded traffic rate on each link in experiment 4. 97

39 Queue length of each link in experiment 4. 97

40 Padded traffic rate on each link in experiment 5. 98

41 Queue length of each link in experiment 5. 98

1

CHAPTER I

INTRODUCTION

The broad acceptance of the IP protocol is driving the Internet to a new level of

performance expectations for its users. A key issue related to the network performance

is congestion control. Adaptability, fairness, utilization, packet loss and smoothness

of traffic flows are common design factors. How to balance these conflicting factors

is an extremely challenging undertaking. Coarse approximation of subtle system

attributes in an ad hoc design process may work on average cases, but they cannot

guarantee real-time performance, and often lead to significant traffic oscillation while

real-time streaming applications require smooth transmission rate. One might argue

that oscillation helps rapid response to resource changes. We will show that, a system

can achieve equally good, if not better, responsiveness and high network utilization,

without inducing oscillation.

Oscillation means boundary stability, but achieving traffic smoothness requires

asymptotical stability of short-term behavior instead of long-term average behavior.

One might argue that linear or other approximation schemes are necessary to contain

the computing complexity, and they would be sufficient to deliver quality service. But

we will show that this subtle issue is critical to asymptotic stability of the system, and

one can make significant performance improvement over existing schemes by proper

incorporation of the discontinuity in control actions into the control and modeling

process, at lower complexity.

The objective of this research is to develop innovative techniques for modeling

and control of network congestion. Most existing network controls have discontinuous

The journal model is IEEE Transactions on Networking.

2

actions, but such discontinuity in control actions is commonly omitted in analytical

models, and instead continuous models were widely adopted in the literature. This

approximation works well under certain conditions, but it does cause significant dis-

crepancy in creating robust, responsive control solutions for congestion management.

In this dissertation, I investigated three major topics. I proposed a generic discontin-

uous congestion control model and its design methodology based on the sliding mode

control (SMC) theory. I discussed applicability of this model to some existing flow or

congestion control schemes, e.g. XON/XOFF, rate and window based AIMD, RED,

etc. It can also be effectively applied to design of detection and defense of distributed

denial of service (DDoS) attacks. The fundamental understanding of control actions,

queuing dynamics, and delay leads to a traffic concealment algorithm that can be

used to create pattern-free multicast overlay networks.

Discontinuous congestion control rule, e.g. increase and decrease (I-D) conges-

tion control, is widely adopted in network traffic management because of its cost-

effectiveness. In the second chapter of this dissertation, I proposed a modeling and

design methodology for discontinuous congestion controllers to guarantee asymptotic

stability and eliminate traffic oscillation, based on the SMC theory. A highly appeal-

ing attribute of SMC is that its stability analysis does not require a precise network

dynamics model. My scheme shows that discontinuity plays a crucial role in opti-

mization of the I-D based congestion control algorithms. When properly modeled,

the simple I-D control laws can be made highly robust to parameter and model un-

certainties.

DDoS management can be considered a special case of the flow control problem.

Based on the network traffic models derived in chapter II, I developed a backward-

propagation feedback control strategy for DDoS defense. When a host finds itself

becoming a hot spot, it informs neighboring nodes and routers to reduce influx of

3

packets. Reduction of packet influx is propagated backward to the sources. If a

source is normal, it will reduce its sending rate when backpressure is propagated

to it. If a source ignores traffic backpressure and keeps infusing packets, it will be

identified as an attacker and its packets will be dropped. This backward-propagation

feedback control strategy adopts a simple hop-by-hop on-off control scheme. It not

only prevents DDoS attacks but also provides smooth traffic and bounded queue size.

Another application of the congestion control algorithms is design of private

group communication networks, which are critical to some applications, e.g. online

bank transactions, battle field communication, etc.. In addition to cryptographic pro-

tection of information contents, concealment of the network traffic patterns (volumes,

peak times, etc.) is also important to prevent unveiling the interactions between group

members. Otherwise, adversary might use passive analysis of the network traffic to

match certain traffic or patterns with significant application events without explicitly

cracking encrypted messages. Workload padding and packet routing are basic mech-

anisms to counter passive traffic analysis attacks, but workload padding can be very

expensive in terms of bandwidth consumption. The challenge here is how to make

an optimal tradeoff between traffic pattern anonymity and network performance. I

proposed a new technique for protection of group communications by concealment

of sender-recipient pairs. The basic approach is to fragment and disperse encrypted

messages into multicast packets to be transported along different paths, so that the

adversary cannot efficiently determine the source/recipient of a message without cor-

rect ordering of all packets. Packet flows among nodes are made balanced, to eliminate

traffic patterns related to group activities. I proposed a sliding window-based flow

control scheme to control transmission of payload and dummy packets. Our algo-

rithms allow flexible tradeoff between the degree of traffic uniformity, and that of the

performance costs. This is particularly important for an open network environment,

4

where the users may not have full control of the network resources.

Details on the three major research themes, their preliminary results, and their

contributions are presented in Chapter II, III and IV, respectively.

5

CHAPTER II

MODEL AND DESIGN OF DISCONTINUOUS NETWORK CONGESTION

CONTROL SYSTEMS

Increase and decrease (I-D) congestion control rule is widely adopted in network traffic

management because of its cost-effectiveness. In this chapter we propose a model-

ing and design methodology for I-D congestion controllers to guarantee asymptotic

stability and eliminate traffic oscillation, based on the sliding mode control (SMC)

theory. Our scheme addresses the discontinuous operations of I-D controller that has

been largely disregarded in existing literature, and shows that discontinuity plays a

crucial role in optimization of the I-D based congestion control algorithms.

We show that the design of I-D congestion control systems must consider its

relative degree and zero dynamics to guarantee their asymptotic stability. Analytical

and experimental results show that the relative degree of the rate-based, AIMD flow-

control algorithms is two, while that of the window-based schemes is one. That is, for

optimal control performance (rapid convergence and minimal oscillation), rate-based

AIMD algorithms should use both the queue length error and its first order time

derivative to construct the switching function of an I-D scheme. On the other hand,

for window-based AIMD algorithms one should only use the queue length error in the

switching function.

Based on our analysis, we develop a simple yet accurate queuing model for a

heavily loaded window-based flow control system. Our model matches both the self-

clocking properties of window protocols and their relative degree, i.e., one. Otherwise,

the relative degree of a classic analytical model for window-based AIMD is found to

be two, inconsistent with that of ns-2 simulation, nor does it reflect the fact that the

total input rate is bound under the additive increase rule.

6

A. Introduction

Sound bandwidth management is essential to sustain the continual growth of Inter-

net. Congestion/flow control schemes used in different transport protocols need to

guarantee performance for the broad range of end users, and maximize the network

bandwidth utilization. We use “congestion control” and “flow control” interchange-

ably in this chapter Bandwidth management schemes, which may appear to have

good performance results in small scale simulation, need to be closely examined be-

fore they can be deployed. Otherwise, overlooking certain subtle system issues can

lead to substantial performance loss due to persistent or intermittent oscillation. Wild

oscillation results in packet loss, low bandwidth utilization and large delay jitter.

Precise modeling of the network dynamics is critical to the design process in

optimizing the tradeoff between responsiveness, fairness and the degree of oscillation.

In this chapter, we propose a novel modeling and design approach for increase and

decrease (I-D) congestion control based on sliding mode control (SMC) theory [2][3].

Our method sheds new light on understanding of the effect of control discontinuity

on stability and performance of I-D schemes such as Additive-Increase-Multiplicative-

Decrease (AIMD) [4]. By control discontinuity it means that the reaction to changes

of network states for bandwidth adjustment is a discontinuous function. The method-

ology is general enough to serve as a theoretical basis to the design of a broad range

of discontinuous congestion control schemes. Unlike most conventional approaches

that omitted the discontinuity of control actions, our analysis takes discontinuity into

account and it proves affirmatively the asymptotic stability of different congestion

control schemes.

I-D flow control schemes are widely implemented in different network protocols,

e.g. XON/XOFF MAC layer flow control scheme, AIMD, etc. The simplest I-D

7

control rule uses a single binary bit sent to the I-D controller to indicate occurrence

of congestion, so that only the sign of the output error is fed back to the I-D controller.

This binary feedback can be implicit, e.g., the 3 duplicate ACK packets in TCP, or

explicit, e.g., the explicit congestion notification (ECN) bit [5]. One or more [6] ECN

bit is commonly used in active queue management (AQM) schemes to inform a sender

of congestion conditions.

A congestion control scheme of this nature can be viewed as a binary deci-

sion control (BDC) system. That is, if an error function, which is also called the

switching function, has a negative (positive) reading then a positive (negative) con-

trol action is engaged. Three critical issues related to design of BDC systems are

(i) timing in setting of the “congestion” bit, (ii) switching function construct, and

(iii) the amount of adjustment in control, i.e., the increase or decrease of the trans-

mission rate or congestion window sizes. Some AQM schemes investigate the timing

in determining when to set the congestion bit(s) of flows on the routers. For exam-

ple, the “binary feedback” scheme proposed by Ramakrishnan and Jain (henceforth

called RJBF) [7], RED [8][9], BLUE [10], the proportional-integral (PI) controller

[11], proportional-differential (PD) controller [12][13], AVQ [14], R-SMVS (a sliding

mode variable structure control scheme proposed by Ren et. al)[15] and variations

of RED [16][17][18][19][20]. They are all designed to work with the additive-increase-

multiplicative-decrease (AIMD) scheme [21] of TCP Tahoe/Reno. How to provide

smooth transport for streaming applications, yet be “TCP-friendly” remains an open

problem [22][23].

Construction of a switching function is the focus of congestion avoidance schemes,

such as AIMD and binomial control [24]. It is widely believed that one could reduce

the degree of oscillation by adjustment of the increase/decrease amounts. For exam-

ple, in [25], Zhang and Shin proposed an α-control scheme with the goal of control-

8

ling the maximum queue length to a target range, by adjusting the increase rate of

AIMD. In [26], Lee et. al proposed AIMD/H (AIMD with history), which updates

the decrease ratio of AIMD according to history, to smooth rate/window variations.

However, this is true only to a limited extent because oscillation of I-D control systems

can be caused by delay, measurement error or incorrect configuration of relative de-

gree in switching function. An incorrectly configured I-D control system can become

unstable or even divergent regardless of the adjustment amounts. We demonstrate

this case by a simple example in subsection 5 of section C of this chapter.

AQM and congestion avoidance, being two closely related issues, can be modeled

into a binary decision control (BDC) system, unless when the AQM schemes are

not designed to work with AIMD, e.g., REM [27], GKVQ (Gibbens-Kelly virtual

queue) [28][29], and probabilistic price marking [30][31]. These exceptions will not

be considered in the rest of discussion. Analysis and optimization of the asymptotic

stability and transient behavior of BDC systems are complicated by discontinuity of

the control behavior. When the control action switches according to the + and - sign

of the switching function, it changes the trajectory of the system state.

Despite the profound importance of discontinuity in a BDC system, this issue is

largely ignored in the analysis of AIMD control [8][11][9][14][15][16][17][18][19][20][12][13].

Instead, most existing work adopted a continuous dynamic model, such as that of

window-based AIMD scheme [32] in the TCP Reno as

dW (t)

dt
=

1

R(t)
− W (t)W (t−R(t))

2R(t)
ρ(t−R(t)), (2.1)

where ρ is the packet dropping/marking probability, W the congestion window size,

and R the roundtrip time (RTT). In this model, the discontinuity of AIMD is ap-

proximated by its statistically-averaged behavior. Inherently the control algorithm

9

designed based on this model acts according to the statistical average of the controlled

objective, rather than its real-time condition.

Our modeling approach leads to significant performance gains, guaranteed sta-

bility conditions, and quantitative understanding of the tradeoff between oscillation,

delay and fairness. Ignoring control discontinuity might still lead to acceptable per-

formance under certain conditions, but one cannot guarantee the asymptotic stability

of the system. Without knowing the behavior of the system dynamics, the system

is susceptible to recurrent traffic oscillations, and significant packet delays or packet

losses in short time windows. The SMC theory used for analysis of the BDC systems

suggests that the relative degree of an I-D controller plays a significant role in its

stability. While [3] gives a rigorous definition of relative degree, a simple heuristic

method to determine the relative degree is that it equals to the number of times to

take the derivative of the output, until the control input first appears in the right-hand

side of the equation without being encapsulated in another function.

The rest of this chapter is organized as follows. In section B of this chapter,

we briefly introduce the idea of sliding mode control. In section C, we describe

the general I-D flow control model and discuss applicability of this model to some

existing flow or congestion control schemes, e.g. XON/XOFF, rate and window based

AIMD, RED, etc. Section D presents our design methodology for general I-D control

rules. Section E of this chapter presents our main results on rate-based and window-

based congestion control. Section F and G provide a theoretical proof of our results.

Section H discusses the transient behavior and delay effects. We make the conclusion

in section I.

10

 (a) (b) (c)

Fig. 1. Two-dimensional case. (a) the attraction effect of the switching surface

s(x) = 0; (b) a state trajectory with an idea sliding mode; (c) chattering

behavior when switching does not take place exactly on the switch surface.

B. Sliding Mode Control

A sliding-mode controller force the system under control to evolve on a predetermined

switch manifold, which results in new system dynamics not present in the uncontrolled

system. When the system state deviates from the switching surface s(x) = 0, where

x is the state variable vector of the dynamic system, control is applied on the system

to force it back to the switching surface (see Fig. 1). Control is discontinuous on

the switching surface. For ideal sliding mode control, the system state trajectory will

move toward the switching surface, and then keep evolving on the switching surface

(i.e., the term sliding mode) to converge to the origin if s(x) = 0 is stable. The systems

under the sliding-mode control approach are robust and insensitive to parameter

uncertainties, making them highly tolerant of model uncertainties and disturbance.

The main down side of this approach, however, is the chattering phenomenon, which is

caused by the abrupt change of the state trajectory crossing the sliding manifold, even

for the ideal, zero-delay cases. Switching cannot exactly take place on the switching

surface for real systems, which leads the state trajectory to move back and forth over

11

the surface s(x) = 0.

To construct a sliding mode controller, one must promise the existence and stabil-

ity of the sliding mode. For a special case where the switching surface is constructed

only with output and its derivatives, the dynamics of the sliding mode consists of two

parts, the zero dynamics of the system and the switching function s(y, ẏ, ÿ, · · ·) = 0.

Therefore, the sliding mode is stable if and only if the system’s zero dynamics and the

switching function s(y, ẏ, ÿ, · · ·) = 0 are both stable. The stability of zero dynamics

means the system is minimum-phase.

C. I-D Flow Control Models

In this section, we present the general I-D flow control model, and show its applica-

bility to some typical flow control protocols. We assume a generic congestion control

model shown in Fig. 2, where the sender adjusts its sending rate λ by an I-D flow

control rule, based on the traffic conditions. The congested node has a first-in-first-

out (FIFO) queue and it uses some feedback message(s) to inform senders of the

congestion conditions. The primary system parameters include the transmission rate

λ, the queue length q, and the link capacity C.

The switching behavior of a general I-D controller in the sender is depicted in

Fig. 3, where the controller acts in one of three modes, the increase, decrease and

cruise modes. We note that when S1 = S2 “sliding mode” is the standard term

used in SMC theory literature. At the increase (decrease) mode the sender increases

(decreases) its sending rate, and at the cruise mode, the sender tries to stay at the

same state (with possibly some minor rate adjustments.)

12

...

q

Cλ

Fig. 2. An FIFO queuing model for congestion control.

2S

1S

Network

Dynamics

Switching

Function

S

S

S u

u

q

I-D controller

dq

y

+

-

decrease

cruise

increase

Fig. 3. A general I-D controller networking model.

13

The I-D control rule for the three modes is defined by

u =

u−, if S > S2,

u+, if S < S1,

uc, else,

(2.2)

where u is the control input, u−, u+ and uc are the decrease, increase and cruise rule,

S is the switching function, S1 and S2 (S1 < S2) are the thresholds. The design issue

is how to choose i) the switching function S, ii) thresholds S1 and S2, and iii) u−, u+

and uc. Knowing that full-state feedback is unlikely, we only consider the following

output based switching function (2.3)

S = c0y +
r−1∑

i=1

ci
diy

dti
, (2.3)

where y is some measurement output, e.g. queue length error. A generic description

of the network dynamics is expressed as

ẋ = f(x, u, t), (2.4)

where f is a smooth function, t is the time variable, x stands for the state variable

vector of the network dynamics, and u the control input. The output y is a function

of the network state variables,

y = h(x, t). (2.5)

The network state variables x could be the queue length, changing rate of the queue

length, etc. Our objective is to drive the network dynamics to a desired equilibrium

point in the cruise mode to achieve maximum bandwidth utilization and minimal

oscillation. Next, we show the applicability of our model to some widely adopted flow

control protocols.

14

1. XON/XOFF Protocol

IEEE 802.3x standard defines a data-link layer, hop-by-hop backpressure flow control

scheme called XON/XOFF. The flow control rule of XON/XOFF can be described as

λ =

0, if q > q2,

C, if q < q1,

hold, else,

(2.6)

where λ is the sending rate, C is the link capacity, q1 and q2 are the XON and

XOFF thresholds respectively. A node sends an XOFF packet to its upstream node

when its queue length exceeds q2 and it sends an XON packet when its queue length

reduces to q1. A node stops sending packets when it receives an XOFF packet. It

resumes transmission when it receives an XON packet from the same node, or the

XOFF message expires. The goal of XON/XOFF scheme is to control the queue

length to the range between q1 and q2 to avoid queue overflow and underflow. Eq.

(2.6) captures the key property of XON/XOFF scheme although it ignores the XOFF

expiration effects. Clearly (2.6) is consistent with (2.2).

2. Window-Based AIMD Protocol

In a generic window-based AIMD protocol, e.g. RJBF [7] and the congestion avoid-

ance scheme of TCP Tahoe/Reno [33], senders exponentially decrease their congestion

windows (denoted as W) when they receive a marked ACK packet, otherwise they

linearly increase their congestion windows. In RJBF, the congested node marks an

incoming packet when its queue length is larger than a threshold. The congestion

avoidance scheme of TCP Tahoe/Reno can be viewed as a special case in which the

queue length threshold is the buffer size of the congested node. A TCP sender halves

15

its congestion window when it receives three duplicate ACKs, otherwise increases

its congestion window by one per round trip time. Duplicated ACKs are caused by

packet loss. We ignore packet loss caused by transmission errors because bit error

ratio in modern wired network is very low. The cases of wireless network is beyond

the range of this thesis.

This scheme has only increase and decrease modes, and it does not have the

cruise mode. The control input u is the changing rate of congestion window size,

denoted as Ẇ . u− and u+ denote the multiplicative decrease and additive increase

rules respectively. The output y is the queue length of the congested node. The

window-based AIMD control rule can be written as [24]

Ẇi =

αw
Ri

, if q < qd,

−Wi
βw

, else,

(2.7)

where Ri is the roundtrip time of the ith session.

3. Rate-Based AIMD Protocol

Some representative schemes in this category include the Rate Adaptation Protocol

(RAP) [34], the Loss-Delay Based Adaptation Algorithm LDA+ [6], and the Loss

Tolerant Rate Controller (LTRC) [35]. In RAP, each data packet is acknowledged, and

sender uses ACK packets to detect packet loss and round-trip time. When packet loss

is detected, the sender halves its sending rate. Otherwise, it periodically increases its

sending rate by one packet per round-trip time. LDA+ adaptively adjusts its additive

increase and multiplicative decrease rates based on the network condition. LTRC uses

loss threshold values to determine whether the sender is allowed to increase, maintain

16

or decrease its rate. The control rule of this type of protocols can be expressed as

λ̇i =

αr, if q < qd,

−λi
βr

, else.

(2.8)

4. Random Early Detection (RED) Protocol

The AQM scheme Random Early Detection (RED) proposed in [8] is designed to

work with TCP or similar protocols. It detects router congestion based on its average

queue length, and disseminates congestion information by packet dropping or ECN

bit marking. The probabilistic rules for packet dropping (or ECN marking) are as

follows:

ρ =

0, if q̄ < q1,

1, if q̄ > q2,

q̄ − q1
q2 − q1

, else,

(2.9)

where ρ is the dropping/marking probability, and q̄ is the average queue length. The

goal of RED is to drive q̄ to a desired equilibrium point, which falls within (q1, q2).

Obviously, (2.9) is a special case of (2.2).

Most literatures on RED, e.g. [11][9], only analyzed its local stability by lineariz-

ing the system around a neighbor of the equilibrium point within (q1, q2) with little

or no discussion on the issues of the transition between the three states. There is no

guarantee that when initially the queue length is less than q1 or larger than q2, RED

would drive the network dynamics into the cruise mode. This assumption makes the

congestion control scheme at a sender susceptible to traffic fluctuation from other

sources. Our model can alleviate this shortfall by taking the full dynamic ranges of

operations into account.

17

5. A Simple Example

Referring to the FIFO queue example in Fig. 2, let C be 150 pkt/sec and zero delay,

then the system dynamics of this queuing system can be described by

q̇ = λ− 150, q ≥ 0. (2.10)

We also assume the buffer size is infinite in order to more clearly show if the queuing

system convergent. Our goal is to drive q to 50 packets through increasing /decreasing

the sending rate λ. Thus, the output-measurement error

y = q − 50, (2.11)

and the control variable

u = λ̇. (2.12)

Now we study the stability of (2.10) under the following additive-increase-additive-

decrease (AIAD) control law with different switching functions:

u =

−K, if S ≥ 0,

K, else,

(2.13)

where K is a positive constant. We consider the following three switching functions:

S = y, (2.14)

S = −y + ẏ, (2.15)

S = y + ẏ. (2.16)

By solving these equations with the 4th order Runge-Kutta numerical integration

method, we got the results plotted in Fig. 4, 5 and 6. For (2.14), with initial state

18

-80

-60

-40

-20

0

20

40

60

80

0 20 40 60 80 100

queue length (pkt)

q
u
e

u
e
 l
e

n
g
th

 v
a
ri

a
ti
o
n

 r
a

te
 (

p
k
t/

s
e

c
)

switching line

state trajetory

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18

time (sec)

q
u
e
u
e
 l
e
n
g

th
 (

p
k
t)

Fig. 4. The state and temporal trajectories with switching function S = y (K = 40).

Delay is ignored. The switching line is defined by S = 0.

19

0

100

200

300

400

500

600

0 200 400 600 800 1000

queue length (pkt)

q
u

e
u
e
 l
e

n
g

th
 v

a
ri
a

ti
o
n

 r
a

te
 (

p
k
t/

s
e

c
)

switching line

state trajetory

attractive zone

attractive zone

0

500

1000

1500

2000

2500

0 1 2 3 4

time (sec)

q
u
e
u
e
 l
e
n
g
th

 (
p
k
t)

Fig. 5. The state and temporal trajectories with switching function S = −y + ẏ

(K = 200). Delay is ignored. The switching line is defined by S = 0.

20

-20

-10

0

10

20

30

40

50

60

0 10 20 30 40 50 60

queue length (pkt)

q
u

e
u
e

 l
e

n
g

th
 v

a
ri

a
ti
o

n
 r

a
te

 (
p
k
t/

s
e
c
)

switching line

state trajetory

attractive zone

attractive zone

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18

time (sec)

q
u
e
u
e
 l
e
n
g
th

 (
p
k
t)

Fig. 6. The state and temporal trajectories with switching function S = y+ẏ (K = 40).

Delay is ignored. The switching line is defined by S = 0.

21

(q = 0, q̇ = 0), the close-loop system oscillates, see Fig. 4. For (2.15), with initial

state (q = 100pkt, q̇ = 0pkt/sec), the system is divergent, see Fig. 5. For (16), with

initial state (q = 0, q̇ = 0), it asymptotically converges to an equilibrium point, see

Fig. 6. This example clearly shows the importance of choosing the proper switching

functions, based on the system dynamics, regardless of the complexity (or simplicity)

of the system architecture. We will discuss attractive zones in Fig. 4, 5 and 6 in the

next section.

D. General Design Methodology

The main idea of our method is that we first design the increase and decrease rules

(u+ and u− in (2.2)) to make the system monotonously converge to the cruise mode

within a finite time period, and then maintain the system state at the cruise mode. By

“monotonously converge” it means that the distance to the cruise mode monotonously

decreases until the network state reaches the cruise mode. It makes the system state

converge to the cruise mode and maintain on the cruise mode after the system state

reaching the cruise mode. This is enough for most flow control applications. The

second step is to design the cruise rule (uc in (2.2)) to make the system asymptotically

converge to the desired equilibrium point with continuous system design methods, e.g.

root locus, pole placement, LQG regulator design, etc.

Let Ŝ denote the “distance” to S1 and S2 outside the cruise mode.

Ŝ =

S − S2, if S > S2,

S − S1, if S < S1,

0, else.

(2.17)

22

Thus the I-D control law can be rewritten as

u =

u−, if Ŝ > 0,

u+, if Ŝ < 0,

uc, else.

(2.18)

Monotonously decreasing of |Ŝ| implies that Ŝ
˙̂
S < 0. That is, when Ŝ < 0,

˙̂
S > 0

and when Ŝ > 0,
˙̂
S < 0, where

˙̂
S is the time derivative of Ŝ. The attractive zone of

the cruise mode is defined as {x : Ŝ
˙̂
S < 0}. Within the attractive zone, the network

states will be attracted into the cruise mode. Furthermore, when

Ŝ
˙̂
S ≤ η|Ŝ|, where η > 0, (2.19)

is satisfied, the system will reach the cruise mode within a finite time period
|Ŝ0|
η

[3], where Ŝ0 is the initial value of Ŝ, and the convergence rate to the cruise mode is

proportional to η.

Based on this methodology, to guarantee overall system asymptotical stability,

i.e., the controlled object (2.4) and (2.5) together with the controller (2.2) and (2.3),

we must meet the following conditions [36]:

i. If the relative degree of the input-output system defined by (2.4) and (2.5) with

input u and output S is r, one should use to construct the switching function

S.

ii. The zero dynamics of the input-output system defined by (2.4) and (2.5) is

asymptotically stable, or it is minimum phase.

iii. cr−1pr−1 + cr−2pr−2 + ... + c1p + c0 is a Hurwitz polynomial.

iv. Under the cruise control uc, (2.4) is asymptotically stable.

23

The four conditions are sufficient for asymptotical convergence to an equilibrium

point. Condition i guarantees that the control input u explicitly appears in the ex-

pression of Ṡ so that we can change the sign of Ṡ through switching of the control

input. Satisfying Conditions i-iii is sufficient for asymptotically converging to a lim-

ited cycle with bounded oscillation level, roughly S1 < y < S2. When S1 = S2,

Conditions i-iii are sufficient for asymptotically converging to an equilibrium point,

where y = S1.

For a nonlinear system, its zero dynamics is equivalent to the role of zeros for a

linear system. When Condition iii holds, Condition ii is equivalent to the condition

that the zero dynamics with output S defined in (2.3) is asymptotically stable, or, it

is minimum phase with output S. In fact, the zero dynamics with output S defined

in (2.3), which is exactly the dynamics of the sliding mode, is the combination of two

elements [2][36]: the zero dynamics with output y and

c0y +
r−1∑

i=1

ci
diy

dti
= 0. (2.20)

Condition iii guarantees the differential equation (2.20) is asymptotically stable.

Coefficients cr, cr−1, · · · , c0 are manually determined to meet Condition iii. u−(x, t)

and u+(x, t) determine the range of the attractive zone of the cruise mode, so that

within the attractive zone, the control rules can bring the state trajectory back to the

cruise mode. Their values are proportional to the speed of state trajectory changes.

When the system has non-negligible delays, measurement errors, or finite control fre-

quency, control switching cannot take place exactly on the switching line (manifold),

which will cause state chattering. For these non-ideal cases, large control values will

aggravate the degree of chattering (see Fig. 7). The quantitative tradeoff between

these factors is essential to the optimal design of the congestion control algorithms.

24

-10

0

10

20

30

40

50

0 10 20 30 40 50 60

queue length (pkt)

q
u
e
u

e
 l
e
n
g

th
 v

a
ri
a

ti
o

n
 r

a
te

 (
p

k
t/

s
e
c
)

state trajetory

switching line

Fig. 7. The state trajectory of the simple FIFO queue example under control law

(2.13), where S = y + ẏ, K = 40 and with delay 50 ms.

For the simple FIFO queue control example given in the end of section C of

chapter II, on page 14, its relative degree is two. By choosing S = y, it violates

Condition i so that one cannot make S = 0 attractive through switching control

input u. Its oscillation level is just dependent on the initial q and λ. S = −y + ẏ and

S = y + ẏ satisfy Condition I so that within the attractive zone both of them can

drive the state trajectory to S = 0. However, the attractive zone under control law

(2.13) is limited because its control is limited. S = −y + ẏ = 0 is divergent because

it violates Condition iii so that the state trajectory will escape from the attractive

zone.

25

E. Main Results

In this section, we study the stability of rate-based and window-based AIMD conges-

tion control protocols. To single out the effects of relative degree on the performance

outcomes, we focus on the relationship between relative degree and the asymptotic

stability, without considering the transient on-set behavior of a new session.

In the experiments, we tested the effects of relative degree by using two different

switching functions,

SF1: S = y, (2.21)

and

SF2: S = y + c1ẏ, (2.22)

where y = q− qd. q is the actual queue length and qd is the target queue length. Eqs.

(2.21) and (2.22) respectively represent feedback control schemes that have relative

degrees of one and two.

In the real implementation of (2.22), we use the following differential equation

to approximate q̇

q̇(t) ≈ q̄i − q̄i−1

∆t
(2.23)

where t ∈ [i∆t, (i + 1)∆t) and q̄i is the average queue length within the time interval

[(i− 1)∆t, i∆t).

1. Rate-Based AIMD

In rate-based AIMD scheme, the sender keeps sending data at the current rate until

it receives one-bit congestion status, which is set by the router, and is transmitted

back by the receiver to the sender via the ACK packet. The source linearly increases

its sending rate with rate α(> 0) if the congestion bit is 0; otherwise, the sending rate

26

is decreased exponentially with time constant β(> 0). Note that in our simulation,

the source does not retransmit lost packets, because this assumption does not have

effect on the relative degree properties. This AIMD configuration is consistent with

(2.2), and thus can be analyzed by our model.

In our ns-2 simulation, we assume that a single link of capacity 10 Mbps is shared

by 15 connections with RTT ranging from 40 ms to 200 ms. These connections started

randomly within 0.1 second. The average packet size is 1000 bytes, the buffer size 100

packets, and qd = 50 packets is our control goal. Because we are mainly interested

in the recurrent behavior of AIMD, we simply initialized the sending rate of each

sources as 650 Kbps and set α = 10pkts/sec2, β = 8.3sec, without considering the on-

set effects. We always set c1 = 1 unless otherwise stated. This configuration satisfies

αβ = C/N , where C is the link capacity, so that at equilibrium, the increase rate is

equal to the decrease rate [37].

The ns-2 simulation results of using SF1 and SF2 are plotted in Fig. 8. It is

clear that the oscillation of the queue length in (2.22) is much smaller than that in

(2.21). Consistent results from numerical and ns-2 simulations repeatedly showed that

oscillation was reduced drastically when the relative degree was correctly configured.

Next, we consider the state trajectories of the two switching functions. For SF1,

which does not take into account of the relative degree, there exists a large cycle on

the state trajectory, (see Fig. 9) in which the switching manifold is the vertical dotted

line passing the coordinate (50,0). On the other hand, for SF2, the state trajectory

(see Fig. 10) does chatter around the switching manifold, which is the straight dotted

line connecting coordinates (0, 50) and (50, 0). From the design viewpoint, the results

suggest that without taking into account the relative degree, it will be very difficult

to contain the control behavior of the system to a certain range of the target utility

function, let alone any notion of performance guarantee. Chattering and scattering of

27

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18

time (sec)

q
u
e

u
e

 l
e

n
g

th
 (

p
k
t)

SF1

SF2

Fig. 8. Instant queue length traces based on SF1 and SF2.

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

queue length (pkt)

q
u

e
u

e
 l
e

n
g

th
 v

a
ri

a
n
t

ra
te

 (
p
k
t/
s
e

c
)

switching line

state trajetory

Fig. 9. State trajectory for SF1.

28

-20

-10

0

10

20

30

40

50

60

0 10 20 30 40 50 60

queue length (pkt)

q
u
e

u
e

 le
n

g
th

 v
a

ri
a

n
t
ra

te
 (

p
k
t/
s
e
c
)

switching line

state trajetory

Fig. 10. State trajectory for SF2 with c1 = 1.

state trajectories depicted in the simulations were caused by delay, non-zero control

period and measurement error that prevented switching from falling on the switching

manifold perfectly. Provided that the relative degree is properly configured, these

factors only have limited effects on our analysis outcomes, as it was shown in our

numerical and simulation studies.

Next, we compared the performance results of using different α and β values. The

RTT is set to be less than 10−6 ms to rule out the effects of delays. Our simulation

results on using different α and β values in SF1 are plotted in Fig. 11. For SF1,

despite the significant phase differences under different configurations, their levels of

oscillation were very close to each other. We caution that after the relative degree is

properly chosen, one still needs to optimize the α and β values to minimize chattering

caused by delay. There is tradeoff between minimizing chattering and response time.

For the SF2 example depicted in Fig. 12, one can see that lager α and smaller β

result in larger oscillation and faster response (smaller rising time).

29

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18

time (sec)

q
u

e
u

e
 l
e

n
g

th
 (

p
k
t) α

=2.5,
β

=33.2α
=10,

β
=8.3

Fig. 11. Traces of queue lengths for SF1 with different α and β values.

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18

time (sec)

q
u

e
u

e
 l
e

n
g

th
 (

p
k
t) α

=10,
β

=8.3α
=15,

β
=5.53

Fig. 12. Traces of queue lengths for SF2 with different α and β values.

30

2. Window-Based AIMD

The self-clocked behavior [21] of the window-based congestion control systems makes

its dynamic characteristics totally different from that of its rate-based counterpart.

Through a similar modeling and simulation process of SF1 and SF2 for a window-

based system, we concluded that the relative degree of the window-based congestion

control system is one when the output is queue length error and control input is the

variation rate of congestion window size.

In the experiment, we assume that a single link of capacity 2Mbps is shared by

15 TCP NewReno [33] connections that started randomly within the first 0.1 second,

and the delay was set at 60 ms and 66 ms. Other simulation parameters remain

unchanged. That is, average packet size is 1000 bytes, buffer size 100 packets, and

qd = 50 packets. A TCP NewReno sender decreases its cwnd by βwcwnd packets for

each received marked ACK, while increases its cwnd by αw/cwnd packets for each

received unmarked ACK. For reasons similar to the analysis of rate based systems,

we directly initialized the congestion window (cwnd) size of each source as one packet

and disabled the slow start mechanism. The router marks a packet when S defined

by (2.21) or (2.22) is positive. We set αw = 0.5, βw = 0.01, without considering the

on-set phase of a session. As usual, c1 = 1.

Fig. 13 shows that the queue length of the congested link asymptotically con-

verges for both SF1 and SF2. However, SF1 reaches the target queue length, which

is 50, but SF2 has a large steady-state error from the target queue length. Given the

equilibrium point (50, 0), the state trajectory diagram for SF1 is shown in Fig. 14

where the system converges to the equilibrium point. On the other hand, Fig. 15

clearly shows that the system swings in but stays off the target equilibrium point for

SF2. Fig. 14 and Fig. 15 also show that for window-based AIMD, the total input rate

31

0

10

20

30

40

50

60

0 5 10 15 20 25

time (sec)

q
u
e
u

e
 l
e

n
g

th
 (

p
k
t)

SF2

SF2

Fig. 13. Queue length traces based on SF1 and SF2 in window-based congestion con-

trol.

-30

-20

-10

0

10

20

30

40

50

60

0 10 20 30 40 50 60

queue length (pkt)

q
u
e
u

e
 l
e

n
g

th
 v

a
ri

a
n

t
ra

te
 (

p
k
t/

s
e

c
)

switching line

state trajectory

Fig. 14. State trajectory for SF1 (window-based case).

32

-30

-20

-10

0

10

20

30

40

50

60

0 10 20 30 40 50 60

queue length (pkt)

q
u
e

u
e

 l
e
n

g
th

 v
a
ri

a
n

t
ra

te
 (

p
k
t/

s
e
c
)

switching line

state trajectory

Fig. 15. State trajectory for SF2 with c1 = 1 (window-based case).

(equals to the queue length variant rate plus the link capacity) is bounded, while Fig.

9 and Fig. 10 show that for rate-based systems, there is an overshot-the total input

rate keeps increasing until crossover the switching line. Bounded total input rate in

window-based AIMD is caused by its self-clocking property. The bounded total in-

put rate cannot be explained by a widely-accepted queuing model for window-based

systems. We will further discuss this issue in section G of this chapter.

F. Analysis for Rate-Based Systems

In this section, we discuss asymptotic stability conditions and other related issues for

rate-based AIMD systems.

33

1. Rate-Based Network Model

We assume that the congested link is shared by N sources. Let q denote the queue

length of that link, C link capacity, λi the sending rate of source i, ζ the total input

rate to the link, ζ(t) =
∑N

i=1 λi(t− τFi), and τFi the (outbound) delay from source i

to the link. We get

q̇(t) = −CG(q(t), ζ(t)) + ζ(t) + Ĉ(t), (2.24)

where Ĉ(t) represents short-term non-responsive traffic, and G(·, ·) the instantaneous

link utilization. In a general sense, we assume that G(·, ·) is a function of q and ζ so

that it can represent bandwidth allocation schemes on the router that make allocation

decisions based on current queue length and input rate.

It is obvious that 0 ≤ G(q, ζ) ≤ 1 for q > 0, ζ > 0. For mathematical complete-

ness, we further assume that G(q, ζ) is twice differentiable with respect to q and ζ. In

a real system, any increase in ζ should lead to increase in q̇. That is, ∂q̂
∂ζ > 0 should

hold. By plugging this condition into (2.24), it is easy to get

G

ζ
<

1

C
. (2.25)

Now, our goal is to drive y = q−qd to zero by adjusting λi. To reduce chattering

of λi, we adjust λ̂i in the same way as the existing AIMD scheme. By introducing

new control variables ui ≡ λ̇i, we get

ζ̇(t) =
N∑

i=1

ui(t− τFi). (2.26)

2. System Properties

The first property that we want to address is the relative degree of rate-based con-

gestion control schemes, in addition to the empirical evidences presented earlier.

34

Theorem 1 The relative degree of the input-output system defined by (2.24) and

(2.26) is two, when the output is y and control variable is ui, respectively.

Proof: It is easy to verify that ∂ẏ
∂ui

= 0 and ∂ÿ
∂ui

= 1. This means that control input

ui explicitly appears in ÿ but not in ẏ. The theorem stands based on the definition

of the relative degree.

According to conditions I and III in Section D of chapter II, we now choose

S = y + c1ẏ, c1 > 0, as the switching function. Next we consider the minimum phase

condition.

Theorem 2 The zero dynamics of the system defined by (2.24) and (2.26) is asymp-

totically stable when the output is S = y + c1ẏ, c1 > 0.

Proof: We define a transform

z1 = S,

z2 = y.

(2.27)

Its Jacobi matrix

∂z1
∂q

∂z1
∂ζ

∂z2
∂q

∂z2
∂ζ

 =

1− c1C
∂G
∂q c1 − c1C

∂G
∂ζ

1 0

 (2.28)

is nonsingular because ∂G
∂ζ 6= 1

C for arbitrary q and ζ. Thus, transform (2.27) is a

global diffeomorphism. Applying (2.27) to (2.24) and (2.26), we get

Ṡ = ż1 = (1− c1C
∂G

∂q
q̇) + c1(1− C

∂G

∂ζ
)ζ̇ + c1

˙̂
C, (2.29)

ż2 =
z1 − z2

c1

. (2.30)

Substituting z1 = 0 into (2.30), we conclude that, when the output is S = y + c1ẏ,

35

the zero dynamics of the system defined by (2.24) and (2.26) can be expressed as

ż2 =
−z2

c1

. (2.31)

Obviously, (2.31) is asymptotically stable for c1 > 0.

Theorem 2 is equivalent to the condition that the zero dynamics of the system

defined by (2.24) and (2.26) is asymptotically stable when the output is y.

3. Parameter Setting

There are three parameters to configure an AIMD controller with the switching func-

tion SF2: c1, α and β. First, we consider c1, which determines the dynamics of the

cruise mode. Generally, we set c1 = 1 in experiments. If it is set too large, there

will be significant damping effect on the sliding mode. If c1 is set too small, it would

require significant increase (decrease) of the α (β), in order to guarantee stability,

i.e., see (2.36) and (2.37), without running into implementation problems.

Next, we discuss how to determine α and β values in AIMD. By definition, the

AIMD adjustment rules can be expressed as

ui(t) =

α, if S(t− τBi) < 0,

−λi(t)
β , else,

(2.32)

where τBi is the backward delay from the link to source i. In selecting the values

of α and β, one needs to ensure that the system (including the AIMD controller) is

asymptotically stable, and that it converges in the shortest time.

For practicality reasons, we want to derive a simple design rule of α and β that

can adequately address our system needs, without overly complicating the analysis.

36

First, we consider the case of homogeneous sources. That is,

ζ ∼= Nλi. (2.33)

The simulation results show that the impact of delay is relatively small comparing

with relative degree, and thus, we omit the delay terms in the subsequent discussion.

We will discuss delay effects later. To satisfy the sliding condition (2.19), we discuss

the following cases:

• When S < 0, Ṡ > η. From (2.29), (2.25), (2.32) and (2.33), we have

α >
η − (1− c1C

∂G
∂q q̇)− c1

˙̂
C

(1− C ∂G
∂ζ)c1N

. (2.34)

• Similarly, when S > 0, Ṡ < −η. We have

1

β
>

η + (1− c1C
∂G
∂q q̇) + c1

˙̂
C

(1− C ∂G
∂ζ)c1ζ

. (2.35)

where η > 0. Eqs. (2.34) and (2.35) together guarantee the sliding mode exists. The

state trajectory will reach S = y + c1ẏ = 0 within time
|S0|
η , S0 is the initial value

of S. This condition gives a clear guideline on how long one needs to wait before the

system can reach its sliding mode from an initial state. Based on Theorem 2, the

asymptotical stability of the sliding mode is guaranteed, and we directly arrive at the

following theorem:

Theorem 3 Under the AIMD control law (2.32) with a switching function S = y +

c1ẏ, c1 > 0, the queuing dynamic system defined by (2.24) and (2.26) is stable if

(2.34) and (2.35) hold.

Note that the stability conditions (2.34) and (2.35) define the attractive zone of

37

the switching manifold S = y+c1ẏ = 0. Within the attractive zone, |S|monotonically

decreases until reaching the switching manifold. Increasing α and 1/β values will

increase the size of the attractive zone, and also increase the rate of convergence

to the sliding mode (see (2.29)). However, due to delay, inaccurate measurement,

etc., the switching between increase and decrease cannot take place on the switching

manifold perfectly, and it causes chattering around the switching manifold. The

degree of chattering is proportional to the values of α and 1/β.

Theorem 4 Given that a desired attractive zone is ZA and disturbance Ĉ is bound

within D, we should choose the following α and 1/β values to guarantee that the

switching manifold is attractive within ZA:

α = sup
{q,ζ}∈ZA

η − (1− c1C

∂G
∂q)q̇ − c1

˙̂
C

(1− C ∂G
∂ζ)c1N

 , (2.36)

1

β
= sup

{q,ζ}∈ZA

η + (1− c1C

∂G
∂q)q̇ + c1

˙̂
C

(1− C ∂G
∂ζ)c1ζ

 . (2.37)

By using (2.34) and (2.35), it is trivial to prove that these conditions hold. For

heavily-loaded cases, G ∼= 1, and (2.36) and (2.37) can be simplified into

α = sup

η − ζ + C − Ĉ − c1

˙̂
C

c1N

 , (2.38)

1

β
= sup

η + ζ − C + Ĉ + c1

˙̂
C

c1ζ

 . (2.39)

When the disturbance is slow-changing the required attractive zone of the switching

manifold is defined by ζ ∈ [k1C, k2C], where 0 < k1 < 1 < k2, and Ĉ ∈ [0, k3C],

0 < k3 < 1. In this case, we ignore
˙̂
C and simplify the equations for α and β, i.e.,

38

Eqs. (2.38), and (2.39), into the following simple forms:

α ∼= η + (1− k1)C

c1N
, (2.40)

β ∼= c1

[
1 +

k3

k1

− 1

k2

+
η

k1C

]−1

. (2.41)

At the equilibrium point, when the system remains stable, it would be useful to

keep the increase rate the same as decrease rate [37]. In that case, we can set

αβ ∼= C

N
. (2.42)

If this constraint is adopted, then one of the two equations (2.40) and (2.41) can be

omitted.

I note that in addition to the theoretical bounds derived above, one needs to

exercise caution in physical design, to make sure that the degree of oscillation within

the guaranteed zone is acceptable. For instance, the α and 1/β values used in the

example of Fig. 12 are smaller than the bounds defined in (2.38) and (2.39). Even

though the system eventually converges, the level of oscillation is not negligible.

G. Analysis for Window-Based Systems

In this section, we present theoretical analysis of the window-based AIMD systems

to prove their asymptotic stability conditions, and other related issues.

1. Window-Based Network Model

For a window-based AIMD system, our ns-2 simulations show that its relative degree

is one. This finding contradicts the widely adopted model (2.43) where the relative

degree is two, because one must differentiate the output q twice until the control

39

variable Ẇi explicitly appears.

q̇ =
N∑

i=1

Wi

Ri

− C. (2.43)

Moreover, according to (2.43), the total input rate would increase until over-

shooting the switching line, while ns-2 simulation results showed that the total input

rate stopped increasing far before crossing the switching line (see subsection 2 of sec-

tion E). Here, we suggest a simple alternative to eliminate the discrepancy between

(2.43) and simulations. Note that (2.43) characterizes the fact that within a round

trip time Ri, sender i sends out Wi packet, but it does not reflect the fact that the

total ACK packet rate equals to the congested link’s capacity when heavily loaded.

By the self clocking property, a new packet does not enter the network until an ACK

packet is received. Omitting this property results in the discrepancy between (2.43)

and ns-2 simulations. To improve this model, within time period ∆t, sender i gets mi

ACKs and increases its congestion window by ∆Wi, so that it sends out mi + ∆Wi

new packets within time period ∆t. Then we have

∆q(t) =
N∑

i−1

[mi(t− τFi) + ∆Wi(t− τFi)]− C∆t, (2.44)

where τFi is session i’s forward transmission delay from sender i to the congested link.

By the self-clocking property we have

∆q(t) =
N∑

i−1

[mi(t− τFi) + ∆Wi(t− τFi)]− C∆t, (2.45)

where τBi is session i’s transmission delay from the congested link to receiver i and

then to sender i, Ci(t) is the portion of the congested link’s capacity consumed by

40

session i at time instant t, where

N∑

i−1

Ci(t) = C. (2.46)

Therefore,

∆q(t) =
N∑

i−1

∆Wi(t− τFi) + $∆t, (2.47)

where $ ≡ ∑N
i−1 Ci(t− τFi − τBi)− C. Thus, in the heavily loaded cases,

q̇(t) =
N∑

i−1

Ẇi(t− τFi) + $. (2.48)

$ can be viewed as a noise due to heterogeneous roundtrip delays. The relative

degree of (2.48) is one when control input is Ẇi and output is q, which is consistent

with ns-2 simulations.

Theorem 5 The relative degree of the system defined by (2.48) is one, when the

output is y and control variable is Ẇi, respectively.

Proof: We just need to differentiate y once to make Ẇi explicitly appear.

With (2.48), it is easy to explain why the total input rate is bounded for window-

based systems. By definition, the window-based AIMD adjustment rules [24] can be

expressed as

uwi ≡ Ẇi =

αw, if S(t− τBi) < 0,

−Wi(t)
βw

, else.

(2.49)

Eq. (2.7) is a special case of (2.49) with S = q − qd. Substituting (2.49) into (2.48),

we get

q̇(t) = Nαw + $. (2.50)

41

in the increase mode. Therefore, the total input rate

ζ = q̇(t) + C = Nαw +
N∑

i−1

Ci(t− τFi − τBi). (2.51)

Eq. (2.51) clearly shows that the total input rate is bounded when N is constant

because αw is constant and all Ci(t − τFi − τBi) is bounded, which means the total

input rate does not increase with window sizes Wi.

Theorem 6 The zero dynamics of the system defined by (2.48) is asymptotically

stable when the output is S = q − qd.

Proof: (2.48) is a linear equation. It is minimum phase.

2. Window-Based Parameter Setting

Two parameters αw and βw need to be configured for a window-based AIMD controller

with the switching function SF1. In selecting the values of αw and βw, one needs to

ensure that the system (including the AIMD controller) is asymptotically stable, and

converges in minimum time. Similar to the rate-based cases, we first consider the

case of homogeneous sources and omit the delay terms. For SF1, we get

Ṡ = q̇(t) = NẆi + $. (2.52)

According to (2.19), we discuss the following two cases:

• When S < 0, Ṡ > η, from (2.48), we have

αw >
η −$

N
. (2.53)

• When S > 0, Ṡ < −η, we have

1

βw

>
η + $

NWi

. (2.54)

42

where η > 0. Eqs. (2.53) and (2.54) together guarantee the sliding mode is attractive

and the state trajectory will reach S = y = 0 within time
|S0|
η , from an initial state

S = S0. Based on Theorem 6, the asymptotical stability of the sliding mode is

guaranteed. Based on these results, we directly arrive at the following theorem:

Theorem II.1 Under the AIMD control law (2.49) with a switching function S = y,

the queuing dynamics defined by (2.48) is stable if (2.53) and (2.54) hold.

Inequalities (2.53) and (2.54) define the attractive zone of the switching manifold

S = y = 0. Increasing αw and 1/βw values will enlarge the attractive zone, and also

increase the rate of convergence to the sliding mode (see (2.52)). Similar to rate-

based systems, the degree of chattering due to delay or inaccurate measurements is

proportional to the values of αw and 1/βw.

H. Transient Behavior and Delay Effects

η determines the speed of convergence toward the switching manifold. Within the

cruise mode, the system dynamics is shaped by the switching function. To reduce the

system response time, we prefer a larger η, or equivalently, larger α and β − 1. On

the other hand, in order to reduce the chattering caused by delay, we need smaller α

and β−1. Clearly, there is a need to balance the two conflicting factors. A tradeoff is

made by using the boundary layer method [2][3]. It has been proven that this method

can contain the oscillation in a bounded range. The basic idea of the boundary layer

method is to suppress chattering by smoothing the discontinuity of the control within

the cruise mode. It is based on an observation that the control variable should be

reduced with S approaching to S0 defined as (S1 + S2)/2. As such, we adopt the

43

following cruise mode control law:

uci =

α

∣∣∣∣ S − S0
S1 − S0

∣∣∣∣ , S1 ≤ S ≤ S0,

−λi
β

∣∣∣∣ S − S0
S2 − S0

∣∣∣∣ , S0 < S ≤ S2.

(2.55)

I empirically choose S1 = Q/4 and S2 = (3Q)/4. If (S2 − S1) is too small, the

performance effect is not obvious. But if too large, it tends to reduce the sensitivity

of the control. α and β are determined based on (2.40) and (2.41). To implement

(2.55), it needs to use explicit feedback messages that carry the numerical values of
∣∣∣∣ S − S0
S1 − S0

∣∣∣∣ or
∣∣∣∣ S − S0
S2 − S0

∣∣∣∣ to the sources for execution.

I. Conclusion

In this chapter, we developed a general I-D congestion control model that character-

izes the control dynamics, queuing dynamics, and the predominating system perfor-

mance factors. We proved that the relative degree of rate-based congestion control

systems is two while that of the window-based congestion control systems is one.

We devised a design methodology to guarantee the asymptotic stability of the con-

gestion control system. Without such considerations, heuristic design approaches to

optimization of congestion control systems will only have limited effects.

With our model, the complex interplay between different system parameters

can be governed via a few simple equations and conditions. Our method permits

one to make the tradeoff between the amount of feedback information, delay, and

the expected performance effects, under explicitly defined conditions. There is little

restriction on the system model, making it broadly applicable to a wide range of

congestion control systems.

44

CHAPTER III

DEFENSE OF THE DISTRIBUTED DENIAL OF SERVICE ATTACKS

In this chapter we propose a coordinated defense scheme of distributed denial of service

(DDoS) network attacks, based on the backward-propagation, on-off control strategy.

When a DDoS attack is in effect, a high concentration of malicious packet streams

are routed to the victim in a short time, making it a hot spot. The performance

impact on the hot spot is related to the total hot packet rate that can be tolerated by

the victim. Based on the sliding mode control (SMC) theory, we present a backward

pressure propagation, feedback control scheme to defend DDoS attacks. We develop

our solutions based on the generic discontinuous flow control model developed in

chapter II to analyze the dynamics of network traffic, and develop the algorithms

for rate-based and queue-length-based feedback control. We show a simple design to

implement our control scheme on a practical switch queue architecture.

A. Introduction

Distributed Denial of Service (DDoS), is a relatively simple, yet very powerful tech-

nique to attack Internet resources. With little or no advance warning, a DDoS attack

can abruptly drain the computing and communication resources of its victim within

a short time, until the attack is resolved. Even some of the largest computer mak-

ers and web-based service providers are not immune from this problem [38][39][40].

DDoS exploits the inherent weakness of the Internet system architecture and its open

resource access model. Unless special care is taken, a DDoS victim can suffer from

damages ranging from system shutdown, file corruption, and total or partial loss of

services. Even if the victim can cope with the surged demands, the unwanted, dis-

45

rupting packet flows often lead to serious performance degradation. DDoS attacking

programs have very simple logic structures and small memory sizes, making them rel-

atively easy to implement and hide. Given the openness of the Internet, a malicious

hacker can gradually scan the Internet to plant attacking programs into unprotected

hosts, at relatively low risks of being noticed. After the attacker accumulates enough

compromised hosts, he just needs to issue the attacking command to a coordinating

machine, which then wakes up the dormant attacking programs to hit the victim(s)

from everywhere. The attacker can set the actual attack time so far away from release

of attack commands that it becomes virtually impossible to trace the real attackers.

It is trivial to hit victims at scheduled strengths and durations.

Several DDoS attack schemes [41][42][43][44][45][46][47] have been widely pub-

lished on the Internet, with many others being developed. The first is UDP flooding

in which the victim(s) is flooded with UDP packets. TCP SYN flooding exploits the

3-way handshaking procedure in the TCP protocol. The attacker merely sends large

amounts of SYN packets, with spoofed source addresses, to the victim requesting

for connections. The victim may quickly exhaust its resources if a large number of

bogus connection requests are not resolved in time. A brute force attack is simply

sending a large number of ACK/data packets to the victim even without established

TCP connections. This attack approach is designed to suffocate the communication

channels of the victim. The “ping of death” attack is to flood the victim with the

ICMP echo packets, until it brings an unprepared host to its knee. A simple variation

of the ping of death is to set the spoofed address to that of another victim. This way,

receivers of both the ICMP echo and ICMP echo reply packets will suffer from high

performance losses.

As mentioned earlier, the cooperative resource access model of the Internet archi-

tecture is the root of the DDoS problems. Numerous operational solutions are pub-

46

lished for the Internet community [48][49][50][51][52][53][54][55][56][47][57][58]. We

note that it is possible to defend DDoS attacks using simple flow control techniques,

with little or no modifications to the IP protocols. The center issue here is how to

design an efficient congestion controller that can deal with ill posed traffic conditions.

DDoS management can be considered a special case of the flow control problem,

which has been widely studied, e.g. [1],[59],[60],[21],[61],[30],[31], etc. The optimal

control theory is proposed in [1] to manage the network traffic, on the basis of a

nonlinear dynamic flow model. This technique needs to use explicit parameters of

the network model, making it of limited practical values in real systems, because of

its high sensitivity to parameter uncertainties. Binary feedback control [7] is widely

used in network traffic control for its simplicity and efficiency. It relies upon a one-

bit indicator in each probing packet to determine the congestion status of a network

resource. The key design issue here is the threshold value(s) to set and reset the

indicator bit. When combined with the sliding mode control approach [2][3][36][62],

they become a very effective and robust approach to optimize the threshold(s) of the

binary feedback control scheme. The advantages of the sliding mode control scheme

are its simplicity and robustness to parameter and model uncertainty.

In this chapter, we develop a backward-propagation feedback control strategy for

DDoS defense. When a host finds itself becoming a hot spot, it informs neighboring

nodes and routers to reduce influx of attacking packets. By using the notion of

relative degree (see [3],[63] or Appendix A) of nonlinear dynamic systems, we develop

a simple on-off control strategy that does not require the use of a precise traffic model

for such information like attack sources, and system configuration. A routing device

just needs to be informed of the acceptable level of traffic rates from its (destination)

neighbors, so that it can set the acceptable input rates to its (source) neighbors.

Clearly, selection of the on and off thresholds is a key factor. The obvious selection of

47

using one fixed-goal threshold variable for throttling is unrealistic because of the sizes

and complex behavior of a large network. One can see that this control scheme is not

involved with any routing information, but is merely based on the mutually agreed

throughput levels for coordinated defense of the DDoS attacks. We derive the stable

(oscillation free, asymptotically convergent) conditions to turn on-off throttling.

The rest of this chapter is organized as follows. Section B of this chapter presents

the network model being considered, and the basic characteristics of a generic routing

device. section C discuss the rate-based and queue-based control algorithms. A simple

architecture to implement the flow control algorithms is presented in Section D, and

the chapter concludes in section E.

B. System Model

Our model is aimed at a macroscopic solution approach. We assume that participating

routing devices support flow control for their input and output ports. When a peer

relationship is established between two nodes, they execute flow regulating policies

periodically. For its enormous sizes, and the significant differences of routing devices,

it is impractical to take the entire Internet into a single model for our design. Instead,

we propose a divide and conquer approach to partition the global network into smaller

clusters, so that the DDoS defense can be implemented in a hierarchical manner. As

a heuristic choice, and without loss of generality, we propose to define a cluster as

three connected nodes, see Fig. 16. It is not difficult to expand the model to 2, 4, or

5-node based clusters.

In this chapter, we focus on the intra-cluster analysis, where the delays for data

exchange and control actions are negligible. The inter-cluster coordinated defense

needs to use different design methodologies and solution algorithms, because of their

48

c

ijijλξ

jλ

in

jkλ

from i

incoming

links

outcoming

links

to k

local traffic

jj rϕ
c

jkλ

r

jkλ

jkx

Fig. 16. The network model for backward propagation, feedback control, and the

generic switch architecture and its packet flow model in the network.

much larger capacity, delays, and traffic volume. It is also necessary to better un-

derstand the relative degree properties of large networks, in order to prevent the

coordinated defense algorithms from oscillation and other well known stability issues.

Let us now consider the switch architecture in the cluster. Modern switching

fabrics have high throughput with small blocking probabilities . Most of the packet

delays in the routing devices are due to buffering and channel contention. Despite

the obvious benefit of using dedicated resources for channels in the defense of DDoS,

the shared memory-bus architecture is the choice of architecture in practice, for its

better flexibility and lower costs. As a result, we adopt the switch architecture shown

in Fig. 16, and the packet flow model proposed in [1]. We note that when an IP

resource, e.g., a popular Internet web site, is under DDoS attack, its neighbors may

or may not experience heavy traffic. A feedback control strategy based on the relative

49

performance measure of a routing device, e.g., “the device is experiencing unusually

high traffic,” is not a reliable indicator for detection of DDoS attacks, because such

observation could be caused by harmless surge of the service requests. On the other

hand, if a DDoS attack has been positively identified, such an indicator (traffic surge)

can be an excellent cue to trace and curtail the DDoS attack. Once an attack is

confirmed, the backward prorogation control rules should be engaged, regardless of

the current workload condition. Although not explicitly discussed here, one can use

propagation paths of the feedback control signals to determine the sources, routing,

density and frequency of the attack.

For packet throttling, we use the sliding mode control theory to construct rate-

based, and queue-length-based feedback control strategies. In practice, some routing

devices that support layer-4 switching would be able to differentiate malicious packets

but most others not. In our study, we use the same system models but different

switching functions to analyze both cases. One might speculate that given that the

DDoS streams are identified, why not just dropping their packets. We note that

this approach implies that the routing devices must have full knowledge of the DDoS

attacks, i.e., packet types, interactive sequences between the attacking machines and

the victim, session states, etc., to avoid dropping regular packets. Furthermore,

without packet dropping, one can more reliably push the throttling pressure back to

the DDoS sources. An unexpected advantage of this non-dropping scheme is that we

can easily generalize the DDoS defense solutions for congestion prevention and flow

control during normal operations.

The backward-propagation feedback control is inexpensive and easy to imple-

ment. One key issue for the backward-propagation feedback control strategy is its

stability. It was observed in [64] that, even for the highly regular multiprocessor

environment, a backward-propagation congestion control algorithm may oscillate or

50

even break down at change of workload conditions. Due to the highly dynamic nature

of the network traffic, we adopt the SMC model of chapter II for congestion control

that only makes use of the only output measurements (traffic rate or buffer queue

length) without considering the complete system states. As discussed in chapter II

when the sliding controller is applied to a system with relative degree r, one must use

0, 1, · · · , (r − 1)th order derivatives of the outputs, to construct the sliding manifolds

[65][66]. The other condition [65][66] for system stability is that the corresponding

zero dynamic is stable, or equivalently, the system is minimum-phase [3][63]. The

minimum-phase property can be obtained through proper selection of the outputs.

The third factor that commonly leads to oscillation is the control delay, which when

large enough prevent switching from taking place on the switch manifold(s), and

produce chattering.

1. Fluid Dynamic Model [1]

In this chapter, we adopted the notations and system conditions from [1], where

multiple input flows enter the switch from directly connected hosts or other switches,

and then be routed to the output queues. We denote the collection of nodes by

N = {Ni, Nj, Nk, · · ·}, and the collection of unidirectional links by L = {Lij, Ljk, · · ·}.
The volume of total traffic entering Nj is

λj(t) = ϕj(t)rj(t) +
∑

i

ξij(t)λ
c
ij(t), (3.1)

where

rj(t) is the rate of packets arriving at Nj from outside of the cluster,

ϕj(t) denotes the admitted portion of input traffic, rj(t),

λc
ij(t) is the traffic demand generated by Nito Nj,

51

ξij(t) denotes the admitted portion of the traffic from Ni to Nj, ξc
ij(t).

The first-order equilibrium equations for Lj,k are defined in (3.2) to (3.5).

ẋjk(t) = −µjk(t)Gjk(xjk(t)) + λin
jk(t), (3.2)

where the occupancy of the buffer associated with Lj,k is denoted as xjk, µjk (µjk > 0)

the bandwidth of Lj,k, and the function µjkGjk(xjk) is the outbound traffic:

µjk(t)Gjk(xjk(t)) = λr
jk(t) + λc

jk(t). (3.3)

The traffic rejected at Lj,k is

λr
jk(t) = µjk(t)Hjk(xjk(t))Gjk(xjk(t)), (3.4)

where Hjk(xjk) specifies the rejected fraction of the outbound traffic µjkGjk(xjk(t)),

0 ≤ Hjk(xjk(t)) ≤ 1. The traffic from Nj to Nk

λc
jk(t) = µjk(t){1−Hjk(xjk(t))}Gjk(xjk(t)) ≡ µjk(t)Ĝjk(xjk(t)). (3.5)

For a real system, Gjk(xjk) must be positive, moreover, Gjk(xjk) and Hjk(xjk)

are defined for xjk ≥ 0. Therefore, Ĝjk(xjk) ≡ [1 − Hjk(xjk)]Gjk(xjk) is positive

also. In subsequent discussions, we assume that
∂Ĝjk

∂xjk
(This is reasonable, because

outgoing traffic increases with buffer occupancy, and vice versa) and Ĝjk(xjk) can be

differentiated twice with respect to xjk. Given that

λin
jk(t) = αjk(t)λj(t), (3.6)

where αjk(t) denotes the portion of the total traffic λj(t) entering Nj, which is routed

52

to Nk. So the following relations hold for Lj,k, ∀j, k,

ẋjk = −µjkGjk(xjk) + αjk[ϕjrj +
∑

i

ξijµijĜij(xij)], (3.7)

where

0 < αjk(t) ≤ 1,

0 ≤ ϕj(t) ≤ 1,

0 ≤ ξij(t) ≤ 1,

∑
k αjk(t) = 1.

(3.8)

The physical meaning of the above constraints is obvious and is reasonable. For packet

throttling, ϕj and ξij are the natural choices of control variables. When ϕj = 1 and

0, respectively, it means that all of input traffic, rj(t), is accepted and rejected. A

similar argument applies to ξij. If ϕj (Nj ∈ N) and ξij (Li,j ∈ L) are all used as

control variables, it means that the entire cluster is fully controlled. If we just use ϕj

(Nj ∈ N) as control variables, it is the case of “edge control” which means we just

throttle the traffic entering the network.

C. Backward Propagation Feedback Control

In this section, we discuss the intra-cluster, rate-based and queue-based backward

propagation feedback control algorithms using sliding mode control. We assume that

the time difference between nodes in the same cluster is negligible, and the packet

rate information of nodes in a cluster can be obtained and exchanged at reasonable

costs. For the rate-based solution, the primary control and measurement parameter

is the flow rate of a particular link. For the queue-based solution, we use the queue

length/occupancy of a buffer as the performance indicator. We found that the relative

degree of the rate-based approach is one, so we need not use the derivative of the

53

packet flow rate for the control algorithm. On the other hand, the relative degree of

the queue-based scheme is two, implying that we do need to obtain the first derivative

of the queue length measurement for the flow control algorithm. Intuitively, the first

approach is more suitable for low traffic intensity situations, because of the lower

levels of packet queuing. The second approach, on the other hand, is more suitable

for high intensity attacks, because packet queue lengths become very good indicators

of the congestion/traffic level.

It is relatively simple for a DDoS victim to detect the presence of the attack:

many of regular users cannot access the service, and/or their productivity measures

drop abruptly. It is much more difficult, sometimes impossible, to trace the exact

routes of attacks, especially when the attacker is able to change the attack patterns.

Obviously, the effectiveness of the defense is proportional to the number of routing

devices on the affected hot paths that participate in the defense. We note that a

routing device may not have full knowledge of the hot and cold streams that pass

through it. Under such a condition, it is not possible to have perfect control of

the backward pressure propagation, but rather, we will need to rely on a search

approach to identify the attacking paths and apply the greatest backward pressure to

the strongest attack sources. One can achieve this objective by combining a classical

depth-first or breadth first search algorithm, and a two way handshaking process

between a routing device and the victim. Here, we focus on the traffic stability of

the on-off control algorithm to avoid oscillation of traffic in both the victim and the

related network resources.

The sliding mode, on-off control scheme is very simple and inexpensive. The

feedback controller defines a switch function s, which is a function of the outputs

(rates, queue length, etc.) and possibly their derivatives of the proper relative degree.

At each control time instance, the system measures the new traffic value, possibly

54

after filtering of short-term bursts, examine the required backward pressure between

nodes. The value of s changes with time, and the control objective is to force s value

toward the value of 0 at each time instance of the control action. By the on-off control

rule, in an ideal system where only on and off are permissible actions, the throttling

turns off when s < 0 (all traffic permitted), and throttling turns on when s > 0 (all

traffic blocked.) That is, on the state-space trajectory of s, the control action has a

step jump at s = 0+ and s = 0− that will lead to chattering problem. To avoid bursty

traffic, the on-off control actions can be eased by continuous smoothing. That is, we

change the control actions from a step jump to a slope function, so that throttling

levels adjust with the s values, to eliminate oscillation, see Section D for more details.

In the analysis, we assume that the bursty traffic is adequately smoothed to represent

the true demand levels.

1. Rate-Based Control Algorithm

Consider the cluster topology in Fig. 17, assuming that the hot spot N3 and the hot

packet streams have been identified. Two different types of hot packet sources are

considered: hosts and network routing devices. r1 and d1 are respectively the hot and

cold input rates from src1 to N1. r2 and d2 are defined in a similar manner. Now,

let us consider the dynamic traffic flow model of the above topology, which is derived

55

1 3

2

c-src2

r1

d
1

r2

d
2

h-src2

c-src1

h-src1

Fig. 17. The flow balance diagram within a cluster.

from the basic balance equation in (3.7):

ẋ12 = −µ12G12 + α12[d1 + ϕ1r1 + µ21Ĝ21 + µ31Ĝ31],

ẋ13 = −µ13G13 + α13[d1 + ϕ1r1 + µ21Ĝ21 + µ31Ĝ31],

ẋ21 = −µ21G21 + α21[d2 + ϕ2r2 + µ12Ĝ12 + µ32Ĝ32],

ẋ23 = −µ23G23 + α23[d2 + ϕ2r2 + µ12Ĝ12 + µ32Ĝ32],

ẋ31 = −µ31G31 + α31[µ13Ĝ13 + µ23Ĝ23],

ẋ32 = −µ32G32 + α32[µ13Ĝ13 + µ23Ĝ23].

(3.9)

Throttling applies only to the hot packet rates, r1 and r2. This implies that for

equations (3.9), the coefficients of r1 and r2 are ϕ1 and ϕ2 respectively, but the

coefficients of d1 and d2 are one. We note that, it may be difficult to determine the

explicit forms of Gij(xij) and Hij(xij) for real systems. Here, according to equations

(3.1) and (3.5), and considering ξij = 1(the edge control case), the total input rate to

56

the hot spot, N3, is

λ3 = µ13Ĝ13 + µ23Ĝ23 ≡ y. (3.10)

After some simple reorganization, we can rewrite the above equations into the follow-

ing forms,

ẋ12 = f12(x12, x21, x31) + α12d1 + α12r1ϕ1,

ẋ13 = f13(x13, x21, x31) + α13d1 + α13r1ϕ1,

ẋ21 = f21(x21, x12, x32) + α21d2 + α21r2ϕ2,

ẋ23 = f23(x23, x12, x32) + α23d2 + α23r2ϕ2,

ẋ31 = f31(x31, x13, x23),

ẋ32 = f32(x32, x13, x23).

(3.11)

where

f12(x12, x21, x31) ≡ −µ12G12(x12 + α12µ21Ĝ21(x21) + α12µ31Ĝ31(x31). (3.12)

f13, f21, f23, f31 and f32 are defined similarly. The arguments of these functions will

be omitted in later discussion, whenever it is convenient and without risk of confusion.

From the viewpoint of a control system, the defense of DDoS attacks is a strongly-

coupled, nonlinear system. In addition, the system parameters, e.g. Gij(xij) and

Hij(xij), may not be easily determined in an explicit form. Our goal is to keep

the total input rate of the hot spot N3 at a desired value, yd, through real-time

adjustment of ϕ1 and ϕ2 according to current traffic conditions. Considering the fact

that y monotonically increases with ϕ1 and ϕ2, we make a reasonable assumption that

system (3.9) or (3.11) is minimum phase. Here, we can express the control objective

by the following equation.

ŷ = y − yd, (3.13)

57

˙̂y ≡ ẏ

= µ13
∂Ĝ13
∂x13

ẋ13 + µ23
∂Ĝ23
∂x23

ẋ23

= µ13
∂Ĝ13
∂x13

(f13 + α13d1 + α13r1ϕ1)

+µ23
∂Ĝ23
∂x23

(f23 + α23d2 + α23r2ϕ2).

(3.14)

The control variables ϕ1 and ϕ2 appear in the first order derivative of ŷ, so the relative

degree is one. According to the sliding-mode control rules, one can select s = ŷ as

the threshold function (s = 0 defines the sliding manifold). Intuitively, when s > 0,

we adjust ϕ1 and ϕ2 to make ṡ < 0. On the other hand, when s < 0, we select ϕ1

and ϕ2 to satisfy ṡ > 0.

Case 1: For s > 0 or y > yd,

ṡ = ˙̂y = ẏ < 0, (3.15)

where ˙̂y is defined in (3.14). Given that
∂Ĝij

∂xij
, αij and µij, through some simple

algebraic manipulation we set the constraints on control variables ϕ1 and ϕ2,

ϕ1 < −f13 + α13d1
α13r1

,

ϕ2 < −f23 + α23d2
α23r2

,

(3.16)

to satisfy µ13
∂Ĝ13
∂x13

(f13+α13d1+α13r1ϕ1) < 0 and µ23
∂Ĝ23
∂x23

(f23+α23d2+α23r2ϕ2) < 0,

and thus ṡ < 0.

Case 2: For s < 0 or y < yd, we need to have

ṡ = ˙̂y = ẏ > 0, (3.17)

Through a similar argument as in the case of s > 0, we can derive the control variables

58

ϕ1 and ϕ2 such that

ϕ1 > −f13 + α13d1
α13r1

,

ϕ2 > −f23 + α23d2
α23r2

,

(3.18)

to satisfy µ13
∂Ĝ13
∂x13

(f13+α13d1+α13r1ϕ1) > 0 and µ23
∂Ĝ23
∂x23

(f23+α23d2+α23r2ϕ2) > 0,

and thus ṡ > 0.

A main concern of the control variable setting is the system stability. If and only

if when (3.15) and (3.17) are satisfied, sṡ < 0 holds. This means that d
dts

2 < 0, and by

the Lyapunov stability law (see Appendix B), the system will converge to s = 0(y = ŷ

under the control strategy (3.15) and (3.17). Given that (3.16) and (3.18) have stricter

constraints than (3.15) and (3.17), using the control rules (3.16) and (3.18) guarantees

that s will asymptotically converge to zero, based on the Lyapunov conditions. When

combined with (3.8), the final control strategy can be rewritten as

0 ≤ ϕ1 < min{−f13 + α13d1
α13r1

, 1}

0 ≤ ϕ2 < min{−f23 + α23d2
α23r2

, 1}
, for s > 0, (3.19)

and

1 ≥ ϕ1 > max{−f13 + α13d1
α13r1

, 0}

0 ≥ ϕ2 > max{−f23 + α23d2
α23r2

, 0}
, for s < 0, (3.20)

Note that, when s > 0, it is possible that −f13 + α13d1
α13r1

< 0 or −f23 + α23d2
α23r2

<

0, which means the cold traffic rate entering N1 or N2 is so large that the buffer

occupancy at links L1,3 or L2,3 cannot be effectively reduced even if there is no hot

packets entering N1 (ϕ1 = 0) or N2 (ϕ2 = 0). This could mean formation of a new hot

spot, or misidentification of the hot spot. To bring down the traffic level, one should

treat some portion of the cold traffic d1 and d2 the same as hot traffic, and throttle

them accordingly. Similarly, when s < 0, it is possible that −f13 + α13d1
α13r1

> 1 or

59

−f23 + α23d2
α23r2

> 1. In this case, it implies that even if the hot traffic is not throttled

(ϕ1 = 1 or ϕ2 = 1), ṡ cannot be greater than zero, and thus is always less than zero.

Under such conditions, the total input rate to the hot spot, N3, cannot exceed the

desired value ŷ, i.e., hot traffic r1 and r2 are not “hot” anymore.

As a final note, the relative degree of this 3-node is indeed one because the

switching function turns out to be not related to any high order derivatives of the

controlled variables. If the relative degree turns out to be two, we should redefine the

switching function as s = ŷ + ω ˙̂y(ω > 0). For a larger system analysis, such as the

inter-cluster model, it will be necessary to consider the minimum phase conditions

for (3.9) or equivalently (3.11).

2. Queue-Based Control Algorithm

Now, let us consider the cluster in Fig. 18 where N3 is the destination of DDoS

attacks, and the control objective is aimed at keeping the length of two queues in N3,

x34 and x35, at desired values x̂34 and x̂35, respectively. Assume that the hot packet

streams have been identified, where r1 and d1 are respectively the hot and cold input

rates from src1 to N1, and r2 and d2 are defined in a similar manner. In fact, N3 can

represent a sub-network with links L1,3, L2,3, L3,4 and L3,5 as the input and output

links to the sub-network. N3 could also represent a collection of nodes including the

hot spot and its adjacent nodes that need to be protected from the attack. The

60

1 3

2

c-src2

r1

d
1

r2

d
2

h-src2

c-src1

h-src1

4

5

subnet

Fig. 18. The queue-based congestion control model.

system equilibrium equations are

ẋ12 = −µ12G12 + α12(d1 + ϕ1r1 + µ21Ĝ21),

ẋ13 = −µ13G13 + α13(d1 + ϕ1r1 + µ21Ĝ21),

ẋ21 = −µ21G21 + α21(d2 + ϕ2r2 + µ12Ĝ12),

ẋ23 = −µ23G23 + α23(d2 + ϕ2r2 + µ12Ĝ12),

ẋ34 = −µ34G34 + α34(µ13Ĝ13 + µ23Ĝ23),

ẋ35 = −µ35G35 + α35(µ13Ĝ13 + µ23Ĝ23).

(3.21)

Based on this control objective, its control algorithms and system dynamics, we have

concluded that this is a 2-input-2-output control system, whose control variables are

ϕ1 and ϕ2, outputs x34 and x35, and relative degrees (2, 2). As a result, we must

use the first order derivatives of the outputs, x34 and x35, to construct the sliding

manifolds. Similar to the rate-based control system, we assume that system (3.21) is

minimum phase. Using the same Lyapunov stability law, we propose the following

61

switch functions:

s1 = x34 + ω1ẋ34 − x̂34,

s2 = x35 + ω2ẋ35 − x̂35,

(3.22)

where x̂34 and x̂35 are the target queue lengths. The sliding manifolds for this queue

length control system are s1 = 0 and s2 = 0, and we select coefficients ω1 > 0 and

ω2 > 0 so that the sliding manifolds are stable. For queue length control, it is not

sufficient to make s1 = 0 and s2 = 0, since it does not guarantee that y34 = x34 − x̂34

and y35 = x35 − x̂35 would converge to zero. After some iterative derivations, we

propose the following switching functions,

ṡ1 = ẋ34 + ω1ẍ34

= p1 + q11ϕ1 + q12ϕ2,

(3.23)

where the intermediate variables p1, q11 and q12 are defined as follows.

p1 ≡ (1− ω1µ34
∂G34
∂x34

)ẋ34

+ω1α34µ13
∂G13
∂x13

[−µ13G13 + α13(d1 + µ21Ĝ21)]

+ω1α34µ23
∂G23
∂x23

[−µ23G23 + α23(d2 + µ12Ĝ12)],

(3.24)

q11 ≡ ω1α34µ13
∂G13

∂x13

α13r1, (3.25)

q12 ≡ ω1α34µ23
∂G23

∂x23

α23r2. (3.26)

Similarly,

ṡ2 = ẋ35 + ω2ẍ35 = p2 + q21ϕ1 + q22ϕ2, (3.27)

62

where

p2 ≡ (1− ω2µ35
∂G35
∂x35

)ẋ35

+ω2α35µ13
∂G13
∂x13

[−µ13G13 + α13(d1 + µ21Ĝ21)]

+ω2α35µ23
∂G23
∂x23

[−µ23G23 + α23(d2 + µ12Ĝ12)],

(3.28)

q21 ≡ ω2α35µ13
∂G13

∂x13

α13r1, (3.29)

q22 ≡ ω2α35µ23
∂G23

∂x23

α23r2. (3.30)

The control method is to adjust the values of ϕ1 and ϕ2 so that siṡi < 0 (for i = 1, 2).

To simplify the derivation, we define the following notation

li =

l+i , l+i + pi > 0, when si < 0,

l−i , l−i + pi < 0, when si > 0,

(3.31)

for i = 1, 2.

We need to derive pi and qij from on-line performance measures, which may not

be readily available. To overcome this problem, we instead derive in (3.31) the range

of l+i and l−i , so that they can be used in the following equation to set the bounds of

control changes. That is, the control law becomes

ϕ1

ϕ2

 =

q11 q12

q21 q22

−1

l1

l2

 . (3.32)

Obviously, siṡi < 0 holds for i = 1, 2. In fact, when si < 0, we have ṡi = l+i + pi > 0,

and when si > 0, we have ṡi = l−i + pi > 0. These control laws guarantee that

the system states converge to si = 0(i = 1, 2), based on the Lyapunov stability law.

Because the sliding manifolds si = 0(i = 1, 2) are stable (we select manually ω1 > 0

and ω2 > 0, x34 will converge to x̂34 and x35 to x̂35 under the above control law. Note

63

that it is necessary for the dynamic system (3.21) to be minimum phase to guarantee

the system stability under the control law (3.22).

Chattering increases with system delays, because switching will not take place

exactly on the switch surface. Significant chattering will cause the oscillation of

the network traffic, making it a major hurdle to advancement of quality-guaranteed

data networks. Continuous approximation [3] is a technique widely used to reduce

chattering. The main idea of this technique is to replace abrupt control variable

adjustment by slopes, or other similar functions, so that the chattering effects on

the state space can be reduced. A main challenge is to make sure that the state

trajectory follows the switch manifold as close as possible, with minimal chattering

effects. Assume that it is difficult to measure system parameters precisely, and based

on the continuous approximation method [3], we simplify the strategy (3.19) (3.20)

as (shown in Fig. 19)

ϕ1 =

−k1s + ν1, |s| ≤ δ1,

1, s < −δ1,

0, s > δ1,

(3.33)

and

ϕ2 =

−k2s + ν2, |s| ≤ δ2,

1, s < −δ2,

0, s > δ2,

(3.34)

where k1, k2 > 0.

D. Implementation and Simulation

Our scheme can be readily implemented on existing routing devices without chang-

ing their communication protocols. We will focus on the ATM implementation here,

64φ
1

-

δ
1 δ 1

s1

φ
2

- δ 2 δ 2

s2

1 1

00

Fig. 19. A smooth, simplified control strategy to reduce chattering.

because of its popularity in wide area networks. ATM supports priority transmis-

sion. During normal operations, an ATM switch (may) block inflow of new packets

with lower priorities, when it decides that its buffer would be full “soon”. For back-

ward pressure propagation control, a single backward pressure bit is needed for each

channel. When this BP bit is set for the channel, all activities in the switch for cell

transport of the channels are subject to the DDoS control rules that are set by the

upper layer algorithms. One must have proper measures to guarantee that DDoS

control packets can pass through clogged routing devices for execution of flow control

decisions. This implies that the priority setting of internal control signals for channel

arbitration will also need to be adjusted, in order to enforce preemption rules between

channels. This feature is particularly important to counter DDoS attacks that are

aimed at saturating the entire transport channels.

For rate enforcement, the leaky bucket algorithm can be readily applied. Here,

CBR and VBR connections can be policed for Peak Cell Rate using one and two

buckets, respectively. Each of the connections can be guaranteed to be within three

percent of granularity for bandwidth allocation, ranging from 64Kbps to 622Mbps in

commercial products. ATM uses the RM cell to carry information such as Explicit

65

Cell Rate, Current Cell Rate, Queue Length for flow control. A leaky bucket is mainly

controlled by three parameters: 1) splash, the amount of fluid added to the bucket

when a cell is taken into the network, 2) leak, the leak rate of the bucket, and 3) Blimit,

the maximum bucket size. A typical leaky bucket algorithm can be summarized as

follows, where “BLevel” stands for “Bucket Level” and “MOLT” stands for “Moment

Of Last Transfer”.

/* Calculate actual Bucket Level*/

NewBLevel := BLevel - (SCount - MOLT) * Leak + Splash

/* Bucket is empty if calculated level is < 0 */

if NewBLevel < 0 then NewBLevel := 0

/* Decide contract conformance */

if NewBLevel < BLimit then

Decision := Conforming

else

Decision := Non-Conforming

endif

/* Update BLevel and MOLT */

if Decision = Conforming then

Blevel := NewBLevel

MOLT := SCount

endif

DDoS defense can be modeled as a special case of the regular traffic policing

problems in ATM transport (see Fig. 20). For normal operations, the traffic flow is

examined for its conformance to the traffic contract, at arrival of each cell. The leaky

bucket can be viewed as a virtual scheduler with continuous states, because it needs

to be shared among different connections, and for its fine granularity in rate control.

66

Sustain Cell Rate

(SCR) parameter

Peak Cell Rate

(PCR) parameter

SCR

bucket

PCR

bucket

Control

Parameter

Memory

DoS back pressure control

Decision

Update rate

control

parameter

Input Cell

Tag/Un-tag Drop/Pass

Fig. 20. Dual leaky bucket scheme for PCR and SCR conformation.

The leaky bucket needs to control the sustained constant rates (SCR) and the Burst

Tolerance (BT). BT can be derived from SCR, peak constant rate (PCR), or other

measures. When continuous smoothing is needed, one can easily use a counter to keep

track of the incremental that the leaky bucket must take to adjust the permissible

flow rate at each control instance. Control actions for DDoS defense can be readily

accommodated by Usage Parameter Control (UPC) which is usually defined as the

set of actions taken by the network to monitor traffic and enforce the traffic contract.

The leaky bucket can either drop or tag offending cells of contract violators and DDoS

offenders.

The total logic gate count to implement the leaky bucket, and the control block

67

for update rate control parameter is estimated at less than 100k, or roughly about

one mm2 of the silicon area using the contemporary 0.15µ CMOS technology. Control

parameter memory stores the rate control parameters such as: leak, splash, and bucket

limit for each flow. A total of 32 bits are needed for the rate control parameter entry

to adjust the flow rate ranging from 2.5Gbps to 64Kbps. Each flow also has 32 sliding

window that is controlled by the update rate control parameter block. If 32k × 32bit

SRAM is implemented as on chip memory, the silicon area is estimated at 10mm2

in 0.15µ CMOS. This represents insignificant amount of VLSI area for most router

design.

We evaluate the proposed algorithms using time driven simulations. Three inter-

connected nodes in a cluster work together to defend the flood of packets caused by a

DDoS attack that attacked node 3. The total hot packet rate exceeds 1, the average

cold packet rate is equal to 0.2, and the control interval is set at 10 clock cycles. The

total buffer size is set at 60, and the target (average) queue length is set at 20, and the

switching function s is defined using the queue-based algorithm, based on the queue

length and its first derivative. Referring to Fig. 21 and Fig. 22, we compare the

queue length between non-smoothing and smoothing control approaches. Referring

to Fig. 23 and Fig. 24, we compare the switching function and throttling level be-

tween non-smoothing and smoothing control approaches. In Fig. 25 and Fig. 26, we

compare the throughput between non-smoothing and smoothing control approaches.

Before DDoS was engaged, we can see that the queues in the three nodes steadily

grew until they became full. Then, when the DDoS defense kicked in, at clock time =

500, the queue length at node 3 steadily declined until it reached the approximated

target queue length. Both nodes 1 and 2 did not have buildup, because the inflow

control has been backward propagated to their inputs, according to the control rules.

In this case, the queue length is also averaged for every ten cycles for readability. The

68

Fig. 21. Queue length with the non-smoothed control rule.

next issue of interest is the switching behavior. One can see that the values of the

non-smoothed switching clearly oscillated much more than the smoothed one, and

the throttling actions were much more bursty than its smoothed counterpart (at the

right hand side column). Finally, let us examine the performance of the cold packet

streams. In both cases, the cold packet streams were affected, because of the powerful

hot packet storms. The cold packet streams have similar throughput levels, but the

smoothed control scheme produced less bursty fluctuation, for obvious reasons.

E. Conclusion

This chapter gives a comprehensive treatment of the complex system dynamics related

to DDoS defense, based on two different performance metrics, and control algorithms.

We believe that the algorithms can be implemented in VLSI with negligible overheads,

and no significant protocol change is necessary. Filtering techniques that can deter-

69

Fig. 22. Queue length with the smoothed control rule.

Fig. 23. Switching function and throttling level with the non-smoothed control rule.

70

Fig. 24. Switching function and throttling level with the smoothed control rule.

Fig. 25. Throughput with the non-smoothed control rule.

71

Fig. 26. Throughput with the smoothed control rule.

mine the predominating delay properties of a target network will be critical to the

design of effective control algorithms. Primary factors related to oscillation include

the time delay, (in)accurate representation of relative degree, noise (short bursts,) and

characteristics (relative degree, minimal phase, etc.) of the network under control.

Many existing flow control protocols are essentially some variations of the on-off con-

trol strategies without proper consideration of the relative degree they are susceptible

to instability and breakdown.

72

CHAPTER IV

ANTI-EAVESDROPPING GROUP COMMUNICATION PROTOCOLS

In this chapter, we propose broadcast protocols and flow control algorithms to resist

eavesdropping and traffic profiling of group communications. We adopt secret-sharing

approach for exchange of shared key so that group members can use digital signatures

to identify specific secret-sharing rule and determine their session keys independently.

After the initiation phase to establish group memberships and exchange shared keys,

group members exchange messages after they are fragmented, shuffled and encrypted

into multicast packets. These packets are delivered along different paths to produce

a concealment effect similar to that of the DC-net.

We consider breadth- and depth-first based packet delivery schemes. In the

breadth-first scheme, packets are relayed in two stages across group members. For

the depth-first approach, group members are organized into rings, each of which can

be responsible for delivery of a particular type of packets. To resist traffic pattern

profiling attacks, we develop a window-based adaptive traffic padding scheme for

group members to balance their traffic flows. Both simulation and empirical results

show that our scheme is highly efficient and robust to different traffic conditions. It

has been tested on a highly secure network appliance machine to demonstrate its

feasibility.

A. Introduction

Cryptographic protection can hide the contents of messages from unauthorized per-

sons, but an eavesdropper can still eavesdrop the traffic pattern, without explicitly

cracking encrypted messages, to extract some useful information, e.g. communication

73

peak times, sender-recipient pairs [67][68]. Such information can be critical for some

applications, e.g. online bank transactions, battle field communication, etc. Traf-

fic pattern concealment is an effective way to protect the traffic flow confidentiality

[69][70][71][72]. In this chapter, we investigate sender-recipient anonymity in overlay

group communications. Our ultimate goal is to hide the communication initiator

among all group members so that only group members can determine the message

senders.

A basic technique to counter traffic analysis attacks is traffic padding [69][70][71][72]:

adding decoy/dummy packets to the traffic, so that the padded traffic pattern is made

unrelated to the payload traffic. Raymond in [67] gives a survey on possible traffic

analysis attacks on systems providing anonymous services and possible solutions.

Baran [70] suggests using dummy or fraudulent traffic between fictitious users of the

system to conceal traffic loading.

In [69] Chaum proposed a technique, in which users always deliver message

through a proxy, called mix. The mix first collects a predefined number of fixed-

size message packets from different users, and then shuffles the order of those packets

and sends them out. In such a way, the sender identity is hidden among the user set.

Considering that a mix cannot always get the predefined number of packets from the

users, Chaum also suggests using dummy messages. In [73], Syverson etc. suggests

using constant inter-arrival time (CIT) padding between the user and the proxy. CIT

padding is also used in [67] to prevent packet counting attacks.

Knowing that dummy packets consume network bandwidth, it is highly desir-

able to use the minimal amounts of dummy packets to achieve concealment of the

traffic patterns. In [71], Venkatraman and Newman-Wolfe proposed a linear program-

ming method to optimize the bandwidth utilization while preventing traffic analysis.

However, this optimization discloses the overall traffic and makes the system insecure.

74

Making the security mechanisms adaptive to the network conditions can reduce

the performance costs, but the resulting traffic profile still needs to be made immune

to statistical traffic analysis. In [74], Timmerman proposed an adaptive scheme for

packet padding and rate control to reduce costs of traffic masking when the traffic

workload changes. However, since dummy traffic rates are adjusted in (reverse) pro-

portion to the real traffic, an adversary can deduce the real traffic loading through

observing the padded traffic rate.

In this chapter, we propose a new technique for protection of group communica-

tions by concealment of sender-recipient pairs, and their traffic patterns. We assume

that an existing key management scheme can be adopted for distribution and control

of shared keys/secrets for secure data transport, and we focus on the sender-recipient

anonymity, packet routing and adaptive traffic padding for a “well-known” group.

Our basic approach is to fragment and disperse encrypted messages into multicast

packets to be transported along different paths, creating an effect similar to that of the

DC-net [75] so that the adversary cannot efficiently determine the source/recipient

of a message without correct ordering of all packets, in addition to the needs for

deciphering the messages. Packet flows among nodes are made balanced, to elimi-

nate traffic patterns related to group activities. We proposed a distributed sliding

window-based adaptive traffic padding scheme to control transmission of payload and

dummy packets. In this scheme, we adjust the padded traffic rate instead of the decoy

traffic rate to adapt to the changing of available network bandwidth. We proved that

under this scheme, the padded traffic rate converges to the available bandwidth of

the bottleneck link independent of the round trip time of the ring, and the feedback

information does not disclose any information of sender/recipient activity. This is

particularly important for an open network environment, where the users may not

have full control of the network resources.

75

The remainder of the chapter is organized as follows: Section B describes the

design of our anti-eavesdropping broadcast (AEB) protocol. Section C extends the

design to provide adaptive traffic padding to improve bandwidth utilization. Section

D and E provides a detailed performance evaluation and comparison. We conclude

the chapter in Section F.

B. Anti-Eavesdropping Broadcasting (AEB) Protocols

In this section, we discuss our anti-eavesdropping broadcast (AEB) protocol to sup-

port dispersed transport of fragmented messages (after they are encrypted if nec-

essary). AEB consists of two phases: initialization and operation. They exchange

credentials and group keys before data exchange starts. When a legitimate new mem-

ber needs to join the group, existing members must give it group keys to participate

in group activities. When an active member departs, all the group keys of the group

need be discarded, and the remaining members need to re-generate their group keys.

1. Design Goals

To provide sender-recipient traffic pattern anonymity for group communications, our

work distinguishes itself from previous solutions, e.g. [75] by balancing of performance

and anonymity requirements in an open networking environment. We assume that

a public key infrastructure (PKI), e.g. X.509 or PGP, provides trust management

and authentication, but the authentication authority does not necessarily possess the

secrets for protected data exchanges. For group key distribution, we assume the use

of a secret sharing scheme like that of Shamir [76] and Blakley [77], so that a recipient

can recover the message when k-out-of-n of the shares or shadows become available.

Of course, other authentication techniques like those in [78][79][80][81][82][83] are also

76

applicable. Nodes in the group but not involved in a transport session will only relay

packets without deciphering the contents. We use a simple secret sharing based group

key generation scheme, which was proposed in [76].

Given that the authentication and encryption issues are addressed, we next con-

sider two issues related to sender-recipient anonymity: packet address headers, and

packet transport patterns. It is impossible to conceal the existence of a “well known”

group. However, it is relatively simple to use alias group ID headers to protect the real

identities of group members. To prevent statistical analysis of the sender-recipient

patterns, next we propose a dispersed packet transport scheme to conceal the group

member interactions.

2. Dispersed Packet Transport

Group communication patterns can be divided into four major types: point-to-point

(1− 1), point-to-multipoint (1−N), multi-point-to-point (N − 1) and multipoint-to-

multipoint broadcast (N −N). To disassociate traffic patterns from group activities,

the first obvious step is to use one single packet format to serve all types of data

transport. To conceal the traffic pattern between a sender-recipient pair, their data

exchange can be broken into fragments, each of which is diverted to one or more inter-

mediate nodes before being delivered to the real destination. With sufficient amounts

of fragments being emitted by group members one can generate highly symmetric

packet flows, with help of padding traffic, which makes it very difficult to identify

the sender-recipient pairs, not to mention how to decipher their messages. Packet

fragmentation and shuffling is simple and efficient. Fig. 27 depicts the shuffling rule

(3142) for mapping of message M. Let the shuffling outputs be denoted as V, we send

packets in set Vi, for example, V1 contains packets M33, M31, M34 and M32, to node

77

M
11

M
12

M
13

M
14

M
21

M
22

M
23

M
24

M
41

M
42

M
43

M
44

M
31

M
32

M
33

M
34

M
2

M
3

M
4

M
1

M

V M
13

M
11

M
14

M
12

M
43

M
41

M
44

M
42

M
23

M
21

M
24

M
22

M
33

M
31

M
34

M
32

V
2

V
3

V
4

V
1

Fig. 27. An example on the double shuffling and slicing of packets (p = 4).

Ai respectively (i = 1, 2, · · · , n). When a node S needs to broadcast a message M to

n nodes, A = {A1, A2, · · · , An} in the group, S first sends out the digital signature

of a secret-sharing rule so that only nodes in A can determine the session key. Other

shuffling rules can be made a part of the shared key distribution system, so that only

the chosen group members can decipher the shuffled messages.

3. Pattern-Free Packet Flows

Fragmented messages can be transmitted by breadth- and depth-first multicasts to

create pattern-free packet flows. The multicast packets are routed via multiple nodes,

but only nodes that have the proper session keys can decode the packets. In the

breadth-first scheme, the sender fragments and disperses pieces of the message to

intermediate nodes, which then relay these packets to the real destination(s). For the

depth-first scheme, group nodes are organized into rings, so that data shares can be

transported along them to reach destinations.

In the breadth-first scheme, broadcast traffic for the 1 − 1 and 1 − N commu-

nications can be made symmetric by making the numbers of inbound and outbound

messages identical at all nodes. All messages intended for specific destination are

mapped into multicast packets to conceal the sender and recipient. N −1 and N −N

78

are considered extension of these basic interaction patterns mentioned above. Pas-

sive eavesdroppers need to know the phase sequence, fragmentation and convergence

process to decipher messages. Suppose that there are n nodes in the group, and the

sender S uses i members for relay, the possibility of an eavesdropper knowing exactly

the i group members is (
∑n

i=1 (n
i))−1 = 1

2n − 1. This simple equation does not consider

the protecting effects of the dummy packets, nor that of packet ordering. Details of

the breadth-first message processing routines are described below.

Node S fragments and disperses message M (through broadcast) to n partici-

pating nodes A = {A1, A2, · · · , An} (with a shared key K) and m intermediate relay

nodes. All nodes relay message fragments in turn to other nodes to reassemble in the

second phase.

Input: Message M and the shared key K.

Output: All n participating nodes with K able to decipher M .

Algorithm description at source S

o Calculate complete message encipher EK(M).

o Fragment EK(M) into p pieces, and do shuffling as shown in Fig. 27, F (EK(M), n, m, p) =

V1, V2, ..., Vp, where F (∗) stands for fragmentation and shuffling operation.

o Choose an arbitrary next node Aj and choose a random Vi.

o Reliably transmit the encrypted fragment Vi to Aj. Noted as S → Aj : Vi.

o Whenever the flow control scheme calls for sending of packets, send out the

real or decoy packets according to the schedule.

Algorithm description at receiving nodes Aj

o For each Vi received, send an acknowledgement to the sender: Aj → S :

ACK(Vi).

o For relay nodes, simply broadcast forward inbound packets, Vi or dummy pack-

ets to its real recipient.

79

Circulation of fragment M1,

M2 across different rings

S

A3

A4

A2

A1

S A3

M2

M1

M1 M2 M3 M4

Fig. 28. Illustration of depth-first permutation ring.

o For the recipient, if the number of fragments received matches the predeter-

mined size (as distributed by original source), an attempt is made to reorder and

decrypt the fragments using the shared group key: DK(V1 + V2 + · · ·+ Vp).

The basic idea of the depth-first scheme is to organize group members into mul-

tiple overlay rings, along which packets carrying message fragments can be multicast

or broadcast. In the example depicted in Fig. 28, node S intends to send a message

to A3. The message is broken into four fragments M1, M2, M3, and M4. The four

encrypted fragments can be sent along four different overlay rings to reach A3. It

is easy to show that all the 1 − 1, 1 − N , N − 1 and N − N interactions can be

implemented using the overlay rings.

Labelling of the overlay rings among a group of nodes is equivalent to the per-

mutation problem. That is, taking an arbitrary node as the starting point of node

traversing, each overlay ring represents a unique permutation of the native node la-

bels, and thus a unique ring ID. As a result, we adopt the notation of permutation

for ring representation, called a permutation ring, which represents a logical inter-

connection path between group members. When S needs to send a message to node

80

Ai, it transmits each of the message fragments in a packet, along a specifically cho-

sen ring to reach Ai. The number of rings increases at a factorial order resulting

in a large search space for the eavesdroppers to crack the packets. Details of the

depth-first message processing routines are described below.

Sender S disperses the packets carrying fragmented message pieces along chosen

rings to reach nodes A = A1, A2, · · · , An through m intermediate nodes.

Input: Message M that the source wants to send, and a shared group key K.

Output: All n participating nodes with K able to decipher original message M .

Algorithm description at source S

o Calculate complete message encipher EK(M).

o Fragment the enciphered message EK(M) into p pieces, and do shuffling as

shown in Fig. 27, F (EK(M), n, m, p) = V1, V2, · · · , Vp, where F (∗) stands for frag-

mentation and shuffling operation.

o Choose a permutation pattern Πj = πj,1, πj,2, · · · , πj,n for Vj,∀j. Calculate a

ring identifier digest that uniquely identifies the hop sequence Rj = HR(Πj), ∀j.
o S → A(πj, 1) : Rj + Vj, j = 1, 2, · · · , n. S reliably unicasts Vj along j.

o S receives Vj from the last hop of j, acknowledging the successful circulation

for Vj transmitted across j.

o Send out dummy packets along different rings in accordance to the flow control

scheme.

Algorithm description at receiving nodes Ai (with permutation ring iden-

tifier j)

o Use the ring digest Rj of the received packet to calculate the next hop on j.

o Unicast the packet Rj+Vi to the next hop entry A(πj, i+1) : A(πj, i)A(πj, i+1) :

Rj + Vj.

o For a recipient in A, order and decrypt the fragments using the shared group

81

key: DK(V1 + V2 + · · ·+ Vn) using the shared group key K.

Permutation rings have relatively higher latency costs because each packet needs

to traverse a ring before it is removed from the network. But it has similar buffer and

ordering overheads for the sender and recipients. Rings have simpler error recovery

and flow control schemes to conceal the communicating parties. An adversary needs

to know the rings and sequences of packet transmissions. Without having knowledge

of the nodes and the rings involved, the eavesdropper search complexity grows at

a factorial order. Taking the message-ordering complexity into consideration, the

overall probability of message cracking becomes 1
p![(n− 1)!]p

.

C. Adaptive Packet Padding

In last section we discuss how to disguise group interactions via dispersed relay of

packets. In this section, we further discuss techniques on how to conceal the traffic

volumes, transmission rates, and their relationship with group activities. Packet

padding is effective in concealing payload traffic patterns. One can easily create

pattern-free (or more precisely, uni-pattern) traffic profile on a data link by using

a polling technique, in which packets are transmitted at constant time intervals.

Otherwise, it is easy to identify the sender-receiver pair by comparing their inbound

and outbound rates. Even if all packets traverse the whole ring, without traffic

padding, the outbound traffic of a source node has a large phase lag with respect

to its inbound traffic. However, simple traffic padding, e.g. fully utilizing the link

capacity, can be cost-prohibitive, due to excessive waste of bandwidth.

The objective of packet padding is to drive nodes on an overlay ring to reach

the same traffic sending rate, so that their transmission patterns would appear to

be (nearly) identical to adversaries. Equalizing the outbound rate with the inbound

82

rate is effective but not sufficient, because it cannot effectively handle the condition

when the inbound traffic rate is higher than the available bandwidth of the outbound

link. For group members on a ring to match each other’s transmission rate, it is

obvious that the link that has the smallest available bandwidth will determine the

overall transmission rate on the ring. Sending rates of other group members should

be adjusted to match the available bandwidth of the bottleneck link.

1. Distributed Sliding-Window for Packet Padding

To minimize bandwidth loss, and to balance the traffic flows between group members,

we propose a distributed sliding-window-based packet padding scheme for nodes on

the overlay ring. Our scheme does not require explicit coordination messages be-

tween group members. Theoretical models and simulations show that this scheme is

adaptive to bandwidth variation, and greatly reduces the bandwidth waste, without

compromising concealment of the traffic patterns.

The sliding-window based flow control protocol is successfully deployed to the

TCP protocols [21]. A TCP sender maintains a congestion window, whose size defines

the largest number of outstanding packets that are allowed to be in transit. From the

flow control viewpoint, a TCP session can be viewed as a logical ring. The payload

packets and ACK packets are transmitted on the forward and backward paths of

a TCP session respectively, while for an overlay ring there is no obvious difference

between forward and backward paths (see Fig. 29). A TCP session has an obvious

sender and receiver while for a ring all nodes are virtually identical.

In summary, we can view an overlay ring as one single transmission session, and

each of the intermediate overlay nodes is equivalent to an intermediate router on the

forward path. We adopt a sliding-window-based scheme to throttle the traffic on the

83

group

member
data

packet

decoy

packet

An overlay ring

TCP

sender

TCP

receiver

data
packet

ACK packet

A TCP session

Fig. 29. An overlay ring vs. a TCP session.

84

overlay ring, where the congestion window of a TCP session is maintained by the

TCP sender. When every node on a ring runs the sliding-window-based flow control

rules, any local changes will lead to local flow adjustments, and such adjustments will

lead to neighboring and global adjustments, without using explicit control messages.

In this way, not only nodes keep their transmission rates identical, but also adaptive

to changes of network conditions. Next we discuss the details of our algorithm.

Let us assume that there are N group members on the overlay ring, and all nodes

have the same buffer size. Each node has a sending queue to store (local, transit

and dummy) packets ready for transmission. First, each node estimates the available

bandwidth of the bottleneck link and round trip transmit latency of the ring, denoted

as C̄i and d̄i respectively, using some method developed in existing literatures, e.g.

[84][85][86][87][88][89]. Here the bandwidth and delay estimations need not be very

accurate. Then the node sets its initial window size as

W 0
i =

C̄id̄i + Q/2

N
(4.1)

where Q is the buffer size. The physical meaning of (4.1) is obvious-the optimal

number of packets along the ring is C̄id̄i + Q/2 when the desired queue length of the

bottleneck link is Q/2 (see page 412 in [90]). The inaccuracy of the initial windows

caused by the bandwidth and delay estimation errors can be corrected by window

adjustment that will be discussed in subsection 3 in section C.

Sliding window scheme for overlay rings

o When the session begins, node i sends out W 0
i packets. The flow control scheme

determines when to send out the next packet.

o When a node receives a packet m, it

1. increases its window size by one;

85

2. checks the packet header to find whether this packet is a decoy packet.

If so, ignore it.

3. checks the packet header to find whether this packet is sent by itself

earlier. If so, ignore it.

4. If m is not sent by itself earlier and m is not a decoy packet, then put

packet m at the end of the sending queue.

o Only when the window size is larger than zero, the node can send out a packet.

o When sending a packet, the node sends a decoy packet to the next node if its

sending queue is empty; else fetch one packet from the head of sending queue and

send it to the next node.

o When an upper layer application sends a packet, the node puts the packet at

the end of the sending queue.

This sliding window scheme is static because the number of packets in the pipeline

is fixed. The window is different from the congestion window in TCP. In TCP, the

congestion window size determines the maximum outstanding packet number, while

here the window size defines the number of packets the node can send out at current

time. Moreover, in TCP, congestion window is maintained in the TCP sender. In an

overlay ring, there is no obvious sender. The window is distributed in all ring nodes.

Next we analyze its adaptability.

2. Adaptability Analysis

An important property of the sliding window flow control protocol is self-clocking–

For a connection in equilibrium, a new packet is not put into the network until an

old packet leaves [21]. Packets circulating around the ring have the same round-

trip/circulation time, R. Within the time period of R, nodes on the ring send out

86

∑N
i=1 W 0

i packets. Using the fluid dynamics model, the queuing dynamics for a sending

queue can be expressed as:

q̇(t) =

∑N
i=1 W 0

i

R(t)
− C, (4.2)

where

R(t) = d +
q(t)

C
, (4.3)

where d is the real round trip transmit latency of the ring, q(t) is the queue length

of the congested link at time t, and q̇ the first time derivative of q. The equilibrium

state of (4.2) is

q∗ =
N∑

i=1

W 0
i − Cd. (4.4)

If the bandwidth and delay estimations are accurate, that is C̄i = C and d̄i = d, (4.4)

means q∗ = Q/2.

By choosing the Lyapunov function

v =
1

2
q̇2, (4.5)

we have

v̇ = q̇q̈ = −q̇
C(C̄d + Q/2)

(Cd + q)2
q̇ < 0, (4.6)

except at q̇ = 0. Therefore, (4.2) asymptotically converges to its equilibrium point

defined by (4.4). Thus, the sending rates of all nodes converge to the congested link

capacity C. The convergence time is the round trip time R because of the self-clocking

property. Even if the congested link shifts from one to another link, the sending rates

of all nodes will converge to the new congested link capacity. ns-2 simulation results

given in section E support this statement.

We further note that the equilibrium point of the queuing dynamics is defined by

(4.2) only if 0 ≤ ∑N
i=1 W 0

i −Cd ≤ Q. If
∑N

i=1 W 0
i −Cd < 0, queue starvation (low link

87

utilization) will occur. On the other hand, when
∑N

i=1 W 0
i −Cd > Q, queue overflow

(packet dropping) will occur. That is, window sizes should be adjusted according to

the available bandwidth, which fluctuates with external traffic.

3. Window Adjustment

The objective of window adjustment is to keep the queue length of the bottleneck

link within a reasonable range, so that the traffic flows on all nodes of the overlay

ring can remain stable and balanced. We first study the queuing dynamics of a ring

with sliding window-based flow control scheme. Within one control period ∆t, node

i gets mi packets and increases its window size by ∆Wi(positive or negative), so that

it sends out mi + ∆Wi new packets within time period ∆t. Thus, we have

∆q(t) =
N∑

i=1

[mi(t− τFi) + ∆Wi(t− τFi)]− C∆t, (4.7)

where τFi is the forward transmission delay from node i to the bottleneck link, and

N is the node number of the ring. By the self-clocking property we have

mi(t) = C∆t, (4.8)

where τBi is the transmission delay from the bottleneck link to node i. Note that

τBi + τFi = R, where R is the round trip time of the ring and R changes with time.

Substituting (4.10) into (4.9), we get

∆q(t) =
N∑

i=1

∆Wi(t− τFi), (4.9)

We choose the control period ∆t = R and adopt the following proportional feedback

control rule,

∆Wi(t) =
k

N
[qd − q(t− τBi)], (4.10)

88

where 0 < k < 1. k is often set as 0.5 in order to balance the stability robustness

and convergence rate. Under this control law, the closed loop system dynamics can

be written as

q(t)− q(t−R) = k[qd − q(t−R)]. (4.11)

From (4.11), we have

q(t)− qd = (1− k)[q(t−R)− qd]. (4.12)

It is obvious that q(t) asymptotically converges to qd because 0 < k − 1 < 1. This

means that our window adjustment scheme is asymptotically stable even with large,

time-variant delays, even when the round trip time R changes with time. The queuing

dynamics under the control law (4.12) is stable.

D. Evaluation

We evaluated our models and algorithms based on simulations and implementations.

For implementation, we tested the feasibility of fragmented packet transport on top

of existing IP protocols. For simulations, we examined the robustness of the proposed

bandwidth control schemes.

1. Implementation

We used four interconnected machines on a LAN to test the feasibility of proposed

scheme using the UDP protocol. Due to resource constraints, we only tested the

depth-first scheme. Here, group members on the overlay ring exchange data using

UDP packets, while the inter-node packet transmissions are controlled by a sliding-

window-based control algorithm in each node. Real and decoy packets shared the

transmission bandwidths.

89

The prototype AEB was implemented based on the total ordering algorithm pro-

posed in Isis’s ABCAST [91]. That is, if a node delivers message m before it delivers

n, then any other correct process that delivers n will deliver m before n. We em-

bedded the totally ordered ring protocol into the Emcast toolkit [92]. It includes the

program “emcast”, a generic multicast utility (like netcat), and the library “libem-

cast”, a generic multicast library. Emcast supports IPv4 multicast (IM) and end-host

multicast (EM) protocols, such as STAR (centralized TCP), Banana Tree Protocol

(BTP), and Internet Chat Relay (IRC), plus our Ring protocol. In the experiment,

only one node (Node 1) broadcasts messages and the other nodes receive messages.

In the four charts of Fig. 30, one can see that the traffic of each node remains virtu-

ally identical. The real traffic pattern reaches uniform and symmetric in each node

through AEB.

E. Simulation

It was much more complicated to test the control strategies on the prototypes. As an

alternative, we used the ns2 network simulator [93] to evaluate our adaptive packet

padding scheme. In the simulation, six nodes are interconnected to form an overlay

ring, and the link between nodes 2 and 3, and the link between nodes 4 and 5 are

shared by outside nodes, see Fig. 31. Starting from node 1, and in the ascending

order of the links between nodes, the bandwidths of links are 5, 4, 10, 5, 10, and

10 Mbs. In all following experiments, the packet sizes were set at 1k bytes, and the

window sizes were initialized as 10 pkts. The latencies of the links were set at 10 ms

unless explicitly stated. We used the following term, “linkjk” means the link between

node j and k. We call the transmission session among group members on the ring the

internal session, and the transmission sessions among non-group members the exter-

90

 Node 2 Traffic at Interval Time

-500

0

500

1000

1500

2000

3 4 5 6 7 8 91011203040506070809010
0

Time(Minutes)

D
a

ta
 P

a
c

k
e

t(
K

)

Node1 Traffic at Interval Time

-500

0

500

1000

1500

2000

3 4 5 6 7 8 91011203040506070809010
0

Time(Minutes)

D
a
ta

 P
a
c
k
e
t(

K
)

 Node4 Traffic at Interval Time

-500

0

500

1000

1500

2000

3 4 5 6 7 8 91011203040506070809010
0

Time(Minutes)

D
a

ta
 P

a
c

k
e

t(
K

)

Node3 Traffic at Interval Time

-500

0

500

1000

1500

2000

3 4 5 6 7 8 91011203040506070809010
0

Time(Minutes)

D
a

ta
 P

a
c

k
e

t(
K

)

Fig. 30. Traffic volume statistics at each node.

1

2

3 4

5

10

6

98

7

1
0
M

b

10Mb

5
M

b

10Mb

5
M

b

4
M

b

External

Session 1

External

Session 2

Internal

Session

Fig. 31. Simulation topology.

91

nal sessions. In the simulation, we created an application-level transport protocol on

the top of UDP. When the overlay ring runs on a closed environment, without the

interference of external traffic, our sliding window control scheme converged rapidly

and remains steady henceforth. To further test the robustness and adaptability of our

scheme against uncontrolled external traffic, we created two different traffic scenarios

to examine their impact on the traffic profiles on the ring.

1. Experiment 1: Workload pattern concealment

In the first experiment, we tested the effects of workload traffic changes on the overall

(padded) traffic rate. We assume there is no eternal session in this experiment, so

that effects of workload changes can be best observed. Between the 2nd and 10th

second, there is 8Kbps workload traffic from node 1 to node 4, and between the 7th

and 17th second, there is workload traffic with rate 8Kbps from node 3 to node 5.

Fig. 32 shows the measured workload traffic rate, decoy traffic rate and padded

traffic rate on each link. It shows that the decoy traffic rates are automatically ad-

justed to make the overall padded traffic rates match the lowest available bandwidth

on the ring, 4Mbps. It clearly suggests that the workload traffic changing have vir-

tually no effects on the overall padded traffic rates.

2. Experiment 2: Performance of the static sliding window scheme

The second test was meant for simulation of static (non-adaptive) sliding window

scheme. The two external sessions, sessions 1 and 2, were created to simulate a

constant bit-rate (CBR) session. For the CBR transport, the time interval of packet

transport is set at 0.006s. At time 0 (sec), the group session starts. Then, at time

epochs 4 and 8 secs, the external session 2 between nodes 9-10, and the external session

92

link12

0

1

2

3

4

5

0 5 10 15

time (sec)

tr
a

ff
ic

 r
a

te
 (

M
b

p
s
)

padded

workload

decoy

link23

0

1

2

3

4

5

0 5 10 15

time (sec)

tr
a

ff
ic

 r
a

te
 (

M
b

p
s
)

padded

workload

decoy

link34

0

1

2

3

4

5

0 5 10 15

time (sec)

tr
a

ff
ic

 r
a

te
 (

M
b

p
s
)

padded

workload

decoy

link45

0

1

2

3

4

5

0 5 10 15

time (sec)

tr
a

ff
ic

 r
a

te
 (

M
b

p
s
)

padded

workload

decoy

link56

-0.5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5

0 5 10 15

time (sec)

tr
a

ff
ic

 r
a

te
 (

M
b

p
s
)

padded

workload

decoy

link61

-0.5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5

0 5 10 15

time (sec)

tr
a

ff
ic

 r
a

te
 (

M
b

p
s
)

padded

workload

decoy

Fig. 32. Traffic rates on each link in experiment 1.

93

0

10

20

30

40

50

60

0 5 10 15

time (sec)

q
u

e
u

e
 l
e

n
g

th
 (

p
k
t)

link23

link45

Fig. 33. Congestion queue dynamics in experiment 2.

1 between nodes 7-8, started, respectively. At time epochs 12 and 16, the external

sessions 1 and 2 ended, respectively. Finally, the group internal session ended at time

epoch 20 sec. Fig. 33 shows changes of queue lengths in link23 and link45 of the ring.

The queue lengths in other nodes remained zero for the whole simulation period, so

they are not shown here. We note that even though such changes are inevitable at

presence of external sessions, it is clear that shortly after a session starts, or ends, the

queue lengths converge to their steady values rapidly. Fig. 34 plots the transmission

rates of group nodes on the ring for the experiment run. Fig. 35 shows the measured

work traffic rate on each link. In all cases, except for the short transmission rate

disturbance during state transition periods, the differences in the transmission rates

of the group members are very small, on average less than 5 percent. Note that the

disturbance to transmission rates is caused by external events, it is not associated with

the group activities.

94

0

1

2

3

4

5

6

0 5 10 15

time (sec)

p
a

d
d

e
d

 t
ra

ff
ic

 r
a

te
 (

M
b

p
s
)

link12

link23

link34

link45

link56

link61

Fig. 34. Padded traffic rate at each link in experiment 2.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15

time (sec)

w
o

rk
lo

a
d

 t
ra

ff
ic

 r
a

te
 (

M
b

p
s
)

link12

link23

link34

link45

link56

link61

Fig. 35. Workload traffic rate on each link in experiment 2 (with eternal sessions).

95

0

1

2

3

4

5

6

0 5 10 15

time (sec)

p
a

d
d

e
d

 t
ra

ff
ic

 r
a

te
 (

M
b

p
s
)

link12

link23

link34

link45

link56

link61

Fig. 36. Padded traffic rate on each link in experiment 3.

3. Experiment 3: Performance of the adaptive sliding window scheme

The third experiment is designed to test the effectiveness of our window adjustment

scheme. All settings are the same as in experiment 2 except that our window adjust-

ment scheme is enabled. Fig. 36 shows that the overall rates at all links are almost

identical to each other. The minor rate differences are also caused by outside events,

external sessions. Fig. 37 shows that the queue length of the congested link quickly

converges to the proximity of the desired value, 20 packets, even if congestion shifts

from link23 to link45 at the 4th and 12th sec and shifts back at the 8th and 16th sec.

Thus, the link under-utilization and queue overflow are avoided.

4. Experiment 4: Performance impact of delays

The fourth experiment is used to test the effectiveness of our window adjustment

scheme for the case with large round trip delay. All settings are the same as in exper-

96

0

10

20

30

40

50

60

70

80

0 5 10 15

time (sec)

q
u

e
u

e
 l
e

n
g

th
 (

p
k
t)

link12

link23

link34

link45

link56

link61

Fig. 37. Queue length of each link in experiment 3.

iment 3 except that the link transmission delays for the links are set at 50ms, 50ms,

70ms, 50ms, 40ms and 70ms respectively. Thus, the round trip delay is about 0.33

seconds. Fig. 38 and Fig. 39 clearly show the effectiveness our window adjustment

scheme even with such a large round trip delay.

5. Experiment 5: Robustness of the adaptive sliding window scheme

In this experiment, we significantly increased the level of external traffic to test the

robustness of the sliding window flow control algorithm. In this case, the external

sessions recurrently start and close ever two seconds, starting from 0.5 sec. The

composite set of starts and closes of the external sessions are collectively called the

event Z in Table I.

Similar to experiment one, the transmission rates of group nodes converge to the

steady state value rapidly at absence of external sessions. Fig. 40 shows that the

97

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150

time (sec)

p
a

d
d

e
d

 t
ra

ff
ic

 r
a

te
 (

M
b

p
s
)

link12

link23

link34

link45

link56

link61

Fig. 38. Padded traffic rate on each link in experiment 4.

0

10

20

30

40

50

60

70

80

0 50 100 150

time (sec)

q
u

e
u

e
 l
e

n
g

th
 (

p
k
t)

link12

link23

link34

link45

link56

link61

Fig. 39. Queue length of each link in experiment 4.

98

0

20

40

60

80

100

120

0 5 10 15

time (sec)

p
a

d
d

e
d

 t
ra

ff
ic

 r
a

te
 (

M
b

p
s
)

link12 link23 link34

link45 link56 link61

Fig. 40. Padded traffic rate on each link in experiment 5.

0

1

2

3

4

5

6

0 5 10 15

time (sec)

q
u

e
u

e
 l
e

n
g

th
 (

p
k
t)

link12 link23 link34

link45 link56 link61

Fig. 41. Queue length of each link in experiment 5.

99

Table I. Events in experiment 5.

Event epoch (sec) Actions

0 Internal session started

0.5 External session 2 between 7 and 8 started (event A)

1 External session 1 between 9 and 10 started (event B)

1.5 External session 1 closed (event C)

2 External session 2 closed (event D)

4.5 Composite event Z : A,B,C, D for the 2 sec duration

6.5, 8.5, · · · Z repeated every 2 seconds

20 Internal session closed

overall rates at all links are almost identical to each other. The minor rate differences

are also caused by outside events, external sessions. Obviously, the transmission

rate differences increase due to the frequent “on” and “off” of the external sessions.

Even though the transmission rates fluctuate at occurrences of new external events,

group nodes do have consistent and similar changes, making it difficult for advisory

to determine the nature of the events. Fig. 41 shows the queue length changes that

reflect arrivals and departures of external sessions, and it is noted that the queue

lengths do converge to the steady state values after each set of events.

F. Conclusion

In this chapter, we proposed traffic-concealing, anti-eavesdropping communication

protocols for secure group communications. By using dispersed transport of message

fragments, we spread the interaction communication patterns among the multicast

participants to counter traffic analysis attacks. The two different types of broadcast-

100

based data transport primitives have been proposed to meet different performance

and security requirements. The two-hop relay communication has less uniform traffic

pattern, but its message delivery time is shorter. On the other hand, the permutation

ring has more symmetric traffic patterns but longer latency time. Of course, to crack

the message, one still must have full knowledge about the permutation and shuffling

rules. It is of great interest to further expand different types of transport primitives

to conceal traffic patterns of group communications.

To resist traffic pattern profiling attacks, we develop a window-based adaptive

traffic padding scheme for group members to balance their traffic flows. Both sim-

ulation and empirical results show that our scheme is highly efficient and robust to

different traffic conditions. It has been tested on a highly secure network appliance

machine to demonstrate its feasibility.

101

CHAPTER V

SUMMARY

The objective of this research is to develop a generic modeling and design method

of network traffic throttling. Increase and decrease (I-D) congestion control rule is

widely adopted in network traffic management because of its cost-effectiveness. I pro-

posed a modeling and design methodology for I-D congestion controllers to guarantee

asymptotic stability and eliminate traffic oscillation, based on the sliding mode control

(SMC) theory. My scheme addresses the discontinuous operations of I-D controller

that has been largely disregarded in existing literature, and shows that discontinuity

plays a crucial role in optimization of the I-D based congestion control algorithms.

Increase-Decrease control laws are very simple to implement and highly robust to pa-

rameter and model uncertainties. Their stability does not require a precise network

dynamics model.

On the basis of this sound system model, I also showed that one can design

highly effective network protection schemes against DDoS attacks, and one apply the

throttling technique to conceal the traffic patterns for protection of group communi-

cations.

DDoS management can be considered a special case of the flow control problem.

Based on the theory about modeling and management of network traffic, I developed

a backward-propagation feedback control strategy for DDoS defense. When a host

finds itself becoming a hot spot, it informs neighboring nodes and routers to reduce

influx of packets. Reduction of packet influx is propagated backward to the sources.

If a source is normal, it will reduce its sending rate when backpressure is propagated

to it. If a source ignores traffic backpressure and keeps infusing packets, it will be

identified as an attacker and its packets will be dropped by the switches or routers

102

at the edge of Internet. This backward-propagation feedback control strategy adopts

a simple hop-by-hop on-off control scheme. Its design is based on well-established

sliding mode control theory. Thus, except prevent DDoS attacks, it also provides

smooth traffic and bounded queue size. Another advantage of hop-by-hop scheme is

that it responses much faster than end-to-end scheme so that delay can be ignored.

This is very important when the bandwidth-delay product becomes very large.

Private group communications are critical to protection of large scale informa-

tion systems. Standard encryption algorithms (e.g. IDEA, DES, RSA, AES, SHA1,

etc.), together with their key management systems are necessary, yet insufficient to

enable group members to conceal their interactions. In addition to cryptographic

protection of information contents, concealment of the network traffic patterns (vol-

umes, peak times, etc.) is also important to prevent unveiling the interactions be-

tween group members. A network is said to be unobservable if the volumes, times,

sender-recipient pairing and other similar measures cannot be related to the underly-

ing business activities; implying ineffectiveness of traffic analysis. Workload padding

and packet routing are basic mechanisms to counter passive traffic analysis attacks.

However, traffic masking is very expensive in terms of bandwidth consumption. The

challenge here is how to make an optimal tradeoff between traffic pattern anonymity

and network performance. Under this topic, I developed a new technique for pro-

tection of group communications by concealment of sender-recipient pairs, and their

traffic patterns. Packet flows among nodes are made balanced, to eliminate traffic

patterns related to group activities. I proposed a sliding window-based flow control

scheme to control transmission of payload and dummy packets. Our algorithms allow

flexible tradeoff between the degree of traffic uniformity, and that of the performance

costs. This is particularly important for an open network environment, where the

users may not have full control of the network resources.

103

REFERENCES

[1] J. Filipiak, Modeling and Control of Dynamic Flows in Communication Net-

works. Berlin: Springer-Verlag, 1988.

[2] V. I. Utkin, Sliding Modes in Control Optimization. Berlin: Springer-Verlag,

1992.

[3] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ:

Prentice Hall, 1991.

[4] D. Chiu and R. Jain, “Analysis of the increase/decrease algorithms for congestion

avoidance in computer networks,” Journal of Computer Networks and ISDN,

vol. 1, no. 12, pp. 1–14, June 1989.

[5] S. Floyd, “TCP and explicit congestion notification,” ACM Computer Commu-

nication Review, vol. 24, no. 5, pp. 8–23, October 1994.

[6] D. Sisalem and A. Wolisz, “LDA+ TCP-friendly adaptation: A measure-ment

and comparison study,” in Proc. International Workshop on Network and Op-

erating Systems Support for Digital Audio and video (NOSSDAV), Chapel Hill,

NC, June 2000, pp. 241–251.

[7] K. K. Ramakrishnan and R. Jain, “A binary feedback scheme for congestion

avoidance in computer networks with a connectionless network layer,” in Proc.

ACM SIGCOMM, Stanford, CA, August 1988, pp. 158–181.

[8] S. Floyd and V. Jacobson, “Random early detection gateways for congestion

avoidance,” IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 397–413,

August 1993.

104

[9] C. V. Hollot, V. Misra, D. Towsley, and W. Gong, “A control theoretic analysis

of RED,” in Proc. IEEE INFOCOM, Anchorage, AK, April 2001, pp. 1510–1519.

[10] W. Feng, D. Kandlur, D. Saha, and K. G. Shin, “Blue: A new class of ac-

tive queue management algorithms,” IEEE/ACM Transactions on Networking,

vol. 10, no. 4, pp. 513–528, August 2002.

[11] C. V. Hollot, V. Misra, D. Towsley, and W. Gong, “On designing improved

controllers for AQM routers supporting TCP flows,” in Proc. IEEE INFOCOM,

Anchorage, AK, April 2001, pp. 1726–1734.

[12] K. B. Kim, A. Tang, and S. H. Low, “Design of AQM in supporting TCP based

on well-known AIMD model,” in Proc. IEEE Globecom, San Francisco, CA,

December 2003, pp. 3226–3230.

[13] J. S. Sun, G. R. Chen, K. T. Ko, S. Chan, and M. Zukerman, “PD-controller: A

new active queue management scheme,” in Proc. IEEE Globecom, San Francisco,

CA, December 2003, pp. 3103–3107.

[14] S. Kunniyur and R. Srikant, “Analysis and design of an adaptive virtual queue

(AVQ) algorithm for active queue management,” in Proc. ACM SIGCOMM, San

Diego, CA, August 2001, pp. 123–134.

[15] C. L. F. Ren, X. Ying, X. Shan, and F. Wang, “A robust active queue manage-

ment algorithm based on sliding mode variable structure control,” in Proc. IEEE

INFOCOM, New York, June 2002, pp. 64–79.

[16] T. J. Ott, T. V. Lakshman, and L. H. Wong, “SRED: Stabilized RED,” in Proc.

IEEE INFOCOM, New York, March 1999, pp. 1346–1355.

105

[17] D. Lin and R. Morris, “Dynamics of random early detection,” in Proc. ACM

SIGCOMM, Cannes, French Riviera, France, September 1997, pp. 127–137.

[18] W. Feng, D. Kandlur, D. Saha, and K. G. Shin, “A self-configuring RED gate-

way,” in Proc. IEEE INFOCOM, New York, March 1999, pp. 1320–1328.

[19] M. May, T. Bonald, and T. Bolot, “Analytic evaluation of RED performance,”

in Proc. IEEE INFOCOM, Tel-Aviv, Israel, March 2000, pp. 1415–1424.

[20] M. Christiansen, K. Jeffay, D. Ott, and F. D. Smith, “Tuning RED for web

traffic,” in Proc. ACM SIGCOMM, Stockholm, Sweden, August 2000, pp. 139–

150.

[21] V. Jacobson, “Congestion avoidance and control,” in Proc. ACM SIGCOMM,

Stanford, CA, August 1988, pp. 314–329.

[22] J. Widmer, R. Denda, and M. Mauve, “A survey on TCP-friendly congestion

control,” IEEE Network, vol. 15, no. 3, pp. 28–37, May 2001.

[23] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based congestion

control for unicast applications,” in Proc. ACM SIGCOMM, Stockholm, Sweden,

August 2000, pp. 43–56.

[24] D. Bansal and H. Balakrishnan, “Binomial congestion control algorithms,” in

Proc. IEEE INFOCOM, Anchorage, AK, April 2001, pp. 631–640.

[25] X. Zhang and K. G. Shin, “Second-order rate-control based transport protocols,”

in Proc. IEEE International Conference on Network Protocols, Riverside, CA,

November 2001, pp. 342–351.

106

[26] K. W. Lee, T. Kim, and V. Bharghavan, “A comparison of end-to-end congestion

control algorithms: The case of aimd and aipd,” in Proc. IEEE GLOBECOM,

San Antonio, TX, November 2001, pp. 1580–1584.

[27] S. Athuraliya, D. E. Lapsley, and S. H. Low, “Random early marking for Internet

congestion control,” IEEE/ACM Transactions on Networking, vol. 15, no. 3, pp.

48–53, May/June 2001.

[28] R. J. Gibbens and F. P. Kelly, “Distributed connection acceptance control for a

connectionless network,” in Proc. IEE International Teletraffic Congress, Edin-

burgh, Scotland, June 1999, pp. 941–952.

[29] ——, “Resource pricing and the evolution of congestion control,” Automatica,

vol. 35, no. 12, pp. 1969–1985, August 1999.

[30] F. P. Kelly, A. Maulloo, and D. Tan, “Rate control for communication networks:

Shadow prices, proportional fairness and stability,” Journal of the Operational

Research Society, vol. 49, no. 3, pp. 237–252, March 1998.

[31] S. H. Low and D. E. Lapsley, “Optimization flow control, I: Basic algorithm

and convergence,” IEEE/ACM Transactions on Networking, vol. 7, no. 6, pp.

861–874, December 1999.

[32] V. Misra, W. B. Gong, and D. Towsley, “Fluid-based analysis of a network of

AQM routers supporting TCP flows with an application on RED,” in Proc. ACM

SIGCOMM, Stockholm, Sweden, August 2000, pp. 151–160.

[33] M. Allman, W. Stevens, and V. Paxson, “TCP congestion control,” RFC 2581,

April 1999.

107

[34] R. Rejaie, M. Handley, and D. Estrin, “RAP: An end-to-end rate-based con-

gestion control mechanism for realtime streams in the Internet,” in Proc. IEEE

INFOCOM, New York, March 1999, pp. 1337–1345.

[35] T. Montgomery, “A loss tolerant rate controller for reliable multicast,” West

Virginia University, Tech. Rep. NASA-IVV-97-011, August 1997.

[36] L. Fridman and A. Levant, “Sliding modes of higher order as a natural phe-

nomenon in control theory,” in Robust Control via Variable Structure and Lya-

punov Techniques, Lecture Notes in Control and Information Science. London:

Springer-Verlag, 1996, no. 217, pp. 107–133.

[37] J. Bolot and A. Shankar, “Dynamical behavior of rate-based flow control mech-

anism,” ACM SIGCOMM Computer Communication Review, vol. 20, no. 4, pp.

35–49, April 1990.

[38] Headline News. (Janary 26, 2001) DDoS attacks block Microsoft web sites.

[39] ——. (Febrary 7-11, 2000) DDoS attacks on Yahoo, Buy.com, eBay, Amazon,

Datek, E*Trade, CNN.

[40] L. Garber, “Denial-of-service attacks rip the Internet,” IEEE Computer, vol. 33,

no. 4, pp. 12–17, April 2000.

[41] (2000) The “mstream” distributed denial of service attack tool. Technology

White Paper. [Online]. Available: http://staff.washington.edu/dittrich/misc/

mstream.analysis.txt

[42] (1999) The DoS project’s “trinoo” distributed denial of service attack tool. Tech-

nology White Paper. [Online]. Available: http://staff.washington.edu/dittrich/

misc/trinoo.analysis.txt

108

[43] (1999) The “tribe flood network” distributed denial of service attack tool. Tech-

nology White Paper. [Online]. Available: http://staff.washington.edu/dittrich/

misc/tfn.analysis.txt

[44] (1999) The “stacheldraht” distributed denial of service attack tool. Technology

White Paper. [Online]. Available: http://staff.washington.edu/dittrich/misc/

stacheldraht.analysis.txt

[45] (2000) CERT r© Advisory CA-99-17 denial-of-service tools. CERT/CC. [Online].

Available: http://www.cert.org/advisories/CA-1999-17.html

[46] S. Dietrich, N. Long, and D. Dittrich, “Analyzing distributed denial of service

attack tools: The shaft case,” in Proc. USENIX LISA, New Orleans, LA, De-

cember 2000, pp. 329–339.

[47] C. L. Schuba, I. Krsul, M. Kuhn, E. Sparford, A. Sundaram, and D. Zamboni,

“Analysis of a denial of service attack on TCP,” in Proc. IEEE Symposium on

Security and Privacy, Oakland, CA, May 1997, pp. 208–223.

[48] (2000) CERT r© distributed system intruder tools workshop report. CERT/CC.

[Online]. Available: http://staff.washington.edu/dittrich/talks/cert/

[49] (2000) CenterTrack: An IP overlay network for tracking DoS floods. Technology

White Paper. [Online]. Available: http://www.arbor.net/downloads/research51/

stone00centertrack new.pdf

[50] (2001) RID (remote intrusion detector) tool 1.11. SecurityFocus Symantec

Corporation. [Online]. Available: http://www.theorygroup.com/Software/RID

[51] (2000) Detecting and decoding “mstream” traffic. Technology White Paper. [On-

line]. Available: http://packetstorm.securify.com/distributed/Turner.mstream

109

[52] (2001) Purgatory 101: Learning to cope with the SYNs of the Internet. Technol-

ogy White Paper. [Online]. Available: http://packetstormsecurity.com/papers/

contest/RFP.doc

[53] P. Ferguson and D. Senie, “Network ingress filtering: Defeating denial of service

attacks,” RFC 2267, January 1998.

[54] (2000) Cisco–Defining strategies to protect against TCP SYN denial of service

attacks. Technology White Paper. [Online]. Available: http://www.cisco.com/

warp/public/707/4.pdf

[55] (2000) CERT r© Advisory CA-2000-01 denial-of-service developments.

CERT/CC and FedCIRC. [Online]. Available: http://www.cert.org/advisories/

CA-2000-01.html

[56] Y. W. Chen, “Study on the prevention of SYN flooding by using traffic policing,”

in Proc. IEEE/IFIP NOMS, Honolulu, HI, April 2000, pp. 593–604.

[57] X. Geng and A. B. Whinston, “Defeating distributed denial of service attacks,”

IT Professional, vol. 2, no. 4, pp. 36–42, July 2000.

[58] A. Barkley, J. C. Liu, Q. T. L. Gia, M. Dingfield, and Y. Gokhale, “A testbed

for study of distributed denial of service attacks,” in Proc. IEEE Systems, Man,

and Cybernetics Information Assurance and Security Workshop, West Point, NY,

June 2000, pp. 123–132.

[59] C. M. Ozveren, R. Simcoe, and G. Varghese, “Reliable and efficient hop-by-hop

flow control,” IEEE J. Select. Areas Commun., vol. 13, no. 4, pp. 642–650, May

1995.

110

[60] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to

flow control in integrated services networks: the single-node case,” IEEE/ACM

Transactions on Networking, vol. 1, no. 3, pp. 344–357, April 1993.

[61] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to end congestion avoidance

on a global Internet,” IEEE J. Select. Areas Commun., vol. 13, no. 8, pp. 1465–

1480, October 1995.

[62] A. Levant, “Higher order sliding: Differentiation and black-box control,” in Proc.

IEEE Conference on Decision and Control, Sydney, Australia, December 2000,

pp. 1703–1708.

[63] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems,

and Bifurcations of Vector Fields. New York: Springer-Verlag, 1983.

[64] J. C. Liu, K. G. Shin, and C. Chang, “Prevention of congestion in packet-switched

multistage interconnection networks,” IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 6, no. 5, pp. 535–541, May 1995.

[65] H. S. Ramirez, “Nonlinear variable structure systems in sliding mode: The gen-

eral case,” IEEE Transactions on Automatic Control, vol. 34, no. 11, pp. 1186–

1188, November 1989.

[66] Y. Xiong, “Control of variable structure spacecraft,” Master’s thesis, Chinese

Academy of Space Technology, Beijing, June 1995.

[67] J. F. Raymond, “Traffic analysis: Protocols, attacks, design issues and open

problems,” in Proc. the Workshop on Design Issues in Anonymity and Unob-

servability, Berkeley, CA, July 2000, pp. 7–26.

111

[68] O. Berthold, H. Federrath, and M. Kohntopp, “Anonymity and unobservability

on the Internet,” in Proc. the Workshop on Freedom and Privacy by Design,

Toronto, Canada, April 2000, pp. 57–65.

[69] D. Chaum, “Untraceable electronic mail, return addresses, and digital

pseudonyms,” Communication of the ACM, vol. 24, no. 2, pp. 84–90, February

1981.

[70] P. Baran, “On distributed communications: Ix security, secrecy, and tamper-free

considerations,” Rand Corp., Memo RM-3765-PR, August 1964.

[71] B. R. Venkatraman and R. E. Newman-Wolfe, “Performance analysis of a method

for high level prevention of traffic analysis using measurements from a campus

network,” in Proc. IEEE Annual Computer Security Applications Conference

(ACSAC), Orlando, FL, December 1994, pp. 288–297.

[72] V. Voydoc and S. Kent, “Security mechanisms in high-level network protocols,”

ACM Computing Surveys, vol. 15, no. 2, pp. 135–171, June 1983.

[73] P. F. Syverson, D. M. Goldschlag, and M. G. Reed, “Anonymous connections

and onion routing,” in Proc. IEEE Symposium on Security and Privacy, Oakland,

CA, May 1997, pp. 44–54.

[74] B. Timmerman, “A security model for dynamic adaptive traffic masking,” in

Proc. New Security Paradigms Workshop, Langdale, Cumbria, United Kingdom,

September 1997, pp. 107–116.

[75] D. Chaum, “The dining cryptographers problem: unconditional sender and re-

cipient untraceability,” Journal of Cryptology, vol. 1, no. 1, pp. 65–75, August

1988.

112

[76] Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11,

pp. 612–613, November 1979.

[77] G. R. Blakley, “Safeguarding cryptographic keys,” in Proc. AFIPS National

Computer Conference, Montvale, NJ, June 1979, pp. 313–317.

[78] G. H. Chiou and W. T. Chen, “Secure broadcasting using the secure lock,” IEEE

Transactions on Software Engineering, vol. 15, no. 8, pp. 929–934, August 1989.

[79] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications using

key graphs,” IEEE/ACM Transactions on Networking, vol. 8, no. 1, pp. 16–30,

February 2000.

[80] O. Rodeh, K. P. Birman, and D. Dolev, “Optimized group rekey for group com-

munication systems,” in Proc. ISOC Network and Distributed Systems Security,

San Diego, CA, February 2000, pp. 39–48.

[81] B. C. Neuman and T. Ts’o, “Kerberos: An authentication service for computer

networks,” IEEE Communications, vol. 32, no. 9, pp. 33–38, September 1994.

[82] R. H. Deng and T. T. Tjhung, “Novel approach to secure broadcast in distributed

systems,” in Proc. IEEE Annual International Carnahan Conference on Security

Technology, Sanderstead, United Kindom, October 1995, pp. 391–395.

[83] A. Ballardie, “Scalable multicast key distribution,” RFC 1949, July 1996.

[84] M. Allman and V. Paxson, “On estimating end-to-end network path properties,”

in Proc. ACM SIGCOMM, Cambridge, MA, August 1999, pp. 263–274.

[85] J. Bolot, “End-to-end packet delay and loss behavior in the Internet,” in Proc.

ACM SIGCOMM, San Francisco, CA, September 1993, pp. 289–298.

113

[86] A. B. Downey, “Using PATHCHAR to estimate internet link characteristics,” in

Proc. ACM SIGCOMM, Cambridge, MA, August 1999, pp. 241–250.

[87] M. Jain and C. Dovrolis, “End-to-end available bandwidth: Measurement

methodology, dynamics, and relation with TCP throughput,” in Proc. ACM

SIGCOMM, Pittsburgh, PA, August 2002, pp. 295–308.

[88] R. Kapoor, L. Chen, L. Lao, M. Sanadidi, and M. Gerla, “CapProbe: A simple

and accurate capacity estimation technique,” in Proc. ACM SIGCOMM, Port-

land, OR, August 2004, pp. 67–78.

[89] K. Lai and M. Baker, “Measuring link bandwidths using a deterministic model

of packet delay,” in Proc. ACM SIGCOMM, Stockholm, Sweden, August 2000,

pp. 283–294.

[90] S. Keshav, An Engineering Approach to Computer Networking: ATM Networks,

the Internet, and the Telephone Network. Reading, MA: Addison-Wesley, 1997.

[91] K. P. Birman and T. A. Joseph, “Reliable communication in the presence of

failures,” ACM Transactions on Computer Systems, vol. 5, no. 1, pp. 47–76,

Febrary 1987.

[92] (2002) Emcast toolkit. University of Michigan. [Online]. Available: http://www.

junglemonkey.net/emcast/

[93] (2002) The network wimulator - ns2. Information Sciences Institute, Univ. of

Southern California. [Online]. Available: http://www.isi.edu/nsnam/ns/

114

APPENDIX A

RELATIVE DEGREE AND ZERO DYNAMICS

Definition A.1 (Lie Derivative)

Given a smooth scalar function h(x) : Rn → R and a smooth vector function

f(x) = [f1(x), f2(x), · · · , fn(x)]T : Rn → Rn, where x = [x1, x2, · · · , xn]T ∈ Rn, the

Lie derivative of h(x) with respect to f(x), Lfh(x), is defined as the following scalar

function

Lfh(x) ≡ ∂h

∂x
f(x) =

n∑

i=1

∂h

∂xi

fi(x). (A.1)

We also denote

LgLfφ(x) ≡ ∂(Lfφ)

∂x
g(x), (A.2)

and

L0
fφ(x) ≡ φ(x), (A.3)

Lj
fφ(x) ≡ LfL

j−1
f φ(x). (A.4)

Definition A.2 (Relative Degree of SISO Systems)

Considering the following Single-Input-Single-Output (SISO) nonlinear system

denoted by

ẋ = f(x) + g(x)u,

y = h(x),

(A.5)

where the state vector x = [x1, x2, · · · , xn]T ∈ Rn and the input u ∈ R, the output

y ∈ R. f(x), g(x) and h(x) are smooth functions,

115

f(x) = [f1(x), f2(x), · · · , fn(x)]T : Rn → Rn,

g(x) = [g1(x), g2(x), · · · , gn(x)]T : Rn → Rn,

h(x) : Rn → R.

An SISO system described by (A.5) has a relative degree r at x0 if and only if:

(1) LgL
k
fh(x) = 0 for x in a neighborhood of x0 for ∀k < r − 1;

(2) LgL
r−1
f h(x0) 6= 0.

Definition A.3 (Relative Degree of MIMO Systems)

Consider the following Multiple-Input-Multiple-Output (MIMO) nonlinear sys-

tem denoted by

ẋ = f(x) + G(x)u,

y = h(x),

(A.6)

where the state vector x = [x1, x2, · · · , xn]T ∈ Rn and the input vector (the control

variables) u = [u1, u2, · · · , um]T ∈ Rm, and the output vector y = [y1, y2, · · · , ym]T ∈
Rm. f(x) and h(x) are smooth function vectors. G(x) is a smooth function matrix.

f(x) = [f1(x), f2(x), · · · , fn(x)]T : Rn → Rn,

G(x) = [g1(x), g2(x), · · · , gm(x)]T ,

gi(x) = [gi,1(x), gi,2(x), · · · , gi,n(x)]T : Rn → Rn, for i = 1, 2, · · · ,m,

h = [h1(x), h2(x), · · · , hm(x)] : Rn → Rm.

An MIMO system described by (A.6) has a (vector) relative degree [r1, r2, · · · , rm] at

x0 if and only if:

(1) Lgj
Lk

fhi(x) = 0, 1 ≤ i, j ≤ m for all x in a neighborhood of x0 for ∀k < ri−1;

(2) Lgj
Lri−1

f hi(x0) 6= 0.

116

APPENDIX B

STABILITY THEOREMS

Given a system described by

ẋ = f(x, t), (B.1)

where x = [x1, x2, · · · , xn]T ∈ Rn. We make a notation that x(t, x0) is a solution of

(B.1) with initial value x0 at t = 0.

Definition B.1 (Equilibrium Point)

Considering a nonlinear system (B.1), x∗ is called an equilibrium point of system

(B.1) if and only if f(x∗, t) = 0 for ∀t.

Definition B.2 (Stability)

An equilibrium point of system (B.1), is bounded stable if and only if for ∀ε > 0,

∃δ > 0, which makes ‖ x(t)− x∗ ‖< ε hold for ∀x0, which satisfies ‖ x0(t)− x∗ ‖< ε

and ∀t > 0. Further if limt→+∞ ‖ x(t)− x∗ ‖= 0 also holds on, then the equilibrium

point x∗ is asymptotically stable. We always refer to asymptotically stable unless

otherwise stated.

Definition B.3 (Positive/Negative Definite Functions)

A continuously differentiable function f : Rn → R+ is said to be positive definite

in a region U of R that contains the origin if (1) f(0) = 0 and (2) f(x) > 0 for x ∈ U

and x 6= 0. f(x) is said to be positive semidefinite if f(x) ≥ 0 for x ∈ U and x 6= 0.

Conversely, if condition (2) is replaced by f(x) < 0, then f(x) is said to be

negative definite. f(x) is said to be negative semidefinite if f(x) ≤ 0.

117

Theorem B.1 (Lyapunov Stability of Autonomous Systems) Let x = 0 be an

equilibrium point for a system described by:

ẋ = f(x), (B.2)

where f : U → Rn is a continuously differentiable function and U ⊂ Rn a domain

that contains the equilibrium point of (B.2), x∗. Let V : U → R be a continuously

differentiable, positive definite function in U .

1. If V̇ (x) = ∂V
∂x f(x) is negative semidefinite, then x = x∗ is a stable equilibrium

point.

2. If V̇ (x) is negative definite, then x = x∗ is an asymptotically stable equilibrium

point.

In both cases above V is called a Lyapunov function. Moreover, if the conditions

hold for all x ∈ Rn and ‖x‖ → ∞ implies that V (x) → ∞, then x = x∗ is globally

stable in case 1 and globally asymptotically stable in case 2.

Lemma B.2 A time-invariant linear system dny
dtn +ωn−1

dn−1y
dtn−1 +ω1ẏ+ω0y = 0, where

ωi ∈ R for i = 1, 2, · · · , n − 1, is asymptotically stable if and only if all roots of its

characteristic polynomial pn + ωn−1p
n−1 + · · ·+ ω1p + ω0 have negative real parts.

For example, ẏ + ωy = 0 is asymptotically stable if and only if ω > 0.

Theorem B.3 (Lyapunov uniform asymptotic stability of non-autonomous systems)

Let x = x∗ be an equilibrium point of a system described by (B.1) and U ⊂ Rn a do-

main containing it. Let V : U × [0,∞] → R be a continuously differentiable function

that satisfies:

V1(x) ≤ V (x, t) ≤ V2(x) (B.3)

V̇ (x, t) =
∂V

∂t
+

∂V

∂x
f(x, t) ≤ −V3(x) (B.4)

118

for all t ≥ t0, and x ∈ U , where V1(x), V2(x) and V3(x) are continuous positive

definite functions on U . Then, x = x∗ is uniformly asymptotically stable and V is

called a Lyapunov function.

119

VITA

Yong Xiong was born in Fengdu, the People’s Republic of China. He received his

Bachelor of Science degree from Tsinghua University, Beijing, China, in July 1992,

and Master of Science degree from the Chinese Academy of Space Technology, Beijing,

China, in June 1995, both in electrical engineering. His permanent address is: Dong

Gao Di Mei Yuan Li]24-5-5, Feng Tai District, Beijing 100076, China.

The typist for this thesis was Yong Xiong.

