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ABSTRACT 

Effective Properties of  Three-Phase Electro-Magneto-Elastic 

Multifunctional Composite Materials. (December 2003) 

Jae Sang Lee, B.S., Seoul National University, Seoul, Korea 

Chair of Advisory Committee: Dr. Dimitris C. Lagoudas 
 

 

Coupling between the electric field, magnetic field, and strain of composite 

materials is achieved when electro-elastic (piezoelectric) and magneto-elastic 

(piezomagnetic) particles are joined by an elastic matrix. Although the matrix is neither 

piezoelectric nor piezomagnetic, the strain field in the matrix couples the E field of the 

piezoelectric phase to the B field of the piezomagnetic phase. This three-phase electro-

magneto-elastic composite should have greater ductility and formability than a two-

phase composite in which E and B are coupled by directly bonding two ceramic 

materials with no compliant matrix. A finite element analysis and homogenization of a 

representative volume element is performed to determine the effective electric, 

magnetic, mechanical, and coupled-field properties of an elastic (epoxy) matrix 

reinforced with piezoelectric and piezomagnetic fibers as functions of the phase volume 

fractions, the fiber (or particle) shapes, the fiber arrangements in the unit cell, and the 

fiber material properties with special emphasis on the symmetry properties of the fibers 

and the poling directions of the piezoelectric and piezomagnetic fibers. The effective 

magnetoelectric moduli of this three-phase composite are, however, less than the 



 

 

iv

effective magnetoelectric coefficients of a two-phase piezoelectric/piezomagnetic 

composite, because the epoxy matrix is not stiff enough to transfer significant strains 

between the piezomagnetic and piezoelectric fibers.  
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CHAPTER I  

INTRODUCTION 

A. Literature Review 

Efforts are currently under way to develop materials that have superior properties 

to those currently existing. This has resulted in the development of composite materials 

that exhibit remarkable product properties, which are created by the interaction between 

the constituent phases. There are many advantages to using composite materials over 

more traditional materials, such as the possibility of weight or volume reduction in a 

structure while maintaining a comparable or improved performance level [1]. 

Pyroelectricity, which is achieved by combining a material with a large thermal 

expansion coefficient with a piezoelectric material, is used in numerous thermal-imaging 

devices and sensors. The composite can exhibit pyroelectricity even though neither of 

the constituents does [2]. The magnetoelectric coupling effect in composite materials 

consisting of a piezoelectric phase and a piezomagnetic phase has recently attracted 

attention due to the extensive applications for broadband magnetic field probes, electric 

packaging, acoustic, hydrophones, medical ultrasonic imaging, sensors, and actuators [3, 

4, 5, 6, 7]. Theses composites are regarded as smart or intelligent materials. The 

analytical modeling of such composites provides the opportunity to study the effect of 

controlling and altering the response of composite structures that consist of composite 

materials [8]. 
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In 1974 Van Run et al. (1974) reported that the magnetoelectric effect obtained 

in a 3B aT iO - 4C oF eO composite was two orders of magnitude larger than that of the 

single-phase magnetoelectric material 2 3C o O  [9]. Bracke and Van Vliet (1981) reported 

a broad band magnetoelectric transducer with a flat frequency response using composite 

materials. Since then, much of the theoretical and experimental work for investigation 

into the magnetoelectric coupling effect has been carried out in papers published by 

Harshe (1991), Harshe et al. (1993), Avellaneda and Harshe (1994), Nan (1994), 

Benveniste (1995), Huang and Kuo (1997), Li and Dunn (1998), Wu and Huang (2000) 

and Aboudi (2001). They obtained expressions for the effective magnetoelectric 

coefficient and a figure of merit for magnetoelectric coupling.  

Harshe, Dougherty, and Newnham (1993) treated magnetoelectric effect of 

piezoelectric-piezomagnetic composites in terms of a simple approach. They assumed a 

relatively simple geometrical model, a cubes model, in which the so-called 0-3 or 3-0 

composite with particles of one phase (denoted by 0) embedded in the matrix of the 

second phase (denoted by 3) was considered as consisting of small cubes. Then, they 

solved the fields in one cube for which the boundary value problem involved is tractable. 

This simple cubes model is an elementary series-parallel-like model and is lacking in 

theoretical rigor [10, 11].  

Nan (1994) proposed a theoretical framework based on a Green’s function 

method and perturbation theory, which have been widely employed to treat the general, 

linear-response properties of inhomogeneous media [10]. However, Benveniste (1995) 

derived exact connections between the effective moduli of piezoelectric-piezomagnetic 
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two-phase composites, which were independent of the details of the microgeometry and 

of the particular choice of the averaging model, using the uniform field concept [12, 13]. 

The so-called non-self-consistency approximation (NSC) of Nan failed to satisfy the 

exact connections between different components of the effective moduli obtained by 

Benveniste.  

Li and Dunn (1998) developed a micromechanics approach to analyze the 

average fields and effective moduli for two phase piezoelectric-piezomagnetic 

composites [1]. They derived explicit expressions for the generalized Eshelby tensors, 

which are used for micromechanics modeling of heterogeneous solids and exact relations 

regarding the effective behavior and the average fields. Then Li and Dunn obtained the 

closed form expressions for the effective moduli of two-phase composites as well as the 

exact connections between the effective thermal moduli and the effective electro-

magneto-elastic moduli of two-phase composites applying the Mori-Tanaka mean field 

approach.  

The Mori-Tanaka method was also employed by Wu and Huang (2000) in order 

to obtain the electro-magneto-elastic Eshelby tensors and the effective material 

properties of piezoelectric-piezomagnetic composites [14]. By taking the derivative of 

the closed form for magnetoelectric coupling effect with respect to the fiber volume 

fraction as zeros, Huang et al (2000) obtained the optimized volume fraction of fibers 

analytically and showed that the magnetoelectric coupling effect is a function of the 

elastic properties of constituents, but not a function of the magnetic and electric 

properties [15].  
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Li (2000) generalized the Mori-Tanaka theorem and Nemat-Nasser and Hori’s 

multi-inclusion model to analyze the heterogeneous electro-magneto-elastic solids. His 

analysis served as a basis for an averaging scheme to determine the effective electro-

magneto-elastic moduli of composite materials.  

Aboudi (2001) employed a homogenization micromechanical method for the 

prediction of the effective moduli of electro-magneto-thermo-elastic multiphase 

composites [8]. The homogenization method assumes that fields vary on multiple spatial 

scales due to the existence of a microstructure and that the microstructure is spatially 

periodic. It was seen that the homogenization theory and Mori-Tanaka results of Li and 

Dunn (1998) were very similar. To date, the micromechanics of magnetoelectric 

composites have focused on two-phase composites. 

B. Motivation 

Unfortunately, piezoelectric and piezomagnetic materials are usually brittle 

ceramics, therefore the composite consisting of those two phases would be susceptible to 

brittle fracture. Thus, the third phase, the elastic phase, is introduced to increase the 

ductility. A three-phase electro-magneto-elastic composite consisting of piezoelectric 

and piezomagnetic phases separated by a polymer matrix would have greater ductility 

and formability. Recently, Boyd et al (2001) presented a method for using arrays of 

MEMS (Micro-Electro-Mechanical Systems) electrodes and electromagnets to achieve 

microscale positioning of piezoelectric and piezomagnetic particles in liquid polymers, 

which would then be solidified to make a polymer matrix magnetoelectric composite 

[16]. The ability to pattern the particles into microscale unit cells would reduce 
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concentrations of stress, electric field, and magnetic field, thereby increasing effective 

threshold properties such as strength, electric breakdown field, and magnetic saturation 

field. Furthermore, one can hope that someday arrays of MEMS can be used to control 

the microscale distribution of the poling direction of piezoelectric and piezomagnetic 

particles.  

C. Three-phase Electro-magneto-elastic Composite 

Motivated by the work of Boyd et al (2001), in the present paper we calculate the 

effective magnetoelectric coefficients of three-phase composites consisting of 

piezoelectric and piezomagnetic phases separated by an elastic matrix. Although the 

matrix is neither piezoelectric nor piezomagnetic, the strain field in the matrix couples 

the E field of the piezoelectric phase to the B field of the piezomagnetic phase. The finite 

element method is used because, unlike closed-form micromechanics methods, the finite 

element method reveals the concentration of stress, electric field, and magnetic field 

within the unit cell. These field concentrations determine the effective strength, electric 

breakdown field, and magnetic saturation field of the composite. Homogenization is then 

applied on the FEA (Finite Element Analysis) solution for the average (effective) 

electro-magneto-elastic properties. 

D. Femlab 

Commercially available software known as FEMLAB is employed in the 

computational analysis. FEMLAB is a program that supports the equation based 

modeling, which means that the software does not need the differential equations to be 
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solved in advance. The user may supply any desired system of differential equations and 

the software generates the appropriate FEM (Finite Element Method) formulation. This 

is very useful in solving multi-physics problems in which one may have significant 

coupling of variables. The appropriate partial differential equations for each sub-domain 

are given as input, and the corresponding appropriate boundary condition equations and 

specific boundary values are input as well. 

E. Scope of the Thesis 

The basic equations and notation used for each phase are presented in Chapter II. 

The mean-field theory for three-phase electro-magneto-electric composites and the finite 

element and homogenization method of a unit cell are presented in Chapter III and 

Chapter IV, respectively. In section A of Chapter V, the results of a finite element 

analysis are compared to the Mori-Tanaka results of Li and Dunn (1998) for a two-phase 

composite consisting of a piezomagnetic matrix with piezoelectric fibers. For a three-

phase composite, the finite element results are presented in section B. In section C, the 

parametric studies are presented with special emphasis on the phase volume fraction and 

the poling directions of the piezoelectric and piezomagnetic fibers. 
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CHAPTER II 

 THREE-PHASE ELECTRO-MAGNETO-ELASTIC COMPOSITE 

A. Three-phase Electro-magneto-elastic Composite 

Consider a composite material with cylindrical piezoelectric and piezomagnetic 

fibers aligned periodically as shown in Figure 1. The piezoelectric and piezomagnetic 

fibers are transversely isotropic and the elastic matrix is isotropic. The matrix and fibers 

are assumed to be perfectly bonded without any sliding, void nucleation, or growth on 

their interfaces. 

 

Figure 1. Three-phase electro-magneto-elastic composite 

B. Basic Equations 

1.  Constituent phases 

In order to assess the three-phase electro-magneto-elastic composite response, 

the framework of the model is introduced. For the piezoelectric phase, the piezomagnetic 
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phase, and elastic matrix, the constitutive equations are given in Equations (1a-c) below 

respectively: 

Tσ = Cε - e E
D = eε + ηE
B = µH

        

Tσ = Cε -q H
D = ηE
B = qε +µH

          
σ = Cε
D = ηE
B = µH

          (1a-c) 

 

where σ , ε , C , η , µ , e  and q  are the stress, strain, elastic stiffness, dielectric 

permittivity, magnetic permeability, piezoelectric coefficient, and piezomagnetic 

coefficient tensors. D , E , B  and H  are the electric displacement, electric field, 

magnetic flux and magnetic field vectors. The various constitutive coefficient tensors, 

which are assumed to exhibit transverse isotropy with 3x  as a symmetry axis, are given 

by the following explicit expressions: 

11 12 13

12 11 13

13 13 33

44

44

11 12

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0

10 0 0 0 0 ( )
2

C C C
C C C
C C C

C
C

C C

 
 
 
 
 =  
 
 
 − 
 

C  
15

15

31 31 33

0 0 0 0 0
0 0 0 0 0

0 0 0

e
e

e e e

 
 =  
 
 

e               (2a-b) 

15

15

31 31 33

0 0 0 0 0
0 0 0 0 0

0 0 0

q
q

q q q

 
 =  
 
 

q  
11

11

33

0 0
0 0
0 0

η
η

η

 
 =  
 
 

η  
11

11

33

0 0
0 0
0 0

µ
µ

µ

 
 =  
 
 

µ               (2c-e) 

The balance of linear momentum (quasi-static conditions), Gauss’ law, and the 

conservation of magnetic flux (no magnetic charges) are given by 

   0∇⋅ =σ ,  0∇⋅ =D ,  0∇⋅ =B     (3a-c) 
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By the theory of electrostatics and magnetostatics, the electric field E and the 

magnetic field strength H are the gradient of an electric potential φ  and a magnetic 

potential Φ : 

         φ= −∇E ,  = −∇ΦH      (4a-b) 

We assume small displacement gradient and employ the linearized strain-

displacement relations are given by 

    ( )( )1
2

= ∇ + ∇
Tε u u           (5) 

Combining governing differential equations (2)-(5) with the constitutive 

equations (1a-c) results in the following field equations (6a-c) for 1u , 2u , 3u , φ  and Φ  in 

the piezoelectric, piezomagnetic and elastic  phases respectively: 

( )
( )
( )

0

0

0

φ

φ

∇ ⋅ ∇ + ∇ =

∇⋅ ∇ − ∇ =

∇⋅ − ∇Φ =

TC u e

e u η

µ

      (6a)     

( )
( )
( )

0

0

0

φ

∇ ⋅ ∇ + ∇Φ =

∇⋅ − ∇ =

∇⋅ ∇ − ∇Φ =

TC u q

η

q u µ

     (6b)     
( )
( )
( )

0

0

0

φ

∇ ⋅ ∇ =

∇ ⋅ − ∇ =

∇⋅ − ∇Φ =

C u

η

µ

     (6c) 

These field equations are implemented in the FEM and solved for a boundary 

value problem having periodic boundary conditions. The field equations for the 

constituent phases of the three-phase electro-magneto-elastic composite with 3x  as a 

symmetry axis are shown in Appendix A. 

2. Effective electro-magneto-elastic composite 

We consider electro-magneto-elastic media that exhibit linear, static, anisotropic 

coupling between the magnetic, electric, and elastic fields. In this case, the constitutive 

equations can be expressed as 



 10

T T

T

σ = Cε - e E -q H
D = eε + ηE+ λH
B = qε + λ E+µH

     (7) 

where λ  is the (3x3) magnetoelectric coefficient tensor.  

 The effective constitutive coefficient tensors of the composite are defined in 

terms of averaged fields. This is based on the fact that the effective properties of a 

composite are relations between the volume average of the strain, electric field, magnetic 

field, stress, electric density and magnetic flux of microscopically heterogeneous media. 

Field variables over the entire boundary can be averaged to obtain effective constitutive 

response as 

* * *

* * *

* * *

< > < > < > < >

< > < > < > < >

< > < > < > < >

T T

T

σ = C ε -e E -q H
D = e ε +η E +λ H
B = q ε +λ E +µ H

         (8) 

The brackets denote the volume average, 1 dV
V

< • >= •∫ , where V  is the volume 

of representative volume element. Although λ  is absent in each of the phases within the 

representative volume element, the effective properties of the composite may contain a 

non-zero magnetoelectric coefficient because the magnetic and electric fields of the 

piezomagnetic and piezoelectric particles are coupled through the matrix strain field.   
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CHAPTER III 

MICROMECHANICAL APPROACH 

In this chapter, the generalized expression for the effective properties of N-phase 

electro-magneto-elastic composites and the Mori-Tanaka theory for the three-phase 

electro-magneto-elastic composites which is used for comparison with FEA are 

introduced. The matrix and the dispersed phase are assumed to be perfectly bonded 

without any sliding, void nucleation, or growth on their interfaces. 

A. The Effective Properties of N-phase Composites 

Consider a heterogeneous composite material consisting of an elastic matrix with 

cylindrical piezoelectric and piezomagnetic fibrous inclusions aligned along 3x  axis. We 

require that the material properties of the dispersed phase are constant with respect to a 

fixed coordinate system. Thus, orientational variations of an anisotropic dispersed phase 

are prohibited [1]. To treat the elastic, electric and magnetic variables on equal footing, 

the constitutive relations are compactly expressed in the following notation. 

    
     ⇔    

        

T T

T

σ C e q ε
D = e -η λ -E Σ = LΖ
B q λ -µ -H

   (9) 

Consider that the heterogeneous composite material is subjected to homogeneous 

potential boundary conditions oZ , meaning that, when they are applied to a 

homogeneous solid, they result in homogeneous fields. The average strain theorem of 

elasticity (Aboudi, 1991) can be generalized to show 
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〈 〉 = oZ Z      (10) 

Taking into account the boundary conditions and the effective constitutive 

equations, we can show 

o〈 〉 =Σ LZ      (11) 

where L is the electro-magneto-elastic effective moduli. 

We have already noted that 〈 〉 = oZ Z . The volume-weighted average of Z over 

each phase is expressed as 

1
o

1

N

m m i i
i

c c
−

=

= 〈 〉 + 〈 〉∑Z Z Z     (12) 

where the subscript m  denotes the matrix and i  is used for numbering the dispersed 

phases. Applying an analogous result for 〈 〉Σ , and using the constitutive equations for 

each phase and the composite yields 

( )
1

o o

1

N

m i i m i
i

c
−

=

= + − 〈 〉∑LZ L Z L L Z     (13) 

Finally, by simple manipulations, the general expression for the effective 

properties of perfectly bonded N-phase composites yields  

ic∑
N-1

m i m i
i=1

L = L + (L -L )A     (14) 

where iA  is the concentration factor that relates the average strain and potential 

gradients in phase i  to that in the composite, namely, 

i i〈 〉 =Z A Z      (15) 
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The estimation of iA  is the key to predicting the effective electro-magneto-

elastic moduli L. From the rigorous framework, it is clear that the estimate of the 

effective properties depends on the estimate of concentration factor iA , either directly or 

indirectly.  

B. Mori-Tanaka Method for Three-phase Electro-magneto-elastic Composite 

The Mori-Takaka theory is one of the micromechanical approaches to estimating 

the concentration factor iA . The basic assumption of the Mori-Tanaka scheme is that iA  

is given by the solution for a single particle embedded in an infinite matrix subjected to 

an applied electro-magneto-elastic field equal to the as-yet-unknown average field in the 

matrix. This assumption is easily expressed as  

dil
i i m〈 〉 = 〈 〉Z A Z     (16) 

where dil
iA  is the dilute concentration tensor that can be obtained from electro-magneto-

elastic Eshelby tensors iS , which are composed of one 4th rank tensor, four 3rd rank 

tensors, and four 2nd rank tensors. Explicit expressions of the electro-magneto-elastic 

Eshelby tensors are given by Li and Dunn (1998) and tabulated in the Appendix C. For 

ellipsoidal inclusions, they are functions of the shape of the inclusion and the electro-

magneto-elastic moduli of the matrix. 

From the average strain theorem and the definition of the concentration factor, 

the dilute concentration factor dil
iA  and Mori-Tanaka concentration factor MT

iA  can be 

shown as 
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11( )dil
i i m i m

−− = + − A I S L L L                  (17) 

1
1

1
( )

N
MT MT dil
i i m i i

i
c c

−
−

=

= +∑A A I A         (18) 

To apply this to three-phase composites, it is necessary to find dil
iA and MT

iA for 

each inclusion. Because the Eshelby tensor iS  is a function of the matrix material 

properties and the shape of inclusions, iS  is the same for piezomagnetic and 

piezoelectric phases in the elastic matrix based composite [17]. 

Finally, the effective moduli can be written in the form 

( ) ( )1 1 1 2 2 2
MT MT

m m mc c= + − + −L L L L A L L A       (19) 

The effective moduli developed by the Mori-Tanaka mean field theory are 

functions of the phase volume fraction, the shape of the inclusions and the material 

properties of each phase.  
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CHAPTER IV 

FINITE ELEMENT METHOD 

A. Periodic Unit Cell 

The finite element analysis program FEMLAB was used to solve the field 

equations in a periodic unit cell consisting of two types of fibers separated by a matrix. 

Several types of periodic unit cells are possible for a three-phase fibrous composite. In 

this paper, we consider  the periodic microstructure and the periodic unit cell of Figure 2. 

 

      

Figure 2. Periodic structure model and Periodic unit cell 

 

B. Periodic Boundary Conditions 

When the microstructure model is given, there arises the question of what 

boundary conditions should be used to determine the effective moduli. We may use the 

homogeneous stress and strain boundary conditions such that the solutions of the 

resulting macrofield equations can overestimate or underestimate macroscopic responses 
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that are obtained by using other effective moduli since these boundary conditions 

provide upper and lower bounds for all possible effective moduli. However, we may use 

the periodic boundary conditions that provide the effective moduli, which represent 

those obtained by using a certain class of boundary conditions [18, 19, 20, 21]. Periodic 

boundary conditions (Hori and Nematt-Nasser, 1999) are applied to the periodic unit 

cell, as indicated in Table 1, referenced to Figure 3. 

 

 

 

Figure 3. Schematic of the periodic unit cell used for the periodic boundary conditions 
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  Table 1. Boundary condition equations 

Between AEHD  and BFGC  Between ABFE  and DCGH  Between ABCD  and EFGH  

1 2 3 1 2 3 11( , , ) ( , , ) 2u a x x u a x x aε= − +  1 1 3 1 1 3 21( , , ) ( , , ) 2u x a x u x a x aε= − +  1 1 2 1 1 2 31( , , ) ( , , ) 2u x x a u x x a aε= − +  

2 2 3 2 2 3 12( , , ) ( , , ) 2u a x x u a x x aε= − +  2 1 3 2 1 3 22( , , ) ( , , ) 2u x a x u x a x aε= − +  2 1 2 2 1 2 32( , , ) ( , , ) 2u x x a u x x a aε= − +  

3 2 3 3 2 3 13( , , ) ( , , ) 2u a x x u a x x aε= − +  3 1 3 3 1 3 23( , , ) ( , , ) 2u x a x u x a x aε= − +  3 1 2 3 1 2 33( , , ) ( , , ) 2u x x a u x x a aε= − +  

2 3 2 3 1( , , ) ( , , ) 2a x x a x x E aφ φ= − −  1 3 1 3 2( , , ) ( , , ) 2x a x x a x E aφ φ= − −  1 2 1 2 3( , , ) ( , , ) 2x x a x x a E aφ φ= − −  

2 3 2 3 1( , , ) ( , , ) 2a x x a x x H aΦ = Φ − −  1 3 1 3 2( , , ) ( , , ) 2x a x x a x H aΦ = Φ − −  1 2 1 2 3( , , ) ( , , ) 2x x a x x a H aΦ = Φ − −  

There can be five periodic boundary equations for each pair of opposite 

boundaries. Because of symmetry, the following pairs of boundary conditions are 

equivalent.  

3 1 3 3 1 3 23( , , ) ( , , ) 2u x a x u x a x aε= − +  ⇔ 3 2 3 3 2 3 13( , , ) ( , , ) 2u a x x u a x x aε= − + ;  

1 1 2 1 1 2 31( , , ) ( , , ) 2u x x a u x x a aε= − +  ⇔ 2 1 2 2 1 2 32( , , ) ( , , ) 2u x x a u x x a aε= − + ; 

2 2 3 2 2 3 12( , , ) ( , , ) 2u a x x u a x x aε= − +  ⇔ 1 1 3 1 1 3 21( , , ) ( , , ) 2u x a x u x a x aε= − +   

This means that, if one were seeking to independently apply each of the fifteen 

boundary conditions, three of them would be redundant. Therefore, there are twelve 

independent boundary value problem cases that would need to be obtained. The 

bracketed terms are the input values that are the appropriate volume averaged quantity 

(e.g., the term 11ε , the value supplied, say 11ε =0.001, would be the average strain). 
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C. Evaluation of the Effective Constitutive Equations 

For example, by specifying an average value for the term 11ε  for one of the 

independent boundary condition equations and specifying all of the other average values 

to be zero, one can construct one of the twelve independent boundary value problem 

cases. Returning to the engineering formulation of the constitutive response for the 

effective composite, the implementation of this boundary condition would be seen as 

following: 

11 11

22

33

23

31 * * *

12 * * *

1 * * *

2

3

1

2

3

0
0
0
0
0
0
0
0
0
0
0

D
D
D
B
B
B

σ ε
σ
σ
σ
σ
σ

   
   
   
   
   
   
   
    

    =     
        

   
   
   
   
   

       

T T

T

C e q
e -η -λ
q -λ -µ

    (20) 

We may represent the twelve independent applied boundary conditions by 

collecting them as columns in a matrix in the following way where the associated 

outputs may also be cast as the columns in an analogous manner. 
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12 12
11 11 11

22 22 22

33 33 33

23 23

31 31 * * *

12 12 * * *

1 1 * * *

2 2

3 3

1 1

2 2

3 3

0 0 0
0 00

0 00
0 0 20
0 00
0 00

..........
0 00
0 00
0 00
0 00
0 00
0 00

D D
D D
D D
B B
B B
B B

σ σ ε
σ σ ε
σ σ ε
σ σ ε
σ σ
σ σ

×
 
 
 
 
 
 
 
   
   

=   
   

  
 
 
 
 
 
    

T T

T

C e q
e -η -λ
q -λ -µ

23

31

12

1

2

3

1

2

3

00 0 0 0 0 0 0
00 0 0 0 0 0 0
00 0 0 0 0 0 0
00 0 0 0 0 0 0
00 2 0 0 0 0 0 0
00 0 2 0 0 0 0 0
00 0 0 0 0 0 0
00 0 0 0 0 0 0
00 0 0 0 0 0 0
00 0 0 0 0 0 0
00 0 0 0 0 0 0

0 0 0 0 0 0 0 0

E
E

E
H

H
H

ε
ε

 
 
 
 
 
 
 
 
 
 − 
 −
 

− 
 − 
 −
  −  

     (21) 

Therefore, we can construct a 12x12 input matrix and a 12x12 output matrix. 

These two matrices may be used to solve for the values of the 12x12 effective property 

matrix. 

D. Element and Solver 

 

  
 

Figure 4. Mesh shape of two-phase composite and three-phase composite 

 

The mesh used in the FEM analysis for two-phase composites and three-phase 

composites are shown in Figure 4. The number of elements for each model are 16,207 
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and 21,824, respectively. The tetrahedron linear elements are used for FEA. Analysis is 

carried out using a linear iterative solver.  
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CHAPTER V 

RESULTS AND DISCUSSION 

A.  Two-phase Electro-magneto-elastic Composite 

Before considering the three-phase composite, we first verified our analytical 

procedure by comparing the results of the finite element analysis with published results 

for the Mori-Tanaka method (Li and Dunn (1998)) for a two-phase composite consisting 

of a piezomagnetic matrix ( 2 4CoFe O , Table 2) reinforced with piezoelectric fibers 

( 3BaTiO , Table 2). Both phases are transversely isotropic with 3x  the axis of symmetry.  

 
Figure 5. Square unit cell and hexagonal unit cell 

 
 
 
For unidirectionally fiber reinforced composites, various types of periodic unit 

cells are possible. However, frequently employed idealized fibrous-matrix unit cells are 

square unit cell and hexagonal unit cell as seen in Figure 5. An important characteristic 

of these composites is their transverse isotropy. A square periodic unit cell is relatively 

more frequently employed than a hexagonal unit cell in the literature. However, a square 

periodic unit cell lacks transverse isotropy that most unidirectional composites, 
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consisting of a matrix reinforced with randomly distributed fibers, possess owing to the 

random distribution of fibers in the matrix. If the transverse isotropy is not the 

characteristic to be preserved through the idealization, then advantage can be taken of its 

simplicity by comparing with other types of unit cell. The superiority of the hexagonal 

unit cell to the square unit cell is that it preserves the transverse isotropic characteristic 

while the effective properties obtained from the square unit cell show significant 

transverse anisotropy. However, the transverse isotropy achieved through a hexagonal 

unit cell is at a price (i.e. the unit cell from it is substantially more sophisticated than that 

from a square unit cell) [22, 23, 24]. The basic assumption of the Mori-Tanaka theory 

used by Li and Dunn (1998) to determine the effective properties of a two-phase electro-

magneto-elastic composite is that the dispersed fibers are perfectly aligned. This means 

that the effective moduli determined by the Mori-Tanaka theory preserves the transverse 

isotropy [25, 26].  

Thus, the proper unit cell for the FEM to compare with the Mori-Tanaka method 

by Li and Dunn (1998) may be the hexagonal unit cell. However, we consider the square 

unit cell for a two-phase electro-magneto-elastic composite with the benefit of simplicity 

and also because we take into account the square unit cell for a three-phase electro-

magneto-elastic composite. 

The stiffness tensor of materials that show transverse isotropy behavior has six 

different components (Equation 2a). However, there exist only five independent 

components by the relation between the components as following 

11 12
66 0

2
C C C−

− =     (22) 
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Figures 6 through 8 show the distribution of the stiffness tensor for the rotational 

variation and the average of varying values. To verify the transverse isotropy, the 

relation between the components and the normalized average of varying values are 

plotted in Figure 9. Equation 22 is satisfied for the averaged components as seen in 

Figure 9. Thus, the rotationally averaged stiffness tensor shows the transverse isotropy.  
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Figure 6. C11 distribution for rotational variation for a two-phase composite 
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Figure 7. C12 distribution for rotational variation for a two-phase composite 
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Figure 8. C66 distribution for rotational variation for a two-phase composite 
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Figure 9. Difference distribution for rotational variation for a two-phase composite 

 

 

The effective moduli of the fibrous two-phase composite were evaluated for two 

fiber volume fractions, fv =0.4 and fv =0.6. 

The averaged results for the rotational variation are compared with the 

predictions of Li and Dunn (1998) in Figures 10 through 16, in which the effective 

moduli determined by the finite element analysis are represented by dots.  

The finite element results are in excellent agreement with the Mori-Tanaka 

results of Li and Dunn (1998) and satisfy Benveniste’s (1995) exact connections 

between the effective moduli.  
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Figure 12. Effective dielectric moduli of a fibrous 
two-phase composite vs fv  

Figure 10. The unit cell of a fibrous two-phase 
composite. 

Figure 11. Effective elastic moduli of a fibrous 
two-phase composite vs fv  

Figure 13. Effective magnetic moduli of a fibrous 
two-phase composite vs fv  

Figure 14. Effective piezoelectric moduli of a 
fibrous two-phase composite vs fv  

Figure 15. Effective piezomagnetic moduli of a 
fibrous two-phase composite vs fv  
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Material properties of the piezoelectric phase and the piezomagnetic phase are 

shown in Table 2.  

 

Table 2. Material properties of 3BaTiO and 2 4CoFe O  

 3BaTiO  (piezoelectric phase) 2 4CoFe O  (piezomagnetic phase) 

11C  )(Pa  16.6×1010 28.6×1010 
12C  )(Pa  7.7×1010 17.3×1010 
13C  )(Pa  7.8×1010 17.05×1010 

33C  )(Pa  16.2×1010 26.95×1010 

44C  )(Pa  4.3×1010 4.53×1010 

11η  )/( 22 NmC  112×10-10 0.8×10-10 

33η  )/( 22 NmC  126×10-10 0.93×10-10 

11µ  )/( 22 CNs  5×10-6 -590×10-6 

33µ  )/( 22 CNs  10×10-6 157×10-6 

31e  )/( 2mC  -4.4 0 

33e  )/( 2mC  18.6 0 

15e  )/( 2mC  11.6 0 

31q  )/( AmN  0 5.803×102 

33q  )/( AmN  0 6.997×102 

15q  )/( AmN  0 5.5×102 

 

 

Figure 16. Effective magnetoelectric constant 33λ  
of a fibrous two-phase composite vs fv  
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B.  Three-phase Electro-magneto-elastic Composite 

The phase volume fractions are 0.3, 0.3 and 0.4 for the piezomagnetic fiber 

( 2 4CoFe O , Table 2), the piezoelectric fiber ( 3BaTiO , Table 2), and the matrix, 

respectively. The isotropic linear elastic matrix is assumed to be epoxy, so that 11C = 

5.53×109 ( )Pa , 12C = 2.97×109 ( )Pa , η =1.0×10-10 2 2( / )C Nm , and µ  = 1.0×10-6 

2 2( / )Ns C . Figures 17 through 21 show the distributions of electric potential, electric 

field E1, shear strain 31ε , magnetic field H1, and magnetic potential, respectively, when 

one of the twelve independent boundary conditions, the electric field <E1>, is applied. 

<E1> induces the E1 distribution of Figure 18, which, in turn, results in the shear strain 

distribution of Figure 19. The strain in the piezomagnetic fiber results in the magnetic 

field distribution of Figure 20. Thus, the three-phase composite exhibits the 

magnetoelectric effect by coupling the piezomagnetic and piezoelectric fibers through 

the strain in the elastic matrix. 

 

   
 
 

Figure 17. Electric potential distribution of a fibrous 
three-phase electro-magneto-elastic composite when  
<E1> is applied 
 

Figure 18.  Electric field E1 distribution of a fibrous 
three-phase electro-magneto-elastic composite when  
<E1> is applied 
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Applying the remaining eleven independent boundary conditions and solving for 

the effective properties of the composite as previously discussed, we obtain the 12x12 

effective moduli (refer back to Equation 23) of the three-phase composite from the finite 

element method results. Note that the effective magnetoelectric moduli of the three-

phase composite are about twenty times less than those of the two-phase composite 

(Figure 16). This is due to the fact that the stiffness of the elastic matrix used in the 

Figure 19. Shear strain 31ε  distribution of a fibrous 
three-phase electro-magneto-elastic composite when  
<E1> is applied 

Figure 20. Magnetic field H1 distribution of a fibrous 
three-phase electro-magneto-elastic composite when 
<E1> is applied 

Figure 21. Magnetic potential distribution of a fibrous 
three-phase electro-magneto-elastic composite when 
<E1> is applied 
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three-phase composite is two orders of magnitude less than those of the piezomagnetic 

and piezoelectric phases. Thus, although the matrix of the three-phase composite is 

strained, it lacks sufficient stiffness to transfer these strains to the piezomagnetic fiber.  

* * 2 *

* 2 * 2 2 *

* * * 2 2

( ) ( / ) ( / )
( / ) ( / ) ( / )
( / ) ( / ) ( / )

T T

T

C e q
L e -η -λ =

q -λ -µ

Pa C m N Am
C m C Nm Ns VC
N Am Ns VC Ns C

 
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=  
 
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(23) 
 
 
 
 
 
 

 

Note that all the zero terms of the effective matrix generated by the FEM are not 

exactly zero. The terms which are over three orders less than the other terms are ignored 

to be zero regarding as the numerical error. 

Although the piezoelectric phase and piezomagnetic phase are transversely 

isotropic materials and the matrix is isotropic, the effective properties of the composite 

with the square periodic structure are not transversely isotropic. Figures 22 through 24 

show the distributions of the stiffness tensor for the rotational variation and the average 

of varying values. The relation between the components to verify the transverse isotropy 

(Equation 22) and the normalized average value are plotted in Figure 25. The 

rotationally averaged stiffness tensor proves the transverse isotropy property.  
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Figure 22. C11 distribution for rotational variation for a three-phase composite 
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Figure 23. C12 distribution for rotational variation for a three-phase composite 
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Figure 24. C66 distribution for rotational variation for a three-phase composite 
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Figure 25. Difference distribution for rotational variation for a three-phase composite 
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The rotationally averaged effective matrix and the effective matrix determined by 

the Mori-Tanaka method are shown in Equation 24 and Equation 25, respectively. 

 

Effective moduli determined by the FEM and averaged for the rotational variation 

 
 
 
 
 
 (24) 
 
 
 
 
 
 

 
Effective moduli determined by the Mori-Tanaka method 
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C.  Parametric Studies 

The effective electric, magnetic, mechanical, and coupled-field properties are 

functions of phase volume fractions, the poling directions of piezoelectric phase and 
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piezomagnetic phase, the fiber (or particle) shapes, the fiber arrangements in the unit cell 

and the fiber material properties. Finite element analysis is used to determine the 

effective properties with special emphasis on the phase volume fraction and the poling 

directions of the piezoelectric and piezomagnetic fibers. The results were compared with 

those of Mori-Tanaka method. 

1. Effects of volume fractions 

a. Fixed elastic matrix volume fraction  

Considering first the effect of varying the relative volume fraction of the piezo 

materials, the matrix volume fraction is fixed at 0.4. The volume fraction of the fibrous 

piezomagnetic phase is denoted by fν . In this case, the effective elastic, electric, 

magnetic and electromagnetic coupling moduli of three-phase composite are generated 

for 0 0.6fν≤ ≤ . The FEM results are compared with the Mori-Tanaka results in Figures 

26 through 37, in which the effective moduli determined by the finite element analysis 

are presented by triangles.  
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Figure 26. Effective stiffness C11 vs fν  Figure 27. Effective stiffness C12 vs fν   
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Figure 28. Effective stiffness C13 vs fν  Figure 29. Effective stiffness C33 vs fν   

Figure 30. Effective stiffness C44 vs fν Figure 31. Effective stiffness C66 vs fν   

Figure 32. Effective piezoelectric constants vs fν  Figure 33. Effective piezomagnetic constants vs fν  
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In some cases, the FEM results and Mori-Tanaka results coincide, while in other 

cases slight deviations are observed. Because the effective moduli predicted by the Mori-

Tanaka method are functions of the phase volume fractions, the fiber shapes and the 

phase material properties, the Mori-Tanaka theory can not recognize particular 

arrangement of the fibers. The effective stiffness constants in Figure 26 through 31 

generated by the Mori-Tanaka method show linear distributions by the volume change. 

Figure 34. Effective dielectric permittivity vs fν  Figure 35. Effective magnetic permeability vs fν  

Figure 36. Effective magnetoelectric constant 11λ  

vs fν   

Figure 37. Effective magnetoelectric constant 33λ  

vs fν  
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On the other hand, the effective stiffness determined by the FEM, which recognize the 

specific arrangement of the fibers, show nonlinear behavior. 

Figures 36 and 37 indicate that the magnetoelectric coupling constants are 

maximum when the piezoelectric volume fraction and the piezomagnetic volume 

fraction are approximately in a 1:1 ratio.  

b. Fixed piezoelectric and piezomagnetic volume ratio  

Numerical calculations for four different elastic volume fraction cases are 

obtained for a fixed volume fraction ratio of the piezoelectric phase to the piezomagnetic 

phase. The ratio of 1:1 is chosen at which the magnetoelectric coupling constants show 

their maximum value. The volume fraction of the elastic matrix is denoted by mν . In this 

case, the effective elastic, electric, magnetic and electromagnetic coupling moduli of 

three-phase composite are generated for 0.3 0.6mν≤ ≤ . The FEM results are compared 

with the Mori-Tanaka results in Figures 38 through 49, in which the effective moduli 

determined by the finite element analysis are presented by triangles. 
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Figure 38. Effective stiffness C11 vs mν   Figure 39. Effective stiffness C12 vs mν   
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Figure 40. Effective stiffness C13 mν   Figure 41. Effective stiffness C33 vs mν   

Figure 42. Effective stiffness C44 vs mν   Figure 43. Effective stiffness C66 vs mν   

Figure 44. Effective piezoelectric constants vs 
 mν   

Figure 45. Effective piezomagnetic constants vs mν   
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The effective magnetoelectric constants of the three-phase composite decrease as 

the matrix volume fraction increase. 

Note that the differences between the two methods decrease as the volume 

fraction of the elastic matrix increases. The FEM results and Mori-Tanaka results 

coincide when the matrix volume fraction is 0.6.  

 

Figure 46. Effective dielectric permittivity vs mν   Figure 47. Effective magnetic permeability vs mν   

Figure 48. Effective magnetoelectric constant 11λ  

vs mν   
Figure 49. Effective magnetoelectric constant 33λ  

vs mν   
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2. Effects of poling direction 

In section B, the piezoelectric and piezomagnetic phases are poled in the 3x  

direction. In this section, the poling directions will be expressed in a vector component 

form ( 1x , 2x , 3x ). The FEM results are compared with the Mori-Tanaka results for four 

different poling cases (Table 3). The phase volume fractions are 0.3, 0.3 and 0.4 for the 

piezoelectric fiber, the piezoelectric fiber, and the matrix, respectively. Recall that the 

fibers are aligned in the 3x  direction (Figure 3). Equations 26 through 33 show the 

effective moduli determined by the Mori-Tanaka method and the FEM for each case.  

 

Table 3. Poling directions of each case 
 

 Piezoelectric phase poling 
direction 

Piezomagnetic phase poling 
direction 

Case (1) (0,0,1) (0,0,1) 
Case (2) (1,0,0) (0,0,1) 
Case (3) (0,0,1) (1,0,0) 
Case (4) (0,1,0) (0,1,0) 
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Case (1)   

 
Effective moduli determined by the Mori-Tanaka method 
 

 
 
 
 
 
 (26) 
 
 
 
 
 
 

 
Effective moduli determined by the FEM 
 

 
 
 
 
 
 (27) 
 
 
 
 
 
 

 

1.596E+10 7.786E+09 8.254E+09 0 0 0 0 0 -1.414E-01 0 0 9.921E+00

7.786E+09 1.596E+10 8.254E+09 0 0 0 0 0 -1.414E-01 0 0 9.921E+00

8.254E+09 8.254E+09 8.355E+10 0 0 0 0 0 6.330E+00 0 0 8.752E+01

0 0 0 4.658E+09 0 0 0 8.821E-03 0 0 -1.447E-01 0 

0 0 0 0 4.658E+09 0 8.821E-03 0 0 -1.447E-01 0 0 

0 0 0 0 0 4.088E+09 0 0 0 0 0 0 

0 0 0 0 8.821E-03 0 -1.712E-10 0 0 -2.150E-13 0 0 

0 0 0 8.821E-03 0 0 0 -1.712E-10 0 0 -2.150E-13 0 

-1.414E-01 -1.414E-01 6.330E+00 0 0 0 0 0 -3.894E-09 0 0 -1.067E-10

0 0 0 0 -1.447E-01 0 -2.150E-13 0 0 -3.008E-06 0 0 

0 0 0 -1.447E-01 0 0 0 -2.150E-13 0 0 -3.008E-06 0 

9.921E+00 9.921E+00 8.752E+01 0 0 0 0 0 -1.067E-10 0 0 -5.093E-05

1.596E+10 8.836E+09 8.616E+09 0 0 0 0 0 -1.510E-01 0 0 1.061E+01

8.836E+09 1.596E+10 8.616E+09 0 0 0 0 0 -1.511E-01 0 0 1.060E+01

8.616E+09 8.616E+09 8.333E+10 0 0 0 0 0 6.283E+00 0 0 8.749E+01

0 0 0 5.072E+09 0 0 0 9.842E-03 0 0 -1.790E-01 0 

0 0 0 0 5.072E+09 0 9.815E-03 0 0 -1.795E-01 0 0 

0 0 0 0 0 6.917E+09 0 0 0 0 0 0 

0 0 0 0 9.815E-03 0 -1.716E-10 0 0 -2.689E-13 0 0 

0 0 0 9.842E-03 0 0 0 -1.716E-10 0 0 -2.700E-13 0 

-1.510E-01 -1.511E-01 6.283E+00 0 0 0 0 0 -3.869E-09 0 0 -1.169E-10

0 0 0 0 -1.795E-01 0 -2.689E-13 0 0 -3.137E-06 0 0 

0 0 0 -1.790E-01 0 0 0 -2.702E-13 0 0 -3.136E-06 0 

1.061E+01 1.060E+01 8.749E+01 0 0 0 0 0 -1.169E-10 0 0 -5.061E-05
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Case (2) 
 
Effective moduli determined by the Mori-Tanaka method 
 

 
 
 
 
 
 (28) 
 
 
 
 
 
 

 
Effective moduli determined by the FEM 
 

 
 
 
 
 
(29) 
 
 
 
 
 
 

 

 

1.603E+10 7.770E+09 7.947E+09 0 0 0 1.055E-02 0 0 0 0 9.940E+00

7.770E+09 1.597E+10 8.292E+09 0 0 0 -2.522E-03 0 0 0 0 9.917E+00

7.947E+09 8.292E+09 8.627E+10 0 0 0 -4.410E-02 0 0 0 0 8.742E+01

0 0 0 4.616E+09 0 0 0 0 0 0 -1.436E-01 0 

0 0 0 0 4.608E+09 0 0 0 4.625E-01 -1.578E-01 0 0 

0 0 0 0 0 4.118E+09 0 7.370E-03 0 0 0 0 

1.055E-02 -2.522E-03 -4.410E-02 0 0 0 -1.713E-10 0 0 0 0 3.027E-12

0 0 0 0 0 7.370E-03 0 -1.712E-10 0 0 0 0 

0 0 0 0 4.625E-01 0 0 0 -4.303E-09 -1.241E-11 0 0 

0 0 0 0 -1.578E-01 0 0 0 -1.241E-11 -3.410E-06 0 0 

0 0 0 -1.436E-01 0 0 0 0 0 0 -3.008E-06 0 

9.940E+00 9.917E+00 8.742E+01 0 0 0 3.027E-12 0 0 0 0 -4.943E-05

1.601E+10 8.829E+09 8.333E+09 0 0 0 9.426E-03 0 0 0 0 1.063E+01

8.830E+09 1.596E+10 8.611E+09 0 0 0 -1.216E-03 0 0 0 0 1.060E+01

8.333E+09 8.611E+09 8.602E+10 0 0 0 -4.439E-02 0 0 0 0 8.738E+01

0 0 0 5.014E+09 0 0 0 0 0 0 -1.780E-01 0 

0 0 0 0 5.004E+09 0 0 0 5.167E-01 -1.992E-01 0 0 

0 0 0 0 0 7.033E+09 0 1.501E-02 0 0 0 0 

9.567E-03 -1.397E-03 -4.435E-02 0 0 0 -1.717E-10 0 0 0 0 2.928E-12

0 0 0 0 0 1.457E-02 0 -1.715E-10 0 0 0 0 

0 0 0 0 5.170E-01 0 0 0 -4.265E-09 -1.664E-11 0 0 

0 0 0 0 -1.937E-01 0 0 0 -1.606E-11 -3.609E-06 0 0 

0 0 0 -1.722E-01 0 0 0 0 0 0 -3.145E-06 0 

1.064E+01 1.061E+01 8.738E+01 0 0 0 2.975E-12 0 0 0 0 -4.912E-05
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Case (3) 
 
Effective moduli determined by the Mori-Tanaka method 
 

 
 
 
 
 
 (30) 
 
 
 
 
 
 

 
Effective moduli determined by the FEM 
 

 
 
 
 
 
 (31) 
 
 
 
 
 
 

 

1.594E+10 7.790E+09 8.400E+09 0 0 0 0 0 -1.413E-01 3.280E-01 0 0 

7.790E+09 1.597E+10 8.304E+09 0 0 0 0 0 -1.414E-01 2.327E-01 0 0 

8.400E+09 8.304E+09 8.715E+10 0 0 0 0 0 6.329E+00 8.501E-01 0 0 

0 0 0 4.705E+09 0 0 0 8.891E-03 0 0 0 0 

0 0 0 0 4.660E+09 0 9.102E-03 0 0 0 0 2.103E+01

0 0 0 0 0 4.057E+09 0 0 0 0 -1.196E-01 0 

0 0 0 0 9.102E-03 0 -1.797E-10 0 0 0 0 3.225E-11

0 0 0 8.891E-03 0 0 0 -1.712E-10 0 0 0 0 

-1.413E-01 -1.414E-01 6.329E+00 0 0 0 0 0 -3.890E-09 -3.014E-12 0 0 

3.280E-01 2.327E-01 8.501E-01 0 0 0 0 0 -3.014E-12 -2.970E-06 0 0 

0 0 0 0 0 -1.196E-01 0 0 0 0 -3.008E-06 0 

0 0 0 0 2.103E+01 0 3.225E-11 0 0 0 0 1.717E-04

1.593E+10 8.828E+09 8.753E+09 0 0 0 0 0 -1.507E-01 3.609E-01 0 0 

8.829E+09 1.595E+10 8.676E+09 0 0 0 0 0 -1.509E-01 2.740E-01 0 0 

8.754E+09 8.676E+09 8.691E+10 0 0 0 0 0 6.281E+00 9.196E-01 0 0 

0 0 0 5.131E+09 0 0 0 9.960E-03 0 0 0 0 

0 0 0 0 5.074E+09 0 1.018E-02 0 0 0 0 2.362E+01

0 0 0 0 0 6.778E+09 0 0 0 0 -2.507E-01 0 

0 0 0 0 1.018E-02 0 -1.800E-10 0 0 0 0 3.543E-11

0 0 0 9.967E-03 0 0 0 -1.718E-10 0 0 0 0 

-1.508E-01 -1.510E-01 6.281E+00 0 0 0 0 0 -3.866E-09 -3.472E-12 0 0 

3.663E-01 1.877E-01 8.906E-01 0 0 0 0 0 -2.546E-12 -3.089E-06 0 0 

0 0 0 0 0 -2.965E-01 0 0 0 0 -3.141E-06 0 

0 0 0 0 2.364E+01 0 3.543E-11 0 -0 0 0 1.706E-04
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Case (4) 
 
Effective moduli determined by the Mori-Tanaka method 
 

 
 
 
 
 
 (32) 
 
 
 
 
 
 

 
Effective moduli determined by the FEM 
 

 
 
 
 
 
 (33) 
 
 
 
 
 
 

 

Equations 26 and 27 are the effective matrix generated by Mori-Tanaka method 

and the FEM respectively. The direct comparison between the two is not reasonable 

because the FEM uses a specific symmetry arrangement of fibers that is not recognized 

by the Mori-Tanaka method. But the Mori-Tanaka method results are useful as a 

reference guidance.  

1.597E+10 7.774E+09 8.342E+09 0 0 0 0 2.599E-03 0 0 -2.556E-01 0 

7.774E+09 1.601E+10 8.095E+09 0 0 0 0 -1.086E-02 0 0 -3.615E-01 0 

8.342E+09 8.095E+09 8.986E+10 0 0 0 0 4.539E-02 0 0 -9.294E-01 0 

0 0 0 4.611E+09 0 0 0 0 -4.627E-01 0 0 -2.086E+01

0 0 0 0 4.662E+09 0 0 0 0 0 0 0 

0 0 0 0 0 4.086E+09 -7.322E-03 0 0 1.203E-01 0 0 

0 0 0 0 0 -7.322E-03 -1.712E-10 0 0 -1.804E-13 0 0 

2.599E-03 -1.086E-02 4.539E-02 0 0 0 0 -1.799E-10 0 0 1.692E-13 0 

0 0 0 -4.627E-01 0 0 0 0 -4.299E-09 0 0 1.639E-09

0 0 0 0 0 1.203E-01 -1.804E-13 0 0 -3.008E-06 0 0 

-2.556E-01 -3.615E-01 -9.294E-01 0 0 0 0 1.692E-13 0 0 -3.364E-06 0 

0 0 0 -2.086E+01 0 0 0 0 1.639E-09 0 0 1.732E-04

1.596E+10 8.833E+09 8.678E+09 0 0 0 0 1.194E-03 0 0 -3.058E-01 0 

8.833E+09 1.600E+10 8.479E+09 0 0 0 0 -9.815E-03 0 0 -4.009E-01 0 

8.678E+09 8.479E+09 8.961E+10 0 0 0 0 4.578E-02 0 0 -1.023E+00 0 

0 0 0 5.011E+09 0 0 0 0 -5.187E-01 0 0 -2.334E+01

0 0 0 0 5.076E+09 0 0 0 0 0 0 0 

0 0 0 0 0 6.904E+09 -1.478E-02 0 0 2.572E-01 0 0 

0 0 0 0 0 -1.478E-02 -1.718E-10 0 0 -5.719E-13 0 0 

1.194E-03 -9.815E-03 4.578E-02 0 0 0 0 -1.802E-10 0 0 6.887E-14 0 

0 0 0 -5.187E-01 0 0 0 0 -4.261E-09 0 0 1.846E-09

0 0 0 0 0 2.572E-01 -5.719E-13 0 0 -3.150E-06 0 0 

-3.058E-01 -4.009E-01 -1.023E+00 0 0 0 0 6.910E-14 0 0 -3.555E-06 0 

0 0 0 -2.334E+01 0 0 0 0 1.846E-09 0 0 1.721E-04
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In Case (1) and Case (4), where the piezoelectric phase and the piezomagnetic 

phase are poled to the same direction, <E1> is coupled with <H1> by the magnetoelectric 

constant 11λ . In the same way, <E2> and <H2> are coupled, <E3> and <H3> are 

coupled by 11λ  and 33λ , respectively. In Case (2) and Case (3), by the effect of different 

poling directions, <E1> couples with <H3> and <E3> couples with <H1>. In case (4), the 

magnitude of 33λ , which is coupled through 23ε , is one order larger than that of Case (1) 

which is coupled through 31ε .  

Through the case study, we may note that we can control the coupling by 

changing the poling directions. 
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CHAPTER VI 

CONCLUSIONS 

The finite element method was used to solve an electro-magneto-elastic 

boundary value problem within a periodic unit cell of a fibrous composite and to 

determine the effective properties using periodicity boundary conditions. For a two-

phase composite consisting of a piezomagnetic matrix reinforced with piezoelectric 

fibers, the effective properties as determined using the finite element method were in 

excellent agreement with the predictions of the Mori-Tanaka model of Li and Dunn 

(1998). The effective properties were also calculated for a three-phase composite 

consisting of piezoelectric and piezomagnetic fibers separated by an isotropic linear 

elastic matrix. The effective magnetoelectric moduli of this three-phase composite were 

about twenty times less than the magnetoelectric moduli of the two-phase composite 

because the epoxy matrix is not stiff enough to transfer significant strains between the 

piezomagnetic and piezoelectric fibers. Unlike the results for the two-phase composite, 

the effective moduli of the three-phase composite are not transversely isotropic even 

though the constituent phases are transversely isotropic. Through the parametric study, it 

was seen that the effective magnetoelectric coupling moduli are maximum when the 

piezoelectric volume fraction and the piezomagnetic volume fraction are roughly in a 1:1 

ratio and then decrease as the matrix volume fraction increases. The differences between 

the finite element method results and the Mori-Tanaka results decrease as the matrix 

volume fraction increases. 
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The effective moduli are calculated and compared with Mori-Tanaka results for 

four different combinations of poling directions. It shows that we can control the 

coupling by changing the poling directions. Future work may include a systematic study 

of the effects of the following  variables : the type of periodic unit cell, the shape of the 

phase, the stiffness of the elastic matrix. 
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APPENDIX A 

FIELD PARTIAL DIFFERENTIAL EQUATIONS  

The partial differential field equations for the piezoelectric phase and the 

piezomagnetic phase with 3x  as a symmetry axis are given by the following expressions 

Piezoelectric 

22 2 2 2 2
31 1 1 2

11 66 44 12 66 13 44 15 312 2 2
1 2 1 3 1 31 2 3

( ) ( ) ( ) 0uu u u uC C C C C C C e e
x x x x x xx x x

φ∂∂ ∂ ∂ ∂ ∂
+ + + + + + + + =

∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂
      (34) 

22 2 2 2 2
32 2 2 1

66 11 44 12 66 13 44 15 312 2 2
1 2 2 3 2 31 2 3

( ) ( ) ( ) 0uu u u uC C C C C C C e e
x x x x x xx x x

φ∂∂ ∂ ∂ ∂ ∂
+ + + + + + + + =

∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂
      (35) 

2 2 2 2 2 2 2 2
3 3 3 1 2

44 44 33 13 44 13 44 15 15 332 2 2 2 2 2
1 3 2 31 2 3 1 2 3

( ) ( ) 0u u u u uC C C C C C C e e e
x x x xx x x x x x

φ φ φ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + + + + =

∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂
     (36) 

2 2 2 2 2 2 2 2
3 3 3 1 2

15 15 33 31 15 31 15 11 11 332 2 2 2 2 2
1 3 2 31 2 3 1 2 3

( ) ( ) 0u u u u ue e e e e e e
x x x xx x x x x x

φ φ φη η η∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + − − − =

∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂
     (37) 

2 2 2

11 11 332 2 2
1 2 3

0
x x x

µ µ µ∂ Φ ∂ Φ ∂ Φ
+ + =

∂ ∂ ∂
            (38) 

 
Piezomagnetic 
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31 1 1 2
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1 2 1 3 1 31 2 3
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The field equations for the linear elastic matrix take the usual form (Lamé equations). 
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APPENDIX B 

DIAGONAL SYMMETRY OF THE EFFECTIVE MODULI  

The effective moduli of the three-phase electro-magneto-elastic composite are 

diagonally symmetry. In Appendix B, the diagonal symmetry of the effective moduli is 

proved. 

The constitutive equations coupling the elastic, electric and magnetic fields are 

                                                          

T T

T

σ = Cε - e E - q H
D = eε + ηE + λH
B = qε + λ E + µH

                                              (44) 

To treat the elastic, electric and magnetic variables on equal footing, the 

constitutive equations coupling the elastic, electric and magnetic fields is compactly 

expressed in the following notation 

                                      
    
     ⇔    

        

T T

T

σ C e q ε
D = e -η λ -E Σ = LΖ
B q λ -µ -H

                            (45) 

Σ , L and Z are (12x1),(12x12) and (12x1) matrix respectively. 

This matrix notation can be expressed with index notation as 

                                                 , 1, 2,3,...12i ij jL Z i jΣ = =                                        (46) 

Each phase properties consisting the multi-phase composites satisfy the 

symmetry conditions 

                                                  ( ) ( ) , 1, 2,3,...12n n
ij jiL L i j= =                                        (47) 
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In this paper, local fields will be denoted by an argument (x), and quantities 

without an argument will refer to averages. 

Suppose that a representative volume V of a heterogeneous medium is subjected 

to two different states of uniform overall jZ  and '
jZ , the actual local fields are denoted 

as ( )i xΣ , ( )jZ x  and ' ( )i xΣ , ' ( )jZ x . They satisfy the following relationships. 

                                      1 1( ) ( ) ( ) ( )i i ij jx x dV L x Z x dV
V V

Σ = Σ =∫ ∫                             (48) 

                                     ' ' '1 1( ) ( ) ( ) ( )i i ij jx x dV L x Z x dV
V V

Σ = Σ =∫ ∫                            (49) 

By the definition 

                                                         ( ) ( )i ij jx L Z xΣ =                                              (50) 

                                                         ' '( ) ( )i ij jx L Z xΣ =                                             (51) 

Because ( ) ( )ij jiL x L x=  

                                                  

' '

'

'

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

i i ij j i

ji i j

j j

x Z x L x Z x Z x

L x Z x Z x

x Z x

Σ =

=

= Σ

                                    (52) 

so  

                                           ' '1 1( ) ( ) ( ) ( )i i j jx Z x dV x Z x dV
V V

Σ = Σ∫ ∫                              (53) 

                                                  ' '( ) ( ) ( ) ( )i i j jx Z x x Z xΣ = Σ                                      (54) 

 

 



 55

By Hill-Mandel condition 

                                               ' '( ) ( ) ( ) ( )i i j jx Z x x Z xΣ = Σ                                   (55) 

                                           ' '( ) ( ) ( ) ( )ij j i ji i jL Z x Z x L Z x Z x=                              (56) 

                                                                    ij jiL L=                                                       (57) 

There we have proved that the effective moduli is diagonally symmetric. 
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APPENDIX C 

ESHELBY TENSORS  

Magnetoelectroelastic Eshelby tensor for circular cylindrical inclusion in 

isotropic matrix 

5 4 1 0 0 0 0 0 0 0 0 0
8(1 ) 8(1 ) 2(1 )
4 1 5 0 0 0 0 0 0 0 0 0

8(1 ) 8(1 ) 2(1 )
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1/ 2 0 0 0 0 0 0 0 0
0 0 0 0 1/ 2 0 0 0 0 0 0 0
0 0 0 0 0 1/ 2 0 0 0 0 0 0
0 0 0 0 0 0 1/ 2 0 0 0 0 0
0 0 0 0 0 0 0 1/ 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1/ 2 0 0
0 0 0 0 0 0 0 0 0 0 1/ 2 0
0 0 0 0 0 0

υ υ υ
υ υ υ

υ υ υ
υ υ υ

− −
− − −
− −
− − −

=S

0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

       (58) 

Magnetoelectroelastic Eshebly tensor for elliptical cylindrical inclusion 

( 1 2 3/ ,a a a a= → ∞ ) in a transversely isotropic matrix  

1111 1122 1133 1143 1153

2211 2222 2233 2243 2243

2323

1313

1212

4141

4242

5151

0 0 0 0 0 0 0
0 0 0 0 0 0 0
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0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

S S S S S
S S S S S

S
S

S
S

S

S
S
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 
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 
 
 
   

             (59) 
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where the components of the tensor are given by 

11 12
1111 2

11

((3 2 ) )
2(1 )

a a C CS
a C

+ +
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1122 2
11

((1 2 ) )
2(1 )

a a C CS
a C

+ −
=

+
     (61)     13

1133
11(1 )

aC
S

a C
=

+
      (62)  

12 11
2211 2

11

(2 )
2(1 )
a C aCS
a C

+ −
=

+
         (63)    11 12

2222 2
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=
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APPENDIX D 

FEMLAB CODE  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Three-phase 3-D model 
% Three-phase composite consisting of epoxy resin matrix with piezoelectric and 
% piezomagnetic cylindrical fiber 
% solver : iterarive solver 
% element type : tetrahedron linear element 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear all 
 
tic 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
casenum=input('Case number='); 
% rotation angle for piezoelectric 
theta_1=input('\nPiezoelectric rotation about x1 axis(1-2-3) = '); 
theta_2=input('Piezoelectric rotation about x2 axis(1-2-3) = '); 
theta_3=input('Piezoelectric rotation about x3 axis(1-2-3) = '); 
 
theta1=theta_1*pi/180; 
theta2=theta_2*pi/180; 
theta3=theta_3*pi/180; 
 
% rotation with x1 axis 
R1e=[1,0,0;0,cos(theta1),sin(theta1);0,-sin(theta1),cos(theta1)]; 
 
% rotation with x2 axis 
R2e=[cos(theta2),0,sin(theta2);0,1,0;-sin(theta2),0,cos(theta2)]; 
 
% rotation with x3 axis 
R3e=[cos(theta3),sin(theta3),0;-sin(theta3),cos(theta3),0;0,0,1]; 
 
% total rotation tensor 
Re=R3e*R2e*R1e; 
 
% rotation angle for Piezomagnetic 
theta_11=input('\nPiezomagnetic rotation about x1 axis(1-2-3) = '); 
theta_22=input('Piezomagnetic rotation about x2 axis(1-2-3) = '); 
theta_33=input('Piezomagnetic rotation about x3 axis(1-2-3) = '); 
 
theta11=theta_11*pi/180; 
theta22=theta_22*pi/180; 
theta33=theta_33*pi/180; 
 
% rotation with x1 axis 
R1m=[1,0,0;0,cos(theta11),sin(theta11);0,-sin(theta11),cos(theta11)]; 
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% rotation with x2 axis 
R2m=[cos(theta22),0,sin(theta22);0,1,0;-sin(theta22),0,cos(theta22)]; 
 
% rotation with x3 axis 
R3m=[cos(theta33),sin(theta33),0;-sin(theta33),cos(theta33),0;0,0,1]; 
 
% total rotation tensor 
Rm=R3m*R2m*R1m; 
 
% multiple factor for Epoxy Resin stiffness 
mult=input('\nMultiple factor for Epoxy resin stiffness='); 
 
for g=1:2 
    if g==1 
         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%  Piezelectric  with x3 poling  (0,0,1)  %%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% stiffness of piezomagnetic phase with x3 poling 
C=[16.6,7.7,7.8,0,0,0;... 
   7.7,16.6,7.8,0,0,0;... 
   7.8,7.8,16.2,0,0,0;... 
   0,0,0,4.3,0,0;... 
   0,0,0,0,4.3,0;... 
   0,0,0,0,0,4.45]; 
% piezomagnetic constant 
e=[0,0,0,0,11.6,0;0,0,0,11.6,0,0;-4.4,-4.4,18.6,0,0,0]; 
% dielectroc constant 
n=[112,0,0;0,112,0;0,0,126]; 
% magnetic constant 
m=[5,0,0;0,5,0;0,0,10]; 
R=Re; 
 
elseif g==2 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%  Piezomagnetic  with x3 poling (0,0,1)  %%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% stiffness of piezomagnetic phase with x3 poling 
C=[28.6,17.3,17.05,0,0,0;... 
   17.3,28.6,17.05,0,0,0;... 
   17.05,17.05,26.95,0,0,0;... 
   0,0,0,4.53,0,0;... 
   0,0,0,0,4.53,0;... 
   0,0,0,0,0,5.65]; 
% piezomagnetic constant 
e=[0,0,0,0,5.5,0;0,0,0,5.5,0,0;5.803,5.803,6.997,0,0,0]; 
% dielectroc constant 
n=[0.8,0,0;0,0.8,0;0,0,0.93]; 
% magnetic constant 
m=[-590,0,0;0,-590,0;0,0,157]; 
R=Rm; 
end 
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% error estimate 
for x=1:3 
    for y=1:3 
        if abs(R(x,y))<1e-5 R(x,y)=0; 
        end 
    end 
end 
 
%%%%%%%%%%%%%%%%%%% 
% rotation 
%%%%%%%%%%%%%%%%%%% 
 
% mapping 6x6 matrix to 4th order tensor 
L(1,1,1,1)=C(1,1); 
L(1,1,2,2)=C(1,2); L(2,2,1,1)=C(1,2); 
L(1,1,3,3)=C(1,3); L(3,3,1,1)=C(1,3); 
L(1,1,2,3)=C(1,4); L(2,3,1,1)=C(1,4); L(1,1,3,2)=C(1,4); L(3,2,1,1)=C(1,4); 
L(1,1,3,1)=C(1,5); L(3,1,1,1)=C(1,5); L(1,1,1,3)=C(1,5); L(1,3,1,1)=C(1,5); 
L(1,1,1,2)=C(1,6); L(1,2,1,1)=C(1,6); L(1,1,2,1)=C(1,6); L(2,1,1,1)=C(1,6); 
 
L(2,2,2,2)=C(2,2); 
L(2,2,3,3)=C(2,3); L(3,3,2,2)=C(2,3); 
L(2,2,2,3)=C(2,4); L(2,3,2,2)=C(2,4); L(2,2,3,2)=C(2,4); L(3,2,2,2)=C(2,4); 
L(2,2,3,1)=C(2,5); L(3,1,2,2)=C(2,5); L(2,2,1,3)=C(2,5); L(1,3,2,2)=C(2,5); 
L(2,2,1,2)=C(2,6); L(1,2,2,2)=C(2,6); L(2,2,2,1)=C(2,6); L(2,1,2,2)=C(2,6); 
 
L(3,3,3,3)=C(3,3); 
L(3,3,2,3)=C(3,4); L(2,3,3,3)=C(3,4); L(3,3,3,2)=C(3,4); L(3,2,3,3)=C(3,4); 
L(3,3,3,1)=C(3,5); L(3,1,3,3)=C(3,5); L(3,3,1,3)=C(3,5); L(1,3,3,3)=C(3,5); 
L(3,3,1,2)=C(3,6); L(1,2,3,3)=C(3,6); L(3,3,2,1)=C(3,6); L(2,1,3,3)=C(3,6); 
 
L(2,3,2,3)=C(4,4); L(3,2,2,3)=C(4,4); L(2,3,3,2)=C(4,4); L(3,2,3,2)=C(4,4); 
L(2,3,3,1)=C(4,5); L(3,2,3,1)=C(4,5); L(2,3,1,3)=C(4,5); L(3,2,1,3)=C(4,5); 
L(3,1,2,3)=C(4,5); L(1,3,2,3)=C(4,5); L(3,1,3,2)=C(4,5); L(1,3,3,2)=C(4,5); 
L(2,3,1,2)=C(4,6); L(3,2,1,2)=C(4,6); L(2,3,2,1)=C(4,6); L(3,2,2,1)=C(4,6); 
L(1,2,2,3)=C(4,6); L(2,1,2,3)=C(4,6); L(1,2,3,2)=C(4,6); L(2,1,3,2)=C(4,6); 
 
L(3,1,3,1)=C(5,5); L(1,3,3,1)=C(5,5); L(1,3,1,3)=C(5,5); L(3,1,1,3)=C(5,5); 
L(3,1,1,2)=C(5,6); L(1,3,1,2)=C(5,6); L(3,1,2,1)=C(5,6); L(1,3,2,1)=C(5,6); 
L(1,2,3,1)=C(5,6); L(2,1,3,1)=C(5,6); L(1,2,1,3)=C(5,6); L(2,1,1,3)=C(5,6); 
 
L(1,2,1,2)=C(6,6); L(2,1,1,2)=C(6,6); L(1,2,2,1)=C(6,6); L(2,1,2,1)=C(6,6); 
 
for i=1:3    
    for j=1:3 
        for k=1:3 
            for l=1:3 
                Lp(i,j,k,l)=0; 
            end 
        end 
    end 
end 
for i=1:3    
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    for j=1:3 
        for k=1:3 
            for l=1:3 
                for p=1:3 
                    for q=1:3 
                        for r=1:3 
                            for s=1:3 
                                Lp(i,j,k,l)=Lp(i,j,k,l)+R(i,p)*R(j,q)*R(k,r)*R(l,s)*L(p,q,r,s); 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
 
% mapping 4th order tensor to 6x6 matrix 
 
Cp(1,1)=Lp(1,1,1,1); 
Cp(1,2)=Lp(1,1,2,2);  
Cp(1,3)=Lp(1,1,3,3);  
Cp(1,4)=Lp(1,1,2,3);  
Cp(1,5)=Lp(1,1,3,1);  
Cp(1,6)=Lp(1,1,1,2);  
 
Cp(2,1)=Cp(1,2); 
Cp(2,2)=Lp(2,2,2,2); 
Cp(2,3)=Lp(2,2,3,3);  
Cp(2,4)=Lp(2,2,2,3);  
Cp(2,5)=Lp(2,2,3,1);  
Cp(2,6)=Lp(2,2,1,2);  
 
Cp(3,1)=Cp(1,3); 
Cp(3,2)=Cp(2,3); 
Cp(3,3)=Lp(3,3,3,3); 
Cp(3,4)=Lp(3,3,2,3);  
Cp(3,5)=Lp(3,3,3,1);  
Cp(3,6)=Lp(3,3,1,2);  
 
Cp(4,1)=Cp(1,4); 
Cp(4,2)=Cp(2,4); 
Cp(4,3)=Cp(3,4); 
Cp(4,4)=Lp(2,3,2,3); 
Cp(4,5)=Lp(2,3,3,1);  
Cp(4,6)=Lp(2,3,1,2);  
 
Cp(5,1)=Cp(1,5);Cp(5,2)=Cp(2,5);Cp(5,3)=Cp(3,5);Cp(5,4)=Cp(4,5); 
Cp(5,5)=Lp(3,1,3,1); 
Cp(5,6)=Lp(3,1,1,2); 
 
Cp(6,1)=Cp(1,6);Cp(6,2)=Cp(2,6);Cp(6,3)=Cp(3,6);Cp(6,4)=Cp(4,6);Cp(6,5)=Cp(5,6); 
Cp(6,6)=Lp(1,2,1,2); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 3rd order tensor 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% mapping 3x6 matrix to 3rd order tensor 
 
T(1,1,1)=e(1,1);T(1,1,2)=e(1,6);T(1,1,3)=e(1,5); 
T(1,2,1)=e(1,6);T(1,2,2)=e(1,2);T(1,2,3)=e(1,4); 
T(1,3,1)=e(1,5);T(1,3,2)=e(1,4);T(1,3,3)=e(1,3); 
 
T(2,1,1)=e(2,1);T(2,1,2)=e(2,6);T(2,1,3)=e(2,5); 
T(2,2,1)=e(2,6);T(2,2,2)=e(2,2);T(2,2,3)=e(2,4); 
T(2,3,1)=e(2,5);T(2,3,2)=e(2,4);T(2,3,3)=e(2,3); 
 
T(3,1,1)=e(3,1);T(3,1,2)=e(3,6);T(3,1,3)=e(3,5); 
T(3,2,1)=e(3,6);T(3,2,2)=e(3,2);T(3,2,3)=e(3,4); 
T(3,3,1)=e(3,5);T(3,3,2)=e(3,4);T(3,3,3)=e(3,3); 
 
for i=1:3 
    for j=1:3 
        for k=1:3 
            Tp(i,j,k)=0; 
        end 
    end 
end 
 
for i=1:3 
    for j=1:3 
        for k=1:3 
            for p=1:3 
                for q=1:3 
                    for r=1:3 
                        Tp(i,j,k)=Tp(i,j,k)+R(i,p)*R(j,q)*R(k,r)*T(p,q,r); 
                    end 
                end 
            end 
        end 
    end 
end 
 
% mapping 3rd order tensor to 3x6 matrix 
ep(1,1)=Tp(1,1,1);ep(1,2)=Tp(1,2,2);ep(1,3)=Tp(1,3,3);ep(1,4)=Tp(1,2,3);ep(1,5)=Tp(1,3,1);ep(1,6)=Tp(1
,1,2); 
ep(2,1)=Tp(2,1,1);ep(2,2)=Tp(2,2,2);ep(2,3)=Tp(2,3,3);ep(2,4)=Tp(2,2,3);ep(2,5)=Tp(2,3,1);ep(2,6)=Tp(2
,1,2); 
ep(3,1)=Tp(3,1,1);ep(3,2)=Tp(3,2,2);ep(3,3)=Tp(3,3,3);ep(3,4)=Tp(3,2,3);ep(3,5)=Tp(3,3,1);ep(3,6)=Tp(3
,1,2); 
            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 2nd order tensor 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
np=zeros(3,3); 
 
for i=1:3 
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    for j=1:3 
        for p=1:3 
            for q=1:3 
                np(i,j)=np(i,j)+R(i,p)*R(j,q)*n(p,q); 
            end 
        end 
    end 
end 
 
mp=zeros(3,3); 
for i=1:3 
    for j=1:3 
        for p=1:3 
            for q=1:3 
                mp(i,j)=mp(i,j)+R(i,p)*R(j,q)*m(p,q); 
            end 
        end 
    end 
end 
 
    if g==1 
            C_e=Cp; 
            e_e=ep; 
            n_e=np; 
            m_e=mp; 
        elseif g==2 
            C_m=Cp; 
            q_m=ep; 
            n_m=np; 
            m_m=mp; 
    end 
 
end 
 
% input volume percent of piezomagnetic and piezoelectric phase 
V1=input('\nVolume percent of piezomagnetic circular cylindrical phase = '); 
V2=input('Volume percent of piezoelectric circular cylindrical phase = '); 
% calculate radius of each phase : r1=piezomagnetic, r2=piezoelectric 
r1=sqrt(V1/pi); 
r2=sqrt(V2/pi); 
% mesh type  
a=input('\n choose the number of initial mesh type : \n 1=extra coarse \n 2=coarser \n 3=coarse \n 
4=normal \n 5=fine \n 6=finer \n \n Your mesh type = '); 
if a==1  
    h1=0.8;h2=0.04;h3=1.8;h4=3;b='extracoarse'; 
elseif a==2 
        h1=0.6;h2=0.03;h3=1.6;h4=1.9;b='coarser'; 
    elseif a==3 
            h1=0.5;h2=0.02;h3=1.5;h4=1.5;b='coarse'; 
        elseif a==4 
                h1=0.4;h2=0.01;h3=1.4;h4=1;b='normal'; 
            elseif a==5 
                    h1=0.37;h2=0.009;h3=1.35;h4=0.9;b='fine'; 
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                elseif a==6 
                        h1=0.3;h2=0.005;h3=1.35;h4=0.55;b='finer'; 
                    end 
 
%SOLVER TYPE 
z=input('\n choose the number of solver type: \n 1=normal solver \n 2=interative solver \n \n Your choice 
= '); 
 
 
% 12 boundary conditions 
for i=1:12; 
i 
t0=clock; 
starttime=fix(clock) 
 
flclear fem 
% FEMLAB Version 
clear vrsn; 
vrsn.name='FEMLAB 2.3'; 
vrsn.major=0; 
vrsn.build=148; 
fem.version=vrsn; 
 
% Recorded command sequence 
 
% New geometry 1 
fem.sdim={'x','y','z'}; 
 
% Geometry 
% Center Circle and rectangular 
Co=circ2(5,5,r1,0); 
Ro=rect2(0,10,0,10,0); 
% left down 1/4 circle 
R1=rect2(0,10,0,10,0); 
C1=circ2(0,0,r2,0); 
Co1=R1*C1; 
% rotate 1/4 circle 
Co2=rotate(Co1,90*(pi/180),5,5); 
Co3=rotate(Co2,90*(pi/180),5,5); 
Co4=rotate(Co3,90*(pi/180),5,5); 
% make 2D coerce composite 
g1=geomcoerce('solid',{Co1,Co2,Co3,Co4,Co,Ro}); 
% extrude 
g2=extrude(g1,'Distance',10,'Scale',[1;1],'Displ',[0;0],'Wrkpln',[0 1 0;0 0 1;0 0 0]); 
% put a point in 
v=point3(5,5,5); 
g3=geomcoerce('solid',{g2 v}); 
 
clear s f c p 
objs={g3}; 
name={'EXT1'}; 
s.objs=objs; 
s.name=name; 
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objs={}; 
name={}; 
f.objs=objs; 
f.name=name; 
 
objs={}; 
name={}; 
c.objs=objs; 
c.name=name; 
 
objs={}; 
name={}; 
p.objs=objs; 
p.name=name; 
 
drawstruct=struct('s',s,'f',f,'c',c,'p',p); 
fem.draw=drawstruct; 
fem.geom=geomcsg(fem); 
 
clear appl 
 
% Application mode 1 
appl{1}.mode=flpdec3d(5,'dim',{'u','v','w','V','M','u_t','v_t','w_t','V_t', ... 
'M_t'},'sdim',{'x','y','z'},'submode','std','tdiff','on'); 
appl{1}.dim={'u','v','w','V','M','u_t','v_t','w_t','V_t','M_t'}; 
appl{1}.form='coefficient'; 
appl{1}.border='off'; 
appl{1}.name='c1'; 
appl{1}.var={}; 
appl{1}.assign={'abscu1x';'abscu1x';'abscu2x';'abscu2x';'abscu3x';'abscu3x'; ... 
'abscu4x';'abscu4x';'abscu5x';'abscu5x';'absga1x';'absga1x';'absga2x'; ... 
'absga2x';'absga3x';'absga3x';'absga4x';'absga4x';'absga5x';'absga5x'; ... 
'absu1x';'absux';'absu2x';'absvx';'absu3x';'abswx';'absu4x';'absVx'; ... 
'absu5x';'absMx'}; 
appl{1}.elemdefault='Lag2'; 
appl{1}.shape={'shlag(1,''u'')','shlag(1,''v'')','shlag(1,''w'')', ... 
'shlag(1,''V'')','shlag(1,''M'')','shlag(2,''u'')','shlag(2,''v'')', ... 
'shlag(2,''w'')','shlag(2,''V'')','shlag(2,''M'')'}; 
appl{1}.sshape=1; 
appl{1}.equ.da={{{'1'},{'0'},{'0'},{'0'},{'0'};{'0'},{'1'},{'0'},{'0'}, ... 
{'0'};{'0'},{'0'},{'1'},{'0'},{'0'};{'0'},{'0'},{'0'},{'1'},{'0'};{'0'}, ... 
{'0'},{'0'},{'0'},{'1'}}}; 
appl{1}.equ.c={{{'1'},{'0'},{'0'},{'0'},{'0'};{'0'},{'1'},{'0'},{'0'},{'0'}; ... 
{'0'},{'0'},{'1'},{'0'},{'0'};{'0'},{'0'},{'0'},{'1'},{'0'};{'0'},{'0'}, ... 
{'0'},{'0'},{'1'}}}; 
appl{1}.equ.al={{{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}, ... 
{'0';'0';'0'};{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... 
'0';'0'};{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0'; ... 
'0'};{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}; ... 
{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}}; 
appl{1}.equ.ga={{{'0';'0';'0'};{'0';'0';'0'};{'0';'0';'0'};{'0';'0';'0'}; ... 
{'0';'0';'0'}}}; 
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appl{1}.equ.be={{{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}, ... 
{'0';'0';'0'};{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... 
'0';'0'};{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0'; ... 
'0'};{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}; ... 
{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}}}; 
appl{1}.equ.a={{{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'}; ... 
{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'}, ... 
{'0'},{'0'},{'0'}}}; 
appl{1}.equ.f={{{'1'};{'1'};{'1'};{'1'};{'1'}}}; 
appl{1}.equ.weak={{{'0'};{'0'};{'0'};{'0'};{'0'}}}; 
appl{1}.equ.dweak={{{'0'};{'0'};{'0'};{'0'};{'0'}}}; 
appl{1}.equ.constr={{{'0'};{'0'};{'0'};{'0'};{'0'}}}; 
appl{1}.equ.gporder={{4;4;4;4;4}}; 
appl{1}.equ.cporder={{2;2;2;2;2}}; 
appl{1}.equ.shape={6:10}; 
appl{1}.equ.init={{{'0'};{'0'};{'0'};{'0'};{'0'}}}; 
appl{1}.equ.usage={1}; 
appl{1}.equ.ind=ones(1,6); 
appl{1}.bnd.q={{{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'}; ... 
{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'}, ... 
{'0'},{'0'},{'0'}},{{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'}, ... 
{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'}, ... 
{'0'},{'0'},{'0'},{'0'}}}; 
appl{1}.bnd.g={{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'}; ... 
{'0'}}}; 
appl{1}.bnd.h={{{'1'},{'0'},{'0'},{'0'},{'0'};{'0'},{'1'},{'0'},{'0'},{'0'}; ... 
{'0'},{'0'},{'1'},{'0'},{'0'};{'0'},{'0'},{'0'},{'1'},{'0'};{'0'},{'0'}, ... 
{'0'},{'0'},{'1'}},{{'1'},{'0'},{'0'},{'0'},{'0'};{'0'},{'1'},{'0'},{'0'}, ... 
{'0'};{'0'},{'0'},{'1'},{'0'},{'0'};{'0'},{'0'},{'0'},{'1'},{'0'};{'0'}, ... 
{'0'},{'0'},{'0'},{'1'}}}; 
appl{1}.bnd.r={{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'}; ... 
{'0'}}}; 
appl{1}.bnd.type={'dir','neu'}; 
appl{1}.bnd.weak={{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'}; ... 
{'0'}}}; 
appl{1}.bnd.dweak={{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'}; ... 
{'0'}}}; 
appl{1}.bnd.constr={{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'}; ... 
{'0'};{'0'}}}; 
appl{1}.bnd.gporder={{0;0;0;0;0},{0;0;0;0;0}}; 
appl{1}.bnd.cporder={{0;0;0;0;0},{0;0;0;0;0}}; 
appl{1}.bnd.shape={0,0}; 
appl{1}.bnd.ind=[1 1 1 1 1 2 1 1 1 2 1 1 1 2 2 1 1 1 1 2 2 1 2 1 1 2 1 1 1  ... 
1 1 1]; 
appl{1}.edg.weak={{{'0'};{'0'};{'0'};{'0'};{'0'}}}; 
appl{1}.edg.dweak={{{'0'};{'0'};{'0'};{'0'};{'0'}}}; 
appl{1}.edg.constr={{{'0'};{'0'};{'0'};{'0'};{'0'}}}; 
appl{1}.edg.gporder={{0;0;0;0;0}}; 
appl{1}.edg.cporder={{0;0;0;0;0}}; 
appl{1}.edg.shape={0}; 
appl{1}.edg.ind=ones(1,56); 
appl{1}.pnt.weak={{{'0'};{'0'};{'0'};{'0'};{'0'}}}; 
appl{1}.pnt.dweak={{{'0'};{'0'};{'0'};{'0'};{'0'}}}; 
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appl{1}.pnt.constr={{{'0'};{'0'};{'0'};{'0'};{'0'}}}; 
appl{1}.pnt.shape={0}; 
appl{1}.pnt.ind=ones(1,33); 
 
fem.appl=appl; 
 
% Symmetry boundaries 
fem.equiv=[1 5 9 2 18 22 3 7 24 28 16 11;30 31 32 13 19 27 4 8 25 29 17 12]; 
 
 
 
% Initialize mesh 
fem.mesh=meshinit(fem,... 
 'Out',    {'mesh'},... 
 'jiggle', 'on',... 
 'Hcurve', h1,... 
 'Hcutoff',h2,... 
 'Hgrad',  h3,... 
 'Hmaxfact',h4,... 
 'Hmax',   {[],zeros(1,0),zeros(1,0),zeros(1,0),zeros(1,0)}); 
 
% Differentiation rules 
fem.rules={}; 
 
% Problem form 
fem.outform='coefficient'; 
 
% Geometry element order 
fem.outsshape=1; 
 
% Differentiation 
fem.diff={'expr'}; 
 
% Differentiation simplification 
fem.simplify='on'; 
 
% Point settings 
clear pnt 
pnt.weak={{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}}}; 
pnt.dweak={{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}}}; 
pnt.constr={{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0-u'};{'0-v'};{'0-w'}; ... 
{'0-V'};{'0-M'}}}; 
pnt.shape={0,0}; 
pnt.ind=[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]; 
fem.appl{1}.pnt=pnt; 
 
% Edge settings 
clear edg 
edg.weak={{{'0'};{'0'};{'0'};{'0'};{'0'}}}; 
edg.dweak={{{'0'};{'0'};{'0'};{'0'};{'0'}}}; 
edg.constr={{{'0'};{'0'};{'0'};{'0'};{'0'}}}; 
edg.gporder={{0;0;0;0;0}}; 
edg.cporder={{0;0;0;0;0}}; 
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edg.shape={0}; 
edg.ind=ones(1,56); 
fem.appl{1}.edg=edg; 
 
% Boundary conditions 
clear bnd 
bnd.q={{{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'}, ... 
{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'}, ... 
{'0'},{'0'}},{{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'}; ... 
{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'}, ... 
{'0'},{'0'},{'0'}},{{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'}, ... 
{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'}, ... 
{'0'},{'0'},{'0'},{'0'}},{{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'}, ... 
{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'}; ... 
{'0'},{'0'},{'0'},{'0'},{'0'}},{{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'}, ... 
{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'}, ... 
{'0'};{'0'},{'0'},{'0'},{'0'},{'0'}},{{'0'},{'0'},{'0'},{'0'},{'0'};{'0'}, ... 
{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'}, ... 
{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'}},{{'0'},{'0'},{'0'},{'0'},{'0'}; ... 
{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'}, ... 
{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'}},{{'0'},{'0'},{'0'},{'0'}, ... 
{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'}, ... 
{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'}},{{'0'},{'0'},{'0'}, ... 
{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'}; ... 
{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'}},{{'0'},{'0'}, ... 
{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'}, ... 
{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'}},{{'0'}, ... 
{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'}, ... 
{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'}}, ... 
{{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'}, ... 
{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'}, ... 
{'0'}},{{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'}, ... 
{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'}, ... 
{'0'},{'0'}},{{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'}; ... 
{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'}, ... 
{'0'},{'0'},{'0'}},{{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'}, ... 
{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'}, ... 
{'0'},{'0'},{'0'},{'0'}},{{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'}, ... 
{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'}; ... 
{'0'},{'0'},{'0'},{'0'},{'0'}},{{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'}, ... 
{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'}, ... 
{'0'};{'0'},{'0'},{'0'},{'0'},{'0'}},{{'0'},{'0'},{'0'},{'0'},{'0'};{'0'}, ... 
{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'}, ... 
{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'}},{{'0'},{'0'},{'0'},{'0'},{'0'}; ... 
{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'}, ... 
{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'}},{{'0'},{'0'},{'0'},{'0'}, ... 
{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'}, ... 
{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'}},{{'0'},{'0'},{'0'}, ... 
{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'}; ... 
{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'}},{{'0'},{'0'}, ... 
{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'}, ... 
{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'}},{{'0'}, ... 
{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'}, ... 
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{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'}}, ... 
{{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'}, ... 
{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'}, ... 
{'0'}},{{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'}, ... 
{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'}, ... 
{'0'},{'0'}}}; 
bnd.g={{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}}, ... 
{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'}; ... 
{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'}; ... 
{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'}; ... 
{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}}, ... 
{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'}; ... 
{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'}; ... 
{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'}; ... 
{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}}, ... 
{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'}; ... 
{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'}; ... 
{'0'};{'0'}}}; 
bnd.h={{{'1'},{'0'},{'0'},{'0'},{'0'};{'0'},{'1'},{'0'},{'0'},{'0'};{'0'}, ... 
{'0'},{'1'},{'0'},{'0'};{'0'},{'0'},{'0'},{'1'},{'0'};{'0'},{'0'},{'0'}, ... 
{'0'},{'1'}},{{'1'},{'0'},{'0'},{'0'},{'0'};{'0'},{'1'},{'0'},{'0'},{'0'}; ... 
{'0'},{'0'},{'1'},{'0'},{'0'};{'0'},{'0'},{'0'},{'1'},{'0'};{'0'},{'0'}, ... 
{'0'},{'0'},{'1'}},{{'1'},{'0'},{'0'},{'0'},{'0'};{'0'},{'1'},{'0'},{'0'}, ... 
{'0'};{'0'},{'0'},{'1'},{'0'},{'0'};{'0'},{'0'},{'0'},{'1'},{'0'};{'0'}, ... 
{'0'},{'0'},{'0'},{'1'}},{{'-1'},{'0'},{'0'},{'0'},{'0'};{'0'},{'-1'},{'0'}, ... 
{'0'},{'0'};{'0'},{'0'},{'-1'},{'0'},{'0'};{'0'},{'0'},{'0'},{'-1'},{'0'}; ... 
{'0'},{'0'},{'0'},{'0'},{'-1'}},{{'1'},{'0'},{'0'},{'0'},{'0'};{'0'},{'1'}, ... 
{'0'},{'0'},{'0'};{'0'},{'0'},{'1'},{'0'},{'0'};{'0'},{'0'},{'0'},{'1'}, ... 
{'0'};{'0'},{'0'},{'0'},{'0'},{'1'}},{{'1'},{'0'},{'0'},{'0'},{'0'};{'0'}, ... 
{'1'},{'0'},{'0'},{'0'};{'0'},{'0'},{'1'},{'0'},{'0'};{'0'},{'0'},{'0'}, ... 
{'1'},{'0'};{'0'},{'0'},{'0'},{'0'},{'1'}},{{'1'},{'0'},{'0'},{'0'},{'0'}; ... 
{'0'},{'1'},{'0'},{'0'},{'0'};{'0'},{'0'},{'1'},{'0'},{'0'};{'0'},{'0'}, ... 
{'0'},{'1'},{'0'};{'0'},{'0'},{'0'},{'0'},{'1'}},{{'-1'},{'0'},{'0'},{'0'}, ... 
{'0'};{'0'},{'-1'},{'0'},{'0'},{'0'};{'0'},{'0'},{'-1'},{'0'},{'0'};{'0'}, ... 
{'0'},{'0'},{'-1'},{'0'};{'0'},{'0'},{'0'},{'0'},{'-1'}},{{'1'},{'0'},{'0'}, ... 
{'0'},{'0'};{'0'},{'1'},{'0'},{'0'},{'0'};{'0'},{'0'},{'1'},{'0'},{'0'}; ... 
{'0'},{'0'},{'0'},{'1'},{'0'};{'0'},{'0'},{'0'},{'0'},{'1'}},{{'1'},{'0'}, ... 
{'0'},{'0'},{'0'};{'0'},{'1'},{'0'},{'0'},{'0'};{'0'},{'0'},{'1'},{'0'}, ... 
{'0'};{'0'},{'0'},{'0'},{'1'},{'0'};{'0'},{'0'},{'0'},{'0'},{'1'}},{{'-1'}, ... 
{'0'},{'0'},{'0'},{'0'};{'0'},{'-1'},{'0'},{'0'},{'0'};{'0'},{'0'},{'-1'}, ... 
{'0'},{'0'};{'0'},{'0'},{'0'},{'-1'},{'0'};{'0'},{'0'},{'0'},{'0'},{'-1'}}, ... 
{{'-1'},{'0'},{'0'},{'0'},{'0'};{'0'},{'-1'},{'0'},{'0'},{'0'};{'0'},{'0'}, ... 
{'-1'},{'0'},{'0'};{'0'},{'0'},{'0'},{'-1'},{'0'};{'0'},{'0'},{'0'},{'0'}, ... 
{'-1'}},{{'1'},{'0'},{'0'},{'0'},{'0'};{'0'},{'1'},{'0'},{'0'},{'0'};{'0'}, ... 
{'0'},{'1'},{'0'},{'0'};{'0'},{'0'},{'0'},{'1'},{'0'};{'0'},{'0'},{'0'}, ... 
{'0'},{'1'}},{{'-1'},{'0'},{'0'},{'0'},{'0'};{'0'},{'-1'},{'0'},{'0'},{'0'}; ... 
{'0'},{'0'},{'-1'},{'0'},{'0'};{'0'},{'0'},{'0'},{'-1'},{'0'};{'0'},{'0'}, ... 
{'0'},{'0'},{'-1'}},{{'1'},{'0'},{'0'},{'0'},{'0'};{'0'},{'1'},{'0'},{'0'}, ... 
{'0'};{'0'},{'0'},{'1'},{'0'},{'0'};{'0'},{'0'},{'0'},{'1'},{'0'};{'0'}, ... 
{'0'},{'0'},{'0'},{'1'}},{{'-1'},{'0'},{'0'},{'0'},{'0'};{'0'},{'-1'},{'0'}, ... 
{'0'},{'0'};{'0'},{'0'},{'-1'},{'0'},{'0'};{'0'},{'0'},{'0'},{'-1'},{'0'}; ... 
{'0'},{'0'},{'0'},{'0'},{'-1'}},{{'1'},{'0'},{'0'},{'0'},{'0'};{'0'},{'1'}, ... 
{'0'},{'0'},{'0'};{'0'},{'0'},{'1'},{'0'},{'0'};{'0'},{'0'},{'0'},{'1'}, ... 
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{'0'};{'0'},{'0'},{'0'},{'0'},{'1'}},{{'1'},{'0'},{'0'},{'0'},{'0'};{'0'}, ... 
{'1'},{'0'},{'0'},{'0'};{'0'},{'0'},{'1'},{'0'},{'0'};{'0'},{'0'},{'0'}, ... 
{'1'},{'0'};{'0'},{'0'},{'0'},{'0'},{'1'}},{{'-1'},{'0'},{'0'},{'0'},{'0'}; ... 
{'0'},{'-1'},{'0'},{'0'},{'0'};{'0'},{'0'},{'-1'},{'0'},{'0'};{'0'},{'0'}, ... 
{'0'},{'-1'},{'0'};{'0'},{'0'},{'0'},{'0'},{'-1'}},{{'-1'},{'0'},{'0'}, ... 
{'0'},{'0'};{'0'},{'-1'},{'0'},{'0'},{'0'};{'0'},{'0'},{'-1'},{'0'},{'0'}; ... 
{'0'},{'0'},{'0'},{'-1'},{'0'};{'0'},{'0'},{'0'},{'0'},{'-1'}},{{'1'},{'0'}, ... 
{'0'},{'0'},{'0'};{'0'},{'1'},{'0'},{'0'},{'0'};{'0'},{'0'},{'1'},{'0'}, ... 
{'0'};{'0'},{'0'},{'0'},{'1'},{'0'};{'0'},{'0'},{'0'},{'0'},{'1'}},{{'-1'}, ... 
{'0'},{'0'},{'0'},{'0'};{'0'},{'-1'},{'0'},{'0'},{'0'};{'0'},{'0'},{'-1'}, ... 
{'0'},{'0'};{'0'},{'0'},{'0'},{'-1'},{'0'};{'0'},{'0'},{'0'},{'0'},{'-1'}}, ... 
{{'-1'},{'0'},{'0'},{'0'},{'0'};{'0'},{'-1'},{'0'},{'0'},{'0'};{'0'},{'0'}, ... 
{'-1'},{'0'},{'0'};{'0'},{'0'},{'0'},{'-1'},{'0'};{'0'},{'0'},{'0'},{'0'}, ... 
{'-1'}},{{'-1'},{'0'},{'0'},{'0'},{'0'};{'0'},{'-1'},{'0'},{'0'},{'0'}; ... 
{'0'},{'0'},{'-1'},{'0'},{'0'};{'0'},{'0'},{'0'},{'-1'},{'0'};{'0'},{'0'}, ... 
{'0'},{'0'},{'-1'}},{{'-1'},{'0'},{'0'},{'0'},{'0'};{'0'},{'-1'},{'0'}, ... 
{'0'},{'0'};{'0'},{'0'},{'-1'},{'0'},{'0'};{'0'},{'0'},{'0'},{'-1'},{'0'}; ... 
{'0'},{'0'},{'0'},{'0'},{'-1'}}}; 
if i==1 
bnd.r={{{'-0.01'};{'0'};{'0'};{'0'};{'0'}},...%boundary 1 x=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}}, ...%boundary 2 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 3 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 4 z=10 
        {{'-0.01'};{'0'};{'0'};{'0'};{'0'}},...%boundary 5 x=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary  
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 7 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 8 z=10 
        {{'-0.01'};{'0'};{'0'};{'0'};{'0'}},...%boundary 9 x=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 11 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 12 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 13 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 16 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 17 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 18 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 19 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 22 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 24 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 25 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 27 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 28 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 29 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 30 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 31 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}}};%boundary 32 x=10 
elseif i==2 
    bnd.r={{{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 1 x=0 
        {{'0'};{'-0.01'};{'0'};{'0'};{'0'}}, ...%boundary 2 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 3 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 4 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 5 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary  
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 7 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 8 z=10 
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        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 9 x=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 11 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 12 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 13 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 16 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 17 z=10 
        {{'0'};{'-0.01'};{'0'};{'0'};{'0'}},...%boundary 18 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 19 y=10 
        {{'0'};{'-0.01'};{'0'};{'0'};{'0'}},...%boundary 22 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 24 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 25 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 27 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 28 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 29 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 30 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 31 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}}};%boundary 32 x=10 
elseif i==3 
    bnd.r={{{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 1 x=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}}, ...%boundary 2 y=0 
        {{'0'};{'0'};{'-0.01'};{'0'};{'0'}},...%boundary 3 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 4 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 5 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary  
        {{'0'};{'0'};{'-0.01'};{'0'};{'0'}},...%boundary 7 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 8 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 9 x=0 
        {{'0'};{'0'};{'-0.01'};{'0'};{'0'}},...%boundary 11 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 12 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 13 y=10 
        {{'0'};{'0'};{'-0.01'};{'0'};{'0'}},...%boundary 16 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 17 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 18 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 19 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 22 y=0 
        {{'0'};{'0'};{'-0.01'};{'0'};{'0'}},...%boundary 24 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 25 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 27 y=10 
        {{'0'};{'0'};{'-0.01'};{'0'};{'0'}},...%boundary 28 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 29 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 30 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 31 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}}};%boundary 32 x=10 
elseif i==4 
    bnd.r={{{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 1 x=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}}, ...%boundary 2 y=0 
        {{'0'};{'-0.005'};{'0'};{'0'};{'0'}},...%boundary 3 z=0 
        {{'0'};{'-0.005'};{'0'};{'0'};{'0'}},...%boundary 4 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 5 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary  
        {{'0'};{'-0.005'};{'0'};{'0'};{'0'}},...%boundary 7 z=0 
        {{'0'};{'-0.005'};{'0'};{'0'};{'0'}},...%boundary 8 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 9 x=0 
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        {{'0'};{'-0.005'};{'0'};{'0'};{'0'}},...%boundary 11 z=0 
        {{'0'};{'-0.005'};{'0'};{'0'};{'0'}},...%boundary 12 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 13 y=10 
        {{'0'};{'-0.005'};{'0'};{'0'};{'0'}},...%boundary 16 z=0 
        {{'0'};{'-0.005'};{'0'};{'0'};{'0'}},...%boundary 17 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 18 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 19 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 22 y=0 
        {{'0'};{'-0.005'};{'0'};{'0'};{'0'}},...%boundary 24 z=0 
        {{'0'};{'-0.005'};{'0'};{'0'};{'0'}},...%boundary 25 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 27 y=10 
        {{'0'};{'-0.005'};{'0'};{'0'};{'0'}},...%boundary 28 z=0 
        {{'0'};{'-0.005'};{'0'};{'0'};{'0'}},...%boundary 29 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 30 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 31 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}}};%boundary 32 x=10 
elseif i==5 
    bnd.r={{{'0'};{'0'};{'-0.005'};{'0'};{'0'}},...%boundary 1 x=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}}, ...%boundary 2 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 3 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 4 z=10 
        {{'0'};{'0'};{'-0.005'};{'0'};{'0'}},...%boundary 5 x=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary  
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 7 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 8 z=10 
        {{'0'};{'0'};{'-0.005'};{'0'};{'0'}},...%boundary 9 x=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 11 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 12 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 13 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 16 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 17 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 18 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 19 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 22 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 24 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 25 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 27 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 28 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 29 z=10 
        {{'0'};{'0'};{'-0.005'};{'0'};{'0'}},...%boundary 30 x=10 
        {{'0'};{'0'};{'-0.005'};{'0'};{'0'}},...%boundary 31 x=10 
        {{'0'};{'0'};{'-0.005'};{'0'};{'0'}}};%boundary 32 x=10 
elseif i==6 
    bnd.r={{{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 1 x=0 
        {{'-0.005'};{'0'};{'0'};{'0'};{'0'}}, ...%boundary 2 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 3 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 4 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 5 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary  
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 7 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 8 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 9 x=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 11 z=0 
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        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 12 z=10 
        {{'-0.005'};{'0'};{'0'};{'0'};{'0'}},...%boundary 13 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 16 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 17 z=10 
        {{'-0.005'};{'0'};{'0'};{'0'};{'0'}},...%boundary 18 y=0 
        {{'-0.005'};{'0'};{'0'};{'0'};{'0'}},...%boundary 19 y=10 
        {{'-0.005'};{'0'};{'0'};{'0'};{'0'}},...%boundary 22 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 24 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 25 z=10 
        {{'-0.005'};{'0'};{'0'};{'0'};{'0'}},...%boundary 27 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 28 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 29 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 30 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 31 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}}};%boundary 32 x=10 
elseif i==7 
    bnd.r={{{'0'};{'0'};{'0'};{'-100'};{'0'}},...%boundary 1 x=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}}, ...%boundary 2 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 3 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 4 z=10 
        {{'0'};{'0'};{'0'};{'-100'};{'0'}},...%boundary 5 x=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary  
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 7 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 8 z=10 
        {{'0'};{'0'};{'0'};{'-100'};{'0'}},...%boundary 9 x=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 11 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 12 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 13 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 16 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 17 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 18 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 19 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 22 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 24 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 25 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 27 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 28 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 29 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 30 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 31 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}}};%boundary 32 x=10 
elseif i==8 
    bnd.r={{{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 1 x=0 
        {{'0'};{'0'};{'0'};{'-100'};{'0'}}, ...%boundary 2 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 3 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 4 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 5 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary  
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 7 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 8 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 9 x=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 11 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 12 z=10 
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        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 13 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 16 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 17 z=10 
        {{'0'};{'0'};{'0'};{'-100'};{'0'}},...%boundary 18 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 19 y=10 
        {{'0'};{'0'};{'0'};{'-100'};{'0'}},...%boundary 22 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 24 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 25 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 27 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 28 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 29 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 30 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 31 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}}};%boundary 32 x=10 
elseif i==9 
    bnd.r={{{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 1 x=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}}, ...%boundary 2 y=0 
        {{'0'};{'0'};{'0'};{'-100'};{'0'}},...%boundary 3 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 4 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 5 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary  
        {{'0'};{'0'};{'0'};{'-100'};{'0'}},...%boundary 7 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 8 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 9 x=0 
        {{'0'};{'0'};{'0'};{'-100'};{'0'}},...%boundary 11 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 12 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 13 y=10 
        {{'0'};{'0'};{'0'};{'-100'};{'0'}},...%boundary 16 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 17 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 18 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 19 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 22 y=0 
        {{'0'};{'0'};{'0'};{'-100'};{'0'}},...%boundary 24 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 25 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 27 y=10 
        {{'0'};{'0'};{'0'};{'-100'};{'0'}},...%boundary 28 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 29 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 30 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 31 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}}};%boundary 32 x=10 
elseif i==10 
    bnd.r={{{'0'};{'0'};{'0'};{'0'};{'-1'}},...%boundary 1 x=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}}, ...%boundary 2 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 3 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 4 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'-1'}},...%boundary 5 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary  
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 7 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 8 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'-1'}},...%boundary 9 x=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 11 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 12 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 13 y=10 
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        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 16 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 17 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 18 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 19 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 22 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 24 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 25 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 27 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 28 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 29 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 30 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 31 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}}};%boundary 32 x=10 
elseif i==11 
    bnd.r={{{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 1 x=0 
        {{'0'};{'0'};{'0'};{'0'};{'-1'}}, ...%boundary 2 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 3 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 4 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 5 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary  
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 7 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 8 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 9 x=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 11 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 12 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 13 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 16 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 17 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'-1'}},...%boundary 18 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 19 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'-1'}},...%boundary 22 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 24 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 25 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 27 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 28 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 29 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 30 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 31 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}}};%boundary 32 x=10 
elseif i==12 
    bnd.r={{{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 1 x=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}}, ...%boundary 2 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'-1'}},...%boundary 3 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 4 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 5 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary  
        {{'0'};{'0'};{'0'};{'0'};{'-1'}},...%boundary 7 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 8 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 9 x=0 
        {{'0'};{'0'};{'0'};{'0'};{'-1'}},...%boundary 11 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 12 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 13 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'-1'}},...%boundary 16 z=0 
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        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 17 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 18 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 19 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 22 y=0 
        {{'0'};{'0'};{'0'};{'0'};{'-1'}},...%boundary 24 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 25 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 27 y=10 
        {{'0'};{'0'};{'0'};{'0'};{'-1'}},...%boundary 28 z=0 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 29 z=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 30 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}},...%boundary 31 x=10 
        {{'0'};{'0'};{'0'};{'0'};{'0'}}};%boundary 32 x=10 
end 
 
bnd.type={'dir','dir','dir','dir','dir','neu','dir','dir','dir','dir','dir', ... 
'dir','dir','dir','dir','dir','dir','dir','dir','dir','dir','dir','dir', ... 
'dir','dir'}; 
bnd.weak={{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}}, ... 
{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'}; ... 
{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'}; ... 
{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'}; ... 
{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}}, ... 
{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'}; ... 
{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'}; ... 
{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'}; ... 
{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}}, ... 
{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'}; ... 
{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'}; ... 
{'0'};{'0'}}}; 
bnd.dweak={{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}}, ... 
{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'}; ... 
{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'}; ... 
{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'}; ... 
{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}}, ... 
{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'}; ... 
{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'}; ... 
{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'}; ... 
{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}}, ... 
{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'}; ... 
{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'}; ... 
{'0'};{'0'}}}; 
bnd.constr={{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}}, ... 
{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'}; ... 
{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'}; ... 
{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'}; ... 
{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}}, ... 
{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'}; ... 
{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'}; ... 
{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'}; ... 
{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}}, ... 
{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'}; ... 
{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'}; ... 
{'0'};{'0'}}}; 
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bnd.gporder={{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0; ... 
0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0; ... 
0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0; ... 
0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0}, ... 
{0;0;0;0;0}}; 
bnd.cporder={{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0; ... 
0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0; ... 
0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0; ... 
0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0},{0;0;0;0;0}, ... 
{0;0;0;0;0}}; 
bnd.shape={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 
bnd.ind=[1 2 3 4 5 6 7 8 9 6 10 11 12 6 6 13 14 15 16 6 6 17 6 18 19 6 20  ... 
21 22 23 24 25]; 
fem.appl{1}.bnd=bnd; 
 
% PDE coefficients 
clear equ 
equ.da={{{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'}, ... 
{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'}, ... 
{'0'},{'0'}},{{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'}; ... 
{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'}, ... 
{'0'},{'0'},{'0'}},{{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'}, ... 
{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'}, ... 
{'0'},{'0'},{'0'},{'0'}}}; 
equ.c={{{'c11e','c16e','c15e';'c16e','c66e','c56e';'c15e','c56e','c55e'},... 
        {'c16e','c12e','c14e';'c66e','c26e','c46e';'c56e','c25e','c45e'},... 
        {'c15e','c14e','c13e';'c56e','c46e','c36e';'c55e','c45e','c35e'},... 
        {'e11e','e21e','e31e';'e16e','e26e','e36e';'e15e','e25e','e35e'},... 
        {'0'}; ...% end of first PDE 
        {'c16e','c66e','c56e';'c12e','c26e','c25e';'c14e','c46e','c45e'},... 
        {'c66e','c26e','c46e';'c26e','c22e','c24e';'c46e','c24e','c44e'},... 
        {'c56e','c46e','c36e';'c25e','c24e','c23e';'c45e','c44e','c34e'},... 
        {'e16e','e26e','e36e';'e12e','e22e','e32e';'e14e','e24e','e34e'},... 
        {'0'};... % end of second PDE 
        {'c15e','c56e','c55e';'c14e','c46e','c45e';'c13e','c36e','c35e'},... 
        {'c56e','c25e','c45e';'c46e','c24e','c44e';'c36e','c23e','c34e'},... 
        {'c55e','c45e','c35e';'c45e','c44e','c34e';'c35e','c34e','c33e'},... 
        {'e15e','e25e','e35e';'e14e','e24e','e34e';'e13e','e23e','e33e'},... 
        {'0'};... % end of thrid PDE 
        {'e11e','e16e','e15e';'e21e','e26e','e25e';'e31e','e36e','e35e'},... 
        {'e16e','e12e','e14e';'e26e','e22e','e24e';'e36e','e32e','e34e'},... 
        {'e15e','e14e','e13e';'e25e','e24e','e23e';'e35e','e34e','e33e'},... 
        {'-n11e','-n12e','-n13e';'-n12e','-n22e','-n23e';'-n13e','-n23e','-n33e'},... 
        {'0'};... % end of 4th PDE 
        {'0'},... 
        {'0'},... 
        {'0'},... 
        {'0'},... 
        {'-m11e','-m12e','-m13e';'-m12e','-m22e','-m23e';'-m13e','-m23e','-m33e'}},...% end of 5th PDE , End 
of 1st Group PDE 
       {{'c11p';'c44p';'c44p'},... 
        {'0','c12p','0';'c44p','0','0';'0','0','0'},... 
        {'0','0','c12p';'0','0','0';'c44p','0','0'},... 
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        {'0'},... 
        {'0'};... % end of 1st PDE 
        {'0','c44p','0';'c12p','0','0';'0','0','0'},... 
        {'c44p';'c11p';'c44p'},... 
        {'0','0','0';'0','0','c12p';'0','c44p','0'},... 
        {'0'},... 
        {'0'};... % end of 2nd PDE 
        {'0','0','c44p';'0','0','0';'c12p','0','0'},... 
        {'0','0','0';'0','0','c44p';'0','c12p','0'},... 
        {'c44p';'c44p';'c11p'},... 
        {'0'},... 
        {'0'};... % end of 3rd PDE 
        {'0'},... 
        {'0'},... 
        {'0'},... 
        {'-1'},... 
        {'0'};... % end of 4th PDE 
        {'0'},... 
        {'0'},... 
        {'0'},... 
        {'0'},... 
        {'-1'}},... % end of 5th PDE , End of 2nd Group 
       {{'c11m','c16m','c15m';'c16m','c66m','c56m';'c15m','c56m','c55m'},... 
        {'c16m','c12m','c14m';'c66m','c26m','c46m';'c56m','c25m','c45m'},... 
        {'c15m','c14m','c13m';'c56m','c46m','c36m';'c55m','c45m','c35m'},... 
        {'0'},... 
        {'q11m','q21m','q31m';'q16m','q26m','q36m';'q15m','q25m','q35m'};...% end of first PDE 
        {'c16m','c66m','c56m';'c12m','c26m','c25m';'c14m','c46m','c45m'},... 
        {'c66m','c26m','c46m';'c26m','c22m','c24m';'c46m','c24m','c44m'},... 
        {'c56m','c46m','c36m';'c25m','c24m','c23m';'c45m','c44m','c34m'},... 
        {'0'},... 
        {'q16m','q26m','q36m';'q12m','q22m','q32m';'q14m','q24m','q34m'};...% end of second PDE 
        {'c15m','c56m','c55m';'c14m','c46m','c45m';'c13m','c36m','c35m'},... 
        {'c56m','c25m','c45m';'c46m','c24m','c44m';'c36m','c23m','c34m'},... 
        {'c55m','c45m','c35m';'c45m','c44m','c34m';'c35m','c34m','c33m'},... 
        {'0'},... 
        {'q15m','q25m','q35m';'q14m','q24m','q34m';'q13m','q23m','q33m'};... % end of thrid PDE 
        {'0'},... 
        {'0'},... 
        {'0'},... 
        {'-n11m','-n12m','-n13m';'-n12m','-n22m','-n23m';'-n13m','-n23m','-n33m'},... 
        {'0'};... % end of 4th PDE       
        {'q11m','q16m','q15m';'q21m','q26m','q25m';'q31m','q36m','q35m'},... 
        {'q16m','q12m','q14m';'q26m','q22m','q24m';'q36m','q32m','q34m'},... 
        {'q15m','q14m','q13m';'q25m','q24m','q23m';'q35m','q34m','q33m'},... 
        {'0'},... 
        {'-m11m','-m12m','-m13m';'-m12m','-m22m','-m23m';'-m13m','-m23m','-m33m'}}}; % end of 5th 
PDE, end of 3rd Group 
 
 
equ.al={{{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0'; ... 
'0'};{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}; ... 
{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'};{'0'; ... 
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'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'};{'0';'0'; ... 
'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}},{{'0';'0'; ... 
'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'};{'0';'0';'0'}, ... 
{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'};{'0';'0';'0'},{'0'; ... 
'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'};{'0';'0';'0'},{'0';'0'; ... 
'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'};{'0';'0';'0'},{'0';'0';'0'}, ... 
{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}},{{'0';'0';'0'},{'0';'0';'0'}, ... 
{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'};{'0';'0';'0'},{'0';'0';'0'},{'0'; ... 
'0';'0'},{'0';'0';'0'},{'0';'0';'0'};{'0';'0';'0'},{'0';'0';'0'},{'0';'0'; ... 
'0'},{'0';'0';'0'},{'0';'0';'0'};{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}, ... 
{'0';'0';'0'},{'0';'0';'0'};{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... 
'0';'0'},{'0';'0';'0'}}}; 
equ.ga={{{'0';'0';'0'};{'0';'0';'0'};{'0';'0';'0'};{'0';'0';'0'};{'0';'0'; ... 
'0'}},{{'0';'0';'0'};{'0';'0';'0'};{'0';'0';'0'};{'0';'0';'0'};{'0';'0'; ... 
'0'}},{{'0';'0';'0'};{'0';'0';'0'};{'0';'0';'0'};{'0';'0';'0'};{'0';'0'; ... 
'0'}}}; 
equ.be={{{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0'; ... 
'0'};{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}; ... 
{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'};{'0'; ... 
'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'};{'0';'0'; ... 
'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}},{{'0';'0'; ... 
'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'};{'0';'0';'0'}, ... 
{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'};{'0';'0';'0'},{'0'; ... 
'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'};{'0';'0';'0'},{'0';'0'; ... 
'0'},{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'};{'0';'0';'0'},{'0';'0';'0'}, ... 
{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}},{{'0';'0';'0'},{'0';'0';'0'}, ... 
{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'};{'0';'0';'0'},{'0';'0';'0'},{'0'; ... 
'0';'0'},{'0';'0';'0'},{'0';'0';'0'};{'0';'0';'0'},{'0';'0';'0'},{'0';'0'; ... 
'0'},{'0';'0';'0'},{'0';'0';'0'};{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'}, ... 
{'0';'0';'0'},{'0';'0';'0'};{'0';'0';'0'},{'0';'0';'0'},{'0';'0';'0'},{'0'; ... 
'0';'0'},{'0';'0';'0'}}}; 
equ.a={{{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'}, ... 
{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'}, ... 
{'0'},{'0'}},{{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'}; ... 
{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'}, ... 
{'0'},{'0'},{'0'}},{{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'}, ... 
{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'},{'0'};{'0'}, ... 
{'0'},{'0'},{'0'},{'0'}}}; 
equ.f={{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}}, ... 
{{'0'};{'0'};{'0'};{'0'};{'0'}}}; 
equ.weak={{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}}, ... 
{{'0'};{'0'};{'0'};{'0'};{'0'}}}; 
equ.dweak={{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}}, ... 
{{'0'};{'0'};{'0'};{'0'};{'0'}}}; 
equ.constr={{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}}, ... 
{{'0'};{'0'};{'0'};{'0'};{'0'}}}; 
equ.gporder={{2;2;2;2;2},{2;2;2;2;2},{2;2;2;2;2}}; 
equ.cporder={{1;1;1;1;1},{1;1;1;1;1},{1;1;1;1;1}}; 
equ.shape={1:5,1:5,1:5}; 
equ.init={{{'0'};{'0'};{'0'};{'0'};{'0'}},{{'0'};{'0'};{'0'};{'0'};{'0'}}, ... 
{{'0'};{'0'};{'0'};{'0'};{'0'}}}; 
equ.usage={1,1,1}; 
equ.ind=[1 2 1 3 1 1]; 
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fem.appl{1}.equ=equ; 
 
 
% Internal borders 
fem.appl{1}.border='off'; 
 
% Shape functions 
fem.appl{1}.shape={'shlag(1,''u'')','shlag(1,''v'')','shlag(1,''w'')','shlag(1,''V'')','shlag(1,''M'')'}; 
 
% Geometry element order 
fem.appl{1}.sshape=1; 
 
 
% Define constants 
fem.const={... 
 'c11e',C_e(1,1),'c12e',C_e(1,2),'c13e',C_e(1,3),'c14e',C_e(1,4),'c15e',C_e(1,5),'c16e',C_e(1,6),... 
                 'c22e',C_e(2,2),'c23e',C_e(2,3),'c24e',C_e(2,4),'c25e',C_e(2,5),'c26e',C_e(2,6),... 
                                 'c33e',C_e(3,3),'c34e',C_e(3,4),'c35e',C_e(3,5),'c36e',C_e(3,6),... 
                                                 'c44e',C_e(4,4),'c45e',C_e(4,5),'c46e',C_e(4,6),... 
                                                                    'c55e',C_e(5,5),'c56e',C_e(5,6),... 
                                                                                    'c66e',C_e(6,6),...                                      
... 
    'e11e',e_e(1,1),'e12e',e_e(1,2),'e13e',e_e(1,3),'e14e',e_e(1,4),'e15e',e_e(1,5),'e16e',e_e(1,6),... 
 'e21e',e_e(2,1),'e22e',e_e(2,2),'e23e',e_e(2,3),'e24e',e_e(2,4),'e25e',e_e(2,5),'e26e',e_e(2,6),... 
 'e31e',e_e(3,1),'e32e',e_e(3,2),'e33e',e_e(3,3),'e34e',e_e(3,4),'e35e',e_e(3,5),'e36e',e_e(3,6),... 
...     
 'n11e',n_e(1,1),'n12e',n_e(1,2),'n13e',n_e(1,3),... 
                 'n22e',n_e(2,2),'n23e',n_e(2,3),... 
                                 'n33e',n_e(3,3),... 
 'm11e',m_e(1,1),'m12e',m_e(1,2),'m13e',m_e(1,3),... 
                 'm22e',m_e(2,2),'m23e',m_e(2,3),... 
                                 'm33e',m_e(3,3),... 
... 
 'c11m',C_m(1,1),'c12m',C_m(1,2),'c13m',C_m(1,3),'c14m',C_m(1,4),'c15m',C_m(1,5),'c16m',C_
m(1,6),... 
                 
'c22m',C_m(2,2),'c23m',C_m(2,3),'c24m',C_m(2,4),'c25m',C_m(2,5),'c26m',C_m(2,6),... 
                                 'c33m',C_m(3,3),'c34m',C_m(3,4),'c35m',C_m(3,5),'c36m',C_m(3,6),... 
                                                 'c44m',C_m(4,4),'c45m',C_m(4,5),'c46m',C_m(4,6),... 
                                                                    'c55m',C_m(5,5),'c56m',C_m(5,6),... 
                                                                                    'c66m',C_m(6,6),...                                      
... 
   
 'q11m',q_m(1,1),'q12m',q_m(1,2),'q13m',q_m(1,3),'q14m',q_m(1,4),'q15m',q_m(1,5),'q16m',q_m(
1,6),... 
 'q21m',q_m(2,1),'q22m',q_m(2,2),'q23m',q_m(2,3),'q24m',q_m(2,4),'q25m',q_m(2,5),'q26m',q_m(
2,6),... 
 'q31m',q_m(3,1),'q32m',q_m(3,2),'q33m',q_m(3,3),'q34m',q_m(3,4),'q35m',q_m(3,5),'q36m',q_m(
3,6),... 
...     
 'n11m',n_m(1,1),'n12m',n_m(1,2),'n13m',n_m(1,3),... 
                 'n22m',n_m(2,2),'n23m',n_m(2,3),... 
                                 'n33m',n_m(3,3),... 



 81

 'm11m',m_m(1,1),'m12m',m_m(1,2),'m13m',m_m(1,3),... 
                 'm22m',m_m(2,2),'m23m',m_m(2,3),... 
                                 'm33m',m_m(3,3),... 
... 
 'c11p',   mult*0.55328,... 
 'c12p',   mult*0.29792,... 
 'c44p',   mult*0.12768}; 
 
% Multiphysics 
fem=multiphysics(fem); 
 
% Extend the mesh 
fem.xmesh=meshextend(fem,'context','local','cplbndeq','on','cplbndsh','on'); 
 
% Evaluate initial condition 
init=asseminit(fem,... 
 'context','local',... 
 'init',   fem.xmesh.eleminit); 
 
if z==1 
% Solve problem using normal solver 
fem.sol=femlin(fem,... 
 'jacobian','numeric',... 
 'out',    {'sol'},... 
 'init',   init,... 
 'context','local',... 
 'sd',     'off',... 
 'nullfun','flspnull',... 
 'blocksize',5000,... 
 'solcomp',{'M','V','u','v','w'},... 
 'linsolver','matlab',... 
 'method', 'lagrange',... 
 'uscale', 'auto'); 
elseif z==2 
% Solve problem iterative 
fem.sol=femiter(fem,... 
 'init',   init,... 
 'nonlin', 'off',... 
 'out',    'sol',... 
 'report', 'on',... 
 'stop',   'on',... 
 'context','local',... 
 'sd',     'off',... 
 'nullfun','flnullorth',... 
 'blocksize',5000,... 
 'solcomp',{'M','V','u','v','w'},... 
 'method', 'eliminate',... 
 'uscale', 'auto',... 
 'itrestart',10,... 
 'itsolv', 'gbit',... 
 'maxlinit',3000,... 
 'prefun', 'luinc',... 
 'itol',   10e-09,... 
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 'rhob',   40,... 
 'prepar', struct('droptol',{0.00001},'thresh',{1},'milu',{1},'udiag',{1}, ... 
'preorder',{1})); 
end 
 
% Save current fem structure for restart purposes 
fem0=fem; 
 
% Integrate on subdomains 
I(1,i)=postint(fem,'ux',... 
 'cont',   'off',... 
 'contorder',2,... 
 'edim',   3,... 
 'solnum', 1,... 
 'phase',  0,... 
 'geomnum',1,... 
 'dl',     [1 2 3 4 5 6],... 
 'intorder',4,... 
 'context','local'); 
I(2,i)=postint(fem,'vy',... 
 'cont',   'off',... 
 'contorder',2,... 
 'edim',   3,... 
 'solnum', 1,... 
 'phase',  0,... 
 'geomnum',1,... 
 'dl',     [1 2 3 4 5 6],... 
 'intorder',4,... 
 'context','local'); 
I(3,i)=postint(fem,'wz',... 
 'cont',   'off',... 
 'contorder',2,... 
 'edim',   3,... 
 'solnum', 1,... 
 'phase',  0,... 
 'geomnum',1,... 
 'dl',     [1 2 3 4 5 6],... 
 'intorder',4,... 
 'context','local'); 
I(4,i)=postint(fem,'vz',... 
 'cont',   'off',... 
 'contorder',2,... 
 'edim',   3,... 
 'solnum', 1,... 
 'phase',  0,... 
 'geomnum',1,... 
 'dl',     [1 2 3 4 5 6],... 
 'intorder',4,... 
 'context','local'); 
I(5,i)=postint(fem,'wx',... 
 'cont',   'off',... 
 'contorder',2,... 
 'edim',   3,... 
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 'solnum', 1,... 
 'phase',  0,... 
 'geomnum',1,... 
 'dl',     [1 2 3 4 5 6],... 
 'intorder',4,... 
 'context','local'); 
I(6,i)=postint(fem,'uy',... 
 'cont',   'off',... 
 'contorder',2,... 
 'edim',   3,... 
 'solnum', 1,... 
 'phase',  0,... 
 'geomnum',1,... 
 'dl',     [1 2 3 4 5 6],... 
 'intorder',4,... 
 'context','local'); 
I(7,i)=postint(fem,'Vx',... 
 'cont',   'off',... 
 'contorder',2,... 
 'edim',   3,... 
 'solnum', 1,... 
 'phase',  0,... 
 'geomnum',1,... 
 'dl',     [1 2 3 4 5 6],... 
 'intorder',4,... 
 'context','local'); 
I(8,i)=postint(fem,'Vy',... 
 'cont',   'off',... 
 'contorder',2,... 
 'edim',   3,... 
 'solnum', 1,... 
 'phase',  0,... 
 'geomnum',1,... 
 'dl',     [1 2 3 4 5 6],... 
 'intorder',4,... 
 'context','local'); 
I(9,i)=postint(fem,'Vz',... 
 'cont',   'off',... 
 'contorder',2,... 
 'edim',   3,... 
 'solnum', 1,... 
 'phase',  0,... 
 'geomnum',1,... 
 'dl',     [1 2 3 4 5 6],... 
 'intorder',4,... 
 'context','local'); 
I(10,i)=postint(fem,'Mx',... 
 'cont',   'off',... 
 'contorder',2,... 
 'edim',   3,... 
 'solnum', 1,... 
 'phase',  0,... 
 'geomnum',1,... 
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 'dl',     [1 2 3 4 5 6],... 
 'intorder',4,... 
 'context','local'); 
I(11,i)=postint(fem,'My',... 
 'cont',   'off',... 
 'contorder',2,... 
 'edim',   3,... 
 'solnum', 1,... 
 'phase',  0,... 
 'geomnum',1,... 
 'dl',     [1 2 3 4 5 6],... 
 'intorder',4,... 
 'context','local'); 
I(12,i)=postint(fem,'Mz',... 
 'cont',   'off',... 
 'contorder',2,... 
 'edim',   3,... 
 'solnum', 1,... 
 'phase',  0,... 
 'geomnum',1,... 
 'dl',     [1 2 3 4 5 6],... 
 'intorder',4,... 
 'context','local'); 
 
% O matrix 
O(1,i)=postint(fem,'cu1x',... 
 'cont',   'off',... 
 'contorder',2,... 
 'edim',   3,... 
 'solnum', 1,... 
 'phase',  0,... 
 'geomnum',1,... 
 'dl',     [1 2 3 4 5 6],... 
 'intorder',4,... 
 'context','local'); 
O(2,i)=postint(fem,'cu2y',... 
 'cont',   'off',... 
 'contorder',2,... 
 'edim',   3,... 
 'solnum', 1,... 
 'phase',  0,... 
 'geomnum',1,... 
 'dl',     [1 2 3 4 5 6],... 
 'intorder',4,... 
 'context','local'); 
O(3,i)=postint(fem,'cu3z',... 
 'cont',   'off',... 
 'contorder',2,... 
 'edim',   3,... 
 'solnum', 1,... 
 'phase',  0,... 
 'geomnum',1,... 
 'dl',     [1 2 3 4 5 6],... 
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 'intorder',4,... 
 'context','local'); 
O(4,i)=postint(fem,'cu2z',... 
 'cont',   'off',... 
 'contorder',2,... 
 'edim',   3,... 
 'solnum', 1,... 
 'phase',  0,... 
 'geomnum',1,... 
 'dl',     [1 2 3 4 5 6],... 
 'intorder',4,... 
 'context','local'); 
O(5,i)=postint(fem,'cu3x',... 
 'cont',   'off',... 
 'contorder',2,... 
 'edim',   3,... 
 'solnum', 1,... 
 'phase',  0,... 
 'geomnum',1,... 
 'dl',     [1 2 3 4 5 6],... 
 'intorder',4,... 
 'context','local'); 
O(6,i)=postint(fem,'cu1y',... 
 'cont',   'off',... 
 'contorder',2,... 
 'edim',   3,... 
 'solnum', 1,... 
 'phase',  0,... 
 'geomnum',1,... 
 'dl',     [1 2 3 4 5 6],... 
 'intorder',4,... 
 'context','local'); 
O(7,i)=postint(fem,'cu4x',... 
 'cont',   'off',... 
 'contorder',2,... 
 'edim',   3,... 
 'solnum', 1,... 
 'phase',  0,... 
 'geomnum',1,... 
 'dl',     [1 2 3 4 5 6],... 
 'intorder',4,... 
 'context','local'); 
O(8,i)=postint(fem,'cu4y',... 
 'cont',   'off',... 
 'contorder',2,... 
 'edim',   3,... 
 'solnum', 1,... 
 'phase',  0,... 
 'geomnum',1,... 
 'dl',     [1 2 3 4 5 6],... 
 'intorder',4,... 
 'context','local'); 
O(9,i)=postint(fem,'cu4z',... 
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 'cont',   'off',... 
 'contorder',2,... 
 'edim',   3,... 
 'solnum', 1,... 
 'phase',  0,... 
 'geomnum',1,... 
 'dl',     [1 2 3 4 5 6],... 
 'intorder',4,... 
 'context','local'); 
O(10,i)=postint(fem,'cu5x',... 
 'cont',   'off',... 
 'contorder',2,... 
 'edim',   3,... 
 'solnum', 1,... 
 'phase',  0,... 
 'geomnum',1,... 
 'dl',     [1 2 3 4 5 6],... 
 'intorder',4,... 
 'context','local'); 
O(11,i)=postint(fem,'cu5y',... 
 'cont',   'off',... 
 'contorder',2,... 
 'edim',   3,... 
 'solnum', 1,... 
 'phase',  0,... 
 'geomnum',1,... 
 'dl',     [1 2 3 4 5 6],... 
 'intorder',4,... 
 'context','local'); 
O(12,i)=postint(fem,'cu5z',... 
 'cont',   'off',... 
 'contorder',2,... 
 'edim',   3,... 
 'solnum', 1,... 
 'phase',  0,... 
 'geomnum',1,... 
 'dl',     [1 2 3 4 5 6],... 
 'intorder',4,... 
 'context','local'); 
endtime=fix(clock) 
etime(clock,t0)/60 
end 
 
%%%%%%%%%%%%% 
%    Mori-Tanaka Method 
%%%%%%%%%%%%% 
 
% piezomagnetic material tensor 
E_1=[C_m,zeros(6,3),q_m';zeros(3,6),-n_m,zeros(3,3);q_m,zeros(3,3),-m_m]; 
 
% piezoelectric material tensor 
E_2=[C_e,e_e',zeros(6,3);e_e,-n_e,zeros(3,3);zeros(3,6),zeros(3,3),-m_e]; 
%Material Properties 
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%matrix(m)Epoxy 
c11_m=mult*0.55328; 
c12_m=mult*0.29792; 
c44_m=mult*0.12768; 
nu_m=0.35; 
 
%Stiffness matrix for transversely isotropic materials 
% Lm Stiffnes of Matix 
E_m=zeros(12,12); 
E_m(1,1)=c11_m;E_m(1,2)=c12_m;E_m(1,3)=c12_m; 
E_m(2,1)=c12_m;E_m(2,2)=c11_m;E_m(2,3)=c12_m; 
E_m(3,1)=c12_m;E_m(3,2)=c12_m;E_m(3,3)=c11_m; 
E_m(4,4)=c44_m; 
E_m(5,5)=c44_m; 
E_m(6,6)=c44_m; 
E_m(7,7)=-1;E_m(8,8)=-1;E_m(9,9)=-1;E_m(10,10)=-1;E_m(11,11)=-1;E_m(12,12)=-1; 
 
 
 ID=eye(12,12); 
 %for cylindrical fiber 
 
 %Eshelby tensor for isotropic matrics and cylinderical inclusion 
 nu=nu_m; 
 es=zeros(12,12); 
 es(1,1)=(5-4*nu)/8/(1-nu);es(1,2)=(4*nu-1)/8/(1-nu);es(1,3)=nu/2/(1-nu); 
 es(2,1)=(4*nu-1)/8/(1-nu);es(2,2)=(5-4*nu)/8/(1-nu);es(2,3)=nu/2/(1-nu); 
 es(4,4)=1/2; 
 es(5,5)=1/2; 
 es(6,6)=2*(3-4*nu)/8/(1-nu); 
 es(7,7)=1/2; 
 es(8,8)=1/2; 
 es(10,10)=1/2; 
 es(11,11)=1/2; 
  
cm=1-V1/100-V2/100;c1=V1/100; 
  
 A_d1=inv(ID+es*inv(E_m)*(E_1-E_m));  
 A_d2=inv(ID+es*inv(E_m)*(E_2-E_m));  
  
 A_mt1=A_d1*inv(cm*ID+c1*A_d1+(1-c1-cm)*A_d2);  
 A_mt2=A_d2*inv(cm*ID+c1*A_d1+(1-c1-cm)*A_d2); 
  
 E_mt=E_m+c1*(E_1-E_m)*A_mt1+(1-c1-cm)*(E_2-E_m)*A_mt2; 
 
K=O*inv(I); 
I(:,7:9)=I(:,7:9)/10000; 
I(:,10:12)=I(:,10:12)/100; 
O(:,7:9)=O(:,7:9)/10000; 
O(:,10:12)=O(:,10:12)/100; 
I 
O 
K 
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% error cut 
O_f=O; 
 
for i=1:6 
    for j=1:6 
        if abs(O_f(i,j))<1e-3 O_f(i,j)=0; 
        end 
    end 
end 
 
for i=7:12 
    for j=1:6 
        if abs(O_f(i,j))<1e-4 O_f(i,j)=0; 
        end 
    end 
end 
 
 
    
for i=1:6 
    for j=7:12 
        if abs(O_f(i,j))<1e-4 O_f(i,j)=0; 
        end 
    end 
end 
 
for i=7:9 
    for j=7:9 
        if abs(O_f(i,j))<1e-3 O_f(i,j)=0; 
        end 
    end 
end 
 
for i=10:12 
    for j=10:12 
        if abs(O_f(i,j))<1e-3 O_f(i,j)=0; 
        end 
    end 
end 
 
filename=sprintf('D:\\A Parametric study\\resultbackup\\cylindrical three 
phase\\realdata\\case%d_r%dpm%dpe%d_%s_%d%d%d%d%d%d_%dtimes_data.m',casenum,100-V1-
V2,V1,V2,b,theta_1,theta_2,theta_3,theta_11,theta_22,theta_33,mult); 
fid=fopen(filename,'w'); 
fprintf(fid,'I=[... \n'); 
fprintf(fid,'%f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \n',I'); 
fprintf(fid,'] \n'); 
fprintf(fid,'O=[... \n'); 
fprintf(fid,'%f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \n',O'); 
fprintf(fid,'] \n'); 
fprintf(fid,'K=[... \n'); 
fprintf(fid,'%f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \n',K'); 
fprintf(fid,'] \n'); 
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% fprintf(fid,'II=[... \n'); 
% fprintf(fid,'%f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \n',II'); 
% fprintf(fid,'] \n'); 
% fprintf(fid,'OO=[... \n'); 
% fprintf(fid,'%f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \n',OO'); 
% fprintf(fid,'] \n'); 
% fprintf(fid,'KK=[... \n'); 
% fprintf(fid,'%f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \n',KK'); 
%fprintf(fid,'] \n'); 
 
 
fclose(fid) 
 
filenametext=sprintf('D:\\A Parametric study\\resultbackup\\cylindrical three 
phase\\realdata\\case%d_r%dpm%dpe%d_%s_%d%d%d%d%d%d_%dtimes.txt',casenum,100-V1-
V2,V1,V2,b,theta_1,theta_2,theta_3,theta_11,theta_22,theta_33,mult); 
fid=fopen(filenametext,'w'); 
fprintf(fid,'Effective property matrix \r'); 
fprintf(fid,'\n'); 
textcase=sprintf('Case (%d) \r',casenum); 
texttitle=sprintf('Resin %d , Piezomagnetic %d , Piezoelectric %d  \r',100-V1-V2,V1,V2); 
textsub=sprintf('\nPiezoelectric 1-2-3 rotation angle (%d,%d,%d), Piezomagnetic 1-2-3 rotation angle 
(%d,%d,%d) \r',theta_1,theta_2,theta_3,theta_11,theta_22,theta_33); 
textsub1=sprintf('\nElastic matrix stiffness multiple factor=%d \r',mult); 
fprintf(fid,textcase); 
fprintf(fid,texttitle);fprintf(fid,'\n'); 
fprintf(fid,textsub);fprintf(fid,'\n'); 
fprintf(fid,textsub1);fprintf(fid,'\n'); 
 
q=sprintf('Mesh type = %s \r',b); 
fprintf(fid,q); 
fprintf(fid,'\n'); 
 
fclose(fid); 
format short e; 
diary(filenametext); 
 
I,O,O_f,E_mt,E_1,E_2,K 
diary off; 
format short ; 
diary on; 
I,O,O_f,E_mt,E_1,E_2,K 
diary off; 
 
format short; 
toc/60 
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