
ANALYSIS OF BEACON TRIANGULATION IN RANDOM GRAPHS

A Thesis

by

GEETHA KAKARLAPUDI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2004

Major Subject: Computer Science



ANALYSIS OF BEACON TRIANGULATION IN RANDOM GRAPHS

A Thesis

by

GEETHA KAKARLAPUDI

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

Dmitri Loguinov
(Chair of Committee)

Riccardo Bettati
(Member)

A. L. Narasimha Reddy
(Member)

Valerie E. Taylor
(Head of Department)

December 2004

Major Subject: Computer Science



iii

ABSTRACT

Analysis of Beacon Triangulation in Random Graphs.. (December 2004)

Geetha Kakarlapudi, B.Eng., Mangalore University, Mangalore, India

Chair of Advisory Committee: Dr. Dmitri Loguinov

Our research focusses on the problem of finding nearby peers in the Internet.

We focus on one particular approach, Beacon Triangulation that is widely used to

solve the peer-finding problem. Beacon Triangulation is based on relative distances

of nodes to some special nodes called beacons. The scheme gives an error when a

new node that wishes to join the network has the same relative distance to two or

more nodes. One of the reasons for the error is that two or more nodes have the

same distance vectors. As a part of our research work, we derive the conditions to

ensure the uniqueness of distance vectors in any network given the shortest path

distribution of nodes in that network. We verify our analytical results for G(n, p)

graphs and the Internet. We also derive other conditions under which the error in the

Beacon Triangulation scheme reduces to zero. We compare the Beacon Triangulation

scheme to another well-known distance estimation scheme known as Global Network

Positioning (GNP).
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CHAPTER I

INTRODUCTION

Estimating network distances is an important problem that arises in numerous distrib-

uted Internet applications. A few examples of such applications are content-delivery

networks, overlay network construction and peer-to-peer applications. In content de-

livery networks, the performance can be greatly improved if we know the relative

positions of clients and servers in the Internet and locate the nearest servers for

streaming media content downloads. In peer-to-peer networks like Napster, Gnutella

or Kaaza, we need to choose closest peer for faster data transfers. Hence a new node

that wishes to join the network has to find an already existing node that is near to

it.

We can estimate network distances based on network latency, bandwidth and

packet loss rate. One can measure the network distance information using utilities

like ping, traceroute etc., But it is impractical to have all nodes in the network mea-

sure distances independently because the traffic in the Internet will then increase

tremendously and hence the method will not be scalable. This constraint lead to

many alternate distance estimation methods that enable estimation of distances be-

tween hosts without directly measuring the distance between the hosts. Among such

schemes, those that use special nodes called beacons or landmarks to determine co-

ordinates offer an elegant solution for determining the network distances.

In landmark-based or beacon-based schemes, beacons are positioned at random

locations in the network. Every beacon node measures distances to other beacons

and all the hosts in the network. Any host can estimate the distance to other hosts

The journal model is IEEE Transactions on Automatic Control.
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by measuring its distance to the beacon nodes. The main advantage of this method is

its scalability. From now on we refer to all the beacon-based schemes with a common

name Beacon Triangulation. Beacon Triangulation [1], [2], [3] is a simple scheme that

provides a solution to this peer-finding problem. In this scheme, there are special

nodes called beacons scattered all over the network. Any node can get its coordinates

by measuring the distances to the beacons. A new node a will choose the nearest

peer from the set of the nodes S it gets from the beacons as follows. First, the new

node computes the distance vector Da denoted by < da1, da2, ..., dak >, where dai is

the to beacon i in the network. The dimension of the vector k is equal to the number

of beacons. In Fig. 1, we illustrate the distance vectors of nodes. Then, the new

node computes an distance metric M to each node i in S. The different beaconing

schemes differ in the way they compute their distance metric. For example, in [1],

the authors define an average distance metric, which is given by:

M1 =
k
∑

i=1

(dxi − dyi)
2

Another scheme [2], uses a max-min distance metric given by:

M2 =
min
1≤i≤k

(|dxi − dyi|) + max
1≤i≤k

(|dxi − dyi|)

2

The new node a chooses the node with the lowest M as the nearest peer. In this

method, a new node can choose a wrong neighbor if there are many nodes with the

same M value, but which are not equally close to the new node. In this paper, we

analyze how to reduce the error in choosing a wrong neighbor. We first characterize

the probability of two nodes having the same M value and then derive the number

of beacons needed to reduce the error in the scheme to zero.
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Fig. 1. Distance vectors used in Beaconing scheme.

A. Motivation and Problem Statement

A large number of distributed Internet applications can benefit from the knowledge

of proximity between the hosts. For example, in content Delivery Networks (CDN),

we need to replicate servers to improve latency for clients by redirecting the clients

to the nearest mirrors to take advantage of CDNs. To solve the problem of network

distance estimation, numerous solutions are proposed. Among such schemes, the ones

that use beacons or landmark nodes provide a scalable and efficient solution to the

problem and hence they are widely used.

We aim to solve one of the main problems associated with Beacon Triangulation.

Consider the two scenarios illustrated in Fig. 2. In the first scenario that is shown at

the top of the figure, the hosts H1...Hn use beacons B1...Bk in a star topology. We

can see that the distance vectors of all the hosts are the same since they are at the

same distance to the the center of the topology. But they are quite distant from each

other. In the second scenario that is shown at the bottom of the figure, the hosts in

the networks N1...Np use beacons B1...Bk with a fully-meshed Internet core. Let us

assume that the networks N1...Np are i hops away from the core. We can see that

the hosts X and Y have equal distance vectors and hence the same error metric DE,
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difficult scenarios:

in a 

star topology (top)

osts in networks 

use beacons 

with a fully- Np Bk

N1

… …

B1

core

Bk

…

B1H1

…

Hn

Y

X

Fig. 2. Scenarios under which the beaconing schemes err. Figure source [4]

but they are 2i + 1 hops away from each other.

In this research, we aim at solving the error that arises in Beacon Triangulation

due to nodes having same distance vectors and distance metrics. We try to analyti-

cally model the underlying network and come up with the number of beacons that are

necessary in order to ensure the uniqueness of distance vectors, which will improve

the accuracy of the beaconing schemes. This problem can be stated as follows:

Given the shortest path distribution of nodes in a network, how many beacons are

necessary in order to reduce the error in distance estimation to zero in beacon-based

schemes?

Once we get an analytical model for ensuring the uniqueness of distance vectors,

we test the model by simulating the following:

• Networks where the shortest path distribution is uniform.

• Networks where the shortest path distribution is non-uniform.

– G(n, p) Random Graphs
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– The Internet.

We also analyze other conditions specific under which the error arises in Beacon

Triangulation method other than the uniqueness of distance vectors and again verify

the results with our simulations. Finally, we compare Beacon Triangulation scheme

with another popular distance estimation method called Global Network Positioning.

B. Related work

In this section, we present the work related to network distance estimation. We can

broadly categorize the related work in the area of network distance estimation into two

types. The first type employs some kind of embedding strategies to map the Internet

hosts into Euclidean space so that we can measure the network distances in a simple

manner using coordinates-based approach. The second type employs some special

nodes called Tracers or Beacons or Landmarks to measure the network distances in

a scalable fashion.

Among the coordinate-based approaches, Global Network Positioning (GNP) [5]

scheme is the most prominent one. In this scheme, the authors model the Internet as a

Euclidean space where the hosts represent points in the space. The network distance

between two hosts is obtained by evaluating a function on their coordinates. First,

the coordinates of special and well distributed Landmark nodes are determined and

then based on these coordinates; the positions of other hosts are measured relative

to the Landmarks. This scheme provides a fast and scalable way to estimate the

network distances.

Vivaldi [6] is another coordinate-based approach that assigns synthetic coordi-

nates to hosts in a distributed fashion. Each node computes coordinates for itself

without the help of any landmark nodes. The goal is to assign coordinates to hosts
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in such a way that the euclidean distance between two hosts reflects the round trip

latency between them. The authors find the best coordinates by simulating a net-

work of physical springs in order to reduce the error between predicted distances and

sampled latencies.

Shavitt et al. [7] propose a new embedding scheme called the Big-Bang Simula-

tion (BBS) for estimating distances between nodes in a network. The scheme models

the nodes of a network as a set of particles travelling in space under the effect of a po-

tential force field. The scheme uses principles of Newtonian mechanics for embedding

nodes in Euclidean space. The authors compare this model with other embedding

schemes like GNP and also Tracer-based schemes like IDMaps [8] and show that it is

more accurate with reasonable complexity than the other models.

Among the beacon-based approaches, IDMaps [8] architecture is a prominent

one. It is a scalable architecture for the Internet which measures and disseminates

distance information on the Internet. The main aim is to compute the distance

between any given pair of IP address or any given pair of Address Prefixes (APs).

The scheme employs tracers so that every AP is close to one or more tracers. The

distance between any two APs can be calculated as the sum of distance between APs

to the nearest tracer and the distance between the two tracers. The authors also

provide some heuristics for selecting the number of tracers to be placed and locating

the tracers for increasing the accuracy of distance measurement.

Theilmann et al. [9] propose Network Distance Maps for network distance es-

timation. The scheme employs a set of measurement servers called mServers. Each

host is assigned to the closest mServer and the distance between any two hosts is

estimated by the distance between their closest mServers. In order to reduce the net-

work load and make the scheme scalable, the mServers are clustered and organized

in a hierarchical manner. Each cluster elects a cluster representative such that the
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distances from any host to a cluster representative should be similar to the distances

to other cluster’s hosts. The authors have shown that the hierarchical organization

of mServers performs very well and at reasonable costs.

Guyton et al. [10] analyze different techniques of locating nearby replicated

Internet servers. They simulated the triangulation scheme to test its effectiveness.

They placed beacons randomly in the graph with 1180 clients trying to locate nearby

servers. They use Hotz’s [2] triangulation metric in their scheme. They find that the

triangulation technique is highly portable.

Ratnasamy et al. [3] propose a distributed binning scheme that helps in deter-

mining network proximity information. In this scheme, the nodes partition themselves

into bins such that the nodes within the same bin are closer to each other. The scheme

relies on a few landmark nodes. Each node measures its distance to the landmark

nodes based on the round trip time. They apply this scheme to construct overlays and

for server selection. They show that the application’s performance can be effectively

enhanced by gaining topological information.

Internet Coordinate System (ICS) [11] is another model that facilitates the es-

timation of network distance between two arbitrary Internet nodes. The distances

from hosts to m beacon nodes are represented as a distance vector. Using Principal

Component Analysis (PCA), the distance data space is transformed into a cartesian

coordinate system of small dimension. The transformation retains as much topologi-

cal information as possible. It also minimizes the measurement overhead because the

host need not make distance measurements to all the beacons.

Pias et al. [12] describe Lighthouse scheme which is a mechanism for locating

the position of hosts in a scalable fashion. It differs from other beaconing techniques

in the way it overcomes the issue of well-known pivot failures. It avoids a single set

of pivots forming bottlenecks by having relative or multiple local-coordinate systems.
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A host can determine its coordinates relative to any set of pivot nodes as long as

it maintains a transition matrix. If any network topology changes occur, the hosts

recalculate the coordinates from the transition matrix which is referred to as base

changing.

Another scheme called Internet Iso-bar [13], is a scalable architecture that mea-

sures distances between nodes. It is based on the notion of clustering hosts based

on a metric called correlation distance between a pair of nodes. The center of the

cluster is chosen as the monitor for the cluster. The monitors measures the distance

to other cluster monitors as well as the distance to all the hosts in the same cluster

continuously. This information is use to predict network distances. The prediction

is claimed to be simple, fairly accurate and stable with small overhead and timely

information.

C. Organization of the Thesis

The thesis is divided into seven chapters. Chapter II defines the distance vectors

and derives conditions for the uniqueness of distance vectors. We analyze networks

with both uniform and non-uniform distribution of shortest paths and compare the

performance of our model with our simulation results. In Chapter III, we discuss in

detail, the performance of our model in graphs generated using the G(n, p) model.

We analyze how well our simulation data fits into our model. Chapter IV, we discuss

BA model of network topology generation and analyze how our model works in such

topologies. We also discuss the extension of our model to the Internet. We character-

ize the shortest path distribution of the real Internet. We compare the performance of

our model with simulation results on the real Internet data. In Chapter V, we discuss

the ambiguities in the distance vectors. In Chapter VI, we provide a brief overview
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of Global Network Positioning scheme for network distance estimation. We analyze

how accurate the scheme is in computing the distances when we vary the number of

landmark nodes. In Chapter VII, we present the conclusion of our research work and

provide some future recommendations.
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CHAPTER II

UNIQUENESS OF DISTANCE VECTORS

In this chapter, we derive the conditions for ensuring the uniqueness of distance

vectors. The knowledge of the shortest path distribution of nodes in a given network

is critical to analyze the conditions for the uniqueness of distance vectors. We consider

both uniform and non-uniform distribution of shortest paths. We derive an expression

for the probability that the distance vectors of nodes have no conflicts. i.e. the

probability that the distance vectors of all the nodes are unique. We denote this

probability by pu(n). For our discussion, we denote the number of nodes by n and

the number of beacons by k. The expression for pu(n) depends on the shortest path

distribution to the beacons. We analyze the conditions under which the value of pu(n)

tends to one for the different shortest-path distributions.

Let us assume that there are n nodes in a given network and k beacons are placed

randomly in the network. The distance vector of node i is given by < di1, di2, ..., dik >

where, di1 is the distance of node i from the 1st beacon, and dik is the distance of

node i from the kth beacon. From now on, we assume that the maximum distance

of any node to any beacon is d i.e. in the distance vector < di1, di2, ..., dik >, the

maximum value of any di1 is the diameter d. Hence the total number of unique

distance vectors id given by d × d × ...k times = dk. Out of the total dk unique

combinations, we have only n distance vectors (one for each node). The probability

of any of dk distance vectors occurring in one of the n samples is not the same. This

is because the distribution of distances from each node to a beacon is not uniform for

a given network.
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A. Uniform Distribution of Shortest Paths

In this section, we assume that the distribution of shortest paths to each beacon is

uniform and the shortest paths to all the beacons are i.i.d random variables.

1. Analytical Model

We will now obtain an expression for the probability of no conflicts in the distance

vectors i.e. pu(n).

Lemma 1. If the shortest paths to the beacons are uniformly distributed in the interval

[1, d], the probability that there are no conflicts due to equal distance vectors is given

by:

pu(n) =



















n
∏

i=1

(

1 − i − 1

dk

)

n < dk

0 n ≥ dk

(2.1)

Proof. Let Di = (di1, . . . , dik) be the distance vector of a node i. Since we assume

that the shortest paths to all beacons are i.i.d, diameter d is the same for all beacons.

There are dk unique distance vectors out of which we choose n vectors. We have to

evaluate the probability of choosing n vectors such that all the n vectors are distinct.

The probability that the first vector is unique is given by dk/dk. The probability that

the second vector chosen is distinct from the first is (dk −1)/dk. Similarly probability

that ith distance vector is distinct from the initial i − 1 vectors given that the initial

i− 1 vectors are distinct is given by (dk − i+1)/dk. Thus the probability that all the

n vectors are distinct which is pu(n) is given by:

pu(n) =
dk

dk
× dk − 1

dk
× . . . × dk − n + 1

dk
. (2.2)
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Simplifying this expression, we get (2.1).

We next show an asymptotic expansion of model (2.1).

Lemma 2. For the uniform distribution of shortest paths in [1, d] and k = 2 logd n−

logd 2 + w, the probability of obtaining a non-conflicting set of distance vectors is

asymptotically:

pu(n) ≈ e−d−w

. (2.3)

Proof. First notice that dk ≈ n2 is much larger than n. Then, using Taylor expansion

(1 − x) ≈ e−x and the fact that n ≪ dk, we get from (2.1):

pu(n) ≈
n
∏

i=1

e−(i−1)/dk

= e−n(n−1)/2dk

. (2.4)

Select the number of beacons k to be 2 logd n− logd 2 + w, where w is possibly a

function of n. From (2.4), observe that pu can be now written as:

pu(n) ≈ exp

{

−n(n − 1)

n2dw

}

, (2.5)

which immediately leads to (2.3).

We next obtain the number of beacons necessary to guarantee a non-conflicting

set {Di}.

Corollary 1. Assuming that the diameter of the graph d = Ω(ln n) and the number

of beacons as in Lemma 2, the uniqueness of {Di} is guaranteed in almost every graph

as long as w > 0. At the same time, almost no graph will have a unique set {Di} if

w < 0:

lim
n→∞

pu(n) =











1 w > 0

0 w < 0
. (2.6)
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From our model in (2.1), we compute the number of beacons needed for pu to be

equal to 1 for different values of n, assuming that d is ⌊ln n⌋. The Table I shows the

Table I. Beacons needed for different n to avoid conflicts

Nodes n Beacons k

102 11

103 11

104 12

105 13

106 14

values of k needed to get pu(n) to 1 for different n from our simulations. We observe

that we can reduce conflicts even for large number of nodes with manageable number

of beacons. We verify the results from our simulations.

2. Simulations

For the purpose of our simulations, we generate uniformly distributed shortest paths

to all the beacons using random number generator [14]. We form distance vectors with

the generated shortest paths to the beacons. We calculate pu(n) as the percentage of

number of times there are no equal distance vectors in 1000 runs of our simulation.

3. Discussion

In Fig. 3, we plot simulations of model (1) for n = 10000 and d = ⌊ln n⌋. From

our Lemma 2 and Corollary 1, the number of beacons k should be greater than 9 for

pu(n) to go to 1. For w = 1, k should be equal to 10 for pu(n) to be equal to 1. We
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plot the variation of pu(n) as we increase k. We compare our simulation data with

our model. We can see that the simulation data fits our model well.

In Fig. 4, we plot model (2.6) for positive and negative values of w. The value

of d changes as ⌊ln n⌋. In Fig. 4(a), we plot pu(n) when w is positive and equal to

1. We observe that the curve eventually converges to 1. In Fig. 4(b), we plot pu(n)

when w < 0, specifically when w = −1. We observe that as inferred by Corollary 1,

the curve eventually converges to 0.

B. Non-uniform Distribution of Shortest Paths

We consider the case where the distribution of shortest paths is not uniform. Again,

we assume that the shortest paths to all the beacons are i.i.d. with d as the diameter.

1. Analytical Model

Let us assume that the probability of the shortest path hop count being i is given by

pi. The probability that two distance vectors are equal is given by pc =

(

d
∑

i=1

p2
i

)k

.

The probability that there are no conflicts is given by:

pu(n) =
n
∏

k=1

(1 − pc)
n−k

= (1 − pc)
n(n−1)

2

=



1 −
(

d
∑

i=1

p2
i

)k




n(n−1)
2

(2.7)

2. Simulations

In order to verify the model in equation (2.7), we simulate a network with non-uniform

shortest path distribution. We construct a G(n, p) random graph with n nodes for
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versus n for w < 0 (w = −1).
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Fig. 5. Shortest path distribution for a G(n, p) random graph: (a) n = 1000, λ = 7;

(b) n = 1000, λ = 10.

the purpose of our simulations. Each edge is included in the graph with independent

probability p between any two nodes. After we construct the graph, we compute all

pair shortest paths using Djikstra’s algorithm to get the shortest path distribution of

the network. We fix the graph once and randomly vary beacon positions each time

to check for a conflict in the distance vectors. We repeat this over thousands of runs

and calculate the percentage of no conflicts in the distance vectors i.e. pu(n).

3. Discussion

In Fig. 5 and Fig. 6, we plot the shortest path distribution in a G(n, p) graph

with different values of n and p. The average degree of the graph λ is equal to the

product np. We observe that the distribution is gaussian-like. Using the distribution

of shortest paths from simulations, we obtain pi values and we plug these values into

the model in (2.7) to calculate the value of pu(n). We compare the value of pu(n) that
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Fig. 6. Shortest path distribution for a G(n, p) random graph: (a) n = 10000, λ = 7;

(b) n = 10000, λ = 10.

we get from the model with the one from simulations. We compare the two values

of pu(n) from model and simulations for n = 1000 and n = 10000 for two different

values of p.

We plot the simulation results in Fig. 7 and Fig. 8 for different values of n and p.

In Fig. 7(a), we plot the value of pu(n) versus k for n = 1000 and p = 0.007 from our

model and simulations. We observe that the values of pu(n) from simulation results

are a bit off from the model at the transition of pu(n) from 0 to 1. But the values of

k at which there is a transition of pu(n) from 0 to 1 from our model and simulations

are almost the same. From Fig. 7(a), we observe that from our model, we need 26

beacons to ensure that the value of pu(n) is 1 and from our simulations, we need 28

beacons which is quite close to that from our model. In Fig. 7(b), we plot the value

of pu(n) versus k for n = 1000 and p = 0.01 from our model and simulations. The

results are very similar to that seen in Fig. 7(a). From the plot, we can see that we
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Fig. 7. Percentage of conflicts pu(n) vs number of beacons k: (a) n = 1000, λ = 7; (b)

n = 1000, λ = 10.

need 29 beacons to ensure that the value of pu(n) is 1 and from our simulations, we

need 30 beacons which is very close to that from our model. From Fig. 7, We also

observe that as the average degree of the graph λ decreases, we need lesser number

of beacons to ensure the uniqueness of the distance vectors.

Now, let us analyze the results for n = 10000. In Fig. 8, we plot the value of

pu(n) versus k for n = 10000 and p = 0.001 from our model and simulations. The

plot is very similar to Fig. 7 in its characteristics. From Fig. 8(a), We observe that

from our model, we need 30 beacons to ensure that the value of pu(n) is 1 and from

our simulations, we need 31 beacons which is very close to that from our model. As

we increase the value of p to 0.001, we can see from the Fig. 8(b), we need 36 beacons

to ensure that the value of pu(n) is 1 and from our simulations, we need 37 beacons

which is very close to that from our model. Again, similar to our observations in

Fig. 8, we notice that as the average degree of the graph λ decreases, we need lesser
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Fig. 8. Percentage of conflicts pu(n) vs number of beacons k: (a) n = 10000, λ = 7;

(b) n = 10000, λ = 10.

number of beacons to ensure the uniqueness of the distance vectors.

C. Chapter Summary

We analyze the conditions for uniqueness of distance vectors in the case of both uni-

form and non-uniform distributions of shortest paths of nodes in any given network.

As the number of nodes increase, we need more beacons to ensure the uniqueness

of distance vectors. In the case of non-uniform shortest path distribution, we also

observe that as the average degree of the graph increases, we need more beacons to

ensure the uniqueness of distance vectors.
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CHAPTER III

G(N,P ) GRAPH

In this chapter, we focus on graphs generated using G(n, p) model. We get an ex-

pression for the shortest path distribution in G(n, p) graphs. We use this distribution

to derive the conditions for the uniqueness of distance vectors. Consider a random

graph generated using G(n, p) model with n nodes and probability p. Let us recall

that a G(n, p) random graph is one which has n nodes and each edge is included

in the graph with independent probability p between any two vertices. The average

degree of the graph λ is given by the product np.

A. Analytical Model

In [15], the authors derive an expression relating to the probability of hopcount in

G(n, p), which is given by P (hn > i) = e−c λi

n , c > 0. Using this result on hopcount,

we can obtain the hopcount probability distribution as

pi =
(

e−c λi−1

n − e−c λi

n

)

, c > 0. (3.1)

.

From [2.7], the probability of no conflicts is given by

pu(n) =



1 −
(

d
∑

i=1

pi

)k




n(n−1)
2

. (3.2)

Substituting the hopcount distribution for G(n, p) from (3.1) in (3.2), we obtain
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the probability of no conflicts for a G(n, p) graph as

pu(n) =



1 −
(

d
∑

i=1

(

e−c λi−1

n − e−c λi

n

)2
)k




n(n−1)
2

(3.3)

Let us now analyze the asymptotic behavior of pu(n), lim
n→∞

pu(n) which is given

by

lim
n→∞



1 −
(

d
∑

i=1

(

e−c λi−1

n − e−c λi

n

)2
)k




n(n−1)
2

(3.4)

Since the model in (3.4) is very cumbersome to simplify, we analyze the behavior

of the model by plotting the value of pu(n) for increasing values of n and for different

values of k and for the shortest path distribution that we have from (3.1). For the

purpose of our calculations, we assume the diameter of the graph as log n [16]. We

simulate a G(n, p) network and compare the results from our model and simulations

in the network in the following subsections.

B. Simulations

In this section, we first describe our simulation setup for G(n, p) graphs. In order to

build an undirected random G(n, p) graph of n nodes, we choose a probability p of

having an edge between two nodes. We represent the graph by its adjacency matrix.

To place an edge between two nodes, we generate a random number between 0 and 1.

If the random number is less than or equal to p, we join the nodes by placing a 1 in

the adjacency matrix at the corresponding location. If the random number is greater

than p, we place a 0 in the adjacency matrix. Thus, we construct the adjacency

matrix for the graph. The nodes are numbered from 0..n − 1.

In order to check the connectivity of the graph, We do a Breadth First Search
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Fig. 9. Shortest path distribution fit: (a) n = 1000, λ = 7; (b) n = 1000, λ = 10.

(BFS) on the graph starting from the node 0. We mark all the nodes that are visited

by the BFS algorithm. If the total number of nodes that are marked is greater than

fifty percent of the total nodes n, we proceed further. We fix the number of beacons

k. We choose the beacon positions in the graph randomly and we also make sure that

they lie in the connected component of the graph that we consider for our simulations.

For the purpose of our simulations, we consider two values of n, 1000 and 10000

and two values of λ, 7 and 10. We choose these values to observe how the model

behaves for different values of n and λ. In order to obtain the value of the constant c,

we fit a curve with shortest path distribution expression in (3.1) to the distribution

of shortest paths from our simulations.

C. Discussion

We plot the distribution of shortest paths from our simulations and from (3.1) in Fig.

9 and Fig. 10. We observe that the shortest path data from our simulations fits well
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Fig. 10. Shortest path distribution fit: (a) n = 10000, λ = 7; (b) n = 10000, λ = 10.

to the model in (3.1). From the shortest path distribution fits from Fig. 9 and Fig.

10, we obtain the values of c for different combinations of n and λ values. We use the

value of c thus obtained, in calculating the values of pu(n).

We plot the values of pu(n) from our model in (3.3) and simulations for different

values of n and λ in Fig. 11 and Fig. 12. In Fig. 11(a), we plot pu(n) versus k from

our model and simulations for n = 1000 and p = 0.007. We can clearly see that our

simulation data is off from our model at the transition of pu(n) from 0 to 1. But the

transition of pu(n) from 0 to 1 in the plot for our model and simulation data occurs

for almost the same values of k. To observe this, let us fix a small threshold ǫ = 0.01

and look at the number of beacons needed from our model such that pu(n) ≥ 1 − ǫ.

For n = 1000 and λ = 7, we need 23 beacons to ensure that pu(n) ≥ 1 − ǫ, i.e, to

ensure that pu(n) ≥ 0.99. Next, we look at the number of beacons needed from our

simulation data such that pu(n) ≥ 0.99 for the same n and λ values. we need 23

beacons to ensure that pu(n) ≥ 0.99 which is the same as what we have from our
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Fig. 11. Percentage of conflicts: (a) n = 1000, λ = 7; (b) n = 1000, λ = 10.

model. In Fig. 11(b), we plot pu(n) versus k from our model and simulations for

n = 1000 and p = 0.01.We observe the same characteristics in the figure as in the

case of the Fig. 11(a)

We analyze the same for n = 10000 and for two different values of λ for the same

threshold value of 0.01. We can see from the Fig. 12(a) that we need 27 beacons

to ensure that pu(n) ≥ 0.99. Next, we look at the number of beacons needed from

our simulation data such that pu(n) ≥ 0.99 for the same n and λ values. we need

29 beacons to ensure that pu(n) ≥ 0.99 which is fairly close to what we have from

our model. In Fig. 12(b), we plot pu(n) versus k from our model and simulations

for n = 10000 and λ = 10.We observe the same characteristics in the figure as in the

case of the Fig. 12(a).

In Table. II, we compare the number of beacons needed for different n to make

pu(n) equal to one for λ = 10 from our model. We can see that simulation data is just

a few beacons off from the model. In Table. III, we compare the number of beacons
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Fig. 12. Percentage of conflicts: (a) n = 10000, λ = 7; (b) n = 10000, λ = 10.

needed for different n to make pu(n) equal to one for λ = 10 from simulation data for

a G(n, p) graph and for uniform shortest path distribution case. We can observe that

in the case of uniform shortest path distribution, we need very few beacons compared

to the non-uniform shortest path distribution in G(n, p) graph.

Table II. Beacons needed for different n to make pu(n) equal to one for λ = 10 from

our model and simulation

n Model Simulation

1000 22 24

10000 27 29

From our analysis, we observe that our model in (3.3) can be used to get an

estimate on the number of beacons needed to ensure that no two distance vectors

are same with fairly reasonable accuracy. Table. IV gives the number of beacons k



26

Table III. Beacons needed for different n to make pu(n) equal to one for λ = 10 from

our simulation data for G(n, p) graph and uniform distribution case

n k(G(n, p)) kUniform

102 19 11

103 25 11

104 30 12

105 36 13

106 14 14

needed to make pu(n) equal to 1 for different n and λ values. For each value of n, we

choose a value for p such that the average degree λ is equal to 5 and 10. From the

Table. IV, we can clearly see that, by fixing beacons a fairly few number of beacons

even in large networks, we can increase the accuracy of the beaconing schemes by

ensuring that no two distance vectors are equal.

Table IV. Beacons needed for different n to make pu(n) equal to one for λ = 5 and

λ = 10 from our model

n k for λ = 5 k for λ = 10

102 16 19

103 22 25

104 25 30

105 29 36

106 35 41

107 37 45
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Fig. 13. Shortest path distribution of nodes with equal distance vectors: (a) n = 1000,

λ = 7; (b) n = 1000, λ = 10.

Now, we analyze how the nodes with the same distance vectors are related. We

analyze the distribution of shortest paths between the nodes with the same distance

vectors. By observing any pattern in the shortest path between two nodes with

the same distance vectors will give us an idea of how inaccurate or accurate can a

beaconing scheme get if two or more nodes have the same distance vectors.

We plot the shortest path distribution of nodes with equal distance vectors data

from our simulations for different values of n and λ in Fig. 13 and Fig. 14. In Fig.

13(a), for n = 1000 and λ = 7, we notice that the diameter of the graph is 6. We

also see that around 30% of the nodes with the same distance vectors are 3 hops

away and around 53% of the nodes with the same distance vectors are 5 hops away

from each other. There are just 0.4% of the nodes that are immediate neighbors that

have the same distance vectors. In Fig. 13(b), for n = 1000 and λ = 10, we notice

that the diameter of the graph is 7. We also see that around 53% of the nodes with
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Fig. 14. Shortest path distribution of nodes with equal distance vectors: (a) n = 10000,

λ = 7; (b) n = 10000, λ = 10.

the same distance vectors are 3 hops away and around 36% of the nodes with the

same distance vectors are 4 hops away. There are just 0.04% of the nodes that are

immediate neighbors that have the same distance vectors.

We observe similar trend for n = 10000 in Fig. 14. In Fig. 14(a), for n = 10000

and λ = 7, we notice that the diameter of the graph is 8. We also see that around

54% of the nodes with the same distance vectors are 5 hops away and around 22% of

the nodes with the same distance vectors are 6 hops away. A very small percentage

of nodes (0.05%) with equal distance vectors are immediate neighbors. n Fig. 14(b),

for n = 10000 and λ = 10, we notice that the diameter of the graph is 7. We also

see that around 52% of the nodes with the same distance vectors are 4 hops away

and around 36% of the nodes with the same distance vectors are 5 hops away. A

very small percentage of nodes (0.09%) with equal distance vectors are immediate

neighbors.
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Hence we can see from our simulations that a major percentage of the nodes

with the same distance vectors are not very close to each other and hence they can

contribute to significant error in the beaconing schemes if we do not choose the right

closest peer node.

D. Chapter Summary

We deal with G(n, p) graphs in detail. We derive expressions for the shortest path

distribution in a G(n, p) graph and the probability of no conflicts in distance vectors.

We compare our model results with our simulations. We also observe a pattern

among the nodes with the same distance vectors which leads us to the conclusion

that uniqueness of distance vectors is of key importance to measure network distances

accurately.
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CHAPTER IV

THE INTERNET

In this chapter, we measure the effectiveness of our model in Internet-like topologies

and the Internet. First, we generate a network topology using BA model and verify

how our model works with the BA graphs. Next, we extend our discussion to the

real Internet. We study the shortest path distribution in the Internet and verify

the distribution with real Internet data. We also verify if our model of pu(n) for

non-uniform distribution of shortest paths can be extended to the Internet.

A. Internet-like Topologies

There are many topology generators that generate Internet-like graphs by imitating

the properties of the Internet. Some of the topology generators like [17] generate

random topologies. Some of them generate topologies to reflect hierarchical properties

of the Internet [18, 19]. A few of the topology generators produce graphs with similar

degree-related properties as the Internet [20, 21, 22]. We consider the BA model

[23] which produces a graph with power-law degree distribution. We extend our

experiments to a BA graph and study its shortest path distribution. We apply the

shortest path distribution from our simulations to our model to obtain the probability

of uniqueness in distance vectors. We compare our model with simulations to test

the accuracy of the model in Internet-like topologies.

1. Overview of the BA Model

BA model produces graphs with power-law degree distribution. In the model, the

networks grow incrementally and as the network grows, new nodes are attached pref-

erentially attached to the nodes with higher degree. Due to such incremental growth
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Fig. 15. CCDF of node degree distribution of a BA graph for n = 100, m = 3 and

m0 = 2.

and preferential attachment, the BA model is shown to generate networks with power-

law degree distribution.

In BA model, we start with a small number of nodes m0 that are connected

arbitrarily. At each step, we do the following:

• Add a new node with m ≤ m0 edges that are connected to already existing

nodes in the graph.

• Each of the m neighbors is picked up randomly with a probability proportional

to its degree. For example, a new node picks a node i with degree ki as its

neighbor with probability p(ki) = ki/
∑

j kj. In this manner, a new node chooses

m neighbors.

Fig. 15 shows the plot of the Complementary Cumulative Distribution Function

(CCDF, which is 1−CDF ) of the degree distribution of nodes in a BA graph of 100

nodes (log-log scale).
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2. Simulations and Discussion

We simulate a BA graph and compute the shortest path distribution. Fig. 16 shows

the shortest path distribution in a BA graph for n = 100 and n = 1000. For the

purpose of our simulations, we fix the value of m at 3 and m0 at 2. We observe that

the shortest path distribution in a BA graph is very similar to the one in G(n, p)

random graph.

We plot the values of pu(n) from our model in (3.3) and simulations for different

values of n in Fig. 16(a) and Fig. 16(b). We can see from the plot that the simulation

data is way off from our model. We observe a similar trend in the plots that we

observed with our real data from the Internet. This shows that our model is not

accurate enough to model the Internet data. This is due the fact that we do not take

into account the dependencies in distance vectors in our model. These dependencies

may be a prominent factor in the Internet and Internet-like topologies. Modelling

such dependencies is an interesting direction to explore in future.

B. The Real Internet

In this section, we discuss the effectiveness of our model in the real Internet. First, we

study the shortest path distribution in the Internet and verify the distribution with

real Internet data. Then, we verify if our model of pu(n) for non-uniform distribution

of shortest paths can be extended to the Internet.

1. Shortest Path Distribution

A lot of work has been done to model the distribution of shortest paths in the Internet.

Dorogovtsev et al. [24] obtain the expression for shortest path length distribution.

The authors describe the DGM model which analytically produces a Gaussian distrib-
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Fig. 16. Shortest path distribution in a BA graph; (a) n = 100 ; (b) n = 1000.
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(b) n = 1000.
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Fig. 18. Shortest path distribution in the Internet.

ution similar to the distance distribution seen in the real Internet. For large networks,

the distribution tends to a Gaussian of width
√

ln n centered at ln n. They show that

at large t, the distribution takes the form

P (ℓ, t) =
1

√

2π (22/33) t
exp

[

−
(

ℓ − ℓ(t)
)2

2 (22/33) t

]

where P (ℓ, t) = The probability of the shortest-path length being equal to ℓ at

time t. The Fig. 18 shows the shortest path distribution at the router-level in the

Internet.

We can see similar router level graphs in [25, 26, 27]. The width of the Gaussian

for a 10000-node network, 1.1, is very close to the width of the Internet inter-domain

distance distribution, 0.9, but the average distance is slightly higher-4.8 instead of 3.6

[28]. As noted in [24], simulation-based measurements of the distance distribution in

the BA model also produce similar Gaussians, [29].

In Fig. 19, we fit Gaussian curve to the Internet’s shortest path distribution

from the year 2000.
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Fig. 19. Gaussian fit to the shortest path distribution in the year 2000.

2. Simulations and Discussion

For the purpose of our simulations, we use the NLANR’s [30] Active Measurement

Project (AMP) data. The AMP data provides a very good source for network analy-

sis. There are around 150 AMP monitors deployed throughout many campuses in

the United States and also some locations in other countries. These monitor take

site-to-site measurements like Round Trip Time (RTT), packet loss, throughput and

topology. We consider the traceroute measurements taken between the different AMP

monitors. From these measurements, we calculate a shortest path matrix which has

the shortest path (hop count) between all the AMP monitors. We use this shortest

path matrix to get distance vectors.

The shortest path distribution for the AMP monitors is shown in Fig. 20. From

the figure, we can see that the distribution is Gaussian-like as we expect in the

Internet. We choose beacons randomly among the AMP monitors and calculate

the distance vectors. From the distance vectors, we compute the value of pu(n) for

different values of k. We plot the results in Fig. 21. We can see the simulation results

are really off our model. This may be due to the fact that the model is not accurate

enough to be applicable to the Internet and also the number of the AMP monitors
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that we use for simulations are just 140. We can check the model using Internet

topology generators for large n and see if the simulations come close to the model.
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CHAPTER V

AMBIGUITIES IN DISTANCE VECTORS

We have seen the conditions for the uniqueness of distance vectors. Uniqueness condi-

tion ensures that no two distance vectors are equal. If two nodes have equal distance

vectors, then their distance metric M will not be the same and hence there will be

no ambiguity between the nodes. Thus uniqueness of distance vectors is a necessary

condition for resolving ambiguity. However, there can be instances where two nodes

have different distance vectors but the same M values. Hence the uniqueness of dis-

tance vectors is not a sufficient condition for resolving ambiguity. In this chapter, we

explore the reasons that give rise to ambiguities in distance vectors.

A. Distance Metric M

Recall that different beaconing schemes differ in the distance metric that they define.

For example, in [1], the authors define an average distance metric that is given by:

M =
k
∑

i=1

(dxi − dyi)
2 (5.1)

Ng et al. [5], define other average distance metrics, a normalized distance metric and

a logarithmic distance metric which are given by:

M =
k
∑

i=1

(

xi − yi

xi

)2

M =
k
∑

i=1

(log xi − log yi)
2
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Another scheme [2], uses a max-min distance metric given by:

M =
min
1≤i≤k

(|dxi − dyi|) + max
1≤i≤k

(|dxi − dyi|)

2

The reasons for the ambiguity in distance vectors depend on the particular type

of the distance metric. We focus on the average distance metric (5.1) in analyzing

the reasons for ambiguities in distance vectors.

B. Distribution of M Values

Ambiguity arises when two nodes have the same M values without their distance

vectors being the same.

Let Di = (di1, di2, ...., dik) be the distance vector of a node i and Dj = (dj1, dj2, ...., djk)

be the distance vector of node j. Let Dn = (dn1, dn2, ...., dnk) be the distance vector

of a new node that wishes to join the network. Ambiguity arises if M values for both

i and j are the same i.e.

(di1 − dn1)
2 + ... + (dik − dnk)

2 = (dj1 − dn1)
2 + ... + (djk − dnk)

2

To analyze the total number of such ambiguities, we need to look at the distri-

bution of M values . Let Xi be a random variable that denotes the shortest paths

to a beacon i. Let us assume that each of Xi s are i.i.d. In a G(n, p) graph as

well as the real Internet, each of the Xi s follows Gaussian distribution as we have

seen in the previous chapters. The difference of any two Xi s is a zero-mean dis-

tribution. Fig. 22 shows the plot of the difference in the distances to beacon 3 for

n = 10000, p = 0.00034. We can see that the mean is close to zero from the figure. To

consider the distribution for each of the M values , we need to look at the distribution

of the sum of the squares of the differences in the shortest paths.
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Recall the definition of chi-Squared distribution [31] which is given by χ2 =
r
∑

i=1

Y 2
i , where each of the Yis is normally distributed with mean 0 and variance 1.

In our case, the difference in the shortest paths are normally distributed with mean

0. But we do not have variance exactly equal to 1. Hence, we consider non-central

chi-Squared distribution that is defined as follows:

If Xis are independent variates with normal distribution having means µi and

variances σis for i = 1, ...., n, then χ2

2
=

n
∑

i=1

(

xi−µi

2σ2
i

)

obeys gamma distribution with

α = n
2
, i.e., P (y)dy = 1

Γ(n
2 )

e−yy(n
2
−1)dy. where y = χ2

2
.

Let us denote the probability of M being equal to k as P (M = k). Since M

follows the chi-square distribution, we can write the gamma distribution equivalent

as

P (M = k) =
1

Γ
(

k
2

)e
−2y

σ2

(

2y

σ2

) k
2
−1

(5.2)

C. Simulations

We plot the distribution of M values from our simulations in Fig. 23 for n = 1000.

We analyze the shortest path distribution of nodes with the least M value for

different values of n and p. In Fig. 24, we plot the shortest path distribution of nodes

with the least M value for n = 1000 and p = 0.01. We observe that most of the nodes

with the same M value are 3 and 4 hops away.

In Fig. 25, we plot the shortest path distribution of nodes with the least M value

for n = 10000 and p = 0.001. We observe that most of the nodes with the same M

value are 4 and 5 hops away.

From the plots, we can see that M metric that we use is most of the times not

very accurate in determining the actual distance.
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CHAPTER VI

GLOBAL NETWORK POSITIONING

In this chapter, we discuss in detail about Global Network Positioning (GNP) [5], a

popular scheme used for network distance estimation. We give a brief overview of

how the scheme works. We present some results on the accuracy and efficiency of the

scheme.

A. Overview of GNP

GNP scheme models the Internet as an n-dimensional Euclidean space. The model de-

fines a coordinate system where the hosts represent points in the space. The network

distance between two hosts is obtained by evaluating a function on their coordinates.

For efficiency in mapping the hosts to points, initially, the coordinates of certain

special and well distributed landmark nodes are determined. Based on these coor-

dinates, the positions of other hosts are measured relative to the landmarks. Thus

the authors define a two-part architecture. The first part deals with the landmark

operations which compute the coordinates of the landmarks. The second part of the

architecture defines the ordinary host operations where the coordinates of the hosts

are computed based on their relative distance to the landmarks. This scheme provides

a fast and scalable way to estimate the network distances.

B. Simulations

In this section, we attempt to verify the accuracy of the GNP scheme. First, we

generate a graph according to the G(n, p) model and obtain the actual shortest path

matrix by performing an all-pair shortest path computation on the graph. The output



44

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6

Distance

F
re

qu
en

cy

6 landmarks

Fig. 26. Predicted distances between nodes from GNP scheme when the actual dis-

tance = 1 for n = 1000 and 6 landmark nodes.

shortest path matrix is given as an input to the GNP software. The GNP software

then computes the predicted distances and outputs the predicted distance matrix.

We perform simulations for n = 1000 and vary the number of landmark nodes.

We verify the accuracy of the GNP scheme in two ways. First, we analyze

the predicted distances between nodes given by the GNP sofware when the actual

distance between the nodes is 1 from the shortest path matrix (i.e. when the nodes

are immediate neighbors). In this way, we verify how accurately the GNP scheme

identifies the nearest peers. Next, we analyze how the actual distances between the

nodes are when the GNP scheme predicts them to be the nearest neighbors. We plot

our results in Figures. 26, 27, 28 and 29.

C. Discussion

In Fig. 26, we plot the distribution of the measured distances between nodes from

the GNP scheme when they are actually immediate neighbors for 1000-node network

when 6 landmark nodes are used. We observe that the predicted distances of most of
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the nodes that are actually neighbors are around 3 and 4 hops. In Fig. 27, we plot

the distribution of the actual distances between nodes when the GNP scheme predicts

them to be immediate neighbors for the same 1000-node network when 6 landmark

nodes are used. We observe that the actual distances of most of the nodes that are

predicted as neighbors are around 3 and 4 hops.

In Fig. 28 and Fig. 29, we compare the above results by varying the number of

landmark nodes. We choose three different number of landmark nodes, 10, 15 and 20.

From the two plots, we can observe that, as we increase the number of landmarks,

the accuracy of prediction in the GNP scheme increases.

We can see that when the distance between nodes is actually one, GNP predicts

the distance to be more than 2 hops away more than 80% of the time for 6 landmark

nodes.
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D. Chapter Summary

We provide an overview of the GNP scheme. We verify the accuracy of the scheme by

comparing the predicted distance measurements from the GNP scheme to the actual

distances. We conclude that, increase in the landmark nodes decreases the accuracy

of the scheme.
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CHAPTER VII

CONCLUSION

The shortest path distribution of a given network is critical to determining the condi-

tions for the uniqueness of distance vectors. We have seen that our model works well

with uniform distribution of shortest paths. In the case of non-uniform distribution

of shortest paths, we do not consider the dependencies in the distance vectors. Still

our model is very close with simulations in predicting the number of beacons needed

to ensure uniqueness of distance vectors. Our model is not accurate enough in the

case of real Internet data and also Internet-like topologies since we do not consider

the dependencies in the distance vectors of nodes.

Increasing the number of beacons will increase the probability of uniqueness of

distance vectors. However, accuracy of predicting the network distances decreases

when we increase the number of beacons. We analyze the performance of GNP

scheme. We observe that as we increase the number of landmark nodes in GNP, the

accuracy of prediction decreases.
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