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ABSTRACT 

 

Mesoscale Predictability of an Extreme Warm-Season Precipitation Event. 

(December 2004) 

Andrew Michael Odins, B.S., The University of Louisiana at Monroe; 

B.S., University of New Mexico 

Co-Chairs of Advisory Committee:  Dr. Fuqing Zhang  
                                                                         Dr. John Nielsen-Gammon 

 

 During the period of June 29 through July 6, 2002, an extreme precipitation event 

occurred over Texas, resulting in catastrophic flooding.  Operational forecasts performed 

poorly, neither predicting the copious amounts of rain nor its longevity.  The Penn State 

University/NCAR Mesoscale Model version 5 (MM5) was used to conduct predictability 

experiments, which follow closely to the research conducted by Zhang et al.  A control 

simulation initialized at 00Z 1 July is established over a 30-km grid.  First, practical 

predictability experiments are performed by exploring the impacts due to different lead-

times, resolution dependence, and different physics parameterizations.  Second, intrinsic 

predictability is investigated by inducing a random temperature perturbation in the initial 

conditions, followed by numerous simulations with various perturbed initializations.  

Similar results to those found by Zhang et al. were discovered here: the prominent initial 

error growth is associated with moist processes leading to convection.  Eventually these 

errors grow from the convective scale to sub-synoptic scale, essentially below 1000 

kilometers.  This indicates that as the forecast time extends further beyond initialization, 

the resulting errors will impact forecasts of larger-scale features such as differences in the 
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positioning and intensity of positive PV anomalies and distribution of precipitation from 

the control simulation.  
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CHAPTER I 

 INTRODUCTION 

 

 On 29 June 2002, a heavy rainfall event was initiated over central Texas that 

lasted through 7 July 2002.  Several counties in the Edwards Plateau and South Central 

regions received excessive amounts of precipitation, causing flooding, millions of dollars 

in damages and loss of life.  Operational models used at the National Centers for 

Environmental Prediction (NCEP) had forecasted some heavy precipitation in the area; 

however, the rainfall amounts and duration of the storm event were not predicted well 

even within a 36-hour forecast.  It is hypothesized that forecast models tend to produce 

errors within the vicinity of heavy precipitation, particularly at the mesoscale.  The 

motivation behind this research is to explore the limits of mesoscale predictability of an 

extreme summer-time weather event, and comparing the results to a similar predictability 

study of a winter-time extreme weather event.  

1.1  Background on mesoscale predictability 

 Predictability, applied to a numerical weather prediction (NWP) model, has been 

a topic of interest for many researchers.  Investigations, by Lorenz (1963, 1969), explored 

the limits of predictability based on the chaotic nature of the dynamics of the atmospheric 

system (Schneider & Griffies 1998).  Predictability can be best explained as the 

capability to which the future state of the atmosphere can be predicted based on the initial 

state of the forecast variables.  The degree of predictability comes from the inability to 
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know the exact state of the atmospheric variables both in the past and present timeframes.   

Since the initial state of the atmosphere is not known, errors in the initial conditions are 

incorporated into a forecast model, and the forecast model itself has deficiencies (Kalnay, 

pp 205-208).   

Lorenz (1969) proposed that a finite limit of predictability would be reached 

despite improvements in initial conditions.  His conclusions were based on error growth 

at small scales; despite improvements, errors would originate at smaller scales and would 

grow rapidly ultimately affecting larger scales.  As a result of this rapid error growth, 

there would exist a finite limit of predictability, since steady improvements in the initial 

conditions would yield decreasing improvements in forecast length and quality.  This 

notion is also known as intrinsic predictability; theoretically if there existed a perfect 

model, and initial conditions were near perfect, there still would be this finite limit of 

predictability (Zhang et al 2003, hereafter ZSR03).  In contrast, practical predictability is 

the overall ability to forecast, encompassing both the model imperfections and the 

uncertainties in the initial conditions (Lorenz 1996, ZSR03).  The focus of this study will 

be the random error growth at the mesoscale, more specifically the impacts of moist 

physics, initial conditions, and resolution of a numerical model on both practical and 

intrinsic predictability.  It is important for this research to focus on the mesoscale since 

that is the scale of convective systems, and hence the probable scale of the fastest 

growing model errors.  

Previous studies have shown that small errors expand in magnitude and scale as 

the model forecast advances further in time.  These investigations have explored 

mesoscale predictability but have not determined the mechanisms behind the error 
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growth.  Most recently, Zhang et al. (2002, hereafter ZSR02) have established in at least 

one instance that forecast differences grow rapidly at small scales with moist processes.  

ZSR02 researched the “surprise” snowstorm of 24-25 January, 2000 that unleashed 

enormous amounts of snow along the eastern coast of the United States.  This event is of 

interest due to the inadequacy of the forecasts provided by the operational models, 

particularly the inability to predict the quantity of precipitation that occurred.  The 

experiments showed that differences at small scales grew rapidly in the presence of moist 

physics.  Dry processes, or those without latent heat release, had an error growth rate 

much slower than the moist simulations; therefore, the result is improved predictability at 

the mesoscale.  Model resolution also impacted error growth in a manner similar to that 

proposed by Lorenz.  Model differences grew faster at higher resolution and at smaller 

scales which ultimately indicates there exists an intrinsic limitation to predictability 

(ZSR02).   

 ZSR03 focused on the impacts of moist convection on predictability at the 

mesoscale.  This research continued that of ZSR02, but it explored error development and 

growth both at high- and low-resolution simulations.  The study concluded that errors at 

small scales, between 100-200 km within the first six-hour forecast, grew rapidly; these 

differences then expanded to larger scales, ultimately affecting the “subsynoptic-scale 

structure of the surface low,” while the small scale error growth slowed (ZSR03).  Moist 

convection appeared to be the primary source of initial rapid error growth at the low 

resolution of 30-km grid spacing.  Similarly, a high-resolution simulation of 3.3-km grid 

spacing showed that the greatest differences between the control and perturbed runs 

occurred in the vicinity of convective cells.  These results coincide with Lorenz’s theory 
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of the limits of predictability; even with improvements, this poses the question of how far 

present model forecasts are from the limit of predictability in the mesoscale.   

1.2  Methodology and objectives 

The ability to predict the future state of the atmosphere is largely dependent on 

the accuracy of the forecast by numerical models.  This research will focus on mesoscale 

predictability in a one- to two-day timeframe with a state-of-the-art numerical weather 

prediction model.  Specifically, complementary to ZSR02 and ZSR03, this study will 

investigate mesoscale predictability, both practically and intrinsically, for the extreme 

precipitation event introduced in the previous subsection.  However, there are notable 

mesoscale/synoptic differences between ZSR02 and ZSR03 and this research; this event 

is warm-season with low baroclinicity, and there is stronger convective instability.  The 

present investigation will explore a late June, early July subtropical event, in a much 

smaller locale, where temperature contrasts will be minimal, compared to the cold-season 

extreme event that encompassed a greater area studied in ZSR02 and ZSR03.  With 

regards to research methodologies, this examination will utilize random grid 

perturbations and will explore effects of various physics parameterization schemes both 

practically and intrinsically.  Using random temperature perturbations with a specified 

standard deviation distributed over the model grid points, an assessment of the rate of 

error growth and the forecast period of maximum growth rate is determined.  Since 

atmospheric variables often are at “critical” points, the induction of a very small 

temperature perturbation can yield a rapid error growth in the early forecast period 

(ZSR03).   
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Similar to ZSR03, this research will examine intrinsic predictability through (1) 

the evolution of small-scale small-amplitude errors and their growth dynamics, including 

diurnal growth rates, (2) the impacts of model grid resolution on error growth, and (3) the 

impacts of model physics, including moist convection and different physics 

parameterizations.  The 2002 Summer Texas Flood event (’02 Flood hereafter) lasted for 

a longer duration than the Surprise Snowstorm of 2000, and therefore it will be important 

to see the error behavior during different days and times of initialization.   ZSR03 found 

that model resolution (high resolution) contributed to rapid error growth during the early 

forecast period; therefore high resolution error growth will be investigated in this case.  

Difference growth (divergence of a control simulation compared to a perturbed 

simulation) due to varying the physics parameterization schemes, specifically individual 

changes to the cumulus, microphysics, and planetary boundary layer (PBL hereafter) 

options within the model, will be explored.  Lastly, determination of error growth 

stemming from moist physics will include simulations comparing one run with moist 

physics with one in which latent heat will be turned off.  Results from ZSR03 showed 

that without moist processes, error growth was reduced in the early forecast period.    

The present research will also explore practical predictability, but will involve 

methods relatively different from ZSR02.  First, an assessment of the precipitation 

forecast resulting from different lead times will be examined.  Next, resolution 

dependence on forecasted rainfall, a similar experiment to ZSR02, will be determined.  

Lastly, individual changes to the model physics parameterization schemes will be 

conducted to see the impacts on the accumulated precipitation forecast.  The primary 

objective behind these experiments is to determine the value of the forecast, essentially to 
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mimic complications that may arise in operational forecasting and to diagnose potential 

constraints within a forecast model.     

This research will incorporate the Pennsylvania State University-National Center 

for Atmospheric Research (PSU-NCAR) nonhydrostatic fifth-generation Mesoscale 

Model (MM5) version 3.6 (Dudhia 1993) using ETA GCIP data (details to be discussed 

in a  subsequent section) to simulate an idealized forecast.  The simulation will run for a 

total of 36-hours which will (1) focus on the time-frame that the operational NCEP 

models began to lose accuracy, and (2) explore the limits of predictability within the 

mesoscale timeframe.  An investigation into model initial conditions and configuration, 

by comparison with the idealized forecast, will show model biases and sources and 

timing of error growth.   

Motivation behind this research originates with the complications in the 

operational forecasting of such an event.  Both the amount of the rainfall and the duration 

of the ’02 Flood was not well simulated by the operational models (details discussed 

later).  It is therefore important to explore the source of such complications from a 

practical standpoint.  However, if given a perfect model, errors may still develop, and the 

mechanisms by which these errors develop and grow are also of interest.  

1.3  Outline of thesis 

 Following the introduction to mesoscale predictability and objectives of this 

research, Chapter II will have an overview of the ’02 Flood.  This will include a summary 

of the heaviest rainfall and a detailed mesoscale/synoptic analysis.  Chapter III will detail 

the experimental design, and will included an overview of the data used for this study, a 

model description, a comparison of a control simulation with observations, and a 
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description of experiments to be employed.  Chapter IV will include the results of the 

practical predictability experiments, and Chapter V will include intrinsic predictability 

results.  Lastly, Chapter VI will include a summary and discussion of the research. 
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CHAPTER II 

  OVERVIEW OF THE FLOODING EVENT 

 

2.1 Rainfall analysis and operational forecasts 

 The “surprise” snowstorm of 2002 is considered an extreme event due to the 

intensity of the system and the precipitation amount; when considering the predictability 

of this event, the interest lies in the failure of the operational models to forecast both the 

timing and amount of precipitation.  At the present time, there has been very limited 

research conducted on the predictability of a summertime extreme event, in particular 

investigating the effects of moist processes.   

Beginning early on June 29, 2002, and lasting through July 6, 2002, an extreme 

rainfall event occurred in Texas with the heaviest precipitation falling in the Edwards 

Plateau and South Central regions.  This event delivered copious amounts of precipitation 

to San Antonio, Austin, and areas surrounding and between the two cities.  Storm totals 

included: 16.16 inches ( 410mm) of rain at the San Antonio International Airport, with 

9.52 inches (242 mm) falling on 1 July 2002, 34.17 inches (868 mm) at Camp Verde 3 

W, 31.59 inches (802 mm) at Comfort 2, 30.75 inches (781 mm) at Sisterdale, 29.38 

inches (746 mm) at Bankersmith, and 27.63 inches (702 mm) at Boerne (data acquired 

through NCDC).  Fig. 2.1 shows an analysis of precipitation between 28 June 2002 12Z 

and 7 July 2002 12Z, which encompasses the storm duration; a dot indicates the location 

of the San Antonio International Airport (KSAT).  The rainfall composites in Fig. 2.1 are 

compiled from NCEP daily precipitation data.  The data are acquired from River Forecast 

Center and Climate Anomaly Data Base gauges; the data is then averaged  
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Fig. 2.1  Analyzed accumulated precipitation during the 2002 South-Central Texas flood (’02 Flood) for 
the 8-day period beginning on 28 June at 12Z.  The San Antonio International Airport (KSAT) is indicated 

by the gray dot.  Contours at every 50 mm. 
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with a resolution of 0.25 degree latitude by 0.25 degree longitude (NCEP).  Although this 

was an extreme event, several other extreme rainfall events have occurred in Texas; some 

that have been investigated include: 1-4 August 1978 (Caracena and Fritsch, 1983), 16-19 

September 1979 (Bosart, 1984), 16-19 October 1994 (Petroski, 2000), and 17-19 October 

1998 (Scott, 2001).  Although each event produced significant rainfall, the focusing 

mechanisms for the rainfall included synoptic-scale or mesoscale fronts, or topography, 

and several have been associated with tropical dynamics.     

Figs. 2.2 and 2.3 show the 24-hour precipitation totals for each day of the storm 

event, using the same NCEP analysis data as in Fig. 2.1.  When describing the 

precipitation observation for a given day, the date used will represent the 24-hour 

accumulated precipitation from 12Z of the previous day (i.e. the precipitation total for 29 

June will cover 28 June 12Z through 29 June 12Z).  Widely scatted precipitation fell on 

29 June, with the southern portions of the state receiving the majority of rainfall.  By 30 

June, more widespread precipitation fell across the southeastern half of the state, with 

heavier rainfall near the Austin area.  Rainfall continued in the central portions of the 

state, with the heaviest amounts occurring primarily in the South Central, Edwards 

Plateau, and Southern regions of the state for the next three days.  The precipitation had 

slowly shifted away from the hardest hit areas towards the west by 4 July, but this relief 

was short-lived as heavier rain fell on central Texas on 5 July.  By 6 July, convection was 

lighter as the system responsible for delivering the great quantity of rain moved to the 

west (details to follow in the next section) and into a more stable environment.   

With such heavy precipitation, 29 counties experienced damages from flooding 

and were declared Federal Disaster areas by President George Bush.  Rivers and streams  
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Fig. 2.2 Analyzed accumulated precipitation for successive 24-hour periods beginning and ending at 12Z.  
Contours are every 20 mm beginning with a 10 mm contour. 
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Fig. 2.3  24-hour accumulated precipitation, as in Fig. 2.2 
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flooded, and lake levels rose to record levels. Seven people lost their lives in flood waters 

and numerous homes were destroyed; damages are estimated to be near $500 million.  

Analysis of ‘02 Flood will include evaluation of the synoptic and mesoscale 

features throughout the duration of the event, utilizing model initializations, as well as 

composite radar images and station soundings.  This is followed by a brief discussion 

relating predictability to the conditions that were conducive for convective development 

and sustainability.   

2.2 Synoptics 

Hoskins et al. (1985) introduced isentropic potential vorticity (IPV) thinking as a 

way of describing the dynamics of weather phenomenon.  This methodology considers 

regions of high PV anomalies with respect to the balance of atmospheric components 

such as wind and temperature.  PV is conserved, but during rain formation, it can be 

generated at lower tropospheric levels and destroyed at upper tropospheric levels.  The 

synoptic analysis of the ‘02 Flood will utilize IPV thinking to explain the mechanisms 

behind the catastrophic rainfall.  The analysis is performed using the 0 hour forecast from 

the model output, and the southern boundary of the graphic is the lateral boundary used in 

the model.   

On 29 June at 00Z, an upper-level vortex of approximately 3 PVU (where 1 PVU 

is 1*106m2*K*s-1*kg-1) is present south of Brownsville along the Mexican coast at the 

350K isentropic level, seen in Fig. 2.4; the 350K isentropic level is representative in that 

it shows the important features that spanned several isentropic surfaces and controlled the 

upper-level wind patterns during this period.  The 350K isentropic level will be used to 

show the upper-level features, PV and flow in the ‘02 Flood case that can contribute to  
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Fig. 2.4  Isentropic potential vorticity at 350K (shading, every 1 PVU) and wind vectors (full barb denotes 
5 ms-1) on 29 June at 00Z.  Box denotes area of precipitation analysis. 
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the disturbances that lead to convection.  The 20 to 30 ms-1 southerly winds along the 

Mexican coast are helping to advect this vortex towards Texas.  Fig. 2.5 depicts the 

locations and parameters of vertical sections that will be used within this analysis: the 

sections are averaged over 300 km north-south, extend 1400 km east-west, and extend 14 

km vertically, with a designation of A and B for the southern and northern cross-sections 

respectively.  The purpose for averaging across 300 km is so that small-scale structure is 

not missed, as it potentially would be in a single plane, but without averaging away the 

significant features.   

Fig 2.6 shows a vertical section of PV and isentropes (will be designated a PV-I 

section) for A, and the primary point of interest is the positive PV anomaly near the 

Texas Coast, extending down to 11 km, which corresponds to the vortex seen in the 350K 

isentropic analysis; this PV anomaly helps to provide the upper-level support for a 

convective environment.  The other notable feature is the positive PV anomaly off the 

Texas Coast (flanked between the two solid lines below the X-axis on the graphic) 

centered at 328K, which is also present in the 320K isentropic analysis, Fig 2.7, as the 

small positive PV anomaly to the southeast of Brownsville. Winds at this vortex are east-

southeast at 10 ms-1, and will advect this anomaly towards the Mexican Coast, south of 

Brownsville.  The 00Z Brownsville and Corpus Christi soundings (Figs. 2.8a and 2.8b, 

provided by the University of Wyoming) indicate convective available potential energy 

(CAPE, J*kg-1) values at 743 and 1435 respectively.  Precipitable water values (PWAT) 

for each sounding are over 50 mm, which is favorable for heavy rainfall (Petroski, 2000 

and references therein). 
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Fig. 2.5  Locations of the vertical sections, averaged over 300 km north-south, extend 1400 km east-west, 
and extend 14 km vertically. 
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Fig. 2.6  Cross section (A) of potential vorticity (thin contours every 0.2 PVU, thick contours every 1.0 
PVU) and isentropes (every 4K), valid at 00Z 29 June.  The two lines below the X-axis represents the 

location of the Texas coast. 
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Fig. 2.7  Isentropic potential vorticity at 320K (shading, every 0.5 PVU) and wind vectors (full barb 

denotes 5 ms-1) on 29 June at 00Z.  Box denotes area of precipitation analysis. 
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Fig. 2.8  Skew-T soundings on 29 June at 00Z for (a) Brownsville and (b) Corpus Christi. 
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Convection is first observed off the coast of Texas and Mexico at 9Z 29 June (not 

shown) in association with the 350K vortex described in Fig. 2.4; the convection 

according to radar is developing below the vortex 350K vortex.  These storms move 

towards Brownsville and become a broad area of moderate rain and thunderstorms by 

12Z (Fig. 2.9).  A positive PV anomaly, located within the Brownsville vicinity at the 

320K isentropic level (Fig 2.10), has been diabatically generated as evident by the 

convection seen in Fig 2.9; the location of the positive PV anomaly is positioned in the 

area of convection. A 950 hPa theta-e (θe) and wind analysis (seen in Fig. 2.11) shows 

elevated levels of θe off the southern Texas coast, in conjunction with the convection in 

that area.  Warm-air advection, moisture advection, or surface fluxes contribute to higher 

θe which is indicative of greater instability.  Since the winds near the Texas coast are 

from the south-southeast, coming from the Gulf of Mexico, it is speculated that the higher 

θe levels are a result of moisture advection.  The normal-wind and relative humidity (NW-

RH) cross-section of A, seen in Fig. 2.12, also shows RH to be through 70% over 6 km.  

The NW exhibit little vertical wind shear, which is important to the sustainability of the 

convection since the storms will not shear apart (Raymond et al, 1990).  

Between 12Z 29 June and 00Z 30 June, the positive PV anomaly at the 320K 

isentropic level in the preceding paragraph advected northward across much of the South 

Central region of Texas (not shown) within 10 to 25 ms-1 southerly winds, and it has 

diabatically intensified into a deep vortex seen in Fig. 2.13 (coincides with the convection 

seen in radar, not shown).  Cross-section B of NW-RH (Fig. 2.14) shows very little 

vertical wind shear, as well as high moisture content from the surface to 8.5 km, where  
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Fig. 2.9  Radar composite valid at 12Z 29 June. 
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Fig 2.10  Isentropic potential vorticity and wind speed at 320K as in Fig 2.7, valid at 12Z 29 June. 
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Fig. 2.11  Theta-e (shading every 6K beginning at 330K) and wind analysis at 950 hPa, valid at 12Z 29 
June. 
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Fig. 2.12  Cross section (A) of normal wind and relative humidity with respect to water (shading, every 
10% beginning at 70%), valid at 12Z 29 June. 
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Fig. 2.13  Isentropic potential vorticity and wind speed at 320K as in Fig. 2.7, valid at 00Z 30 June. 
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Fig. 2.14  Cross section (B) of normal wind and relative humidity as in Fig. 2.12, valid at 00Z 30 June. 
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convection is a plausible mechanism for the redistribution of the moisture.  There has 

been an increase in θe levels (Fig 2.15) as well in the vicinity of the convection.   

Between the times of 12Z 30 June and 12Z 1 July, the bulk of the original vortex, 

seen in the 320K isentropic analysis on 00Z 29 June, has advected northward and has 

intensified (not shown), and a small area of positive PV, positioned to the west of 

Brownsville, is also advecting northward.  Fig. 2.16 shows the broad positive PV 

anomaly in northern Texas on 1 July at 00Z, but the vortex has weakened from over 2 

PVU to 1.5 PVU, which correlates to reduced rainfall intensity according to radar (not 

shown).  This positive PV anomaly is also being stretched due to the 20 ms-1 southerly 

winds to the east and 20 to 25 ms-1 northerly winds to the west of the vortex.  A small 

positive PV anomaly is present near Laredo, Texas that continues to advect to the north, 

towards the San Antonio area.  The onset of the heaviest precipitation near the San 

Antonio area, and generation of the mesoscale convective system (MCS), occurred 

between 00Z 1 July and 12Z 1 July.  Fig. 2.17 shows the radar image at 12Z 1 July, 

indicating a large area of moderate to heavy convection over San Antonio and areas to 

the north, extending to Austin, which has contributed to a deep diabatically generated 

vortex, seen in a B cross-section of PV-I (Fig 2.18).  This deep vortex can is also seen in 

the 320K isentropic analysis, with the center of the vortex over 2 PVU (Fig. 2.19).   

By 2 July at 12Z, convection has initiated once again in south-central Texas, with 

strong showers in the San Antonio area according to radar (Fig. 2.20).  An elongated 

trough can now be seen from the Texas-Mexico border near Brownsville that extends to 

northern Kansas (Fig. 2.21) according to the 320K isentropic analysis.  The positive PV  
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Fig. 2.15  Theta-e and wind analysis as in Fig. 2.11, valid at 00Z 30 June. 
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Fig. 2.16  Isentropic potential vorticity and wind speed at 320K as in Fig. 2.7, valid at 00Z 1 July. 
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Fig. 2.17  Radar composite valid at 12Z 1 July. 
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Fig. 2.18  Cross section (B) of potential vorticity and isentropes as in Fig. 2.6, valid at 12Z 1 July. 
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Fig. 2.19  Isentropic potential vorticity and wind speed at 320K as in Fig. 2.7, valid at 12Z 1 July. 
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anomaly has been sheared, with one section in central Texas advecting northward, and a 

finger in Mexico, south of Big Bend, advecting to the southeast.   The southern edge of 

this PV finger will wrap around the southern edge of the shear zone and into the Edwards 

Plateau region, due to the northerly winds rotating toward the east near the southern edge 

of the trough.  With weak winds (5 ms-1) in the center and east of the northern positive 

PV finger, and rather weak winds to the west, the bulk of it will remain stationary with 

slight shearing.  Again, another deep diabatically generated vortex has been established, 

and there is ample moisture and little vertical wind shear which is favorable for a 

convective environment (figures not shown). 

At this point, several factors contribute to a self-perpetuating system, which 

includes a shear zone, sufficient moisture, positive PV, and little vertical wind shear.   

With a continued supply of warm, moist air from the Gulf of Mexico combined with little 

vertical wind shear, and reduced convective inhibition (not shown), convective 

development and diabatic generation of PV continues.  The positive PV anomalies that 

are convectively generated, in association with a little vertical shear, can provide vertical 

motion (Raymond et al, 1990).  For the next several days, between 3 July 00Z through 5 

July at 12Z, a similar trend described in the preceding paragraph continues:  the shear 

zone remains located from Mexico, south of Zapata, Texas extending toward northern 

Oklahoma.  The positive PV anomaly continues to get stretched along the shear zone due  

to 15 to 30 ms-1 winds on the eastern edge, and 20 to 30 ms-1 winds on the western edge 

of the vortex.  As the positive PV anomaly is advected southward, it encounters the 

southern edge of the shear zone, in which westerly winds help to advect it toward the 

Edwards Plateau region.  The return flow from the southern edge of the shear zone  
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Fig. 2.20  Radar composite valid at 12Z 2 July.   
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Fig. 2.21  Isentropic potential vorticity and wind speed at 320K as in Fig. 2.7, valid at 12Z 2 July. 
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continues to advect positive PV to the region; in addition, plentiful moisture and 

relatively high CAPE values help in the diabatic generation of stronger vortices. 

The northern portion of the elongated PV anomaly has advected into southwest 

Colorado by 5 July at 12Z, but there continues to be diabatic generation of PV to the west 

of San Antonio, as convection is once again initiated (Fig. 2.22).  The strong northerly 

winds in west Texas have diminished to less than 5 ms-1 by 6 July at 00Z and have shifted 

northwest, while the strong positive PV anomalies formerly in central Texas have 

advected to the northern portions of the state, aided by 15 to 30 ms-1 southerly winds 

(Fig. 2.23).  Reduced winds, more vertical shear, and considerably less relative humidity 

are present in the NW-RH cross-section (not shown).  The strongest convection is now 

prominent in northern Texas, with some diabatic intensification of PV (12Z 6 July), and 

this positive PV anomaly continues to advect north-northwest as winds in the center of it 

are between 10 and 15 ms-1 from the southeast.  Convection is minimal on 00Z 6 July but 

intensifies well to the west and north of the San Antonio area by 12Z, coinciding with the 

positioning of the vortex (not shown).   

To briefly summarize the factors contributing to the self-perpetuating 

mechanisms, and the extent and duration of the heavy rainfall across Texas, the first 

component is the upper-level positive PV anomaly over southern Texas that stems from 

remnants of a breaking Rossby wave.  This positive PV, which then undergoes 

destruction, helps to establish a positive PV anomaly seen in a 320K isentropic analysis.  

Strong convection initiates over the Gulf of Mexico, just off the coast of Brownsville, and 

this helps to diabatically generate the PV in that area which advects towards the San  
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Fig. 2.22  Radar composite valid at 12Z 5 July.  
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Fig. 2.23  Isentropic potential vorticity and wind speed at 320K as in Fig. 2.7, valid at 00Z 6 July. 
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Antonio area.  Moist air is either advected or low-level moisture is lifted upward (due to 

stable upglide or convergence), helping to diabatically generate more positive PV.  As the 

region remains convectively unstable, a strong MCS forms that keeps regenerating; the 

conditions for the regeneration include limited vertical shear, plentiful moisture, and the 

advection of positive PV from the return flow (westerly winds) at the southern-most end 

of the shear zone in south Texas.   As the northern positive PV advects to the west, the 

well-defined elongated trough becomes less pronounced, therefore reducing advection of 

PV to the area.   

2.3  Predictable versus non-predictable features  

The previous section depicts many of the necessary ingredients that contribute to 

an extreme rainfall event.  In order to forecast an extreme precipitation event, it is 

imperative to have an accurate forecast of all the elements.  Some elements discussed in 

the previous section are more difficult to forecast using numerical weather prediction 

than others.  The location of the large-scale features, such as the positive PV vortex seen 

in Fig. 2.4 are typically not difficult to predict. At the mesoscale, certain ingredients 

necessary for convection can be more difficult to predict, but some are not:  ingredients 

that are not difficult to forecast include moisture content, broad areas of instability, and in 

this case the lifting mechanism.  Such forcing (lifting mechanism) is often difficult to 

predict, however the localized forcing required to break the cap is not difficult to forecast. 

The more difficult components to simulate properly includes the high rainfall rate 

and the evolution and duration of the event.  In this case, the event lasted for nearly eight 

days, delivering copious amounts of rainfall as previously described.  The research of 

ZSR03 found that model errors initiated at the mesoscale, then grew to affect the larger 
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scales in as little as 36 hours, under perfect model assumptions.  Distinct individual 

convective cells can be difficult to predict, particularly in locations where the temperature 

of a parcel is at a threshold of being stable or convectively unstable.  Therefore, it is of 

interest to examine the predictability of extreme precipitation events with respect to the 

uncertainties associated with rainfall distribution and intensity. 
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CHAPTER III 

  EXPERIMENTAL DESIGN 

3.1  Forecast model, configuration, and data 

 For this investigation, the National Center for Atmospheric Research-The 

Pennsylvania State University (NCAR/PSU) nonhydrostatic fifth-generation Mesoscale 

Model (MM5) version 3.6 (Dudhia 1993) is employed.  The coarse 30-km grid domain 

consists of 190 X 120 grid points with 23 vertical layers encompassing the contiguous 

United States, and northern portions of Mexico and the Gulf of Mexico.  Finer-resolution 

simulations will utilize one or two nested domains (D2 and D3) with  10- and  3.3-km 

grid sizes, respectively.  Both D2 and D3 employ a total of 241x181 horizontal grid 

points with two-way nesting, and the 3.3-km simulation will use 46 vertical layers; the 

domain locations can be seen in Fig. 3.1.  The model is integrated for 36 hours, and the 

output is saved every 3 hours.  Following several tests of physics parameterization 

combinations to most accurately represent the 36-hour forecasted 24-hour accumulated 

rainfall total, the following configuration is selected for the control experiment 

(CNTL30km).  The Eta planetary boundary layer scheme (Mellor and Yamada 1981), the 

Reisner 2 (Reisner et al. 1998) microphysics scheme with graupel, and the Grell cumulus 

scheme are incorporated in CNTL30km.  For the high resolution simulations, Reisner 1 

microphysics, and the Grell cumulus scheme (Grell 1993) are used for D1 and D2, while 

D3 is fully explicit.  The unperturbed control simulation incorporates GEWEX (Global 

Energy and Water Cycle Experiment) Continental-Scale International Project (GCIP) 

ETA model data with the Advanced  
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Fig. 3.1  The relative locations of MM5 model domains.  The grid resolutions of D1, D2, and D3 are 30, 
10, and 3.3 km, respectively. 
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Weather Interactive Processing System (AWIPS) Grid 212, which has a horizontal 

resolution of 40-km and grid dimensions of 185 X 129, and output is provided on 25 

pressure surfaces (NCEP EMC, 2002).  

3.2 A comparison with ZSR02 and ZSR03 

The investigation into the predictability of the ‘02 Flood follows the research 

conducted in ZSR02 and ZSR03 closely.  Several similarities exist between ZSR02 and 

ZSR03 and the present research, both from a weather point-of-view and with the 

experiment procedures employed.  The fundamental similarities include that each event 

was extreme, and the operational models performed poorly at forecasting these two 

events, even as short as 36 hours.  However, there are some notable differences between 

ZSR03 and this research.  ZSR02 and ZSR03 focused on an extreme extratropical cold-

season event in which heavy snowfall blanketed several areas along the eastern seaboard.  

The ‘02 Flood was a warm-season, subtropical event with stronger convective instability.  

In addition, heavy precipitation was much more localized and extended for a greater 

duration than with the “Surprise Snowstorm” of January 2000.  

Experimental differences and similarities are also evident in this investigation.   

Since the mechanisms responsible for the catastrophic flooding in Texas were very 

localized, movable nested grids will not be utilized.    The investigation into the practical 

forecast uncertainties will explore the same resolution dependence with the same domain 

sizes as ZSR02.  However, in this study we will not use different data sources for the 

initial conditions, nor will we explore the sensitivity to individual soundings as was 

performed in ZSR02.   The present research will investigate practical issues pertaining to 

different lead times, as well as changes to physics parameterizations (details to be 
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discussed in the next sub-section).  For the intrinsic predictability studies, ZSR03 induced 

a monotonic perturbation in temperature across the grids, whereas the ‘02 Flood research 

will utilize random “grid-point” perturbations of temperature across the domain with a 

specified standard deviation (as used in Tan et al. 2003, hereafter TZRS04).  This 

research will also diagnose error growth due to model resolution and varying the 

perturbation amplitude, and a “fake-dry” model run, similar to ZSR03, will be used.  In 

addition studies of error growth stemming from different physics parameterizations, 

different days during the event (including diurnal variation), and different realizations (an 

ensemble of simulations with the same perturbation amplitude) will also be performed.  

The intrinsic predictability results will use the same DTE and spectrum analysis 

methodologies as ZSR03, as well as graphical difference fields.  A comparison of the 

results between the studies of ZSR02 and ZSR03 with the ‘02 Flood will be addressed in 

the appropriate chapters.   

3.3  Experimental design 

 Table 1.  List of practical predictability experiments and details regarding each of the studies. 
 

Name Grid Size Initial Time CPS PBL Microphysis
CNTL30km 30 km 00Z 1 July Grell ETA Reisner 2
LEAD24hr 30 km 12Z 1 July Grell ETA Reisner 2
LEAD48hr 30 km 12Z 30 June Grell ETA Reisner 2
HIGH30km 30 km 00Z 1 July Grell ETA Reisner 1
HIGH10km 10 km 00Z 1 July Grell ETA Reisner 1
HIGH3.3km 3.3 km 00Z 1 July Grell ETA Reisner 1
CPS-KF 30 km 00Z 1 July Kain-Fritsch ETA Reisner 2
NoCPS 30 km 00Z 1 July None ETA Reisner 2
EXP-GD 30 km 00Z 1 July Grell ETA Goddard
EXP-SI 30 km 00Z 1 July Grell ETA Simple Ice
PBL-MRF 30 km 00Z 1 July Grell MRF Reisner 2
PBL-HIR 30 km 00Z 1 July Grell Blackadar Reisner 2  
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A series of experiments have been formulated to examine both intrinsic and practical 

mesoscale predictability of the ‘02 Flood.  A concise list of the experiments utilized in 

this research is found in Tables 1 and 2 with details to follow.   

Table 1 shows the experiments conducted to investigate practical predictability.  

First, the control simulation will be compared with the observational analysis to examine 

any differences.  Next, simulations with different lead times to include initializations at 

12Z 30 June and 12Z 1 July, along with the CNTL30km, will be performed.  These 

simulations will be used to generate the 24-hour total precipitation valid at 12Z 2 July, 

with the forecast lead-time of 24-, 36-, and 48-hr, respectively (LEAD24hr and 

LEAD48hr).  Then the value of the forecast, essentially the quality of the forecast with 

respect to the proximity, aerial coverage, and total rainfall, will be examined.  The next 

set of experiments will look into resolution dependence of the model forecast by 

performing nested simulations at 10-km and at 3.3-km (HIGH10km and HIGH3.3km).  A 

36-hour forecast run initialized at 00Z 1 July will be performed for each of the respective 

resolutions.  A simpler version of the Reisner microphysics scheme was utilized which 

does not include graupel; this scheme was used due to computer memory constraints in 

the HIGH3.3km.  

The last group of experiments exploring practical predictability includes changes 

in the physics parameterizations.  Recall that CNTL30km incorporated the Grell 

cumulus, ETA planetary boundary layer (PBL), and the Reisner 2 microphysics schemes 

(Grell-ETA-R2); a single change in one of the parameterizations will be made to explore 

the effects of cumulus, PBL, and microphysics on a 36-hour simulation that is initialized 

at 00Z 1 July.  Changes to the cumulus schemes include using the Kain-Fritsch (CPS-KF) 



 
 

46

and no cumulus parameterization scheme (NoCPS); for the PBL, changes will include 

using the MRF and the Blackadar (PBL-HIR); lastly, the microphysics options will be 

changed to the Goddard microphysics scheme (EXP-GD) and simple ice (EXP-SI).  

Again, the 24-hour accumulated rainfall forecast valid at 12Z 2 July will be compared 

with the analysis, and a qualitative description and assessment of the value of the 

simulation will follow.    

Table 2.  List of intrinsic predictability experiments and details regarding each of the studies. 
 

Experiment Details 
PERT30km Same as CNTL30km, but with perturbation amplitude of 0.2
Resolution Dependence (PERT3.3km) 3.3-km simulation with perturbation amplitude of 0.2
Varying Perturbation Magnitude Incorporates perturbation amplitudes of

0.002K, 0.02K, 0.4K, 1.0K, 2.0K
Realization Five separate simulations with perturbation amplitude of 0.2
Different Days/Diurnal Variation Unperturbed and perturbed simulation, amplitude

of 0.2, initialized at 00Z and 12Z for each day
from 28 June through 5 July

Moist Convection Unperturbed and perturbed simulation, amplitude
of 0.2, for each of the physics parameterizations listed
above, and a "Fake-Dry" simulation

 
Table 2 summarizes the experiments conducted to examine intrinsic 

predictability.  Using “grid-point” random temperature perturbations (TZRS04), with a 

specified standard deviation added to all the model grid points, an attempt will be made 

to assess the rate of error growth and the forecast period of maximum growth rate.  These 

perturbations are induced to the initial conditions of the 30 kilometer coarse grid for all 

simulations.  Since atmospheric variables are often at “critical” points, the induction of a 

very small temperature perturbation can yield a rapid error growth in the early forecast 

period (ZSR03).  The control perturbation simulation (PERT30km) utilizes a standard 

deviation of 0.2K added to the initial conditions of the horizontal temperature field at all 

model grid points.   
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The next experiment will involve the same random grid-point perturbation 

amplitude (0.2K) to the 30 kilometer domain, but will be interpolated to the 3.3-km high 

resolution domain, initializing at 00Z 1 July.  Comparison between the control and 

perturbed simulation will follow by exploring the rate of error growth throughout the 

forecast period.  ZSR03 found that in the higher resolution simulation, the errors grew at 

a faster rate early in the forecast period, coinciding with Lorenz’s  (1963) theory of the 

finite limit of predictability.  If given perfect initial conditions, even incorporated in 

higher resolution simulations, forecast divergence will still occur, as shown in ZSR03.  

Further discussion of this will follow in the subsequent chapters. 

The next set of experiments will be to create an ensemble of simulations varying 

the perturbation amplitude.  The random grid-point perturbation standard deviation will 

be changed from the control of 0.2K to 0.002K, 0.02K, 0.4K, 1.0K, and 2.0K.  ZSR03 

found that errors grew at a faster rate early in the forecast period with lower perturbation 

amplitudes, and that a saturation of error growth took place near the end of the forecast 

simulation, again showing that Lorenz’s (1963) theory of limits of predictability holds 

true.  A second set of experiments will include another ensemble set utilizing the control 

perturbation amplitude.  Five separate simulations with a random grid-point perturbation 

of 0.2K will be performed to investigate different realizations of the same perturbation 

amplitude; this will check if the evolution of error growth changes substantially given the 

same perturbation magnitude but a different realization. 

 To explore the behavior of the error growth throughout the ‘02 Flood, the control 

perturbation amplitude of 0.2K will be induced to each grid point of the unperturbed 

simulations every 12 hours throughout the storm duration.  Beginning at 00Z on 29 June 



 
 

48

and extending through 12Z on 5 July, the initial conditions for each day at 00Z and 12Z 

will be perturbed and a 36-hour forecast will be generated.  There are two purposes 

behind this:  first, this experiment aims to determine if there is a significant outlier of 

error growth for any particular day throughout the event.  Second, this will also determine 

any significant changes of the error growth diurnally.     

The last group of experiments will involve inducing the control perturbation 

amplitude of 0.2K to each of the unperturbed simulations with the different physics 

parameterizations as detailed previously in this section.  This experiment will ensure that 

error growth is not susceptible to one type of convective parameterization.  Included will 

be a “fake-dry” simulation, in which latent heat will be turned off.  ZSR03 found that 

moist convection was the primary source of the initial rapid error growth.  In their 

experiments, the “fake-dry” simulation showed a substantially reduced error growth 

throughout the forecast duration, and this is expected with the ‘02 Flood.   

To quantify the error growth, the difference total energy (DTE) per unit mass will 

be calculated and is defined by: 

DTE = ½ Σ (Uijk
'2 + Vijk

'2 + κ(Tijk')2) 

where U′, V′, and T′ are the difference of wind components and temperature respectively, 

κ = Cp/Tref, where Cp is the specific heat at constant pressure (equal to 1004 J deg-1 kg-1), 

Tref equals 270K, and i, j, and k run over x, y, and σ grid points (ZSR03 and references 

therein).  The DTE will be utilized to determine the evolution of error growth versus time 

and will also show the error growth versus wavelength in the form of a spectrum analysis.   
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CHAPTER IV 

PRACTICAL PREDICTABILITY 

 

 This chapter examines the results of the practical predictability experiments of the 

‘02 Flood.  Practical predictability seeks to explore the real-time forecast difficulties and 

begins to look at the nature of error growth.  Recall from Chapter I that practical 

predictability, utilizing a numerical weather prediction model, is the ability to forecast 

based on current procedures, that includes the model imperfections and uncertainties in 

initial conditions (Lorenz 1996).  To examine practical predictability, the experiments 

begin by investigating the development of forecast divergence resulting from common 

deficiencies in the numerical weather forecast including:  model errors stemming from 

different forecast lead times (initial condition errors), different physics parameterizations, 

and different model resolution (model errors).  First, a control simulation will be 

established; it will be assumed that this simulation will stem from a perfect model.  Then, 

the experiments as detailed in Chapter III will be conducted.  The limit of intrinsic 

predictability under the assumption of a perfect model will be discussed in Chapter V. 

4.1  Control simulation 

As previously stated in section 2.1, the ‘02 Flood began on 29 June and lasted 

through 6 July.  There were several days throughout this period that heavy rainfall was 

experienced; since San Antonio is the major metropolitan closest to the area that received 

the greatest amount of rain, it will therefore be the reference point used throughout this 

investigation.  One of the days of heaviest precipitation was 2 July (recall from the 

previous chapter that this period extends from 12Z 1 July through 12Z 2 July), and this is 
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also the period when San Antonio experienced its heaviest rainfall, 8.79 inches (223 

mm).  Therefore, this research will be centered on this day.  Both practical and intrinsic 

predictability experiments will be conducted for each day throughout the event as well. 

Tests were conducted included varying the boundary layer scheme, microphysics 

options, and the cumulus options.  Details regarding the methods and parameter changes 

are presented in section 3.3 (refer to Table 1 for the physics parameterization schemes 

that were used).  The control simulation is initialized at 00Z 1 July and run over the 

coarse 30-km grid.  This model run has a simulation time of 36 hours and is denoted as 

CNTL30km.  Referring back to Fig. 2.1d, also seen in Fig. 4.1a, the 24-hour accumulated 

precipitation analysis for 2 July is depicted.  Fig. 4.1b shows the simulated forecast of 24-

hour accumulated precipitation for the 36-hour forecast.  The model forecast performs 

reasonably well compared to the analysis, showing good representation of the total 

accumulated precipitation, as well as the proximity and spatial extent of rainfall near San 

Antonio.   The discrepancies include the unverified precipitation located near the College 

Station area, as well as the rainfall east of Amarillo.  A comparison between the 320K 

isentropic 36-hour forecast (Fig. 4.2a) with the 320K analysis (from Chapter II, now 

shown in Fig. 4.2b) shows a long finger of positive PV stretching from southern 

Nebraska into Mexico that extends farther into Mexico than in the analysis, and it is tilted 

more in a southwest to northeast orientation.  The forecast depicts an elongated trough 

extending into southern Nebraska very much like the analysis, but it does not show the 

positive PV advecting toward San Antonio as shown to be the case in the analysis (Fig 

4.2a).  The analysis indicates stronger and more northerly winds in west Texas, the  



 
 

51

 

 

Fig. 4.1  24-hour accumulated precipitation at 12Z 2 July (contours every 20 mm, beginning at a 10mm 
contour) (a) observed; (b) CNTL30km. 
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Fig. 4.2  Isentropic potential vorticity at 320K (shading, every 0.5 PVU) and wind vectors (full barb 
denotes 5 ms-1) (a) Analysis; (b) CNTL30km. 



 
 

53

positive PV anomaly is closer to San Antonio, and there is also a more notable shear zone 

in the analysis compared to the forecast (Fig. 4.2b).  Certainly the precipitation forecast 

performed well, and the isentropic forecast did a good job overall with some minor 

discrepancies.   

4.2 The 30-km control simulation with different lead times 

 This section will begin exploring practical predictability by comparing the 

forecast with different lead times; limited lead-time-forecast accuracy is also subject to 

intrinsic predictability, which will be discussed in the subsequent chapter.  Typically as 

the forecast time extends, the accuracy of the simulation is reduced; thus the accuracy 

between forecasts with lead times of 24, 36, and 48 hours (LEAD24hr, CNTL30km, and 

LEAD48), respectively will be compared.  

 The 24-hour accumulated precipitation forecast is compared with the 24-hour 

observed accumulated rainfall for 2 July in Fig. 4.3 (recall from Chapter II that the 24-

hour precipitation total for a given day extends from 12Z on the previous day to 12Z on 

the current day being described).  From the previous section, the control forecast 

(CNTL30km) is initiated at 2002 July 1 at 00Z, and the 36-hour forecast time is shown in 

Fig. 4.3c.  Also shown is the 24-hour forecast initiated at 2002 July 1 at 12Z (Fig. 4.3b), 

and the 48-hour forecast initiated at 2002 June 30 at 12Z (Fig. 4.3d).  As the forecast time 

extends beyond 36 hours, the accuracy, particularly of the total rainfall, diminishes 

significantly.  Fig. 4.3b is a rather good forecast, showing good representation of both the 

rainfall totals and the areal coverage, however there is an overproduction of the heaviest 

rainfall of 100 mm.  Although the greatest precipitation is forecasted to be more south 

and west, the overall simulation is very good.  By the 36-hour forecast (Fig. 4.3c), there  
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Fig. 4.3  24-hour accumulated precipitation at 12Z 2 July, contours as in Fig. 4.1, (a) Analysis; (b) 
LEAD24hr; (c) CNTL30km; (d) LEAD48hr. 
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Fig. 4.3  continued. 
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is a substantial reduction in the total precipitation to a 120 mm maximum, which 

correlates well with the observational analysis; the proximity and general coverage is also 

very good.  The 48-hour simulation has dramatically reduced the total precipitation 

quantity and coverage (Fig. 4.3d).  It would be reasonable to forecast scattered showers 

with perhaps some heavy precipitation south and west of San Antonio; as for the 24-hour 

lead time forecast, one could say that there is a reasonable likelihood of heavy 

precipitation west of and including the San Antonio area.   

 To further explore practical predictability with different lead times, the following 

examines the PV features, which has been shown in Chapter II to be important in the 

generation of the heavy precipitation.  Fig. 4.4 shows the 320K isentropic forecast of PV 

for each of the above-mentioned lead-times, with Fig. 4.4a depicting the observational 

analysis used in section 2.2.  Fig. 4.4b shows the 24-hour forecast, which depicts strong 

north-northwest winds in west Texas resulting from high pressure in the western United 

States, and strong southerly winds in central Texas.  The strong positive PV anomaly is 

also present near San Antonio, was produced by the heavy rain forecasted in Fig. 4.3b, 

and resembles the analysis well.  The 36-hour forecast (Fig. 4.4c) has been diagnosed in 

section 3.2.  Fig. 4.4d shows southerly winds at the Big Bend area of Texas, a weak shear 

zone in northern Texas in a southwest to northeast orientation, and very slight positive 

PV near the San Antonio area.  There does appear to be diabatic generation of PV near 

Laredo, Texas, but this would be advected toward Mexico and not San Antonio.  Very 

similar to the precipitation forecasts from above, as the simulation lead time extends 

beyond the 36 hour forecast time, there is a substantial reduction in the accuracy of the 

forecast outcome. 
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Fig. 4.4  Isentropic potential vorticity at 320K, as in Fig. 4.2, (a) Analysis; (b) LEAD24hr; (c) CNTL30km; 
(d) LEAD48hr 
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Fig. 4.4  Continued. 
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It has been shown that as the simulation time increases, there is a much reduced 

accuracy of the forecast.  The rather good forecast provided by the 24-hour lead time (as 

compared to the observational analysis) may indicate that the event has a 24-hour 

predictable time scale.  This raises the question of why there is such forecast divergence 

between 36- and 48-hour simulations compared to the 24- and 36-hour simulations.  One 

possibility could be due to intrinsic limits, in that forecast errors grow rapidly at small 

scales, which will be explored more thoroughly in Chapter V.  Another likely possibility 

is that the 24- or 36-hr lead-time forecasts could be solutions out of many possible 

realizations that happens to be the closest to the truth (observational analysis).  This will 

be examined further with the sensitivity analysis to different physics parameterizations.  

In principle, error growth due to both practical and intrinsic aspects of predictability can 

lead to diminishing forecast accuracy as the lead time increases.  Further discussion of 

the forecast value will be addressed in Section 4.4.  

4.3 Sensitivity to model resolution 

 ZSR02 explored the impacts of higher resolution simulations in an extreme 

precipitation event, albeit a winter event.  They found that resolution improved the 

forecast by more accurately resolving moist processes, thus leading to more detailed 

mesoscale features.  The greatest improvement was made between the 30-km and 10-km 

simulations, with much reduced improvements in the 3.3-km model run.  Nonetheless, 

they  speculated that improved model resolution has the tendency to yield better forecast 

accuracy, particularly for discrete mesoscale features (ZSR02 and references therein).   

Similar to ZSR02 with respect to grid sizes of 30-, 10-, and 3.3-km respectively,  

experiments were conducted to determine if improvements in the forecast quality will be 
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established if the model resolution was increased for the ‘02 Flood.  Two-way nesting has 

been performed for the high resolution runs (domain sizes of 10 and 3.3 km).  Fig. 4.5 

shows the 24-hour accumulative precipitation at the 36-hour forecast for each domain, 

compared with the observational analysis.  HIGH30km is very similar to CNTL30km 

with respect to the overall proximity of the rainfall, however there is a reduction in the 

intensity.  HIGH10km (Fig. 4.5c), surprisingly shows a significant reduction in the 

precipitation quantity, and the coverage across the domain is also substantially reduced, 

which would result in a forecast for San Antonio to have very light rainfall.  The areal 

coverage is further reduced, and the precipitation quantity over the primary flooding 

region has been reduced to nearly zero in the HIGH3.3km, as shown in Fig. 4.5d.  A 

forecast based on this simulation would indicate a slight to no chance of precipitation 

over San Antonio.  

It has been shown in this case that as the resolution increases, the accuracy of the 

forecast has diminished.  This is in complete contrast with the findings of ZSR02, where 

improvements were made, particularly of the mesoscale features.  There are a number of 

possibilities one could speculate as the reason for the poor performance.  Firstly, the data 

points may be too coarse to resolve intricate mesoscale features in such resolutions.  

Secondly, as discussed in ZSR03, small errors grow faster at higher-resolutions, thus 

intrinsic implications may play a significant role and will be examined in Chapter V.  

This would potentially imply that the threshold of convective instability is not reached at 

many of the grid points, or it is achieved at others, and small perturbations may yield a 

significantly different forecast.  ZSR02 established that sensitivity of the forecast is based 

on, “the initial conditions that are within the uncertainty of the operational analysis”  
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Fig. 4.5  24-hour accumulated precipitation at 12Z 2 July, contours as in Fig. 4.1, (a) Observed; (b) 
HIGH30km; (c) HIGH10km; (d) HIGH3.3km. 
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Fig. 4.5  Continued. 
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(ZSR02).  It is also plausible that for such a high resolution simulation, other 

combinations of physical parameterization schemes may have performed better, but this 

would require further investigation. 

4.4 Sensitivity to physics parameterizations 

 Another limit of practical predictability is due to errors in the forecast model 

itself, and a specific source of such limitations stems from the physical parameterization 

schemes.  This section attempts to examine forecast sensitivity to model errors by varying 

the physics parameterization schemes within MM5.  Recalling from Chapter III and 

referring back to Table 1, a single parameterization scheme will be changed, then a 

simulation will be conducted to compare the results from changes to cumulus, 

microphysics, and PBL schemes with respect to CNTL30km.   

The first set of experiments involved changing the cumulus scheme from Grell to 

Kain-Fritch (CPS-KF), then another simulation using no cumulus scheme was tested 

(NoCPS).   The Kain-Fritsch (KF) parameterization incorporates rather sophisticated 

physics, including cloud-mixing for entrainment and detrainment (Kain and Fritsch, 

1993), and it has been shown to be rather successful in several previous case studies by 

generating results that were very comparable to observations (Wang and Seaman, 1996, 

Gallus and Segal, 2000).  Fig. 4.6a shows the 24-hour precipitation accumulation for the 

control time of the observations (2002 July 2 at 12Z), and the 36-hour forecast for 

CNTL30km (Fig. 4.6b), CPS-KF (Fig. 4.6c), and NoCPS (Fig. 4.6d).  The NoCPS 

simulation performed quite well, with regards to the proximity and accumulated 

precipitation, and it is quite similar to CNTL30km, including the erroneous forecast of 

rain at the Texas-Oklahoma Panhandles.  The CPS-KF, however, performed quite poorly:  
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Fig. 4.6  24-hour accumulated precipitation at 12Z 2 July, contours as in Fig. 4.1, (a) Observed; (b) 
CNTL30km; (c) CPS-KF; (d) NoCPS. 
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Fig. 4.6  Continued. 
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there is little to no forecasted precipitation in the area that was flooded, and based upon 

this forecast, one may predict scattered and light precipitation.  A study by Spencer and 

Stensrud (1998) demonstrated that the CPS-KF parameterization induced mechanisms 

that propagated boundaries away from the primary convective area, indicating 

precipitation, but no potential for flooding.  Also included in their study were 

modifications to the CPS-KF parameterization that produced improved 24-hour 

precipitation totals compared to control simulations.  A closer examination of the CPS-

KF simulation revealed that the majority of precipitation occurred earlier in the forecast 

period, between the 6- and 12-hour timeframe, but the precipitation totals still would not 

be indicative of very heavy rainfall.  Further discussion of the onset of precipitation using 

CPS-KF will be detailed in Chapter V. 

The next group of parameterization changes was to the explicit moisture scheme.  

CNTL30km utilized the Reisner 2 microphysics, which was changed to the Goddard 

microphysics (EXP-GD) and the Simple Ice (Dudhia) scheme (EXP-SI).  The 24-hour 

precipitation total at the 36-hour forecast is shown in Fig. 4.7; each of the microphysics 

schemes (except for the high resolution Reisner 1) is shown and compared with 

observations.  There are quite a number of similarities between each of the simulations, 

and all yield more accurate results to the observations compared to other physics 

parameterization changes to CNTL30km.  First, each forecast shows the potential for 

heavy precipitation at and around the San Antonio area, with some rainfall in Oklahoma, 

but farther to the west than the observed rainfall.  Second, there is also forecasted 

precipitation for the New Orleans, Louisiana area as well as for the area between College 

Station and Houston, Texas.  CNTL30km produced heavier rainfall totals than the other 
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Fig. 4.7  24-hour accumulated precipitation at 12Z 2 July, contours as in Fig. 4.1, (a) Observed; (b) 
CNTL30km; (c) EXP-GD; (d) EXP-SI. 
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Fig. 4.7  Continued. 
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schemes including in the vicinity of the College Station area, seen in Fig. 4.7b.  The 

EXP-GD (Fig. 4.7c) forecasted lighter rainfall in this area, which according to 

observations is more accurate.  Since CNTL30km utilized a more complex microphysics 

option that includes graupel, and the EXP-SI scheme is the least complex of those tested, 

it is reasonable to speculate that more sophisticated explicit moisture options may be 

required to accurately represent such extreme events (refer to Figs. 4.7b versus 4.7d).  

Although the ’02 Flood occurs during the summer and is in the southern portions of the 

mid-latitudes, such convection would appear to involve other cold-rain processes.  This 

would included graupel and a greater ice concentration that is configured in the Reisner 2 

microphysics scheme.   

The last group of experiments with varied physics parameterization options 

consisted of changing the PBL scheme.  Recalling that CNTL30km uses the ETA PBL, 

this option was changed to the PBL-MRF and Blackadar PBL scheme (PBL-HIR).  

Comparison of each of the PBL options with observations is shown in Fig. 4.8 with the 

analysis and CNTL30km in Figs 4.8a and 4.8b respectively.  Fig. 4.8c shows the PBL-

MRF scheme which under-forecasts the rainfall in the San Antonio area, and in general 

the rainfall is not as widespread.  The same holds true for the PBL-HIR simulation (Fig. 

4.8d), but the rainfall totals are further reduced near San Antonio.  It is interesting to note 

that the rainfall quantity near New Orleans has increased in both the PBL-MRF and PBL-

HIR simulations compared to CNTL30km, since both forecasts indicate heavy rainfall 

but CNTL30km does not.  Some studies have examined the impacts of various PBL and 

microphysics schemes on convective instability.  Bright and Mullen (2001) have 

investigated convection during the Southwest Monsoon, in which they found that the 
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Fig. 4.8  24-hour accumulated precipitation at 12Z 2 July, contours as in Fig. 4.1, (a) Observed; (b) 
CNTL30km; (c) PBL-MRF; (d) PBL-HIR. 
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Fig. 4.8  Continued. 
 



 
 

72

PBL-HIR and PBL-MRF schemes produced the best forecast results for the monsoon, 

whereas the ETA did not.   

4.5 Summary of practical predictability results 

 This chapter explored the fundamental aspects of practical predictability of an 

extreme weather event.  When establishing the importance of practical predictability, one 

of the primary goals should be to examine the value of a forecast.  The context of value 

used here simply means that a forecast should provide some indication of an extreme 

weather event to aid in a decision making process.  Naturally the forecast lead time is 

critical; if more advanced notice of an extreme event is given, then this allows for more 

decision and preparation time.   It was found that the greater the lead-time the less 

valuable the forecast became (refer back Section 4.1), which may be a result of intrinsic 

limitations and will be examined further in Chapter V; the greatest value occurs with the 

24-hour forecast that shows there is likely to be heavy rainfall over San Antonio and the 

surrounding areas.   

 With regards to the high resolution simulation, the value has been significantly 

reduced since the forecast failed to yield heavy precipitation within the 36-hour 

timeframe in the higher resolution simulations.  It is reasonable to speculate that the 

higher resolution simulations require better initialization during the forecast period in 

which error growth is fastest.  Since it is expected that a high resolution simulation 

should increase the accuracy of a forecast, especially within a short simulation period, 

these possibilities would need to be further examined to completely diagnose the practical 

predictability issues with this event.  It was also seen that as the configuration of the 
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model physics parameterizations changed, the forecast also changed.  In some instances, 

the forecast value decreased significantly, since there was little forecasted rainfall.   

 This chapter has explored the practical predictability of the ‘02 Flood as it 

pertains to forecast initialization lead time (initial conditions), model physics 

parameterizations, and resolution dependence, the latter two both contribute to model 

errors.  Large differences in the initial conditions (from different boundary analyses) or 

boundary conditions are also significant sources of practical predictability (ZSR03).  

Since errors occurred with modifications to CNTL30km, how do these errors evolve with 

time?  Chapter V will investigate the error growth dynamics, which will attempt to 

answer where and how rapidly errors evolve, and what the intrinsic limitations are. 
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CHAPTER V 

INTRINSIC PREDICTABILITY 

 

 The previous chapter addressed the different practical predictability aspects.  The 

next question is if a perfect model existed, and the initial conditions are nearly perfect, 

would forecast errors still develop and how would these errors evolve with time.  As 

previously illustrated, Lorenz (1969) proposed a finite limit of predictability; specifically, 

intrinsic predictability is, “the extent to which prediction is possible if an optimum 

procedure is used.”  ZSR02 and ZSR03 demonstrated the influence of initial errors on 

numerical weather prediction through the introduction of small-scale, small-amplitude 

perturbations on the initial conditions.  These small errors grew rapidly at the mesoscale, 

then spread to the larger scales to affect the 24-36 hour forecast.  It was found that the 

rapid error growth stemmed from moist processes, in particular the areas of convective 

instability.  The convective nature of the ‘02 Flood was a self-perpetuating event that 

lasted for several days, and the dynamics of this event were more barotropic.  Therefore, 

if optimal procedures are assumed, including a perfect model assumption, what would be 

the source of intrinsic errors; thus stems the motivation to evaluate the evolution of error 

growth under these assumptions. 

 The methodologies used in these experiments will include the incorporation of 

random grid-point perturbations to the initial conditions, similar to TZRS04, however 

different from ZSR03.  This form of initial condition uncertainties leads to a 

representation of random small-scale errors.  Uncertainties in the boundary conditions are 

neglected, similar to ZSR03 in which the region of interest is far from the boundaries.   
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 Section 5.1 will illustrate the error growth of CNTL30km followed by a 

comparison between error growth and resolution, realization, and magnitude in section 

5.2.  Error growth in different days and diurnal variation of the error evolution will be 

discussed in section 5.3, followed by the effects of moist convection and parameterized 

physics in section 5.4. 

5.1 Error growth in the CNTL30km 

 As in TZRS04, random grid perturbations of amplitude 0.2K were added to the 

initial temperature field of CNTL30km, and a 36-hour forecast, PERT30km, was 

performed.  Three-hour accumulated precipitation differences between CNTL30km and 

PERT30km are shown in Fig. 5.1; Fig 5.1a shows CNLT30km as seen in Chapter IV.  

After only three hours of simulation, small differences appear in northeastern Texas and 

northern Alabama, as seen in Fig. 5.1b.  Fig. 5.1c shows a spreading of the spatial 

coverage along the southeast United States and an increase in the magnitude of the 

differences following twelve hours of simulation, including difference dipoles in South 

Carolina, Florida, and a weak dipole in Texas near San Antonio.  A dipole structure of 

the difference fields denotes a spatial shift of the forecast variable from one simulation to 

the other.  After 24 hours of simulation, the difference field has spread farther across the 

domain (Fig. 5.1d) with an increase in the number of higher magnitude differences.  

Lastly, Fig. 5.1e shows not as much spreading of the differences over the domain, but 

there is an increase in the difference magnitude, and the number of higher magnitude  
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Fig. 5.1  The 3-hour precipitation difference between CNTL30km and PERT30km initialized at 00Z 1 July 
for the (b) 3-, (c) 12-, (d) 24-, and (e) 36-hour forecast time.  Contour intervals are every 4 mm; dashed 
lines indicate negative values.  (a) shows the CNTL30km 24hr precipitation total for the 36hr forecast; 

contours as in Fig. 4.1.   
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differences has increased compared to Fig. 5.1c.  To further exemplify the extent of the 

difference field across the domain and magnitude of the difference field, Fig. 5.2 shows 

the 24-hour accumulative precipitation difference of the 36-hour simulation, in which the 

maximum difference between the two simulations is 70 mm (2.75 inches). 

 To further illustrate the error growth at low resolution, a difference field of the y-

component of the wind velocity is depicted at the 350K isentropic level.  The difference 

wind fields (Fig. 5.3), when compared with the difference precipitation fields, show a 

similar results in that the differences grow in magnitude and across the domain as the 

simulation time increases.  Fig. 5.3a shows a very small magnitude and localized 

difference in northeast Texas following three hours of simulation.  The differences have 

grown considerably, however, in the 12-hour forecast time (Fig. 5.3b), but are 

concentrated primarily over South Carolina, Georgia, and Florida.  The differences 

spread substantially over the domain by the 24-hour forecast simulation (Fig. 5.3c), to 

encompass much of the southeastern United States, portions of Texas, and the states 

surrounding Lake Michigan.  Also, the spatial coverage of differences across the domain 

has spread considerably, and the magnitude of the positive and negative differences has 

increased to a maximum of 11 ms-1.  By the 36-hour forecast (Fig. 5.3d), there has been a 

substantial increase in the spatial extent ofe the errors, as well as an increase in the 

quantity of errors over the domain.  The maximum difference (between the positive and 

negative differences) has also increased to 15 ms-1.  Both the wind and temperature 

differences (not shown) show a similar pattern at other isentropic and pressure levels in 

the troposphere: as the forecast simulation progresses, the errors increase in magnitude, 

and the spreading of errors over the domain increase. 
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Fig. 5.2  The 24-hour difference between CNTL30km and PERT30km at 36-hour forecast time, initialized 
at 00Z 1 July.  Contour intervals are every 4 mm; dashed lines indicate negative values. 
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Fig. 5.3  The difference field of the y-component of the wind velocity at the 350K isentropic level between 
CNTL30km and PERT30km at 00Z 1 July for the (a) 3-, (b) 12-, (c) 24-, and (d) 36-hour forecast time.  

Contour intervals are every 1 ms-1; dashed lines indicate negative values. 
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 The most significant differences grow in magnitude and across the domain 

between the 3 to 12 hour forecast, then  the differences quickly saturate.  It is apparent 

that very slight perturbations, essentially representing two nearly perfect initial 

conditions, can lead to noticeable errors in as early as a 12-hour forecast time.  The 

reason for this, as proposed by ZSR03, is that flow of interest at some locations during its 

evolution may lie close to critical points where the instability is at a threshold of being 

stable or convectively unstable.  Since the values at these grid points are not known 

exactly, any slight deviation can trigger convection differently or at different locations, 

thus resulting in errors at such locations which spread to the mesoscale.  This is observed 

in Figs. 5.2, which shows that the accumulated precipitation is small, but the location of 

the convection has been altered, thus resulting in a shift in the precipitation pattern.  

There is no doubt that greater temperature deviations  than 0.2K can be present at these 

critical points, and may trigger greater differences, which will be addressed later in this 

chapter.   

To further explore the error growth, a power spectrum analysis, examining DTE 

(defined in section 3.4) at different wavelengths, is shown in Fig. 5.4.  As suggested by 

the previous difference plots, the most rapid error growth occurs between the 3-hour and 

12-hour simulation: very little error growth is noted in the first 3 hours, however by the 

12th hour substantial differences have evolved and spread over a much larger area than 

the third hour results.  The spectral analysis shows the greatest error growth occurring 

between the 6- and 9-hour simulation, corresponding to the difference fields in Figs. 5.1  
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Fig. 5.4  Power spectra of the DTE (m2s-2) between CNTL30km and PERT30km plotted every 3 hours. 
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and 5.3.  The evolution of growth slows after the 12-hour forecast, with a slight increase 

in the error growth between the 21- and 27-hour forecast, more prevalent at the smaller 

 wavelengths.  The peak of the spectrum at each forecast time interval shifts to the right, 

or shifts towards a larger wavelength, particularly in the earlier simulations, which 

correlates to the increase in the spatial scale and the extent of forecast differences 

(ZSR03).  It is important to note that the spectral peak in each simulation appears to not 

extend beyond 1000 kilometers.  ZSR02 reported that differences decayed at scales larger 

than 1000 kilometers due to each simulation using the same lateral boundary conditions 

(ZSR03, and studies from Vukicevic and Errico 1990 and references therein). 

The evolution of DTE between CNTL30km and PERT30km is shown in Fig. 5.5.  

Following a slight decrease in forecast error over the first three hours, there is a marked 

increase in the DTE over the next six hours, then the rate of error growth slows over the 

next 24 hours.  This clearly shows the timing of the greatest forecast error growth to be 

early in the forecast period, between hours 3 through 19.  There is an abrupt decrease in 

the first 3 hours, followed by steady error growth.  Similar to TZRS04 the initial decrease 

in DTE during the first few hours of simulation can be explained through the notion that 

the initial error, essentially random noise, decreases via numerical diffusion, or 

geostrophic adjustment, over the domain by the temperature being unbalanced with 

respect to the U and V wind fields, then eventually becoming balanced; the difference 

growth occurs in the areas of moist convection (TZRS04).  Following this slight 

reduction in DTE, the sharp error growth observed in Fig. 5.5 is mostly due to moist 

processes, which will be discussed in more details in section 5.4. 
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Fig. 5.5  Evolution of DTE (m2s-2) between CNTL30km and PERT30km. 
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The maximum accumulated precipitation difference stemming from small random 

noise was 70 mm, and this is of secondary importance when compared to the observed 

differences from the practical predictability experiments, when the initial errors are quite 

large and the model error is substantial.  Compared to the results of ZSR03, the error 

growth is substantially smaller.  However, these research results for the ’02 Flood are 

consistent with TZRS04, which may support the lack of a large area of convective 

instability.  The weaker error growth could also be due to weaker larger-scale instability 

for the current event. 

5.2 Error growth versus resolution, realization, and magnitude 

The next question to address is whether or not the results from the low resolution 

experiments coincide with those of a high resolution simulation.  A pair of two-way 

nested simulations (HIGH3.3km, and PERT3.3km) were performed using a 0.2K 

perturbation amplitude (same initial condition as PERT30km) as described previously.  

The resulting difference fields and graphs were created using the first domain of the high 

resolution forecast for comparison with the 30-km domain (HIGH30km and PERT30km) 

at the same forecast time.  The difference fields, Figs. 5.6 and 5.7, show a close 

resemblance to the coarser simulations (Figs. 5.1 and 5.3); the compared parameters 

(precipitation and wind) diverge in a similar fashion between the two resolutions.  There 

is slightly stronger error growth with PERT10km and PERT3.3km forecasts (Fig. 5.8), 

but there is a very similar error growth spectrum to PERT30km simulation (Fig 5.9).  

These differences between the error growth in the high and low resolution simulations are 

also smaller than those found in ZSR03. 
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Fig. 5.6  (a-e) as in Fig. 5.1, but between HIGH30km and PERT30km. 
 

 

 

 



 
 

86

 

 

   

  

 

 

Fig. 5.7  (a-d) as in Fig. 5.3, but between HIGH30km and PERT30km. 
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Fig. 5.8  Evolution of DTE, as in Fig. 5.5, but for HIGH30km-PERT30km (D1), HIGH10km-PERT10km 
(D2), and HIGH3.3km-PERT3.3km (D3). 
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Fig. 5.9  Power spectra of DTE, as in Fig. 5.4, but between HIGH3.3km and PERT3.3km. 
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There are some dissimilarities between the low and high resolution results.  First, 

there is greater spreading of the differences over the domain earlier in the forecast period  

 (comparing the 12-hour results) for the high resolution simulation, as well as an increase 

of errors over the domain.  Second, the maximum amplitude of errors is reached earlier in 

the high resolution simulation.  This coincides with Lorenz’s theory that there is a finite 

limit of predictability despite improvements in resolution (ZSR03, Lorenz, 1969).  Given 

a high resolution simulation, errors tend to grow much faster, thus indicating a finite limit 

of predictability.   

The next set of experiments included running five additional simulations using the 

control perturbation amplitude (0.2K) for each.  The purpose of this is to determine the 

sensitivity of the error growth from realization to realization due to the randomness of the 

perturbations.  Since the perturbations are random across the domain, essentially white 

noise, small discrepancies were expected.  The power-spectrum analysis for another 

realization (denoted R-2) is shown in Fig. 5.10; when compared with PERT30km (Fig. 

5.4), they show very similar results.  The evolution of error growth of each random 

realization is shown in Fig. 5.11.  Each realization behaves in a closely related manner to 

PERT30km with no significant outliers; the control simulation is higher than the others 

during the 6-9 hour period.  This is also the timing of the largest spread, which is during 

the nighttime when CIN is typically the strongest; thus this period may be the most 

sensitive to convective triggering.  

Similar to ZSR03, experiments have been performed with different perturbation 

amplitudes.  To reiterate from Section 3.4, the perturbation amplitudes were changed 

from the PERT30km simulation of 0.2K, to 0.002K, 0.02K, 0.4K, 1.0K and 2.0K.   
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Fig. 5.10  Power spectra of DTE, as in Fig. 5.4, but for another realization (R2) with perturbation amplitude 
of 0.2K initialized at 00Z 1 July. 
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Fig. 5.11  Evolution of DTE, as in Fig. 5.5, for all realizations with perturbation amplitude of 0.2K 
initialized at 00Z 1 July. 
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Fig. 5.12  Evolution of DTE, as in Fig. 5.4, but with experiments with idealized perturbations of different 
magnitudes in the initial temperature field.  Curves are labeled with the values of T0 in Eqn. 3.1.  
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Generically speaking, the smaller amplitude perturbations generate errors that grow faster 

at the mesoscale, but then these differences approach a saturation level close to the DTE  

with a higher initial perturbation amplitude after 36-hours of simulation; this is illustrated 

in Fig. 5.12.  The fact that the growth of the forecast errors varies upon perturbation 

amplitude indicates that the evolution of the differences is non-linear (ZSR03).  This 

implies that a limit is reached, given current computational abilities, in which there is 

diminishing return; although initial errors can be reduced, say by half, the forecast 

accuracy increases only a few hours (ZSR03). 

5.3 Error growth for different days and diurnal variation at 00Z and 12Z 

The ‘02 Flood lasted for eight days with little synoptic movement, though there 

exists a strong variation of the convection.  Since the convective instability over the 

whole region of interest shows the same diurnal variation over the entire duration of the 

event, it was important to investigate the intrinsic error growth each day to determine any 

possible outliers that may exist.  In conjunction with this experiment, the initial error 

growth due to the diurnal variations (00Z and 12Z respectively) is examined as well.  

Similar experiments to PERT30km were set up, using a 0.2K perturbation amplitude 

initiating at each day from 28 June through 5 July, both at 00Z and 12Z.   

A power spectrum of a 12Z simulation, initialized at 30 June (figure not shown)  

exhibits a very similar pattern as Fig. 5.4, the spectral analysis between CNTL30km and 

PERT30km.  Fig. 5.13 shows the evolution of error growth for each initialization.  The 

ensemble of results is very consistent with PERT30km: there is a decrease in DTE within 

the three-hour forecast, with one 12Z initialized forecast decreasing in DTE through six 

hours.  This is followed by an increase in the DTE over the next twelve hours, and a  
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Fig. 5.13  Evolution of DTE, as in Fig. 5.5, for all initialization times every 12 hours beginning at 00Z 28 
June and ending 12Z 5 July.  12Z initializations are blue, and 00Z initializations are red. 

 

 

 

 

 



 
 

95

rather tight saturation in the latter forecast times.  The greatest evolution of error growth 

occurs approximately six hours into the simulation with the 12Z realizations; since this 

corresponds to an early morning initialized forecast, there is greater stability in which the 

convection must overcome.  As diabatic heating occurs later in the day, corresponding to 

a later simulation time, then destabilization occurs initiating convective instability.   

Coincidentally, the greatest DTE growth occurs after the six-hour forecast time, when the 

strongest convection likely occurs (between 18Z and 21Z).  Further evidence of the 

diurnal variation can be seen later in the forecast period: the DTE of the 00Z simulations 

increases slightly between simulation hours 15 through 24, while little DTE growth slows 

in the 12Z simulations between simulation hours 21 through 30, coinciding with less 

instability that occurs during the nighttime.    

5.4 Effect of moist convection and parameterized physics 

ZSR02 found that moist processes played a critical role in forecast divergence 

early in the forecast period.  This was farther investigated in ZSR03 through the use of a 

“fake-dry” simulation; the results showed that DTE was significantly reduced without 

latent heating taking place.  Although error growth and upscale spreading of differences 

are weaker than the results found in ZSR03, it is still found that initial rapid error growth 

originates from parameterized moist processes.  Fig. 5.14 shows the evolution of error 

growth in the “fake-dry” simulation for the ‘02 Flood, in which the latent heat release 

from moist processes is turned off (details in Section 3.4).  These results are consistent 

with those of ZSR03, in which the error growth is significantly reduced throughout the 

forecast duration.  Following the initial decrease in DTE up to the three-hour forecast,  
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Fig. 5.14  Evolution of DTE, as in Fig. 5.5, but for the fake-dry experiment (dotted curve).  Solid curve 
shows the moist experiment.   
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Fig. 5.15  Evolution of DTE, as in Fig. 5.5, but for all different physics parameterization schemes used.  
Also includes the fake-dry experiment. 
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there is not any significant increase in DTE as compared to the other perturbed 

simulations that incorporates latent heating.   

To ensure that the evolution of error growth observed in these results is not prone to 

one type of convective parameterization, the last group of experiments incorporates the 

physics parameter changes as presented in the practical predictability section (section 

4.2).  Following an unperturbed simulation with a change in one physics parameter, a 

second was conducted using the control perturbation amplitude of 0.2K; this was done for 

each of the six different physics parameters (detailed in the Section 3.4).  Fig. 5.15 shows 

the evolution of the error growth for each pair of simulations, and includes the fake-dry 

simulation and the high resolution simulation of domain 1; recall that the high resolution 

forecast required the use of Reisner 1 microphysics.  Most DTE curves behave in a 

similar fashion to the previous experiments with a slight decrease through the 3hr 

forecast, a sharp increase of DTE through the 12hr forecast, followed by a saturation 

towards the latter forecast times.  Aside from the fake-dry experiment, only the CPS-KF 

experiment tends to behave differently.  Instead of an initial decrease in DTE, there is a 

slight increase in the first three hours, then a slight decrease for the next three hours, 

followed by slight increase in DTE through the end of the forecast duration.  As 

previously noted, the CPS-KF simulation did remarkably poor with respect to the 

precipitation forecast at the 36-hour time.  It is speculated that the CPS-KF DTE curve 

behaves in such a manner due to triggering lighter precipitation earlier in the simulation 

and reduced convective instability throughout the simulation; therefore there is not a 

sharp increase in DTE following a “spin-up” of convective instability.  The other 

possibility is the CPS-KF simulation may produce precipitation earlier, hence initiating 
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convective instability prior to the 3-hour forecast time.  Upon investigating total 

forecasted precipitation, it was found that there was a slight increase in rainfall at the 6-

hour forecast, however it was not located in the San Antonio area but in northeast Texas 

(graphic not shown).  Therefore, one possibility for the behavior of the CPS-KF 

simulation is convection initiating in a completely different area at an early time. 

5.5 Summary 

Following an investigation into practical predictability implications, many 

questions remained as to the origin and behavior of error growth.  Perfect initial 

conditions and forecast model are assumed, and the evolution of error growth is explored.  

Through the use of random grid-point perturbations with a specified amplitude, 

differences between the perturbed and CNTL30km are evaluated across the domain and 

graphically calculated as a difference total energy.  It was found that error growth 

increased substantially from forecast hours 3-12, following an adjustment of the 

unbalanced energy variables within the first 3 hours, the error growth slowed but 

continued to slightly increase for the duration of the simulation time.  This error growth 

was not exclusive to this simulation, and the other model runs exhibited similar error 

growth behavior.  This same assessment holds true for different days throughout the 

storm event as well as for the opposite phase of the diurnal cycle; in the cases of a 

morning initialization, the adjustment period was longer as convective instability was 

initiated during the period of greatest diabatic heating. Perturbation amplitude did not 

indicate much difference in the peak error magnitude, and there was a saturation of DTE 

between control and the perturbed simulations towards the end of the forecast.  Similar to 

ZSR03, as the resolution increased, there was greater error growth which resulted in a 
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limit of forecast value; the implication is if the initial conditions improve substantially, 

there are marginal improvements in the extent of the mesoscale forecast.  Lastly, 

experiments with different model physics showed similar results, with exception of a 

“fake-dry” simulation in which latent-heating was turned off.  During this simulation, 

error growth did not occur following the unbalanced adjustment, indicating that such 

processes that lead to convective instability are one of the primary factors leading to 

model forecast divergence at the mesoscale. 

It is clear through the experiments detailed here that the limits of intrinsic 

predictability arise from moist processes in general.  It has been shown that small random 

perturbations, essentially representing uncertainties in the initial conditions, can cause 

substantial forecast errors, particularly in the early forecast times at the mesoscale.  These 

differences can grow multiple times over the initial amplitude.  However, it was also 

shown that given a large perturbation amplitude, the difference growth slows toward the 

latter part of the forecast period, nearing a saturation point when compared to smaller 

perturbation amplitudes.  Farther discussion of the results will follow in the next chapter.  
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CHAPTER VI 

DISCUSSION AND CONCLUSION 

 

6.1 Summary of the storm event 

 Beginning on 29 June 2002 and lasting through 6 July, a catastrophic flood event 

took place in Central Texas, primarily affecting the Edwards Plateau and South Central 

regions.  San Antonio was one of the major metropolitan areas impacted by heavy 

precipitation.  Rainfall totals accumulated to over 30 inches (762 mm) in some 

communities in Kendall and Comal counties.  As evident from the analysis, the principal 

mesoscale dynamics associated with the heavy rainfall and the formation of an MCS 

included continual diabatic generation of PV over the same vicinity, continual supply of 

deep moisture, and little vertical wind shear.   

 An upper-level PV anomaly was positioned south of Brownsville, Texas, along 

the Mexican coast.  An elongated trough was positioned over central Texas, helping to 

create a shear zone, and combined with high levels of moisture extending up to 8 km and 

little vertical shear, a focusing mechanism for convection was present.  Positive PV 

anomalies would advect into the area, due to the return flow around the southern end of 

the trough.  With little convective inhibition, convection would initiate and further 

diabatic generation of PV ensued.  Essentially this resulted in a self-perpetuating system 

until the northern-most portion of the trough and the associated positive PV was advected 

into Colorado.  As a result of this retrogression, PV advection toward Central Texas 

diminished, and there was reduced convergence and more vertical shear leading to lower 

moisture content.  
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6.2  Discussion of model simulations and results 

 This research focused on both practical and intrinsic predictability of an extreme 

weather event, similar to the studies conducted in ZSR02 and ZSR03.  The methods 

employed used the MM5 model with a 30-km resolution to produce a 36-hour control 

simulation, then conducting several experiments to explore the limits of predictability.  

To examine the practical predictability issues, simulations testing different lead times, 

resolution dependence, and various physics parameterization schemes were performed.  

In addition to the practical experiments, a perfect model and initial condition scenario 

was assumed to examine intrinsic predictability.  For this investigation, random grid-

point perturbations were induced to the initial conditions.  This was followed by 

experiments to investigate the predictability due to perturbation magnitude, diurnal 

variation/different days, resolution error growth, and physics parameterization which 

includes a “fake-dry” simulation   In association with the practical experiments, the 

changes to the forecast value were considered based on the various simulations. 

 The reduction in forecast lead time, from 48 to 24 hours, led to a considerably 

improved precipitation forecast.  The rainfall amount and location of the heaviest 

precipitation improved, which would ultimately increase the value of the forecast.  Not 

only are these different lead-time forecasts subject to practical predictability issues but to 

intrinsic aspects as well.  The small random perturbations that were implemented into the 

initial conditions would generate differences in the forecasts that would begin at the 

mesoscale, then these differences would evolve to ultimately affect the sub-synoptic scale 

features, thus limiting the overall accuracy of the forecast lead-time to nearly 36 hours.   
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This research showed that a high resolution forecast of accumulated precipitation 

might be rather inaccurate; there was no indication of heavy convective rainfall totals, nor 

was there an adequate representation of the precipitation proximity from simulations with 

a 3.3 km grid spacing.  Speculatively, such an inaccurate forecast may stem from the 

initial conditions, in which the resolution of the data set is 40 km.  Also, small errors tend 

to grow faster at higher resolutions, as was demonstrated in Chapter V.  These findings 

are consistent with those of ZSR03, in which their experiments showed a more rapid 

error growth early in forecast period, initially near the locations of convective cells, thus 

indicating that convective instability is not being reached at many of the potentially 

unstable grid points.  With such a poor 36-hour forecast, the value is substantially 

reduced with respect to practical predictability, and therefore would not have facilitated 

any warning of the impending flooding rainfall for the ’02 Flood.   

The location and quantity of rainfall changed with each parameterization change, 

more so with the cumulus options than with the microphysics option.  Ultimately, the KF 

simulation had the weakest performance, again reducing the forecast value.  Variations 

from changing physical parameterizations indicate that model errors are still significantly 

large, thus there is still considerable room for improving forecast models to accurately 

simulate such an extreme warm-season event.    

 As previously seen in ZSR03, moist convection plays the most critical role in the 

rapid error growth.   This is noticeable in the first 6 hours of simulation at small scales 

(ranging from 100-200 km) then spreading to larger scales (approaching 1000 km) by the 

latter forecast periods.  Comparison of simulations with and without temperature 

perturbations with a standard deviation of 0.2K (which is much lower than the current 
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observational or analysis errors) randomly distributed over the model grid-points 

indicated that forecast differences, or forecast errors, spread over the domain and spatial 

scale, and increased in magnitude as the forecast time increases; the differences 

predominantly originate at the grid points that are at the threshold of convective 

instability or neutrality .  Without latent heat release, essentially a “fake-dry” simulation, 

the evolution of error growth was substantially reduced; typically observed with moist 

convection was a slight decrease of DTE following the first 3 hours of simulation, then a 

rapid increase of DTE over the next 12 to 18 hours.  This was not observed in the fake-

dry simulation: following the initial decrease in DTE, there was not a noticeable increase 

for the rest of the forecast period.   Further evidence linking the forecast error growth to 

convection was found with the examination of the diurnal experiments.  When the 

forecast simulation was initialized at 12Z, when there is weaker convective instability 

(versus 00Z), there was a greater lag time for the rapid error growth to occur (typically 6 

to 9 hours into the model run).  This suggests that the errors grew most rapidly with the 

onset of the strongest convection, since a 12Z initialization is in the morning in Texas, 

and it would require several hours for destabilization to occur, hence the onset of 

afternoon convective initiation.   

 The results demonstrated that, even if forecast models are perfect, intrinsic error 

growth would ultimately limit predictability, as suggested by Lorenz (1969).  It has been 

shown that forecast errors originate near grid points at the threshold of convective 

instability at convective scales, then grow and ultimately affect larger scales (up to 800 

km) in a 36-hour simulation.  This has been represented in both the spectrum analysis and 

the graphical analysis:  the spectrum analysis indicated that the DTE peak was shifting to 
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higher wavelengths as the forecast extended further from initialization; the graphical 

analysis shows that the forecast errors spread across the domain and spatial scale, 

particularly from the 24- to 36-hour forecast timeframe.  These findings are consistent 

with the winter-time extreme event studies in ZSR03, which further exemplifies the 

constraints placed on the forecast accuracy of the mesoscale models, consistent with 

Lorenz’s theory (1969). 

 The important question, also proposed in ZSR03, is how far are the present 

forecast models from the point of diminishing return?  With continual advances in 

computing technology and capabilities, finer resolution simulations can be simulated in a 

shorter period of time.  Excluding intrinsic error considerations, forecast models appear 

to have substantial room for improvement; this will certainly be aided by not only 

computing power, but also by better representation of the dynamics that drive the 

atmosphere.  Given the results established in the present research, an accurate forecast 

representing mesoscale features can have a lead time of approximately 36 hours; beyond 

this timeframe, forecast value diminishes rapidly, particularly in the forecasting of heavy 

precipitation.  It can be stated that after the initial conditions were considerably improved 

(upon the current operational analysis error), to reduce the small initial errors by half, this 

would only lead to an increase in forecast accuracy on the order of hours (not days).  In 

other words, the implication of this research is that even as initial conditions and forecast 

models improve, there still exists a finite level of predictability.   

6.3 Forecasting implications 

The motivation behind this research came from the operational difficulty of 

predicting both the amount of precipitation and the duration of the event.  Additional 
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ramifications due to the heavy rainfall also contributed to the difficulty of forecasting the 

temperatures, due to extended periods of cloud cover keeping temperatures below 

normal.  This research found that predictability is complicated by moist convection and 

the associated latent heating feedback.  From a practical standpoint, forecast lead time, 

resolution dependence, and physics parameterizations can greatly impact the outcome, 

and hence the forecast value, of such events.  Although the reduced value that stemmed 

from higher resolution simulations in this research, it is expected that such resolutions 

would typically help with the forecast outcome and increase value, provided that the 

resolution would not be too high to simulate in a reasonable period of time (ZSR03, and 

references therein).   

Intrinsic predictability also limits the value of the deterministic forecast, since 

errors tend to develop near areas of mesoscale convective instability, then grow to 

ultimately effect larger scales.  However, with an understanding of intrinsic errors leading 

to different forecast outcomes, perturbations can be established to generate short-range 

ensembles.  Although this is not an innovation, probabilistic forecasts using ensembles 

stemming from perturbed initial conditions that span the power spectrum can yield a 

variety of outcomes, which can ultimately provide insight to such extreme events.  

Utilizing probabilistic results, assessment of risk leading to emergency planning can be 

established to provide the necessary warnings that could ultimately save money and lives.  

Not only would such risk assessment benefit emergency preparers, but it would also help 

any organization or industry whose well-being is impacted by weather and could 

potentially suffer from such extreme events.   
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6.4 Further research 

This research conducted several experiments exploring the impacts of both 

practical and intrinsic predictability.  Intrinsically, the focus has been on moist 

convection as a result of a random temperature perturbation.  Although ZSR03 

established a different perturbation scheme, essentially a constant magnitude perturbation 

across the grid instead of a random grid perturbation with a set standard deviation.  It is 

speculated that the methods employed in ZSR03 would yield similar results and would 

not be a consideration for further investigations.  Alterations to the land scheme may 

make a significant difference in both practical and intrinsic predictability, since the 

upslope effect of the Balcones Escarpment may have contributed significantly to the high 

moisture content observed in the upper levels.  The question is how much of an effect 

would the topography play on the content of moisture in the upper levels, or would the 

system still be self-perpetuating due to the lack of vertical wind shear and sufficient 

convective instability provided by PV.   

Changes to the data set that provides the initial conditions should also be 

considered.  ZSR02 utilized a reanalyzed ETA data set as well as analysis provided by 

the ECMWF.  It is certainly plausible that a different data set utilized for the initial 

conditions may yield different results with regards to practical predictability, particularly 

for the high resolution simulation.  It is also possible that the KF simulation may yield a 

better forecast with another data set.  It would not be expected, however, for the intrinsic 

results to be different, since the perturbed simulation would be compared to a control 

simulation using the other data set, and since the results presented in this research 

coincide with the findings of ZSR03.  
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Lastly, the use of ensemble forecasts has been proven to be valuable to practical 

predictability.  It can be said that the present research conducted some form of an 

ensemble of forecasts, a more typical method of ensemble generation should be explored 

to depict increased value of the forecast from a practical standpoint.  One of the initial 

intents of this research was to apply predictability towards an assessment of risk to be 

applied to industry and emergency preparedness.  Unfortunately, due to time constraints, 

such an investigation was not conducted.  Previous research by Zhu et al. (2002) looked 

at the economic value of ensemble forecasts.  Their study established a simple cost-loss 

model comparing a forecast with a single control run versus a forecast with an ensemble 

of outcomes, and it specifically looks at economic ramifications but not societal impacts.  

A probabilistic forecast could by implemented into a risk model, of cost-loss or a 

success-failure régime, that could conceivably be applied to a societal or environmental 

analysis, as well as for economic gain.  Through the use of ensembles, outliers can be 

determined, which can then be employed for economic/hedging decisions, or they can be 

used to assess a possible outcome for emergency management decisions. 

6.5 Conclusion 

Throughout this research, both practical and intrinsic predictability have been 

explored.  Experimental method by varying the forecast lead time, resolution dependence, 

and individual physics parameterization schemes, provided an understanding of the 

practical complications, using a state-of-the-art forecast model in a 36-hour forecast.  

Various perturbations were implemented to unperturbed forecasts to ascertain outliers 

that may contribute to forecast divergence.  Similar to results from other predictability 

studies, there are intrinsic limitations on model forecasts that arise from moist 
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convection.  Resolution also played a critical role, both practically and intrinsically.  It is 

therefore reasonable to conclude that a detailed and accurate forecast of this particular 

event would be difficult to impossible to predict beyond 2 days.   
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