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ABSTRACT
Use of Autoassociative Neural Networks for Sensor Diagnostics. (December 2003)
Massieh Najafi, B.Sc., University of Tehran

Committee Co-Chairs: Dr. Reza Langari
Dr. Charles H. Culp 11l

The new approach for sensor diagnostics is presented. The approach, Enhanced
Autoassociative Neural Networks (E-AANN), adds enhancement to Autoassociative
Neural Networks (AANN) developed by Kramer in 1992. This enhancement allows
AANN to identify faulty sensors. E-AANN uses a secondary optimization process to
identify and reconstruct sensor faults. Two common types of sensor faults are
investigated, drift error and shift or offset error. In the case of drift error, the sensor error
occurs gradually while in the case of shift error, the sensor error occurs abruptly. E-
AANN catches these error types. A chiller model provided synthetic data to test the
diagnostic approach under various noise level conditions. The results show that sensor
faults can be detected and corrected in noisy situations with the E-AANN method
described. In high noisy situations (10% to 20% noise level), E-AANN performance
degrades. E-AANN performance in simple dynamic systems was also investigated. The

results show that in simple dynamic situations, E-AANN identifies faulty sensors.
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1. INTRODUCTION

When sensors malfunction, control systems become unreliable. Even with the most
sophigticated instruments and control algorithms, a control decision based on faulty data
could lead to disaster. Sensor Fault Detection is usually considered as a subset of Fault
Detection. One of the well known approaches in Fault Detection is the model based
approach in which a computational model is designed to predict the real system output
while receiving the same input. Figure :1 shows the generic diagram of the model
based technique.

Real System

Input

<>— Analysis

M odel

Figure 1-1, Model based approach

In spite of the popularity of the model-based approach in Fault Detection, this
method is not appropriate for Sensor Diagnostics. This is because the model-based
approach relies on the correct input data (which might be measured using sensors). This
assumes that the input to the real system and the input to the model are correct (fault
free). When there is a notable difference between the output of the real system and the
output of the model, a problem exists in the real system. In Sensor Diagnostics the focus
isto find dysfunctiona sensors.

Autoassociative Neural Networks (AANN) are an alternative solution for Sensor

Diagnostics. The AANN concept, which was developed by Kramer ([1] and [2]) can

This thesis follows the style and format of IEEE Transactions on Power Systems.



capture the interrelationship between plant variables that have some degree of relation
with each other. The correlation between plant variables is embedded in the AANN.

Autoassociative Neural Networks for Sensor Diagnostics is the focus of this
research. We are looking for a generic approach to be applicable in different systems. A

chiller model developed previously [3] will be used as a system to test our approach.

1.1 Autoassociative Neural Network and Its Application in Sensor Diagnostics

“An Autoassociative Neural Network (AANN) is a network in which the outputs are
trained to emulate the inputs over an appropriate dynamic range. Plant variables that
have some degree of coherence with each other constitute the input. During training, the
interrel ationships between the variables are embedded in the Neural Network connection
weights” (Hines 1998). Autoassociative networks are composed of an input layer, a
number of hidden layers and an output layer. Theoretically, it is sufficient for the AANN
to contain three hidden layers [1]. However; in practice more hidden layers might be
used for improved performance [4]. The architecture of a three hidden layer AANN is
shown in Figure 1-2. The output layer of AANN produces a transformed version of the

inputs and is equa in dimension to the input.

In Sensor Diagnostics, all data measured from the real system (a mix of input
variables and output variables) constitute the input to the AANN. The AANN is trained
in away that its outputs match the inputs as closely as possible, in a least squares sense,
over the training set. When data having no errors (no faulty sensors) is fed to the trained
AANN, the difference between the input and output of the AANN is ideally zero. If the
datais contaminated (one or more sensors being faulty), the difference between the input

and output of the AANN will be non zero.



Mapping
Layer

Bottle neck

Figure 1-2, Autoassociative Neural Network

The AANN approach can be used to determine whether there is a sensor problem but
the problem of locating the faulty sensors still remains. At the University of Tennessee,
Hines and his colleagues have proposed a method to locate faulty sensors using AANN
([5] and [6]). As noted by Hines [5] “As during the training of the AANN, the
interrel ationships between the variables are embedded in the Neural Network connection
weights. As a result any specific network output shows virtually no change when the
corresponding input has been distorted by noise, faulty data, or missing data’. This
means that the difference between each AANN input and its corresponding output
contains enough information to help determine the faulty sensors. If the difference is
zero, the corresponding sensor is healthy otherwise the sensor has a problem (Fig. 1-3).

However we were unable to get the same results as they did, perhaps due to an error or



unreported assumptions in the original work. The proposed work seeks to develop an
enhanced method which is referred to as EEAANN.

P + ) Semsor Fault
Input o  AATIN 2, wAmalger — o ition

Figure 1-3, Hines' approach to using AANN for sensor diagnostics

1.2 Proposed Solution, Enhanced Autoassociative Neural Network (E-AANN)

Due to the inherent nonorthogonality of the AANN, when one of the AANN inputs
is degraded or contaminated, it affects all AANN outputs. So any difference between the
input and output of an AANN reflects sensor problems but is not sufficient to localize
the faulty sensors. The new approach, EAANN, is based on the fact that whenever the
input to the AANN is fault free, the AANN output will be the same as input. In this

situation, the Sum Squared Error (SSE) between the inputs ( X, , i = 1,2,... n ) and
outputs (Y; ,1 = 1,2,... N ) should ideally be zero (Eq. 1).

J=(X-Y)T(X-Y)=éN (Y- X)?=0 ()

(Eq.)

In order to locate the faulty sensor, each input is varied over its defined range while

holding all other inputs fixed to determine when SSE is zero or close to zero (or in

principle minimized). Once SSE equals to zero, the corresponding input is identified as
the contaminated input (faulty sensor). EEAANN isexplained in section6 in details.



The next step in this research is to characterize the EAANN performance. First it is
investigated how precisely the EAANN can reconstruct the correct value of a faulty
sensor output. The aim is to find parameters that affect on the precision of EAANN.
Secondly the effect of noise on the EAANN performance is investigated. Real sensors
are noisy. It is necessary to see if E-AANN is capable of determining faulty sensors in

noisy conditions.

Two common types of sensor faults are investigated in this study. One is drift error
and the other is shift or offset error. In the case of drift error, the sensor error occurs
gradualy. Initially, the error is very small but it grows slowly with time (Fig. 1-4). In the
case of the shift error, the sensor error occurs abruptly. The E-AANN capability to catch
shift errors and drift errors in noisy conditions is studied. Initially the induced noise is
low and then it will be increased step by step. At each noise level, the data will be
contaminated by shift and drift errors (Figures 1-5 and 1-6 show drift and shift errors
with noise). EAANN will be evaluated in terms of its ability to catch these errors. If
necessary, EAANN will be revised to improve its performance. The maximum level of
noise handled by EAANN will be determined. The functionality of the E-AANN in
high noisy situations will be evaluated.
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Figure 1-5, Drift error with noise
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2. LITERATURE SURVEY

The topic of Fault* Diagnostics can be divided into two main categories:
System Fault Diagnostics
Sensor Fault Diagnostics

In a system, Fault Diagnostics deals with faults originating inside the system. It
checks system components to see whether they work well. Sensor Diagnostics deals with
faults coming from the sensors that measure system variables. It checks whether sensors

show the correct values.

2.1 System Fault Diagnostics

Generally, the process of fault detection is divided into two steps. 1- Fault
Determination and 2- Fault Isolation. In fault determination, it is checked whether
system performance is within specifications or not. In fault isolation, the source of fault
is located.

There are several generic approaches to fault determination but the topic of fault
isolation is still in its early stages. This is due to the fact that the process of Fault
Isolation depends on the system specifications. Therefore it is difficult to derive a

generic approach to fault Isolation.

A generic fault detection mechanism must contain two sections. 1- Reference
Cdculation Section and 2-Anaysis Section (Figure 2-1). The task of the Reference

1 A comprehensive literature survey has been performed on the issue of fault diagnostics and sensor
diagnostics. Different approaches used in different systems have been investigated and their advantaged
and disadvantages have been discussed. We have also performed a literature survey on the issue of fault
diagnostics in chiller. Thisis true that in this project we look at diagnostic problems generically, but we
thought it would be useful to also have a literature survey on a specific system (like chiller) to see how the
results could be expanded.



Calculation is to prepare the tools for evauation of the system performance. It
calculates the reference values to be compared with system outputs. The analysis Section
handles two tasks. It compares the system outputs with the calculated references to
determine if there is any problem in the system (Fault Determination). After
determination of faults, it tries to isolate the fault (Fault Isolation). Therefore the analysis
section is divided into two sections (Figure 2-2):

I) Fault Determination Section

I1) Fault Isolation Section

Real System
Input "| Anayzer ——— System Condition
R Reference
Computation
Figure 2-1, A generic fault detection mechanism
—_—
System Output Fal_JIt _ _ Fault & System Condition
Determination Isolation
Reference Output >

Figure 2-2, The structure of analyzer

2.1.1 Reference Computation Section

As it was previoudy stated, the Reference Calculation prepares the tools for
evaluation of the system performance. The most popular approach for reference
calculation is the Model Based approach. In this approach, a model is designed based on
the real system specifications. It predicts the output of the real system with a defined

input. The common methods to design a model are:
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Physical or Parametric methods
Data Driven methods
Qualitative methods

Physical/Parametric Models

These models are designed based on the equations and parameters of the real system.
In this approach the key issue is to resolve the system equations and find the parameters.
As an example, we can mention to the work done by Lee and his colleagues [7] in which
they have present a scheme for detecting faults in air- handling units.

In less complicated systems, the physical model can be readily found. In some
research efforts an estimation algorithm has been developed to update the model
parameters based on the measured signals. In [8] Keyhani has explained how the
measurement signals from an electric motor can be used for parameter identification to
estimate the relevant information regarding the motor working condition. Kornand and
his colleagues have persuaded the same approach for fault detection in milling [9]. They
have used a precise force model and an estimation algorithm to update model parameters

based on the measured force.

However, when the system is too complicated or there is not enough information of
the physical specifications of the system, the approach of physical/parametric models
does not work. Also this approach can not lead to a generic fault detection mechanism as

it mainly depends on system specifications which change from case to case.
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Data Driven Models

This is a generic approach for system modeling. In this approach the modd is
designed based on the system performance. The data constructed based on the system
records is used to tune the model parameters. Neural Networks and Fuzzy logic systems
are two well known tools for this approach. Chow and his colleagues have carried out
comprehensive investigation on various neural network based (model based) fault
detection scheme [10-12]. In [13], Chow proposed a typical back-propagation neural
network structure for incipient motor faults diagnosis. In [14], Gao and Ovaska
presented several typical fault diagnosis schemes based on neural networks, fuzzy logic,
neural-fuzzy, and genetic algorithms. They compared the advantages and disadvantages
of these methods. Ngjjari and Benbouzid [15] applied fuzzy logic to the diagnosis of

induction motor stator and phase conditions.

Data Driven Models can be deigned quickly. However, these models are only as
good as data used to generate them. Their accuracy fals off rapidly in the region of
operating space for which there is no training data.

Qualitative Models

Qualitative Models are designed based on the qualitative knowledge of the system.
They predict the system behavior qualitatively. If some quantitative knowledge is
included, the model is called semi-qualitative. Semi-qualitative models can determine a
range for each system variable. For example Yumoto and his colleagues [16 and 17]

have worked on fault diagnostics in HVAC systems using qualitative reasoning.

The main advantage of qualitative models is their ability to predict the system
performance even when system parameters change dlightly. In situations that it is
impossible to find the system variables exactly, qualitative approaches are a better

solution. Qualitative models can not be used to develop generic approaches in diagnostic
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area. Thisis due to the dependency of qualitative models on system specifications which

change from case to case.

2.1.2 Analysis Section

The role of the Analyzer is to compare the system outputs with references to
determine and isolate faults (Fault Determination and Fault Isolation). In model based
approaches, the Fault Determination section compares the difference between the system
output and model output (residual) with a constant or changeable threshold. The value of
threshold depends on the system specifications, system noise level, model accuracy, and
sensor resolutions. For example Ton and Huo [18] have shown how the threshold should

be evaluated in neurofuzzy based fault detection mechanism for induction motors.

When the residual passes the threshold, the Fault Determination section finds that
there is an error. After that the Fault Isolation section comes in to isolate the fault. It
looks for some predefined signatures in the faulty response. The signatures are defined
based on the system specifications. They might be used to design a fuzzy system, train a
neural network. Benhouzid and Nejari [19] have shown how signatures can be

expressed in a simple fuzzy logic approach to monitor the stator of induction motors.

2.2 Sensor Diagnostics

Like Fault Diagnostics, generaly the process of sensor diagnosis is divided into two
seps. 1- Sensor Fault Determination and 2- Sensor Fault Isolation. The first step
determines if there is any sensor problem in the system while the second step locates the

faulty sensors.

A generic Sensor Fault Detection mechanism is divided into two parts. 1- Reference
Calculation Section and 2 Analysis Section. Although this classification is similar to
that of Fault Diagnostics, the internal structures are different.
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2.2.1 Reference Computation Section

As it was mentioned earlier, the task of the Reference Computation is to prepare
some references for the evaluation of the system performance. On the issue of Fault
Diagnostic, the well known approach for reference calculation was model based
approach. Feeding the same input to the real system and the model, the difference

between their outputs is the best source for fault detection purposes.

In spite of the popularity of the model-based approach in Fault Detection, this
method is not appropriate for Sensor Diagnostics. The model-based approach relies on
the correct input data (which might be measured using sensors). This assumes that the
input to the real system and the input to the model are correct (fault free). When there is
anotabl e difference between the output of the real system and the output of the model, a
problem likely exists in the real system. In Sensor Diagnostics, the focus is to find

dysfunctional sensors.

In a Sensor Diagnostics, as both input and output data are measured by sensors, none
of them is trustable (each one might be faulty). We can not assume that the input data is
correct and then relate any problems in the output data to the output sensors. Therefore
the conventional model based approaches (the model that predicts the output of the
system having the same data at the input) are not suitable for the Sensor Diagnostics.

Autoassociative Neural Network (AANN)

Autoassociative Neural Networks (AANN) are an aternative solution for Sensor
Diagnostics. Autoassociative Neural Networks do not discriminate between the input
and output. The concept of Autoassociative Neural Network was first developed by
Kramer [1] in 1992. Figure 2-3 shows the general architecture of the AANNS. Basically
AANNS are identity mappings. In sensor diagnostics, the set of inputs and outputs of the
real system constraint the input to the network [1, 5, and 6]. The AANN is trained to
recreate the input as its output. When the data input to the AANN is nonfaulty, the
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AANN output is the same as input. When the input data is contaminated (there is a
sensor problem), the AANN output will not be the same as its input. Autoassociative
Neura Networks and their specifications are discussed in details in section4.

Mapping DeMapping
Layer Layer

Output

Bottle neck

Figure 2-3, AANN architecture

2.2.2 Analysis Section

The anayzer compares the calculated references by the system variables to
determine if there is any problem (Task 1). After determination of a sensor problem, the
analyzer tries to identify the faulty sensors (Task 2). The Analyzer needs to distinguish
between the perturbations coming from the system noise and those coming from the
sensor fault. These tasks are different than fault diagnostics. In fault diagnostics the
analyzer should locate faulty parts based on the signatures defined based on the system
specifications while in sensor diagnostics, the analyzer located faulty sensors without
including system specifications. With sensor diagnostics, it is possible to come up with a
generic approach as a sensor fault detection mechanism may not necessarily depend

explicitly on system specifications.
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2.3 Chiller Fault Diagnostics

The majority of fault detection efforts in HVAC systems have focused on fault
detectior? in chiller. This is due to the fact that chiller uses the largest portion of energy
in buildings. Several efforts have been done to develop a chiller model for diagnostic
purposes. A comprehensive chiller model [20] has been developed by ASHRAE
(American Society for Heating, Refrigerating, and Air Conditioning engineers), which is
called HVAC 1 primary Toolkit. This model has been written with FORTRAN 77 and
used a comprehensive set of subroutines (38 subroutines) to predict the performance of

different HVAC components.

Gordon and Ng [21] have aso developed their universal thermodynamic model.
They used the fundamental relation between chiller COP and the cooling capacity (Heat
absorption at the evaporator). Based on this way they were able to predict the chiller
performance by identifying certain chillers parameters. The robustness of the Gordon
and Ng model has been investigated in [22]. The model has been verified with
experimental results with three proposed built system configuration. It has been shown

that the model is both flexible and accurate with respect to changes in the system layout.

Another model has been developed with the cooperation of United States
Government (USG) and Lawrence Berkeley National Laboratory [23]. DOE-2 according
to [24] is the most complex and comprehensive building energy simulation progam

2 |n the area of fault detection there are several names like “Fault Detection”, “ Fault Diagnosis”, “Fault
Determination”, and “Fault Isolation”. The meaning of these names might be slightly different from paper
to paper. In thisthesis, we have the following definitions:

Fault Detection = Fault Diagnosis : The whole process of fault isolation and fault determination

Fault Determination: The process of checking whether system performance is normal or not

Fault Isolation : The process of isolating and finding the source of the fault

In some papers, specialy those in the area of chiller fault detection, these names have slightly different
meanings:

Fault Detection = Fault Determination

Fault Diagnosis = Fault Isolation

In those papers, the Fault Detection is know as Fault Detection and Diagnosis (FDD)
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available. DOE-2, writhen in FORTRAN, is primary used for building energy analysis

and predicts energy uses and costs.

Sreedharam and Haves [25] have evaluated the above three models for FDD purpose
(the Gordan and Ng model, the ASHRAE model, and DOE2 model). They have shown
that all three models display similar level of accuracy. The Gordan-Ng model has the
advantage of being linear in parameters. The ASHREA model may have advantages
when refrigerant temperature measurements are also available. They have stated that the
DOE2 model can be expected to have advantages when very limited data are available to
calibrate the model.

Fault isolation is inherently more complicated than fault detection though the last
few decades have seen an absolute proliferation in this field. Stylianou and Nikanpour
[26] have used a rule based approach using steady state and transient data to perform
fault detection and diagnosisin chiller. Braun and Ross [27] have proposed the use of a
two-step approach towards chiller fault diagnostics. They first used statistical pattern
recognition to test for the presence of a fault. If a fault was detected, they followed that
up by using a matrix of symptoms to diagnose the fault. Grimmelius [28] has developed
a comprehensive symptom matrix to aid the diagnosis process. A nonlinear statistical
chiller model output was used as the base case value and was compared to values of
selected variables whose deviation or residues were used to build the symptom matrix.
Recently Wang and Wang [29] reported a first principle model for fault detection,
diagnosis and evauation (FDD&E) of the temperature sensors and flow meters in a
central chilling plant and presented dynamic simulation results. The law-based sensor
FDD&E is based on the fundamental mass (steady state) energy conservation
relationships.

The approach of Wang and Wang [29] monitors only a part of the sensors in the

chiller (temperature sensors and flow rate sensors). They have assumed that data
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measured by other sensors are correct. If there is any sensor problem, it should be from
temperature or flow rate sensors. This approach cannot be made into a generic sensor
diagnostic mechanism. In general we cannot assume that a part of the sensors are correct
and try to monitor the others based on that.

On the other hand, the other approaches explained above are based on model-based
approach. As it was explained in section 2.2.1, the model-based approach is not an
appropriate approach for a generic sensor diagnostic mechanism. The model-based
approach relies on the correct input data (which might be measured using sensors). This
assumes that the input to the real system and the input to the model are correct (fault
free). In Sensor diagnostics, as both input and output data are measured by sensors, none
of them is trustable. Model-based approach might be used to monitor a part of the
system sensors but not all sensors together. There are also some qualitative approaches
for chiller diagnostic but as we explained in section 2.1.1, the qualitative approaches
mainly depend on system specifications. Therefore for any system, a separate diagnostic
mechanism must be designed. In this project, we are looking for a generic sensor

diagnostic mechanism to be applicable in different systems.
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3. INTRODUCTION TO NEURAL NETWORKS

3.1 Introduction

Basically a neural network constructs of a set of nodes connected by links. Each
node might have severa inputs with one output. The output is a function of the inputs
(linear or nonlinear). The node output is transmitted to other nodes through the links.
Thus each node output is the input for other nodes. This structure is similar to the
structure of neural systems in human brains in which nodes are corresponding to neurons

and links are corresponding to synapses transmitting signals between neurons.

A weight factor is assigned to each link. When a signal transmits through the link, it
is multiplied by the corresponding weight before it reaches the receiving node. Therefore
the nodes can reinforce or inhibit signals between two nodes. For convenience, we name

the weight associated with a link from node n; to node n; as w; (Figure 3-1). The signa

sent from n; is denoted X; .

2

X
< Ko
x
>3
X

Figure 3-1, Node with several inputs and one output
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In feed forward neural networks, each node performs a simple two step operation.

First it calculates a weighted sum of al input signals. For example node n; in Fig 3-1

calculates the following weighted sum in the first step.

_g .
Sj —aWij X
i=1

(Eq3-1)

Then the calculated sum is fed to a predefined function, f (typically a sigmoid

function), to produce the output signal of the node. These two steps are illustrated in Fig.
3-1. Combining these two steps, we have

és . U
;= f(s)=feaw;” xy
ei=1 u

(Eq.3- 2)

3.2 Architecture of the Neural Network

There are different types of neural networks. Feed Forward neura networks are the
most widely used networks. The architecture of a three layer feed forward neura
network3js shown in Figure 3-2. It organizes its nodes into three layers: the input layer,
the hidden layer, and output layer. Each node in the input layer receives externa input
signa and transmit it to al nodes in the hidden layer through links. Similarly, hidden
layer nodes receive input signals from the input layer and send the processed signal to
each node in the output layer. Nodes in the output layer generate network outputs by
processing transmitted signals from the hidden layer. This Neural Network architecture
is called “feed forward” because the signals flow from the input layer to the output layer

in aforward direction.

3 One of the main applications of feed forward neural networks is nonlinear mapping. It has been
mathematically proven that a 3layer feed forward neural network can handle any nonlinear mapping
problem with sufficient number of nodes in each layer [35]. However, more layers help the network to
have a better performance and learn the relation between the input and output data better.



20

Input Output

Input Layer Hidden Layer Output Layer

Figure 3-2, Architecture of athree layer feed forward neural network

3.3 Neural Network Training

Backpropagation technique is the most popular approach in training feed forward
neural networks. A set of training data is used to train the network. During training, the
difference between the neural network output and the training data target gradually
reduces. Backpropagation is based on the gradient descent concept.

3.3.1 Gradient Descent
Gradient Descent is a general method for function minimization. As you know the
minimum of afunction J(X) is defined as the zeros of its gradient.
X" =argmin[J(X)] P N,JI(X)=0
(Eq.3- 3)
However, only in very special cases this minimization function has closed form
solution. In other cases, finding a closed form solution is amost impossible or

impractical.
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Gradient descent finds the minimum of the function in an interactive fashion by
moving in the direction of steepest descent. Assume that J(X) (X =[X., %, ,....Xx,]") is

the cost function. We want to find the value of X that minimizes J. The symbol NJ
denotes the gradient of J. The gradient is calculated as:

(Eq.3- 4)

Therefore NI is a vector function of X. The gradient has the property that when it is
evaluated as X, it pointsin the direction of travel from X that will maximally increase J.

Therefore to decrease the function J, the value of X should be dightly changed in the
opposite direction (i.e. - NJ ). This can be done through the following algorithm.

1- Start with an arbitrary initial condition X(0)

2- Compute the gradient N, J(X(k))

3- Move in the direction of steepest descent:

X(k+1) = X(k)- hN,J(X(K)) (h isthelearning rate)

4- Go to 2 (until converges)

Practical Problems

The implementation of gradient descent has severa problems.

I) Local Minima

Gradient Descent algorithm does not guarantee to find the global minimum even if it
converges. It might trap in local minima. There is no way to discriminate between the
globa minimum and local minimum. For instance, consider Figure 3-3 which shows the
cost function, J, as a function of X. The function has two minimums; a global minimum
and a local minimum. Gradient descent might converge to either one. It depends on the

starting point. There is no way to prevent the solution to converge to alocal minimum.
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Local Minimum — |

Global Minimum

v

Figure 3-3, Local minima and global minima

Some types of problems are proven to have no local minima. Therefore convergence

to a global mnimum is assured (provided the step size h is not too large). For other

problems we might not know whether local minima exist or whether a minimum found

by gradient descent is alocal or globa minimum.

I1) Step Size

In the updating equation of the gradient descent agorithm, there is a constant
(h >0) which defines how big the step is made at each iteration. Unfortunately the
choice of h is problemspecific and can greatly affect the working of the algorithm. Too
smal an h will drastically dow down the agorithm while a large value can cause the

algorithm to oscillate and become unstable.

3.3.2 Backpropagation Technique

In a feed forward neural network, the main problem is to find the weights, W, such

that the network captures the relation between the input and output. Backpropagation is
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the well known approach for this purpose. The approach is based on the Gradient
Descent. The objective function is defined as the sum-square-error at the outputs.
Nex No
JW)=3 4 1(ﬁ? - yN)? (Eq.3- 5)
n=1 k=1 2

Where t; is the desired target of the k™ output neuron for the n™ example and

<2>n

y<2" isthe output of the k™ output neuron for the n'"example®.

4 Note that here we considered athree layer neural network (one hidden layer, input layer, and output
layer). The same approach can be implemented to other networks with more number of layers. An
example of ahidden layer network is shown in Figure 3-4. The above notations are from [35].

based on the figure 3-4 we have the following notations:
- Xisthe i" input to the network

- W<l>

. . . s th . sth .
i istheweight connectingthe | ™ input to the | = hidden layer.

- het J-<1> isthe dot product at the jth hidden layer.

- y].<1> isthe output of the jth hidden neuron

- Wj<k2> isthe weight connecting the K™ hidden neuron to the j™ output

- net > isthedot product at the K™ output neuron
<2>

- Yk
-t isthetarget (desired) output at the K™ output neuron
- For convenience we will treat biases as regular weights with an input 1

isthe output of the K™ output neuron

Now based on the above notation the network equations are:
N

j
<> _ 8 <>
netj =a XiWij
i=1

> < 1
Y = f(net) =

1+ exp(- net;")

pa
OE

<2> _ <>, ,<2>
net;” =q y; W

J
1

1
1+exp(- net;>)

Vi = f(neti) =
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Figure 3-4, A general architecture of neural network

Based on the gradient descent algorithm, the updating equetion is:
W =W +DW =W - h D)
mw

(Eq.3- 6)
Now the problem is calculation of Pw) (for each weight) in terms of what we

know: the inputs X, the network outputs y? , and the desired targets t,. For

simplicity we find the derivation for one example. This allows us to drop the outer

summation.
NC
]

1 <2>
JW)=a ‘é(tk - yk2 )2

k=1

(Eq.3-7)
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In athree layer feed forward neural network, there are two sets of weights: hidden to

output weights, input to hidden weights. In this section we find the derivation of cost

function for hidden to output weights. By using the chain rule, the derivative of JW)

with respect to a hiddertto-output weight is (equations are based on Figure 3-4):

ﬂJ (VV) _ ﬂ\] (VV) ﬂy<2> ﬂnet <2>
ﬂWj<k2> ﬂy<2> ﬂnet<2> ﬂW<2>

Now we calculate each of these terms separately:

J (W ése 1 <> 2>
WW) - 112>Qa.2(tk Z)U(t-ykz)

wZ Ty

ﬂy<2> B ﬂ é 1 U exp( net<2>) _

fInet > ‘ﬂnet<2> -e1+exp( net<2>)u (1+ exp(- net;>))?
e1+exp( net > - 1ue 1

2U(

&+ exp(- net;™)? g1+ exp(- net;>))?

ﬂna g ﬂ <2> <1> u
Wn n
T[W<2> T[W <2> ﬁ k 3 y]

Merging all these derivations yields

ﬂ(‘J (\N)) <2> <2> <2> <t>
= - t)(@-

For the bias weights, use y;'~ =1 in the expression above.

(Eq.3- 8

(Eq.3- 9)

<2> ) y<2>

(Eq.3- 10)

(Eq.3- 11)

(Eq.3- 12)



26

Calculation of WW) for Input to Hidden Weights
w

Using the chain rule, the derivative of J\W) with respect to alH weight is

PW) _ 13w Ty; Tnet;™

(Eq.3- 13)

The second and third terms are easy to calculate from our previous results:

Ty;™ oy <
‘ﬂne']c<l> =(1- )/J'1>))’J'1>
i
(Eq.3- 14)
net
i
(Eq.3- 15)

Calculation of the first term (i.e. 13 (W) ), however, is not straight-forward since we
ﬂy J<1>

do not know what the output of the hidden neurons ought to be. This is known as the
credit assignment problem, which puzzled connectionist for two decades. The trick to
solve this problem is to realize that hidden neurons only contribute to the errors of the
output nodes. The derivative of the error with respect to a hidden node’'s output is
therefore the sum of that hidden node's contribution to the errors of all the output
neurons.

WW) _ ¥ 1Iw) fy,” Tnetr”
Ty;” = 2 ety fy;™

(Eq.3- 17)

Thefirst two terms in the summation are known from our earlier derivation:

W) .= - ooy <25
’]Hy” ﬂ’z{ = (- 1,)1- yZ)yF =P,

n

(Eq.3- 18)
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The last term in the summation is:

et _ o
ﬂyj<1> jn
(Eq.3- 19)
Merging these derivations yields:
<2> <2>
ﬂ;;}‘/\p i Nl ﬂ;y(:\g) ﬂlﬁ:b ﬂ;;l =ng:l(y§2> - tn)(:t- Yo )Ya Wi
(Eq.3- 20)

Note that what have actually done is propagation of the error term R, backwards

trough the hidden-to-output weights (hence the term backprop, Figure 3-5). The fina

expression of % for input to hidden weights is:

‘] égc <2> <> <Z2> < >l:l < >
W) - & (Vo7 - 1)~ Y)Y 2w - v )y
u

<1>
ﬂV\Ii]- €n=1

(Eq.3- 2))

For bias weights, use X=1 in the expression.

Figure 3-5, Neural network architecture
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4. AUTOASSOCIATIVE NEURAL NETWORK

“An Autoassociative Neural Network (AANN) is a network in which the outputs are
trained to emulate the inputs over an appropriate dynamic range. Plant variables that
have some degree of coherence with each other constitute the input. During training, the
interrel ationships between the variables are embedded in the Neural Network connection
weights’ [2]

4.1 Architecture of the Autoassociative Neural Network

Autoassociative Neural Networks are essentialy feed forward Neural Networks.
Figure 4-1 shows the general architecture of an AANN. AANN architecture contains an

input layer, a number of hidden layers and an output layer.

Mapping DeMapping
Layer

Layer

Bottle neck

Figure 4-1, AANN general architecture

It is theoretically sufficient for an AANN to have three hidden layers [1]. However,
in practice, it has been shown that more hidden layers help AANN to have improved
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performance. Additional hidden layers help the AANN to more effectively map the
interrel ationship among variables [4].

The first hidden layer is caled “mapping layer”. The transfer function of the nodes in
the mapping layer can be sigmoid or other similar nonlinear functions. The second
hidden layer is called the bottleneck layer. The dimensionality of the bottleneck layer is
the smallest one in the network (its transfer function can be linear or nonlinear). The
third or last hidden layer is caled the de-mapping layer, whose noda transfer functions

are nonlinear (usually sigmoid).

4.2 Autoassociative Neural Networks and | dentity Mapping

Autoassociative Neural Networks provide an identity mapping. The topic of identity
mapping is considered as a subset of general mapping. In identity mapping the input
variables are mapped to themselves® without making a simple one-to-one mapping. Each
output should be afunction of all inputs. For example in Figure 4-2 the identity mapping
must makeseach X,,i=1,2,and 3 asafunction of X, X,, X

Xy = £(Xy, X5, X5)

X, = £(Xy, X5, X5)

Xy = £(X1, X5, X5)

® The output is equal to input
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Figure 4-2, Identity mapping

In spite of the fact that there are many techniques for general mapping, most of them
are not appropriate for identity mapping. When a general mapping technique is used for
an identity-mapping problem, it chooses the easiest solution, which is developing a
simple one to one mapping. Unless a mapping technique has an internal force to prevent

one-to-one mapping, it is not appropriate for identity mapping.

Autoassociative Neural Networks are appropriate for identity mapping as they have
an internal force to prevent one-to-one mapping. The bottleneck layer (the second layer)
plays this role. During training, the bottleneck layer forces the AANN to encode the
inputs (compress the inputs) then decode them (decompression) to produce the network
outputs. The training process selects the network weights such that the re-created
measurement vector at the output layer matches the input as closely as possible, in least

square sense, over the set of training examples.

4.3 Autoassociative Neural Network Training

Since AANNSs are feed forward neura networks, they are trained based on back
propagation technique®. During training, the network learns the interrelationship among

6 Back Propagation has been explained in section 3.
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the variables. The set of variables fed to the AANN should be correlated. This is
checked by analyzing the covariance matrix of the data’. If the varisbles are not
correlated, AANN will not find any coloration. In this situation, the network will

memorize the data.

4.3.1 AANN Training in Noisy Stuations

Training is critical with neura networks. Good training leads to a good
generalization capability in which the trained network can generalize samples out of the
training set with a good approximation. During training, the network must learn the
interrelation between the input and output data to a specified accuracy. Too high
accuracy has opposite effect. If the network learns the data too perfectly, its
generalization capability falls down. It cannot generalize samples out of the training set
well.

For example consider Figure 4-3, which shows a set of data (data with one input and

one output).

" Given n sets of variables denoted {Xl} ....... {Xn},thecovariance s =cov(x;,X;) of X; and X is
defined by:

oov(x,X;)° <(X| - m)(xj -m )> = <Xin>- <Xi><xj>

Where< > is the expectation value, M =<Xi>, and m = <Xj> respectively. The matrix (Vij) of
quantities V;; = COV(X;, X;) iscalled the covariance matrix.

The covariance of two variables x and x provides a measure of how strongly these variables are correlated.
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Output 4

»

Input

Figure 4-3, Data set with one input and one output

We want to train a neural network to find the relation between the input and output.

Two possible solutions are shown in Figures 4-4 and 2-5.

Ouiput 4

Input
Figure 4-4, A good solution found by neural network

Output 4
- ~, ::'\’? .“:‘.‘
"!~ !\ e
IS0 TP T
et

v

Input

Figure 4-5, A bad solution found by neural network
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In Figure 44 the network has found a curve that is not so accurate. It maps the
samples with a good approximation but not so perfectly. In Figure 45 the curve is
perfect. It maps the samples exactly.

Now let see what would be the network response to a sample out of the training set
(red point). In the case of Figure 44, the network still maps the point with a good
approximation while in the case of Figure 4-5 the network generalization is poor. Thisis
due to the fact that in the case of Figure 4-5 the network has memorized the data. It has
learned how to map each training sample exactly but is has not learned the relation
between input/output. Figure 44 is an example of good training while Figure 45 isa
bad one. Situations like Figure 4-5 usually happen when the network is forced to learn
the data too perfectly. The network sees that the only way to reach the defined accuracy
IS to memorize the samples one by one.

When a data is noisy, it has a level of uncertainty. The uncertainty level depends on
the noise level. Higher noise causes higher uncertainty in individual measurements. If a
neural network dealing with noisy data is forced to learn the data with accuracy beyond
the uncertainty level, it will memorize the data (like what we had in Figure 4-5). At first
the network tries to learn the data. It tries to find a relation between the input and output.
When it sees no relation can satisfy the desired accuracy, it starts to memorize the
samples one by one. In this situation the learning process takes a lot of time (symptom).
As AANNSs are feed forward neura networks, we might expect the same performance in

noisy situations. Lets show it through an example.

Consider the identity mapping problem® shown in Figure 46 (an 8 sensor system
problem). The training datais shown in Figure 4-7.

8 This identity mapping problem is an 8-sensor system (a chiller model system which has 3 inputs and 5
outputs). The data used in this example is from the performance of that model. The process of data
generation has been explained in section 5. Here we just use the data got from the model performance to
train the AANN.
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Figure 4-6, Identity mapping with 8 inputs/outputs

The AANN performance is compared in noise free and noisy conditions.

I) Noise free condition: The AANN was trained based on the data shown in Figure 4-
7. The selected AANN was an 811-5-11-8 neural network®. The nodal functions were
sigmoid. The training accuracy was set at 0.00001%°. The AANN reached the desired
accuracy in less than 20 epochs™.

1) Noisy condition: In this situation the data was contaminated by 1% noise®. Again
the AANN was a 811-511-8 neural network and the noda function was sigmoid. At
first the training accuracy was set at 0.00001. After 300 epochs, AANN still did not
reach the desired accuracy. Figure 48 shows the relation between the epochs and the
sum square error. As you see, AANN does not seem to reach the desired accuracy even

after 400 or 500 epochs. This means that the 0.0001 training accuracy is beyond the

% 811-5-11-8 means a network with 8 nodes in the first layer, 11 nodes in the second layer, ... , and 8
nodesin the last later.

9 Training accuracy is a standard term in training neural networks. It determines how precisely the
network must be trained. When the training accuracy is, say 0.00001, this means that after training, the
sum square error between the inputs and outputs of the AANN should be less than 0.00001.

1 Epoch is another standard term training neural network area. There are two approaches to train neural
networks: batch and ... In batch at first the whole data is fed to the network. Then the weights are updated
based on the error of the whole data. After updating the weights, the data is again fed to the network and
weights are updated again based on the new error. This process continues until the network reaches the
desired accuracy. The number of timesthat datais fed to the network is named epoch.

12 |n section 5, the details about the process of inducing noise is explained.
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uncertainty level caused by noise. In the second attempt, the training accuracy was set at
0.001. This time the AANN reached the desired accuracy in less than 20 epochs.
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5. CHILLER MODEL AND DATA GENERATION

A chiller model was used as a system to test the developed diagnostic approach using
synthetic data. The model was previously developed as a part of a master thesis. The
detailed specifications of the model can be found in [3]. In this section, we explain the
model’ s inputs/outputs, the process of data generation, and the method of inducing noise
to the system.

5.1 Modé | nputs/Outputs

The model simulates the performance of a reciprocating, vapor compression cycle chiller
(Figure 5-1).

System
Boundary

——— i m e =B 0c

Conderzor
Expansion
Valve

Evaporator

w I nput

Figure 5-1, System boundary of the chiller model, from [ 3]

The inputs to the chiller model are (Figure 5-2):



1- Temperature of water into condenser: Tw,, .

2- Temperature of water into evaporator: Tw;,

e

3- Massflow rate of water in evaporator: Mw,,,

The outputs to the model are (Figure 5-2):

1- Temperature of water existing condenser: Tw

out_c

2

Temperature of water existing evaporator: Tw,

out_e

3

4- Power consumed by compressor: W

Coefficient of the chiller performance: COP

a
1

Efficiency of Compressor: h

comp

— Tox _c (degK)
Tin_c (degk) = — Tox _e (degK)

» COP
— W (wats)

Chiller
Tin_e(degk) == \1ode

M o(Kgiser) =
N

Figure 5-2, Chiller model inputs/outputs

The input ranges are™*:
T .»289® 309 degK,

in_c

T,.»275® 288 degK

in_e

M, »022® 064 Kg/sec

13 These ranges have been defined by designers [3]
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5.2 Data Generation

From 1000 samples generated by using the model, 300 samples were randomly
chosen as the test set and the remainder (700 samples) were used as the training set. The
training set is used to train the network and the test set is used to test the trained network.
Figures 5-3 shows the complete dataset'*. Figure 5-4 shows the training set. The data has
been sorted in Figure 54. Figure 55 shows the test set (sorted) .In another test, we
prepared a data with 4000 samples (3000 samples as training set and 1000 samples as
test set). Since the same results occurred with both datasets, the smaller data set was

used.
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Figure 53, Whole data with 1000 samples

14 Asit was explained, this data has been got from the chiller model developed by Rahul [3]. However, the
data might be unreal comparing with areal chiller (for example it seems that the COP generated by model
isunreal and the chiller efficiency is negative). In this project this data has only been used to verify the

diagnostic approach. The unreality of the data does not have any effect on the results.
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Figure 5-4, Training set (sorted)
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5.3 Normalization

The data was normalized such that the mean value and \ariance of each variable
became zero and one respectively®. This normalization keeps any single sensor from
biasing the results due its large numerical values. Figure 5-6 shows the normalized
training set and Figure 5-7 shows the normalized test set.

2 1 2 1
2 0 1 2o ]
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-2 , , \ E -2 , , \ 4
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2 1 2 1
o ?
= 0 1 ‘g 0 1
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-2 . . N -2 . . N

0 200 400 600 0 200 400 600

2 1 2 1
@ o
‘g 0 1 o 0 7
o )

-2 . . L -2 . . L

0 200 400 600 0 200 400 600

2 1 2

©
= 0 £ 0

-2 . . , -2 . . .

0 200 400 600 0 200 400 600
Sample # Sample #

Figure 5-6, Normalized training set (sorted)

151f we have avariable X with the mean value of Xmean @nd the variance of X4, we can normalize the X to
have the mean value and variance of zero and one respectively based on the following equation:

X-X

— mean
Xnormalized -
JX

var

(Eq(5- 1)
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Figure 5-7, Normalized test set (sorted)

5.4 Inducing Noise

As a part of this project, the effect of noise on sensor diagnostics is studied.
Therefore it is necessary to generate noisy data in different Situations. As you know the
existing noise in a system does not depend on the current value of the system variables.
The noise level is defined based on the variable changes. In order to induce A% noise to

avariable X, we have:

_y MO0 - min(X).

X =
noisy 100

(Eq5- 2)
In order to induced noise to the data got from the chiller model, at first we need to

find the range of variables. The noise is induced before normalization. Figures 5-8 and
5-9 show the training data and the test data with 2% noise. Figures 5-10 and 5-11 show

the same data with 5% noise.
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Figure 5-8, Training set with 2% noise
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6. ENHANCED AUTOASSOCIATIVE NEURAL NETWORK (E-AANN)

AANNS are appropriate tool for sensor diagnostics as they reproduce the input data
at the output. In sensor diagnostics, all data measured from the real system (the input and
output variables) constitute the input vector to the AANN (Figure 6-1).

Mapping
Layer

De-Mapping
Layer

Output

Bottleneck

System Inputs

System Outputs Xm — .A

Figure 6-1, AANN structure

The AANN is trained to match the inputs as closely as possible over the training set.
When non-faulty data is fed to the trained AANN, the difference between the input and
output of the AANN is ideally zero. When the data is contaminated (a sensor is faulty),
the difference between the input and output of the AANN will be nonzero. The AANN



approach can be used to determine whether there is a sensor problem but the issue of

locating the faulty sensors still remains.

6.1 Hines Approach

At the University of Tennessee, Hines and his colleagues have proposed a method to
locate the faulty sensors using AANN b and 6]. They believe that the difference
between each AANN input and output contains enough information to capture faulty
sensors. As noted by Hines [6] “When a sensor that is input to the autoassociative
network is faulty due to a drift or gross failure, the network still gives a valid estimate of
the correct sensor value due to its use of information from other correlated sensors
(Figure 6-2). The estimate sensor output is then compared to the actual sensor output.
The difference is called an error or residual. The residual normally has a mean of zero
and a variance related to the amount of the noise in the sensor’s signal. When a sensor is
faulty, it's associated residual’s mean or variance changes. This can be detected via

statistical decision logic.”

This means that when the difference between each AANN input and output is zero,
the corresponding sensor is healthy otherwise the sensor has a problem. However, we
were unable to reproduce the same results as Hines, perhaps due to an error or
unreported assumptions in the original work. We believe that due to the inherent non
orthogonality of the AANN, when one of the AANN inputs is contaminated, this affects
al the AANN outputs. The mapping function between the AANN input and output is
nonlinear (due to the nonlinearity of the node functions) so we cannot expect to see no
change when there is perturbation in one of the inputs (even if that perturbation is small).
Finding the difference between the input and output of the AANN can be used to
determine sensor problems but is not sufficient to localize the faulty sensors.
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o _ Sensor Fault
Input E-AANN 'y | Analyzer " Condition

Figure 6-2, Approach recommended by Hines

6.2 Enhanced Autoassociative Neural Network

In order to remedy this situation, an extension to the AANN concept has been
developed. This extension is based on the fact that when the input to the AANN is fault
free, AANN output will be the same as input. In this situation the Sum Squared Error
between the inputs and output should be ideally zero:

I=(X-Y)(X- V)= (Y- X)2=0

i=1
Where:

X =[ X, Xy X T
Y =Y, Yo Y. T
From a procedural standpoint, the proposed extension can be viewed as an

optimization process that determines X~ = argmin( J):
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_ Max(X))- Min(X)

DX Where N is user selectable

X, =[X;, Xy X X ] where  X¢=min( X,)+DX, *k

If Jk < Ji,min then ‘]i,min = ‘]k

it J ., <J,, then J, =J

i,min min

and X =Argmn(J,,)

i,min

}

Once X has been determined, the difference, X" - X, can be used to identify the

faulty sensor and the extent of the fault induced error.
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E-AANN can be used to locate the faulty sensor and aso estimate the real value of
the faulty sensor output. The input to the EAANN is the data measured from the rea
system (both input variables and output variables) and the output to the EAANN is the
data reconstructed by the EAANN. If the input data is fault free, then EAANN output
will be the same as the input and the difference between the output and the input will be
zero. When one of the inputs is contaminated, the corresponding output will not track the
input and their difference will not be zero anymore. In order to locate the faulty sensors,
we only need to find the difference between each EAANN input and output. If the
difference is roughly zero, the input is fault free and the corresponding sensor is healthy.
If the difference is not zero, the input is contaminated and the corresponding sensor is

faulty.

6.3 Examples

Consider the chiller model explained in section 5 (an 8 sensor system). The model
was used to generate 1000 sets of steady state data. 700 data sets were used to train the
network and the remaining 300 sets were used as the test set. The AANN embedded in
the extended EAANN isan 8-11-5-11-8 neural network.

Example 1: In this example the EAANN performance is evaluated in a range of
time domain. Figure 6-3 shows the test data with 1% noise and no induced fault. Figure
6-4 shows the same test data but this time, sensor #3 has drift error. EAANN output is
shown in Figure 6-7. For better comparison we have zoomed in on the third graph of
Figure 63 (sensor #3 output in non-faulty condition), the third graph of Figure 65
(sensor #3 output after inducing drift error), and the third graph of Figure 6-7 (the data
reconstructed by EEAANN) in Figure 6-6.
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Example 2: In this example one of the samples in the test set is chosen. The first
sensor is intentionally induced an error (offset). Thenthe contaminated sample is fed to
the EAANN. The origina data, contaminated data and reconstructed data are shown in
Table 61. Figure 67 shows the changes of the cost function. You see that the cost
function is minimum for sensor #1 somewhere between -1.5 and -2 (note that the data is
normalized). This means that EAANN has found the first sensor faulty and its real value

isbetween -1.5 and -.2. Figure 6-8 shows the counter plot of the cost function.

Table 6-1. Original data, contaminated data and reconstructed data

Synthetic Data Contaminated E-AANN Output
Data Vaue
Sensor #1 -1.674 0.1 -1.6749
Sensor #2 -1.674 -1.674
Sensor #3 -1.764 -1.764
Sensor #4 -1.628 -1.628
Sensor #5 -1.715 -1.715
Sensor #6 -1.879 -1.879
Sensor #7 -0.880 -0.880
Sensor #8 1.0486 1.0486
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7. EEAANN SPECIFICATIONS

The EEAANN can handle two tasks simultaneously; 1- isolation of faulty sensors ard
2- reconstruction of faulty sensor outputs. In this section we characterize E-AANN
performance. We will discuss EFAANN accuracy in reconstructing sensor outputs,
influential parameters on EAANN accuracy, EEAANN ability to locate faulty sensorsin
noisy conditions, and influential parameters on E-AANN performance in noisy

situations.

7.1 E-AANN Accuracy

It is important to see how precisely EEAANN can reconstruct sensor outputs. In order
to improve the EAANN accuracy, at first we need to know effective parameters. Our
results show that in noise free situations, EAANN accuracy is mainly affected by two

parameters: 1) AANN accuracy and limitations and 11) EAANN step size.

AANN Accuracy: As E-AANN is an extension of the AANN, its accuracy is
affected by the AANN accuracy and limitations. The accuracy of the AANN depends on
the AANN training accuracy'®. If the training accuracy is high, AANN can map and
generalize the data precisely. If it islow, then AANN accuracy is poor.

On the other hand, when the training accuracy is too high, it has opposite effect on
the AANN performance. Too high a training accuracy makes the AANN to memorize
the data instead of learning the correlation among the variables (for example in section4,
it was shown that the training accuracy of 0.00001 mage the AANN to memorize the
data). Therefore the AANN can map the samples of training set perfectly but its
generalization capability is poor and it cannot map the samples of test set well.

18 The issue of training accuracy has been discussed in detailsin section 3.



E-AANN Step Size: E-AANN locates the faulty sensors through a numerical search.
It divides each input range into N points (N is user selectable). Then it calculates the
value of the cost function (J) at each point. When the cost function is minimum, the
corresponding point is used to locate the faulty sensor. The value of N has influence on
E-AANN accuracy. The more N is increased, the smaller step size!” we have. Smaller
step size means higher resolution and better accuracy. On the other hand, EAANN step
size and EAANN computational time move in opposite direction. When the step size is
small, the computational time is high. When the step size is large, the faulty sensor is

located fast but the accuracy is poor.

7.2 E-AANN Performance in Noisy Situations

Usually diagnosis mechanisms have poor performance in noisy situations because it
is difficult to catch the symptoms of faulty behavior from noisy signals. A good sensor
diagnosis mechanism must be able to discriminate between the perturbations coming
from the noise and those coming from the ®nsor error. The EAANN is capable of
detecting and isolating single sensor faults even when the data is noisy. To locate faulty
sensors in noisy situations, the difference between the EAANN input and output must

be evaluated in a range of time domain.

For example, consider the chiller model explained in section5 (an 8-sensor system).
The model was used to generate 1000 sets of steady state data. Seven hundred (700) data
sets were used to train the network and the remaining 300 data sets were used in testing,
test set. Each sensor’s data was normalized to have the mean value of zero and variance
of one®®. In this example we induce 2% noise to the data. The AANN embedded in the
E-AANN is an 811-5-11-8 neural network. Figure 71 shows the test data with 26
noise without any induced fault. Figure 7-2 shows the same data but this time the sensor

" Step Size=range/ N
18 The detail of the process of data generation can be found in section 4.
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#3 has drift error®. For better comparison we have zoomed in on the third graph of

Figure 7-1 and the corresponding graph of Figure 7-2 as depicted in Figures 7-4.
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Figure 7-1, Test set with 2% noise

19Drift Error Faults a sensor fault in which the sensor error occurs gradually (Figure 7-3). Initially, the
error isvery small but tit grows slowly with time. There is another kind of sensor error, shift error, in
which the sensor error occurs abruptly (Figure 7-3).
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Figure 7-4, Sensor 3 output before and after inducing drift error, noise
level is 2%

The E-AANN output is shown in Figure 7-5. The sensor #3 output before
contamination, after inducing drift error, and the data reconstructed by E-AANN is
shown in Figure 7-6. The difference (error) between the EAANN input and output is
shown in Figure 7-7. The third graph of Figure 7-7 is different from others. All graphs
have small perturbations (i.e. noisy shape signals) and zero mean vaue except for the
third one, which has non-zero mean value. We conclude that the perturbations in al
graphs except the third one are due to the noise and the corresponding sensors are
healthy but the corresponding sensor to the third graph (sensor #3) is faulty. This means
that the existing noise in the system does not have any influence on the mean value of
the graphs of Figure 7-7. When the mean value is zero, the sensor is healthy. When the

mean value is non-zero, the sensor has errors.
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Figure 7-6, Sensor #3 output before contamination, after inducing drift
error, and the data reconstructed by E-AANN
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Figure 7-7, The difference between EAANN input and output. The
input data had 2% noise and drift error

Let test the EAANN with another kind of sensor fault. This time we work with the
same data with the same level of noise, but instead of inducing a drift error we induce a
shift error (in shift error the sensor error occurs abruptly, Figure 7-3). Figure 7-8 shows
the test data with 2% noise and induced fault (sensor #3 has drift error). For better
comparison we have zoomed in on the third graph of Figure 7-8 and 7-1 as depicted in
Figure 79. The induced noise and shift error to sensor #3 is shown in Figure 710

([sensor #3 output + noise + drift error]-[sensor #3 outpuit]).
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Figure 7-10, The induced 2% noise and shift error to sensor #3
([sensor #3 output + noise + drift error] -[ sensor #3 output])

The E-AANN output is shown in Figure 7-11. The sensor #3 output before
contamination, after inducing shift error, and the data reconstructed by E-AANN is
shown in Figure 7-12. The difference between the EEAANN input and output is shown in
Figure 7-13. Again we see that the third graph of Figure 7-13 is different from others.
All graphs have perturbations with zero mean value but the mean value of the third
graph is non-zero. Again this means that the corresponding sensor to the third graph

(sensor #3) has a problem.
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Figure 7-12, Sensor #3 output before contamination, after inducing

shift error, and the data reconstructed by EEAANN
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Figure 7-13, The difference between EAANN input and output. The
input data had 2% noise and shift error

In another example, we increase the noise level to see if EAANN is still capable of
locating faulty sensors. Figure 7-14 shows the test data with 5% noise induced and no

fault. The datais contaminated by the same sensor faults (drift error and shift error).

1) Drift error: Figure 715 shows the contaminated data with drift error (sensor #3
has drift error). For better comparison we have zoomed in on the third graph of Figure 7-
15 and the corresponding graph of Figure 7-1 as depicted in Figure 7-16. The induced
noise and drift error to sensor #3 is shown in Figure 7-17 ([sensor #3 output + noise +
drift error]-[sensor #3 output]). The EFAANN output is shown in Figure 7-18. The
sensor #3 output before contamination, after inducing drift error, and the data
reconstructed by E-AANN is shown in Figure 7-19. The difference between the E-
AANN input and output is shown in Figure 7-20. Again we see the third graph of Figure



7-20 has a different mean value comparing with others. The only difference comparing

with previous example is that in Figure 7-20 graphs seem to have more perturbations.
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Figure 7-14, Test data with 5% noise
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Figure 7-15, Test set with 5% noise, sensor 3 has drift error
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Figure 7-16, Sensor 3 output before contamination and after inducing
drift error, noise level is 5%
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Figure 7-17, The induced 5% noise and drift error to sensor #3
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Figure 7-18, E-AANN output; the input data had 5% noise and drift-
error
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Figure 7-19, Sensor #3 before contamination, after inducing drift error,
and the data reconstructed by E-AANN, noise level is 5%
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Figure 7-20, The difference between EAANN input and output. The
input data had 5% noise and drift error

I1) Shift error: Figure 7-21 shows the contaminated data (sensor #3 has shift error).
we have zoomed in on the third graph of Figure 721 and the corresponding graph of
Figure 7-1 as depicted in Figure 7-22. The induced noise and drift error to sensor #3 is
shown in Figure 723. The EAANN output is shown in Figure 724. The sensor #3
output before contamination, after inducing shift error, and the data reconstructed by E
AANN is shown in Figure 7-25. The difference between EEAANN input/output is shown
in Figure 7-26. Again we see the third graph of Figure 7-26 has a different mean value

comparing with others.
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Figure 7-21, Test set with 5% noise, sensor 3 has shift error
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Figure 7-22, Sensor 3 outputs before contamination and after inducing

shift error, noise level is 5%
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Figure 7-23, The induced 5% noise and shift error to sensor #3
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Figure 7-24, E-AANN output; the input data had 5% noise and shift-

error
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Figure 7-25, Sensor #3 output before contamination, after inducing
shift error, and the data reconstructed by E-FAANN, noise level is 5%

Sensor 1
o

Sensor 2
o

Sensor 3
o

Sensor 4
o

Sensor 5
o

Sensor 6
o

Sensor 7
N O
g\
\
Sensor 8
N O
>

100 200 300 0 100 200 300
Sample # Sample #

>
o

Figure 7-26, The difference between the E-AANN input and output.
The input data had 5% noise and shift error
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As it was mentioned, when a data is noisy, it has a level of uncertainty. This
uncertainty might confuse EAANN sometimes. Due to the uncertainty, EAANN might
minimize the cost function by varying a non-faulty sensor. This is the reason of the
behaviors named as A in the Figure 7-26. In these cases EAANN has located the faulty
sensor wrong. As the level of the uncertainty depends on the noise level, we might
expect more behaviors like A in higher noisy situations. If you see Figure 7-7 which
shows the difference between EAANN input and output when the noise level is 10%,
you see that there exist more behaviors like A.

7.3 Maximum Level of Noise Tolerated by E-AANN

It is important to see what would be the EAANN performance when the level of
noise is too high. Is there any distinct boundary as the maximum level of noise for the E
AANN? Since the EEAANN is an extension of the AANN, its performance is affected by
the AANN limitations in high noisy stuations. When noise level is high, AANN
reconstructs the input data with degraded accuracy. Therefore we must expect degraded
performance from the EAANN in high noisy situations (for example in chiller mode, it
will be shown that when the noise level is 10% to 20% the E-AANN performance
degrades).

Our results show that there is no distinct boundary as the maximum noise level for
the EAANN. As the noise level increases, the EAANN accuracy decreases, so the E

AANN may not catch small sensor faults when noise level is high.

In the previous example EEAANN was used to catch sensor faults when the data had
5% noise. The noise level was increased to 10% (same data) to see if EAANN can catch
the same drift error and sensor error or not. Figure 7-27 shows the test data with 10%
and no induced fault. Figure 7-28 shows the same data but sensor #3 has a drift error.

For better comparison we have zoomed in on the third graph of Figure 7-27 and the
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corresponding graph of Figure 7-28 as depicted in Figure 7-29. The induced noise and
drift error to sensor #3 is shown in Figure 7-30. The EEAANN output is shown in Figure
7-31 and the zoomed of the third graph is shown in Figure 7-32. The difference between
the EEAANN input and output is shown Figure 7-33.
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Figure 7-27, Test data with 10% noise
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Figure 7-28, Test set with 10% noise, sensor 3 has drift error
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Figure 7-29, Sensor 3 output before contamination and after inducing

drift error, noise level 10%
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Figure 7-30, The induced 10% noise and drift error to sensor #3
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Figure 7-31, E-AANN output; the input data had 10% noise and drift-
error

300

74



Sensor 3 Sensor 1
o

Sensor 2
o

Sensor 5

Sensor 7

Sensor #3

-2 -2
0 100 200 300 0 100 200
0 8 OMWMLW«»-JWW
o
-2 n 2
0 100 200 300 0 100 200
2 © 2 1
0 3 0 Pvreadmntinsta g o
c
)
) 0 2 J
0 100 200 300 0 100 200
2 /A 02 2 1
1<)
]| § o[
)
) . . 0 2 ) . J
0 100 200 300 0 100 200

25 T T T T

——— Correct Data
2 || === Contaminated Data
—— Reconstructed Data

05F

05}k

15k

_2.5 I I I 1 I

0 50 100 150 200 250
Sample #

Figure 7-32, Sensor #3 outputs before contamination, after inducing

drift error, and the data reconstructed by EEAANN, noise level is 10%
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Figure 7-33, The difference between EAANN input and output. The
input data had 10% noise and drift error
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Agan as we see in Figure 7-33, al graphs have perturbations with zero mean values
except the third one. Therefore we conclude the same. Now let us see EAANN response
to the shift error. Figure 7-34 shows the test data while sensor #3 has shift error. We
have zoomed in on the third graph of Figure 7-34 and the corresponding graph of Figure
7-27 as depicted in Figure 7-35. The induced noise and drift error to sensor #3 is shown
in Figure 7-36. The EEAANN output is shown in Figure 7-37 and the zoomed of the third
graph is shown in Figure 7-38.

Sensor 1
N O
Sensor 2
N O

Sensor 3
N O
Sensor 4
N O

0 100 200 300 0 100 200 300

Sensor 5
o
Sensor 6
o

0 100 200 300 0 100 200 300

0 100 200 300 0 100 200 300
Sample # Sample #

Sensor 7
o
Sensor 8
o

Figure 7-34, Test set with 10% noise, sensor 3 has shift error
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Figure 7-35, Sensor 3 output before contamination and after inducing
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Figure 7-36, The induced 10% noise and shift error to sensor #3
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Figure 7-37, E-AANN output; the input data had 10% noise and shift-
error
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Figure 7-38, Sensor #3 output before contamination, after inducing
shift error, and the data reconstructed by EFAANN, noise level is 10%
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Figure 7-39, The difference between EAANN input and output. The
input data had 10% noise and shift error

The difference between the EAANN input and output is shown Figure 7-39. As the
third sensor was contaminated by the shift error, we expect the third graph of Figure 7-
39 to be similar to the third graph of Figure 7-26. However, as you see, there is no shift
in the mean value of the third graph signal. This is due to the high noise level existing in
the system. The graphs in Figure 739 are dominated by noise and the symptoms of
faulty response are hidden behind the noise. If the induced shift error were bigger, we
would see a shift in the mean value of the third graph of Figure 7-44. The use of Filter

could remove the noise and show the shift in the delta graph (Future work).
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8. APPLICATION OF EEAANN IN SENSOR DIAGNOSTICSIN

DYNAMIC SYSTEMS

8.1 Introduction

In previous sectiors it was shown that EAANN was capable of locating different
types of sensor errors in different situations. We showed how E-AANN could catch
faulty sensors in both noise free and noisy situations. We discussed the issue of
maximum level of the noise tolerated by the EAANN. However all the systems used in
previous sectiors were dtatic systems. Now the question is what if the system is
dynamic? Is EAANN still capable of locating faulty sensors in dynamic situations or

not?

In static systems there is no delay between the input change and its effect on the
output. When the system input changes, the output responds to that change immediately.
There is no transition period between the input change and the output response. In
dynamic systems, the output does not respond to the input change immediately. Thereis
adelay between the input change and the appearance of its effect on the output

Our results show that in the case of dynamic systems, EAANN is still capable of
locating faulty sensors if the training data has some specifications. We start with the
evaluation of EAANN behavior in dynamic situations and nonfaulty conditions. Then
we will do through the E-AANN capabilities of locating faulty sensors in dynamic
situations.
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8.2 E-AANN Response to Dynamic Systems in Non-faulty Situations

As it was mentioned, in dynamic systems the system output does not respond to the
input change immediately. In dynamic systems we have two types of data. The data that
is measured when the system is in transition period and the data measured when the
system has passed the transition period. We name the first one as Dynamic Data and the
second one as Static Data.

In order to use the EAANN for sensor diagnostics in dynamic systems, the AANN
embedded in the EAANN should be trained based on Static Data. For test data, thereis

no limitation.

Example 1: Consider the chiller model explained in section 3. That model ssimulates
a static system with three inputs and five outputs (Figure 8-1).

T
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Figure 81, Chiller model inputs/outputs

In this section the chiller model is modified to mimic dynamic systems. As a smple
dynamic system, in this example the model has been modified such that the first output
(Tout_c) has a delay with four samples (Figure 8-2). Therefore the first output responds

to the input changes four samples later®.

201y adynamic system, the system output responds to the input change either with delay or gradually. In
this example the model has been modified such that the first output responds to the input change with
delay not gradually.
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Figure 82, Static model with delay on one sensor to mimic
dynamic system, Z*means adelay of 4 samples

Figure 83 shows the EAANN diagram. You see that the first output of the chiller
model corresponds to the fourth input/output of the EAANN. The training data, which
is made up of static data, is shown in Figure 8-4. The test data contains both Dynamic
Data and Static Data. It has no induced sensor error. Figure 85 shows the test data. It
has been prepared by varying the system input every 10 samples® (Step = 10).

21 |1 this example the system delay is less than the step size of the data (system delay is 4 and step size is
10). In next examples we will go through the cases in which the system delay is bigger than step size.



Sensor 5 Sensor 3 Sensor 1

Sensor 7

—p

in _c
—»

in _e
—

we
Tout ¢ =l
—p

Tout _e
COP >
W  —
h comp >

E_AANN

— in _c
> in _e
— we
—- T out c
— T out _ e
- COP
. W
— h comp

Figure 83, EAANN inputs and outputs

/

0 260 460 660

0 260 460 660

/

0 260 460 6(.)0

0 260 4(-)0 660
Sample #

Sensor 6 Sensor 4 Sensor 2

Sensor 8

/
0 260 460 660
/
0 260 460 660
/_\.
0 260 460 6(.)0 -
0 260 460 6(:)O
Sample #

Figure 84, Training set
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Figure 85, Test set, step sizeis 10

The EAANN output is shown in Figure 8-6. The difference between the EAANN
input and output is shown in Figure 8-7. For better comparison we have zoomed in on
the graphs of Figure 87 as depicted in Figure 88. As you see all graphs are straight
lines except the fourth one. The fourth graph (the graph corresponding to the first output
of the chiller model) has some perturbations but still its mean value is zero. We conclude

that the perturbations in the fourth graph are from the system dynamics.
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Figure 86, EEAANN output
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Figure 8-8, The difference between the EAANN input and output
zoomed in (delay = 4 steps)

Example 2: In this example we consider the same system but this time we increase
the delay of the first output to 12 steps (Figure 8-9). The other conditions are the same.
The E-AANN output is shown in Figure 8-10. The difference between E-AANN
input/output is shown in Figure 8-11. For better comparison we have zoomed in on the
graphs of Figure 8-11 as depicted in figure 8-12. Again you see, except the fourth graph,
all graphs are straight lines. The fourth graph has some perturbations.
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Figure 8-9, Static model with delay on one sensor to mimic
dynamic system, Z*? means a delay of 12 samples
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Figure 810, E-AANN output
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Figure 812, The difference between the E-AANN input and output
zoomed in (delay = 12 steps)

Now the question is why EAANN has such a behavior? Let us start with the first
example. When a dynamic data set is fed to the EAANN (In example 1, a data set
whose first output still has not respond to the input change), at first EAANN thinks that
the fourth sensor (the sensor corresponding to the first output) has a problem. Thisis due
to the fact that AANN embedded in the EAANN has been trained based on the static
data. In this situation, EAANN reconstruct the value of the fourth sensor and change it.
Therefore the difference between EAANN input/output for the fourth sensor becomes
non zero. After awhile when the first output responds to the input change, the difference
between EEAANN input/output becomes zero. The above process repeats whenever the
system input changes. The effect of that is small perturbations appearing in the graphs
that show the difference between EAANN input/output. Therefore we can say that the
system dynamics causes small perturbations in the graphs showing the difference
between EEAANN input and output.
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If we zoom in on the fourth graph of Figure 8-8, it will be similar to the graph shown
in Figure 813. In this graph there is a parameter (d) which we are interested in. The
value of d depends on two parameters; 1- The system delay (in the first example the
system delay was 4) and 2 The data step size (in example 1, the step size was 10). d
depends on the difference between the step size and system delay
(d p (StepSize- Delay) ). The bigger the difference is, the bigger d is. In the first
example, the difference was 6 (10 — 4 = 6) and you saw d in the Figure 8- 7. In Example
2 the difference was negative (10 — 12 = -2). Before speaking about the effect of
negative difference on graphs, let us at first talk about the systems that have negative
difference. Do we have rea systems with negative difference in redlity?

d
>

L LI =

Figure 813, Fourth graph of Figure 8-8 zoomed in

When the difference is negative, it means that the input to the system changes before
the system output responds to the previous change completely. In reality it is common to
have a small negative difference. Rea systems are usually in feed back control loops and
sometimes the controller changes the system input before waiting to see the effect of the
previous change at the output completely. However a big negative difference does not
have any real application. In the case of big negative difference, the system input
changes too fast to let the system output respond. Thisis system is unstable.

Now let see what would be the EAANN behavior in the case of negative difference.

In example 2 the difference was -2. The difference between the EAANN input and
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output was shown in Figure 811 and 812. You see that the fourth graph still has some
perturbations but the important thing is that the graph fluctuates around zero. In fact the
negative difference has made the fluctuation. As another example, consider the system in
the second example but this time the delay of the first output is 20 (Figure 8-14). In this
case the difference is -10 (10 — 20 = -10). The difference between EAANN input and
output is shown in Figure 8-15. You see that the fourth graph again has a smooth

fluctuation around zero
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Figure 8-14, Static model with delay on one sensor to mimic
dynamic system, Z"*°means a delay of 20 samples
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Figure 815, The difference between the E-AANN input and output
(delay = 20 steps)

Example 3 In this example we work on a more complicated dynamic system. We
modify the chiller model in a way that the last three outputs of the system have delay
with four samples (Figure 8-16). The training data is the same as the training data shown
in Figure 8-4. The test data is shown in Figure 8-17. The EAANN output is shown in
Figure 8-18. The difference between EEAANN input and output is shown in Figure 8-19.
In spite of the fact that some graphs have small perturbations, the mean value of all

graphsis zero.
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Figure 818, E-AANN output
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Figure 819, The difference between the E-AANN input and output
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8.3 E-AANN Application in Sensor Diagnosticsin Dynamic Stuations

Asyou saw in previous examples, system dynamics causes some perturbations in the
graphs showing the difference between the EAANN input/output. The mean values of
the graphs are zero in the case of positive difference between the data step size and
system delay or non-zero in the case of negative difference. We also explained that in
real applications the difference between the step size and system delay is positive or
small negative. This means that the mean value of the graphs showing the difference

between EEAANN input/output is zero or close to zero.

In previous sections we showed that the sensor errors effectively change the mean
value of the graphs showing the difference between E-AANN input and output.
Therefore we believe that EAANN can still be used to catch sensor faults in dynamic
situations. In the case of positive difference between the data step size and system delay,
the mean values of the graphs are zero as far as there is no sensor error. When the mean
value is norzero, it means that there is sensor problem. In the case of small negative
difference, the mean values of the gaphs are zero or close to zero. In this situation E

AANN might not catch small sensor faults.

Example 4: Consider the third example. Here we induce a drift error® to the sensor
measuring the third output. The test set is shown in Figure 8-20. The E-AANN output is
shown in Figure 8-21. The difference between the EAANN input and output is shown in
Figure 822. Now you see that the sixth graph (the graph corresponding to the sensors
measuring the third output) has nonzero mean vaue which means that the

corresponding sensor has a problem.

22 The same drift error we had in previous sections
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Figure 820, Test Data, the sixth sensor has drift error
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Figure 821, EEAANN output
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Figure 822, The difference between the E-AANN input and output

Based on the dynamic systems stated in this section EEAANN can till be used to
catch sensor faults. You saw that system dynamics causes small perturbations on the
delta graphs (the graphs show the difference between EAANN input and output) but
still the mean values are zero. However, EAANN performance must be evaluated in the

case of more complicate dynamic systems.
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9. CONCLUSION

The use of AANN in sensor diagnostics has been extended to allow the isolation of
individual sensor faults. This extension implements a secondary optimization process,
which enables the user to make effective use of the AANN concept in diagnosing sensor
faults. The examples given illustrate the effectiveness of this approach. E-AANN
performance was studied under noisy conditions. The results showed that sensor faults
can be detected and corrected in noisy situations with the EAANN method described.

In high noise situations, the EAANN performance degrades. The results show that
as the noise level increases, the EAANN accuracy decreases. In other words, EAANN
may not catch small sensor faults when the noise level is high. Thisis due to the fact that
in high noise situations, the symptoms of fault response are hidden. The use of filters

could improve EEAANN performance in high noise situations (future work).

E-AANN performance in simple dynamic systems was also evaluated. It was shown
that EAANN is still capable of locating sensor faults in dynamic systems if the training
data is based on static data. However more study needs to be done to evaluate EAANN

performance in more complicated dynamic systems

The next magjor investigation is to deal with multiple sensor faults. In this project, it
was assumed that only one sensor was faulty. However, in the case of multiple sensor

faults, the problem is much more complicated.
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