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ABSTRACT 
 

 
Permeability Characterization of Shear Zones in the Hickory Sandstone Member, Riley 

Formation, Texas. (December 2004) 

Jorge Enrique Nieto Camargo, B.S., Universidad Industrial de Santander, Colombia,  

M.S., The University of Texas at Austin 

Co-Chairs of Advisory Committee: Dr. Jerry L. Jensen 
                                                              Dr. Frederick Chester 

 

 

Reservoir compartments, typical targets for new infill locations, are commonly 

created by faults that may reduce or enhanced permeabilities. Faults often contain 

narrow zones of intense shear comprised of geometrically complex elements that reduce 

permeability and compartmentalize blocks as a function of time and pressure. This thesis 

characterizes the permeability structure of shear zones and the relationship between fault 

permeability, host rock properties and the relative degree of deformation. 

The main objectives of this work are to (1) characterize the geometry and 

permeability of deformation elements within shear zones; (2) determine permeability 

anisotropy in shear zones according to fault characteristics and host lithology; and (3) 

develop a process to predict permeability anisotropy of faults in reservoirs using 

probabilistic approaches. 

 The study results give a better understanding of fluid flow behavior of shear 

zones and their potential to create reservoir heterogeneity and compartmentalization.  

Fluid flow in a reservoir with faults is controlled by variables such as fault throw, shear-

zone thickness, undeformed and deformed rock permeability and the geometry of all 

deformation elements. 

Methodology to predict permeability structure was developed using analytical 

and numerical simulation of selected core samples and laboratory measurements.   We 
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found useful relationships between permeability of the host rock and highly deformed 

elements according to the amount of throw of the fault.  The high lateral continuity of 

the highly deformed elements and their predictable low permeability make these 

elements most important in controlling permeability in shale-free and low-shale shear 

zones created by low displacement (subseismic) faulting. 

Probe permeameter data is a precise, inexpensive and non-destructive source of 

permeability information that can be effectively incorporated in detailed models to 

investigate the effect of individual deformation elements in the whole shear zone 

permeability and their effect at the field scale. 
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CHAPTER I 

INTRODUCTION* 

 

There are innumerable studies and discussions about the superlative importance 

of faults for hydrocarbon exploration and production.  In exploration, they have been 

studied according to either their ability to facilitate migration for a time period when the 

fluid pressure difference is above the critical entry pressure during earthquake cycles1, or 

their efficiency for entrapment of fluids.2 

Some studies have concentrated the effort in the investigation of the reactivation 

phenomena and variable sealing character of faults occurred by changes in in-situ stress 

and the variation in the pore pressure by dynamic and fluid changes.3  Others, with  

small-scale analysis, have investigated the fault juxtaposition complexity and the sealing 

capacity and transmissibility of fault zones to identify compartments in hydrocarbon 

reservoirs and potential leak points along the fault plane. 4-6  

In reservoir development, more emphasis in detailed characterization has come 

for understanding the mechanics of faulting in addition to cross-fault juxtaposition 

analysis in order to develop more sophisticated models that allow to reduce risk in 

appraisal steps.  These models also help to understand and predict fluid movement, 

visualize un-swept compartments and localize important untapped reserves in new and 

mature fields. 

Many attempts have been made to characterize the effects of shear and fault 

zones on fluid flow. Faults can be considered as both constraints on fluid flow as well as 

features that enhance fluid flow in a parallel direction.7,8  Watts9 and Knipe10 have 

recognized four main mechanisms to account for the sealing behavior of shear zones: the 

juxtaposition of rocks against low-permeability sediments with high entry pressure, the 

reduction of grain size and porosity resulting from cataclasis, the incorporation and 

redistribution of clay material within the shear zone, and the synfaulting or post-faulting 
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diagenesis that reduces porosity.  Typical causes of enhanced permeability are the 

presence of fractures, joints, and slip surfaces. 

 Some authors11-14 have concentrated their investigation on the effects of shale 

content into the shear zone because of the inherent sealing character of this material.  

From this point of view, some models such as clay smear potential (CSP),11,12 shale 

smear factor (SSF),13 and shale gauge ratio (SGR)14 try to predict the sealing character of 

diverse elements according to the thickness of impermeable layers present in the 

sequence (Fig. 1.1).   A common problem in the prediction of across-fault characteristics 

from all these methods is that, with higher throw of faults or distance from source bed, 

each approach can underestimate the sealing character.  This is due to the fact that all the 

methods are based solely on the existence of clay smearing at the location of analysis; 

they do not consider the effects of deformation (cataclasis) occurring during fault 

generation. 

 For example, CSP (Fig. 1.1a) is measured as: 

 

∑=
bedsourcefromDistance_

thicknessbedShaleCSP
__

__ 2

                                                                        (1.1) 

 

and indicates the relative amount of clay that has been smeared along the fault plane at 

different locations.  Different threshold values have been reported for diverse reservoirs 

to obtain a seal.15 The threshold value for a particular reservoir will depend on cross-

fault pressure gradients.  Higher CSP values have been found at particular locations with 

higher across-fault pressure to ensure sealing behavior (Fig. 1.1b).15 

 

SSF values (Fig. 1.1c) are defined as: 

ThicknessLayerShale
FaultofThrowSSF

__
__

=                                                                                            (1.2) 
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SSF values have been calculated for specific areas such as the Gulf of Suez, Egypt by 

Younes16, Niger Delta by Yielding et al.14, and Columbus Basin, Trinidad by Gibson17; 

estimating SSF threshold values of 6, 7, and 8 respectively (for the case of iso across-

fault pressure) (Fig. 1.1d). 

 

The SGR (Fig. 1.1e) is defined as: 

 

%100
_

)__(
x

ThrowFault
thicknessbedShale

SGR ∑=                                                                        (1.3) 

 

and threshold values of  >15% for the Columbus Basin and >20% for the Niger Delta 

have been estimated by Yielding et al. (Fig. 1.1f).11,14 

Some studies approach the common phenomena of the presence of barriers 

produced by frictional wear of the host rock due to normal and shear stresses across the 

fault.  The barriers or fault rock zones, as defined by Flodin et al.18, are generally bound 

on either side by slip surfaces which represent planar features that accommodate large 

amounts of displacement. Flodin et al.18 investigated the effect of faulted zones in the 

Jurassic Aztec Sandstone in Southern Nevada using highly detailed two-dimensional 

maps with an areal coverage of 1 to 20 square meters.  Detailed permeability 

calculations were the output from a three-component mixture consisting of host rock, 

fault rock/sheared joints and joints/slip surfaces. 

For extrapolation to full field scale, Flodin et al.18 incorporated a general 

correlation between slip and the width of the damage zone.  For specific cases, they were 

able to match all production history and demonstrated the huge impact when considering 

a variable fault property model compared with a simplistic approach of a constant 

permeability fault.18 
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Fig.1.1 – Models and quantitative calibration according to clay smearing assessment. (a) 
and (b) for the Clay Smear Potential (CSP);  (c) and (d) Shale Smear Factor (SSF); (e) 
and (f) for the Shale Gouge Ratio (SGR).   
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Myers19 used  power averages to match numerical (flow) simulations, and found  

a clear relationship to finally apply a power exponent depending on fault slip.  The 

upscaled permeability in the desired direction Ki* is given by: 

 

iiii
hhggjji KVKVKVK ωωωω /1)(* ++=                                                                                  (1.4) 

 

where Vj is the volume fraction of joints, Kj the joint permeability, Vg the volume 

fraction of fault rock, Kg the fault rock permeability, Vh the volume fraction of host rock,  

Kh the host rock permeability.  ωi, the averaging exponent, had to be determined from 

the simulation results. 

Davies and Handschy 20 state another common mechanism controlling fault seals 

in unlithified sediments to be the juxtaposition of reservoir against non-reservoir 

lithologies.  This approach works well where faults are single surfaces but can provide 

inaccurate results in the case when faults have multiple segments.21  In such cases, 

juxtaposition maps do not have practical meaning when the same lithology and 

petrophysical characteristics are in contact due to low scale faulting, constant lithology, 

and cases of net strike slip displacement. 

Many investigators have focused their research on the understanding of fault 

rocks (shear zones) and their petrophysical properties.  Jourde et al.22 studied the 

permeability anisotropy at large-scale using laboratory measurements for each fault 

element in the porous sandstone sequence in the Valley of Fire State Park in Nevada.  In 

their model, they assumed permeability values for joints, sheared joint/deformation 

bands, slip surfaces, fault rock, and host rock of 106, 0.1, 106, 0.1, and 200 md 

respectively for a series of detailed maps based on outcrop cartography (Fig. 1.2).22   

Using flow simulation, they found consistently high  fault-parallel permeability (between 

5.05 and 7.95 times the assumed average host rock permeability), due to the general N-S 

distribution of joints and slip surfaces contrasting with lower permeability values found 

for the cross-fault estimates (a decrease of 4.5 to 285 times the host rock permeability).  
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From these maps and subsequent permeability calculations, we can observe the  impact 

and significance of permeability according to the area where this property is estimated.   

Two main key scale factors arise when using this kind of approach (i.e. ref. 20).  

The first is related to overall scale of evaluation.  Discrete values of calculated 

permeability will depend on the area considered.  For example, Jourde et al.22 compare 

permeabilities for areas of different size, avoiding direct comparison of the 

representative values for each input map or understanding the effects of specific rock 

types, deformation elements or joints (Figs.1-2a, 1-2b, and 1-2c).  First impression from 

output calculations makes believe that faults effects in the highest displacement fault 

(Fig.1-2c) are creating lowest permeability in the across fault direction.  Although this 

statement could be true, in this study the scale or area of evaluation is not the same for 

each fault region. If a detailed analysis is required in order to determine the degree of 

compartmentalization, mainly caused by the presence of the fault (shear) rock, a more 

systematic approach has to be taken. In other words, the internal structure and 

petrophysical properties of the shear zone have to be addressed to investigate the 

interblock connectivity and the variability of the fault rock.  As demonstrated by Jourde 

et al.20 the fault rock is clearly controlling the across fault permeability and important 

detailed should be focused to investigate its variability along the fault zone. 

The second key factor that should be carefully considered will depend on in situ 

conditions, which is the presence of joints or slip surfaces that connect the blocks at each 

side of the fault rock region (Fig. 1.2b).  In the Valley of Fire State Park example, the 

identification of these small conduits crossing the fault rock and joining the adjacent 

blocks created a flow path that substantially increased across-fault permeability.   

As derived from Jourde’s study and some additional investigations, the shear 

zone controls the flow across the fault plane, and special identification and modeling 

have to be done to characterize the elements causing variable transmissibility.  In this 

way, researchers as Shipton et al.23, Antonellini and Aydin24, Ibanez25, and Wilson26 

have investigated the petrophysical properties of deformation bands as the primary 

control of total shear zone permeability.   
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Fig. 1.2 – Permeability estimates for different strike-slip fault regions in the Valley of 
Fire State Park, Nevada.  (a) a strike-slip fault with 6 m of slip, (b) a strike-slip fault with 
14 m of slip, and (c) a strike-slip fault with 150 m of slip.  k1 and k2 are the computed 
across and along permeability in md for the area of analysis.  (Modified from Jourde et 
al. 2002)22 
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Other important characteristics that should be evaluated for the determination of 

the flow character of shear zones are the thickness of the deformed zone and the 

continuity of internal deformation elements or facies. In many studies, a general 

relationship has been defined to predict thickness of the shear zone according to 

displacement,25-26 but thickness can vary by over two orders of magnitude.  

Nevertheless, all predictors represent statistically similar relationships.26  For the 

particular area of the Hickory Sandstone Member in the Mason County, Ibanez19 and 

Wilson20 investigated this relationship and the evolution of the main fault, being the 

main source for the present research addressing the internal architecture and the effects 

of deformation elements in fluid flow performance and prediction. 

Ibañez study was focused in the understanding of how shear-zones evolve with 

increasing displacement and the effect of this evolution on fluid flow characteristics.  In 

this way, Ibañez studied the geometry and permeability structure of a characteristic 

normal, dip-slip dominant, fault zone, finding useful relationships between the analyzed 

structure, the stratigraphic throw of the fault, the lithology, and permeability.  Methods 

used for this effective shear zone characterization included surface mapping of texture, 

composition, and geometric characteristics of deformation elements, incorporation of 

mineralogic analysis of clay-rich intervals using standard x-ray diffraction techniques, 

and permeability measurements using steady-state probe and Hassler-sleeve 

permeameters. 

Wilson’s research was concentrated in the recognition of a high resolution 

structural and stratigraphic framework of this faulted reservoir volume in the Hickory 

Sandstone member, investigating fault structure and its evolution, and refining 

previously defined depositional models. All these studies have shown the importance of 

a detailed shear zone characterization to understand the mechanisms controlling shear 

zone development and the internal architecture and continuity of detailed features within 

the shear zone. 

Although the continuity of particular elements is always an important issue of 

debate, the incorporation of a data set, as available for this project, allows us to consider 
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the spatial framework of shear zones with the analysis of subsurface unaltered samples at 

diverse fault locations.   

We concentrated this study on the determination and integration of deformation 

elements, petrophysical properties and geometric attributes of shear zones in detailed 

three-dimensional models to analyze common and predictable effects in fluid flow and 

solve for best approximations to be used in upscaled geological models. This study 

integrated detailed petrological and sedimentary description of deformation elements 

from continuous core samples of shear zones in the Hickory Sandstone Member with 

permeability measurements obtained with an unsteady-state permeameter and a density 

framework from tomography scanning.  This integration gives us an understanding of 

the mechanical processes affecting the rock during a diverse magnitude of faulting 

independently of the incorporation of shaly material within the shear zone. 

From this and previous studies, we have found that highly deformed elements in 

the shear zone represent the greatest degree of distributed deformation where matrix 

material is mainly composed of sheared, fractured, and rotated sand grains.  Permeability 

in these bands may be as much as two orders of magnitude smaller than protolith 

permeability, although the effect on density (porosity) is not as great. 

The direct relationship between fault throw and the continuity and characteristics 

of deformation layers within the shear zone suggest that we can integrate this 

information in numerical simulation grids to match dynamic data of the field and analyze 

flow behavior across and along specific faulted zones in the reservoir. 

Low-displacement faults create more discontinuous, deformed elements where 

the flow can travel randomly.  High-displacement faults tend to form more continuous 

and layered flow units where the flow could occur longitudinally.  Depending upon the 

permeability distribution, enough pressure drop could occur through cross-fault flow to 

break the minimum permeability restriction, changing the sealing character as a function 

of time. 

When no 3D geological models are available, harmonic and arithmetic average 

permeability upscalers, depending of direction and thickness of deformation elements, 
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have demonstrated to be the best technique to match whole core permeability 

measurements in the shear zone, reproducing typical anisotropy seen in small scale and 

understanding general flow patterns.   When detailed geocelular models have been built, 

full tensor permeability uspcalers solving Darcy’s flow equation are the most precise and 

sophisticated techniques to reproduce permeability anisotropy.  Building such models 

will help us understand the effect of small/tiny deformation elements in overall shear 

zone permeability and how to account for those in certain conditions where dynamic and 

fluid conditions create possible compartmentalization. 

This work did not pretend to solve the high complexity and uncertainty in 

determining deformation element continuity and properties, but it is a step forward to 

understand the importance of the internal architecture of shear zones, the characteristics 

of individual elements and their correlation with tectonic and geological variables.  It 

also presents a systematic approach to predict shear zone permeability and thickness, 

information that should be integrated in static and dynamic models to account for 

drainage anomalies and the presence of reservoir compartments.  
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CHAPTER II 

HICKORY SHEAR ZONES AND DEFORMATION ELEMENTS 

 

2.1 Shear Zones in Hickory Sandstone Member 

Fault zones cored from the Nickie Noble Ranch in the Hickory sandstone outcrop 

belt, northeast of Katemcy, Mason county in the central Texas hill country, were the 

source of samples in this study for the characterization of shear zones in sand-shale 

stratigraphic sequences (Fig. 2.1a). 

The cores form part of a major drilling program that was initiated in 1996 to 

collect data from selected shear zones of a fault that has been evaluated by prior geologic 

and hydrogelogic fieldwork.27  Nearly 3500 feet of rock sample, from eleven 2.4 inch-

diameter cores, were obtained to sample the Hickory sandstone member and interpret the 

local stratigraphy and characterize the shear zone and fault structure (Fig. 2.1b). 

Wells NNR-1 and NNR-2 penetrated the fault zone above the saturated interval 

and finished 10-20’ after crossing the fault.26  Wells NNR-3 through NNR-10 contacted 

the fault below the saturated zone, while the wellbore GKR-5 is merely contacting the 

footwall without hitting the fault zone. 

The Hickory sandstone member of the Riley formation consists of three subunits 

(Fig. 2.2): the lower Hickory, about 185 ft thick, composed of yellow-brown, medium- 

to coarse-grained, poorly sorted, friable- to weakly-cemented, non fossiliferous 

quartzose, subarkosic and arkosic sandstone with some thin discontinuous mudstone 

intervals.  The middle Hickory, approximately 200 ft thick, is composed of red-yellow-

white-green, fine-grained sandstones and numerous clay-rich beds.  The upper Hickory, 

between 50 and 75 ft thick, consists of red-maroon, coarse-grained, well-rounded, 

moderately sorted, fossiliferous, quartz sandstones with iron oxide-ooids and calcite 

cement.
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Fig. 2.1  –  Regional geologic map and specific area of study.  (Adapted from Wilson, 200126) 
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Wilson26 identified cross-bedded facies as a main constituent in the lower 

Hickory.  The typical sequence has 2 to 4 large-scale bed sets overlain by 5 to 10 

moderately sorted, small-scale cross-bed sets overlain in turn by a massively bedded or 

small scale cross-bedded arkosic sandstones26  (Fig. 2.2 ).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2  –  Cross section with general facies description by Wilson, 2001.26 
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Differences between cross bedded facies XB1 and XB2 are the lower sorting, 

thinner large-scale cross beds, and the greater abundance of very coarse, chaotic strata 

elements in subfacies XB2. Additionally, XB2 subfacies exhibits greater abundance of 

mudstone with low degree of bioturbation (Fig. 2.2). 

The Middle Hickory is composed of interbedded sandstone facies (SS) and 

mudstone-rich facies (MS) (Fig. 2.2).  The Lower Middle Hickory is associated with 

mudstone-rich facies composed primarily of 5 cm to meter thick packages of mudstone 

and arkosic sandstone elements.  Intense bioturbation is a common characteristic present 

that destroys primary sedimentary structures.  Subfacies MS1 and MS2 have been 

differentiated according to color, thickness and relative abundance.26 

The Upper Middle Hickory comprises interbedded sandstone facies (SS).  Lower 

to Upper Middle contact is transitional and it is distinguished by a change in sandstone 

color (buff to reddish-maroon) and by overall increase in grain size of the sandstones.  

SS facies are generally coarse to very coarse grain, fossiliferous with large-scale cross 

bed sets.  Up in the section this facies becomes brown to greenish-brown.  Hematite 

cement and hematite coated quartz grains are commonly found in the upper part of this 

facies. 

Environmentally, the lower Hickory was deposited under braided-stream 

processes grading into marginal marine in the middle and upper Hickory.  Ibañez25 

studied and characterized 29 out of 35 recovered shear zones in a relatively unaltered 

state and Wilson26 developed a high-resolution stratigraphic and structural model from 

the area, studies that are the starting point for this project. 

Wilson26 described the overall fault zone geometry to be composed of a main 

fault, an upper fault and some additional small faults structurally above and below the 

main feature (Fig. 2.3).  The main fault consists of three segments (segment 1, segment2, 

and segment 3).  Segment 1 and 2 overlap and form the main fault structure where they 

cut the Lower and the Lower-Middle Hickory sandstone unit.  The segment 3 (Fig. 2.2) 

corresponds to the major segment that cuts the Upper Middle and Upper Hickory.26  The 
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maximum stratigraphic throw for this fault is 17.5 meters (60 feet), found in the 

NNR4_404 shear zone interval. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3  –   Western cross section trough wells NNR3, NNR6, NNR5, and NNR4 
showing the detailed stratigraphy and structural interpretation updated by Wilson.26 
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According to fault striae in clay-rich slip surfaces, pitch is about 70° Northeast 

indicating a left-lateral strike slip component for the fault.  In general for the area, striae 

show oblique, normal, dip-slip dominant displacement. 26 

Four fault shear zones (NNR4_404, NNR5_291, NNR4_300 and NNR3_269) 

from the lower Hickory sandstone represent the input data for the present 

characterization  (Fig. 2.3).   Two samples, NNR4 at depth 404 ft, and NNR5 at depth 

291 ft, correspond to high-throw shear zones.  Attributes from the fault in NNR4_404 

are N73E strike, dip of 75° SE, 0.853 feet of shear zone thickness, and 60 ft of calculated 

throw. 26  NNR5_291 shear zone has a fault strike of N27E, dip of 60° SE, 0.696 ft shear 

zone thickness, and 29.5 ft of calculated throw. 

The NNR4_404 core, the highest fault throw sample, corresponds to the upper 

most section of the shear zone (Fig. 2.4a). The second high throw sample comes from 

the upper most part of the shear zone at NNR5_291 (Fig. 2.4b).  This core sample is 

comprised of more than 63% of relative undeformed or protolith.   

Although none of these two former samples recorded the total shear zone, they 

are key samples for the understanding of anisotropy and geometry of deformation at high 

displacement faulting and evaluate the impact of specific elements in the overall 

structure. 

Ibañez25 reported 13 and 10 percent of clay content in the shear zone for intervals 

at NNR4_404 and NNR5_291 respectively.  Samples for this research missed the main 

shaly portion and just a small percentage (~5.6%) is included in the chosen interval for 

NNR4_404.   
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Fig. 2.4  –  Selected high-fault throw samples. a) NNR4_404  b) NNR5_291.  Upper 
picture shows interpreted deformation elements (section 2.2) , the extension of the shear 
zone,  and relative movement.  Adapted from Ibañez.25 
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269 ft has a fault strike of N53E, 69° SE of dip, 0.2 ft thick and 4.5 ft of calculated 

throw. 20 Sample at NNR4_300 represents the half upper part of total shear zone at this 

location and is part of the upper fault feature described by Wilson (Fig. 2.3).26  Clay 

content in this shear zone is about 3% (Fig. 2.5a).25   

The lowest fault throw sample analyzed corresponds to the shear zone at 

NNR3_269, a small fault under the main fault plane, with local throw of 1.4 meters (4.5 

feet).  This core sample comprises more than 95% of the total shear zone for this 

particular location. Hence, further permeability estimations for this particular interval 

can be directly attributed to the inherent properties of the shear zone.  Although this 

sample does not represent the main structural feature under investigation in the study 

area, its analysis can determine a good example of anisotropy of shear zones in the area.  

Fig. 2.5b shows the physical location of the modeled, simulated and measured sample 

according to the stratigraphic record for NNR3. 

 

2.2 Deformation Elements in the Shear Zone 

According to Chester and Logan28 and Evans et al.,29 shear zones are the points 

of fault zones where most displacement is accommodated and consist of zones of intense 

deformation of a finite thickness.  Shear zones are identified by mesoscopic features 

such as the presence of a layered structure with orientations different from normal 

bedding, an abrupt termination of normal bedding against a zone of deformed material, 

an abrupt decrease in grain size relative to the adjacent protolith, a color change 

compared to typical undeformed sandstone, and distinctive pore size and porosity 

reduction.   

Ibañez25 subdivided deformation elements into three categories according to 

degree of distributed deformation.  In his study, a map showing the distribution of each 

element in the shear zone was done with the integration of a subscript indicating the 

inferred protolith lithology.  This information was the basic input in the present approach 

for the determination of spatial correlations and dynamic properties of selected fault 

zones. 
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Fig. 2.5  –  Selected low-fault throw samples. a) NNR4_300  b) NNR3_269. 
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Highly deformed sandstone elements (HDss) represent regions (bands) with the 

greatest degree of deformation.  Generally, they are lighter in color than other structural 

elements and also their inferred protolith.  Microscopically this element is composed of a 

large fraction (more than 75%) of sheared, fractured, and rotated grains of quartz and 

feldspars (Fig. 2.6).  Comparative SEM micrographs and mesoscopic texture for each 

deformation element in NNR3_231 shear zone are shown at bottom of Fig. 2.6.  Micro 

images clearly discriminate the highly deformed elements by a major increment in the 

content of clay-sized grains and low sorting compared with moderate and relative 

undeformed elements.  Most highly deformed elements (83%) in sandstone lithology are 

continuous throughout the width of the core.25 

Moderate deformed elements (MD) are identified mesoscopically by the presence 

of deformed material but with a lesser degree of deformation than highly deformed 

elements.  They have a broad range of grain-size distribution where silt-to-clay-sized 

fraction of grains represents between 5 and 75% of the total element.25 Microscopically 

moderate deformed elements are distinguished from highly deformed elements by the 

wide range of grain sizes and the presence of fractured feldspar grains (SEM 

micrographs, Fig. 2.6).  Forty-three percent of the moderate deformed elements 

terminate within the width of the core, being less uniform in thickness and continuity 

than the highly deformed features. 

Relative undeformed elements (RUD) represent features with minor or no 

deformation, looking macroscopically like protolith.  They occur in the shear zone as 

elongated or lenticular pods, where just 36% of the RUD elements are continuous 

throughout the core. 

Mudstone elements can experience high, moderate or low levels of deformation, 

but the distinction between HD and MD mudstones is not possible at the mesoscopic 

scale.  RUD mudstone elements are distinguished by the presence of original layering.  

Microscopically, HD mudstones display a strong component of mixing and compaction 

where micas and clay minerals appear to be wrapped around the grains.25 
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Fig. 2.6 –  Comparative macro- and microscopic texture of highly deformed (HDss), 
moderate deformed (MDss), and relatively undeformed (RUDss) sandstones. Adapted 
from Ibañez25. 
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CHAPTER III 

SHEAR ZONE PERMEABILITY AND INTERNAL ARCHITECTURE 

 

For the present study, measurements of permeability come from a probe 

permeameter based on a pressure-decay technique with useful range from 0.001 to 

20,000 md30 and from steady state air hassler permeameter for full-core and selected 

plugs samples.  The analysis of three-dimensional architecture is derived from core 

surface mapping of facies and tomography scanning of each core, producing sequential 

cross-sectional slices that can be reconstructed for three-dimensional analysis31.  

It is important to notice that when trying to model the shear zones and correlate 

results of numerical simulation with whole-core permeability measurements, a common 

inconvenient is the fact that shear zones get broken easily during coring avoiding to have 

a complete and continuous record of the shear zone, specially in the high throw, thick 

shear zone intervals.  This problem reduces the chance of getting whole-core 

permeability measurements for the total shear zone extension.  Three of the four 

analyzed core intervals represent partial shear zones and their analysis will be focused in 

the effects of individual deformation elements and no estimation of shear zone 

permeability (as independent unit) will be performed.  In the other hand, core 

NNR3_269 shows a complete shear zone sequence and diverse solutions (analytical and 

numerical simulation) can be also used for the determination of the independent shear 

zone. 

 

3.1 Probe Permeameter Data Acquisition 

For the first step in the this project, four oriented (90°) sections of 6 mm-spaced 

probe permeameter measurements were taken from the surface of each shear zone core 

(pages 30, 33, 36, and 37).  The probe permeameter is generally a very practical tool that 

facilitates to take many high-resolution measurements of permeability from the surface 

of selected samples.  The main advantages of the incorporation of such data are the non-

destructive character and the consideration of small-scale features and their effects in the 
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overall permeability.  Special care should be taken when including this kind of source 

because some data anomalies can be generated by surface roughness, tip seal failure, 

cracks and disking produced by mechanical reasons and decompression.   

Conventional probe tools used to measure permeability consists of a gas-flow 

(nitrogen) measuring system that delivers gas at constant, measured pressure, using a 

probe tip and its flow rate is measured.  At the same time, the gas flow rate is controlled 

by a mass-flow-controller and its delivered pressure is monitored.  In this way, steady-

state is achieved when pressure and flow rate become invariant with time.  The major 

inconvenience in such a method is the large amount of time waiting until reaching 

steady-state conditions and the resolution achieved when dealing with low permeability 

samples. 

Considering that shear zones are composed by low permeability material, this 

research considered the use of a pressure-decay permeameter30 that obtains permeability 

values in a faster manner and with a substantially greater resolution in the range between 

0.001 md and 20 darcys.  This apparatus consists of a tank of internal volume that is 

filled with nitrogen to a desired fill pressure, and then the fill-valve is closed.  After 

sealing the probe tip against the sample surface, a lower valve is opened allowing and 

the pressure in the tank is recorded as a function of time.  Quantitatively, the slope of the 

pressure-decay curve (at any time after an initiation period, during which a smooth 

pressure gradient is established in the sample) yields an instantaneous flow-rate function. 

Including geometrical factors calculated by Goggin et al. (in ref. 30) to account 

for the ratio of the outer-to-inner seal radius (for samples large enough to avoid that 

boundaries affect the measurements) and Klinkenberg’s relationship to account for the 

gas slip factor, the equation that yields the slip-corrected permeability is given by,30 
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where b is the Klinkenberg gas slip factor (psi) for the nitrogen, Pa the actual ambient 

atmospheric pressure, p the valve of the gauge pressure at the point where the slope is 

evaluated, µ is the viscosity and γ (from the slope of a semi-logarithmic plot of the 

pressure decay data) is defined as,30 
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where VT is the internal volume of the tank, and Pn  the pressure at any point of time tn. 

 Due to the fact that only one point is obtained that lies on the Darcy flow line 

when using this technique,30  the Klinkenberg slip factor should be determined from 

correlation, otherwise a iterative process is executed using the equation,  

 

 
382.0* 9.6 −= αKb                                                                                  (3.3) 

 

where b* is denoted because b is coming from a correlation. The iterative process using 

equations 3.1 and 3.3 should be performed until the change in b* is less than 0.1 psi.30 

The probe rubber tip that was used for all the samples has an outer diameter of 

1.7 cm and an internal (effective for measurement) open diameter of 6mm.  With such 

configuration, the 6 mm step guarantees 3 mm of overlap between continuous 

measurements.  Although with the 4 oriented transects were expected to have enough 

areal sampling and adequate characterization of the permeability behavior of all the 

deformation elements, some focused stations were added when minimum requirements 

of confidence in data analysis was not reached (defined at minimum number of samples 

equals to (4Cv)2).   In this way, the minimum sampling guideline was set equals to 16 

times the square of the coefficient of variation (4Cv)2, where Cv is defined as follows: 
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where Var(k)1/2 is the standard deviation of permeability and E(k) is the expected or 

mean value. 

Considering at least a number of samples equals to (4Cv)2 for each particular 

deformation element, we can characterize statistically 95% (up to two standard 

deviations) of the population with a 50% tolerance on the average.32 

During the process of data acquisition, an exhaustive probe calibration was 

performed with standardized plug samples before and after each job section to guarantee 

precision of measurements, and at least two stations in each transect were repeated for 

quality control and repeatability.  Additionally, extremely high values and outliers were 

also repeated controlling very carefully the surface condition and seal integrity to ensure 

the reliability and validity of the output. All the output data were then carefully 

correlated with deformation element type and integrated with subsequent tomography 

scanning (step two of the current investigation).   

This approach intended to compare individual deformation values in each shear 

zone instead of considering averaging individual deformation element properties for all 

the zones.  In this way, prediction of relative degree of smearing, and/or cataclasis and 

resulting petrophysical characteristics were evaluated for specific protolith texture and 

composition.  

The general behavior of log-permeability shows a consistent decrease in flow 

potential with the increase in deformation (Fig. 3.1).  Undeformed elements exhibit 

permeability values from 1 md to more than 5 darcies while moderate degree of 

deformation generates up to one order of magnitude decrease in permeability, with the 

lowest values at smaller grain size. 

Highly deformed elements show a narrow range of variability in flow behavior 

with permeability ranging from 1 to 20 md (Fig. 3-1 and Appendix 1).  A clear decrease 

in the interquartile range is noticed for these facies, from 0.2073 to 0.8118 for the 
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logarithmic transformation of permeability in the analyzed samples. In general, the 

highly deformed clay material exhibits a median permeability of 0.061 md (-1.21 in the 

logarithmic domain) with a total range of 0.211 md. 

Considering the ratio of log-permeability of each individual deformation element 

and the correspondent undeformed rock (Fig. 3.2), a systematic decrease in this 

relationship can be suggested with an increase in fault throw for the highly deformed 

sandstone elements.  This observation will be complemented later with the incorporation 

of additional shear zone permeability measurements available from external sources.  

Unfortunately, this trend in permeability degeneration with fault movements is not 

clearly visualized for the moderate deformed facies (deformation elements 1 through 3) 

being their flow behavior more erratic and unpredictable. 

From the analysis of high-throw shear zones available (NNR4_404 and 

NNR5_291), a decrease of 23 to 38 times (mean permeability) between RUD and 

protolith elements, and HD sandstone elements is present in the shear zone (Table 3.1). 

From the low-throw shear zones, the permeability ratio of RUD and HD sandstone 

elements varies between 10 and 13 times, suggesting a decrease in cataclasis and 

diagenetic effects consistent with the degree of displacement experienced. 

These general statistics suggest that each shear zone and deformation element 

have to be evaluated separately and sampling should be quite effective to characterize 

each facies at particular locations.  The following sections describe general statistics of 

the permeability field from probe permeameter for the selected shear zone samples; 

analysis that is also included in Appendix 1. 
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Fig. 3.1 –  Boxplots of permeability by deformation elements. 
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Fig. 3.2 –  Boxplot of the ratio of logarithm of permeability between deformation 
elements and undeformed (host) rock. 
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3.1.1.  NNR4_404 Shear Zone with 16.7 Meters of Throw  

The protolith and relatively undeformed sandstone exhibit a mean permeability 

of 37.4 md with 48.38 md of standard deviation.   

For the characterization of RUDss elements in sample NNR4_404, thirty-nine 

measurements were taken while (4Cv)2 was 27 (Fig. 3.1 and Fig. 3.3).  Moderate 

deformed elements represented by MDms, MDms-fs, and MDfs exhibited 8.96, 0.3 and 

9.21 md of mean permeability with 10.74, 0.057, and 5.54 md of standard deviation 

respectively (Appendix 1). 

Measurements originally taken for the four transects previously established were 

close to the limit of 50% tolerance at (4Cv)2, for this reason, additional control points 

between main transects were added to better characterize the statistics of these elements. 

These moderate deformed elements exhibit a decrease in permeability of about 4 times 

compared to RUD and protolith rocks when dealing with moderate to good sorting 

(MDms and MDfs).  Facies with low sorting (MDms-fs) showed a larger decrease in 

permeability, of about 100 times compared to the undeformed, host rock. 

Highly deformed elements in this sample are represented by a very continuous 

band that extends through the whole core (Fig. 3.3), and form 39% of total elements 

(Table 3.1).  This characteristic facies exhibits a very distinctive behavior with low 

variability, of the 63 analyzed measurements.  The permeability of highly deformed 

elements in NNR4_404 is 23 times lower than host rock and structurally represents the 

control element (low permeability element) causing permeability anisotropy due to the 

high continuity parallel to the fault plane.  These elements are playing big effect in 

across or perpendicular-to-fault-plane flow because more than 80% of them are 

continuous throughout the samples for all shear zones in the Hickory sandstone 

member.25  
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Fig. 3.3 – Surface map of core NNR4_404 with interpreted continuity of deformation 
elements and permeability transects from probe measurements.  The permeability values 
are plotted using bars in logarithmic scale (values under 1 md correspond to white bars 
to the left). P5 and P6 correspond to plugs samples (Chapter IV) 
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Table 3.1 -  Proportion, Mean and Median permeability values of deformation elements. 

 

 

 

 

 

 

 

 

 

   
  P: proportion of facies (%) ,   RUDm-cs: Relatively Undeformed medium to coarse grain ss   

 MDms-fs: Moderate Deformed m-f ss,   km: mean permeability, md   

MDcs: Moderate Deformed coarse grain ss,   MDfs: Moderate fine grain ss 

       Kmd: median permeability, md   MDm-cs: Moderate Deformed medium to coarse grain ss ,  HDss: Highly Deformed ss   

  MDms: Moderate Deformed medium grain ss 

HDcl: Highly Deformed clay, HDss+cl: Highly Deformed sandstone + clay 

RUDcs: Relatively Undeformed coarse grain ss 
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The other low permeability facies, represented by the highly deformed clays, has 

an average permeability of 0.068 md and a standard deviation of 0.078 md.  Although 

(4Cv)2 for this element is 21 and our measurement density is substantially lower (7), no 

additional stations were measured to increase confidence in data analysis due to the lack 

of exposure at core surface.  Nevertheless, range as low as 0.211 gives us the idea of the 

low permeability spectrum of this element.  From the analysis of the entire shear zones,25 

clay facies continuity in cores is lower that the sandstone equivalents, suggesting that 

this lithology may be shorter in length..  The stratigraphic thickness of this structural 

element in NNR4_404 is variable (from 2 mm up to 1.3 cm in the core sample) and 

represents a clear pinch out geometry of restricted continuity (Fig. 2.4a). 

Although few available mudstones and clays are present and available for 

measurement in the chosen shear zones, probe permeabilities range from 0.001 (probe 

resolution) to 0.212 md.  This is in contrast with a value of 0.0002 md for this facies 

suggested by Gibson.33  Although Ibañez made a sensitivity analysis considering lower 

permeability values (as low as suggested by Gibson) founding an additional reduction in 

harmonic-average permeability  (up to three orders of magnitude), this probe 

permeameter device and results suggest that the mean value of 0.068 md is quite 

reliable.  This value compares in the middle range between the 0.6 md average in Ibañez 

analysis and 0.0002 md from Gibson approach.  Obviously, the precision in determining 

permeability and especially in the lowest values will affect strongly the harmonic 

average. For this reason, shaly facies in shear zones should be also carefully 

characterized and, if necessary (when permeability reported equals to resolution limit), 

evaluate the effect in the average with values below the resolution of the device used. 

Further considerations about the effect of these particular elements will be discussed 

when detailed modeling and match with laboratory calculations are presented (Chapter 

6).  
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Fig. 3.4 – Surface map of core NNR5_291 with interpreted continuity of deformation 
elements and permeability transects from probe measurements.  P4, plug analyzed.  
Greens arrows show key deformation element contacts and control surfaces. 
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3.1.2.  NNR5_291 Shear Zone with 13.9 Meters of Throw  

The second shear zone investigated with high throw, the NNR5_291, is 

composed by 64% of relatively undeformed elements with an average (mean) 

permeability of 281.7 md and a standard deviation of 278.8 (Fig. 3.1 and Fig. 3.4).  

Regardless of the high standard deviation exhibited, this facies was effectively tested by 

close to 10 times the (4Cv)2 for the 95% confidence limit between two standard 

deviations (Appendix 1). 

The moderate deformed elements represent 33% of total deformation facies for 

the core and reveal mean permeability values of 37 md in the medium grained 

sandstones and 9.4 md in the medium to fine grained sandstones.  Standard deviation for 

these facies is in the order of 44.8 and 9.5 md respectively. 

From surface mapping, the highly deformed elements have a complex framework 

composed by narrow bands more discontinuous upward in the sequence (for this 

particular sample) or at longer distance from shear zone mid point.  These bands also 

have a tendency to exhibit a thinning upward structure constituting just the 3% of the 

total framework of the analyzed core and having 7.3 md of mean permeability with 5.6 

md of standard deviation (Fig. 3.4 , Appendix 1).  These elements show a reduction of 

permeability of about 38 times compared to host rock while moderate elements are 

between 8 and 30 times. This facies has been effectively measured with 24 samples 

under the prospected conditions equivalent to (4Cv)2 that requires at least 9 stations for 

the proper statistical characterization. 

  

3.1.3.  NNR4_300 Shear Zone with 1.5 Meters of Throw  

Sample NNR4_300 with a low throw of about 1.5 meters26 is composed of a 

series of relatively undeformed elements (from RUDcs to RUDms) that account for 54% 

of the total framework in the core.  The average permeability varies from 951.7 to 63.1 

md with standard deviation from 610.4 to 69.6 md respectively (Fig. 3.5, Appendix 1). 

Moderatly deformed elements are represented by coarse, medium to coarse, and 

medium grain sandstones and have mean permeabilities of 53.6, 190.5, and 81.8 md 
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respectively.   From this sample, this granulometric sequence does not show a consistent 

decrease in mean permeability as expected from general expectations according to grain 

size distribution.  Possible reasons could be the moderate to high standard deviation 

observed in the undeformed rock, the difficulty in differentiating moderately deformed 

and undeformed facies and problems related to the areal resolution of the probe tip 

causing measurements in commingled facies. 

The highly deformed elements represent 5% of the total facies evolution for this 

sample and show an average permeability of 16.9 md, about 10 times lower than the 

protolith rock.  The standard deviation is 21 md and the continuity of such elements tend 

to be continuous throughout the core although with very low thickness (from 2 mm to 1 

cm). 

 

3.1.4.  NNR3_269 Shear Zone with 0.5 Meters of Throw  

Sample NNR3-269 representing the unique full shear zone, is composed by 51% 

of relatively undeformed elements and protolith, 16% of moderate deformed elements 

and 10% of highly deformed facies.  The average protolith permeability is 503 md and 

standard deviation of 979.1 md (Fig. 3.6, Appendix 1) .  Such as high standard deviation 

compared to the mean, makes that more than 61 measurements had to be taken in order 

to characterize the statistics of these elements with 95% confidence  (eighty three probe 

perm stations were measured in these facies).   

Moderate deformed elements represented by moderate deformed medium 

sandstones have 18.4 md of average permeability (standard deviation of 18.6 md) 27 

times lower than protolith while HDss elements have 49.7 md of mean permeability and 

85.8 md of standard deviation.  This average permeability corresponds to a 10 times 

reduction compared to host rock. 

The mixed highly deformed lithology facies of sand and clay is also present with 

an average permeability of 12.7 md and 26.7 md of standard deviation, although the 

sampling rate does not allow having the desired confidence for the characterization of 

this particular deformation facies. 
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Fig. 3.5 – Surface map of core NNR4_300 with interpreted continuity of deformation 
elements and permeability transects from probe measurements 
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Fig. 3.6 – Surface map of core NNR3_269 with interpreted continuity of deformation 
elements and permeability transects from probe measurements.   
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3.1.5.  Summary Comments 

In general, a broad trend can be seen in the four selected intervals, with a 

decrease of the ratio of mean permeability between highly deformed elements and 

protolith with fault throw magnitude (Fig. 3.2).  In other words, the reduction of 

permeability of the highly deformed elements seems to be dependent on the magnitude 

of movement experienced and obviously, depending of the quality of the original host 

rock involved in the deformation process.        Further discussions and findings by 

diverse investigators 25,34-36 have shown the additional control of throw and displacement 

to the thickness of gouge breccia and internal deformation elements.  According to such 

investigations it is clear that the thickness of the shear zone plays a big role in fault 

conductance and the examination of field correlations with geological parameters should 

be a mandatory step to predict the flow potential and continuity of the shear zone. 

 

3.2  Probe Permeameter Data Comparison with Ibañez25 

 This research investigated high-resolution permeability anisotropy related to 

selected shear zones created by variable fault displacement in the Hickory sandstone 

member.  A former study25 considered all the available cores from shear zones in order 

to evaluate the mesoscopic and microscopic structure and identified the structural 

elements controlling the overall permeability.37   The few points of comparison between 

Ibañez25 probe measurements using a steady-state permeameter and those of this study 

show fair agreement (Fig. 3.7).  A significant difference between this and Ibañez’ study 

is caused by the low permeability resolution of the steady state permeameter used by 

Ibañez in the measurements of deformation elements in mudstones and some sandstones 

with high deformation (Fig. 3.7).  Another source of disagreement is the fact that 

sampling locations are not identical and the high variability (anisotropy and 

heterogeneity) is inherent in the protolith and undeformed facies. 
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Fig. 3.7 – Correlation of probe permeameter data (point measurements)  for samples at 
NNR4_404, NNR5_291, NNR4_300 and NNR3_269.  Ibañez’s data25 are from a steady-
state permeameter, Nieto’s data from an unsteady-state permeameter 

 

 

3.3  Permeability in the Shear Zone Versus Throw 

Integration of our data with those from Ibañez has shown a systematic reduction 

of permeability of highly deformed elements with fault throw, as previously visualized 

and discussed with the selected core samples in Section 3.1 (Fig. 3.8).  The plot of the 

average and geometric mean permeability of HDss elements versus fault throw for all 

the shear zones in the Hickory sandstone member shows a fair trend of overall reduction 
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elements.  According to this plot (Fig. 3.8), we can see a high scatter in permeability 

values demonstrating the existing heterogeneity by element. 

Deformation elements are facies with similar degree of cataclasis and not with 

similar permeability. For this reason, when trying to predict their flow characteristics, 

one should avoid averaging them for getting a representative permeability value for that 

particular element.  For instance, for a zone with protolith permeability of around 30 md, 

highly deformed elements in a 60 feet throw fault will exhibit permeabilities around 1.6 

md while in a 5 feet throw fault these facies could have around 9 md (from Fig. 3.2).   

From this analysis, the effect of the host rock is clearly influencing HD 

permeability.  Permeability versus fault displacement correlation (Fig. 3.8) demonstrates 

that faults with throw greater than 10 feet generate highly deformed elements with 

permeability less than 8 md and related to the host rock permeability.  For the same fault 

throw, HD elements created from higher permeability host rock will exhibit better flow 

characteristics.  For faults with throw less than 10 feet, the permeability of the HD 

elements is not predictable. 

The same analysis can be executed for moderately deformed elements, although 

the degree of cataclasis is limited and variable that the correlation observed shows a 

general trend with large scatter. 

 

3.4  The Analysis of Shear Zone Thickness and Deformation Element Thickness 

An additional and import variable to predict the overall shear zone permeability 

is the thickness of total interval between slip surfaces, the internal architecture and 

distribution of deformation elements, and their own thickness. For this particular 

analysis, we have combined the shear zone geometry analysis by Ibañez25 and the re-

evaluation of fault characteristics by Wilson26 with the detailed observations in the four 

high and low throw fault samples for the same area (Table 3.2).   Surface maps (Figs. 

3.3 to 3.6) were also incorporated in order to correlate permeability measurements with 

deformation element geometries. 
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Fig. 3.8 – Permeability of HDss elements versus Fault Throw according to arithmetic and 
geometric means of protolith permeability. 
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Table 3.2 – Shear Zone geometry and permeability characteristics.  Integrated and 
analyzed using Ibañez25 and Wilson26 data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shear Zone Strike Dip of SZ Dip of SZ Strat. 
Throw

SZ 
Thickness

HD 
Thickness

MD 
Thickness

Hole-Depth (top) (bottom) (ft) (ft) (ft) (ft) Proto RUDss MDss HDss HDcl Proto RUDss MDss HDss HDcl
3-192 N40E 73SE 2.5 0.016 NA NA NA NA NA NA NA NA NA NA
3-202 N64E 75SE 54SE 46.0 0.659 0.30 0.10 NA NA NA NA NA NA NA NA NA NA
3-231 N65 - 58E 70SE 8.0 0.305 0.06 0.10 NA 57.38 4.91 6.46 0.66 NA 23.83 2.42 5.77 0.53
3-269 N53E 69SE 4.5 0.2 0.17 0.02 199.6 47 5.27 4.36 3.17 50.2 30.92 4.5 3.29 2.48
4-201 N54E 76SE 1.0 0.072 0.00 241.1 80.61 6.53 NA NA 185 53.47 4.82 NA NA
4-256 N46E 57SE 2.5 0.026 NA NA NA NA NA NA NA NA NA NA
4-300 N65 - 57E 67SE 6.5 0.184 0.15 98.42 NA 60.82 NA 5.43 0.7 NA 18.89 NA 4.68 0.69
4-404 N73E 75SE 60.0 0.853 0.35 0.14 11.45 NA 1.3 0.76 0.1 11.42 NA 0.48 0.7 0.1
5-193* N10E 68SE 2.5 0.016 NA NA NA NA NA NA NA NA NA NA
5-266* N80E 32SE 40SE 2.0 0.131 NA 6.9 3.7 NA 0.6 NA 6.9 3.7 NA 0.6
5-274* N71E 50SE 3.0 0.24 0.24 0.00 173.7 NA NA 1.78 0.87 24.22 NA NA 1.68 0.83
5-279* N15E 54E 1.0 0.089 0.06 0.03 760.8 NA 10.62 5.63 2.1 613.4 NA 8.72 4.94 2.1
5-291* N27E 60SE 29.5 0.696 0.23 0.19 233.1 354.1 4.92 1.41 0.85 82.2 120.1 3.85 1.32 0.77
5-308* N42E 48SE 24.0 0.42 0.24 0.14 688.7 15.54 4.43 2.58 0.75 403.8 6.05 3.82 2.4 0.73
5-327* N55E 80SE 1.0 0.154 0.03 0.13 648.8 NA 3.64 0.5 NA 231.1 NA 3.15 0.5 NA
5-347* N50E 75SE 1.0 0.066 NA NA NA NA NA NA NA NA NA NA
6-236* N72E 63SE 4.0 0.036 NA NA NA NA NA NA NA NA NA NA
6-250* N80E 45SE 80SE 5.0 0.325 NA NA NA NA NA NA NA NA NA NA
6-254* N67E 62SE 46.0 0.518 0.23 0.15 51.94 22.57 6.79 1.23 NA 27.73 17.13 5.64 0.73 NA
6-281* N57E 63SE 1.5 0.148 0.10 0.04 2146 133.1 3.09 4.19 NA 758.1 133.1 2.87 3.8 NA
6-287* N54E 58SE 1.5 0.203 0.11 0.06 207.4 60.88 5 2.25 0.5 56.1 39.38 5 2.16 0.5
6-295* N35E 70SE 5.5 0.072 NA NA NA NA NA NA NA NA NA NA
7-196 N46E 62SE 1.5 0.033 NA NA NA NA NA NA NA NA NA NA
7-199 N50E 65SE 2.0 0.036 NA NA NA NA NA NA NA NA NA NA
7-202 N71E 55SE 39.5 0.22 0.19 0.00 NA NA NA NA NA NA NA NA NA NA
7-237 N71E 65SE 15.0 0.285 0.07 0.03 NA NA NA NA NA NA NA NA NA NA
7-304 N50E 75SE 1.5 0.138 NA NA NA NA NA NA NA NA NA NA
7-327 N57E 68SE 3.0 0.033 NA NA NA NA NA NA NA NA NA NA
8-228 N57E 80SE 1.5 0.033 NA NA NA NA NA NA NA NA NA NA
8-236 N60E 46SE 3.0 0.026 NA NA NA NA NA NA NA NA NA NA
8-238 N74E 62SE 3.0 0.082 NA NA NA NA NA NA NA NA NA NA
8-246 N60E 54SE 7.5 0.098 NA NA NA NA NA NA NA NA NA NA
8-252 N43 - 65E 60SE 70SE 33.5 0.823 0.15 0.58 1802 19.2 2.04 1.71 0.25 789.9 19.2 1.06 1.36 0.24
8-287 N56E 60SE 16.5 0.456 0.12 0.15 140.1 176.8 7.66 1.47 0.75 132.7 176.8 5.05 1.01 0.75
9-216 N65E 72SE 1.5 0.033 NA NA NA NA NA NA NA NA NA NA
9-250 N68E 58SE 1.0 0.016 NA NA NA NA NA NA NA NA NA NA
9-252 N10E 58NW 1.0 0.016 NA NA NA NA NA NA NA NA NA NA
9-268 N71E 50SE 6.0 0.115 NA NA NA NA NA NA NA NA NA NA
9-277 N68E 40SE 2.0 0.21 0.05 0.07 20.22 5.6 NA 1.68 0.56 18.92 3.55 NA 1.57 0.54
9-304 N54E 48SE 2.0 0.033 NA NA NA NA NA NA NA NA NA NA
9-315 N65E 62SE 16.5 0.262 0.10 0.07 161.7 682.03 5 5.44 NA 48.04 130.1 5 5.03 NA
9-321 N48 - 54E 71SE 68SE 25.5 0.745 0.10 0.63 NA 8.85 2.34 0.5 1.73 NA 8.47 1.8 0.5 1.16
9-341 N54E 76SE 9.0 0.151 NA NA NA NA NA NA NA NA NA NA

10-232 N65E 63SE 2.0 0.066 NA NA NA NA NA NA NA NA NA NA
10-255 N74E 76SE 2.0 0.049 NA NA NA NA NA NA NA NA NA NA
10-280 N51E 42SE 1.0 0.049 NA NA NA NA NA NA NA NA NA NA
10-283 N68E 61SE 73SE 3.0 0.364 0.05 0.22 NA NA NA NA NA NA NA NA NA NA
10-287 N73 - 63E 63SE 59SE 3.0 0.24 0.16 0.12 NA 8.3 2.93 1.56 0.56 NA 6.8 2.32 1.5 0.55
10-339 N52E 79SE 19.0 0.768 0.17 0.52 NA 4.97 14.25 1.19 0.5 NA 4.61 8 0.57 0.5
10-358 N53E 70SE 0.043 0.04 0.00 NA NA NA NA NA NA NA NA NA NA
10-360 N58E 66SE 76SE 0.315 0.17 0.11 NA NA 3.05 2.08 1 NA NA 2.96 1.92 0.7
10-363 N64E 70SE 0.236 0.04 0.18 NA 1.8 1.97 1.45 0.8 NA 1.8 1.74 1.45 0.8
10-368 N48E 74SE 3.0 0.082 NA NA NA NA NA NA NA NA NA NA

Aritmetic Average

32.0

Geometric Average
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Ibañez studied the spatial ordering of deformation elements defining matrixes for 

the studied intervals and evaluating the statistical meaningful tendency for certain 

deformation elements to be in contact with others.  The matrixes were compared using 

the χ2 statistic as described by Davis,38 indicating that a key statistical relationship exists 

between the host rock and the highly deformed elements.  He found that 83% of the 

time, the protolith is in contact with HD elements when the protolith is in contact with 

the shear zone.   On the other hand, he states that there is not an apparent or predictable 

order of HD, MD and RUD elements, possibly due to the slip movements of the 

deformed rock within the shear zone. 

The fact that most of the time protolith is in contact with highly deformed 

elements, joined to the predictable behavior of these elements, suggests that HD 

elements could be one of the most important elements affecting overall shear zone 

permeability when the amount of clay is low and its continuity is insignificant.  This 

observation, disregarding lithologic considerations, suggests an important step for the 

characterization of shear zones in low shaliness sequences and the understanding of the 

effect on transmissibility between blocks for variable fault throws.  The analysis of the 

importance of these specific elements will be further evaluated under analytical and 

numerical evaluation. 

Data from Hickory sandstone member shear zones (at the particular fault of 

investigation) show a fair to good correlation between fault throw and the thickness of 

whole shear zone (Fig. 3.9) and thickness of highly deformed elements (Fig. 3.10).  

These correlations are based on compiled information from former investigators25,26 

exhibiting coefficients of determination, R2, of 0.55 for the total shear zone thickness 

and 0.43 for HD element thickness.  From same analysis and consistent with 

observations in permeability for moderate deformed elements, no practical correlation 

(R2=0.05) is found from the integrated data for these particular facies. 

Although the coefficients of determination are not totally statistically 

satisfactory, these trends observed in the correlation with geological variables can be 

used to reduce uncertainty in models that can be calibrated in different areas. 
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Fig. 3.9 – Total Shear Zone Thickness –Fault Throw Correlation.  Data integrated from 
Ibañez and Wilson.25,26 

 

 

As stated by Ibañez, the relationship found for thickness prediction has similar 

relationship to other studies that have investigated this function, such as Robertson 

(1983), Scholz (1987), Hull (1988), and Evans (1990).25 

 

3.5 CT Scanning Integration 

We used and integrated CT images for analyzing the internal three-dimensional 

framework of the selected samples.  CT predicts the density (and porosity) of 

deformation bands and was used to correlate with permeability.  In subsequent stages of 

this integrated project, CT is used for the construction of numerical simulation models 

by defining the internal correlation, layering and controlling surfaces that allow to 

generate the property volume to predict the whole-core permeability. 
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Fig. 3.10 – HD element Thickness –Fault Throw Correlation.  Data integrated from 
Ibañez and Wilson.19,20 

 

 

 

The main output from tomography is a series of images representing CT 

attenuation data in an internationally standardized scale called Hounsfield units or CT 

number.31  In general, each Hounsfield unit represents a 0.1% change in density.  A 

change in density is reflected by a change in CT number.  Our study did not use the 

quantitative density prediction because of the difficulty of determining an exact 

calibration for various non-homogeneous samples. 

Comparison of the permeability measurements and CT number for the four cores 

showed a general inverse relationship between these two variables (Fig 3.11). If we 
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assume a constant original matrix density, we also observe a general decrease in porosity 

and permeability with increasing degrees of deformation (Fig. 3.11).   Highly deformed 

elements do not follow the same general trend however, as observed for moderate and 

relatively undeformed elements.   This suggests that, after a moderate degree of 

deformation experienced by a specific part of the shear zone which decreases porosity 

and permeability, additional deformation may transform this zone to a highly deformed 

feature and cause significant permeability deterioration although porosity may not be 

affected in the same intensity. 

This behavior identifies deformation bands as independent flow units and rock 

types with a specific porosity/permeability relationship.  In other words, porosity is not a 

unique permeability predictor.  For this reason, the geometry and distribution of 

deformation bands are necessary for addressing the prediction of detailed permeability 

configuration. 

The CT images of the four cores show internal layering created by shear forces 

within the fault zone in the high throw zones (Fig. 3.12).  At the top of this figure is 

shown the calibration between probe permeameter measurements, deformation elements 

and CT number in one section of core NNR4_404, and the 3D integration of all available 

scanned images, getting a tangential cut trough the oriented section.   The lower most 

section shows a vertical slice through the core showing the internal shear zone layering 

(Fig. 3.12).  From such internal visualization, it is possible to assume the continuity of 

individual deformation elements, information that will be incorporated in the 

tridimentional modeling of the cores for considering the permeability anisotropy 

physically related. 
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Fig. 3.11 – Permeability, CT #, and deformation elements (color scale, 0 Undeformed – 6 Highly deformed clay) for the four 
shear zones in the Hickory.  Highly deformed features, HDss (4) and HDcl (6), have distinctively low permeability with a 
characteristic permeability/CT number relationship.  Fair to good degree of correlation in RUD facies (black line) 
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Fig. 3.12 – NNR4_404 top section.  a) permeability profile, b) tangential cut at the top of 
the core, c) vertical cut through the core showing shear layering. 

 

 

3.6  Whole Core Permeability Measurements 

Whole-core permeability measurements were performed in the laboratory 

following fluid removal by oven drying at 220° F.  Porosity was determined by direct 

pore volume estimation using Boyle’s law helium expansion while bulk volume was 

measured by Archimedes’ principle.39,40  The analyzed samples did not show significant 

variability in either porosity or grain density (Table 3.3)  
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Table 3.3 – Laboratory estimations of porosity, permeability and grain density for 
whole-core 

 

 

 

 

 

 

 

The whole-core permeability was measured in the horizontal and vertical 

directions while the core was confined in a Hassler rubber sleeve at 400 psi net confining 

stress.  Horizontal permeability measurements were taken in directions parallel and 

perpendicular to the azimuth of the main shear plane.  Therefore, parallel-horizontal 

permeability corresponds to the along-fault flow direction while the perpendicular-

horizontal permeability is equivalent to the across-fault flow direction.  Fig. 3.13 shows 

the configuration for horizontal injection of air along a 90-degree surface and production 

at the opposite side through a similar angular opening. 

Along and across-fault permeabilities were calculated in the laboratory using the 

following expression:  
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µ                                                                          (3.5) 

 

where K is the average permeability, G the geometrical factor according to Collins41 

estimations depending of angular opening on one side of the core (Fig. 3.13), Q the 

volumetric rate at downstream pressure P2, L the length of the core, P1 the pressure at the 

inlet, and µ the fluid viscosity.   

 For estimation of vertical permeability, the most common form of Darcy’s law is 

defined as: 

 

Fault 
Throw Helium Porosity Grain Density Vertical Along SZ Across SZ

ft % Gr/cc md md md

NNR3_269 4.5 12.2 2.66 12.2 145.23 8.1
NNR4_300 6.5 12.6 2.65 12.6 91.036 31.4
NNR5_291 29.5 14.6 2.65 55.1 142.7 100.5
NNR4_404 60 12.2 2.63 6.165 12.43 7.67

Lab. Whole-core Porosities, Graiin Density and directional permeability.33,34

CORE
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where K is the sample permeability in darcys, Qb and Pb the volumetric rate (ml/sec)  and 

pressure (atm) at point of measurement, L the length of the core (cm), A the cross 

sectional area(cm2), µ the fluid viscosity in cp, P1 the pressure (atm) at the inlet and P2 

the pressure at the outlet.  For both cases and as part of the numerical simulation 

procedure, horizontal and vertical estimations, were developed using laboratory units, K 

in darcies, Q in scc/hour; µ in cp; L in cm, A in cm2; and pressure in atmospheres. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.13 – Design for laboratory measurement of horizontal permeability and theoretical 
curve for the determination of geometrical factor. From Ref. 41. 
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3.7  Hassler Permeameter Measurements 

 Six plugs extracted from selected locations in shear zones and protolith from the 

available cores were the input for analyzing single (as possible) and commingled 

deformation element permeability and compare with probe permeability values and 

analytical results at plug scale.  All the plug samples had a diameter between 2.384 and 

2.437 cm with lengths ranging from 2.256 up to 5.125 cm (Table 3.4).  This variability 

in length is a product of the difficulty in extracting continuous plug samples using the 

rotary extraction tool without breaking them.  Additionally, samples have to be edge-

trimmed to ensure square, flat ends and absence of sharp-edge depressions that could 

give erroneous measurements and/or damage the sleeve. 

 The Hassler-sleeve permeameter is composed by a core-holding section, a 

section where the pressure of gas introduced to the sample is regulated and measured, 

and a downstream section where the flow rate is measured.  According to the upstream 

pressure applied, the gas pressure may be adjusted by either a high or low range 

regulator and measured using a downstream gouge.  All this procedure can be performed 

while diverse conditions of overburden pressure are set for the core holder.  Permeability 

of the samples is calculated using Darcy’s equation according to the upstream and 

downstream pressures, flow rate at atmospheric pressure, nitrogen viscosity, and the 

physical dimensions of the sample.  This equation is same as given in Eq. 3.6 but 

considering that Qb and Pb, the volumetric rate and pressure are at standard conditions. 

 In addition to the extracted core plugs, two calibration plugs (same used for 

probe calibration) of 1000 md and 25 md were used to control the repeatability of 

measurements and compare with probe permeability measurements under known 

conditions. 
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Table 3.4 – Hassler permeameter plug data for various deformation element 
arrangements and according to different net overburden pressure (NOBP).  Included 
here, probe permeameter data and averaging results (discussed in Chapter IV) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Probe Perm Facies Harm Geo Mean Hassler Perm NOBP
md  Av  Mean md psig

Top1 58.7 RuD & HDss 68.999 Length(cm) 5.125 380.7
Top2 18.6 RuD & HDss 67.262 Area(cm2) 4.665 370.1
Top3 36.5 RuD & HDss

Top1 4550 Protolith 1481.953 Length(cm) 4.169 169.0
Top2 4860 Protolith 1564.608 Area(cm2) 4.536 169.0

Base1 1350 Protolith 1545.889 230.6
Base2 1470 Protolith 1515.144 330.0

1580.867 320.2
1549.847 496.2

Top1 5.55 HDss 8.484 Length(cm) 2.310 377.6
Top2 5.86 HDss 6.615 Area(cm2) 4.666 377.5

Base1 13.3 HDss+cl 8.999 389.1
Base2 15.5 HDss+cl

Top1 110 RUDms 23.170 Length(cm) 4.685 403.8
Top2 133 RUDms 23.767 Area(cm2) 4.464 400.4

Base1 4.05 MDms
Base2 6.89 MDms
Base3 3.56 MDms

Top1 3.89 HDss 5.837 Length(cm) 2.382 506.0
Top2 4.39 HDss 5.590 Area(cm2) 4.663 497.1

Base1 4.96 HDss
Base2 3.52 HDss

Top1 1.71 HDss 3.063 Length(cm) 2.257 498.6
Top2 1.48 HDss 3.285 Area(cm2) 4.583 499.3

Base1 47.5 MDms
Base2 51.3 MDms
Base3 54.8 MDms

Top1 24.6 SS 45.965 Length(cm) 3.876 98.0
Top2 22.9 SS 27.247 Area(cm2) 5.007 146.4

Base1 18.4 SS 26.633 202.3
Base2 19.7 SS 23.251 200.2

23.049 327.5
22.419 326.3
20.781 459.6
20.801 538.6

Top1 734 SS 1271.965 Length(cm) 3.899 47.4
Top2 753 SS 1097.997 Area(cm2) 4.980 104.4

Base1 756 SS 1045.523 147.9
Base2 752 SS 1019.709 247.6

1019.709 321.0
1012.035 362.8
1007.897 455.3

NNR5_291_loc4

NNR3_269_loc2

NNR4_300_loc1

PLUGS Dimensions

2166.20 2573.80 3057.50

30.55 34.16 37.93

NNR3_269_loc3 8.15 9.05 10.05

9.79 17.08 51.50

NNR4_404_loc5 4.12 4.16 4.19

NNR4_404_loc6 3.79 12.76 31.36

Cal @ 25 md 21.12 21.26 21.40

Cal @ 1000 md 748.65 748.70 748.75

Sample Probe Perm Facies Harm Geo Mean Hassler Perm NOBP
md  Av  Mean md psig

Top1 58.7 RuD & HDss 68.999 Length(cm) 5.125 380.7
Top2 18.6 RuD & HDss 67.262 Area(cm2) 4.665 370.1
Top3 36.5 RuD & HDss

Top1 4550 Protolith 1481.953 Length(cm) 4.169 169.0
Top2 4860 Protolith 1564.608 Area(cm2) 4.536 169.0

Base1 1350 Protolith 1545.889 230.6
Base2 1470 Protolith 1515.144 330.0

1580.867 320.2
1549.847 496.2

Top1 5.55 HDss 8.484 Length(cm) 2.310 377.6
Top2 5.86 HDss 6.615 Area(cm2) 4.666 377.5

Base1 13.3 HDss+cl 8.999 389.1
Base2 15.5 HDss+cl

Top1 110 RUDms 23.170 Length(cm) 4.685 403.8
Top2 133 RUDms 23.767 Area(cm2) 4.464 400.4

Base1 4.05 MDms
Base2 6.89 MDms
Base3 3.56 MDms

Top1 3.89 HDss 5.837 Length(cm) 2.382 506.0
Top2 4.39 HDss 5.590 Area(cm2) 4.663 497.1

Base1 4.96 HDss
Base2 3.52 HDss

Top1 1.71 HDss 3.063 Length(cm) 2.257 498.6
Top2 1.48 HDss 3.285 Area(cm2) 4.583 499.3

Base1 47.5 MDms
Base2 51.3 MDms
Base3 54.8 MDms

Top1 24.6 SS 45.965 Length(cm) 3.876 98.0
Top2 22.9 SS 27.247 Area(cm2) 5.007 146.4

Base1 18.4 SS 26.633 202.3
Base2 19.7 SS 23.251 200.2

23.049 327.5
22.419 326.3
20.781 459.6
20.801 538.6

Top1 734 SS 1271.965 Length(cm) 3.899 47.4
Top2 753 SS 1097.997 Area(cm2) 4.980 104.4

Base1 756 SS 1045.523 147.9
Base2 752 SS 1019.709 247.6

1019.709 321.0
1012.035 362.8
1007.897 455.3

NNR5_291_loc4

NNR3_269_loc2

NNR4_300_loc1

PLUGS Dimensions

2166.20 2573.80 3057.50

30.55 34.16 37.93

NNR3_269_loc3 8.15 9.05 10.05

9.79 17.08 51.50

NNR4_404_loc5 4.12 4.16 4.19

NNR4_404_loc6 3.79 12.76 31.36

Cal @ 25 md 21.12 21.26 21.40

Cal @ 1000 md 748.65 748.70 748.75
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 As demonstrated with the use of the two very homogeneous calibration-samples 

(Table 3.4), probe permeameter is measuring between 15 and 25% lower permeability 

than the calibrated (true) value.  This effect could be explained due to surface conditions 

of the sample or the necessity of an accurate geometrical calibration for the estimation of 

permeability according to the probe tip used.  Although this effect has to be carefully 

evaluated when getting probe permeabilities with the purpose of field scale calibration 

and integration, our target here is to have a consistent evaluation, and for that reason, 

each tool was evaluated satisfactorily to guarantee consistency and repeatability, giving 

plenty confidence in the results achieved. 

 Another very important step and objective for plug evaluation is the analysis of 

permeability under variable net stress conditions to evaluate the effects of 

compressibility.  This effect is obviously important when having and integrating diverse 

source of permeability data under conditions ranging from atmospheric to reservoir.  The 

use of variable confining pressure to calculate permeability using the Hassler-sleeve 

permeameter allows also to identify minimum conditions to guarantee a complete seal 

between the rubber sleeve and the walls of the sample.  Working with calibrated samples 

under atmospheric conditions assurance to differentiate compressibility effects from 

leaking problems.  From data obtained at overburden pressure from approximately 50 

psig up to 550 psig for the two calibrated samples and the plug extracted in the protolith 

at location NNR3_269 loc2, we can evaluate the minimum overburden pressure above 

the upstream pressure that should be applied to the samples to guarantee sealing 

capacities of the sleeve. 

 With the Hassler-sleeve permeameter available for this study, we need to have at 

least 200 psi above the upstream pressure in the overburden pressure to have reliable 

results of permeability (Fig. 3.14).  Unfortunately this high threshold does not permit to 

examine the effects of compressibility under low confining pressure, but, if we analyze 

the results from protolith at NNR3_269, the very small change in permeability (less than 

1.9% for the maximum difference in permeability, from 230 to 500 psig of confining 

pressure, Table 3.4) suggests the weak effect of compressibility in these rocks. 
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Fig. 3.14 – Plug permeability (Hassler-sleeve Permeameter) versus overburden pressure 
for protolith at NNR3_269 and two calibration samples. Minimum and maximum probe 
permeameter is also referenced. 

 

 

 The mixed or commingled deformation element plugs are represented by a 

sample of a very heterogeneous arrangement of facies of relatively undeformed and 

highly deformed sandstone elements in location NNR4_300 loc1 (2 cm below the base 

of core in transect 3, Fig. 3.5), with total permeability of around 69 md (Table 3.4).  

Probe permeability data identified specific points in the sample where permeability was 

as low as 18.6 md, and it should be interpreted as the effect of the tiny HDss elements in 

the core.  This sample showed some vugs or holes of up to 1 cm in their longest axis.  
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These anomalous pore structure could have been generated during fault movement, 

gouge generation and with the possibility of being exposed to water washout. 

The sample at NNR5_291 loc4 (Fig. 3.4) represents a very heterogeneous- non 

organized arrangement of relatively undeformed and moderate deformed medium 

sandstone elements with total Hassler-sleeve permeability of approximately 23 md while 

probe permeameter reported high permeability values up to 133 md at top of the plug 

and low moderate deformed element permeability at base of the order of 4 md (Table 

3.4). 

 At location NNR4_404 loc 6 (Fig. 3.3) was sampled a layered arrangement of 

HD elements at top and moderate deformed facies at bottom.  Hassler-sleeve 

permeameter data calculated a total vertical (according to layer dip) permeability of 

around 3 md (Table 3.4).   Probe permeameter data showed consistent results for this 

arrangement of facies and according to former measurements on the surface of the core 

sample. 

 Plugs that investigate the permeability of single deformation elements are those 

located at NNR3_269loc2, NNR3_269loc3, and NNR4_404loc6.   The protolith sampled 

at location NNR3_269loc2  (3.5 cm below the base of core sample NNR3_269 at 

transect 1, Fig. 3.6) showed Hassler-sleeve permeabilities between 1545 and 1581 md 

while minimum permeability reported from probe is 1350 md (Table 3.4, Fig. 3.14).  

The maximum values reported form probe permeameter tend to show considerable high 

values of around 4550 md.  These anomalous values higher than expected could be 

attributed to the unconsolidated nature of the sample, the effect that this characteristic 

could improve surface permeability by grain loose and the high chance of poor seal 

during probe permeability measurement. 

 Sample at NNR3_269loc3 (Fig. 3.6) recovered a mixed layered arrangement of 

highly deformed sandstone at the top and highly deformed sandstone plus clay at 

bottom, showing from probe permeability measurements the same characteristic from 

surface measurements, that is the improvement in permeability when clay is part of the 
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structure of the element (Table 3.4).  From this plug, Hassler-sleeve permeameter values 

range from 6.6615 and 8.999 md. 

 The sample at NNR4_404loc5 sampled the characteristic tabular highly 

deformed element present in the shear zone in that particular fault location (Fig. 3.3).  

Values from probe and Hassler-sleeve permeameters agree very well (differences of 

approximately 1 md) although, when comparing with original measurements on core 

sample using probe (Fig. 3.3), the differences are higher, up to 3 md.  Considering that 

probe measurements exhibit differences between those obtained on core and plug 

surfaces (under same conditions and tips), showing higher values in trimmed (fresh 

plugs), it is possible to suggest that some reduction in permeability could be produced by 

alteration (plugging?) of samples while they are maintained at surface conditions. 
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CHAPTER IV 

PERMEABILITY UPSCALING USING AVERAGING TECHNIQUES 

 

Two main methods were evaluated for getting whole-core permeability 

measurements.  The first is the evaluation of analytical techniques using averaging 

methods and the second, the use of static modeling of permeability and the dynamic 

evaluation of whole-permeability using numerical simulation (Chapter V).  The purpose 

of doing both ways is to try to understand when simple techniques give a good 

estimation of permeability in shear zones and when they do not.  The more sophisticated 

techniques will help to understand the effect of small deformation features in the 

permeability tensor and give ideas of their potentiality as effective barriers along or 

across shear zones.  

 

4.1 Upscaling Permeability at Core Scale 

In order to have a first analysis of possible analytical solutions to solve for the 

permeability tensor, we have to consider the geometrical configuration of shear zones 

compared with the cylindrical shape of the sample.  Considering this issue, shear zones 

at NNR5-291, NNR4_300, and NNR3_269 represent valid samples to compare these 

analytical solutions because flow evaluation can be done perpendicular to main shear 

zone avoiding having high permeability facies joining inlet and outlet of core. 

Contrasting with this, sample NNR4_404 presents a preferential flow at 

transverse 3 (Fig. 3.1) when inlet and outlet are joined by RUD and MD elements 

causing channeling that avoids an evaluation of the total permeability effect by shear 

zone at this particular location.  In other words, harmonic upscalers will assume total 

continuity of low permeability elements, model that is not valid for the evaluated whole-

core sample.  This effect is causing the very low whole-core permeability obtained under 

analytical solutions for this core.  More detailed analysis and considerations will be 

discussed with the tridimensional modeling of deformation elements for the exact 

laboratory sample geometries. 
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The NNR5_291 sample shows satisfactory agreement between harmonic 

averages and vertical laboratory permeability (Table 4.1).  Using the mean permeability 

of deformation elements, harmonic average is 0.91 times the true calculated permeability 

while if using the median permeability value, the harmonic average is 0.55 times.  

Considering the continuity of deformation elements in this core, we can conclude that 

harmonic averages reproduce very close the true perpendicular-to-shear-zone 

permeability, in this case, represented by the vertical flow. 

Sample at NNR4_300 has a reverse effect from that observed in sample 

NNR4_404; the harmonic average permeability is 6.2 and 2.7 times (using mean and 

median permeability respectively) greater than laboratory calculations for vertical 

permeability and two general considerations can be assumed from this result.  First, the 

high degree of heterogeneity observed in this core could infer that the best upscaler 

should use the median permeability from particular elements, and second, that the tiny 

high-deformed elements could have lower permeability values compared to those 

reported from probe permeameter data.  This anomaly is possible if our permeability 

determination is below areal resolution of the probe tip.  These effects will be re 

evaluated in our modeling and numerical simulation step with the effective match 

procedure with laboratory data, using detailed sampling with 1” plugging and with 

focused sampling in strike oriented exhumed surfaces. 

Sample at NNR3_269 also shows a fair to good agreement between calculated 

analytical values and laboratory results for vertical flow. 

Along shear-zone permeability is closely reproduced using arithmetic averages of 

mean permeability of deformation elements, exhibiting analytical to lab permeability 

ratio between 2.45 and 0.95.  Using median permeability values, this ratio falls between 

0.78 and 0.6. 
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Table 4.1 - Comparison between arithmetic, geometric, and harmonic averaging with 
laboratory whole-core permeability measurements. 
 

Fault  Mean K (md) Median K (md) Lab. Whole-core Perm. 
CORE Throw  Arith. Geom. Harm. Arith. Geom. Harm. Vertical Along SZ Across SZ 

  ft md md md md md md md md md 

NNR3_269 4.5 265.502 99.302 33.185 113.609 41.387 12.26 12.2 145.23 8.1 
NNR4_300 6.5 223.014 108.968 77.634 54.658 40.168 33.892 12.6 91.036 31.4 
NNR5_291 29.5 191.043 119.15 50.084 121.812 74.926 30.571 55.1 142.7 100.5 

NNR4_404 60 11.864 3.902 0.768 7.011 2.764 0.662 6.165 12.43 7.67 

Arithmetic average: Σ(Pi * Ki); Geometric EXP{Σ (Pi * lnKi)};  Harmonic: {Σ(Pi / Ki)}-1 

 

 

 

If we incorporate a power law function as also used by Myers19 to investigate the 

optimal upscaler to match laboratory data, an exponent value of w = -1 is representing 

geometries of deformation elements perpendicular to flow direction, in other words, the 

equivalence to harmonic upscalers.  For this calculation, the equation used by Myers can 

be expressed in function of proportion of deformation elements and the equivalent 

permeability, as follows: 

 
ww

HDHD
w

MDMD
w

RUDRUD KVKVKVKav /1)( ++=                                     (4.1) 

 

where Kav is the average permeability, V the volume or proportion of deformation 

elements (RUD, MD, and HD), and K the mean or median permeability for each 

element. 

 Using this approach for matching the laboratory results, vertical permeabilities 

are more closely reproduced using power exponents with a certain deviation around   –1 

(Table 4.2).  Values found in well NNR4-404 correspond in some extent to quasi-

parallel flow because facies are not strictly perpendicular according to the core geometry 

modeled and tested.  From a practical point of view, this vertical estimation has a high 
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component of across-shear-zone permeability, represented by power exponents quite 

similar between vertical and across directions (Table 4.2). 

The other anomalous estimation in this direction is obtained when using mean 

permeability of deformation elements to match laboratory data for well NNR3_269.  The 

high exponent included in Table 4.2 is an output from a not feasible numerical solution.  

This means that at least more barriers or lower permeability values should be present in 

the core for getting the solution.  This effect tends to be compensated if the median of 

permeability by deformation elements is considered.  The same analysis and conclusion 

can be interpreted from results for core NNR4_300. 

 Along flow power exponents are totally characterized by positive numbers with a 

mean of 1.4, value that is comparable with the use of arithmetic averaging where the 

power exponent is 1. 

Out of detailed consideration of specific geometry configuration compared to the 

directional permeability to be calculated, across shear zone permeabilities for these 

samples exhibit power exponents between these two end members (-1 and 1, for vertical 

and along shear-zone respectively).  This suggests that the best simple upscaler to be 

used to account for this component in the permeability tensor (the across shear-zone 

flow) is the geometric average. 

According to core surface description and internal architecture from CT imaging, 

samples from NNR4_404 (Fig. 3.12), NNR5_291 and in minor grade core NNR3_269 

present layered distribution of deformed elements within the shear zone, parallel to the 

orientation of the fault plane.  If permeability in the whole core has to be estimated in a 

direction perpendicular to the orientation of the internal shear zone layering, harmonic 

upscalers will account for the internal structure of series of deformation bands and give a 

confident average permeability. 

The low continuity seen in the deformation elements of core NNR4_300, the low 

proportions of highly deformed elements as a main controller in whole-core 

permeability, everything associated with high-quality protolith and low fault throw give 

the lesser anisotropy based on the three statistical methods analyzed. Although cores 
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NNR4_404 and NNR5_291 come from the same interpreted fault zone section, protolith 

quality is almost 15 times better in the second, suggesting that HD elements can still 

have considerable permeability for fluid flow (~13 md).  This arrangement of 

permeability will cause a preferential along-fault flow in this part of the reservoir 

although the possibility of being a sealing feature (at this depth) has low probability.  

Contrary to this spatial consideration, the same fault at 404 ft depth exhibits a high 

chance to be originally sealing (locally) with very low shear-zone permeability (0.768 

md).  Ibañez25 found reductions of about three orders of magnitude of harmonic average 

permeability when using mudstone permeability values as proposed by Gibson. 

 

4.2 Sensitivity of Power Exponents to Facies Proportions and Permeability 

Sensitivity analysis of power exponents was performed in order to demonstrate 

the effectiveness of using simple methods for characterizing the permeability tensor in 

shear zone intervals and also, to identify the precision of the probe tool in high and low 

permeability elements and the effect of errors in volume calculation in the overall 

permeability estimation.  With this analysis, we can solve for the possible causes of 

abnormal power exponents such as values out of the range from 1 to –1, and the no 

feasible numerical solutions to match laboratory measurements. 

Considering whole-core sample geometry and the directional permeability to be 

estimated, we can expect power exponents to be concentrated around specific values. 

Harmonic mean is the case when power exponents (w in Eq. 4.1) is equal to –1; 

geometric mean when w =0, and arithmetic mean when w=1.32 

Although we have fairly good confidence in the estimation of permeability using 

the probe permeameter, this analysis considered a 50% difference (above and below) to 

check if any effect in probe calibration could be the cause of getting no feasible or 

abnormal numerical results.  As the same manner, a reduction (2.5 and 10%) and 

increase (5 and 10%) of the volume of the highly deformed elements were considered.  

Finally, a systematic reduction of 80% of the highly deformed sandstone permeability 
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was additionally analyzed to consider possible problems related to the probe vertical 

resolution when these elements are thinner than probe diameter. 

 

 

 

Table 4.2 – Solving for power exponents matching laboratory calculations.  Shaded cells 
are values that should be considered to represent that particular direction according to 
shear zone configuration (dip/azimuth) and core geometry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analyzing the results of sensitivity for NNR4_404 (Fig.  

Vertical Along Across Vertical Along Across Vertical Along Across

Mean 0.33 6.17 6.17 0.00
Median 0.81 6.17 6.17 0.00
Mean 1.07 12.43 12.43 0.00

Median 2.72 12.43 12.43 0.00
Mean 0.51 7.67 7.67 0.00

Median 1.16 7.67 7.67 0.00

Vertical Along Across Vertical Along Across Vertical Along Across

Mean -0.89 55.10 55.10 0.00
Median -0.36 55.10 55.10 0.00
Mean 0.28 142.70 142.70 0.00

Median 1.89 142.70 142.70 0.00
Mean -0.22 100.50 100.50 0.00

Median 0.48 100.50 100.50 0.00

Vertical Along Across Vertical Along Across Vertical Along Across

Mean N.D. 12.20 N.D. N.D.
Median -1.01 12.20 12.20 0.00
Mean 0.28 145.23 145.23 0.00

Median 1.72 145.23 145.23 0.00
Mean N.D. 8.10 N.D. N.D.

Median -1.85 8.10 8.10 0.00

Vertical Along Across Vertical Along Across Vertical Along Across

Mean N.D. 12.60 N.D. N.D.
Median -9.66 12.60 12.60 0.00
Mean 0.05 91.04 91.04 0.00

Median 3.27 91.04 91.04 0.00
Mean -4.73 31.40 31.40 0.00

Median -1.34 31.40 31.40 0.00

Difference

NNR4_300 Power Exponents LAB DATA Power Average Difference

Core NNR3_269 Power Exponents LAB DATA Power Average

Difference

Core NNR5_291 Power Exponents LAB DATA Power Average Difference

Core NNR4_404 Power Exponents LAB DATA Power Average
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 Analyzing the results of sensibility for core NNR4_404 for all the directional 

permeability considering that this sample does not represent a perfect perpendicular flow 

in none of the main directions, and is highly layered, we can interpret that an increase in 

permeability (about 50% from probe permeameter) or a decrease in the volume of highly 

deformed elements result in a coherent representation of power exponents under known 

conditions (Fig. 4.1).  The fact that this sample has been effectively measured and 

characterized with low permeability variability in each deformation element and high 

confidence in the facies proportions suggest that the higher permeability that is reported 

in laboratory compared with analytical solutions could be the result of small fractures 

and joints that cross the sample parallel to the shear zone. 

 For core NNR5_291, the sensitivity analysis (Fig. 4.2) shows the effect of errors 

in volume and permeability estimations from probe exhibiting the good results from the 

original values considered.  Here, as seen in core NNR4_404 and in general, in all the 

analyzed samples, mean permeability of each deformation element tends to give better 

analytical results compared to the expected power exponents according to each 

directional analysis.  Thus, along shear zone permeability is satisfactorily represented by 

the arithmetic permeability, cross shear zone by the geometric and the vertical 

component by the harmonic average (Fig. 4.2) 

 Core NNR4_300 (Fig. 4.3), a very heterogeneous sample with small highly 

deformed elements, is a good example to examine the effect of these small features and 

the common probe of vertical resolution of the probe to effectively characterize these 

elements.  The unique feasible solution agrees with this layering arrangement of 

perpendicular flow upscalers (harmonic) for the across and vertical direction, and normal 

arithmetic for the along shear zone direction.  For having congruent results according to 

this configuration, the permeability of the highly deformed elements has to be reduced 

about 80% to obtain a match between lab data and analytical results under the range 

expected.  This observation suggests and confirms the problems of precise permeability 

estimation using probe permeameter when highly deformed features are narrow bodies.  
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This anomaly will be important when characterizing low-fault-throw shear zones 

because the low thickness and continuity of these elements. 

 Finally, core NNR3_269 (Fig. 4.4) that represents similar geometry to core 

NNR4_300 and where we could expect similar results in the upscalers to be used, 

showed the same behavior and a decrease in highly deformed permeability should be 

considered in order to match the results.  The explanation here is not necessarily due to 

the thickness of the elements and resolution of the tip but could be the effect of surface 

conditions under some lithological changes.  With the selective measurements from 

surface we have noticed the higher permeability reported in highly deformed facies 

when there is an increase in shale content.  These phenomena could be merely 

superficial and not representative at internal conditions.  Nevertheless, this is an issue 

that should be investigated more deeply.  

 

4.3 Upscaling Permeability at Plug Scale 

 Two plugs, NNR3_269_loc2 sampling the protolith, and NNR4_404_loc5 

sampling the highly deformed element, are considered relative homogeneous sample and 

different averaging techniques are given similar results.  Although we do not 

discriminate the high variability of the sample from the protolith and we consider for 

practical reasons that this sample comes from a homogeneous rock, the absence of a 

notorious layering structure makes us suppose that this sample could be more 

heterogeneous than expected and more data should be obtained to fully characterize this 

element.  In this case, none of the averaging techniques gave a satisfactory match 

suggesting that permeabilities as those found at the top of the plug are not characteristic 

for this rock at this position and some lower values (lower even than those already 

measured with the probe) should be present along the plug. 
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Fig. 4.1– Sensitivity of power exponents to errors in facies proportions and permeability – Core NNR4_404. 
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Fig. 4.2– Sensitivity of power exponents to errors in facies proportions and permeability – Core NNR5_291. 
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Fig. 4.3– Sensitivity of power exponents to errors in facies proportions and permeability – Core NNR4_300. 
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Fig. 4.4– Sensitivity of power exponents to errors in facies proportions and permeability – Core NNR3_269 
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The second sample at NNR4_404_loc5 is clearly characterizing the highly 

deformed sandstone element and shows a very good agreement between Hassler 

permeameter measurements and any of the averaging techniques (Fig. 4.5).   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5– Probe Average permeability versus Hassler permeability for selected plugs. 
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Two additional samples, at NNR3_269_loc3 composed by highly deformed 

sandstone and highly deformed shaly sandstone, and NNR4_404_loc6 representing a 

sucesion of highly deformed sandstone and moderate deformed sandstone, showed 

results of the upscaled permeability in presence of a clear layered structure.  Although 

the first one presents a small permeability variation between the top and bottom, 

harmonic permeabilities agree satisfactorily with Hassler permeameter results (Fig. 4.5).  

The same degree of agreement was observed in the sample at NNR4_404_loc6 

demonstrating the effectiveness of harmonic averaging techniques for layered systems. 

In the other hand, two samples (NNR4_300loc1 and NNR5_291_loc4) exhibited 

a characteristic un-organized or heterogeneous arrangement.  There is a clear 

disagreement between values reported from Hassler permeameter and those coming 

from averaging techniques from probe permeameter, showing higher values those 

coming from the first method.  As mentioned before, this plug showed a very important 

characteristic that was the presence of vugs or secondary porosity produced during or 

post tectonic movement.  The fact that Hassler permeameter has reported an important 

increase of permeability compared to surface measurements (probe) makes suggest that 

vugular or any kind of enhance in porosity and permeability is affecting the overall 

permeability of the sample. 

The second heterogeneous sample at NNR5_291_loc4 shows the good agreement 

between geometric averages and plug permeability from the laboratory, demonstrating 

that in absence of a layered configuration, and with substantial permeability 

heterogeneity, geometric upscalers can account for the true overall fluid flow potential of 

the plug sample. 
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CHAPTER V 

PERMEABILITY UPSCALING USING GEOMETRICAL AND 

PERMEABILITY MODELING 

 

The tridimensional modeling consisted of several steps: 1) the integration of 

geometrical characteristics from core surface analysis, 2) the CT imaging loading and 

volume generation, 3) the modeling and representation of the most important bounding 

surfaces controlling major facies changes, 4) the reproduction of the internal 

stratigraphic framework (azimuth and dip), 5) the incorporation of the detailed 

petrophysical data coming from probe permeameter and surface mapping of deformation 

facies, 6) the population of the core volume using diverse geostatistical techniques, and 

7) the upscale process to a regular grid for simulation purposes. 

 

5.1 Data Loading and Core Stratigraphic Grid Building 

The first four steps mentioned above represent the required tasks to reproduce as 

closely as possible the internal layering and continuity of deformation sequences in the 

sample with the incorporation of all the valuable information for subsequent data 

analysis and population.  From core surface mapping, a practical determination of major 

control geometries and boundaries were recognized, their spatial position carefully 

calculated and exported as control points to the modeling software (GOCAD®).  At the 

same time, all the available voxet images from CT scanning were digitally converted 

from a progressive gray color scale defined in the original captured images.  Then, these 

images were translated in the tridimensional space defined in GOCAD, oriented and 

correctly positioned according to the correspondent vertical slice where it was captured 

(Fig. 5.1a).   

 

                                                           
®  GOCAD Registered Modeling software – Earth Decision Sciences 
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Fig. 5.1 – Modeling steps for shear zone 3-D characterization. (a) The first steps involve the CT scaling, conversion to ASCII 
format and loading. (b) Creation of the 3D Ct volume and integration with probe permeameter data. (c)Identification of 
bounding surfaces and contacts modeling a discrete volume of deformation elements for data analysis and population. 

CT Scanning loading, data 
conversion and scaling

Integration of 3D CT volume 
and Permeability Transects

Internal Architecture Modeling using  
surface contacts and CT imaging.  
Generation of discrete volume of 

deformation elements.  Data analysis by 
sub zones of deformation elements

(a) (b) (c) 
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In order to have a complete tridimensional coverage of the CT value in the grid 

of interest, an additional low-resolution, regular grid was built.  This grid consists of a 

core-long series of layers of 6 mm thick each one, and a 80 x 80 areal mesh. Each digital 

image was transported to the specific vertical location finally generating a tridimensional 

grid containing all the CT information for the sample.  This CT volume was downscaled 

to our stratigraphic grid by direct property transportation to the nearest active cell 

(Fig.5.1b).  The term downscaled is used here because the higher cell density in the 

stratigraphic model although the vertical resolution is kept similar, limited to the 

originally determined 6 mm window from CT scanning.  The incorporation of this 

density information has allowed to analyze the continuity and distribution of 

deformation elements, identify the presence of joints or fractures, and visualize some 

density anomalies caused by heavy minerals, shale grains, and holes produced by 

diagenetic processes, etc. 

All the control points from surface mapping joined to the information from CT 

volume were used to model the visible and totally extended throughout the core surfaces 

in each sample (Fig. 5.1c).  According to the structural complexity, the stratigraphic grid 

volumes were modeled using cylindrical or prism shapes; prism geometries were used 

when truncated and non-parallel surfaces were present (i.e. NNR4_300 and NNR3_269 

shear zones).  With the information of internal layering from surface analysis and CT, 

each subgrid, the portion of the grid limited by well-defined bounding surfaces, was 

subdivided in a series of proportional (between top and bottom) layers of individual 

thickness of 4 mm approximately.  After this definition, the stratigraphic grid is fully 

generated and ready for petrophysical and tomography data loading. 

Fig. 5.1 shows the final integration of CT images for core NNR4_404 after data 

conversion to geo referenced values x, y, and z.  Note the high areal resolution of this 

data compared with the fixed vertical resolution of 6mm (determined by the number of 

cuts and the width of the window of radiological imaging). 

Next, the permeability values from probe tool are loaded as a continuous variable 

in a series of wells located in the correspondent transect position.  Deformation property 
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is loaded as a discrete parameter in the stratigraphic grid.  After loading the CT volume, 

discrete values of deformation elements, and probe permeability measurements, an 

exhaustive data analysis by facies was executed (see Chapter III) determining the degree 

of correlation between variables (permeability-CT#) to estimate internal distribution of 

properties.  As it was stated before, the correlation between CT and permeability is fair 

to good in the undeformed rock facies, but it is null when cataclasis is present.  This 

means that density (and porosity) is not a variable that helps in predicting permeability 

in the shear zone core but can be quite useful to predict permeability in the protolith. 

Nevertheless, CT imaging is important in determining the internal continuity of 

deformation elements, their degree of heterogeneity, and the control of facies contacts in 

a tridimensional fashion.  

 

5.2 Permeability Modeling 

A first step in the petrophysical modeling procedure after grid generation and 

data loading consists in the determination of the degree of dissimilarity of permeability 

with distance, using the variogram estimation.  Unfortunately the areal or strike 

anisotropy of the shear zone cannot be measured with the data and sample available 

although we could expect higher range of correlation than the distance from opposite 

sides of the core sample.  The variability observed in the vertical direction and modeled 

with the variogram in such direction was also considered for the areal component 

although their magnitude for the range was increased to guarantee correlation beyond the 

size of the sample (Fig.5.2).  In general, the variogram was modeled using the internal 

structure and the transformation of the input permeability data using logarithmic and 

normal score transformations.  The ellipsoid of anisotropy was modeled using same 

values for the range in the X and Y directions, generally between 5.5 and 12.8 cms, and 

range values in the Z direction clearly depending on the thickness of the deformation 

elements.  These values ranged between 1.5 and 4.7 cm. 

Regardless of this general assumption in the lateral range of correlation, 

considered based on the lateral continuity of deformation elements in the dip direction 
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and the layered structure of the shear zone, the vertical variogram has very important 

information near the origin that will have highest influence in the results for kriging and 

simulation runs. 

In the case where samples could be totally or partially modeled with a discrete 

population of deformation elements, variogram estimation and modeling was executed 

independently by facies.  Although no difference was noticed in the range of correlation 

between facies in the areal direction due to reasons already explained, the degree of 

correlation in the vertical direction tends to increase with an increase in the degree of 

deformation when the deformation elements are quite thick to give enough information 

about their permeability field not being totally influenced by thickness.  This suggests 

that we could expect a general trend in correlation according to deformation.  As the 

rock suffers moderate degree of deformation (to moderate deformed facies) 

petrophysical anisotropy can rise showing low correlation lengths, but with additional 

deformation and transforming those rocks to a highly deformed elements, those elements 

are petrophysically homogenized exhibiting low heterogeneity.  This observation clearly 

agrees with the low standard deviation observed in the permeability density functions of 

the highly deformed elements. 

Petrophysical properties were populated using: 1) Ordinary kriging, 2) kriging 

with external drift, and 3) Sequential Gaussian Simulation.  Kriging, a basic and most 

widely used statistical technique, estimate a value at a point of a region for which the 

variogram is known, without prior knowledge about the mean.  Additionally, ordinary 

kriging implicitly evaluates the mean in a moving region.  In those locations where 

points, both known and to be estimated, are farer than the modeled variogram range, 

they are uncorrelated.  In these particular locations kriging estimator becomes the 

arithmetic average, consistent with the notion that the arithmetic average is the best 

estimator of the mean for an uncorrelated data set.32 Ordinary Kriging algorithm 

provides a minimum error-variance estimate at any unsampled location giving smooth 

changes and concentrating the results around the expected value of the total measured 

locations. 
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Fig. 5.2 – Variogram model showing the ellipsoid of anisotropy for core NNR3-269.  
Units in millimeters. 
 

 



 

 

77

Bivariate geostatistical techniques considering an external variable (CT#) was 

used when the correlation between both variables was statistically significant and density 

derived from CT was giving some information about the areal distribution of the 

permeability field.  This modeling technique is of particular importance when it is 

desirable to avoid the use of cokriging due to its additional complexity in modeling the 

cross-variograms. That is the case considered in cores NNR3_269 and NNR4_300 (Fig. 

3.11) where Kriging with External Drift was additionally used.  This kind of kriging 

estimate uses a trend that is a linear function of a secondary property (drift) that needs 

not be in the units of the data (CT#).  That means that the dependence of the primary 

variable (permeability) on the secondary variable (CT#) is merely deterministic. 

Additionally, multiple realizations of conditional simulations were run using a 

sequential gaussian simulation procedure that uses the kriging mean variance for 

generating a gaussian field.32   Each variable is simulated sequentially according to its 

normal CCDF (locally conditioned cumulative distribution function). The conditioning 

data consists of all original data and all earlier simulated values found within a vicinity 

of the location to be simulated.  The locations to be simulated are randomly picked and 

the generated output value is influenced by neighboring, original data values (obtained 

by direct sampling) and by neighboring, already-generated values. The simulation 

process is constrained by the probability distribution function (PDF) describing the 

original data values in such a way that each simulation will match to the original 

distribution function. This technique assumes the original distribution function to be 

unbiased and representative of the total field being modeled. Due to the fact that the 

CDF and PDF at all unsampled locations are influenced by its neighboring simulated 

values, the final simulation incorporates spatial continuity patterns inferred from the 

original data, defined with the variogram model. 

For all this step of population, permeability modeling was executed under the 

logarithmic data transformation because this guarantees that the permeability field can 

be characterized by a gaussian field allowing to keep a simple model when single and 
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bivariate analysis is performed, and give us symmetrical probability density functions 

for kriging and simulation processes. 

The final step comprises a scaling procedure that will transport the modeled and 

simulated values from the complex stratigraphic grids to a regular, orthogonal-cell 

simulation grid.  This final, regular grid geometry (50x50 areal cell arrangement, and 4 

mm thick layers) keeps internal structure geometrically simple avoiding irregular cell 

geometries and stratigraphic pinch outs (Fig. 5.3) and maintains orthogonality as an 

essential characteristic for solving differential flow equations with the greatest accuracy.  

According to sample geometry, facies proportions and distribution, and original 

petrophysical characteristics measured with the probe permeameter, each model was 

independently evaluated comparing the input and output probability and cumulative 

distribution functions of the logarithmic transformation of the permeability field.  Each 

model is also independently modeled and some important features that were considered 

in each specific case will be described next. 

 

5.3 NNR4-404 Shear Zone 

 During modeling procedures kriging estimation and conditional simulations were 

executed for core NNR4-404 to be evaluated with numerical simulation.  Shear zone at 

NNR4-404 and the sample selected for the present analysis shows a very distinctive 

geometrical and petrophysical contrast between the highly deformed elements and the 

protolith. The sample at this level exhibits a very consistent organization and layering 

produced by the high degree of cataclasis from relatively high displacement, creating 

very continuous bands of highly deformed elements.  The limits of the tabular band of 

highly deformed elements and the lithologic contact of the shaly material were the 

control surfaces modeled determining layering orientation and dip (Fig. 5.1c).   
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Fig. 5.3 – Scaling of geostatistical models for reproducing laboratory samples.  (a) Geostatistical model of permeability. (b) 
Regular grid with parallel layers for simulation purposes.  (c) Final volume of permeability for numerical simulation (kriging 
estimate for core NNR4-404). 
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This sample does not exhibit a clear layering pattern in the protolith above the 

highly deformed facies (Fig. 3.3), therefore for simplicity, and taking into account the 

low variability in permeability in this element, layering was maintained sub parallel to 

these control surfaces. 

 In general, log permeability data sampled at NNR4-404 exhibits a mean 

permeability of to 0.41 with a standard deviation of 0.8438 for the whole population 

(Fig. 5.4).  The output modeled grid using kriging estimates and the information about 

proportion of deformation elements exhibits an expected log-permeability value of 

0.5713 and standard deviation of 0.7924.  From this plot we can notice the bimodal 

distribution of the permeability field, the left hand side dominated by the high-deformed 

elements (sandstones and clay) that represent 49% of the core sample (see Table 3.1).  

The right hand side of the bimodal histogram is composed essentially by the moderate 

and relatively undeformed elements with permeabilities above 5 md.  This sample from 

the highest throw interval shows a clear organization of facies in tabular bodies that were 

represented discretely in the model for having a close representation of the permeability 

assembly. 

  

5.4 NNR5-291 Shear Zone (Upper Section) 

 The sample at NNR5-291 was modeled using two sub parallel surfaces located at 

the bottom of the core that represent the azimuth and dip of the main slip surface (see 

Fig. 3.3, highlighted contacts shown with green arrows).  These bounding surfaces 

control the extension and geometry of the two main groups of deformation elements in 

this section of the shear zone although the discontinuity is more evident upward in the 

sequence. 
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Fig. 5.4 – Comparison of Input and Output data for the kriging estimation of 
permeability in core NNR4-404 
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Fig. 5.5 – Comparison between input and output data for the kriging estimation of 
permeability in core NNR5-291. 
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is clearly visualized the change and variability in the degree of continuity of highly and 

moderate deformed elements depending the distance core shear zone. 

Although the overall behavior of the log-permeability shows a more uniform 

distribution with a fairly acceptable gaussian distribution, detailed analysis of the total 

probability density function shows the characteristic flow properties of the more than 3% 

of Highly deformed, relatively highly continuous deformation elements, located in the 

permeability spectrum around 7 md (left hand side of histogram, Fig. 5.5).  Analysis of 

the logarithm of permeability for input data showed an expected value of 1.8768 with a 

relatively very low standard deviation of 0.6613.  A model using Kriging algorithms 

estimates very close this behavior with mean permeability of 1.9557 and standard 

deviation of 0.6028. 

Typical Sequential Gaussian Simulation realizations exhibited expected (mean) 

log permeability values of 1.8768 md and standard deviation of 0.73, reproducing more 

closely the whole variability of the input parameter (Fig. 5.6).  Nevertheless, the 

impossibility of creating a prior discrete volume of deformation elements to control the 

distribution of the thin and highly discontinuous HDss elements at the upper section of 

sample can result in the sub estimation of the potential of HDss as flow barriers because 

their continuity has not been adequately considered.  For these cases, primary models 

using indicator kriging or object based modeling could help to integrate and consider the 

effect of very small features in the overall permeability field. 

 In general, the two shear zones from high displacement fault intervals exhibited a 

remarkable degree of layering and internal organization due to the high degree of 

cataclasis experienced.  This observation agrees well with Ibañez analysis for the 

continuity of deformation elements of the 28 samples from the same fault zone.25 
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Fig. 5.6 – Comparison between input and output data for one Sequential Gaussian 
Simulation realization of permeability in core NNR5-291. 
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5.5 NNR4-300 Shear Zone 

 The low throw fault shear zone samples exhibited thinner and more 

discontinuous bands of deformation elements.  This caused some difficulties in modeling 

because we were enable to strictly reproduce the presence and discontinuity of certain 

deformation elements.  Despite the high heterogeneity shown, this sample was modeled 

using a near parallel layering to conform to the thin, discontinuous bands of highly 

deformed elements present in the middle part of the sequence (Fig. 3.5). Although the 

sample exhibits high heterogeneity, a higher correlation length can be expected in that 

direction of extension of the deformation elements, corresponding to a dip azimuth of 

67° SE.25,26 

 From histogram analysis of the obtained data, the whole NNR4-300 sample 

exhibits an expected log-permeability of 1.6986 and a standard deviation of 0.6622 (Fig. 

5.7).  When applying an ordinary kriging estimate, average (mean) logarithmic 

permeability was 1.763 and standard deviation of 0.4315.  Information from CT imaging 

was incorporated in the geostatistical population using kriging with external drift, 

considering a trend as a linear function of this secondary property (drift) and supported 

by the acceptable correlation exhibited in the analysis for the low fault-throw samples.  

This algorithm and procedure will allow to evaluate the practical aggregated value of 

tomography in the characterization of the shear zones. Kriging with external drift 

estimated a mean log-permeability of 1.8096 with a standard deviation of 0.4728.  From 

sequential gaussian simulation techniques, at right hand side of Fig. 5.7, without discrete 

(facies) conditioning, the output statistics were satisfactory accomplished with a mean 

permeability of 1.69103 and a standard deviation of 0.6282. 

 Kriging estimates and Conditional simulation realizations were executed in the 

modeling step with the objective to match the laboratory measurements and additionally 

have an idea about the petrophysical continuity of deformation elements based on 

overall agreement with subsequent laboratory matching.  Fig. 5.8 presents the display 

the two different kriging models (with and without drift) and three selected conditional 

simulations with the correspondent permeability histogram.  Kriging models show more 
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petrophysical continuity inclusive when considering the external variable CT.  

Variogram ranges considered for these models in the areal (layering strike and 

perpendicular) direction are greater than core size, assumption that suggests that 

permeability is in correlation at core scale.  In the direction perpendicular to this plane, 

the range of correlation will be obviously controlled by the thickness of each 

deformation element. 

 

5.6 NNR3-269 Shear Zone 

 The lowest throw sample, represented by the shear zone NNR3-269, presents a 

relatively continuous band of highly deformed elements with a high percentage of clay 

(18%).25  This core was modeled with the bounding surfaces of the highly deformed 

facies (using surface mapping and CT scanning) as control of internal architecture in the 

well-defined and totally sampled, shear zone.  The contact between protolith and the 

shear zone is unconformable with a very distinctive change in dip and azimuth.  This 

feature required individual control surfaces to build the modeling grid for geostatistical 

population.  For the shear zone, internal layering is created proportional to the top and 

bottom limits represented by the slip surfaces with an approximate dip of 69º (dip 

azimuth to the SE) whereas layering in the protolith was controlled by nearly horizontal 

surfaces. Similar to the steps developed during the modeling procedure for core 

NNR4_300, the CT# volume was also incorporated for analyzing the degree of 

correlation between density and permeability.  Input data from probe measurements have 

a mean log-permeability of 1.4536 with a standard deviation of 0.8180 while the Kriging 

estimation concentrates the mean log-permeability value in 1.58065 and SD of 0.5523.  

If CT volume is considered using the kriging with external drift estimator, the mean log-

permeability is concentrated around 1.6798 and SD of 0.6203.  Although there is a small 

change in the mean estimation, kriging with external drift shows an improvement in the 

reproduction of the heterogeneity of the phenomena (histogram of log-permeability, Fig. 

5.9).  Using one of the randomly selected sequential gaussian simulations, the mean log-
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permeability increase to around 1.7776 with a higher standard deviation of about 0.9776, 

but reproducing very closely the overall heterogeneity observed from input data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.7 – Comparison between input and output data for the kriging estimate, kriging 
with external drift and one realization of sequential gaussian simulation of permeability 
in core NNR4-300. 
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Fig. 5.8 - Kriging , Kriging with external drift, and three selected conditional simulation realizations for core  NNR4-300.  
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Fig. 5.9– Comparison between input and output data for the kriging estimate, kriging 
with external drift and one realization of sequential gaussian simulation of permeability 
in core NNR3-269. 

  

 

 

Fig. 5.10 illustrates the main visual characteristics between the different 

algorithms used to model this core. As seen in core NNR4_300, kriging estimates 

enforce the lateral continuity of the low and high permeability elements producing a 

more homogeneous shear zone throughout the sample.  
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Fig. 5.10 -  Kriging , Kriging with external drift, and three selected conditional simulation realizations for core  NNR3-269. 
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CHAPTER VI 

NUMERICAL SIMULATION AND LABORATORY MATCHING 

 

6.1 Testing of the Numerical Model 

 Prior to estimating of the whole-core samples using flow simulation, several tests 

under known conditions were run to ensure the reliability of the numerical model.  

 

6.1.1 Vertical Flow Test 

For vertical permeability calculations, the grid configuration corresponds to an 

areal model of 50x50 cells with a detailed external cell inactivation to represent core 

geometry, and a parallel horizontal arrangement of 4 mm thick layers (60 layers), for a 

total cell count of 150000, 96000 activated to flow (Fig. 6.1).  Cell size, approximately 

equals to 1.2 mm-side square in the areal direction and 4 mm in the vertical direction 

was choosen in order to incorporate practical resolution from CT scanning (already 

included in the modeling step) and vertical resolution from probe measurements, 

keeping cells as uniform as possible to improve accuracy.  All models were injected in 

the first (top) layer in all the cells at a bottom hole pressure (BHP) of 14 atm.  In the 

same manner, the last (bottom) layer was opened to production in each cell with the 

BHP set at 13 atm.  The flow simulation at time steps of 0.01 hours was run until steady-

state conditions were reached. 

We began with homogeneous models of either 100 or 500 md permeability.  The 

“isotropic” cases in Table 6.1 show the results of calculated permeability from 

numerical simulation compared with the equivalent analytical solution using arithmetic 

and harmonic averages.  The simulation results are within 1% of the known 

permeability.  Heterogeneous, simple layered systems were also evaluated (Fig. 6.1), 

using layers of low permeability (1 md, and 10 md), vertically and horizontally 

distributed at middle part of the hypothetical core sample. 
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Fig. 6.1 - Vertical simulation models for numerical testing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.2 - Along (a) and across (b) flow models for numerical testing. 
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6.1.2 Horizontal Flow Test 

Along and across flow simulation performed over same grid configuration explained 

above for vertical flow test, was developed using injectors and producers located along 

the core where they were opened to flow in cells from the first to the last layer in each 

model (Fig. 6.2).  The exact geometric configuration was used in the laboratory where 

whole-core permeability was estimated under air injection (see Whole-core Permeability 

measurements, in Chapter III). 

According to that procedure and configuration used in the laboratory, the cores 

were flowed using the same angular opening of 90°.  From experimental data available,41 

this angular opening exhibits a geometric factor of 1 (Fig. 3.13), value that was used in 

the estimation of average permeability for all the cores (Eq. 3.5). 

The same quality control developed for vertical flow simulation was done to 

check the error associated with grid geometry and any other problem besides 

permeability assignation. Simulation results in across and along directions are within 2% 

of the known permeability, showing a slight increase in error in this direction compared 

with vertical calculation (Table 6.1).  The component of error associated to well index42 

was found to be minimum as the bottom hole flowing pressure and the wellblock 

pressure were numerically equal. 

Calibration tests were useful to determine the degree of confidence in posteriori 

estimations.  The low difference between analytical estimations and simulation results 

gave plenty validity to the numerical technique to be evaluated.  Nevertheless, the 

possible source of discrepancies can be explained by numerical precision in the 

permeability field during simulation, in the calculation of effective length and area for 

estimating average permeability, and the fact that we are not considering the complex 

geometry arrangement for the analytical technique estimation. 
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6.2 Numerical Simulation of Detailed Models 

Each deterministic (Kriging estimations) and stochastic realization was evaluated 

using the ECLIPSE® simulator for a monophasic (water) system in laboratory units 

under injection and production conditions identical to those used for testing. 

Comparing the lab whole core tests with simulation, the kriging estimates tend to 

give better agreement (Fig. 6.3).  Although the number of stochastic realizations was 

limited, numerous realizations should reproduce the variability of plausible or equi-

probable models in a range spreading from the kriging estimation.  However, the fact 

that kriging estimates are satisfactorily reproducing laboratory measurements could be 

an indication of the low degree of heterogeneity in permeability of each deformation 

element.  

It is important to analyze the simulation results depending on the flow direction.  

When considering the flow in the vertical direction, the samples with the highest fault 

throw and well-represented deformed elements exhibit a reasonable match with 

laboratory measurements (see samples at NNR4-404 and NNR5-291 in Fig. 6.4). In the 

highest throw sample (NNR4_404), errors are as low as 2.5% while in sample 

NNR5_291 the degree of disagreement is up to 56% for kriging estimates and up to 

128% for one of the selected conditional simulations evaluated. 

Error values tend to keep increasing with higher throw, varying from 109% up to 

400%, with a slight improvement of matching using conditional simulation realizations.  

Compared to the laboratory values, higher permeability from numerical estimates is 

attributed to the low resolution of the probe permeameter.  The permeability of the 

highly deformed elements in the samples with limited exposure and thickness was 

substantially over estimated and its effect in reducing permeability is greater compared 

to the results from probe permeability modeling.  This observation agrees well with the 

results of the sensitivity analysis carried out with the evaluation of analytical solutions 

using power exponents, where a clear reduction of permeability of the highly deformed 

elements should be considered in order to match laboratory results (see section 4.2). 
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Table 6.1 – Test results for a cylindrical grid (50x50x60) before simulation runs. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K RUN K,  md Model Grid Configuration Arithmetic Harmonic Error Analy.- 
Num.

md %

100 Isotropic 1 100.704 8555.8 Isotropic 150000 100 100 0.70%
500 Isotropic 10 503.520 42779.0 Isotropic 150000 500 500 0.70%

100 & 1 Horizontally Layered 84.088 7144.1 10 hor. layers of 1md at center 62500*100 25000*1 62500*100 83.514 0.69%
100&10 Horizontally Layered 85.598 7272.4 10 hor. layers of 10 md at center 62500*100 25000*10 62500*100 85.013 0.69%
100 & 1 Vertically Layered* 4.698 399.2 10 ver. layers of 1 md at center 60(1000*100 500*1 1000*100) 4.616 1.79%
100 & 1 Vertically Layered* 19.792 1681.6 2 ver. layers of 1 md at center 60(1200*100 100*1 1200*100) 19.483 1.59%

100 Isotropic 11 100.704 8555.8 Isotropic 100 md 150000 100 0.70%
500 Isotropic 12 503.519 42779.0 Isotropic 500 md 150000 500 0.70%

100 & 1 Horizontally Layered 84.088 7144.1 10 hor. layers of 1md at center 62500*100 25000*1 62500*100 83.514 0.69%
100&10 Horizontally Layered 85.598 7272.4 10 hor. layers of 10 md at center 62500*100 25000*10 62500*100 85.013 0.69%
100 & 1 Vertically Layered* 79.020 6713.5 10 ver. layers of 1 md at center 60(1000*100 500*1 1000*100) 79.336 0.40%
100 & 1 Vertically Layered* 96.403 8190.4 2 ver. layers of 1 md at center 60(1200*100 100*1 1200*100) 95.867 0.56%

100 Isotropic 100.951 428.2 Isotropic 100 md 150000 100 0.95%
500 Isotropic 504.757 2140.8 Isotropic 500 md 150000 500 0.95%

100&1 Hor. Layered 5.679 24.1 10 hor. layers of 1md at center 62500*100 25000*1 62500*100 5.719 0.70%
100&10 Hor. Layered 39.979 169.6 10 hor. layers of 10 md at center 62500*100 25000*10 62500*100 40.020 0.10%
100&1 Hor. Layered 23.179 98.3 2 hor. layers of 1md at center 72500*100 5000*1 72500*100 23.257 0.34%

Time Step in simulation of 0.01 hours
∆P = 1 atm.
Area = 27.8 cm2
Length = 23.6 cm
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Fig. 6.3 –  Numerical simulation results for deterministic (kriging and kriging with external drift) and two randomly selected 
conditional simulation models. 
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Fig. 6.4 – Simulation and laboratory measurements for vertical flow. 

 

 

 

The across flow permeability estimates (Fig.  6.5) show a general agreement with 

laboratory measurements. There is a moderate over estimation of permeability that is 

also consistent with the problem in the definition of the flow characteristics of the small, 

highly deformed elements. The error in the simulated permeability is up to four times the 

laboratory calculation for selected sequential Gaussian simulations.  Here again, kriging 

estimates have shown better agreement showing errors between 49 and 92%. 

Finally, the along flow simulation results (Fig.  6.6) point out the low impact that 

the highly deformed elements have in the overall permeability in the along shear-zone 

direction, when they are thin and volumetrically insignificant, showing a very good 

match with the laboratory measurements for the whole-core sample.  Errors in the 

Simulation versus Laboratory
Vertical Permeability

0.1

1

10

100

1000

0.1 1 10 100 1000

Laboratory Permeability, mD

Si
m

ul
at

io
n 

Pe
rm

ea
bi

lit
y,

 m
D

NNR4_404_K NNR5_291_K NNR3_269_K NNR4_300_K
NNR5_291_SGS NNR3_269_SGS NNR4_300_SGS

60.0

29.5

4.5

6.5

# Fault Throw, ft

60.060.0

29.529.5

4.54.5

6.56.5

# Fault Throw, ft## Fault Throw, ft

Simulation versus Laboratory
Vertical Permeability

0.1

1

10

100

1000

0.1 1 10 100 1000

Laboratory Permeability, mD

Si
m

ul
at

io
n 

Pe
rm

ea
bi

lit
y,

 m
D

NNR4_404_K NNR5_291_K NNR3_269_K NNR4_300_K
NNR5_291_SGS NNR3_269_SGS NNR4_300_SGS

Simulation versus Laboratory
Vertical Permeability

0.1

1

10

100

1000

0.1 1 10 100 1000

Laboratory Permeability, mD

Si
m

ul
at

io
n 

Pe
rm

ea
bi

lit
y,

 m
D

NNR4_404_K NNR5_291_K NNR3_269_K NNR4_300_K
NNR5_291_SGS NNR3_269_SGS NNR4_300_SGS

60.060.0

29.529.5

4.54.5

6.56.5

# Fault Throw, ft## Fault Throw, ft

60.060.0

29.529.5

4.54.5

6.56.5

## Fault Throw, ft## Fault Throw, ft



 

 

98

numerical estimation of permeability in this direction are ranging from 3.8 % and 37.8%, 

with the higher values for selected sequential gaussian simulation models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.5 – Simulation and laboratory measurements for across flow for kriging estimates 
and two conditional simulations. 
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The static models evaluated under numerical simulation have demonstrated the 

high continuity of individual elements at least at core extension and the variogram used 

for modeling suggests that the anisotropy in the plane parallel to the internal layering is 

low.  Perpendicular to this plane, the shear zone is highly layered in all the samples in 

analysis and the thickness of each deformation element and the whole shear zone is 

clearly controlled by fault displacement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.6 – Simulation and laboratory measurements for along flow. 
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6.3  Numerical Analysis Incorporating Results from Sensitivity of Power Exponents 

From previous analysis according to the use of power exponents it was 

demonstrated that highly deformed elements were possibly overestimated in 

permeability by a factor of 5 (section 4.2) in samples where those elements are narrow 

and below probe tip resolution.  In order to test and quantify the effect of these important 

elements, an updated modeling step was performed, keeping same procedures in former 

models but reducing the permeability of highly deformed elements by a factor of 5.  For 

sensitivity control, models using a reduction of half the value of permeability were also 

created.  Kriging estimates were newly generated and exported to the simulator for fluid 

flow evaluation. 

Modeling and fluid flow simulation results from core NNR3_269 and 

NNR5_291 (Fig.  6.7 and Fig.  6.8 ) show very satisfactory match when the permeability 

was reduced by a factor of 5.  Although in core NNR5_291 the original results were 

evaluated satisfactorily, this fine permeability tuning of the small volume of HDss facies 

gave a notorious improvement in the match between simulated and laboratory 

permeability. 

For sample NNR4_300 (Fig.  6.9) a dual solution was executed in order to get 

numerical match between flow simulation and laboratory data.  For this particular 

sample it was necessary to increase the volume of highly deformed elements in about 

3.5% additionally with the proposed decrease in permeability for this facies.  This effect 

is suggesting the presence of very thin bands of highly deformed elements that can be 

easily missed during the surface-mapping step.  Many of small narrow features that were 

originally considered as moderate deformed elements might be highly deformed bands 

that are creating additional flow restrictions in the sample. 
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Fig. 6.7 – Results from reduction of permeability of HDss in core NNR3_269. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.8 – Results from reduction of permeability of HDss in core NNR5_291. 
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Fig. 6.9 – Results from reduction of permeability and increase in proportions of HDss in 
core NNR4_300. 

 

 

 

 

 

 

 

 

 

 

NNR4_300 Simulation versus Laboratory
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6.4  The Internal Permeability Anisotropy of the Shear Zone as an Independent 

Body 

Unfortunately there are not many available samples to evaluate shear zone 

permeability anisotropy as an independent unit (complete and continuous lithological 

record from top to bottom of the whole shear zone).  Often, continuous core recovery is 

poor because cores may be broken.  Nevertheless, core NNR3-269 contains a continuous 

and totally exposed shear zone that can be evaluated using numerical simulation and 

compared with future field test analysis.  At the date of this investigation, no field-scale 

evaluation of this small faulted interval has been made but, Ibañez25 has estimated this 

interval to have 3.2 md permeability with standard deviation of 0.3 md. 

Using a new arrangement of injectors and producers to simulate flow from top of 

to bottom of the shear zone (along the slip surfaces) (Fig. 6.10), the numerical 

permeability estimate across the shear zone was calculated to be between 3.28 and 4.072 

md, from kriging and five sequential gaussian realizations.  The agreement with 

Ibañez’s25 estimate is good and particularly better for the model with lower anisotropy 

within the shear zone (kriging model).  

Across shear zone, in this case corresponding to a direction parallel to the dip 

azimuth, permeability estimations from simulation runs exhibited a similar range of 

permeability (3.619 – 6.455 md) to those obtained for the vertical direction.  Contrasting 

with these results, along shear zone permeabilities are between 9.24 and 32.14 md, 

values that represent the effect of the incorporation of moderate deformed elements 

within the shear zone, facies that is also continuous from inlet to outlet. 

These results do not consider the proposed re-assignation of permeability for 

highly deformed elements as a result of the previously discussed low-resolution effect of 

probe measurements at front of narrow features.  Considering that Ibañez analysis has 

similar resolution limitations, this comparison is still valid although the true shear zone 

permeability as an independent body has to consider the proposed reduction of 

permeability for the HDss facies.   
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Fig. 6.10– Simulation of the independent shear zone unit in core NNR3-269.  a) 
Permeability model.  b) Pressure volume after two time steps for the vertical flow 
simulation. 

 

 

Wells

a)

b)

Wells

a)

b)



 

 

105

From this sensitivity analysis, the whole shear zone exhibited values of vertical 

permeability between 1.136 and 1.41 md, across shear zone permeability between 1.867 

and 3.33 md, and along shear zone permeability ranging from 5.86 to 20.38 md.  The 

overall decrease of average permeability from models coming from original and re-

evaluated data for the highly deformed elements is between 1.57 and 2.89 times, 

demonstrating the importance of an effective permeability characterization of the highly 

deformed elements as main controllers in shear zone fluid flow. 

Core NNR4-300 can be also evaluated as a complete shear zone, although the 

whole shear interval is not totally recorded by the sample (see Fig. 2-5).  The 

permeability estimate for this core sample is overestimating the real shear zone 

permeability because the presence of an additional part of this deformed material at the 

bottom of the sample should decrease overall permeability to the orders reported by 

Ibañez (6.2 md approximately). 

Table 6.2 compiles the results from analytical solutions performed by Ibañez25 

and the results from this study for the two samples where the shear zone is nearly totally 

represented.  

Combining the analytical estimates of shear zone permeability from Ibañez with 

the detailed characterization of selected samples from this study, we infer that the highly 

deformed elements have a large effect on the determination of the permeability across 

this physical boundary (Fig. 6.11).  The relationship between HD element permeability 

for each particular location and the correspondent shear zone permeability has a 

significant trend or correlation that can be used to predict the flow behavior at different 

fault locations. 
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Table 6.2 – Comparison of shear zone permeabilities from Ibañez and results of the 
evaluation from the two low throw samples. Adapted from Ibañez25. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shear Zone Strat. 
Throw

SZ 
Thickness

HD 
Thickness

MD 
Thickness

Hole-Depth (ft) (ft) (ft) (ft) SZ-Perm SD Vertical Across Along
3-202 46.0 0.659 0.30 0.10 0.15 0.01
3-231 8.0 0.305 0.06 0.10 2.2 0.4

3-269 4.5 0.2 0.17 0.02 3.2 0.3 3.28-4.072Φ 

1.36-1.41ΦΦ
3.619-6.455Φ 

1.867-3.33ΦΦ
9.24-32.14Φ 

5.86-20.38ΦΦ

4-201 1.0 0.072 0.00 7.9 0.7
4-300 6.5 0.184 0.15 98.42 6.2 0.6 12.6** 31.4** 91.036**
4-404 60.0 0.853 0.35 0.14 0.3 0.03
5-266* 2.0 0.131 2.9 0.03
5-274* 3.0 0.24 0.24 0.00 1.2 0.02
5-279* 1.0 0.089 0.06 0.03 4.5 0.13
5-291* 29.5 0.696 0.23 0.19 1.7 0.11
5-308* 24.0 0.42 0.24 0.14 1.8 0.08
5-327* 1.0 0.154 0.03 0.13 2.6 0.1
6-250* 5.0 0.325 2.2 0.03
6-254* 46.0 0.518 0.23 0.15 1.6 0.1
6-281* 1.5 0.148 0.10 0.04 2.8 0.17
6-287* 1.5 0.203 0.11 0.06 1.9 0.19
7-202 39.5 0.22 0.19 0.00 0.9
7-237 15.0 0.285 0.07 0.03 1.2 0.17
8-252 33.5 0.823 0.15 0.58 1.6 0.08
8-287 16.5 0.456 0.12 0.15 2.3 0.15
9-277 2.0 0.21 0.05 0.07 2.3 0.18
9-315 16.5 0.262 0.10 0.07 5.2 0.85
9-321 25.5 0.745 0.10 0.63 1.9 0.13

10-283 3.0 0.364 0.05 0.22 2.2 0.31
10-287 3.0 0.24 0.16 0.12 1.8 0.2
10-339 19.0 0.768 0.17 0.52 2.1 0.16
10-358 0.043 0.04 0.00 1.2 0.08
10-360 0.315 0.17 0.11 1.9 0.09
10-363 0.236 0.04 0.18 1.6 0.06

* denotes faults with strike and dip measurements made directly on core, assuming a north-south strike of bedding.
** values from laboratory measurements    
Φ  permeability from numerical simulation of  models from original data  
ΦΦ proposed "true" permeability from sensitivity analysis

32.0

 Present Study SZ_Numerical Sim
Ibanez Analytical 

Estimation of 
Permeability
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Fig. 6.11– Correlation between Mean and Median HDss permeability and total shear 
zone permeability. Input data from Ibañez25, and present study. 
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It is interesting that the best linear fit is obtain at almost 45 degrees for both cases 

supporting the expected effect from these highly continuous elements throughout the 

core sample. Statistically, the use of mean or median permeability, as suggested by 

similar correlation functions and coefficients of determination, is irrelevant since the 

permeability of the highly deformed elements tend to be gaussian distributed. Besides 

highly deformed elements, shaliness and clay layers in the system also reduce the 

permeability and cause an overestimation of the total permeability if only the HD facies 

element permeability is used to predict overall behavior.  This effect makes that the 

majority of control points fall above the 45° line. 

We have demonstrated the importance of the petrophysical characteristics of 

highly deformed elements, their variability according to protolith characteristics and 

degree of cataclasis.  These elements are geographically variable in terms of flow 

behavior and should be characterized in detailed to be able to have estimations of total 

shear zone permeability for the determination of potential transmissibility between 

blocks in contact. 

Next chapter will describe the proposed methodology based on the current 

findings and explains how the incorporation of probability functions according to 

specific correlations can help in creating models that accounts for variable petrophysical 

properties of shear zones.  This procedure is the start point to develop systematic 

approaches for the incorporation of the inherent shear zone permeability anisotropy in 

full field models that allows explaining common drainage anomalies in sand-shale 

sequences at initial conditions and after dynamic changes in the reservoir.
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CHAPTER VII 

INTEGRATION OF HIGH DETAIL CHARACTERISTICS OF SUBSEISMIC 

FAULT SHEAR ZONES AT FIELD SCALE  

 

7.1 The Permeability Scale Issue and Proposed Method 

 When dealing with impermeable or semi-permeable bundles or baffles, the 

permeability scale becomes critical if a detailed quantification of flow potential has to be 

addressed.  For instance, if an infinite, continuous low permeability band (i.e. shear 

zone) is required to be incorporated in a detailed simulation model, many modeling 

techniques will group this narrow belt of deformed facies in a major volume of mixed 

lithologies with variable permeability quality.   Traditional static modeling approaches 

consist in the representation of the fault geometry (strike, dip, throw) using very 

sophisticated grid assembly to represent the most closely possible the fault plane 

geometry and the calculated throw.  Specific effort is typically done to accurately 

represent the connectivity along the fault plane but the consideration of the presence of 

deformed material along this plane is commonly not considered. 

Many studies have been focused in the determination of the sealing character of 

large faults with enough throw and mixing lithologies to guarantee the presence of 

sufficient and well-continuous shale in the shear zone.  As stated in Chapter I, sealing 

predictors based on shale content and fault displacements have been effectively tested in 

many areas, but the quantitative effect is still an issue of continuous research.  It is also 

important this quantification when dealing with low throw (subseismic) faulting and in 

presence of shale-free formations, such the data set for the present investigation.  Low 

throw faulting in single lithology formations is a common scenario in reservoir 

development and the effects of shear zone in flow behavior are always under 

investigation.  The findings in this research about the degree of correlation between 

shear zone permeability and thickness and the characteristics of the host rock and the 

degree of displacement should be used to understand and predict the effects of these 

small barriers especially at mature production stages. 
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Faults represent specific locations where these small, continuous, and low 

permeability elements are present and their representation in simulation grids are being 

incorporated using transmissibility multipliers between adjacent cells.  This approach 

suggests and clearly implies that the storage capacity of this narrow zone is minimal and 

all its importance is focused in the flow characteristics.   

 Simulation engineers do not commonly have additional studies that connect 

geological and petrophysical features and characteristics to find a tridirectional 

arrangement of permeability associated to fault corridors.  For this reason, the faults 

sometimes are treated as discrete baffles that are used to adjust historic production or 

specific drainage anomalies, increasing or decreasing the conductivity through the 

blocks in order to improve the matching procedure. This task is subjectively done 

generally and it is not a result of detailed interpretation of the deformed elements within 

the shear zone. 

 We need to use geological information to guide the matching step in faulted 

blocks and be able to consider future drainage anomalies such as full or partial leaking or 

isolation with the dynamic changes of the reservoir.  To obtain this understanding of 

flow behavior, transmissibility multipliers have to be geologically defined and be 

consistent with full field reservoir modeling.  

 There are currently two commercially available approaches (with software), 

Havana* and TransGen™, that are focused in the sensitivity analysis of fault effects, 

based essentially in empirical functions of the throw of related faults and the shale gouge 

ratio43,44.  According to Manzocchi et al.45, fine-scale numerical modeling indicates that 

variability in the fault zone permeability and thickness should be considered together, 

and that the best measure of flow through a fault is the arithmetic average of the 

permeability to thickness ratio.  The TransGen43 and Havana44 software use the 

empirical prediction of median shear zone permeability and thickness from geometrical 

and petrophysical details of the reservoir model, as generally proposed by this current 

investigation.  We propose with this research that the relationship between the host rock 

                                                           
*   Norwegian Computer Centre.    ™   trademark of Badley Technology Ltd.    
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and the degree of deformation, controlled by fault displacement, be considered as the 

main predictor of shear zone permeability when the reservoir has low shale content.  

Relationships found with the analysis of the Hickory Sandstone core intervals have 

given numerical estimates of shear zone permeability and thickness that will reduce the 

uncertainty in the determination of fault transmissibility and it could be used as 

analogous in similar areas under similar stratigraphic and structural setting. 

 The software tools available to calculate the transmissibility multipliers consider 

the input of a very detailed permeability and shale model to recalculate internally the 

shale-gouge-ratio and the incorporation of the fault throw and shear zone thickness to 

solve for the fault-zone permeability.  The final step consists in the determination of 

transmissibility multipliers that will be exported for final simulation purposes (Fig. 7.1). 

The application of this method would require strict refinements of the methodology to 

account for some important geological factors such as: 46  

- the variability of rock permeability (in the shear zone and host rock) and 

thickness over short distances along the fault trace, 

- the effect of errors in the definition of displacements 

- the complexity of fault zone structure that sometimes increases the flow across 

faults are effects that vary from area to area and require detailed analysis of 

scaling of segmented faults and about the geometry of damaged zones36 

- the analysis of diagenetic effects, particularly those which are depth dependent. 

 This research proposes individual characterization of reservoir properties and 

geological attributes by reservoir, finding useful trends and correlations to reduce the 

uncertainty in the determination of shear zone permeability and thickness.  As it was 

stated before, SGR is not an important variable in low shale-content formations and for 

this reason a more systematic approach considering the process of deformation should be 

incorporated.  The rest of the process in modeling and final determination of 

transmissibility multipliers are kept as proposed by the commercially available tools, but 

the input of shear zone permeability has to be derived form structural-petrophysical 

correlations. 
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Fig. 7.1– TransGen method for calculation of transmissibility multipliers. a) Schematic 
procedure,  b) areal analysis of shear zone permeability, c) modeling steps..  From 
Reference 43. 

 

 

 

In this way, the detailed methodology proposed in this research starts with a 

systematic shear zone characterization based on the identification of deformation facies 
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and the analysis of geometries and petrophysical properties (Fig. 7.2).   For primary 

analysis and characterization, the mandatory set of information should be extracted from 

core samples, well logs, and wellbore images with the correspondent integration with 

laboratory measurements and probe permeameter.  From this step the variables that will 

be evaluated are: permeability, shale content, lithologic description, identification of 

diagenetic effects, facies analysis and geometrical characteristics.  Shear zones should be 

sampled from many locations in a single fault plane and from different faults in order to 

have a representative rock profile to obtain high density permeability measurements and 

facies identification to quantify the degree of permeability reduction due to cataclasis. 

The second step consists (Fig. 7.2) of a statistical analysis of deformation 

elements, the investigation of shear zone thickness and the characterization of faults 

according to throw, dip, azimuth, and degree of diagenesis.  A correlation matrix should 

be then used to find valuable information, translated into trends, that allows to reduce the 

uncertainty.  As seen in the findings in the Hickory Sandstone Member, each reservoir 

could exhibit a distinctive dependency of geological, geometrical and petrophysical 

variables. 

In the case analyzed in the Lower Hickory as in many examples around the 

world, a useful correlation between fault throw and shear zone thickness can be 

incorporated to solve for our first unknown for the calculation of shear zone 

permeability.  For this particular case in the Hickory sandstone, a probability function 

can be developed from information from the statistical relationship between fault throw 

and shear zone thickness (Fig. 3.13). 
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Fig. 7.2 -  Method for the characterization of Shear zones and Integration to full field 
model simulation. 

 

 

Then, demonstrated with the analysis of host rock properties versus the degree of 

displacement, we could reduce the uncertainty and have a probability function for the 

presence of specific shear zone permeability.  Prior analysis suggested that the highly 

deformed elements are the key facies controlling the permeability field in the vertical 

and across fault plane.  This foundation also can help in creating diverse model 

realizations of shear zone permeability based on the determination of the degree of 

cataclasis created by displacement and properties of host rock involved. 

 Having permeability and thickness fields as function of geological and 

petrophysical variables, multiple realizations of transmissibility multipliers can be 
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generated consistent with the modeling of the undeformed framework.  These 

realizations might be evaluated using sector models for ranking purposes or for specific 

match with detailed or selective production.  A spectrum of models with assigned 

probability could be then incorporated in simulation grids for final analysis under 

numerical solutions. 

 The advantage of considering the analysis of deformation and additional 

geological and petrophysical information over methodologies that pretend to predict 

fault sealing character using combination of shale smear and shale gouge ratio is that this 

proposed model can be effectively calibrated even for shale-free formations.  We have 

measured the big impact that deformation causes in diverse lithologies reducing their 

flow capacities dramatically.  Although shale indicators have been effectively tested in 

some fields, their quantification in terms of transmissibility is quite general and discrete. 

 Using the proposed methodology, transmissibility multipliers will be represented 

by a variable spectrum of values dependent on the prediction of shear zone permeability 

and thickness, and hopefully with a detailed match and evaluation with some dynamic 

field parameters, will reproduce the drainage anomalies that can be normally seen in 

diverse fields.  In other words, the sealing character of the fault is a tridimensional 

attribute that is variable with time according to field dynamics. 

 

7.2 Future Work 

 The lower Hickory sandstone member exhibits low shale content and the highly 

deformed sandstone elements were found to be most important features in the shear zone 

controlling overall permeability.  It could be very important to investigate the effect of 

deformation in formations with higher shale content and how this material is 

incorporated in the shear zone. 

 The integration of results in a very detailed full field model for this Hickory 

aquifer should be the next step in order to match field tests and identify drainage 

anomalies in the area.  This step should include tridimensional static reservoir modeling 
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with the integration of current investigations about the inherent heterogeneity of the 

Riley Formation and the incorporation of current findings. 

We strongly recommend to investigate and incorporate the study of deformation 

elements and relationships between geological, structural and petrophysical attributes in 

diverse mature fields with enough information over the faulted region with the purpose 

to understand and predict drainage anomalies and extrapolate such results for the 

identification of untapped, isolated or effectively swept compartments in oil and gas 

reservoirs. 

 The continuous incorporation and study of detailed shear zone information by 

regions will help in building a more robust set of predictors useful for exploration 

evaluations in the determination of trap capacity, and in development stages, developing 

more precise understanding of the effects of many sub-seismic and small faults.  



 

 

117

CHAPTER VIII 

CONCLUSIONS 

 

Hickory sandstone shear zones exhibit changes in permeability of two orders of 

magnitude between relative undeformed elements or protolith and highly deformed 

sandstones.  Host rock characteristics clearly influence the permeability of highly 

deformed elements.  Faults with throw greater than 10 feet generate highly deformed 

elements with permeability less than 8 md and directly correlated with host rock 

permeability. 

Sensitivity analyses of the accuracy of permeability measurements and 

estimation of proportions for particular elements in fluid flow models demonstrate the 

importance of an accurate characterization of the low permeability elements because the 

elements exert primary control of overall fluid flow in the shear zone.  From analytical 

and numerical techniques, the effect of overestimating permeability of the narrow, 

highly deformed elements as a result of low resolution in probe permeameter 

measurements is demonstrated.  According to numerical and analytical analysis, the 

narrow, highly deformed elements should exhibit 5 times lower permeability than the 

values reported from probe measurements.  These elements are frequently continuous 

throughout the core and represent the main features controlling fluid flow in the shear 

zone. 

Density information derived from tomography indicates poor correlation between 

CT# and permeability in the highly deformed elements. Accordingly, the tridimensional 

picture from this technique is useful for continuity analysis, lithological discrimination, 

and control of trend analysis, but the specific recognition of narrow highly deformed 

elements can not be attempted. 

A systematic methodology to incorporate the variable effect of faulting in a full 

field study should follow the steps: 1) analysis of core, images, and logs from the shear 

zone; 2) the identification of structural element geometry;  3) the analysis of correlations 

of shear zone thickness and individual elements and fault attributes;  4) the generation of 
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probability functions to be evaluated under stochastic realizations matching some field 

dynamic parameters; and finally, 5) the incorporation of shear zone effects under 

transmissibility multipliers. The complementary nature of conventional seal analysis 

using lithological considerations with this method, which accounts for the degree of 

deformation and the correlation with geological and petrophysical variables, will help to 

understand and predict complex transmissibility arrangements in small, sub-seismic 

faults. 

Numerical simulation of detailed shear zone models clearly demonstrates the 

high impact of the precise characterization of highly deformed elements according to 

continuity and petrophysical properties.  If a systematic approach is taken to identify and 

predict these elements, probability functions can be described in order to understand the 

whole permeability tensor in the shear zone.  In this way, the incorporation of 

correlations found in this and previous work, such as the dependencies of the continuity 

and thickness of highly deformed elements with fault throw, the thickness of the overall 

shear zone with fault displacement, and host rock versus highly deformed element 

permeability, are important to characterize the shear zone as an important barrier for 

fluid flow.  

Arithmetic upscalers can be effectively used to determine the along fault 

permeability, and then be integrated as a transmissibility multiplier in the direction 

parallel to the fault plane.  Harmonic upscalers represent the permeability in the 

direction perpendicular to the orientation of the internal shear zone layering (across fault 

plane). 

From a representative shear zone interval at NNR3_269, vertical flow simulation 

from models using original probe permeameter data predicted permeability between 3.28 

to 4.072 md, a range that agrees satisfactorily with former analytical solutions (Ibañez, 

2000) using harmonic averaging (3.2 md and standard deviation of 0.3 md).  If specific 

considerations about the permeability of highly deformed elements are incorporated to 

estimate a more realistic permeability average, NNR3_269 shear zone exhibits a vertical 

permeability between 1.36 and 1.41 md. 



 

 

119

The Harmonic upscaler, or the suggested across-fault permeability for the 

NNR4_404 shear zone, gives a low permeability estimate of less than 1 md.  This very 

low permeability suggests an important barrier effect for the across-fault fluid flow in 

this specific fault location. 

Although clay content affects shear zone permeability dramatically, the presence 

of clay material can be variable and not necessarily dependent of fault throw.  This effect 

suggests that the degree of deformation must be incorporated in the fault sealing 

predictors to account for homogeneous, shale free formations. 

From this work, we believe that further research in specific field examples will 

also show that deformation is the key factor for predicting communication along or 

across fault zones more than lithological considerations.  Although shale content will 

affect hydraulic conductance of the fault severely, the protolith framework and 

diagenetic effects determine its presence. 
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APPENDIX 1 
 

STATISTICS OF DEFORMATION ELEMENTS 
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Statistical analysis of individual deformation elements in sample NNR4_404.  RUDss: Relatively Undeformed sandstone  

MDms: Moderate Deformed medium sandstone  MDms-fs: Moderate Deformed medium to fine sandstone 

RUDss MDms MDms-fs

PERM (4Cv)2
Mean 37.385 27
Standard Error 7.747
Median 20.600
Standard Deviation 48.377
Sample Variance 2340.363
Kurtosis 3.728
Skewness 1.990
Range 188.026
Minimum 0.974
Maximum 189.000
Sum 1458.014
Count 39

PERM (4Cv)2
Mean 8.961 23
Standard Error 1.767
Median 6.320
Standard Deviation 10.745
Sample Variance 115.463
Kurtosis 3.405
Skewness 1.868
Range 46.304
Minimum 0.096
Maximum 46.400
Sum 331.553
Count 37

PERM (4Cv)2
Mean 0.300 1
Standard Error 0.028
Median 0.308
Standard Deviation 0.057
Sample Variance 0.003
Kurtosis 0.874
Skewness -0.741
Range 0.135
Minimum 0.225
Maximum 0.360
Sum 1.201
Count 4

RUDss MDms MDms-fs
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Median 0.308
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Statistical analysis of individual deformation elements in sample NNR4_404.  MDfs: Moderate Deformed fine sandstone  

HDss: Highly Deformed sandstone  HDcl: Highly Deformed clay 

MDfs HDss HDcl

PERM (4Cv)2

Mean 1.643 23
Standard Error 0.246
Median 1.270
Standard Deviation 1.949
Sample Variance 3.800
Kurtosis 49.224
Skewness 6.688
Range 15.617
Minimum 0.383
Maximum 16.000
Sum 103.497
Count 63

PERM (4Cv)2

Mean 0.068 21
Standard Error 0.029
Median 0.061
Standard Deviation 0.078
Sample Variance 0.006
Kurtosis 0.932
Skewness 1.208
Range 0.211
Minimum 0.001
Maximum 0.212
Sum 0.474
Count 7

PERM (4Cv)2

Mean 9.210 6
Standard Error 3.199
Median 8.160
Standard Deviation 5.540
Sample Variance 30.693
Kurtosis #DIV/0!
Skewness 0.822
Range 10.930
Minimum 4.270
Maximum 15.200
Sum 27.630
Count 3
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Statistical analysis of the logarithm of permeability for individual deformation elements in sample NNR4_404 
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Boxplot of the logarithm of permeability by deformation elements in sample NNR4_404 
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Statistical analysis of individual deformation elements in sample NNR5_291.  

RUDms MDms MDms-fs

PERM (4Cv)2

Mean 281.686 16
Standard Error 22.689
Median 180.000
Mode 130.000
Standard Deviation 278.803
Sample Variance 77731.301
Kurtosis 5.503
Skewness 2.069
Range 1593.030
Minimum 6.970
Maximum 1600.000
Sum 42534.570
Count 151

PERM (4Cv)2
Mean 37.016 23
Standard Error 5.606
Median 22.800
Mode 15.500
Standard Deviation 44.847
Sample Variance 2011.284
Kurtosis 12.133
Skewness 3.052
Range 269.210
Minimum 3.790
Maximum 273.000
Sum 2369.010
Count 64

PERM (4Cv)2
Mean 9.370 16
Standard Error 2.537
Median 5.250
Mode #N/A
Standard Deviation 9.492
Sample Variance 90.091
Kurtosis 4.545
Skewness 2.089
Range 33.890
Minimum 2.510
Maximum 36.400
Sum 131.180
Count 14

HDss

PERM (4Cv)2

Mean 7.346 9
Standard Error 1.153
Median 4.975
Mode #N/A
Standard Deviation 5.647
Sample Variance 31.887
Kurtosis 4.241
Skewness 2.071
Range 23.440
Minimum 2.060
Maximum 25.500
Sum 176.310
Count 24

RUDms MDms MDms-fs

PERM (4Cv)2

Mean 281.686 16
Standard Error 22.689
Median 180.000
Mode 130.000
Standard Deviation 278.803
Sample Variance 77731.301
Kurtosis 5.503
Skewness 2.069
Range 1593.030
Minimum 6.970
Maximum 1600.000
Sum 42534.570
Count 151

PERM (4Cv)2
Mean 37.016 23
Standard Error 5.606
Median 22.800
Mode 15.500
Standard Deviation 44.847
Sample Variance 2011.284
Kurtosis 12.133
Skewness 3.052
Range 269.210
Minimum 3.790
Maximum 273.000
Sum 2369.010
Count 64

PERM (4Cv)2
Mean 9.370 16
Standard Error 2.537
Median 5.250
Mode #N/A
Standard Deviation 9.492
Sample Variance 90.091
Kurtosis 4.545
Skewness 2.089
Range 33.890
Minimum 2.510
Maximum 36.400
Sum 131.180
Count 14

HDss

PERM (4Cv)2

Mean 7.346 9
Standard Error 1.153
Median 4.975
Mode #N/A
Standard Deviation 5.647
Sample Variance 31.887
Kurtosis 4.241
Skewness 2.071
Range 23.440
Minimum 2.060
Maximum 25.500
Sum 176.310
Count 24



 

 

132

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Statistical analysis of the logarithm of permeability for individual deformation elements 

in sample NNR5_291 
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Boxplot of the logarithm of permeability by deformation elements in sample NNR5_291 
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Statistical analysis of individual deformation elements in sample NNR4_300.   

RUDcs RUDm-cs RUDms

PERM (4Cv)2
Mean 506.083 23
Standard Error 127.271
Median 108.000
Standard Deviation 610.372
Sample Variance 372553.854
Kurtosis 0.376
Skewness 1.234
Range 1962.700
Minimum 27.300
Maximum 1990.000
Sum 11639.900
Count 23

PERM (4Cv)2
Mean 120.030 24
Standard Error 32.750
Median 55.050
Standard Deviation 146.462
Sample Variance 21451.012
Kurtosis 6.250
Skewness 2.303
Range 602.300
Minimum 12.700
Maximum 615.000
Sum 2400.600
Count 20

PERM (4Cv)2
Mean 63.085 19
Standard Error 11.943
Median 34.200
Standard Deviation 69.636
Sample Variance 4849.201
Kurtosis 1.604
Skewness 1.664
Range 233.620
Minimum 3.380
Maximum 237.000
Sum 2144.900
Count 34
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Statistical analysis of individual deformation elements in sample NNR4_300. 
 

MDcs MDm-cs MDms

PERM (4Cv)2

Mean 53.627 34
Standard Error 25.998
Median 24.000
Standard Deviation 77.994
Sample Variance 6083.137
Kurtosis 4.084
Skewness 2.079
Range 233.300
Minimum 4.700
Maximum 238.000
Sum 482.640
Count 9

PERM (4Cv)2
Mean 190.546 53
Standard Error 89.643
Median 62.000
Standard Deviation 347.186
Sample Variance 120537.854
Kurtosis 10.933
Skewness 3.177
Range 1362.360
Minimum 7.640
Maximum 1370.000
Sum 2858.190
Count 15

PERM (4Cv)2

Mean 81.792 75
Standard Error 29.952
Median 26.100
Standard Deviation 177.199
Sample Variance 31399.594
Kurtosis 22.317
Skewness 4.472
Range 995.070
Minimum 4.930
Maximum 1000.000
Sum 2862.730
Count 35

HDss

PERM (4Cv)2

Mean 16.876 25
Standard Error 7.426
Median 9.285
Standard Deviation 21.004
Sample Variance 441.179
Kurtosis 4.744
Skewness 2.165
Range 62.320
Minimum 2.680
Maximum 65.000
Sum 135.010
Count 8
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Statistical analysis and boxplotof the logarithm of permeability for individual deformation elements in sample NNR4_300 
 

1.8658 .07028
1.7259

2.0057

1.8534
1.7716

.390
.62468

.53
3.30
2.77

.8328
.460 .271

-.187 .535
1.5578 .07436
1.4092

1.7064

1.5314
1.5085

.354
.59489

.67
3.14
2.46

.9988
.516 .299

-.287 .590
.9957 .16419
.6075

1.3840

.9819

.9676
.216

.46440
.43

1.81
1.38

.7713
.548 .752
.150 1.481

Mean
Lower Bound
Upper Bound

95% Confidence
Interval for Mean

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis
Mean

Lower Bound
Upper Bound

95% Confidence
Interval for Mean

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis
Mean

Lower Bound
Upper Bound

95% Confidence
Interval for Mean

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

Facies
.00

1.00

4.00

logNNR4_300
Statistic Std. Error

816479N =

Facies

4.003.001.00.00
lo

gN
N

R
4_

30
0

3.5

3.0

2.5

2.0

1.5

1.0

.5

0.0

L o
g  

P e
rm

e a
b i

lit
y,

 lo
g 

m
d

Deformation Elements

816479N =

Facies

4.003.001.00.00
lo

gN
N

R
4_

30
0

3.5

3.0

2.5

2.0

1.5

1.0

.5

0.0

L o
g  

P e
rm

e a
b i

lit
y,

 lo
g 

m
d

Deformation Elements



 

 

137

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statistical analysis of individual deformation elements in sample NNR3_269.  

RUDms MDms HDss

PERM (4Cv)2

Mean 503.219 61
Standard Error 107.474
Median 215.000
Standard Deviation 979.133
Sample Variance 958701.554
Kurtosis 13.121
Skewness 3.575
Range 5137.140
Minimum 2.860
Maximum 5140.000
Sum 41767.150
Count 83.000

PERM (4Cv)2

Mean 18.353 17
Standard Error 3.589
Median 10.300
Standard Deviation 18.648
Sample Variance 347.755
Kurtosis 2.462
Skewness 1.513
Range 75.240
Minimum 2.160
Maximum 77.400
Sum 495.540
Count 27

PERM (4Cv)2
Mean 49.734 48
Standard Error 21.461
Median 22.450
Standard Deviation 85.845
Sample Variance 7369.327
Kurtosis 8.189
Skewness 2.795
Range 328.320
Minimum 2.680
Maximum 331.000
Sum 795.740
Count 16

HDss+cl

PERM (4Cv)2

Mean 12.734 70
Standard Error 4.326
Median 3.935
Standard Deviation 26.670
Sample Variance 711.286
Kurtosis 19.065
Skewness 4.121
Range 146.600
Minimum 2.400
Maximum 149.000
Sum 483.880
Count 38
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Count 83.000

PERM (4Cv)2

Mean 18.353 17
Standard Error 3.589
Median 10.300
Standard Deviation 18.648
Sample Variance 347.755
Kurtosis 2.462
Skewness 1.513
Range 75.240
Minimum 2.160
Maximum 77.400
Sum 495.540
Count 27

PERM (4Cv)2
Mean 49.734 48
Standard Error 21.461
Median 22.450
Standard Deviation 85.845
Sample Variance 7369.327
Kurtosis 8.189
Skewness 2.795
Range 328.320
Minimum 2.680
Maximum 331.000
Sum 795.740
Count 16

HDss+cl

PERM (4Cv)2

Mean 12.734 70
Standard Error 4.326
Median 3.935
Standard Deviation 26.670
Sample Variance 711.286
Kurtosis 19.065
Skewness 4.121
Range 146.600
Minimum 2.400
Maximum 149.000
Sum 483.880
Count 38
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Statistical analysis and boxplotof the logarithm of permeability for individual deformation elements in sample NNR3_269
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