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ABSTRACT 

 
 

Identifying Nonlinear Variation Patterns in Multivariate Manufacturing Processes. 

(December 2004) 

Feng Zhang, B.S., Tsinghua University; 

M.S., Tsinghua University 

Co-Chairs of Advisory Committee:   Dr. Daniel W. Apley 
Dr. Yu Ding

 

 This dissertation develops a set of nonlinear variation pattern identification methods 

that are intended to aid in diagnosing the root causes of product variability in complex 

manufacturing processes, in which large amounts of high dimensional in-process 

measurement data are collected for quality control purposes. First, a nonlinear variation 

pattern model is presented to generically represent a single nonlinear variation pattern 

that results from a single underlying root cause, the nature of which is unknown a 

priori. We propose a modified version of a principal curve estimation algorithm for 

identifying the variation pattern. Principal curve analysis is a nonlinear generalization 

of principal components analysis (PCA) that lends itself well to interpretation and also 

has theoretically rich underpinnings. The principal curve modification involves a 

dimensionality reduction step that is intended to improve estimation accuracy by 

reducing noise and improving the robustness of the algorithm with the high-

dimensional data typically encountered in manufacturing. An effective visualization 
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technique is also developed to help interpret the identified nonlinear variation pattern 

and aid in root cause identification and elimination. To further improve estimation 

robustness and accuracy and reduce computational expense, we propose a local PCA 

based polygonal line algorithm to identify the nonlinear patterns.  

We also develop an approach for separating and identifying the effects of multiple 

nonlinear variation patterns that are present simultaneously in the measurement data. 

This approach utilizes higher order cumulants and pairwise distance based clustering to 

separate the patterns and borrows from techniques that are used in linear blind source 

separation. With the groundwork laid for a versatile flexible and powerful nonlinear 

variation pattern modeling and identification framework, applications in autobody 

assembly and stamping processes are investigated. The pattern identification 

algorithms, together with the proposed visualization approach, provides an effective 

tool to aid in understanding the nature of the root causes of variation that affect a 

manufacturing process. 
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CHAPTER I 

INTRODUCTION 

 

I.1  Motivation 

 Recent significant advances in measurement and sensing technologies have allowed 

large quantities of information-rich measurement data to be recorded in databases for 

potential use in diagnosing and controlling product quality. Autobody assembly is an 

example of such modern manufacturing processes, where laser-optical measurement 

stations are built into the assembly line at various stages, providing a wealth of 

diagnostic information buried in the multivariate measurement data (Apley and Shi, 

2001; Ding et al., 2002; Ceglarek and Shi, 1996; Jin and Shi, 1999). The dimensional 

integrity of an autobody is one of the key quality characteristics since poor fit can 

impact not only the downstream production processes, but also customer’s perception 

of vehicle quality (due to wind noise, water leaking, etc.). For example, in a vehicle 

door assembly process a small variation in the door hinge produces a large variation at 

the top edge of the door. The primary objective of autobody assembly process is then to 

assemble body components together such that minimal dimensional variation will 

result. Recent developments in measurement systems, such as optical coordinate 

measuring machines (OCMMs), can measure 100 to 150 points on each major 

assembly with a 100 percent sample rate. These inspected measurement points are 
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located along the individual parts of the autobody. In modern manufacturing it is not 

uncommon to have hundreds, or even thousands (e.g., the stamping process), of 

different key dimensional characteristics. 

 Printed circuit board (PCB) assembly is another typical manufacturing process, in 

which the advanced measurement and data collection technologies are prevalent. For 

example, the laser-optical, X-ray and vision systems are commonly used to obtain 

detailed dimensional characteristics of the wet solder paste, after it is deposited onto the 

board during the screen printing stage (Glass and Thomsen, 1993). Usually the solder 

paste volumes in PCB assembly are measured in-process with a 100% sample rate.  

 Each manufacturing process is usually affected by numerous random variation 

sources, the effects of which will appear in the measurement data. Therefore, the 

collected data contain valuable diagnostic information concerning the variation sources 

that contribute to overall levels of product variability. Each variation source typically 

results in a distinct variation pattern in the multivariate measurement data, which is 

defined in terms of how variation source causes the different measured variables to 

vary with respect to each other. In this sense a variation pattern is viewed as the 

systematic relationships among a number of measured product characteristics on a 

specific part, describing the interdependencies among the variables caused by a specific 

source or ultimately a physical root cause.  

 For the purpose of diagnosing and controlling product quality, an effective 

methodology would be highly advantageous to utilize all quality-related information 

from the multivariate measurement data to identify the variation patterns and diagnose 
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the nature of their corresponding variation sources (or root causes). Proper 

identification of variation patterns and their root causes is necessary in order to 

eliminate the root causes, thereby reducing process variability and improving product 

quality. As in any quality control application, a primary objective of this dissertation is 

to extract quality-related information from the raw data in a form such that each 

potential variation pattern can be identified and interpreted precisely to an engineer or 

operator of the manufacturing process. Equipped with a clearer understanding of the 

nature of variation patterns present in the measurement data, the manufacturing 

engineers can utilize their engineering knowledge to identify and eliminate the 

underlying root causes of process variability. Hence, the variation pattern analysis will 

serve as diagnostic aids facilitating the ultimate goal of reducing product variability.  

 This dissertation focuses on nonlinear variation pattern representation and 

estimation, which is a natural extension of existing linear approaches. The nonlinear 

approach developed in this dissertation provides a more accurate description of many 

variation patterns and further identification of unobserved variation sources. A class of 

nonlinear methods will be investigated and developed for modeling and identifying 

manufacturing variation patterns.  

In the remainder of the introduction, prior work on linear variation pattern analysis 

will be briefly reviewed in Section I.2, followed by a discussion on the limitations of 

the linear model and the corresponding nonlinear extension for manufacturing variation 

pattern identification in Section I.3. Section I.4 presents an outline of the remaining 

chapters of this dissertation.  
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I.2 Prior Work on Variation Pattern Analysis 

 There has been considerable work on identifying variation patterns from large sets 

of manufacturing measurement data. This section presents the background on these 

variation pattern analysis approaches, which assume a linear structured model.  

Let x = [x1, x2, . . ., xd]T be a d×1 random vector that represents a set of d measured 

characteristics from the product, and xn (n = 1, 2, . . ., N) a sample of N observations of 

x. In autobody assembly, for example, x would represent the vector of all measured 

dimensional characteristics across a given autobody, and N would be the number of 

inspected bodies in the sample. The linear variation pattern analysis methods assume 

that x obeys the model 

                     x = Cv + w,                (1.1) 

where C = [c1 c2 … cp] is a d×p constant matrix usually assumed to have linearly 

independent columns. The vector v = [v1 v2 … vp]T is a p×1 zero-mean random vector 

with independent components, each scaled (without loss of generality) to have unit 

variance. The vector w is a d×1 zero-mean random vector that is independent of v 

(Apley and Shi, 2001; Apley and Lee, 2003). 

 The interpretation of the model is that there are p variation sources {vi: i = 1, 2, …, 

p} that affect the measurement vector x. Each source vi has a linear effect on x through 

the corresponding ci. The vector ci indicates the spatial nature of the variation caused by 

the ith source. Specifically, it indicates how the source vi causes the different measured 

features to vary with respect to each other. In this sense ci is referred to as a linear 
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variation pattern vector. On the other hand, since the elements of v are scaled to be of 

unit variance, ci also indicates the severity of the ith source contributing to overall level 

of process variability. The random vector w represents the aggregated effects of 

measurement noise and any inherent variation not attributed to the variation sources. 

Throughout this dissertation, the covariance matrix of noise vector w is assumed to be 

∑w = 2
σ I where I is a d×d identity matrix.  

We illustrate the linear variation pattern model using an example from autobody 

assembly (Apley and Lee, 2003). Fig. 1 shows a rear quarter panel subassembly of an 

autobody. The measurement vector x = [x1y x1z … x5y x5z]
T represents the y and z-

direction deviations of five separate features (i.e., d = 10) that are numbered 1 through 

5 in Fig. 1. The measurements are taken after the quarter panel subassembly is joined to 

the bodyside, which is not shown in the figure.  

 

 
Fig. 1.  Illustration of a linear variation pattern in autobody assembly: a rotation of the 
quarter panel subassembly around locating-hole 5. 

 

y-direction 

z-direction 

Locating-hole around 
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Rear quarter panel 
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Window opening 

1 2 
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For illustration purpose, we present two variation patterns in this example. The root 

cause of the first variation pattern c1v1 is a loose locating element that failed to properly 

constrain the quarter panel subassembly when it is placed into a fixture and welded to 

the bodyside. The geometry of the fixture and the position of the loose locating element 

are such that the quarter panel subassembly is free to rotate by small amounts about 

Feature 5 (a hole that mates with a pin rigidly attached to the fixture). The variation 

source v1 is then a random variable that is proportional to the angle of rotation of each 

quarter panel subassembly. The vector c1 = [–.15 .52 –.15 .53 .28 .25 .29 –.15 0 0]T is 

determined by the fixture design and measurement deployment, and plotted as arrows 

in Fig. 1 to represent the rotation of the entire subassembly about Feature 5. In order to 

provide a clear understanding, the y-z coordinates of each feature in c1 have been 

combined into a single arrow at the locations of the features to which they correspond.  

The root cause of the second variation pattern c2v2 is an elongated hole in the D-

pillar that is due to improper stamping. The elongated hole allows the D-pillar to 

translate by small amounts in the z-direction, relative to the rest of the quarter panel. 

Hence, the variation source v2 is a random variable that is proportional to the amount of 

translation of each D-pillar. The variation pattern vector c2 = [0 –.44 0 0 0 –.44 0 0 0 

0]T is illustrated in Fig. 2 to represent the z-direction (up/down) translation of the D-

pillar with respect to the rest of the quarter panel subassembly. The two variation 

patterns c1v1 and c2v2, together with the measurement noise w encountered in 

manufacturing process, are present in the measurement data x that is represented by the 

linear model (1.1) for variation pattern analysis. 
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Fig. 2.  Illustration of the second linear variation pattern in autobody assembly: a 
translation of the D-pillar in the z-direction. 

 

As illustrated by the autobody assembly example, a common objective of linear 

variation pattern analysis methods is to develop a linear model linking product quality 

measurements to variation sources and extract variation pattern information based on 

the model for variation diagnosis (Ceglarek and Shi, 1996; Apley and Shi, 2001; Ding 

et al., 2002; Zhou et al., 2003). A fundamental distinction among these approaches is 

whether or not these variation patterns in model (1.1) are pre-modeled. Note that this 

dissertation focuses on the un-modeled case. However, since most of the prior work is 

on the pre-modeled case, the next section provides a brief review of that.  

I.2.1  The Pre-modeled Variation Pattern Classification Methods 

One class of approaches to identify and diagnose the root cause of variation patterns 

involves off-line analysis based on adequate understanding of the manufacturing 

processes. These diagnostics require the pattern vectors to be obtained through 

extensive analytical modeling. When a priori knowledge about the process is provided, 

it may be possible to accurately model corresponding potential variation patterns 

y-direction 

z-direction 

5 

1 2 

3 4 
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(Ceglarek and Shi, 1996; Apley and Shi, 1998; Jin and Shi, 1999; Ding et al., 2002; 

Zhou et al., 2003).  

If all of the hypothetical variation patterns are pre-modeled based on the CAD 

(Computer Aided Design) data for the process configuration and measurement location, 

principal component analysis (PCA) was used to classify the pre-modeled patterns that 

are actually present in the on-line measurement data (Ceglarek and Shi, 1996). This 

pre-modeled pattern classification method recognizes variation patterns effectively by 

assuming that only a single variation source is present in manufacturing. When there 

are multiple variation patterns present simultaneously, however, it is unable to detect 

and classify these different patterns.  

Apley and Shi (1998) proposed a method that is capable of detecting and 

classifying multiple linear variation patterns. From geometric fixture information and 

measurement layout of the manufacturing process, a multiple variation pattern model is 

first constructed off-line. A least squares algorithm then estimates the severity of each 

potential variation source, followed by the detection and classification of multiple 

variation sources using a form of F-test.  

The pre-modeled linear variation pattern methods were also applied to multistage 

manufacturing processes based on a state-space model, which considered the variation 

propagation along the production stages (Jin and Shi, 1999; Ding et al., 2002; Zhou et 

al., 2003). 

All of the pre-modeled variation patterns classification approaches assumed that a 

complete set of potential variation patterns can be pre-modeled off-line. On the other 
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hand, if there is variation pattern present in the measurement data that is not pre-

modeled, they are likely to miss this pattern and produce erroneous interpretations. Due 

to the complexity of the modern manufacturing processes, however, pre-modeling 

every variation pattern is not possible when the number of potential variation sources is 

too large to analytically model. The necessity for off-line pre-modeling therefore limits 

their applicability in practical dimensional variation pattern diagnostics.   

I.2.2  The Un-modeled Variation Pattern Identification Methods  

Some other linear variation pattern analysis methods are developed to overcome the 

aforementioned limitations by estimating the pattern vectors ci blindly from the on-line 

data, with no prior knowledge about the nature of potential fault patterns. After blindly 

estimating the patter vectors, they can be graphically illustrated to lend insight into the 

root causes, as shown in the above autobody assembly example. Due to the similarity in 

model structure as in Equation (1.1), one may consider using factor analysis to estimate 

variation matrix C from data x. Factor analysis is to extract unobservable common 

factors from covariance matrix of multivariate data (Jackson, 1980; 1981; Johnson and 

Wichern, 2002).   

Let Σx denote the covariance matrix of x. From the assumptions on model (1.1) 

 Σx = E[(Cv + w)(Cv + w)T] = CCT + 2
σ I.           (1.2) 

Most factor analysis methods are based on PCA, which involves analyzing the 

eigenvectors and eigenvalues of Σx. Denote {λi: i = 1, 2, …, d} as the eigenvalues of 
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Σx arranged in descending order, and zi as the corresponding eigenvectors. Each 

observation x can be written as a linear combination of eigenvectors, i.e., 

         dd zzxzzxzzxx )()()( T
22

T
11

T +++= … ,            

                                             ddyyy zzz +++= …2211 ,               (1.3) 

where yi = xTzi are uncorrelated PCA scores on eigenvectors zi. Define Λp = Diag{λ1, λ2, 

…, λp} and Zp = [z1 z2 … zp] as the p largest eigenvalues and their associated 

eigenvectors. The PCA decomposition on covariance matrix of x yields 

  ( ) IZIΛZΣ
2T2

1

T2

1

T2

1

T ][ σσσσ Ppp

d

i
ii

p

i
iii

d

i
iiix +−=+−== ∑∑∑

===
zzzzzz λλ .       (1.4) 

In order for the covariances in Equations (1.2) and (1.4) to be consistent, C has the 

form QIΛZ 2/12 ][ σpp −  for a p×p orthogonal matrix Q. Thus, PCA simplifies the 

problem of estimating the d×p matrix C to one of estimating the p×p matrix Q. 

 The standard factor analysis methods usually apply the varimax rotation to find Q 

such that each column of resulting QIΛZC 2/12 ][ σpp −= consists of elements that are 

either very large or very small in magnitude with as few moderate-sized elements as 

possible (Jackson, 1981; Johnson and Wichern, 2002). However, the estimate of C 

from the varimax rotation is not necessarily the true matrix in model (1.1) that is caused 

by the physical characteristics of the manufacturing processes.  

 The method presented in Apley and Shi (2001) can be viewed as a modified form of 

standard factor analysis that attempts to rotate the estimate of C so that it is as close as 

possible to the true C. To accomplish this, they assume that C has a ragged lower 
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triangular structure in order that the measurements in x can be grouped and each 

subgroup is affected by a single variation source. Although the method in (Apley and 

Shi, 2001) produces a more accurate identification of the variation sources and clearer 

understanding of their root causes, the certain structural constraints on the true C limit 

its applicability to some extent. To overcome this limitation, Apley and Lee (2003) 

introduced the blind source separation (BSS) method to identify multiple linear 

variation patterns over measurement data for manufacturing variation diagnosis. 

Blind source separation is a term used to describe a problem in which there is an 

array of spatially distributed sensors, each of which receives signals from some 

unknown sources (Hyvarinen and Oja, 2000; Hyvarinen et al., 2001). The term “blind” 

refers to the situation when no prior knowledge of the relationship between x and v is 

available other than the linear model structure (1.1). Due to the similarity of the model 

format, the BSS methods thus are applicable to manufacturing variation pattern 

analysis. Apley and Lee (2003) estimated the matrix C and individual variation sources 

solely from the data sample for subsequent root cause diagnosis. Blind source 

separation based methods have broader applicability than the preceding linear variation 

pattern analysis approaches in that they make no assumptions regarding the structure of 

matrix C other than on the variation source distributions. Apley and Lee (2003) also 

proposed a combinational BSS method with weaker requirements on the distributions 

of variations sources.  

The pre-modeled variation pattern classification methods require that all of the 

potential variation patterns should be pre-modeled through intensive off-line analytical 
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modeling based on engineering knowledge of the manufacturing process. In reality, the 

presence of too many potential variation sources and the complexity of advanced 

manufacturing processes often make off-line modeling of all potential patterns 

impossible and, therefore, prevent the wide applicability of the classification methods. 

In this sense, the un-modeled variation pattern analysis methods have broader 

applicability in that they make no assumptions regarding the structure of matrix C and 

no off-line analytical modeling is required.  

 

I.3  Nonlinear Variation Patterns 

The linear variation pattern analysis methods are effective and have been widely 

used in manufacturing variation reduction. Linear models are attractive for their 

simplicity and amenability to analysis and visualization, as illustrated in the above 

autobody assembly example, however, they are inadequate for modeling the nonlinear 

interdependencies in the multivariate measured data, which are common in the 

complicated manufacturing processes. Therefore, for the purpose of diagnosing all 

potential variation patterns in real manufacturing processes, linear methods are 

incapable of capturing all the diagnostic related information and new methodology is 

expected for nonlinear variation faults analysis. To illustrate such a nonlinear variation 

pattern problem, consider another example from autobody assembly. Fig. 3 shows 

schematically the rear liftgate opening of a sports utility vehicle and indicates the 

locations at which six cross-car (left/right) dimensional measurements on the left and 

right bodysides are taken (denoted x1 through x6). The measurements are obtained 
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automatically via in-process laser measurement, so that 100% of the automobile bodies 

are measured. Although almost 200 different dimensional features were measured for 

each autobody, for simplicity we illustrate with only the six measurements shown in 

Fig. 3. 

 

 
Fig. 3. Measurement layout on the liftgate opening of an autobody. The fore direction 
is pointing into the page. 

 

As discussed in Section I.2, the assembly process is relatively complex and involves 

many different locating elements. The malfunction of a locating element often results in 

a distinct variation pattern in the dimensional measurement data. Fig. 4 illustrates this 

with scatter plots of pairs of the six variables over a sample of 100 measured 

autobodies. The measurements are deviations from nominal, in units of mm. A positive 

measurement represents deviation to the right. Although the relationship between x2 and 

x3 appears linear, the scatter plots for x2/x5 and x3/x4 clearly illustrate that the variation 
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pattern is nonlinear. Moreover, this nonlinear pattern appears to be approximately 

piecewise linear with only two segments (i.e., pieces). 

 

 
Fig. 4. Scatter plots of data from 100 measured automobile bodies exhibiting a 
nonlinear variation pattern. 

 

I.4  Outline of Dissertation 

In situations like that depicted in Fig. 4, linear models are inadequate for 

representing the nonlinear relationship between the different variables. To 

accommodate such situations, this dissertation will develop an approach for modeling 

and identifying nonlinear variation patterns that provides a more accurate way for 

diagnosing the manufacturing variation patterns. The objective considered in this 

dissertation is to identify as precisely as possible the nature of any variation pattern that 
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happens to be present in the data. The identification is “blind” in the sense that we are 

not attempting to recognize the presence of pre-modeled or pre-trained patterns. Rather, 

we seek to identify the nature of the patterns based only on a sample of data, with no 

prior training or modeling required. After blindly identifying the nature of a variation 

pattern, the results can be graphically illustrated in order to facilitate root cause 

identification. 

The rest of the dissertation is organized as follows. The single nonlinear variation 

pattern modeling and identification problem is discussed in Chapter II, in which a data 

pre-processing approach is proposed to improve the pattern estimation accuracy. This 

pre-processing step can also modify the exiting nonlinear pattern identification method 

such that it is applicable for the high dimensional manufacturing problems when the 

nonlinear variation pattern lies in a linear variety (a translated linear subspace) of 

dimension r < d. For applications such as two-dimensional image processing, in which 

the dimension d of the original data is low, the proposed method offers no advantages 

over the current nonlinear pattern estimation. The utility of the method lies primarily in 

applications such as identifying and diagnosing variation patterns in large multivariate 

datasets, in which d is large and r << d. To help interpret the identified nonlinear 

variation pattern results, an interactive visualization method was developed to illustrate 

how the spatial characteristics of measurement points will evolve under the influence of 

the variation source.  

It is also shown in Section II.4 that applying nonlinear pattern identification 

algorithm to only the first r PCA scores produces results that are equivalent to applying 
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the identification algorithms to the filtered d-dimensional data. This allows one to work 

in r dimensional space, as opposed to the full d dimensional space, which substantially 

reduces the computational expense of the algorithms when r is much less than d.  

As will be discussed in Chapter II, there are many situations where this is the case, 

in particular when the nonlinear pattern can be closely approximated as piecewise 

linear. The nonlinear variation pattern will be approximated by polygonal lines that 

achieve the minimum of the sum of squared distance from the sample data to their 

projections on the piecewise linear curve. Inspired by the result in Chapter II, the 

number of line segments can be automatically determined by PCA information of the 

local linear space, as discussed by the proposed algorithm in Chapter III. The problem 

of polygonal line estimation is then reduced to determining the optimal positions of 

vertices that connects these line segments. The experimental results will demonstrate 

the robustness of the proposed polygonal line algorithm to a variety of nonlinear 

variation patterns. 

The single nonlinear variation pattern identification methods in Chapter II and III 

cannot accommodate to the multiple variation sources problem in practical 

manufacturing applications. Chapter IV presents a method of identifying un-modeled 

multiple linear and nonlinear variation patterns by utilizing information of high order 

statistics (see Section IV.2.1). The proposed method can blindly determine the number 

of variation sources from on-line measurement data for subsequent identification of the 

individual linear pattern and nonlinear patterns (see Section IV.2.2). This multiple 

variation patterns identification algorithm has wider applicability for separating and 
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identifying nonlinear patterns, since there are no requirements on the differentiability of 

the nonlinear patterns or prior knowledge of the number of variation sources. To help 

separate and identify the variation patterns when only sample data are available, a 

clustering method is developed based on a pairwise similarity quantity taken as an 

independence measure (see Section IV.3). By utilizing this multiple variation patterns 

model and identification algorithm, the method proposed in Chapter IV is capable of 

estimating un-modeled variation patterns more effectively, which will be demonstrated 

by an autobody assembly example.  

The dissertation ends with a conclusion in which the main results of this work are 

summarized and directions of future work are indicated. 
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CHAPTER II 

SINGLE NONLINEAR VARIATION PATTERN IDENTIFCATION 

AND VISUALIZATION USING PRINCIPAL CURVES METHOD 

  

II.1  Representing Single Nonlinear Variation Pattern 

In order to transform large sets of manufacturing measurement data into knowledge 

by discovering the nature of major variation patterns, a number of techniques have been 

recently developed (e.g., Apley and Shi, 2001; Apley and Lee, 2003; Ding et al., 2002; 

Jin and Shi, 1999; Barton and Gonzalez-Barreto, 1996), as discussed in Section I.2. All 

of these approaches assume the variation patterns can be represented using linear model 

(1.1). If there is only a single variation source present in the manufacturing data, the 

linear model takes the form 

              x = ct + w,                      (2.1) 

where c is a d×1 constant vector and t is a scalar random variable that is scaled to have 

unit variance. The vector c indicates the spatial nature of the variation pattern, in terms 

of the resulting interrelationships between the different measured variables.  

Although linear models of this form are relatively common for representing 

manufacturing variation when one variation pattern occurs, there are many situations in 

which nonlinear models are required to represent the nonlinear relationship between the 

different variables, such as the autobody assembly example introduced in Section I.3, 
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where the scatter plots in Fig. 4 clearly illustrate the presence of a nonlinear variation 

pattern. 

In order to represent nonlinear variation patterns in analogy with the linear model 

(2.1), we propose the following model: 

             x = f(t) + w,                      (2.2) 

where t and w are as in the linear model, and f(•) is some general vector-valued 

nonlinear function that represents the spatial nature of the nonlinear variation pattern. 

As assumed in Chapter I, the random vector w represents the measurement noise and 

has an isotropic covariance matrix Σw = 2
σ I. Apley and Lee (2003) discussed 

approaches for dealing with more general noise covariance structure, which also apply 

to the present case of nonlinear patterns. 

For the nonlinear variation pattern in the autobody assembly example as introduced 

in Section I.3, its root cause is a fixturing problem when the right bodyside was 

clamped in the framing station (a major assembly station in which the left and right 

bodysides are joined to the underbody and a set of upper cross-members). When the 

right bodyside deviates by only a small amount to the right, it has no effect on the left 

bodyside. When the right bodyside deviates by a larger amount to the right, however, it 

begins to interfere with the upper cross-member. The upper cross-member then 

interferes with the left bodyside, pulling the left bodyside to the right also. 

Therefore, the nonlinear variation pattern f(•) would be a piecewise linear curve 

with two pieces, as shown in Fig. 5. And t is a random variable that is scaled as the arc 

length along the curve f. Note that in this example, t does not have a clear physical 
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meaning. In fact, the random variable t can be arbitrarily rescaled without changing the 

curve that passes through the data. This does not present a problem, because it is the 

nature of the function f(•) that aids in interpreting the root cause. 

 

 

Fig. 5. Scatter plots of data and the components fi (solid line) of nonlinear variation 
pattern f. 

 

Sometimes, however, t does have a physical meaning. To further clarify the 

nonlinear variation pattern representation (2.2), consider an example from the metal 

flanging process, which forms the edges of the panels into a flange to add stiffness to 

the panel or create a mating surface. In the flanging process, however, wrinkling often 

appears in the formed flange surface, which not only mars the appearance of the part, 
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but may also interfere with subsequent sealing and welding operations. Fig. 6 shows the 

wrinkling encountered in a flange operation, in which the panel is formed into a 

concave shape at the same time the flange is formed.  

 

 

Flange surface 

 
Fig. 6. Illustration of a panel in shrink flanging exhibiting wrinkles on the flange 
surface. 
 

An analytical model of wrinkling for the flanging process shown in Fig. 6 is (refer 

to Wang et al., 2001 for details on the derivation of the model): 

     )
sin

)(
sin()sin(),(

0
0 β

π
θ
πθθ

l

f

f

Rrnm
grg

−
= ,            (2.3) 

where g0 is an amplitude constant of wrinkle height g, m and n are the wave numbers in 

the tangential and radial direction. The other parameters are denoted in Fig. 7. 
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Fig. 7. Schematic of a flanged sheet model.  

 
 

In practice, as boundary conditions (e.g., binding force) vary from part to part, the 

characteristics of the wrinkles on flange surface will change. In this example, for 

illustration purpose, the variation pattern f denotes the position of the wrinkles varying 

along the length of the flange and is defined as a function of random variable t, i.e., 

,]),(),(),([)( T
2211 dd rtgrtgrtgt −−−= θθθ …f where (θi, ri) denotes the ith 

measurement location distributed across the panel (i = 1, 2, …, d), and t is taken as a 

phase angle to represent the variation on the boundary conditions with respect to each 

flanged part. The vector x measures the height of the wrinkles (normal to the flange 

surface) over an array of the d locations along the flange surface. Note that in real 

manufacturing, the measurement data could represent point cloud data from a laser scan 

of the panel.  

The plot of nonlinear variation pattern f(•) shown in Fig. 8 changes dynamically as 

we move the slide bar control back and forth. The position of the slide bar represents 
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the value of t for which nonlinear pattern is currently plotted. Fig. 8 illustrates in a 

graphical way that how the wrinkles shift along the length of flange from part to part 

with respect to the varying values of t. Therefore, in this example, the random variable t 

in model (2.2) is equipped with a physical understanding as the variation on the 

boundary conditions, which can facilitate the interpretation of nonlinear variation 

pattern f(•) for gaining insight into the behavior of wrinkling.  

 

 

                                               

Arrows indicate changing 
position of wrinkles 

t = 0.5 

t = 5.9 

t = 12.7 

t = 16.8 

t = 26.6 

 

Fig. 8. Illustration of the variation pattern in the flange for five different frames given 
different values of t. The slide bar control in the left panel shows the values of t for the 
five frames. 
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In the linear situations, the objective is to blindly estimate c, given a sample of data. 

Apley and Shi (2001) and Apley and Lee (2003) provide examples of this and discuss 

how graphical illustrations of the estimated c can aid in identifying the root cause of the 

variation. The above wrinkling example also illustrates the importance of visualizing 

nonlinear variation pattern for facilitating the identification of the root causes. 

Graphical displays of high dimensional variation patterns, such as Fig. 8, are often 

illuminating, especially when enhanced by interaction (e.g. changing the value of t by 

moving the slider bar control) for diagnosing the nature of f and describing how the 

dimensional variation is governed by the random variable t. Therefore, the objective of 

nonlinear variation pattern analysis is to blindly estimate the entire function f and 

develop a suitable illustration for aiding in root cause identification. The remainder of 

this chapter focuses on how to estimate f. 

 

II.2  PCA and Principal Curves 

For linear variation patterns, PCA has been used to provide an estimate of c. It is 

well known that when a single linear variation pattern is present, the dominant 

eigenvector z1 is a scaled version of c (Ceglarek and Shi, 1996; Apley and Shi, 2001). 

Therefore, the dominant eigenvector of the sample covariance matrix can be used as an 

estimate of c.  

Denote µx as the mean of the d-dimensional random vector x. One related, 

fundamental property of PCA is that the line µx + tz1, with t a scalar, provides the best 

one-dimensional linear approximation to the distribution of x, in the sense of 
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minimizing the mean squared (orthogonal) distance between x and the approximating 

line. Principal curves are a natural nonlinear generalization of this concept. Loosely 

speaking, a principal curve is defined as a one-dimensional curve that passes through 

the middle of the distribution of multivariate data. Principal curve estimation has been 

applied to a variety of nonlinear data analysis problems (Delicado, 2001; Chang and 

Ghosh, 2001; Tibshirani, 1992; Dong and McAvoy, 1995). Because f(t) in Equation 

(2.2) satisfies the definition of a principal curve stated below, we use the same notion 

for a principal curve.   

The concept of principal curve was first proposed in (Hastie and Stuetzle, 1989) as 

a non-parametric nonlinear extension of the first principal component. According to the 

definition of Hastie and Stuetzle (hereafter referred to as HS) a one-dimensional curve 

f(t) = [f1(t), f2(t), …, fd(t)]T (i.e., f: ℜ → ℜd) in d-dimensional space is a principal curve 

of (the distribution of) x if: 

1. f(t) does not intersect itself, or )()( 2121 tttt ff ≠⇒≠ ∈∀ 21 , tt ℜ; 

2. f(t) has finite length inside any bounded subset of ℜd; and 

3. f(t) = E(x|tf(x) = t), where E(•|•) denotes a conditional expectation, and the 

projection index tf(x) is defined as 

     tf(x) = sup{v:║x − f(v)║ = )(inf u
u

fx − }.                 (2.4) 

HS showed that no infinitesimally small smooth perturbation to a principal curve 

will decrease 2||))((|| xfx ftE − . In this sense principle curves generalize the 

minimum mean squared distance property of the linear PCA approximation to the 
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distribution of x. In the hypothetical case that the distribution of x is known, the HS 

algorithm for constructing principal curves iterates over the following steps: 

Step 0. Initialize f(0)(t) = µx + tz1, and set j = 1. 

Step 1 (Expectation). Define ])(|[)( )1(
)( ttEt jf

j == − xxf . 

Step 2 (Projection). For x∈ℜd, set })(min)(:max{)( )()(
)( uvvt j

u

j

f j fxfxx −=−= . 

Step 3. Compute 
2

)()( ))(()( )( xfxf jf

jj tE −=∆ . If )()( )1()( −∆−∆ jj ff  < threshold, 

then stop. Otherwise, let j = j + 1 and go to Step 1. 

In practice, the theoretical distribution of x is unknown and the HS algorithm must 

be implemented on a specific sample. The actual HS algorithm starts with )(ˆ )0( tf  = 

xµ̂ + 1ẑt  and the expectations in Steps 1 and 3 are replaced by some form of locally 

weighted sample averages, as shown in Fig. 9. Throughout, the overscore symbol “^” 

will be used to denote an estimate of a quantity.  

 

 
Fig. 9. (a) Ideally, with infinite data, every point f(t) on the principal curve is defined as 
the average of all data points x projecting exactly on t. (b) In practice, with limited data, 
a point on the curve is the sample average of all points x projecting within a 
neighborhood of t. 

(a)  ])([)( ttEt f == xxf (b)  ])([ˆ)(ˆ ttEt f ≈= xxf

f(t) 
 

)(ˆ tf

t = 0 

t = 1 

t = 2 t = 3 
t = 4 

f(t) 

   x 

x 



 

 

27 

II.3  Principal Curves in Lower Dimensional Linear Varieties 

As one potential method for treating nonlinear variation pattern in model (2.2), 

principal curve method is found to be intuitive and interpretable for variation pattern 

analysis. However, most applications of principal curves have been for low 

dimensional data, especially for two-dimensional image processing (e.g., Kégl et al., 

1999; Chang and Ghosh, 2001; Banfield and Raftery, 1992). For high dimensional data 

encountered in manufacturing, principal curve estimation becomes inefficient.  

In order to effectively use principal curve concepts for identifying nonlinear 

variation patterns in the high dimensional data collected from manufacturing processes, 

we propose a pre-processing step that filters out much of the noise and reduces the 

dimensionality of the data. Technically, this will require that f(t) lie in a linear variety 

of dimension r < d. There are many practical situations where nonlinear variation 

patterns lie in lower dimensional subspaces, in particular when f(t) can be closely 

approximated as a piecewise linear curve. This was the case in the autobody example 

introduced in Section I.3, because (as will be shown as below) a piecewise linear curve 

with p segments lies in a linear variety of dimension r ≤ p. This has important 

implications for high-dimensional data, since any nonlinear principal curve can be 

approximated arbitrarily closely by a piecewise linear curve. As another example, 

suppose that only r < d elements of f(t) vary with t and that the other elements remain 

constant. In other words, d − r elements of x are unaffected by the variation pattern. 

The principal curve would also lie in an r-dimensional linear variety in this case.  
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Let M denote some r-dimensional subspace of ℜd, and let a0 + M denote the r-

dimensional linear variety that results from translating M by some constant vector a0. In 

situations where f(t) lies in a0 + M, the following theorem relates a0 + M to the results 

of standard linear PCA. 

Theorem 2.1: Suppose that f(t) lies in the r-dimensional linear variety a0 + M for 

all t and that the noise covariance is Σw = 2
σ Ι. Suppose also that no other linear 

variety in which f(t) lies has dimension smaller than r. Then 

            λ1 ≥ λ2 ≥  ... ≥ λr > 2
σ  = λr+1  = λr+2 ... = λd , and                          (2.5) 

                         a0 + M = µx + span{z1, z2, …, zr}.                     (2.6) 

Proof: First note that because f(t) ∈ a0 + M for all t, it must be the case that its 

mean µf also lies in a0 + M. Also, because w is zero-mean, µx = µf. Hence, µx ∈ a0 + M, 

so that the linear variety a0 + M is the same as µx + M. By the independence of w and t,  

       Σx = E[(x − µx)(x − µx)T] = E[(f(t) − µx + w)(f(t) − µx + w)T] 

               = E[(f(t) − µx )(f(t) − µx)T] + 2
σ Ι.              

Now consider any unit-norm vector z ∈ M⊥ (the orthogonal complement of M). 

Because f(t) – µx lies in M and z lies in the orthogonal complement of M, (f(t) – µx)Tz = 

0 for all t. Therefore, Σxz = E[(f(t) − µx)(f(t) − µx)Tz] + 2
σ Iz = 2

σ z. Hence, z is an 

eigenvector of Σx with eigenvalue 2
σ . Because M⊥ is a d – r dimensional subspace, 

there exists an orthonormal set of d – r such eigenvectors, which we denote {zr+1, zr+2, 

…, zd}. Because the remaining eigenvectors {z1, z2, …, zr} are orthogonal to {zr+1, zr+2, 
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…, zd}, they must all lie in the r-dimensional subspace M. Consequently, M = span{z1, 

z2, …, zr}, which completes the proof of Equation (2.6). 

Because zj ∈ M for 1 ≤ j ≤ r, its corresponding eigenvalue is  

   λj = zj
T(λj zj) = zj

T(Σxzj) =
 zj

T{E[(f(t) − µx)(f(t) − µx)T] + 2
σ Ι}zj 

                = E[zj
T(f(t) − µx)(f(t) − µx)Tzj] + 

2
σ  

                    = E[(zj
T(f(t) − µx))2] + 2

σ  > 2
σ .            

That E[(zj
T(f(t) − µx))2] is strictly greater than zero follows from the condition that 

no other linear variety in which f(t) lies has dimension smaller than r. Indeed, if 

E[(zj
T(f(t) − µx))2] = 0 for some 1 ≤ j ≤ r, this would imply that f(t) lies in the r – 1 

dimensional linear variety µx + span{z1, z2, …, zj−1, zj+1,  …, zr}.             ■ 

The significance of the theorem is that when f(t) lies in an r-dimensional linear 

variety, PCA can be used to identify the linear variety. The linear variety is given by 

the span of the first r eigenvectors, translated by µx, where r is equal to the number of 

dominant eigenvalues. Although Equation (2.5) applies to the theoretical covariance 

matrix Σx, in practice, PCA is conducted on a sample covariance matrix. In this case, it 

may not be clear what value should be chosen for r. There are, however, a number of 

statistical methods for estimating the number of dominant eigenvalues in this situation 

(see Apley and Shi, 2001).  

The following corollary relates to how the results of PCA can be used to filter the 

data in order to reduce the effects of the noise in principle curve estimation.  
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Corollary 2.2: Consider the d×r matrix Z = [z1  z2  … zr] and the d×d matrix Pz = 

ZZT, which is the projection operator onto M. Define the “filtered” version xz = Pz(x 

− µx) + µx of the random vector x.  Then  

            xz = f(t) + wz ,              

where wz = Pzw is the filtered version of the noise, obtained by projecting w onto the r-

dimensional subspace M.  

Proof:         xz = Pz(x − µx) + µx = Pz(f(t) − µx + w) + µx 

                = f(t) − µx + Pzw + µx =  f(t) + wz.                     (2.7) 

The third equality follows from the fact that f(t) – µx ∈ M.                      ■ 

The corollary implies that by filtering the data using the results of PCA, the 

principal curve component f(t) of the model (2.2) is unchanged, whereas the noise 

component w is reduced by an amount that depends on d and r. To quantify the extent 

to which the noise is reduced, consider the total variance E[wTw] as a measure of the 

noise level. Before filtering, the total noise variance is E[wTw] = trace{E[wwT]}= 

trace{ 2
σ Ι} = d 2

σ . After filtering, the total variance of the filtered noise is E[wz
Twz] = 

trace{E[wzwz
T]} = trace{PzΣwPz} = 2

σ trace{PzPz}= r 2
σ . Thus, the ratio of total noise 

variance before and after filtering is d/r. When f(t) lies in a linear variety of dimension 

much smaller than d, the reduction in noise variance will be substantial. The simulation 

results presented in Section II.6 demonstrate that this improves the principal curves 

estimation accuracy. 
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In the autobody assembly example introduced in Section I.3, the principal curve f(t) 

appears to be piecewise linear with two linear segments. More generally, suppose f(t) is 

piecewise linear with p linear segments, which is illustrated in Fig. 10 for the case that 

p = 4 and d = 3. Although we illustrate this with p > d, the primary utility of the 

approach will be for situations in which p << d. The following arguments show that a 

piecewise linear f(t) lies in a linear variety whose dimension is equal to the number of 

linearly independent pieces.  

 

 
Fig. 10. A piecewise linear principal curve. 

 

For j = 1, 2, …, p, define Ωj = {t: f(t) lies on the jth segment} and cj = 
jttt Ω∈∂∂ /)(f , 

which is proportional to the direction of the jth segment. Without loss of generality, 
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assume that t is scaled so that 
jttt Ω∈∂∂ /)(f  is constant over each Ωj. For each fixed t, 

f(t) can be expressed as a linear combination of {cj: j = 1, 2, . . ., p} added to f(t0), 

where f(t0) is an arbitrary point on f(t). In other words, f(t) can be expressed as 

             f(t) = f(t0) + Cv(t),                    (2.8) 

where C = [c1 c2 … cp], and v(t) = [v1(t) v2(t) … vp(t)]T for some set of p random 

variables vj(t) that are functions of t alone. For example, suppose t0 ∈ Ω1, and {tj: j = 1, 

2, …, p−1} are defined such that f(tj) is the intersection between the jth and the (j+1)st 

segments. Then for each t, v(t) = [t1−t0, t2−t1, . . . tk−1−tk−2, t−tk−1, 0, . . ., 0]T where k is 

such that t ∈ Ωk. 

 From Equation (2.8), it is clear that a piecewise linear curve f(t) lies in the r-

dimensional linear variety f(t0) + span{c1, c2, …, cp}, where f(t0) is an arbitrary point on 

f(t) and r = rank{C}. Hence, the preceding theorem and corollary are applicable to this 

situation. This has important practical implications with the high dimensional 

manufacturing data, because any nonlinear principal curve can be approximated 

arbitrarily closely by a piecewise linear one. If only a small (relative to d) number of 

linear pieces are needed to adequately approximate a principal curve, the preceding 

results imply that r will be small relative to d and the level of noise reduction achieved 

by filtering the data will be substantial. 

 When f(t) lies entirely in an r-dimensional linear variety, the results of PCA provide 

an estimate of the linear variety and its dimension. On the other hand, suppose that f(t) 

does not lie entirely in any low-dimensional linear variety, but that it can be reasonably 
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approximated by a piecewise linear curve. If the approximation is close, then f(t) will 

have only a small component that falls outside the linear variety in which the piecewise 

linear approximation lies, which may be of much lower dimension than d. In this case, 

the results of PCA provide an estimate of a linear variety in which f(t) approximately 

lies. The methods of estimating the number of dominant eigenvalues (i.e., the 

dimension of the linear variety) discussed in (Apley and Shi, 2001) are attractive in that 

the size of an eigenvalue is measured relative to 2
σ . If the size of all components of f(t) 

that lie outside a particular linear variety is small relative to 2
σ , it would typically be 

the case that these components could be neglected.  

 

II.4  The PCA-filtered Principal Curve Algorithm 

The HS algorithm for estimating a principal curve based on a sample of data {xn: n 

= 1, 2, …, N} seeks an estimate )(ˆ •f  that minimizes 
2

1
ˆ∑ =

−N

n n fx  under certain 

smoothness constraints. Here, 
22

)(ˆinfˆ tntn fxfx −=− . After conducting PCA on 

the sample covariance matrix, a set of filtered observations xz,n (n = 1, 2, . . ., N) could 

be generated in analogy with Equation (2.7) via xz,n = xxn µµx ˆ)ˆ(ˆ
z +−P . Here, zP̂ would 

be formed from the first r̂  eigenvectors { jẑ : j = 1, 2, …, r̂ } of the sample covariance 

matrix, and xµ̂  is taken to be the sample average of the observations. One might 

consider directly applying the principal curve estimation algorithm to the filtered 

observations by minimizing 
2

1 ,
ˆ∑ =

−N

n nz fx . As was discussed in Section II.3 and will 
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be demonstrated in Section II.6, this reduces the effects of the noise and improves the 

accuracy of the principal curve estimation. 

Aside from the PCA step, the computational expense of this approach would be the 

same as if the nonlinear variation pattern identification algorithm were applied to the 

original, unfiltered observations. If r̂  is much less than d, however, considerable 

savings in computational expense can be achieved as follows. Note that since each xz,n 

lies in the linear variety xµ̂ + M̂ , where M̂  = span{ 1ẑ , 2ẑ , …, rẑ }, minimizing 

2

1 ,
ˆ∑ =

−N

n nz fx  must always result in an )(ˆ •f  that also lies in xµ̂ + M̂ . Consequently, 

there is no loss of generality in restricting our search for )(ˆ tf  to this r̂ -dimensional 

linear variety. This can be accomplished by working with the r̂ -dimensional vectors of 

PCA scores  

                                   yn = )ˆ(ˆ T
xn µx −Z ,                       (2.9) 

where Ẑ  = [ 1ẑ 2ẑ  … rẑ ]. Note that yn consists of the coefficients of xz,n − xµ̂  using 

{ jẑ : j = 1, 2, . . ., r̂ } as a basis for the r̂ -dimensional subspace M̂ . Similarly define 

)ˆ)(ˆ(ˆ)(ˆ T
xtt µfh −= Z  to be the coefficients of xt µf ˆ)(ˆ −  in M̂ . Because we are 

restricting xt µf ˆ)(ˆ −  to lie in M̂ , it follows that xt µf ˆ)(ˆ −  = )(ˆˆ thZ , or 

                                        xtt µhf ˆ)(ˆˆ)(ˆ += Z .                      (2.10) 

 Using Equations (2.9) and (2.10) and the definition of xz,n, for any t we have 

    )](ˆ[ˆ]ˆ)(ˆˆ[ˆ]ˆ[ˆˆ)(ˆ T
, ttt nxxxnnz hyµhµµxfx −=+−+−=− ZZZZ   
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so that   )](ˆ[ˆˆ)](ˆ[)](ˆ[ˆ)(ˆ TT
22

, tttt nnnnz hyhyhyfx −−=−=− ZZZ  

                               
2

T )(ˆ)](ˆ[)](ˆ[ ttt nnn hyhyhy −=−−=  .                 

 Therefore, choosing )(ˆ •f  to minimize 
2

1 ,
ˆ∑ =

−N

n nz fx  is equivalent to choosing 

)(ˆ •h  to minimize 
2

1
ˆ∑ =

−N

n n hy  and then recovering )(ˆ •f  from )(ˆ •h  via Equation 

(2.10). 

 The advantage of working with the r̂ -dimensional vectors yn, as opposed to the d-

dimensional vectors xz,n, is that computational expense and convergence speed are 

substantially improved.  

 The PCA-filtered principal curve algorithm is summarized as follows: 
 

1). Linear Variety Identification 

 Conduct PCA on the sample data and estimate the dimension of the linear variety as 

the number r̂  of dominant eigenvalues. 

2). PCA Filtering  

 Form Ẑ  from the first r̂  eigenvectors and generate yn = )ˆ(ˆ T
xn µx −Z . 

3). Principal Curves Estimation  

 Use a standard principal curve estimation algorithm (e.g., the HS algorithm) to find 

the curve )(ˆ •h  in r̂ -dimensional space minimizing 
2

1
ˆ∑ =

−N

n n hy .  

4). Principal Curve Recovery  

 Given )(ˆ •h , recover the d-dimensional principal curve )(ˆ •f  using Equation (2.10). 
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We illustrate the variation pattern identification algorithm by continuing the 

autobody assembly example introduced in Section I.3. An example with much higher 

dimensional data is considered in the following section. After applying PCA to a 

sample of N = 100 autobodies, it was concluded that there were two dominant 

eigenvalues. Hence, the principal curve lies approximately in a two-dimensional 

subspace, which is consistent with piecewise linear appearance of the variation pattern 

in Fig. 4. Fig. 11(a) is a plot of all the six eigenvalues. The two corresponding 

eigenvectors are 1ẑ  = [.25 .53 .65 .36 .29 .14]T and 2ẑ  = [–.21 –.28 –.34 .62 .56 .26]T. 

Fig. 11(b) is a scatter plot of the two PCA scores y1 and y2 for the 100 autobodies, along 

with the estimated principal curve )(ˆ •h  in the two-dimensional subspace.     

 

 

Fig. 11.  Eigenvalues (a) and scatter plot of the two dominant PCA scores (b) for the 

autobody example. Panel (b) also shows the estimated principal curve )(ˆ •h  in the 2-
dimensional subspace of dominant PCA scores. 
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In order to interpret the variation pattern, we should transform the lower 

dimensional principal curve )(ˆ •h  back to the principal curve )(ˆ •f  in the original 6-

dimensional data space via Equation (2.10). The six elements of )(ˆ •f  (corresponding 

to the six variables x1, …, x6) are plotted versus t in Fig. 12. Although the scaling of t is 

somewhat arbitrary, the scaling in Fig. 12 was such that t coincides with the arc length 

along the principal curve. Compared with the scatter plots in Fig. 4, the plots in Fig. 12 

provide a clearer, less noisy, visualization of the nature of the nonlinear variation 

pattern. 

It can be seen from Fig. 12 that only the measurement features 1, 2, and 3 on the 

right bodyside deviate from their nominal positions. Each deviation is proportional to 

the increasing t before it reaches the value of t0. When t is greater than t0, the pairs of 

corresponding measurement features on both bodysides will change simultaneously 

(x3/x4 deviate to the largest amount, x2/x5 deviate to the next largest, and x1/x6 to the 

least), which exhibit a linear match boxing pattern.  
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Fig. 12. Plots of the elements of )(ˆ •f  versus t, illustrating the characteristics of the 
nonlinear variation pattern. 

 

II.5  Visualizing High Dimensional Variation Patterns  

The purpose of identifying variation patterns is to serve as an aid in identifying and 

eliminating major root causes of manufacturing variation. In order for a process 

operator or engineer to effectively interpret the pattern identification results, graphical 
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visualization techniques are critical, especially with high dimensional data. In this 

section, we illustrate a method for visualizing variation patterns in high dimensional 

data with the example from sheet metal flanging as discussed in Section II.1, in which 

the random variable t is introduced in model (2.3) to represent the variation on the 

boundary condition. The variation pattern f is then expected to describe the changing of 

position of the wrinkles along the length of the flange due to varied boundary 

conditions.  

In this example we defined d = 1080 points uniformly distributed over the panel. 

The variation pattern was simulated over a sample of N = 70 parts, with random noise 

added, and the results of PCA indicated that there were r̂  = 2 dominant eigenvalues. 

Similar to Fig. 11, Fig. 13 shows the first eleven eigenvalues and a scatter plots of the 

PCA scores corresponding to the two dominant eigenvalues, as well as the fitted 

principal curve )(ˆ •h  in two-dimensional space. The strong nonlinear (circular) pattern 

results from what can be viewed as phase shifting as the wrinkles change position along 

the flange. 

After transforming )(ˆ •h  back to the principal curve )(ˆ •f  in the original 1080-

dimensional space, the nature of the variation pattern could be visualized by graphically 

illustrating how )(ˆ •f  varies as t is varied. Fig. 14 shows a MATLAB® graphical user 

interface that was developed for this purpose. The plot of )(ˆ •f  shown in Fig. 14 

changes dynamically as the user moves the slide bar control back and forth such that 

the position of the slide bar represents the value of t for which )(ˆ •f  is currently plotted. 
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Fig. 13. The first eleven eigenvalues (a) and scatter plot of the dominant PCA scores 
(b) for the simulated shrink flanging example. Panel (b) also shows the estimated 

principal curve )(ˆ •h  in the 2-dimensional subspace of dominant PCA scores. 

 

 

Fig. 14. Graphical user interface for interactively visualizing the nature of a nonlinear 
variation pattern that represents wrinkling in a shrink flanged panel. 
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As discussed in Section II.1, Fig. 8 shows five frames (for five different values 

spanning the range of t) produced from Fig. 14. Only the flange part of the panel is 

shown. Although it is much clearer when viewing an animation, it can still be seen 

from the five static frames that the variation pattern represents the wrinkles changing 

position from part to part. The effect of proposed principal curve algorithm for 

facilitating variation pattern visualization and diagnosis can be further illustrated by 

comparing the plots in Fig. 8 with that in Fig. 15, which is plotted from a sample 

observation before the noise-filtered algorithm was applied. As shown in Fig. 15, since 

the systematic variation pattern present in the data was distorted by the noise to a great 

extent, it is hard to identify and diagnose the nature of nonlinear pattern f(•) using the 

set of sample data only. In this sense, the proposed noise-filtered algorithm not only 

reduces the computational expense in principal curve estimation, but also improves the 

accuracy in nonlinear variation pattern identification and interpretation. 

 

 
Fig. 15. Illustration of the wrinkling in the flange surface from a sample observation. 
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II.6  Monte Carlo Performance Comparison 

In this section, Monte Carlo simulation is used to compare the performances of the 

standard HS algorithm and the PCA-filtered HS algorithm. In all simulations, the data 

were generated via model (2.2). The noise component of x was generated from a 

multivariate Gaussian distribution with covariance matrix 2
σ I. The principal curve 

component of x was generated as a uniformly distributed point along the specified 

principal curve f(t). Denoting the principal curve estimates from the HS algorithm and 

the PCA-filtered HS algorithm as )(ˆ
HS •f  and )(ˆ

PCA-HS •f , respectively, consider the 

mean squared distances 

            JHS = dttgt )()(ˆ 2

HS∫ − ff  and                (2.11)  

              JHS-PCA = dttgt )()(ˆ 2

PCA-HS∫ − ff                        (2.12) 

as measures of closeness between the estimated and true principal curves. Here, g(t) 

denotes the probability density of t, which was uniform in all cases. The variable t was 

scaled so that ||∂f(t)/∂t|| was constant along the entire length of the curve. In each of the 

Monte Carlo simulations for the examples discussed below, JHS and JHS-PCA were 

averaged over 10,000 Monte Carlo replicates to compare the accuracy of the two 

principal curve estimation methods.  

A quadratic principal curve lying in a two-dimensional linear variety of ℜd was 

used for all simulations. The principal curve was constructed by first generating the 

curve x2 = 2
1x  for x1∈ [−1, 1], which is illustrated in Fig. 16 for d = 3. The curve was 
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then multiplied by a Householder mirror reflection matrix in d-dimensional space to 

transform it without changing its shape or size so that it still fell in a linear variety of 

dimension r = 2.  

 

 
Fig. 16. Illustration of data along a quadratic principle curve with d = 3, r = 2 and σ = 
0.1. 
 

Table 1 compares the performance of the HS algorithm and the PCA-filtered HS 

algorithm for various r, d, and σ, with a sample size of N = 200. Note that the value of σ 

in Fig. 16 corresponds to the midrange value of 0.1 in Table 1. The extent to which 

PCA filtering improves the accuracy (as measured by JHS/JHS-PCA) varied between 1.48 

and 6.96, with larger relative improvement for larger d (higher dimensional data) and/or 

large σ (larger noise-to-signal ratio). Simulations were also run for N = 100 and N = 
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400. The individual performance measures JHS and JHS-PCA were roughly inversely 

proportional to N, and their ratio was virtually the same for all values of N. 

 

Table 1. Performance comparison of the HS and PCA-filtered HS algorithms for 
quadratic principal curves (N = 200). 

d σ JHS JHS-PCA JHS/JHS-PCA 

8 0.05 0.0031 0.0021 1.48 
8 0.1 0.021 0.0089 2.36 
8 0.2 0.43 0.16 2.69 

16 0.05 0.0034 0.0019 1.79 
16 0.1 0.056 0.021 2.67 
16 0.2 0.63 0.19 3.32 
64 0.05 0.0065 0.0025 2.60 
64 0.1 0.24 0.059 4.07 
64 0.2 3.56 0.68 5.24 
100 0.05 0.022 0.0052 4.23 
100 0.1 0.56 0.098 5.71 
100 0.2 5.64 0.81 6.96 

 

II.7  Chapter Summary 

 This chapter develops a methodology for representing and blindly identifying 

nonlinear variation patterns in high dimensional measurement data. The nonlinear 

variation pattern model is an extension of previous linear models that provides more 

accurate representation of complex nonlinear phenomena. To overcome computational 

and accuracy problems caused by high dimensionality, thereby making the approach 

more suitable for large-scale manufacturing databases, a pre-filtering step for 

enhancing principal curve estimation was developed. The Monte Carlo simulation 
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results demonstrate that the pre-filtering, which involves the use of linear PCA, can 

substantially improve the pattern estimation.  

 This chapter also describes the use of graphical visualization methods for aiding in 

interpreting the blindly identified variation patterns. This allows potentially valuable 

information to be extracted from large volumes of recorded measurement data. 

Together, the pattern identification and visualization techniques provide an effective 

tool for diagnosing major root causes of manufacturing variation.  
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CHAPTER III 

NONLINEAR VARIATION PATTERN IDENTIFICATION BY A 

POLYGONAL LINE ALGORITHM 

 

III.1  Introduction 

Chapter II discusses the applicability of principal curve method for single nonlinear 

variation pattern modeling and identification. When principal curves lie in lower 

dimensional linear varieties, the noise-filtered algorithm proposed in Section II.4 not 

only improves the accuracy of pattern identification for root cause diagnostics, but 

overcomes the problem of dimensionality in high dimensional manufacturing 

application. As the nonlinear generalization of principal component analysis, a 

principal curve provides a summarization of the data in terms of a one-dimensional 

manifold non-linearly embedded in the high data space, which serves as a nonlinear 

pattern identification and dimension reduction technique.  

Several principal curve based nonlinear methods have been proposed subsequent to 

Hastie and Stuetzle’s original work, many of which provided various algorithms 

thereupon owing to the ambiguity in the formulation of data model (Delicado, 2001). 

Banfield and Raftery (1992) modified the HS algorithm to reduce its estimation bias 

when estimating closed curves and used the results to identify ice floe outlines from 

satellite images. Another definition of principal curve with constrained length was 

proposed in (Kégl et al., 1999; Verbeek et al., 2001) to estimate principal curves that 
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minimizes the average squared distance between the curve and the observations. 

Tibshirani (1992) defines principal curves as curves minimizing a penalized log-

likelihood measure, where the conditional distribution of x on projection index t is a 

spherical Gaussian. 

Alternative methods have been given to tackle this and closely related problems. 

Mulier and Cherkassky (1995) applied self-organizing maps (SOM) to identify 

nonlinear patterns by incorporating some prototype-vectors. Finite mixture models 

were proposed to learn complex nonlinear data structure as a combination of “local 

models” (Hinton et al., 1995; Tipping and Bishop, 1999).   

Several problems exist with the aforementioned methods. When the sample data are 

concentrated around a complex curve or the model assumptions are not satisfied, these 

methods exhibit poor performance. This is due to the fixed model structures or to bad 

initialization and smoothness constraint (Tibshirani, 1992; Verbeek et al., 2001). Also, 

often one does not know a priori how many “local models” one needs and one has to 

make a guess for the number of local models.  

In this chapter, we propose a polygonal line based principal curve estimation 

algorithm for nonlinear variation pattern identification, where the nonlinearities among 

the multivariate measurement data can be summarized by a combination of local linear 

models. Recognizing the limitations of existing principal curve approaches, this chapter 

integrates the linear principal component analysis with the polygonal line algorithm to 

represent complicated nonlinear patterns. Such nonlinear variation pattern identification 

method for multivariate data is capable of recognizing the underlying principal curves 
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without loss of information. The experimental results in Section III.5 will demonstrate 

that the polygonal line algorithm can produce robust and accurate estimation for a 

variety of nonlinear patterns.  

The complexity of principal curve estimation is another implementation factor 

when the size of sample is large. For N data points, the HS algorithm actually produces 

polygonal lines with N segments and the computational complexity is mostly 

determined by the sample size. In this chapter, we take a new approach by estimating 

principal curves as continuous curves which minimize the average squared distance 

between the curve and data points. This learning scheme chooses a curve from a class 

of polygonal lines with K segments by minimizing the distance measure, the 

computational complexity of which depends on K. The number of segments, K, when 

optimally chosen, is usually much less than N. Therefore, the proposed polygonal line 

algorithm can be implemented with reduced computational expense.   

Piecewise linear principal curves have been investigated in Chapter II in that any 

nonlinear principal curve can be approximated arbitrarily closely by a polygonal line 

(piecewise linear curve) with finite line segments. The presumption throughout this 

chapter is that the proposed polygonal line algorithm will be applied to the PCA scores 

y projected in the r-dimensional space, where r is the dimension of the lower linear 

varieties in which the original d-dimensional variation pattern or its approximated 

piecewise linear curve lies. The identified polygonal line in ℜr is then transformed back 

to the original data space, yielding the estimate of the d-dimensional nonlinear pattern 

for variation pattern diagnosing use, as described in Section II.5. 
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The theoretical results in Chapter II will be utilized to construct a polygonal line by 

determining the number of line segments. As a compromise between linear and 

nonlinear pattern identification methods, the polygonal lines enjoy the simplicity and 

analyzability of linear models while remaining robust enough to model various 

nonlinear multivariate data.  

 

III.2  Identifying Principal Curves with Polygonal Lines 

A curve in r-dimensional Euclidean space is a continuous function h: I → ℜr, 

where I is a closed interval on the real line. Denote the expected squared distance 

between y and h by 

    ∆(h) = 
22

))((])(inf[ yhyhy h
v

tEvE −=− ,            (3.1) 

where the projection index th(y) is defined in Equation (2.4). Let h be a smooth 

(infinitely differentiable) curve and, for λ ∈ ℜ, consider the perturbation h + λg of h by 

a smooth curve g such that 1)(sup ≤vv g  and 1)(sup ≤′ vv g . HS proved that when h 

is a principal curve, it is a critical point of the distance function in the sense that, for all 

such g, 

     0
)(

0

=
∂

+∆∂

=λλ
λgh

.               (3.2) 

An analogous result holds for linear principal component if the perturbation g is a 

straight line. In this sense, the HS principal curve definition is a natural generalization 
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of principal components. Also, it is easy to check that principal components coincide 

with principal curves if the distribution of y is elliptical (Hastie and Stuetzle, 1989). 

III.2.1  Piecewise Linear Curves 

A straight line s(t) is the first principal component, if and only if, 

       ]~[][
22

sysy −≤− EE                (3.3) 

for any other straight line )(~ ts . We would like to generalize the property (3.3) of the 

first principal component and define principal curves so that they minimize the 

expected squared distance over a class of curves, rather than only being critical points 

of the distance function (3.1). To do this, it is necessary to consider the smoothness 

constraint on the curve since, otherwise, for any y with a density and any ε > 0, there 

exists a smooth curve h such that ε≤∆ )(h  and, thus, a minimizing h with respect to 

distance (3.1) has infinite length and usually produces over-fitting results. This problem 

can be resolved by restricting the curve as a piecewise linear curve with finite length 

that is determined by the number of line segments. On the other hand, if the distribution 

of y is concentrated on a polygonal line and is uniform there, the infimum of the 

squared distances ∆(h) is 0 over the class of smooth curves, but no smooth curve can 

achieve this infimum. For this reason, we relax the requirement that h should be 

differentiable and, instead, we define it to be a polygonal line. Note that, by the 

polygonal line definition of principal curves, h is still continuous. We give the 

following definition of polygonal line as the principal curve approximation: 
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Definition 3.1 A curve h is called a principal curve with K line segments for y if h 

minimizes ∆(h) over all curves in the class of polygonal lines with K segments.  

 A useful advantage of the new definition is that the principal curves with K line 

segments always exist, as the simulation results in Section III.5 demonstrate. Note that 

neither the HS nor our definition guarantees the uniqueness of principal curves. In our 

case, there might exist several principal curves for a given segment number, but each of 

these will have the same (minimal) square error.  

In what follows, we consider the problem of polygonal line estimation based on a 

set of sample data. Suppose that N data points y1, y2, …, yN are drawn independently 

from the distribution of y. The goal is to use the sample data to construct a curve with 

line segments at most K whose average squared loss is close to that of the unknown 

principal curve for y. When the number of line segments is chosen appropriately, the 

estimated polygonal line can identify the nonlinear pattern with desired accuracy. 

Define  

   ∆(yn, h) = 
2

)(min tn
t

hy −              (3.4) 

as the squared distance between a point yn ∈ ℜr and the curve h. For any h ∈ Sk, where 

Sk is the class of piecewise linear curves with k line segments, the empirical squared 

error of h is the sample average of Equation (3.4), i.e. 

        Jh = ∑∑
==

∆=
N

n
n

N

n
hn N

J
N 11

, ),(
11

hy ,                  (3.5) 

where we have suppressed the dependence of Jh on the sample data.  



 

 

52 

For a k-segment polygonal line, h consists of k+1 vertices {v1, v2, …, vk+1}. Denote 

hi(t) = )( 1
1

ii
ii

i
i tt

tt
vvv −

−
−

+ +
+

 as the ith line segment for t ∈ [ti, ti+1] ⊂ ℜ where ti is the 

projection index of vi along h (i = 1, 2, …, k). The way the distance of point y and the 

line segment hi is measured depends on the value of )( y
iht . If ih tt

i
=)( y  or 

1)( += ih tt
i

y , the distance is measured as the distance of y and one of the vertices vi or 

vi+1 respectively. If y projects to hi between its two vertices, the distance is measured as 

if hi were a line, as shown in Fig. 17, and the squared distance is then 

2T2
))(( iii cvyvy −−−  where )/()( 11 iiiii tt −−= ++ vvc . Formally, 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−−
=−
=−

=∆ ++

.otherwise))((

,)(

,)(

),(
2T2

1

2

1

2

iii

ihi

ihi

i tt

tt

i

i

cvyvy

yvy

yvy

hy     (3.6) 

Given the definition (3.6), the distance in Equation (3.5) is ∆(yn, h) = mini{∆(yn, hi)}. 

 

 

Fig. 17. Distance between a point and a line segment in two different geometric cases.  
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Given the number of line segments, the polygonal line learning algorithm will 

choose an h that minimizes the empirical distance (3.5).  

III.2.2  Piecewise Linear Basis Functions 

 As discussed in Section II.3, the k-segment polygonal line h(t) as the principal 

curve approximation, can be written as h(t0) plus a linear combination of {cj: j = 1, 2, 

…, k}, where h(t0) is an arbitrary point on h(t) and cj is proportional to the direction of 

the jth segment.  

 Following the expression of Equation (2.8), a polygonal line can be readily written 

by the piecewise linear basis function representation (Hastie et al., 2001): 

                  h(t) = Wbw(t)                      (3.7) 

where W = [v1, …, vk+1] is an r×(k+1) weight matrix, and bw(t) = [bw,1(t), …, bw,k+1(t)]
T 

are the basis functions, defined by  

   
⎪
⎩

⎪
⎨

⎧

≤<−−
≤<−−

= +++

−−−

otherwise

ttttttt

ttttttt

tb iiiii

iiiii

i

,0

),/()(

),/()(

)( 111

111

,w                 (3.8) 

where t ∈ I = [t1, tk+1] being the so-called projection index along the polygonal line, and 

t1 < t2 < …< tk  < tk+1 are the projection indices of vi (i = 1, 2, …, k+1). As an example, 

in Fig. 18 a set of piecewise linear basis functions is plotted for illustration, when the 

polygonal line has k = 2 pieces. Thus, the piecewise linear basis functions (3.7) provide 

a parametric formulation for polygonal lines. 
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Fig. 18. Piecewise linear basis functions for k = 2. 

 

Note that Definition (3.8) implies that the basis functions are non-negative and form 

a partition of unity  

          1)(
1

1
,w =∑

+

=

k

i
i tb                 

for all t. The latter property obviates the need for an additional representation of a shift 

(bias) vector since 

Wbw(t) + 0µ  =  Wbw(t) + ],,[ 00 µµ … bw(t) = )(
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w tbW .         

  Piecewise linear principal curves have received considerable attention in the 

literature in that any principal curve can be approximated arbitrarily closely by a 

piecewise linear one. If only a small number of line segments are needed to adequately 

represent the underlying principal curve, a substantial reduction on computational 

expenses is achieved. In addition, the curves can be parameterized in terms of arc 

length when the vertices are ordered along the polygonal line.  
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III.3  The Polygonal Line Algorithm 

 In this section we will introduce a local PCA based algorithm for approximate 

principal curves using polygonal lines. The accuracy of approximation depends on 

some factors such as the number of line segments and sample size. As will be discussed 

in Section III.3.3, each line segment defines an associated local partition of the data 

space such that the sample generated from the underlying principal curve is partitioned 

into distinct local regions. Each local partition can be represented by the first 

eigenvector if the number of dominant eigvenvalues is equal to one; otherwise, the data 

within this local partition involve nonlinearities and need a combination of multiple line 

segments rather than a straight line to approximate. For the latter case, we need to add 

new line segments to the current estimate of polygonal line and update all the vertices 

accordingly. The evolution of the polygonal line produced by the algorithm is 

illustrated in Fig. 19. 

 Similar to other nonlinear pattern identification methods (Kégl et al., 1999; Mulier 

and Cherkassky, 1995; Kambhatla and Leen, 1997), the proposed algorithm involves a 

two-step procedure: partition of the sample space and linear principal components 

analysis for each local partition. Iteratively, the proposed algorithm pieces together the 

local partitions by line segments and updates the optimal coordinates of their 

corresponding vertices by a global search method, where we take the Euclidean 

distance (3.5) as the objective function. 
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Fig. 19. (a) The flow chart of the polygonal line algorithm; (b) An example for 
illustration for an S-shaped curve that was produced by the algorithm with K = 2, 5, 8, 
and 10 for N = 100 data points with σ = 0.05.  
 

 As discussed in Chapter II, for the high dimensional data x in ℜd, we first project 

them onto a lower dimensional linear subspace spanned by the first r dominant 

eigenvectors. Then the polygonal line algorithm is applied to the PCA scores y. After 

obtaining the optimal vertices of polygonal line h in ℜr, we will transform h that 

corresponds to y back to the d-dimensional space via Equation (2.10). Thus, the 

nonlinear pattern present in the original data is identified by a polygonal line f in ℜd.   

(a) (b) 

y1 

y2 

y1 

y2 

y1 

y2 

y1 

y2 

-1 -0.5 0 0.5 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-1 -0.5 0 0.5 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-1 -0.5 0 0.5 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-1 -0.5 0 0.5 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

START 

Initializatio
n 

Vertices optimization 

Projection 

Add new 
vertex? 

END 
N 

Y 



 

 

57 

III.3.1  Initialization of the Polygonal Line Algorithm 

 The theoretical results in Chapter II imply that a k-segment polygonal line lies in an 

r-dimensional linear variety with k ≥ r. Therefore, after identifying this linear variety 

and projecting x onto it, we can always initialize the polygonal line for transformed 

PCA scores y with r line segments, followed by an optimal search for these r+1vertices. 

 An intuitive and simple way to achieve the initialization is to project all the PCA 

scores yn onto the first eigenvector 1ẑ  of xΣ̂ , then start from one end point of the 

projection along the eigenvector and set the location of r+1 points such that the number 

of projected data within two consecutive points approximately equal to N/r. Now these 

r+1 points on 1ẑ  are taken as the initialized vertices for the polygonal line algorithm. 

Or, we can update these vertices by the projection-regression method introduced in 

Section III.3.4 to provide a better initialization.  

III.3.2  Vertices Optimization 

 Given a data set {y1, y2, …, yN}, the goal of the vertices optimization step is to 

update k+1 vertices by minimizing the average squared distance function (3.5) subject 

to the constraint that the piecewise curve has k segments, where k is the number of 

current line segments.  

 The vertices optimization step first calculates the gradients of the objective function 

with respect to the k+1 vertices W = [v1 v2 … vk+1]. Let yn be an arbitrary sample data, 

and hi be the closest line segment to yn (i = 1, 2, …, k;  n = 1, 2, …, N). For denotation 

simplicity, let Vec(W) be an r(k+1) vector containing the stacked columns of W: 
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 For each Jn,h in Equation (3.5), the gradient with respect to the unknown k+1 

vertices, )(/, WdVecdJ hn , is derived based on two geometric cases as shown in Fig. 17. 

 Case I: The closest point on line segment hi to yn is one of its vertices, denoted by 

vi, then 
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 Case II: The closest point on line segment hi to yn is one other than the vertices vi 

and vi+1, then   
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where  
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 Calculating the gradients for all N sample data, we have the gradient vector of 

objective function Jh with respect to Vec(W) as ∑
=

=
N

n

hnh

dVec

dJ

NdVec

dJ
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,

)(

1

)( WW
, and the 

optimization methods can apply to the search for the k+1 vertices. 

 Recall that the method of steepest descent method uses only the gradients in 

selecting a suitable search direction. This strategy is not always the most effective in 

the sense of convergence. If higher derivatives (e.g., Hessian) are incorporated, the 

resulting iterative optimization algorithm usually performs better than the gradient 

methods (Avriel, 2003; Bertsekas, 1995). Denote the Hessian matrix for JN,h as 

∑
=

=
N

n
nN 1

1
HH where Hn is the Hessian with respect to Jn,h. Define  
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 The notation g(vi, vi+1) simplifies the gradients (3.9) and (3.10) to  
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The Hessian matrix Hn is  
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As the gradients calculation, the second derivatives of Jn,h with respect to vertices (v1, 

v2, …, vk+1) also depend on the two geometric cases.  

 For case I, it is straightforward to calculate the Hessian matrix for Jn,h as a diagonal 

matrix, i.e., Hn = Diag{0d×d, …, 2Id×d, …, 0d×d }.  

 For case II, the Hessian matrix is of the following structure: 
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where the four non-zero d×d sub-matrices in Equation (3.11) are 
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 One advantage of the polygonal line algorithm is that the optimization step can 

simultaneously determine the optimal coordinates of all vertices, compared to some 

other approaches (Kégl et al., 1999; Verbeek et al., 2002) in which only a single vertex 

vi is updated while all other vertices are kept fixed. In other words, the optimization 

procedure is iterated in a cyclic fashion (that is, after optimizing vk+1, the procedure 

starts again for v1) until convergence is achieved.  

III.3.3  Local Linear Partitioning 

 In the proposed polygonal line algorithm, we need to partition the sample data into 

local regions for linear principal component analysis. Let Y be a set of N samples 

N
nn 1}{ =y  in ℜr. Given the current k line segments hi (i = 1, 2, …, k) of polygonal line h, 

define the local regions V1, V2, …, Vk as 

                        Vi = {yn ∈ Y | ),(minarg jj
i hyn∆= }.         

 Hence, Vi contains all data points for which the ith line segment hi is the closest. The 

way to construct the local partition by projecting the N sample data into k regions is 

built on Euclidean distance, and the mean vectors of the k local partitions are sample 

mean, i.e. ∑
∈

=
iV

n
i

i N
ny

yµ
1

ˆ  where Ni is the data size of the ith local partition. 

III.3.4  Adding a New Vertex 

 Given the local partitions defined above, for each Vi, we apply PCA to its sample 

covariance matrix T)ˆ()ˆ(
1ˆ

in
V

in
i

i

i
N

µyµy
ny

−−= ∑
∈

Σ  to determine ri, the number of 
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dominant eigenvalues that is great than 2
σ̂  (In the algorithm, we 

choose 2
21 ˆ2ˆˆˆ

σr ≥>>> λλλ … ). If there is a partition with ri greater than one, it 

implies that some nonlinear relationships are involved in the data within Vi. Therefore, 

a combination of multiple line segments rather than the first principal component of iΣ̂  

will produce more accurate data representation. In case of multiple local partitions with 

ri > 1, we can pick up one whose second dominant eigenvalue contributes larger to its 

total variance within Vi compared to other partitions. The midpoint of the chosen line 

segment then serves as the initialization of the new vertex for h. This incremental 

scheme that increases the number of line segments by one will help avoid the over-

fitting problem in polygonal line estimation. 

 Thus, in an iterative way the algorithm will increase the number of segments by 

adding a new vertex to the current polygonal line estimate. After adding a new vertex, 

the positions of all vertices are updated by the nonlinear optimization method in 

Section III.3.2. 

 Newton’s method in the vertices optimization step uses the first and second 

derivatives and indeed performs better than the steepest descent method on the 

convergence property when the starting point is near the optimal solution (Bertsekas, 

1995). To provide a good initialization for the vertices when a new vertex point is 

added, we propose the following projection-regression scheme to obtain better initial 

values of vertices. This initialization scheme arises from the piecewise linear basis 

function formulation of the polygonal lines, which iterates between two steps: 
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 Projection Step: Given the current vertices as the columns of the weight matrix W 

in Equation (3.7), the projection step estimates the projection index t along the 

polygonal line constructed by W, as discussed in III.2.2. The basis function bw is then 

obtained by Equation (3.8). 

 Regression Step: Given the basis bw,n for each data point, the regression-step 

produce the initialization for vertices that minimizes  
2

1 w,∑ =
−N

n nn by W . The standard 

linear regression method applies to obtain: 

 1TT
21 )(][ −= tttN BBBW yyy � , 

where Bt = [bw,1 bw,2 … bw,N].  

 Given the polygonal line representation, it is straightforward to see that the distance 

error (3.5) is non-increasing after each regression step. Hence the proposed projection-

regression scheme always converges and produces a good initialization for the 

subsequent vertices optimization. 

III.3.5  Computational Complexity 

 The complexity of the polygonal line algorithm is dominated by the complexity of 

the projection step in local linear partitioning, which is )(NkO  and k is the current 

number of line segments. Increasing the number of line segments one at a time (as 

described in Section III.3.4), the complexity of the algorithm to obtain the final 

polygonal line with K segments is )( 2NKO . As the experimental studies showed, the 

optimal number of line segments K is smaller compared to the sample size of data N 
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(usually 2/1NK < ). This is slightly better than the )( 2NO  complexity of the HS 

principal curve algorithm.  

 The number of segments K is an important factor that controls the approximation 

errors. If the noise variance is relatively small, we can keep the approximation error 

low by allowing a larger K; on the other hand, increasing K would not improve the 

overall performance, so, a smaller number of segments is chosen. 

The complexity can be dramatically decreased in certain situations. One possibility 

is to add more than one vertex at a time. For example, instead of adding only one 

vertex, new vertices are placed at the midpoint of these segments hi for which ri > 1 (i = 

1, 2, …, k). Then we can reduce the computational complexity for producing h. One 

can also set K to be a constant since increasing K beyond a certain threshold brings only 

diminishing returns, giving )(NKO  computational complexity. Also, the number of 

initial line segments for polygonal line algorithm can be naturally set to a constant in 

certain applications if we have a priori knowledge about the data. These simplifications 

work well in certain situations, but the original algorithm is more robust. 

 The polygonal line algorithm can be summarized as: 

1) Project data x in ℜd onto PCA score space in ℜr by Equation (2.8). 

2) Initialize the polygonal line (0)h  with r line segments.  

3) Update vertices {v1, …, vk} and line segments. 

4) Partition sample data into k local regions {V1, …, Vk }. 
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5) Determine the local partition with multiple dominant eigenvalues, add a new 

vertex and go to step 3), until the algorithm converges when the improvement 

on objective function is below some threshold.  

6) Transform back the polygonal line to original data space via Equation (2.10). 

 

III.4  A Nonlinear Variation Pattern Identification Example 

 In this section, we present an example from sheet metal stamping process, in which 

a sheet metal is first clamped by the binders around the periphery of the die cavity and 

is subsequently drawn into the die cavity by a moving punch to form its final shape 

(Kim and Kim, 2000; Hsu et al., 2000). For purpose of illustration, a round cup 

constructed by CAD data is shown in Fig. 20, which is of desired shape from the metal 

forming design. Fig. 21 shows its simplified stamping process with some process 

variables: Fp is the punch force, Fb is the blank holder force, and Fr is the restraining 

force within the blank. 

 In spite of the designed shape as Fig. 20 illustrates, in the real manufacturing, 

however, due to the variation on some process variables such as blank holder force 

(BHF), sheet thickness, and frictions, there is often some wrinkling appearing on the 

formed parts after the stamping operation. As discussed in Chapter II, wrinkling is one 

of the main considerations regarding the quality of stamped parts, which is critical to 

avoiding problems in subsequent assembly and in the final product performance. In the 

present study, we will study how the wrinkling evolves with respect to the varying 

blank holder force through a set of simulations. Numerical simulation using finite 
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element analysis (FEA) method has become a prime tool to predict the wrinkling for 

the complicated sheet metal operations. The commercial finite element code Dynaform 

is used in this case study for the round cup forming. 

 

 
Fig. 20. The plot of a round cup constructed by CAD data from a stamping process.  

  

 

Fig. 21. Schematic of a simplified stamping process for a round cup. 
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In this case study, the value of BHF was varied in each FEA simulation that drawn 

randomly from a normal distribution with the standard blank holder force level as the 

mean. The measurement vector x consists of d = 2457 elements representing the height 

of the wrinkles over an array of locations distributed across the part, which could be 

obtained from laser scanned parts in real deep drawing stamping practice. As discussed 

in (Hsu et al., 2000), the wrinkles on the surface are expected to be reduced as BHF 

increases until there is almost no wrinkling when blank holder force reaches an 

appropriate level. If BHF continues to increase, there will be a ring around the punch 

radius which may cause tearing fracture when the force is greater than some specific 

threshold. Based on a sample of N = 48 simulations, there were r̂  = 3 dominant 

eigenvalues as shown in Fig. 22. Fig. 23 shows the scatter plot of the first three PCA 

scores corresponding to the dominant eigenvalues, as well as the fitted principal curves 

)(ˆ •h  in 3-dimensional space using the proposed polygonal line algorithm and HS 

algorithm. Comparing the curves in Fig. 23, it can be seen that the proposed algorithm 

is capable of identifying the nonlinear pattern present in data y. 

 

 

Fig. 22. The plot of the fist 20 eigenvalues from the sample covariance matrix of x. 
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Fig. 23. The estimated principal curves from polygonal line algorithm (solid line) and 
HS algorithm (dashed line) in the 3-dimensional subspace of dominant PCA scores. 
 

Transforming )(ˆ •h  back to the principal curve )(ˆ •f  in the original 2457-

dimensional space, we can identify the nature of the variation pattern by graphically 

illustrating how )(ˆ •f  varies as t is varied as discussed in Section II.5. Fig. 24 shows 

four frames (for different values spanning the range of t) produced from the principal 

curve f̂ with different values of t for which )(ˆ •f  is currently plotted. Investigating the 

plots in Fig. 24 reveals that lower BHF (corresponding to the smaller projection index 

t) caused wrinkles on the surface of the formed part (see Fig. 24a). Increasing the blank 

holder force will reduce the wrinkles (see Fig. 24b and 24c). However, inappropriately 

excessive BHF also restricted the material flow and the high restraining force would 

produce the ring around the punch radius that moves up (see Fig. 24d). In the worst 

case, a high BHF applied on the binder would lead to tearing failure near the punch 

radius. These distinct frames from variation pattern identification results then illustrate 
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how the wrinkles changing from part to part when BHF varies in the FEA simulations. 

In this example, the physical meaning of projection index t is explained as a monotonic 

function of the blank holder force.  

 

 
Fig. 24. Illustration of the nonlinear variation pattern with four different frames, in 
which the wrinkles are indicated by the arrows. 

 

(a) t = 0.29 

(b) t = 4.08 
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Fig. 24. Continued. 
 
 

In real manufacturing variation reduction situations, the visualization result from 

the identified wrinkling variation pattern provides an intuitive way for the engineers or 

operators to gain insight of the nature of root cause of the wrinkles on the surface of 

formed part. For example, comparing the different plots of wrinkling in Fig. 24 with 

respect to various values of t in an ascending order, they will identify the variation 

(d) t = 23.76 

(c) t = 12.95 
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source as the variation on BHF by utilizing their engineering knowledge of the 

stamping process. And the blank holder force should be adjusted in such a manner that 

it suppresses the wrinkling tendency and produces the desired stamped parts in real 

manufacturing process. 

 

III.5  Simulation Study 

 In this section, we will investigate the performance of the proposed polygonal line 

algorithm in different simulation cases. First recall the commonly used generative 

model (LeBlanc and Tibshirani, 1994), from which the simulation data are generated by 

decomposing the observable data into a systematic part and a noise part, i.e. 

         xn = f(tn) + w,    n = 1, …, N.               

 If not stated otherwise, the noise w is assumed Gaussian, that is, w ~ Nd(0, 2
σ I). 

Here, the latent variable t as a random variable is uniformly distributed on a curve (also 

called generating curve) and w is independent of t. In the following simulation 

examples, the principal curve was constructed from the generating curve on a lower 

dimensional data space. The curve was then multiplied by a Householder mirror 

reflection matrix to d-dimensional space (d = 12) so that it still fell in the r-dimensional 

linear variety, as discussed in Section II.6.  

 The performance of our algorithm is compared with HS principal curve algorithm 

on the basis of how closely the sample data points are concentrated on the estimated 

curves. For the cases of the different generating curves, we also evaluate, in a 

quantitative manner, how well the polygonal line algorithm summarizes the 
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multivariate data points as the data sizes and noise variance vary. 10,000 Monte Carlo 

replications were averaged in each case to compare the empirical square distance 

measures JHS and JPL in Equation (3.5), which denote the HS algorithm and the 

proposed polygonal line algorithm that applied to the PCA scores. We use different 

nonlinear patterns, noise parameters, and data sizes to investigate the robustness of the 

polygonal line algorithm.  

III.5.1  A Half-circle Curve 

In this case, the generating curve is a smooth half circle of radius one (that is, r = 

2), as illustrated in Fig. 25. Three values of σ are used to represent the various noise 

variance considered in the generative data model. 

 

Fig. 25. The piecewise linear curve (solid line) produced by the polygonal line 
algorithm with K = 10, compared with HS principal curve (dotted line). Both from the 
sample data (N = 200 and σ = 0.05) generated from a half-circle curve (dashed line). 
 

 For various N and σ, the corresponding simulation results in Table 2 showed that 
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comparable. The HS and our algorithm behave similarly in approximating the 

generating curve given the set of sample data.   

If the distribution is concentrated on a curve and the noise variance is small, we 

expect both algorithms to approximate the generating curve very closely, as 

demonstrated in Table 2. The second situation that estimation bias will be reduced is 

when the sample size is large. Such an improvement on algorithm performance is 

justified by the results in Table 2. For example, when the other parameters were fixed, 

the estimation errors for both algorithms were reduced from N = 100 to N = 400. 

 

Table 2. Performance comparison between HS algorithm and our polygonal line 
algorithm for the half-circle curves (K = 10). 

Ν 
 

σ JHS (×10-3) JPL (×10-3) 
100 0.025 2.1 2.9 
100 0.05 5.6 6.3 
100 0.1 12.9 13.4 
200 0.025 1.9 2.8 
200 0.05 5.5 6.2 
200 0.1 12.7 13.2 
400 0.025 1.8 2.7 
400 0.05 5.3 6.1 
400 0.1 12.6 13.1 

     

III.5.2  An S-Shaped Curve 

 In this case, we generate data from an S-shaped curve with varying sample size, 

noise variance to demonstrate the robustness of the polygonal line algorithm. Fig. 26 

compares the piecewise curve produced by our algorithm (K = 10) and that from the HS 
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algorithm, in which the polygonal line algorithm produces curves that fit the data set 

closely while the HS algorithm exhibits more bias. This observation can be further 

illustrated with the quantitative comparisons in Table 3. The HS principal curve 

estimate did not follow the shape of the distorted S-shaped curve very well due to the 

smoothness constraint applied to the HS algorithm.  

 

 
Fig. 26. The piecewise linear curve (solid line) produced by the polygonal line 
algorithm with K = 10, compared with HS principal curve (dotted line). Both from the 
sample data (N = 200 and σ = 0.05) generated from an S-shaped curve (dashed line). 
 

The simulation results in Table 3 also justify the earlier conclusion that the 

estimation accuracy was improved as the data size grows and/or the variance of the 

noise decreases.  
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Table 3. Performance comparison between HS algorithm and our polygonal line 
algorithm for the S-shaped curves (K =10). 

Ν 
 

σ JHS (×10-3) JPL (×10-3) 
100 0.025 8.9 2.4 
100 0.05 11.2 4.9 
100 0.1 23.6 14.5 
200 0.025 8.8 2.3 
200 0.05 10.9 4.6 
200 0.1 22.8 13.9 
400 0.025 8.6 2.2 
400 0.05 10.8 4.5 
400 0.1 22.4 13.7 

  

 In some cases, however, there may be a preference for smooth curves over 

piecewise linear curves. To accommodate such situations we assign the projection 

index ti to each vertex point vi (implying an ordering on the data) from the polygonal 

line estimation. Then one may apply general regression methods to find a “good” 

smooth curve for the pairs of ti and vi (i = 1, 2, …, K). In this sense the estimated 

polygonal line can serve as an initialization of other methods that seek smooth curves.  

III.5.3  Failure Modes for HS Algorithm 

 We present two specific situations when the HS principal curve algorithm fails to 

recover the generating curve. In the first scenario, we take a zigzag curve as the 

generating curve in the data model, which consists of 6 segments of equal line length 

such that the two consecutive segments join at a right angle. The sample data were 

evenly distributed along each line segment in all simulation cases.  
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 Fig. 27 shows the curves produced by the HS and the polygonal line algorithm 

when data size N = 200 and noise variance parameter σ = 0.05, which schematically 

illustrates the robustness and identification accuracy of the polygonal line algorithm 

using local PCA interferences for highly bended nonlinear patterns. As in the previous 

simulation cases, we introduced noise with different variances (i.e., σ = 0.025, 0.05, and 

0.1) to the generating curve to compare the performance between the two algorithms. 

For the varying noise variances and data sizes, the polygonal line algorithm always 

identifies the generating nonlinear pattern. The comparison in Table 4 also provides a 

quantitative justification for Fig. 27 that the polygonal line algorithm performs much 

better than the HS algorithm. 

 

 
Fig. 27. The polygonal line (solid line) by our algorithm with K = 6, compared with HS 
principal curve estimation (dotted line). Both from the sample data (N = 200 and σ = 
0.05) generated from a zigzag curve (dashed line).  
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Table 4. Performance comparison between HS algorithm and our polygonal line 
algorithm for zigzag curves. 

Ν 
 

σ JHS (×10-3) JPL (×10-3) 
100 0.025 18.6 0.4 
100 0.05 22.1 1.5 
100 0.1 37.4 4.6 
200 0.025 18.1 0.3 
200 0.05 21.9 1.4 
200 0.1 36.8 4.5 
400 0.025 17.5 0.3 
400 0.05 21.4 1.3 
400 0.1 36.3 4.3 

  

 In this scenario, the polygonal line algorithm achieved high estimation accuracy and 

outperformed the HS algorithm. The abrupt changes in the direction of the generating 

zigzag curve causes the HS algorithm to oversmooth the estimated principal curve, 

even when the data is concentrated on the generating curve. On the other hand, the 

polygonal line algorithm can identify the piecewise linear curve with the number of line 

segments determined automatically. 

 The second scenario when the HS algorithm fails to produce a meaningful result is 

that the generating curve is more complicated. In other words, the estimated principal 

curve from HS algorithm can not identify the global nonlinear pattern from the sample 

of data. The spiral-shaped curves were chosen to investigate the robustness of the 

polygonal line algorithm for such complex nonlinear patterns, as shown in Fig. 28. The 

variance of the noise was set to σ = 0.025 to compare the performances of the two 

algorithms for recovering the shape of generating curves in the least noise situation. 

Fig. 28 shows the results estimated by the HS and the polygonal line algorithm for two 
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cases represented by curves with different levels of complexity. The polygonal line 

algorithm is capable of identifying the nonlinear patterns of both generating curves, 

while the HS algorithm either oversmoothes the curve (Fig. 28a) or fails to recover the 

shape of the spiral curve (Fig. 28b).  

 

 
Fig. 28. The polygonal lines (solid line) by our algorithm, compared with HS principal 
curve estimations (dotted line). Both from the sample data (N = 200 and σ = 0.025) 
generated from spiral curves (dashed line) (a) a simple curve; (b) a more complex 
curve. 
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between the initial curve (the first principal component) and the desired solution (the 

generating curve). If this likely to occur in an application, one possible way to improve 
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line segments, each of which is viewed as a linear model for data in the corresponding 

local partition. Therefore, the complex global data structure can be extracted by the 

combination of good representations for local partitions using the polygonal line 

algorithm, which is free of the smoothness constraint applied to the HS algorithm. 

 

III.6  Chapter Summary 

In this chapter, we propose a polygonal line algorithm for principal curve 

estimation and nonlinear variation pattern identification, in which the local PCA 

inferences are utilized to determine the number of line segments automatically. Since 

most nonlinear curves may be approximated arbitrarily close by piecewise linear 

curves, the piecewise linear curves produced by the proposed algorithm can identify a 

variety of nonlinear patterns when the number of line segments is chosen optimally. 

The proposed algorithm was applied to a deep drawn stamping process for nonlinear 

variation pattern identification illustration. The Monte Carlo simulations have 

demonstrated that the polygonal line algorithm can produce robust and accurate 

estimates for varying nonlinear patterns. In the situations when the data points are 

concentrated on a curve with high curved or complicated shape, the polygonal line 

algorithm outperforms the HS principal curve algorithm in recovering the shape of 

nonlinear generating patterns. In addition, the polygonal line learning algorithm is 

helpful in reducing the computation complexity when the sample size is large. 
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CHAPTER IV 

NONLINEAR BLIND SOURCE SEPARATION FOR IDENTIFYING 

MULTIPLE MANUFACTURING VARIATION PATTERNS 

 

IV.1  Representing Multiple Nonlinear Variation Patterns 

The methods for modeling and identifying single nonlinear variation pattern have 

been discussed in Chapter II and III, which appear to be effective in facilitate the 

diagnostics and elimination of root causes contributing to the process variability. Due 

to the complex physical characteristics, however, it is not uncommon to have various 

variation patterns simultaneously present in the manufacturing over measurement data. 

Often one or more of the variation patterns are nonlinear. In light of this, it will be more 

generic to extending the single nonlinear variation pattern identification methods by 

considering multiple potential variation faults that occur in the manufacturing 

processes. In this chapter, a nonlinear model is proposed to represent the possible 

multiple variation sources in high dimensional manufacturing processes. The 

separability of this model will be theoretically verified and an effective pattern 

identification algorithm is developed accordingly.  

 Consider a d-sensor manufacturing process that provides the measurement vector x. 

Let vi be the ith unit-variance random source characterized by a linear pattern vector ci (i 

= 1, 2, …, p), and fj(tj) be the nonlinear variation pattern caused by source tj (j = 1, 2, 
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…, q). In the nonlinear variation pattern model as below, all variation sources vi or tj are 

assumed to be statistically independent, as well as of the noise vector w,   

  x = v1c1 + v2c2 + … + vpcp + f1(t1) + f2(t2) + … + fq(tq) + w   

                       = Cv + ∑ =

q

j jj t
1

)(f  + w.                            (4.1) 

The nonlinear variation patterns fj in model (4.1) are assumed to lie in one-

dimensional manifolds embedded in the complete data space, as illustrated in Fig. 29. 

As demonstrated by the examples in previous chapters, this assumption is realistic for 

manufacturing variation analysis, which allows us to separate and identify the distinct 

linear or nonlinear variation patterns under a later proposed independence criterion.  

 

 

Fig. 29. The nonlinear variation pattern fj lies in a low-dimensional manifold embedded 
in the data space. 
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ordered projection indices. Each nonlinear variation pattern fj in model (4.1) is also a 

one-dimensional curve embedded in ℜd and can be identified by principal curve 

estimation methods. Therefore, the nonlinear model (4.1) provides flexibility for 

modeling a variety of variation patterns that are free of parametric or differentiable 

requirements. Since the model (4.1) does not require any prior knowledge of the 

nonlinear relationship among the different variables of x or the distribution of tj other 

than the model structure, it can be applied to a more general problem setting of blind 

variation patterns analysis.  

The objective of the nonlinear blind variation pattern identification problem based 

on model (4.1) aims to separate the effects of multiple variation sources mixed together 

in the data, which is similar to that of the nonlinear BSS problem. A nonlinear BSS 

model, in its most general form, is a mapping  

           x = F(t) + w,                     (4.2) 

where x and t denote the observation and independent sources, respectively. Then one 

needs to blindly estimate the nonlinear mapping F and sources t given the sample data 

only. However, in such a general model, independence assumption on sources does not 

imply source separation (Jutten and Karhunen, 2003; Taleb and Jutten, 1999). Hence, 

for general nonlinear BSS problem, a totally blind solution is not possible and one must 

assume some extra information, e.g., about the structure of the nonlinear mapping or 

the distribution of the sources (Taleb, 2002; Archard and Pham, 2001). 

 Up to now, most existing nonlinear BSS methods are developed based on 

conditioning the nonlinear mappings in a parametric model (e.g., approximating the 
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nonlinearities in model (4.2) by sigmoidal functions for instance) or distribution of the 

sources (e.g., assuming uniform distribution on the sources) (Valpola et al., 2003; 

Yang, et al., 1998; Harmeling et al., 2003; Lappalainen and Honkela, 2000; 

Haritopoulos et al., 2002; Pajunen and Karhunen, 1997). However, even the 

aforementioned simplifications of the nonlinear BSS problem can not lead to the 

theoretical justification for their separability of multiple independent sources (Theis and 

Lang, 2001).  Moreover, the existing nonlinear BSS methods are typically only applied 

to the low dimensional (d = 2 or 3) applications.  

 As a generalization of single nonlinear variation pattern identification methods, the 

proposed nonlinear model (4.1) will deal with the multiple variation patterns 

identification problem that: 1) automatically selects the number of unknown 

independent sources; 2) provides theoretical analysis on separability of variation 

patterns; 3) avoids the differentiable requirement of the nonlinear mappings, or the pre-

defined distribution on sources. The main technical challenges of this chapter are to 

determine the number of variation patterns and develop an effective algorithm to 

identify ci and fj over the sample of data. Proper identification of these patterns can 

provide insight into the nature of the phenomena that caused the variation faults.   

Before deriving the variation patterns identification algorithm for model (4.1), we 

present some concepts from linear BSS methods that we need for multiple nonlinear 

patterns separation and identification. Consider the linear BSS model  

        xd×1 = Cd×pvp×1 + w                    (4.3) 
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where the independent sources v are assumed to have unit-variance. Rather than 

working on the d-dimensional data x, linear blind source separation methods usually 

apply to the uncorrelated PCA score vector y = W−1x, where the whiten matrix 

T2/121 )( pp σ ZIΛW −− −= . Recall that C = WQQIΛZ =− 2/12 )( σpp  in Section I.2, we 

have y = Qv + W−1w where Q is a p×p orthogonal matrix.  

 When there is at most one variation source vi is Gaussian, the linear BSS methods 

apply the properties of fourth order cumulants to estimate the unique matrix Q = [q1 q2 

… qp] and corresponding C in model (4.3). The fourth order cumulant for y is defined 

as Cumi,j,k,l(y) = E[yiyjyky1] – E[yiyj]E[ykyl] – E[yiyk]E[yjyl] – E[yiyl]E[yjyk] (1 ≤ i, j, k, l ≤ 

p). We enumerate the most interesting properties of cumulants in Appendix A based on 

their definition (Stuart and Ord, 1987).  

 Given y and p×p matrix Mkl = ekel
T, where ek is a column vector with a 1 in kth 

position and 0’s elsewhere (1 ≤ k, l ≤ p), we define the cumulant matrix CY(Mkl) 

component-wise (Cardoso, 1998) (1 ≤ i, j ≤ p) 

                                                         )()]([ ,,, Y ylkjiij
kl Cum=MC .     

Following the assumptions of independence on v and Gaussian distribution on w, it is 

straightforward to establish the structure of CY(Mkl) by properties A.1 ∼ A.6  

          T
 Y )()( QM∆QMC klkl = ,                  (4.4) 

where ))(,,)(()( 111 plpkplk
kl qqvkqqvkDiag …=M∆ . In the factorization of CY(Mkl) in 

Equation (4.4), the unknown kurtosis ][3][)( 224
iii vEvEvk −=  enter only in the 
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diagonal matrix )( klM∆ . Then the problem reduces to estimating Q as the diagonalizer 

of CY(Mkl). Note that the eigenvectors are uniquely determined if and only if the 

eigenvalues are all distinct. If Mkl is randomly chosen, then the eigenvalues are distinct 

with probability 1 (Cardoso, 1998). However, the definition of Mkl makes it not a 

random matrix. A reasonable way to alleviate this problem is to jointly process several 

cumulant matrices. Let M = {Mkl} (1 ≤ k, l ≤ p) be a set of p×p matrices, and Off(F) = 

∑ ≠ ji ijf 2)(  the sum of the squares of the off-diagonal elements of matrix F, which is a 

measure of diagonality of F. The estimate of Q is taken as the orthonormal matrix U 

that minimizes the joint diagonality criterion: 

 ΦM(U) ≡ ))((Off Y
T

,

UMCU kl

lk
∑ .                    (4.5) 

As an estimate of Q, U is the rotation matrix that simultaneously brings the cumulants 

matrices CY(Mkl) generated by M to be as diagonal as possible. Define y~  = UTy as the 

rotated PCA scores, and CM as the pairwise cumulant matrix in a component-wise 

form, i.e., )~()~()~(][ 2
,,,

2
,,,

2
,,, yyy jjjijjiijiiiij CumCumCum ++=CM  (1 ≤ i, j ≤ p). 

 

IV.2  Multiple Nonlinear Variation Patterns Identification Algorithm 

 Given a set of sample data, the proposed nonlinear variation pattern identification 

algorithm starts with a whiten step that transforms the original data x∈ℜd to 

uncorrelated PCA scores y∈ℜr. Next, the PCA scores are rotated by an orthogonal 

matrix U such that the components of y are as independent as possible. As shown in the 
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theoretical result below, the pairwise cumulant matrix CM of rotated PCA scores will 

have a diagonal block structure. Each block in CM corresponds to a single variation 

pattern. The final step of the algorithm is to separate these blocks and identify their 

corresponding linear or nonlinear variation patterns individually. Note that the core 

component of the algorithm is the rotation step that will produce a block structured 

matrix CM under the joint diagonality criterion (4.5). 

IV.2.1  The Diagonalized Pairwise Cumulant Matrix 

 The nonlinear model (4.1) represents multiple potential variation patterns present in 

manufacturing. Assume that each fj lies in an rj-dimensional (rj < d) linear variety, and 

no other linear variety in which fj lies has dimension smaller than rj, then the 

eigenvalues { kf j ,λ : k = 1, …, d} of covariance matrix of fj, denoted as 
jfΣ , will have 

     1,jfλ  ≥ 2,jfλ  ≥  ... ≥ 
jj rf ,λ  >  0 = 1, +jj rfλ  = 2, +jj rfλ  ... = df j ,λ .               (4.6) 

The nonlinear variation pattern fj can be represented by its PCA decomposition, i.e.  

                      
jjjjjjjj ffrfrfffj ss seef E=++= ,,1,1, … ,   j = 1, 2, …, q          

where ][ ,2,1, jjjjj rffff eee …=E  are the rj eigenvectors associated with the dominant 

eigenvalues defined in Equation (4.6), and T
,1, ][

jjjj rfff ss …=s  are the PCA scores of fj. 

Scaling the PCA scores such that they have unit-variances yields 

                 ))(())(( ,,,,1,1,1,1, jjjjjjjjjjjj rfrfrfrfffffj ss eef λλλλ ++= …  

                
jj ff s~

~
E= .                 (4.7) 
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Theorem 4.1: Suppose that fj(•) lies in rj-dimensional linear variety and C has full 

rank. If Σx has ∑+= q

j jrpr  dominant eigenvalues greater than 2
σ , then the pairwise 

cumulant matrix CM resulting from rotation matrix U under criterion ΦM(•) will have 

a diagonal block structure with p 1×1 blocks and q rj×rj blocks, each of which contains 

the sum of squared cross-cumulants of linearly transformed PCA scores of a single 

variation pattern.  

Proof: First, it follows from the assumption and source independence that 

                       IEEEECCΣ
2TTT ~~~~

11
σ

qq ffffx ++++= � .                           (4.8) 

The PCA decomposition provides another form for Σx as 

                 IZIΛZΣ
2T2 )( σσ rrrx +−= ,                (4.9) 

where rΛ  and rZ  are the r dominant eigenvalues and eigenvectors of Σx.  

To make the two forms of Σx in Equations (4.8) and (4.9) consistent, we have  

       QIΛZEEC 2/12 )(]
~~

[
1

σrrff q
−=…                  (4.10) 

where Q is an r×r orthogonal matrix. Multiplying x by the whiten matrix yields 

             xy 1−= W )~~~~
()(

11

T2/12 wssv ++++−= −
qq ffffrr σ EECZIΛ …   

                      wssv 1TTTT ]~~[
1

−+= WQ
qff …    

                      wssv 1TTTT
,1, ]~~][[

1

−+= WQQQ
qffqssv ……     

                      wsv 1

1 ,
~ −

=
++= ∑ WQQ

q

j fjsv j
 

            w

q

j jtv yyy ++≡ ∑ =1 ,                                 (4.11) 



 

 

89 

where Qv and Qs,j are r×p and r×rj orthogonal matrices respectively (j = 1, 2, …, q).  

Consider the cumulant matrix CY(Mkl) for y and r×r matrix Mkl. Due to the fact that 

yv, yt,j and yw in Equation (4.11) are independent, cumulant properties A.5 and A.6 

decompose CY(Mkl) into a sum of cumulant matrices: 

             ∑
=

+=
q

j

klklkl

t,j
1

YY Y )()()(
v

MCMCMC .                    (4.12)   

Because yv is a linear mixture of independent source v plus Gaussian noise, its 

cumulant matrix has the same structure as Equation (4.4) (Cardoso, 1998)  

                   T
M, Y )( vvv

kl

v
Q∆QMC = ,                           (4.13) 

where ))(,,)(( ,,1,1,1M, plvpkvplvkvv qqvkqqvkDiag …=∆ .        

 Each square matrix )(
,Y

kl

jt
MC  in Equation (4.12) by definition is a symmetric 

matrix, and represented by its eigen-decomposition, i.e., T
M,~M,M,Y   )(

, jsj
jfjt
P∆PMC =  

where 
jfs~M,∆  is an rj×rj diagonal matrix. Since yt,j is a linear mixture of non-

independent elements of 
jfs~ , the matrix PM,j resulting from the factorization of 

)(
,Y MC
jt

 not only depends on Qs,j but on Mkl. Such dependence of PM,j on Mkl can be 

readily written as jjsj ,M,,M TQP =  where TM,j is an rj×rj matrix and determined by Mkl 

and cumulants of 
jfs~ . Actually TM,j is a rotation matrix in that both PM,j and Qs,j are 

orthogonal matrices by definition. The r×r matrix CY(Mkl), as a sum of the cumulant 

matrices in Equation (4.12), is written as  
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 For an arbitrary matrix Mkl and its cumulant matrix CY(Mkl), denote the 

corresponding rotation matrix UM = [UM,v UM,1 … UM,q], where the dimensions of sub-

matrices UM,v and UM,j are chosen as those of Qv and Qs,j. Regarding the matrix 

structure in Equation (4.14), the matrix UM that diagonalizes CY(Mkl) should be UM = 

[Qv Qs,jTM,1 … Qs,qTM,q].  

 Consider the joint diagnoality criterion ΦM(•) that is equivalent to diagonalzing 

each CY(Mkl) (Mkl∈M), and define U = [Uv U1 … Uq] as the rotation matrix under the 

joint diagonality criterion for M. Since Qv is independent of matrix Mkl, we can always 

have Uv = Qv to diagonalize T
,M vvv m
Q∆Q  in Equation (4.13). Due to the fact that jm ,MP  

depends on matrix Mkl, however, the matrix sought to jointly diagonalize the cumulant 

matrices T
,M~,M,M jsj mjfmm

P∆P ’s is not unique concerning different Mkl. In other words, for 

the set of matrices M, there is no orthogonal matrix Uj that can simultaneously achieve 

the diagonality for all T
,M,~,M,M,Y ][][)(

, jjssjjs
kl

jfmjt
TQ∆TQMC =  (Mkl∈M). Therefore, 

the joint diagonality criterion ΦM(•) will produce an optimal matrix Uj to diagonalize 

each cumulant matrix as much as possible in the sense of minimizing the sum of 

squared  off-diagonal elements in )(
,Y

kl

jt
MC . The matrix Uj resulting from ΦM(•), as a 

linear transformation of orthogonal matrix Qs,j, is determined by the set of matrices 



 

 

91 

{TM,j: 1 ≤ j ≤ q}. Since Uj is not equal to Qs,j, denote Qs,j = UjTj where Tj is an 

unknown rj×rj rotation matrix. Then the rotated PCA scores resulting from U are 
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where ys,k is a rotated version of 
kfs~  and independent of v and ys,l (1 ≤ k ≠ l ≤ q).  

 Given the independence between v, ys,k and w and  the properties of cumulants (note 

that the fourth order cumulants of Gaussians are zero), it is straightforward to establish 

the pairwise cumulant matrix CM for y~  as a block structured matrix, as illustrated in 

Fig. 30, in which the p 1×1 blocks contains the sum of squared cross-cumulants of vi (i 

= 1, 2, …, p) and the q rj×rj blocks contains those of ys,j (j = 1, 2, …, q).              ■ 

IV.2.2  Variation Patterns Identification 

 For convenience, we denote the 1×1 diagonal entries in Fig. 30 corresponding to 

sources vi as “linear block”, and the rj×rj sub-matrices as “nonlinear blocks”. Under the 

separability condition as in linear BSS methods, the orthogonal matrix Qv is unique and 

its estimate Uv is given by the theoretical result in Section IV.2.1. Then, the linear 

variation pattern matrix C is  

               vrr σ UIΛZC 1/22 )( −=                   (4.16) 

and the estimate for variation source v is 
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                     yv Tˆ vU= .                        (4.17) 

 

 

Fig. 30. The diagonal block structured matrix CM resulted from an optimal rotation 
matrix U. 
 

 Following Equations (4.7) and (4.10) we have 
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1/22 )( yUIΛZ −= .                 (4.18) 

The rotated PCA scores in Equation (4.15) produces the estimates of ys,j (j = 1, 2, …, q) 

    }]~~][{[][ 1TTTT
,1,

T
1

T

q1
wssvy ff

−+= WQQQUUUU ……… qssvqv  

11,rfs

Variation  
Sources 

v 
C v1 

vp 
�

1,1f
s

t1 
f1 … 

22 ,rfs

1,2f
s

 t2 
f2 

… 

qq rfs ,

1,qf
s

tq 
fq 

… 

. 

. 

. 

W−1 

Whitened 
Vector y 

1rpy +

y1 

yp 
�

1+py

 … 

21 rrpy ++

11++rpy
… 

ry  

1... 11 ++++ −qrrpy

 … 

. 

. 

. 

U 

Pairwise Cumulant 
Matrix CM 

. 
. 
. 
  

r1×r1 

r2×r2 

rq×rq 

. 
. . 

p 

. 

. 

. 



 

 

93 

            

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+
+

=

−

−

−

qs

s

qq ,

1,

1T

1T
11

1T

ˆ

ˆ

ˆ

~

~

q

1

y

y

v

ws

ws

wv

f

f

v

��

WUT

WUT

WU

.                        (4.19) 

 Given the optimal rotation matrix U, we can estimate the principal curve jĥ  to js ,ŷ  

in Equation (4.19) and then recover the estimate of nonlinear variation pattern by 

jjrrj σ hf ˆ)(ˆ 2 UIΛZ −=  using Equation (4.18). 

 

IV.3  A Clustering Method for Separating Blocks 

 As shown in Fig. 30, all the off-block elements in the pairwise cumulant matrix CM 

should be zero from the theoretical results. In practice, however, the proposed theorem 

is applied to sample data, and no matrix U can produce the ideal matrix structure as Fig. 

30. In order to identify the linear and nonlinear variation patterns from a specific 

sample, we present a clustering method to separate the blocks in the estimate of CM 

and determine the number of variation sources,  p and q. 

 In the definition of pairwise cumulant matrix, the cross-cumulants are adopted as an 

independence measure for the elements in y~ : if iy~  and jy~  are generated from two 

independent variation sources, then 0)~( =yi,i,i,jCum  (the same for )~( yi,i,j,jCum  and 

)~( yi,j,j,jCum , 1 ≤ i ≠ j ≤ r); otherwise, the cross-cumulant takes non-zero values. In 

other words, the larger the magnitude of cross-cumulant is, the more likely that the 

tested components are from a single variation source. By constructing this pairwise 
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“independence distance” for elements in y~ , a clustering method will help us separate 

all the linear and nonlinear blocks in Fig. 30 by classifying their corresponding PCA 

scores into distinct patterns. The values of p and q are determined accordingly. 

 Define 
∧

CM , the estimate of pairwise cumulant matrix over a sample of y~ ,  as  
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The goal of clustering analysis is to segment the components of y~  such that those 

within each block in 
∧

CM are more likely related to a single variation source than 

components assigned to different blocks. Hierarchical clustering is one of the widely 

used clustering methods in practice, which produce hierarchical representations in 

which the clusters at each level of the hierarchy are created by merging clusters at the 

next lower level. At the lowest level, each cluster contains a single component (Johnson 

and Wichern, 2002; Hastie et al., 2001, Cordon, 1987).  

 The proposed clustering method begins with every component representing a 

singleton subgroup. At each of the remaining steps the closest two (least independent) 

subgroups merged into a single group, producing one less group at the next higher 
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level. Given the hierarchical representation, the clustering method will decide how to 

choose the number of clusters such that the components within each cluster are more 

similar in distance to each other than to those assigned to different clusters at that level. 

Clustering is perceived as an unsupervised procedure since there are no predefined 

classes (Halkidi and Vazirgiannis, 2001; Salvador and Chan, 2004; Milligan and 

Cooper, 1985).  

 In order to separate the clusters (or blocks) in 
∧

CM , we apply Dunn validity index 

to identify a set of “compact and well separated clusters” (Halkidi et al., 2000). The 

validity index is defined for a specific number of clusters nc (2 ≤ nc ≤ r) 
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where ),(min),(
,

vudCCd
ji CvCuji ∈∈

=  is the dissimilarity between two clusters Ci and Cj, 

and ),(max)(
,

vudCdiam
Cvu ∈

=  is the diameter of a cluster used as a measure of its 

dispersion, where d–1(u, v) is the uvth entry of sample pairwise cumulant matrix. 

 If the dataset contains compact and well-separated clusters, the distance 

(dissimilarity) between the clusters is expected to be large and the diameter of the 

clusters is expected to be small. Thus, based on the Dunn index definition, we may 

conclude that large values of 
cnγ  indicate the presence of desired clusters. Index  

cnγ  

does not exhibit any trend with respect to the number of clusters. Therefore, the 

maximum in the plot of 
cnγ  versus nc can be an indication of the optimal number of 
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blocks in Fig. 30. The simulations in Section IV.5 demonstrate that this clustering 

method is effective in providing accurate separation of linear and nonlinear blocks 

caused by independent variation sources.  

The proposed nonlinear variation patterns separation and identification algorithm 

can be summarized as 

1) Estimate r, the number of dominant eigenvalues of Σx. 

2) Transform x into PCA score vector y using Equation (4.11).  

3) Rotate PCA scores and calculate the optimal rotation matrix U by minimizing 

the joint diagonality criterion (4.5). 

4) Apply the clustering method to sample pairwise cumulant matrix. Determine the 

number of blocks 
cncn γmaxarg* = , and segment the components of y~ . 

5) Identify the linear variation pattern vectors ci and corresponding estimate of 

variation sources v via Equation (4.16) and (4.17). 

6) Estimate the individual nonlinear variation patterns fj by fitting the principal 

curve jĥ  to js ,ŷ  and recovering it via jjrrj σ hf ˆ)(ˆ 2 UIΛZ −= .  

 

IV.4  Autobody Assembly Variation Pattern Illustrative Example 

 In this section, the applicability of the multiple nonlinear variation pattern 

identification algorithm is illustrated with an example from autobody assembly. Fig. 31 

shows the layout of 26 measurement points (labeled 1-26 in the figure) taken at the 

body-in-white (BIW) stage of the assembly process. At this stage, the cross-member, 
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roof header, and plenum join the left and right bodysides to form the BIW. All x and y-

direction deviations are measured for each point, except for points 10 and 23, for which 

only the x-direction deviations are measured. Thus, the measurement vector x has a 

total of d = 50 elements.  

 

 

Fig. 31. Measurement layout at the BIW stage. 

  

 Before the bodysides and connecting members are welded together, they must be 

accurately located with respect to one another with pins rigidly attached to the fixtures 

(Apley and Shi, 2001). Each pin mates with either a hole or slot in the panel so that the 

bodyside position is constrained but not overly constrained. In practical assembly, 
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however, the repeated use makes it possible that the pins become loose or worn. As a 

consequence, the panel is no longer constrained in its desired position, and from 

autobody to autobody, the loose pin will cause a variation pattern in the BIW 

dimensions. As discussed in Chapter II, one of the keys to diagnosing dimensional 

variability in the assembly process is to estimate variation patterns based on a sample of 

data in order to gain insights into their root causes.  

 In section II.5 we discussed the example of a single nonlinear variation pattern 

(denoted f1 here), which was identified based on the real measurement data collected 

from autobody assembly. To investigate the performance of the multiple variation 

patterns identification algorithm, in the present study, a linear variation pattern c1v1 was 

added to f1 such that it is suitable for the structure of model (4.1). This linear variation 

pattern is designed based on the case study in (Apley and Shi, 2001) and it represents a 

realistic dimensional variation fault in the autobody assembly process.  

 Given a sample of N = 100 data, there are 3ˆ =r  dominant eigenvalues estimated 

from xΣ̂ . The first 20 eigenvalues were plotted in Fig. 32. 

 Apply the proposed nonlinear variation patterns identification algorithm to the 3-

dimensional PCA score vector y, and the sample pairwise cumulant matrix is  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
∧

8532.00071.00054.0

0071.04693.03675.0

0054.03675.07168.0

CM . 

The visual inspection on the sample pairwise cumulant matrix indicated that there is a 

linear and nonlinear block resulting from the optimal rotation matrix, corresponding to 
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the linear and nonlinear variation pattern. The block clustering method proposed in 

Section IV.3 also produced nc
* = 2 blocks (since 86.018.7 32 =>= γγ ) for the rotated 

PCA scores. Therefore, both the multiple nonlinear variation pattern identification 

result and the clustering approach identify the presence of two independent sources 

contributing to a linear and nonlinear variation pattern present in the sample data.  

 

 

Fig. 32. The first 20 eigenvalues jλ̂  estimated from the sample data with N = 100.  

 

 After identifying the nonlinear block in the pairwise cumulant matrix, the 

corresponding nonlinear variation pattern f1 was estimated via Equation (4.18). The 

nonlinearity among f1 can be further illustrated by the scatter plot of its dominant PCA 

scores 1,1
ˆ fs  and 2,1

ˆ fs , as shown in Fig. 33.  
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Fig. 33. The principal curve (solid line) estimated from the projections of nonlinear 
variation pattern 1̂f  on the 2-dimensional dominant PCA score subspace.  

 

As demonstrated in previous chapters, graphical displays of the estimated variation 

pattern generally facilitate identification of the root causes of variability. To gain 

diagnostic information from the nonlinear variation pattern, in Fig. 34 we plot the 6 

elements of 1̂f  (corresponding to the y-direction deviations of points 1, 2, 3, 14, 15, 

and 16) versus t, the projection index estimated from the principal curve method. The 

other elements of 1̂f  are omitted due to their negligible magnitudes. From the 

comparison between Fig. 12 and Fig. 34, it can be seen that the identified nonlinear 

pattern 1̂f  is almost indistinguishable from the single variation pattern estimate in 

Section II.4. This fact justified the performance of the proposed algorithm on 

identifying multiple linear and nonlinear variation patterns. The potential root cause for 

1̂f  is then a fixturing fault in locating the right bodyside in the framing station, as 
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discussed in Section II.1. When the right bodyside deviates to the right, it has no affect 

on the left bodyside, until the deviation amount is large enough to cause the 

interference between the upper cross-member and later with the left bodyside.  

 

 

Fig. 34. Plots of the elements of 1f̂  versus t, illustrating the characteristics of the 
nonlinear variation pattern with respect to the measurement points. 

 

After identifying the linear and nonlinear blocks, the linear variation pattern vector 

c1 and variation source v1 were estimated and plotted in Fig. 35 and Fig. 36 

respectively. The dominant 9 elements of 1ĉ  were {.241 .234 .246 .23 .228 .236 .244 

.232 .251} that correspond to the x-direction deviation at points 1, 2, 3, 4, 5, 6, 7, 8, and 
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9. Each element of 1ĉ  is plotted as an arrow at the location of measurement across the 

automobile body, as shown in Fig. 35. The length of the arrows is proportional to the 

magnitude of the elements in 1ĉ  with the sign represented by the direction of the arrow. 

Many elements were negligibly small, in which case their arrows were omitted at the 

corresponding measure points. Note that the meaning of the pattern will not be affected 

by the direction of all arrows in Fig. 35. 

 

 
Fig. 35. Graphical illustration of the linear variation pattern for autobody assembly 
example. 
 

 It appears that the linear variation fault affects only points on the right bodyside, 

causing each point to translate by approximately the same amount. Thus, the variation 

source v1 results in the right bodyside being incorrectly positioned with respect to the 

rest of the measured autobody sample. A plausible root cause for the linear variation 
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pattern is that the pin constraining the right bodyside in the x-direction becomes loose. 

When a bodyside is placed in the fixture, it may be positioned too far forward (in the 

positive x-direction). For the next automobile body, the right bodyside may be 

positioned too far aftward (in the negative x-direction). From autobody to autobody, the 

loose pin will cause the translation variation on the right bodyside. From the histogram 

of the estimated variation source 1̂v  shown in Fig. 36, it is closely a Gaussian random 

variable, which implies the statistical characteristics of the root cause. 
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Fig. 36. Histogram of the estimated variation source v1 associated with the linear 
variation pattern. 
 

IV.5  Simulation Study 

IV.5.1  Simulation Case 1 

 In this case, we demonstrate the performance of the proposed algorithm on a 18-

dimensional data set from the generative model  

       x = c1v1 + c2v2 + f1(t1) + w 
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where the sources v1, v2 are a rectangle and cosine wave, and f1 is an S-shaped curve of 

t1 that lies in a two-dimensional linear variety. The observation data x is distorted by 

Gaussian noise w with isotropic variance 2
σ .  

Since f1 in this example lies in r1 = 2 dimensional subspace, the number of the 

dominant eigenvalues for Σx is r = p + r1 = 4. The sources v1, v2 and their estimates 1v̂  

and 2v̂  are shown in Fig. 37, which indicated the identification accuracy of the 

proposed algorithm in recovering the linear variation sources.  

 

 
Fig. 37. The original sources v1, v2 and their estimates 1v̂ , 2v̂  from the proposed 
algorithm when sample size N = 200 and σ = 0.06. 
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To visualize the performance of nonlinear variation pattern identification, Fig. 38 

compared the estimated principal curve from the two-dimensional PCA scores of 1̂f  to 

that from the generating data. The closeness between the two curves indicates that the 

proposed multiple nonlinear variation patterns identification algorithm is capable of 

separating and identifying the nonlinear pattern from the sample data. 

 

 
Fig. 38. The principal curve (dashed line) was estimated from the 2-dimensional PCA 

scores (dotted points) of 1̂f , compared with the generating S-shaped curve (solid line) 
when N = 200 and σ = 0.06. 

 

Fig. 39 also verified the accuracy of the algorithm by displaying the scatter plots of 

v1 and 1v̂  under different noise situations. Even in the worse noise situation when σ = 

0.12, the multiple nonlinear variation pattern identification algorithm still provides a 
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good estimate 1v̂  for v1. In addition, Fig. 39 provides a graphical way to observe that 

the estimation accuracy will be naturally deteriorated by the increasing noise variance. 

 

 

Fig. 39. Scatter plots of the variation sources v1 and estimate 1v̂  with sample size N = 
200 and varying σ from 0.03 to 0.12. 

 

 To study how the block clustering method perform in the synthetic data set, we use 

various sample size and noise variance to investigate the correct clustering achieved by 

the approach in Section IV.3. Fig. 40 shows the percentage (over 10,000 simulations) 
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larger noise variances, the simulation results justify the performance of the clustering 

method on different cases, which always produces the correct block clustering results.   

 

 

Fig. 40. Percentage of correct clustering of linear and nonlinear blocks with different 
sample sizes and noise variances for simulation case 1. 

 

In order to evaluate the performance of the proposed multiple nonlinear variation 

pattern identification algorithm over the entire Monte Carlo simulations, consider the 

linear pattern identification accuracy measure [ ] 1

C ˆ −−= iiii EJ ccc , where iĉ  denotes 

the estimate of the ith linear variation pattern vector ci (i = 1, 2 in this case). The 

average value of 
1ˆ −− iii ccc  over 10,000 replicates is used to estimate JC1 and JC2.  

The nonlinear variation pattern f1 lies in a two-dimensional subspace, as well as the 

estimated curve 1̂f . The projections of the original and estimated principal curves onto 
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the lower-dimensional space are illustrated in Fig. 38. In order to evaluate the 

estimation accuracy, we choose the distance measure Df  = 
1

2

11 1

ˆ −− hlE hh  to investigate 

the nonlinear variation pattern identification in a quantitative way, where h1 and 1ĥ  are 

the nonlinear curves from the PCA scores of f1 and 1̂f  onto the two-dimensinal 

subspace. The weighted length of h1 is dttgtlh )(||)(|| 11 ∫ ′= h , where g(t) is the density 

of t. In Table 5, the Monte Carlo simulations were averaged to summarize the 

performance of multiple linear and nonlinear variation patterns identification algorithm 

for this simulation case. 

IV.6.2  Simulation Case 2 

 To investigate the performance of proposed algorithm on a more complicated 

nonlinear variation pattern model, the data in this case was generated from  

  x = c1v1 + c2v2 + f1(t1) + f2(t2) + w, 

where the independent sources v1, v2 and linear variation pattern vectors are the same as 

in the preceding example, nonlinear pattern f1 is a quadratic function of t1 that lies in the 

2-dimensional linear variety, and f2 is a piecewise linear curve lying in a 3-dimensional 

linear variety.  

Given the linear and nonlinear variation patterns defined in the data model, the 

number of the dominant eigenvalues for Σx is r = p + r1 + r2 = 7. The sources v1, v2 and 

their estimates 1v̂  and 2v̂  can be compared in the way as the first case. To demonstrate 

the estimation accuracy of nonlinear variation pattern identification, the estimated 
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principal curves from the PCA scores of 1̂f  and 2f̂  were compared with the curves 

from the generating data, as shown in Fig. 41 and 42.  

 

Table 5. Performance results from the nonlinear BSS algorithm on multiple variation 
patterns identification for simulation case 1. 

N σ JC1 JC2 Df 

100 0.03 0.029 0.043 0.00012 
100 0.06 0.036 0.049 0.00041 
100 0.09 0.041 0.053 0.00122 
100 0.12 0.047 0.061 0.00216 
200 0.03 0.028 0.041 0.00011 
200 0.06 0.036 0.048 0.00036 
200 0.09 0.040 0.052 0.00117 
200 0.12 0.046 0.058 0.0021 
300 0.03 0.027 0.039 0.00011 
300 0.06 0.035 0.047 0.00036 
300 0.09 0.039 0.051 0.00114 
300 0.12 0.045 0.056 0.00207 
400 0.03 0.026 0.039 0.00011 
400 0.06 0.034 0.046 0.00033 
400 0.09 0.038 0.05 0.00112 
400 0.12 0.044 0.055 0.00203 
500 0.03 0.024 0.038 0.00011 
500 0.06 0.033 0.045 0.00029 
500 0.09 0.038 0.049 0.00109 
500 0.12 0.043 0.055 0.002 
600 0.03 0.023 0.037 0.0001 
600 0.06 0.032 0.043 0.00028 
600 0.09 0.036 0.048 0.00106 
600 0.12 0.041 0.054 0.00198 
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Fig. 41. The principal curve (dashed line) estimated from PCA scores (dotted points) of 

1̂f , compared with the generating quadratic curve (solid line) when N = 200 and σ = 
0.06. 
 

 
Fig. 42. The piecewise linear curve (dashed line) estimated from PCA scores (dotted 

points) of 2f̂ , compared with the generating piecewise linear curve (solid line) when N 
= 200 and σ = 0.06. 
 

The closeness between the estimated curves and generating curves indicates that the 

proposed nonlinear algorithm is capable of separating and identifying each nonlinear 
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variation pattern. Due to the poor performance of HS algorithm on piecewise linear 

curve identification, the curves in Fig. 42 were estimated by the polygonal line 

algorithm proposed in Chapter III. To investigate the performance of the block 

clustering method, in Fig. 43 we plot the percentage of correct block clustering on the 

synthetic data set over various sample sizes and noise variances. As in the first 

simulation case, the observations are fairly intuitive that the success clustering 

percentages were improved as sample size N increases, and/or σ decreases.  

 

 
Fig. 43. Percentage of correct clustering of linear and nonlinear blocks with different 
sample sizes and noise variances for simulation case 2.  
 

  Similar Monte Carlo simulations were conducted to provide quantitative 

performance measure on the proposed nonlinear variation pattern identification 

algorithm in this case, except that an additional nonlinear variation pattern was 
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introduced lying in a three-dimensional linear variety. The performance of the proposed 

multiple variation patterns identification algorithm was then summarized in Table 6. 

The results in Table 5 and 6 agree with the fact that the linear and nonlinear variation 

patterns identification accuracy is improved with respect to larger sample size N and/or 

smaller noise variance σ. 

 

Table 6. Performance results from the nonlinear BSS algorithm on multiple variation 
patterns identification for simulation case 2. 

N σ JC1 JC2 Df1 Df2 

100 0.03 0.039 0.054 0.00038 0.00019 
100 0.06 0.047 0.061 0.00147 0.00073 
100 0.09 0.056 0.069 0.00407 0.00176 
100 0.12 0.068 0.081 0.00747 0.0034 
200 0.03 0.039 0.053 0.00037 0.00018 
200 0.06 0.046 0.061 0.00144 0.00069 
200 0.09 0.055 0.067 0.004 0.00173 
200 0.12 0.067 0.079 0.0074 0.00333 
300 0.03 0.038 0.053 0.00037 0.00017 
300 0.06 0.046 0.059 0.0014 0.00064 
300 0.09 0.054 0.066 0.00397 0.00171 
300 0.12 0.066 0.078 0.00733 0.00331 
400 0.03 0.037 0.052 0.00037 0.00017 
400 0.06 0.045 0.058 0.00137 0.00062 
400 0.09 0.053 0.065 0.00393 0.00169 
400 0.12 0.065 0.078 0.0073 0.00329 
500 0.03 0.035 0.051 0.00036 0.00017 
500 0.06 0.044 0.057 0.00131 0.00058 
500 0.09 0.051 0.064 0.0039 0.00167 
500 0.12 0.065 0.077 0.00726 0.00322 
600 0.03 0.034 0.049 0.00035 0.00016 
600 0.06 0.041 0.056 0.00126 0.00058 
600 0.09 0.049 0.063 0.00386 0.00162 
600 0.12 0.063 0.076 0.00719 0.0032 
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IV.6  Chapter Summary 

 In this chapter, we extended the single nonlinear variation pattern analysis problem 

by proposing a nonlinear model for representing multiple potential variation patterns 

that occur simultaneously in the manufacturing processes. A high order cumulants 

based identification algorithm was then derived to separate the distinct linear and 

nonlinear variation patterns. When each nonlinear function lies in a lower subspace of 

the complete observation data, the nonlinear variation pattern model and independence 

criterion produce a block structured pairwise cumulant matrix for PCA scores. The 

linear and nonlinear blocks can be separated by a clustering method over the sample 

data, developed based on the pairwise independence measure. The efficiency of the 

proposed algorithm on blind identification of multiple linear and nonlinear variation 

patterns has been demonstrated by some simulation cases and an autobody assembly 

example.  
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK  

 

V.1  Conclusions 

 This dissertation has developed a set of related techniques for diagnosing nonlinear 

spatial variation patterns that exist in the complex manufacturing processes. The 

objective considered in this dissertation is to identify as precisely as possible the nature 

of each distinct variation pattern, based entirely on the data sample with no a priori 

knowledge of the nature of each pattern. Proper identification of the variation patterns 

can provide much insight into the interdependencies and correlations between the 

different variables and, ultimately, the phenomena that cause the variation patterns and 

product variability.  

Chapters I reviewed the existing linear variation pattern analysis methods − 

classifying pre-modeled variation patterns and estimating un-modeled variation patterns. 

The limitations of linear models for representing the nonlinear manufacturing variations 

were also discussed through an example from the autobody assembly process. Chapter 

II and III extended the linear models and identification methods by considering a single 

nonlinear variation pattern to represent the nonlinearities present in the multivariate 

measurement data. Chapter II proposed an algorithm of improving accuracy and 

reducing computational expense in principal curves estimation when they lie in a lower 

dimensional subspace of the complete data space. The approach involves the use of 
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standard linear principal component analysis to identify the subspace. The observations 

are then projected onto this lower dimensional subspace before applying standard 

principal curve algorithm to identify the nonlinear multivariate variation pattern. It has 

been investigated that when the nonlinear variation patterns lie in some lower-

dimensional linear varieties, the modified principal curves method can be used 

effectively for variation pattern identification and interpretation. Chapter III developed 

a polygonal line algorithm for principal curves approximation and nonlinear pattern 

identification. The main feature differs our approach from the HS algorithm is that it is 

more robust to the changes in the nonlinear variation patterns. Experimental results 

demonstrate that the polygonal line algorithm compares favorably to the HS method 

both in terms of nonlinear pattern identification performance and computational 

complexity. 

 To find a more generic method for manufacturing variation analysis, Chapter IV 

enhanced the single pattern identification approaches by representing and identifying 

multiple linear and nonlinear variation patterns through a nonlinear BSS model. A high 

order cumulants based blind pattern identification algorithm was developed to diagnose 

the nature of the various variation patterns. To help separate and identify the blocks 

from the sample pairwise cumulant matrix, we present a block clustering method to 

determine the number of variation sources automatically and estimate individual 

variation patterns. 

Although this dissertation has focused on the statistical aspects of estimating 

variation patterns, visualization of the statistical results is no less important to 
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understanding the nature of the variation patterns. The simulation examples in Chapter 

II and III have been used to illustrate the concepts of variation patterns, in which 

visualization of the estimated patterns was accomplished with the aid of interactive 

graphical tools.  

The methods developed in Chapters II through IV apply to a fairly broad class of 

real problems. This work, however, is certainly not complete. A few of these extensions 

are discussed below as “future work”. 

 

V.2  Future Work 

 Some possible future research directions are listed in the following: 

• It is natural to extend the one-dimensional curves (i.e., principal curves) to 

higher-dimensional manifolds (e.g., principal surfaces) for representing the 

nonlinear variation patterns that are embedded in the complete data space. Such a 

more generic variation pattern diagnostic method requires the estimation of the 

intrinsic dimensionality of the manifolds, as well as the visualization of identified 

patterns, which will be a challenging problem for future research.   

• The discussion on multiple nonlinear variation patterns identification method in 

this dissertation was restricted to a set of independent time-invariant variation 

sources. An obvious extension is the inclusion of autocorrelation into the nonlinear 

model, making use of the temporal information often present in the source signals. 

Integration of nonlinear model, which have the ability for multiple variation 
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patterns separation and identification, with sequence or time series models would 

be useful in improving the description and interpretation of the variation patterns. 

• The blind identification methods estimate variation patterns from on-line 

measurement data, in which case the accuracy of the methods is affected by some 

factors (e.g., the number of variation source, the sample size). While the accuracy 

of the estimated variation patterns depends on a number of factors, the pre-modeled 

variation patterns are not affected by these factors. Pre-modeled variation patterns 

totally depend on engineering knowledge of the process. If the manufacturing 

process is understood adequately and pre-modeling of some potential variation 

patterns is possible, the pre-modeled variation patterns are the most accurate. The 

extension of the blind separation method in Chapter IV can be studied further. 

Estimating some linear un-modeled variation patterns with partially pre-modeled 

patterns may be one likely area for future study.  

• Development of nonlinear models with locally varying measurement noise, i.e., 

where the parameters of the noise covariance matrix may depend on different 

spatial measurement features. This is desirable because using a fixed isotropic noise 

covariance does not fit the data well in some areas of data space. 
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APPENDIX A 

 

 This appendix summarizes some important properties of high order cumulants, to 

be used in the linear BSS methods and the nonlinear variation patterns identification 

algorithm in Chapter IV. 

 Property A.1 (Scaling) If y1, y2, … yp are multiplied with constants a1, a2, … ap, 

then we have: 

   Cum(a1y1, a2y2, …, apyp) = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∏
=

p

i
ia

1

Cum(y1, y2, …, yp).            

 Property A.2 (Sum) Cumulants of a sum are the sum of the cumulants: 

 Cum(z1 + y1, y2, …, yp) = Cum(y1, y2, …, yp) + Cum(z1, y2, …, yp),           

in which z1 is a real random variable. 

Property A.3 (Symmetry) Cumulants are symmetric on their arguments, i.e. 

              Cum(y1, y2, …, yp) = ),,,( )(P)2(P)1(P pyyyCum … ,                        

in which P is an arbitrary permutation of (1, 2, …, p). 

Property A.4 (Partitioning of Independent Variables) If a proper subset of the p 

random variables y1, y2, …, yp is independent of the other variables, then we have: 

    Cum(y1, y2, …, yp) = 0.               

 Note that cross-cumulants (cumulants involving at least two different variables) are 

zero if the elements of y are mutually independent. .  

Property A.5 (Sum of Independent Variables) If the random variable y1, y2, …, 

yp are mutually independent of random variables z1, z2, …, zp, then we have 
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Cum(y1 + z1, y2 + z2, …, yk + zk) =  

Cum(y1, y2, …, yk) + Cum(z1, z2, …, zk), pk ≤<1 .               

Property A.6 (Gaussianity) Cumulants of order higher than two for Gaussian 

variable are zero. 
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