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ABSTRACT 

 

Connection of Modular Steel Beam Precast Slab Units  

with Cast-in-Place Closure Pour Slabs. (December 2004) 

Natalie Camille Brush, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Ray James 

 

Jointless bridges are advantageous in removing mechanical joints which are a 

known cause of bridge deterioration.  Elimination of joints provides a smoother riding 

surface and removes the possibility of de-icing salts penetrating the deck and corroding 

the deck reinforcing and underlying bridge superstructure.  Jointless bridges are 

traditionally constructed by monolithically casting the entire bridge deck on beams after 

they have been erected.  However, this process requires extensive in-field formwork and 

lengthy traffic closures.  The Texas Department of Transportation proposes a new 

method of constructing jointless bridges using prefabricated girder-and-deck units 

connected on-site with cast-in-place closure pours. This new system will expedite 

construction and reduce disturbances to the traveling public. 

The objective of this experimental study was to investigate the behavior of the 

cast-in-place closure pour slab and to determine if it responds to wheel loads in the same 

way as a traditional monolithic continuous deck.  The effects of the cold joints and 

discontinuous steel details are the focus of the research work. 
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INTRODUCTION 

 

Proposed Design Overview 

Jointless bridges are advantageous in removing mechanical joints which are a 

known cause of bridge deterioration.  Elimination of joints provides a smoother riding 

surface and removes the possibility of de-icing salts penetrating the deck and corroding 

the deck reinforcing and underlying bridge superstructure.  Jointless bridges are 

traditionally constructed by monolithically casting the entire bridge deck on beams after 

they have been erected.  However, this process requires extensive in-field formwork and 

lengthy traffic closures.  The Texas Department of Transportation proposes a new 

method of constructing jointless bridges using prefabricated girder-and-deck units 

connected on-site with cast-in-place closure pours. This new system will expedite 

construction and reduce disturbances to the traveling public. 

Each prefabricated unit consists of a full depth concrete deck attached with shear 

connectors to a trapezoidal steel girder (“tub-girder”) assembly.  Fig. 1  shows a 

transverse cross-section of a module proposed for use on the Interstate 35 expansion near 

Waco, Texas.   The unit is constructed on the ground in a controlled environment instead 

of over traffic.  At the bridge site, the modules are lifted into place and subsequently 

connected with cast-in-place closure pour slabs both longitudinally and transversely.                                     

 
 
 
 
_____________ 
This thesis follows the style of ASCE Journal of Bridge Engineering. 
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Fig. 1.  Transverse cross-section of interior bridge steel tub-girder module 

 

Fig. 2 depicts two interior spans of the newly proposed bridge system after 

casting both types of closure pours.  A plan view of the prefabricated unit is provided in 

Fig. 3.  The steel tub-girder extends beyond the deck slab at each end and rests on 

elastomeric bearing pads on the pier bent caps as shown in Fig. 4.  A 1 in. bituminous 

pad is provided at the bottom of the transverse closure pour to reduce bearing forces on 

the transverse closure pour from girder rotations. 

t = 0.75 in.

60 in. 

27.50 in.

t = 0.50 in.

t = 1 in.

8.5 in. 

12 in.

136 in. 

Full-depth precast deck 
Longitudinal closure pour rebar 
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Fig. 2.  Two interior bridge spans for the proposed jointless bridge 

 
 

 

Fig. 3.  Plan view of interior bridge steel tub-girder module 

Full-depth precast deck 
6 in. 

Steel tub-girder assembly 

Longitudinal closure pour rebar 
Transverse closure pour  

rebar not shown 

Bent cap 

Span 2 

Span 1 

(Scale 
compressed) 

Longitudinal cast-in-place 
closure pour slab 

Transverse cast-in-place 
closure pour slab 
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Fig. 4.  Section through interior transverse closure pour 

 

 The end product of the proposed system is a jointless bridge deck.  However, due 

to the unique construction method, the behavior of the bridge cannot be assumed to be 

identical to a conventional monolithically cast deck.  Although the completed deck looks 

similar to the typical jointless deck, discontinuous deck reinforcing and presence of 

closure pour cold joints may result in unusual bridge behavior and failure patterns.   

 

Research Objectives and Scope 

The objectives of this experimental study were to investigate the behavior of the 

cast-in-place closure pour slab and evaluate the feasibility of its design details.  

Specifically, to determine if the cast-in-place slab responds the same as a conventional 

monolithic deck.  The closure pour detail differs from a continuous deck; the reinforcing 

bars are not continuous across the closure pour, and there is a cold joint at each side of 

1 in. bituminous pad Transverse closure pour 

Precast panel assembly 
Elastomeric 
bearing pad 
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the closure pour.  The effects of these details are the focus of the research work 

described herein. 
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LITERATURE REVIEW 

  

Jointless Bridges 

 Jointless deck bridges were initially designed to resolve problems associated with 

expansion joints.  Presently, jointless bridges are being constructed all over the world 

and in a majority of the American states, and their performance is largely reported as 

good.  The emergence of this design was seen in several states around the 1970s to 

1980s (Wasserman 1987; Burke 1994; Hambly 1997; Alampalli and Yannotti 1998; Van 

Lund and Brecto 1999; Kunin and Alampalli 2000; Hussain and Bagnariol 2000).   

Although there is a general positive attitude towards jointless deck bridges, there 

are a few limitations that have been observed from in-service bridges.  Foremost, 

jointless deck bridges are still prone to the same inherent construction problems such as 

early-age transverse deck cracking, weather related troubles, drainage at abutments, and 

poor or unsupervised construction (Burke 1999; Kunin and Alampalli 2000).  The most 

commonly noted problems in jointless deck bridges are approach slab settlement and 

minor cracking at pier supports (Alampalli and Yannoti 1998; Burke 1999, Kunin and 

Alampalli 2000).  Field evaluations conducted on these bridges found that approach 

slabs deteriorated faster than the deck or abutment (Alampalli and Yannotti 1998; Kunin 

and Alampalli 2000).  However, these limitations are preferable to the maintenance 

problems of jointed bridges. 
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Modular Precast Deck Connection 

 A precast deck panel is a section of deck slab whose width is the full width of the 

bridge and length, in the direction of traffic, is a fraction of the span length.  They are 

typically fabricated off-site and transported to the bridge site by crane.  Modular 

construction of precast deck panels has been used in many states for deck replacement 

and bridge rehabilitation.  Generally, these bridges are jointed with shear keys and 

topped with waterproofing and/or an asphalt wearing surface.  Cracking at the transverse 

joint (shear key) is the most common problem reported (Issa et al. 1995c; Culmo 2000).  

To combat transverse cracking, some DOT’s are using longitudinal post-tensioning to 

reduce the tensile forces in the deck.  Although this delays crack initiation and improves 

joint stress distribution, spalling and leakage have still been seen at the closed joint (Issa 

et al. 1995c, Issa et al. 1998; Issa et al. 2000; Shim and Chang 2003).   

The Federal Highway Administration (FHWA) published a report discussing 

modular precast deck panel connections (Martin and Osborn 1983).  This study found 

several instances of closure pour use in bridges to connect precast elements.  A 1973 

publication by the United States Steel Company suggests the use of a transverse pour 

strip between precast deck panels laid perpendicular to girders.  One bridge constructed 

in this manner was still performing adequately and had no leakage problems when 

evaluated for the FHWA report.   Alabama has a bridge that utilizes a small closure pour 

between precast slab panels at the bridge ends and is still functioning well after many 

years (Culmo 2000). 
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The FHWA report also studied longitudinal and transverse connection practices 

for jointless bridges constructed with precast deck panels.  Some systems in use include 

transverse bolts or tie rods, weld plates, and transverse post-tensioning.  A Canadian 

design was found that employed hooked reinforcing bars in a grout key to attach 

adjacent precast box beams longitudinally.  The conclusions of the FHWA research 

stated that the best method of longitudinal connection is 4 in. or more of cast-in-place 

reinforced concrete. 

In 1998, Caner and Zia reported an analysis on a transverse link slab that 

connects two simply supported bridge spans.  In this study, a partially de-bonded 

concrete and steel girder bridge specimen was investigated.  De-bonding of the girders 

and deck at the link slab reduces the stiffness and consequently the stress in the link slab.  

It was found that the transverse link slab acted more like a beam in bending than a 

tension member.  Failure of the steel girder section was initiated by yielding of the 

girders, followed by yielding of the reinforcing bars and ultimately, crushing of the 

concrete at the bottom surface of the link slab.    

 

Summary 

 The literature reviewed suggested the following points with regard to the 

behavior of cast-in-place closure pour connections between steel beam precast modular 

units. 

• The transverse joint over an interior support has been shown experimentally to 

behave like a beam in flexure, not a tensile member. 
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• Cracking at the supports and abutment of a jointless deck bridge is to be expected 

and is most often not problematic. 
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LABORATORY TESTING 

 

Testing Overview 

The goal of this test program was to study experimentally the behavior of the 

closure pour connections proposed for use by TxDOT. Both transverse and longitudinal 

closure pours were tested and data acquisition included specimen strains, crack 

monitoring, and specimen strengths.  Testing mimicked service load conditions in the 

closure pours which were determined from a parallel computer FE model.  Steel tub-

girders were not included in test specimens, but their presence was accounted for in the 

support and loading setup. 

Seventeen specimens were constructed and tested: six containing transverse 

closure pours and eleven containing longitudinal closure pours.  A relatively narrow strip 

was taken out of the bridge deck to test, and the strip included a section of closure pour 

and portions of the precast deck units as shown in Fig. 5.  The forms for each specimen 

were divided into three sections that represented the three divisions of the actual bridge: 

two exterior sections from the precast deck slabs and an interior section simulating the 

closure pour slab.  Throughout the testing program, specimens were occasionally altered 

to understand better the governing failure mechanisms and details; thus there was some 

deviation in the details of the various beams.  Specimen labels followed a basic 

numbering system with a T or L prefix denoting a transverse or longitudinal closure 

pour, respectively.  The first transverse specimen is labeled T1 and the last T6.  
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Similarly, the longitudinal specimens are labeled L1 through L11.  Numbering does not 

designate the chronological order of testing.  

 

 

Fig. 5.  Plan View of Bridge showing orientation of laboratory beam strips 

 

Specimen Descriptions 

Transverse Closure Pour 

Transverse closure pours extend across the bridge over pier supports to connect 

adjacent bridge spans.  Tested specimens were beams that represent a longitudinal strip 

across the transverse bridge closure pour and included portions of the precast panel deck 

Section of deck simulated 
with “Longitudinal Closure 
Pour” test specimen 

Section of deck simulated 
with “Transverse Closure 
Pour” test specimen 

Transverse closure pour 
Longitudinal closure pour 

Steel tub-girder below 
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and cast-in-place slab as shown in Fig. 5.  The basic dimensions of all transverse 

specimens are shown in Fig. 6, and the slab reinforcing details for the beams are 

described in Fig. 7, Fig. 8 and Table 1.   Beam width was chosen to allow multiple bar 

repetitions in the beam, and beam length was chosen to permit any possible loading 

setup.  In actual construction, the transverse closure pour is formed on a 1 in. preformed 

bituminous fiber material pad to protect the concrete deck from steel girder end rotations 

bearing against the concrete.  This pad was not used or needed in testing, but specimens 

were built with the closure pour concrete depth reduced by 1 in. as seen in Fig. 6.   

 

 

Fig. 6.  Dimensions and orientation of transverse test specimen: (a) plan view; (b) 

elevation view 

24 in. 

20.625 in.

160 in. 

68 in.

(a) 

(b) 

8.5 in. 
7.5 in. 

Precast deck Closure pour 

Bridge traffic flow 
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Fig. 7.  Reinforcing pattern for transverse test specimens: (a)  plan view; (b)  elevation 

view 

 

Bar T (top) 
Bar D (bottom) 

Bar F 
Bar P 

Assembly 
0.5 in. 
5.5 in. 

4.5 in. 

(b) 

(a) 

Bar T  

Bar DBar F  
Bar P 

Assembly 

Reduced steel section 
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Fig. 8.  Geometry of transverse hoop bars: (a) bar P assembly;  (b) bar F 

 
 

Table 1.  Spacing, Cover, and Size of Transverse Specimen Reinforcing Steel  

Bar  Size 
Spacing  

(in.) 

Top  

Clear Cover 

(in.) 

Bottom Clear 

Cover 

(in.) 

F No.  3 3 2.625 1.5 

P No.  3 3 2.625 1.625 

T No.  4 9 3.125 N/A 

D No.  5 9 N/A 2.125 

 

 

 

(a) 

2.5 in. 

15 in. min. lap 

19 in. 

2.625 in. 

(b)  

4 in. 
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Both epoxy-coated and plain reinforcing bars, as noted in Table 2, were used in 

the six transverse specimens.  Specimens T3 and T6 were cast with uncoated rebar to 

test the effect of the concrete-to-steel bond on the failure of the beams.  Specimen T6 

also acted as control specimen because the beam was cast monolithically and the rebar 

detailing was changed from the hook system shown in Fig. 7 to a system of straight bars 

shown in Fig. 9.  The straight bars are continuous through the closure pour with the same 

bar size and spacing as the precast panel deck reinforcing, Bar F shown in Fig. 7.  This 

specimen provided a basis for isolating the possible detrimental effects resulting from 

the closure pour cold joints and a reinforcing detail that terminates bars within the 

closure pour. 

 

Table 2.  Construction Variations in Transverse Specimens 

Specimen Label Rebar Coating Closure Pour Rebar Pattern 

T1 Epoxy Yes Fig. 7 

T2 Epoxy Yes Fig. 7 

T3 None Yes Fig. 7 

T4 Epoxy Yes Fig. 7 

T5 Epoxy Yes Fig. 7 

T6 None No Control (Fig. 9) 
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Fig. 9.  Reinforcing pattern for transverse control test specimen: (a) plan view; (b) 

elevation view 

 
 
 
Longitudinal Closure Pour 

 Longitudinal closure pours run in the direction of traffic to connect transverse 

edges of adjacent pre-cast unit decks.  Tested specimens were representative beam strips 

from a transverse section of the longitudinal closure pour with portions of the precast 

Bar “F” 

(a) 

(b) 
Bar “F” 
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decks included as described in Fig. 5.  Dimensions of the longitudinal specimen are 

given in Fig. 10, and the reinforcing pattern is shown in Fig. 11. 

 

 

Fig. 10.  Dimensions and orientation of longitudinal test specimen: (a) plan view;  (b) 

elevation view 
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Fig. 11.  Reinforcing pattern for longitudinal test specimens: (a) plan view;  (b) elevation 

view 

 

A preliminary design using No. 5 bars was modeled by specimens L1 through 

L7.  These bars were changed to No. 4 bars in the remaining specimens.    Data for L1 – 

L7 is provided in Appendix E.  To determine if the presence of the closure pours was a 
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major factor in producing the observed failure pattern, L5 was cast without a closure 

pour (i.e., a monolithic pour) but included the reinforcing pattern of the other specimens.  

Subsequently, L7 was cast without a closure pour and without specified hooks.  In L7, 

the precast deck reinforcing was made continuous through the closure pour with straight 

bars similar to Fig. 12 with spacing and bar size matching the previous beams.  L5 and 

L7 were considered control specimens to which other beams with No. 5 bars were 

compared.   

Specimen L1 – L9, labeled Type 1 for their smaller cross-sectional width, 

showed signs of adverse edge effects during testing, so two additional beams (L10 and 

L11) were fabricated with an increased side cover to eliminate this problem.  In addition, 

beam length was increased to 168 in. and transverse bars were added to the closure pour 

to better simulate actual bridge reinforcing. These two beams are labeled Type 2 and are 

shown in Fig. 13.  Table 3 lists the construction and reinforcing variations in L1 – L11.   

 

 

Fig. 12.  Reinforcing pattern for longitudinal control test specimens – plan view 
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Table 3. Construction Variations in Longitudinal Specimens 

Specimen 

Label 

Rebar 

Coating 

Bar 

Size 

Closure 

Pour 

Transverse 

Bars 

Beam 

Width 

(in.) 

Rebar 

Pattern 

Beam 

Type 

L1 Epoxy No. 5 Yes No 20.625 Fig. 11 1 

L2 Epoxy No. 5 Yes No 20.625 Fig. 11 1 

L3 Epoxy No. 5 Yes No 20.625 Fig. 11 1 

L4 None No. 5 Yes No 20.625 Fig. 11 1 

L5 None No. 5 No No 20.625 Fig. 11 1 

L6 None No. 5 Yes No 20.625 Fig. 11 1 

L7 None No. 5 No No 20.625 Fig. 12 1 

L8 Epoxy No. 4 Yes No 20.625 Fig. 11 1 

L9 Epoxy No. 4 Yes No 20.625 Fig. 11 1 

L10 Epoxy No. 4 Yes Yes 34 Fig. 11 2 

L11 Epoxy No. 4 Yes Yes 34 Fig. 11 2 

 

 

 

Fig. 13.  Dimensions of variation for Type 2 longitudinal specimens – plan view 

34 in. 

16 in.

76 in Type 1 specimen 

Additional side cover 

168 in.
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Specimen Construction 

Three reusable plywood forms were constructed and used to fabricate all 

specimens except the longitudinal Type 2 specimens that had a wider cross-section and 

extended length.  Fig. 14 shows a Type 1 form prior to installation of the reinforcing 

steel.  A transverse bulkhead was used to separate the precast and cast-in-place beam 

sections and was removed for the placement of the closure pour after the precast sections 

had cured.  Type 2 specimens were designed with an increased width in an attempt to 

reduce edge effects, and two new forms were constructed to adjust for the new section.  

Fig. 15 is a photograph of a Type 2 form after steel installation. 

 

         

Fig. 14.  Type 1 form prior to steel installation (20.625 in. width) 
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Fig. 15.  Type 2 form after steel installation (34 in. width) 

  

Before steel placement, rebar was instrumented with strain gages.  Bar ridges 

were ground down to prepare the surface for gage installation, and gages were bonded to 

the prep site and sealed with an air-curing silicone rubber.  After curing of the protective 

rubber coating, the reinforcing steel was installed into the forms.  To allow for two 

separate pours, the rebar was passed through holes in a wood bulkhead so that only the 

specified steel was extending from the precast section into the closure pour as shown in 

Fig. 16  and Fig. 17.  
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Fig. 16.  Transverse closure pour section during steel installation 

 

 

Fig. 17.  Longitudinal closure pour section after steel installation 

 

Once all steel was instrumented and tied into place, the concrete was placed.  A 

vibrator was used to remove air voids and the concrete surface was smoothed out with 

hand trowels.  Each precast section was cast simultaneously with a wood partition 

blocking out the closure pour section.  Following 7-day compression cylinder tests that 

revealed strengths exceeding the specified 28-day concrete strength of 4000 psi, the 

bulkheads were removed and the closure pour concrete was placed.  Fig. 18 shows a 

transverse specimen prior to casting of the closure pour section.  
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Fig. 18.  Transverse specimen prior to placing of closure pour concrete 

  

After 7 days, the closure pour concrete had surpassed the 28-day strength and 

forms were stripped in preparation for installation of concrete surface strain gages.  

These gages were designed to capture the surface strains at failure locations to compare 

with theory.  To ensure proper adhesion of the gage to the concrete surface, the concrete 

was prepared by grinding it to a smooth finish.  Next, a 5-minute epoxy was applied to 

the area to fill voids and allowed to dry overnight.  Once cured, the epoxy was ground 

off leaving a void free concrete surface for good strain gage adhesion.  When all surface 

gages were mounted to the specimen and epoxy had cured, the beam was moved to the 

testing area and lifted onto its support system and linear variable displacement 

transducers (LVDT) were installed.   
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Specimen Instrumentation 

Steel Strain Gages 

Multiple strain gages were affixed to reinforcing steel for data acquisition during 

testing.  Vishay Micro-Measurements, 0.25 in. (6 mm) gage length strain gages (Type 

CEA-06-250UW-120) were used for the reinforcing steel strain readings in specimens 

L1 through L6.  After these six specimens, strain gages were changed to Type FLA-6-

11-1L manufactured by Tokyo Sokki Kenkyujo Company.   Placement of the gages was 

based on the predicted beam failure location and areas of particular interest.  As 

experimentation progressed, sites and numbers of strain gages were changed based on 

test results and observations.  Chosen strain gage locations are discussed in the 

Experimental Results section.  

Two epoxy glues were used during testing to affix strain gages to steel 

reinforcement.  The first strain gage adhesive tried was RP-2 manufactured by Tokyo 

Sokki Kenkyujo Company.  This epoxy was used on specimens L1 though L7 and T1 

through T3.  For the last seven specimens (T4, T5, T6, L8 – L11), Vishay Micro-

Measurements M-Bond AE-10 strain gage adhesive was used.   

 

Concrete Strain Gages 

Gages mounted on the surface of the concrete specimens were 2.5 in. (60 mm) 

gage length, Type PL-60-11, manufactured by Tokyo Sokki Kenkyujo Company.  This 

gage performed well during testing and was used on all beam specimens.  Concrete 

strain gage locations will be discussed in the following section. 
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Linear Variable Displacement Transducer 

 One LVDT was attached to each side of each specimen to measure vertical 

deflections during testing.  RDP Group, Type ACT1000A, LVDTs were used for all 

tests.  The corresponding transducer amplifier was RDP Electronics, Ltd., Type S7AC 

and Model 8. 

 

Specimen Testing 

Transverse Closure Pour 

All transverse specimens were loaded to failure under static negative flexural 

loading in a 4-pt bend test as shown in Fig. 19, creating a pure moment in the closure 

pour zone.  Caner and Zia (1998), as well as FE analysis of typical bridges, indicated 

that both shear and axial forces in the closure pour region are small (Brush N.C., Sharpe, 

G.P., James, R., Jones, H. Unpublished document).  Thus, a pure bending loading 

arrangement was used.  Beam supports were placed flush with the interface of the 

closure pour and precast sections, at the location of girder end diaphragms in the bridge.  

Fig. 20 is a photograph of a transverse specimen during testing.  One LVDT was placed 

on each side of the beam at the centerline of the closure pour to measure vertical beam 

deflection.   
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Fig. 19.  Negative moment test setup for transverse specimens: (a) plan view; (b) 

elevation view 
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Fig. 20.  Transverse specimen during testing 

 

 Negative flexure in the transverse closure pour produces topside cracks in the 

deck that could cause leakage problems at the joint.  Therefore, cracks were visually 

monitored and measured during testing using rulers designed to measure crack widths.   

 

Longitudinal Closure Pour  

 Longitudinal beams were tested to ultimate capacity under a static 3-point 

positive moment loading with the exception of L8 and L9 as discussed later.  The two 

closure pour faces are labeled as joint 1 and joint 2 as shown in Fig. 21.  Supports were 

offset to achieve both a moment and shear at joint 2 of the closure pour.  Initially, a 

concentrated load was to be applied to the specimen inside the closure pour next to joint 

2.  With this scenario, the support setup yields the service moment-to-shear (M/V) ratio 

found in the congruent FE analysis (Brush N.C., Sharpe, G.P., James, R., Jones, H. 

Unpublished document).  It was subsequently decided to reproduce a real tire patch to 
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better represent actual loadings.  As discussed further in the results section, changes in 

M/V ratio due to support location movements was not significant to the resulting failure 

because joint 1 was the actual failure location, not joint 2. 

Loading simulated an AASHTO HS-25 tire patch flush with joint 2 which was 

identified by the FE analysis as the controlling truck location.  Maximum positive 

transverse moment in the longitudinal closure pour occurs when two HS-25 trucks are 

located at mid-span of the bridge on both sides of the interior closure pour.  Laboratory 

testing simulated one of these trucks’ wheel patch inline with closure pour joint 2 (see 

Fig. 21).  AASHTO design gives the dimensions of the tire patch as 22 5/8 in. 

perpendicular to traffic flow and 9 in. parallel with traffic.  The load distributor used 

during testing had dimensions of 22 in. by 9 in. and resulted in an actuator centerline 5 

in. offset from the joint 1 face and 11 in. offset from joint 2.  Throughout this report, the 

centerline of the load will be represented in graphics as a solid 5-point star.  Fig. 22 is a 

photograph of the longitudinal loading setup. 
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Fig. 21.  Positive moment test setup for longitudinal specimens: (a) plan view; (b) 

elevation view 
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Fig. 22.  Longitudinal specimen during testing 

 

 

Specimen L8 and L9 were loaded differently.  As determined by a FE model, one 

truck location pattern produced a small negative moment in the closure pour (Brush 

N.C., Sharpe, G.P., James, R., Jones, H. Unpublished document).  Therefore, specimen 

L8 was initially loaded in negative flexure to the calculated FE model service load 

moment to determine if cracking would occur at the closure pour.  The beam was then 

reloaded in the typical positive moment to failure.  The negative moment test setup for 

L8 is identical to the transverse specimen test illustrated earlier and shown in Fig. 19.  

L9 was tested with pure flexure in the closure pour using the support setup shown in Fig. 

23.  This loading was chosen to determine the flexural capacity without shear in the 

joint.  A photograph of the L9 testing is provided in Fig. 24. 

 Supports for L10 and L11 were in slightly different locations than for L1 – L7 

due to the increased specimen length from 160 in. to 168 in.  The loading setup 

variations for Type 2 beams are given in Appendix F, Fig. 78 and Fig. 79. 
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Fig. 23.  Pure positive flexure test setup for longitudinal specimen L9: (a) plan view; (b) 

elevation view 
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Fig. 24.  L9 during testing setup preparation 

 

Specimen Concrete 

TXDOT Class S Concrete 

Specified concrete was TxDOT Class S, which is generally used for bridge 

decks, topping slabs, and bridge superstructures.  Both the precast and closure pour 

segments of the beams were poured with Class S concrete.  Details of the concrete mix 

are given in Table 4. 

 

Compression Cylinders 

To establish the progress of curing concrete and the strength of beams during 

testing, multiple compression cylinders were molded with each pour.  ASTM C 39/C 

39M – 99 was followed in the casting and testing of the cylinders throughout 

experimentation.  Cylinders had a nominal radius of 6 in. and nominal height of 12 in.  

Length measurements were repeated 4 times along different quadrants of the cross-
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section, and the diameter was measured twice with perpendicular lines on the circular 

cross-section at both the top and bottom of the cylinder.  All tested specimens were 

within ASTM tolerances. 

Concrete compression cylinders were tested at 7 days to ensure that 70% of the 

specified minimum strength (2800 psi) had been reached following guidelines from 

TxDOT Item 421.9.  At 7 days, every cylinder tested above the 28-day compressive 

strength requirement.  Appendix C provides the details of each concrete pour, including 

7-day cylinder strengths and concrete strength at testing.   

   

Table 4.  TxDOT Class S Concrete Specifications 

Cement per C.Y. Minimum. (sacks) 6.5 

Minimum Compressive Strength (f’c) 28 day (psi) 4000 

Minimum Flexural Strength 7 day (psi) 570 

Maximum Water Cement Ratio (Gal/sack) 5.0 

Coarse Aggregate Grade (No.) 2-3-4-5 

Desired Slump (in.) 3 

Maximum Slump (in.) 4 

 

 
Testing Machinery 

 All tests were run with MTS machines.  One or two 50 k hydraulic 

actuators, Model 204.71, were used to apply load to each specimen.  These actuators had 

a 6 in. total stroke.  The load cell used in conjunction with the actuators was a 55 k 

capacity MTS, Model 661.23A-01, load cell.  Actuators were driven with a MTS 410 
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Digital Function Generator and a MTS 464 Data Display was used to monitor applied 

loads.  Fig. 25 is a photograph of the function generator.  Fig. 26 is a photograph of the 

500 k MTS Model 311.41 machine used in. compression cylinder testing.  The actuator 

has a 6 in. total stroke. 

 

 

 

Fig. 25.  MTS Digital Function Generator and Data Display 
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Fig. 26.  MTS load frame for compression cylinder tests 

 

 
Graphic Data Acquisition 

 Video and photography was utilized for observations following testing.  Two 

video cameras were placed approximately 3 feet from the closure pour to capture crack 

propagation and beam failure.  Digital photos were taken throughout testing to document 

beam behavior, cracks, and to photograph pertinent reference items, such as gage 

locations, rebar orientation, and support setups.  
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EXPERIMENTAL RESULTS 

 

Overview 

 Data was analyzed during and after beam testing, including strain in the concrete 

and reinforcing, percentage of theoretical moment capacity reached, and cracking and 

failure patterns.  Strain values were compared between specimens and to theory and 

based on the acquired strains, a better understanding of the mechanisms occurring during 

failure was reached.  Evaluation of the measured capacity versus theory determines the 

effects of closure pour presence.  Failure patterns and crack monitoring aid in 

identification of limiting attributes of the proposed design.   

 

Reinforcing Steel Yield Strength 

 Yield strength of the reinforcing in L1 – L7 was tested with a MTS Axial 

Precision load frame (Model 312.31S) and ASTM standard clip gage extensometer.  

Based on the results of these test, L1 – L7 was determined to have 72 ksi yield strength 

as shown in Fig. 27.  All other specimens’ reinforcing was not tested but was assumed to 

be 72 ksi in calculations.  The corresponding yield strain for 72 ksi steel is 

approximately 2500 microstrain. 
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Fig. 27.  Yielding strength for reinforcing steel in L1 – L7 

 

Theoretical Beam Capacity 

 Measured beam capacity was compared to theoretical nominal flexural strength 

using a basic reinforced concrete approach.  Assumptions included the following: 

 

1. Concrete in the tension zone was neglected and the tension steel was assumed to 

take the total tensile force. 

2. A linear strain distribution based on Bernoulli’s “plane sections remain plane” 

hypothesis was used. 

3. The concrete compressive stress distribution was idealized by the Whitney stress 

block. 
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4. Strain in the rebar and surrounding concrete was assumed to be the same value. 

5. The theoretical maximum compressive concrete strain was 3000 microstrain. 

 

Equilibrium of the beam section is satisfied by equating the horizontal 

compressive and tensile forces in the concrete and steel and by forcing the internal 

bending moment to zero.  Results from one sample beam capacity calculation are 

provided in Appendix B. 

 

Theoretical Beam Cracking 

 The tested cracking load was compared to theoretical cracking based on a 

transformed gross moment of inertia.  The center-of-gravity axis was obtained using the 

first moment of area equation and taking the moment about the extreme top section fiber.  

The resulting equation for the center of gravity is  

s
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in which b = section width; h = section height; n = modular ratio; As = area of steel; and 

Es and Es = steel and concrete modulus of elasticity.  The transformed section is 
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where Ig = gross moment of inertia; d = distance to section from axis of rotation; and A = 

section area.  For an elastic and homogeneous member, the classical flexural equation 

for stress is designated by  

I
yM

=σ       (4) 

By substituting cracked properties and rearranging, the cracking moment was calculated 

by 

y
If

M gtr
cr =      (5) 

)('5.7 psiff cr =     (6) 

where fr = concrete modulus of rupture (psi).  The rupture stress was used because the 

initiation of cracking begins when the concrete reaches this stress value.  The resulting 

cracking moment is theoretically when cracking will initiate in tested specimens.  This 

value was compared against observed cracking in beams and is discussed further in the 

following sections. 

 

Transverse Specimen Data Results 

Transverse Specimen Strain Gage Locations 

All six transverse specimens were equipped with rebar and concrete surface 

strain gages, and Appendix A gives the gage positions for each beam.  Concrete gages 

were placed in multiple positions around the closure pour and varied between specimens.  
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A grid of three transverse locations (1, 2, or 3) and five longitudinal positions (a, b, c, d, 

and e), depicted in Fig. 28, make up the possible concrete strain gage positions.  

The intersection of two gridlines designates the gage label and the centerline of 

the gage.  Longitudinal positions ‘a’ and ‘e’ represent gages flush with the closure pour 

construction joint and extending into the closure pour.  Transverse position 1 and 3 are 3 

in. from the beam edge.  Position 2 and ‘c’ are along two of the closure pour centerlines.  

Gage labeling consists of the letter C, for concrete gage, followed by the transverse and 

longitudinal position number.  Hence, a gage on the centerline of the closure pour, in 

both directions, would be identified as gage C2c.   

Six longitudinal positions, placed on the innermost rebar, were chosen for the 

reinforcing steel gages as shown in Fig. 29.  Steel gages are labeled with an R prefix and 

the position number.  Observations and results will refer to this labeling system.  

Individual specimen gage locations are provided in Appendix A and Table 5 lists 

working gages for each transverse specimen. 
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Fig. 28.  Position labels for concrete strain gages on transverse specimens 

 
 
 

 

Fig. 29.  Position labels for rebar strain gages on transverse specimens 
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Table 5.  Valid Steel Strain Gages for Transverse Specimens 

Strain Gage Location Specimen 
Label 

1 2 3 4 5 6 
T1 x x x   x 
T2 x x x x  x 
T3 x x x x x x 
T4   x x  x 
T5  x x  x x 
T6 x x x x   

x denotes valid strain gage data for this position 

 

Measured Concrete Properties 

 Following the completion of each beam test, four compression cylinders were 

tested to determine the specimen’s concrete strength during testing.  Two specimens 

from the precast section and two from the closure pour batch were tested and then 

averaged to determine the compressive strengths to be used in calculations.  Calculated 

strengths for the transverse specimens are provided in Table 6.  Individual cylinder 

strengths are given in Appendix C, Table 15.  T6 was monolithic so it does not have data 

on closure pour concrete strength.   

 

Table 6.  Transverse Beam Concrete Strengths 

Specimen  
Label 

Precast Concrete 
Strength1   

(psi) 

Closure Pour 
Concrete Strength1  

(psi) 
T1 9316 6099 
T2 8964 5791 
T3 4685 6580 
T4 4823 6512 
T5 4870 6625 
T6 6475 N/A 

1strength determined the day of testing 
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Data Analysis 

 Documentation of transverse testing included flexural capacity, strain readings, 

vertical deflections, and crack patterns and growth.  Measured strengths for transverse 

specimens are given in Table 7 and theoretical capacities are provided in Table 8.  

Theoretical strengths were determined from the compressive strengths in Table 6.  Fig. 

30 graphically represents the difference between theory and tested strengths.  Based on 

the locations of the failure described later in this section, the amount of steel reinforcing 

used in capacity calculations was based on the seven bars that pass through the closure 

pour cold joints labeled in Fig. 7 as Bar F.   

 

Table 7.  Tested Failure Load and Moment for Transverse Specimens 

Specimen 
Label 

Failure Load 
(kip) 

Failure 
Moment1 

(k-in) 

Failure 
Moment per 
unit width 

(k-in) 
T1 12.8 269 13.1 
T2 12.4 259 12.6 
T3 13.7 287 13.9 
T4 14.4 302 14.6 
T5 14.0 293 14.2 
T6 12.6 301 14.6 

1Bending moment at section where flexural failure occurred 
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Table 8.  Theoretical Capacity and Failure Load for Transverse Specimens  

Specimen 
Label 

Moment 
Capacity 

(k-in) 

Moment Capacity 
per unit width 

(k-in/in) 

Theoretical 
Failure Load  

(kip) 
T1 314 15.2 15.0 
T2 310 15.0 14.8 
T3 321 15.6 15.3 
T4 320 15.5 15.2 
T5 322 15.6 15.3 
T6 320 15.5 15.2 

 

 

T1 – T5 averaged 89% of theoretical capacity, and the monolithic control 

specimen, T6, reached 94% of calculated strength.  Longitudinal specimens (discussed 

in the next section) showed this same low capacity trend, and based on the findings from 

the longitudinal specimens, the decreased capacities in the transverse specimens are 

attributed to edge effects and inadequate rebar confinement from side cover.  No 

transverse specimens were tested to confirm this assumption. 
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Fig. 30.  Theoretical and tested moment capacity obtained in specimen T1 – T6 

 

 Failure patterns were typically the same for all specimens.  Closure pour 

construction joints were the first to begin cracking and then either one or two cracks in 

the closure pour would initiate.  Fig. 31  shows the average locations of these two crack 

patterns.  Either one crack formed around the centerline of the closure pour (crack a in 

Fig. 31) or two formed near the quarter points (crack b in Fig. 31).  These cracks are 

normal flexural cracks and do not cause failure in the beam.  Immediately preceding 

failure, another crack forms approximately 4.5 in. away from the closure pour face and 

causes failure.  T3, T4, and T5 failed at the crack denoted “Failure crack 1” in Fig. 31, 
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and T1, T2, and T9 failed on the opposite side of the closure pour, at the location labeled 

“Failure crack 2” in Fig. 31.  The control specimen, T6, failed from a flexural crack 

located approximately 9 in. offset from the beam centerline.   

 

 

Fig. 31.  Typical crack locations for transverse specimens 

 

Closure pour joint cracks grew to approximately 0.035 in. prior to failure, and the 

cracks in the closure pour that did not cause failure reached roughly 0.02 in. as shown in 

Fig. 32 though Fig. 37.  Theoretical cracking for T1 – T6 was calculated as 

approximately 5.6 k.  Cracks at the two cold joints began cracking almost immediately 

(0 – 1 k) while the closure pour flexural cracks formed around 2 – 4 k.   
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There is a constant moment across the closure pour and failure was expected at 

the joint face due to the reduced steel at that locations (see Fig. 7).  However, the failure 

crack occurs at a site of rebar discontinuity where there is more reinforcing than at the 

closure pour face.  One of the hairpins (bar P in Fig. 7) ends 4.5 in. inside the closure 

pour joint at the same location of the typical failure crack.  It is believed that the hairpins 

that are solely inside the closure pour produce a prying action which ultimately causes 

the sudden crack and failure.  Transverse reinforcing was not installed in these 

specimens and, if present, may have reduced this phenomenon and improved the closure 

pour capacity. 

Steel strain gages did not consistently give valid data due to multiple gage 

failures.  For this reason, it was not possible to determine the strain profile and 

corresponding behavior in the transverse closure pour.  Graphs of the strain readings are 

provided in Appendix D, Fig. 65 through Fig. 69. 
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Fig. 32.  Measured crack widths in T3 

 
 
 

 
Fig. 33.  T3 closure pour cracks 
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Fig. 34.  Measured crack widths in T4 

 
 
 

 
Fig. 35.  T4 closure pour cracks 
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Fig. 36.  Measured crack widths in T5 

 
 
 

 
Fig. 37.  T5 closure pour cracks 
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Longitudinal Specimen Data Results 

Longitudinal Specimen Type 1 Strain Gage Locations 

Longitudinal specimens were instrumented with strain gages at locations which 

varied slightly throughout the project.  Fig. 38 and Fig. 39 give the position labeling 

system for concrete and reinforcing steel gages, respectively.  Results and prepared data 

refer to these labeling systems.   

 

 

Fig. 38.  Type 1 and Type 2 position labels for concrete strain gages 

 

Four longitudinal (1, 2, 3, and 4) and two transverse (a and b) positions were 

used for concrete surface gages.  Longitudinal positions are located at joint 1, the 

actuator centerline, closure pour centerline, and joint 2.  Both transverse positions are 3 

in. from the edge of the beam and 2.8 in. from the side of the load pad.  Labeling of 

these gages consists of the letter C denoting a concrete gage followed by two characters 

Longitudinal Position 
        1   2    3         4

support support 

6.82 in. typ. 3 in. typ. 

C L 

Transverse 
Position 

 
a 
 
 

b 
Joint1 Joint2 
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that represent the longitudinal and transverse location.  For example, a C2b gage is 

located at the intersection of the longitudinal position 2 and transverse position ‘b’.  C2b 

is inline with the actuator centerline and 3 in. from the edge of the beam. 

Concrete surface gages on Type 1 beams were located at the centerline of the tire 

patch (position 2 in Fig. 38) except for L1, L8, and L9.  Concrete strain gages in L1 were 

adhered incorrectly at 1 in. off from the actuator centerline and are 4 in. (instead of 5 in.) 

from the joint 1 face as depicted in Fig. 56.  L8 and L9 gages were placed on one side of 

the tire patch and located at position 1 and 4 as shown in Fig. 61 and Fig. 62.   

Nine longitudinal rebar strain gage positions for Type 1 beams (L1 – L9) are 

shown in Fig. 39.  Strain gages are designated by the prefix R for rebar and the position 

number given in Fig. 39.  Hence, R7 is a rebar strain gage at position 7 which is located 

at joint 2.  Position 3 and 7 represent gages installed flush with the closure pour cold 

joint and extending away from the closure pour.  A few beams were instrumented with 

gages at all locations shown, although most had gages at only some of the sites.  The 

gage locations are the same for all beams except as noted in Fig. 56 through Fig. 62.  

Due to multiple factors, some strain gages did not work properly during testing.  

Functioning gage positions for each longitudinal beam are given in Table 9. 
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Fig. 39.  Type 1 position labels for rebar strain gages 

 

Table 9.  Valid Steel Strain Gages for Longitudinal Specimens 

Strain Gage Location Specimen 
Label 

1 2 3 4 5 6 7 8 9 
L1          
L2      x  x  
L3      x    
L4     x x x x x 
L5     x x x x x 
L6     x x x x x 
L7     x x x x  
L8 x x x  x     
L9 x x x x x x x x x 
L10  x x x x  x x  
L11  x x x x x x x  

x denotes valid strain gage data for this position 
 
 

Positions 
   1    2    3    4    5    6    7    8    9support support 

4 in. typ. 
8 in. typ. 

12 in. typ. 
16 in. typ. 

C L 
Joint2 Joint1 
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Longitudinal Specimen Type 2 Strain Gage Locations 

 The rebar in Type 2 longitudinal specimens were instrumented extensively with 

strain gages in an attempt to better characterize behavior and to ensure a constant strain 

across the beam width during loading.  The labeling system is shown in Fig. 40.  

Longitudinal positions are the same as Type 1 specimens except position 1 and 9 are 

removed.  Rebar passing through joint 1 is lettered ‘a’ through ‘d’ and rebar passing 

through joint 2 is lettered ‘e’ through ‘h’.  Labels include the prefix R for rebar gage, the 

longitudinal location, and the bar name.  For instance, R5c is at position 5 on the closure 

pour centerline and adhered to rebar ‘c’ which passes through joint 1.  Concrete surface 

gages use the numbering system described for Type 1 beams and shown in Fig. 38.  

 

Measured Concrete Properties 

 Concrete compressive strength was determined by averaging the strengths of two 

concrete cylinders for each concrete pour.  Computed strengths are provided in Table 10.  

Table 18 in Appendix C gives individual cylinder strengths.  
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Fig. 40.  Type 2 position labels for rebar strain gages 

 
 

Table 10.  Longitudinal Beam Concrete Strengths for L8 – L11 

Specimen 
Label 

Precast Concrete 
Strength1   

(psi) 

Closure Pour 
Concrete Strength1 

 (psi) 
L8 6827 5780 
L9 7150 5990 
L10 6646 5486 
L11 6456 4974 

1strength determined the day of testing 

Bar  
Name 

 
a 
 
b 
 
c 
 
d 
 

Bar  
Name 

 
 
e 
 
f 
 
g 
 
h 
 

4 in. typ. 

12 in. typ. 
8 in. typ. 

Positions 
2      3     4        5        6    7       8 

C L 
Joint 1 

Joint 2 
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Data Analysis 

Specimens L1 – L7 

 The first seven longitudinal specimens were constructed with No. 5 bars and 

testing data for L1 – L7 is provided in Appendix E.  No. 4 bars were used for specimens 

L8 – L11 and are discussed in the next section. 

L1 – L3 used epoxy-coated reinforcing bars.  L4 – L7 had uncoated bars to 

determine if epoxy-coated rebar had any adverse effects on the performance of the joint.  

No identifiable differences in performance were observed between specimens with 

coated and uncoated rebar. 

 Due to a tested moment capacity less than theory in the first three specimens, L5 

was cast monolithically without a closure pour and the same rebar as other specimens to 

determine if the presence of the closure pour construction joint or the rebar detailing was 

the primary cause of the observed failure pattern.  Fig. 41 is a photograph of specimen 

L1 which had a closure pour section.  The two main failures occurred at the closure pour 

joint and a few inches inside the joint at the location of rebar discontinuity (see Fig. 11).  

Fig. 42 is a photograph of monolithic (no closure pour) specimen L5 which cracked in 

nearly the same manner as L1 except that the cracking was cleaner and more distinctly 

followed the orientation of the outermost rebar hoop.  From this test, it was concluded 

that the controlling factor in the failure pattern is the reinforcing steel discontinuity 

location. 



58 

 

Although large cracks formed at both joint 1 and 2, actual failure took place at 

joint 1 in every beam.  This was determined from the location of concrete crushing, a 

beam hinge observed at joint 1, and the concrete strain readings. 

 

 

Fig. 41.  Failure pattern of L1 with closure pour 

 
 
 

 

Fig. 42.  Failure pattern of monolithic specimen L5 
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 In theoretical flexural capacity calculation, it was assumed that a maximum 

compressive strain of 3000 microstrain is produced at the extreme compression fiber.  

Therefore, strain values of 3000 microstrain are expected at the location of failure.  

Concrete strains did not reach 3000 microstrain in specimens L1 – L7 as shown in Fig. 

76 and Fig. 77.  However, gages were located at the centerline of the load pad, while the 

failure location was closer to the closure pour cold joints. In L8 – L11, gages were 

placed at the failure location to determine the correct strain in the concrete at failure and 

the findings are discussed in the next section.  Concrete surface strains below 3000 

microstrain may indicate more complex failure mechanisms than accounted for in the 

utilized reinforced concrete theory. 

Edge effects were observed in L1 – L7 and contributed to the premature failure 

of the specimens with regard to calculated moment capacities.  Edge effects are here 

defined as the outermost rebar pulling away from the section, aggravating cracking, and 

helping to initiate failure as the crack moves around the 180 degree bend in the bar.  

Since specimen beam strips were taken from the interior of the bridge and actually have 

concrete on both sides strip, this could not happen in an actual bridge.  L10 – L11 were 

constructed with a larger concrete side cover in an attempt to reduce these test effects. 

   

Specimens L8 – L11 

L8 – L11 were fabricated with No. 4 bars and are the basis for determination of 

the adequacy of the longitudinal closure pour design.  Tested failure loads and moments 

are given in Table 11 and Table 13, and corresponding beam capacities are provided in 



60 

 

Table 12 and Table 14.  Capacities were determined from the compressive strengths 

provided in Table 10.  Fig. 43 compares the experimental versus theoretical capacity for 

L8 – L11.   

 

Table 11.  Tested Failure Load and Moment for L8 and L9 

Specimen 
Label 

Failure Load 
(kip) 

Failure 
Moment at 

Joint 1 
(k-in) 

Failure 
Moment per 
unit width at 

Joint 1  
(k-in) 

L8 20.6 451 21.9 
  L91 9.0 360 17.5 

1L9 was loaded in pure flexure 

 
 

Table 12.  Theoretical Capacity and Failure Load for L8-L9  

Specimen 
Label 

Moment 
Capacity 

(k-in) 

Moment Capacity 
per unit width 

(k-in/in) 

Failure Load to 
Cause Failure at 

Joint 1 
(kip) 

L8 474 23.0 21.7 
  L91 476 23.1 11.9 

1L9 was loaded in pure flexure 

 
 

Table 13.  Tested Failure Load and Moment for L10 – L11 (extended width) 

Specimen 
Label 

Failure Load 
(kip) 

Failure 
Moment at 

Joint 1 
(k-in) 

Failure 
Moment per 
unit width at 

Joint 1  
(k-in) 

L10 24.1 583 17.2 
L11 24.2 546 16.1 
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Table 14.  Theoretical Capacity and Failure Load for L10 – L11 (extended width) 

Specimen 
Label 

Moment 
Capacity 

(k-in) 

Moment Capacity 
per unit width 

(k-in/in) 

Failure Load to 
Cause Failure at 

Joint 1 
(kip) 

L10 496 14.6 20.5 
L11 493 14.5 21.8 
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Fig. 43.  Theoretical and tested moment capacity obtained in L8 – L10 

 

 
 
 L8 and L9 did not reach theoretical capacity and this appeared to be due to beam 

edge effects as discussed earlier.  L10 and L11, which had greater side cover, exceeded 

theoretical capacity by 11% and 18%, respectively.  This supports the idea that edge 
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effects played a factor in all previous longitudinal and transverse specimens’ premature 

failures.   

L8 was initially loaded in negative flexure to simulate a negative moment in the 

longitudinal closure pour.  Maximum load for this test was either 3 k (equivalent 

moment is 3 k-in/in) as determined by the FE analysis or when cracking was observed in 

the beams, whichever came first.  Theoretically, cracking would have begun at 7.1 k (7.3 

k-in/in) which is higher than the suggested service load, so L8 was not expected to crack 

under a 3 k load.  Loading the specimen with 3 k produced small cracks at the joint 

faces, but no substantial cracking was observed.  Following this test, L9 was loaded in 

pure positive flexure to determine the flexural capacity of the section in the absence of 

shear force.  L9 had an unexpected and unusually low capacity, which could not be 

attributed to any observed factors. 

Failure in L1 – L7 consistently occurred at joint 1, so the concrete surface gages 

for L8 – L11 were located at this position to capture strain readings prior to crushing of 

the concrete.  A surface mounted strain gage was placed on the concrete at joint 1, the 

closure pour centerline, and joint 2 for L8 and L9 to help verify that failure was 

occurring at joint 1.  Fig. 44 shows that longitudinal gage position 1 in L8, which is at 

joint 1, reached maximum compressive strains and joint 2 (position 3) and the closure 

pour centerline (position 4) did not.  Although L9 failed prematurely and strain readings 

were lower than L8, the trend is similar to L8 and joint 1 still has a higher strain at 

failure. 
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Fig. 44.  Measured concrete strain in L8 and L9 

 

Fig. 45 gives the strain readings for L10 and L11.  Discrepancies between L10 

and L11 strain readings were due to the slight differences in support locations which 

resulted in different applied moments for a given load.  The additional side cover on 

these specimens provided better rebar confinement and consequently yielded higher 

concrete strain values.  Similar to L8, the position 1 gages in these beams reached 3000 

microstrain and the other gage positions did not.  This confirms that joint 1 is the failure 

location even though joint 2 had been loaded with the specified M/V ratio.  The high 

moment at joint 1 was more critical than the combination of shear and moment at joint 2. 
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Fig. 45.  Measured concrete strain at gage position 1 in specimen L8 – L11 

 

Steel strain readings were taken at multiple longitudinal locations along the 

specimens to capture the behavior of the closure pour and adjacent precast concrete.  

Appendix F provides graphs of steel strains at each gage position.  Fig. 46 and Fig. 47 

illustrate strain profiles longitudinally along the beam for L10 and L11.  Each data point 

represents the strain at a gage position for a given actuator load.  Reinforcing bars yield 

throughout the section, with highest strains readings at the gages flush with the closure 

pour joints.  The gage flush with joint 1 averaged strain readings over 0.24 in, which 

does not include the maximum moment location that is 1.4 in. inside joint 1.  Therefore, 

it is likely that the highest strain was occurring between gage locations at the site of 

maximum applied moment.   
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Fig. 46.  Steel strain profile longitudinally along beam for L10 
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Fig. 47.  Steel strain profile longitudinally along beam for L11 
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Cracking on both sides of the specimen was located within the reduced steel 

section (shown in Fig. 11) of the closure pour so only eight bars resist tension forces 

instead of sixteen like the center of the closure pour where the bars overlap.  Maximum 

moment in the beams was located 1.4 in. inside joint 1 which is also within this reduced 

steel section.  Therefore, all calculated beam capacities represent the 2 in. section 

between the reinforcing hoop ends and the closure pour face. 

Crack patterns were similar in all longitudinal specimens as described in the 

previous section for beams L1 – L7.  Two major failure initiating cracks typically 

occurred: one at the joint face and one following the outside reinforcing hoop as shown 

in Fig. 41 and Fig. 42.  In a monolithic section, the failure would occur within the 0.6 in. 

between the maximum moment and rebar discontinuity location.  It was observed after 

failure that the interface of the closure pour and precast concrete was smooth, as shown 

in Fig. 48, indicating a bond failure between the two concrete surfaces.  The presence of 

the closure pour introduced a weak section with a poor bond at the joint between the two 

concrete sections.  This is believed to have caused failure in the lower moment region of 

the reduced steel section of the closure pour. 
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Fig. 48.  Poor bond between closure pour and precast concrete 

 

An LVDT was attached on each side of a specimen at the centerline of the load 

pad to monitor symmetry of the loading and to capture the vertical displacement 

behavior.  Beam deflections shown in Fig. 49 reveal a ductile behavior.  Ductility allows 

possible or imminent failures to be recognized through large deflections in the beam.  L8 

and L9, which had a smaller beam width, had less ductility than L10 and L11.  This is 

due to the lack of sufficient side cover in L8 and L9 and a consequential premature 

failure of rebar pulling out from the beam sides before capacity and full ductility could 

be reached.  The increased beam width in L10 and L11 appears to have limited this 

adverse behavior and specimens had increased deflection before failure. 
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Fig. 49.  Beam deflection at the centerline of actuator load for L8, L10, and L11 
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SUMMARY AND CONCLUSIONS 

 

Summary 

Overview 

 Jointless bridges are a common method used to improve bridge performance by 

eliminating movable joints in the bridge deck that lead to degradation of the bridge 

substructure and reinforcing.  To construct a jointless deck, the deck is typically cast 

with one pour, approach slab to approach slab, on top of placed girders.  To reduce 

formwork and traffic disturbance, TxDOT proposes a construction method using 

prefabricated girder and deck units that are connected on-site with cast-in-place closure 

pour slabs.  The objective of this experimental study was to determine if the closure pour 

slab section behaved similar to a typical monolithic section of a jointless bridge. 

 Specimens were beam strips taken from the bridge deck that included the closure 

pour and portions of the prefabricated deck unit.  Six transverse and eleven longitudinal 

closure pour beams were statically loaded to failure.  Specimens T1 – T6 included a 

portion of the transverse closure pour and were loaded in pure negative flexure.  

Specimens L1 – L11 included a portion of the longitudinal closure pour and were loaded 

to achieve a combined shear and positive flexure at joint 2.  The beam flexural 

capacities, failure locations, rebar and concrete strains, and cracking patterns were 

documented to compare to reinforced concrete theory.  All data was analyzed in an 

attempt to capture the behavior and failure of the beam strip specimens.   
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Longitudinal Closure Pour 

 Eleven longitudinal closure pour specimens were tested in this study.  Seven 

specimens had No. 5 bars and four specimens had No. 4 bars.  Two out of the eleven 

specimens had increased rebar side cover.  Other variations in beams included coating, 

the absence of a closure pour, straight and hooked closure pour rebar, and flexural 

loading setups. 

 Beam edge effects played a major role in the percent of theoretical capacity 

reached during testing.  Once edge effects were reduced with a wider beam cross-section 

in L10 and L11, the capacity of the specimens exceeded theoretical moment capacity by 

11% and 18%, respectively.  The premature failures resulting from edge effects also 

affected the concrete surface strain readings.  Prior to the testing of the wider beam 

sections, the concrete strain at failure was below 3000 microstrain.  After the removal of 

the edge effects, strain readings at the failure location reached expected maximum 

concrete strains.    

 Crack propagation of the longitudinal closure pour was not monitored closely 

like the transverse closure pour specimens since cracking would be on the underside of 

the deck and is less of a concern than top surface crack formation. 

 The two controlling factors in the pattern of cracking and failure appear to be the 

rebar discontinuities in the closure pour reinforcing and the presence of the closure pour 

cold joint.  At 2 in. away from the closure pour construction joint, the reinforcing is 

reduced from 16 – No. 4 bars to 8 – No. 4 bars (see Fig. 11) which reduces the section’s 

flexural capacity.  This discontinuity occurred near the maximum applied moment and 
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was the location of failure.  The closure pour cold joint also introduces a weak section 

due to the poor bond between the precast and cast-in-place concrete. 

 

Transverse Closure Pour 

 Six transverse closure pour specimens were tested.  Measured moment capacities 

for these beams were lower than calculated theoretical strengths, including the control 

specimen that was monolithically poured with straight rebar.  Based on the longitudinal 

closure pour findings, the low strengths are partially attributed to edge effects.  Side 

cover was not sufficient to confine the reinforcing bars and this allowed the outermost 

bars to be pulled out and away from the beam before the section’s capacity was reached.  

In addition, the hairpin bars in the closure pour produce a prying action within the 

closure pour causing the sudden initiation and failure of a non-flexural crack at the 

location of the hairpin rebar ends.  Precast deck reinforcing is stopped in the same 

approximate location.  The combined effect of the hairpin prying, rebar discontinuity 

and a reduced cross-sectional steel area generates a weak deck section 4.5 in. away from 

the transverse closure pour cold joint. 

 Cracking was monitored for the transverse closure pour specimens since cracks 

occur at the top of the bridge deck and may lead to leakage and corrosion.  A small crack 

was observed at the cold joints at a very low load due to a weak interface bond.  Flexural 

cracks in the closure pour initiated at a lower load than theory, but were not the location 

of failure.  Immediately preceding failure, another crack initiated and failed at 

approximately 4.5 in. from the cold joint.   
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Conclusions 

Overview 

The results of this study have aided in understanding the behavior of closure pour 

slabs in comparison to a monolithic deck.  However, due to unexpected results found in 

this experimental research, more testing and analysis is recommended to fully capture 

the behavior of the proposed closure pour construction method.  This section lists final 

conclusions from the research described in this report along with recommendations for 

future research. 

 

Experimental Research Conclusions 

1. Specimens with adequate rebar side cover reach expected theoretical beam 

capacity.  However, crack and failure patterns were unexpected and the basic 

theories used herein may not apply if the failure mechanisms are found to be 

more complex. 

2. The closure pour cold joint has a poor bond and introduces a weak section in the 

deck.  This may affect the type of bridge failure (i.e. punching shear). 

3. The location of discontinuity in closure pour reinforcing should be carefully 

specified to lessen the effects of the reduction in cross-sectional steel. 
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Recommendations for Future Work 

1. The transverse closure pour hairpin detail may cause unexpected failures due to 

the observed prying action.  Possible alterations to the design or changes to rebar 

discontinuity locations should be studied. 

2. Closure pour presence may introduce another mode of bridge failure other than 

punching shear that is typically seen in bridges.  A slab specimen is scheduled in 

the continuation of this project to address this issue.  The slab specimen will also 

further reduce any edge effects.  

3. The longitudinal closure pour at the bridge approach slabs was not tested in this 

research and should be studied to ensure expected behavior. 

4. The location on the bridge deck where a transverse and longitudinal closure pour 

slab meet may also play a key role in the performance and failure of the bridge.  

A slab specimen including the intersection of closure pours could be tested to 

determine the behavior at this bridge location. 
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APPENDIX A 

SPECIMEN STRAIN GAGE LOCATIONS 

 

A.1 Transverse Specimen Strain Gage Locations 

 

Fig. 50.  T1 strain gage locations 
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Fig. 51.  T2 strain gage locations 

 
 

 
Fig. 52.  T3 strain gage locations 
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Fig. 53.  T4 strain gage locations 

 
 

 
Fig. 54.  T5 strain gage locations 
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Fig. 55.  T6 strain gage locations 
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A.2 Longitudinal Specimen Strain Gage Locations 

 

 

Fig. 56.  L1 strain gage locations 

 

Fig. 57.  L2 strain gage locations 
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Fig. 58.  L3 strain gage locations 

 

 

Fig. 59.  L4, L5, L6 strain gage locations 
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Fig. 60.  L7 strain gage locations (control specimen) 

 

 

Fig. 61.  L8 strain gage locations 
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Fig. 62.  L9 strain gage locations 

 

 
Fig. 63.  L10 strain gage locations 
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Fig. 64.  L11 strain gage locations 
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APPENDIX B 

EXAMPLE BEAM CALCULATION FOR L3 

Assumptions:
     Neutral axis is above compression steel
     Compression steel does not yield
     Tension steel does yield

Compression steel Tension Steel
(A's) As

ACI Bar Number 5 5
Number of Bars in cross section 4 4

Bar diameter (in) 0.625 0.625
Bar area (in2) 0.31 0.31

Beam section height 8.5 in
Beam section width 20.625 in

Compression steel clear cover 2.5 in
Tension steel clear cover 1.5 in

Concrete compressive strength 8.075 ksi
Steel yield strength 72 ksi

depth from extreme compression fiber to A's 2.8125 in
depth from extreme compression fiber to As 6.6875 in

ACI factor β1 0.65
Steel yield strain 0.00248

Solving quadratic equation from equilibrium to determine neutral axis location
quadratic coefficient 'a' 92.0
quadratic coefficient 'b' 18.4
quadratic coefficient 'c' -300.3

neutral axis from extreme compression fiber 1.71 in
equivalent Whitney stress block depth 1.11 in

Strain in A's 0.001936533
Strain in As 0.008737978

Compressive force in Concrete 157.3 k
Tensile force in A's 88.35729338 k
Tensile force in As 68.9 k

Nominal moment 697.36 k-in
Actuator load to produce above moment in joint 1 31.90 k-in
Actuator load to produce above moment in joint 2 40.42 k-in  
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APPENDIX C  

CONCRETE PROPERTIES 

 

C.1 Transverse Specimen Concrete Properties 

 

Table 15.  Individual Compression Cylinder Strengths for Transverse Specimens 

Specimen 
Label 

Precast  
Cylinder 1 

Strength (psi) 
and Failure 

Pattern 

Precast  
Cylinder 1  

Strength (psi)  
and Failure  

Type 

Closure Pour 
Cylinder 1 

Strength (psi)  
and Failure 

Type 

Closure Pour 
Cylinder 1  

Strength (psi)  
and Failure  

Type 

T1 9227 
shear 

9405 
shear 

6334 
shear 

5863 
columnar 

T2 8909 
shear 

9019 
shatter 

6000  
cone 

5582 
columnar 

T3 4780 
shear 

4590 
shear 

6580 
shear 

6580 
shear 

T4 4925 
shear 

4720 
shear 

6505 
columnar 

6520 
columnar 

T5 4590 
shear 

5150 
columnar 

6680 
shear 

6570 
shear 

T6 6600 
shear 

6350 
shear N/A N/A 
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Table 16.  Slump and Average Precast Concrete Strength for Transverse Specimens 

Specimen 
Label 

Final 
Slump  
(in.) 

Errors in  
Testing and 

Concrete 

Average 7-
day strength 

(pis) 

Average 
Strength at 
Test (psi) 

Concrete 
Age at Test 

(days) 

T1 2.5 1” initial slump; 
added water 7150 9316 45 

T2 2.5 1” initial slump; 
added water 7150 8964 30 

T3 4 No initial slump; 
added water 3398 4685 64 

T4 4 No initial slump; 
added water 3398 4823 71 

T5 4 No initial slump; 
added water 3398 4870 83 

T6 3.5 1.5”  initial slump; 
added water 6141 6475 14 

 

 
Table 17.  Slump and Average Closure Pour Strength for Transverse Specimens 

Specimen 
Label 

Final 
Slump  
(in.) 

Errors in  
Testing and 

Concrete 

Average 7- 
day strength 

(pis) 

Average 
Strength at 
Test (psi) 

Concrete 
Age at Test 

(days) 

T1 3.5 No initial slump; 
added water 4775 6099 34 

T2 3.5 No initial slump; 
added water 4775 5791 19 

T3 3.5 None 5823 6580 49 
T4 3.5 None 5823 6512 56 
T5 3.5 None 5823 6625 68 
T6 N/A N/A N/A N/A N/A 
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C.2 Longitudinal Specimen Concrete Properties 

Concrete properties for specimens L1 – L7 can be found in Appendix E. 
 
 

Table 18.  Individual Compression Cylinder Strengths for Longitudinal Specimens 

Specimen 
Label 

Precast  
Cylinder 1 

Strength (psi) 
and Failure 

Pattern 

Precast  
Cylinder 1  

Strength (psi)  
and Failure  

Type 

Closure Pour 
Cylinder 1 

Strength (psi)  
and Failure 

Type 

Closure Pour 
Cylinder 1  

Strength (psi)  
and Failure  

Type 

L8 6730 
shear 

6826 
shear 

6118 
columnar 

5440 
shear 

L9 7700 
shear 

6600 
shear 

5815 
shatter 

6160 
shear 

L10 6663 
shear 

6628 
columnar 

5157 
columnar 

5486 
shear 

L11 6456 
shear None 4988 

shear 
4960 
shear 

 
 
 

Table 19.  Slump and Average Precast Concrete Strength for Longitudinal Specimens 

Specimen 
Label 

Final 
Slump  
(in.) 

Errors in  
Testing and 

Concrete 

Average 7-
day strength 

(pis) 

Average 
Strength at 
Test (psi) 

Concrete 
Age at Test 

(days) 
L8 3.5 1.5” initial slump; 

added water 
6141 6827 31 

L9 3.5 1.5” initial slump; 
added water 

6141 7150 36 

L10 4.5 no 7day cylinders N/A 6646 22 
L11 4.5 no 7day cylinders N/A 6456 17 
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Table 20.  Slump and Average Closure Pour Strength for Longitudinal Specimens 

Specimen 
Label 

Final 
Slump  
(in.) 

Errors in  
Testing and 

Concrete 

Average 7-
day strength 

(pis) 

Average 
Strength at 
Test (psi) 

Concrete 
Age at Test 

(days) 
L8 4.5 1” initial slump; 

added water 
4396 5780 24 

L9 4.5 1” initial slump; 
added water 

4396 5990 29 

L10 5.5 2” initial slump; 
added water 

4933 5486 12 

L11 5.5 2” initial slump; 
added water 

4933 4974 7 
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APPENDIX D 

SPECIMEN T1 – T6 STRAIN DATA 
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Fig. 65.  Measured reinforcing strain for T1 
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Fig. 66.  Measured reinforcing strain for T3 
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Fig. 67.  Measured reinforcing strain for T4 
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Fig. 68.  Measure reinforcing strain for T5 
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Fig. 69.  Measured reinforcing strain for T6 (control specimen) 
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APPENDIX E  

SPECIMEN L1 – L7 DATA 

 
 

Table 21.  Individual Compression Cylinder Strengths for L1 – L7 

Specimen 
Label 

Precast  
Cylinder 1 

Strength (psi) 
and Failure 

Pattern 

Precast  
Cylinder 1  

Strength (psi)  
and Failure  

Type 

Closure Pour 
Cylinder 1 

Strength (psi)  
and Failure 

Type 

Closure Pour 
Cylinder 1  

Strength (psi)  
and Failure  

Type 

L1 8087 
cone & shear 

7650 
shear 

7915 
shear 

7291 
cone & shear 

L2 7980 
cone & shear 

8040 
shear 

8490 
shear 

7570 
cone & shear 

L3 8320 
shatter None 8430 

columnar 
7720 
shear 

L4 8327 
cone 

8068 
cone & shear 

5628 
shatter 

5564 
shear 

L5 8217 
cone & shear 

8034 
shatter N/A N/A 

L6 8212 
shatter 

8555 
columnar 

5937 
shear 

6115 
cone 

L7 8330 
cone & shear 

8490 
shear N/A N/A 
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Table 22.  Slump and Average Precast Concrete Strength for L1 – L7 

Specimen 
Label 

Slump  
(in.) 

Errors in  
Testing and 

Concrete 

Average 7 
day strength 

(pis) 

Average 
Strength at 
Test (psi) 

Concrete 
Age at Test 

(days) 
L1 3 7-day cylinder 

tested at 8 days 
6125 7869 35 

L2 3 7-day cylinder 
tested at 8 days 

6125 8010 49 

L3 3 7-day cylinder 
tested at 8 days 

6125 8320 55 

L4 3 None 7118 8198 16 
L5 3 None 7118 8125 14 
L6 3 None 7118 8384 20 
L7 2.5 1” initial slump; 

added water  
7150 8410 15 

 
 
 

Table 23.  Slump and Average Closure Pour Concrete Strength for L1 – L7 

Specimen 
Label 

Slump  
(in.) 

Errors in  
Testing and 

Concrete 

Average 7 day 
strength 

(pis) 

Average 
Strength at 
Test (psi) 

Concrete 
Age at Test 

(days) 
L1 3.5 None 6520 7603 22 
L2 3.5 None 6520 8030 36 
L3 3.5 None 6520 8075 42 
L4 4 None 5318 5596 9 
L5 N/A N/A N/A N/A N/A 
L6 4 None 5318 6026 13 
L7 N/A N/A N/A N/A N/A 
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Table 24.  Precast Concrete and Closure Pour Strength at Testing for L1 – L7 

Specimen 
Label 

Precast Concrete 
Strength*   

(psi) 

Closure Pour 
Concrete Strength* 

 (psi) 
L1 7869 7603 
L2 8010 8030 
L3 8320 8075 
L4 8198 5596 
L5 8125 N/A 
L6 8384 6026 
L7 8410 N/A 

 
 
 

Table 25.  Theoretical Capacity and Theoretical Failure Load for L1-L7 

Specimen 
Label 

Moment 
Capacity 

(k-in) 

Moment Capacity 
per unit width 

(k-in/in) 

Failure Load to 
Cause Failure at 

Joint 1 
(kip) 

Failure Load to 
Cause Failure at 

Joint 2 
(kip) 

L1 688 33 31.5 39.9 
L2 696 34 31.8 40.3 
L3 697 34 31.9 40.4 
L4 639 31 29.2 37.0 
L5 699 34 32.0 40.5 
L6 651 32 29.8 37.7 
L7 707 34 N/A N/A 
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Table 26.  Tested Failure Load and Moment for L1 – L7 

Specimen 
Label 

Failure Load 
(kip) 

Failure 
Moment 
at Joint 1 

(k-in) 

Failure 
Moment at 

Joint 2 
(k-in) 

Failure 
Moment at 
Joint 1 per 
unit width 

(k-in) 

Failure 
Moment at 
Joint 2 per 
unit width 

(k-in) 
L1 23.4 512 404 25 20 
L2 24.8 542 427 26 21 
L3 26.1 571 450 28 22 
L4 22.2 485 383 24 19 
L5 24.9 544 430 26 21 
L6 20.1 439 347 21 17 
L7 36.1 790 623 38 30 
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Fig. 70.  Percent of theoretical capacity obtained in L1 – L7 
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Fig. 71.  Measured reinforcing strain at gage position 5 in L1 – L7 
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Fig. 72.  Measured reinforcing strain at gage position 6 in L1 – L7 

 



98 

 

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25 30 35 40
Actuator Load (k)

M
ic

ro
st

ra
in

 ( µ
ε)

L4
L5
L6
L7

L1 - L3 did not have gages at this location

 
Fig. 73.  Measured reinforcing strain at gage position 7 in L1 – L7 
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Fig. 74.  Measured reinforcing strain at gage position 8 in L1 – L7 
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Fig. 75.  Measured reinforcing strain at gage position 9 in L1 – L7 
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Fig. 76.  Measured concrete strain at gage position 2a in L1 – L7 
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Fig. 77.  Measured concrete strain at gage position 2b in L1 – L7 
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APPENDIX F 

ADDITIONAL DATA FOR L8 – L11 
 

 
 

 
 

Fig. 78.  Positive moment test setup for L10: (a) plan view; (b) elevation view 
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Fig. 79.  Positive moment test setup for L11: (a) plan view; (b) elevation view 
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Fig. 80.  Measured reinforcing strain at gage position 1 in L8 – L9 
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Fig. 81.  Measured reinforcing strain at gage position 2 in L9 – L11 
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Fig. 82.  Measured reinforcing strain at gage position 3 in L9 – L11 
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Fig. 83.  Measured reinforcing strain at gage position 4 in L9 – L11 
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Fig. 84.  Measured reinforcing strain at gage position 5 in L8 – L11 
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Fig. 85.  Measured reinforcing strain at gage position 6 in L8, L9, L11 
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Fig. 86.  Measured reinforcing strain at gage position 7 in L8 – L11 
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Fig. 87.  Measured reinforcing strain at gage position 8 in L9 – L11 

 



107 

 

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25
Actuator Load (k)

M
ic

ro
st

ra
in

 ( µ
ε)

L9

 
Fig. 88.  Measured reinforcing strain at gage position 9 in L9 
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