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ABSTRACT

Support Graph Preconditioners for Sparse Linear Systems. (December 2004)

Radhika Gupta, B.E., Indian Institute of Technology, Bombay;

M.S., Georgia Institute of Technology, Atlanta

Chair of Advisory Committee: Dr. Vivek Sarin

Elliptic partial differential equations that are used to model physical phenomena

give rise to large sparse linear systems. Such systems can be symmetric positive

definite and can be solved by the preconditioned conjugate gradients method. In

this thesis, we develop support graph preconditioners for symmetric positive definite

matrices that arise from the finite element discretization of elliptic partial differential

equations. An object oriented code is developed for the construction, integration and

application of these preconditioners. Experimental results show that the advantages

of support graph preconditioners are retained in the proposed extension to the finite

element matrices.
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CHAPTER I

INTRODUCTION

Physical phenomena are modeled by equations that relate several partial deriva-

tives of physical quantities, such as velocity, momentum, force, energy, temperature,

etc. Such partial differential equations are one of the biggest source of sparse linear

systems. We are especially interested in large linear systems that arise from the dis-

cretization of elliptic partial differential equations by finite element method. These

systems are sparse and symmetric positive definite (SPD) in nature. They arise in

computational fluid dynamics (CFD) applications while simulating the fluid flow.

Examples include diffusion, incompressible and irrotational fluid flows, flow through

porous media, heat conduction, pressurized membranes and circulation of fluid flow.

Iterative methods are very popular and are preferred for solving such large sparse

linear systems. They often require less memory and computational effort, and are

more parallelizable compared to direct methods. For large three dimensional prob-

lems they are necessary due to the prohibitive computational complexity of direct

methods. Conjugate Gradients (CG) is a Krylov subspace based iterative method

that is used to solve SPD systems. Preconditioning is further used to increase the

rate of convergence of CG. In general, preconditioners are application dependent and

the reliability of results for a preconditioned system depends a lot on the quality of

the preconditioner used. This makes preconditioning a challenging task. Some of

the most common preconditioners used for CG are diagonal scaling and incomplete

Cholesky factorization. A relatively new and underdeveloped class of preconditioners

is the class of support graph preconditioners.

The journal model is SIAM Journal on Matrix Analysis and Applications.



2

In support graph preconditioning, the graph of the coefficient matrix is used to

develop the graph of the preconditioner. The coefficient matrix is denoted by A and

the preconditioner by M . Edges in M are chosen such that they are a subset of the

actual graph, with the nodes still maintaining connectivity. In this thesis, we have

developed a type of support graph preconditioner for the linear systems arising from

elliptic partial differential equations.

Support theory began more than a decade ago with the work of Pravin Vaidya,

in which he proposed and analyzed maximum weight spanning tree preconditioners

for Laplacian matrices [17, 5]. Later, Gremban [11] extended this work for generalized

Laplacian matrices and devised new parallel hierarchical support tree preconditioners.

Bern, et al [2] used support graph preconditioning to analyze two classes of existing

preconditioners, namely modified incomplete-Cholesky and multilevel diagonal scal-

ing preconditioners. Boman, et al [3] provided a framework for bounding the extreme

eigenvalues and condition numbers for symmetric positive semidefinite (SPSD) ma-

trices instead of only M-matrices. This analysis was further used by Boman, et al

[4, 5] to construct and implement maximum weight basis (MWB) preconditioners for

diagonally dominant symmetric matrices.

Most of the earlier work is applicable to M-matrices and diagonally dominant

matrices only. The approach presented in this thesis is applicable to SPD matri-

ces arising from finite element discretization of partial differential equations. Such

matrices are not M-matrices due to positive off diagonal terms and lack of diagonal

dominance. Finite element methods are good for problems with complex geometries

or with strongly varying internal properties or when there is a need to track internal

boundaries. Finite elements were also chosen for the accuracy that can be obtained

from their low-order approximations.

The thesis is organized in following manner. Chapter II introduces the necessary
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mathematical background on iterative methods, support graph theory and finite ele-

ment method. It also summarizes the prior known work done in the field of support

graph theory. Chapter III outlines the proposed scheme, its implementation, and its

analysis. Chapter IV describes the software design of the object oriented code. A set

of experimental results are presented in Chapter V to study the effectiveness of the

proposed scheme. Chapter VI provides a summary of this research work.
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CHAPTER II

MATHEMATICAL BACKGROUND

One of the most common examples of elliptic partial differential equations encoun-

tered in various areas of engineering is the Poisson’s equation. The two dimensional

Poisson’s equation with Dirichlet boundary conditions is given by

−∇ · (p(x, y)∇u) = f(x, y) in Ω,

u = g on ∂Ω,
(2.1)

where u is the physical quantity, p(x, y) determines the isotropy of the problem, f is

external forcing function, Ω is an arbitrary domain, g is the boundary data, and ∂Ω

is the boundary of domain Ω. The Laplace equation is obtained when f(x, y) = 0. A

general approach to solve these equations is to discretize them, i.e., approximate them

by a set equations that involve a finite number of unknowns, and then use iterative

methods to solve the resulting linear system.

A. Iterative Methods for the Solution of Linear Systems

Consider solving

Ax = b, (2.2)

for the unknown x. An iterative method starts with an initial estimate x0 for the

solution and successively improves on it at each iteration. Typically, iterations are

terminated when the estimate at the ith step, xi, is close enough to the solution, i.e.,

the relative residual norm is smaller than a specified tolerance ε:

||b− Axi||
||b|| ≤ ε.

Classical iterative methods include Jacobi, Gauss Seidel, Successive Over Relax-
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ation, etc. The details of these methods can be found in many textbooks on iterative

methods [9, 14]. Our interest is in Krylov subspace based methods for symmetric

positive definite (SPD) systems such as the method of conjugate gradients (CG).

1. Conjugate Gradients Method

The conjugate gradients method for solving a linear system of equations

Ax = b

is an algorithm for finding the local minimum of a quadratic function [1],

Φ =
1

2
xT Ax− xT b.

When A is SPD, it can be shown that minimization of Φ is equivalent to solving the

linear system Ax = b, provided the gradient of Φ can be computed. The minimization

takes place over a certain vector space called the Krylov subspace, K defined by

Kk(A, b) = span{b, Ab, A2b, . . . , Ak−1b}. (2.3)

At the kth iteration, the search direction pk is selected such that Φ is minimized along

the direction dk where

dk = xk +

(
rT
k · rk

pT
k · Apk

)
pk.

The algorithm uses search directions that are conjugate (or A-orthogonal) to all the

previous search vectors:

pT
k · Apj = 0.

It can also be shown that the residuals are orthogonal:

rT
k · rj = 0, ∀ j ≤ k.
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The Krylov subspace will eventually cover the whole space (or the space spanned by

the eigenvectors of A), and the method will give the exact solution after n steps, where

n is the order of A. In presence of rounding errors, the generated vectors will not be

exactly orthogonal. If A has m distinct eigenvalues, then CG requires m iterations

to converge to a solution. Thus, clustering of the eigenvalues of A can improve the

convergence of CG. The CG algorithm is summarized in Algorithm 1.

Algorithm 1 Conjugate Gradients method for solving Ax = b.

Require: x0, ε and maxiter

1: k = 0

2: r0 = b− Ax0, p0 = r0

3: while ||rk||/||r0|| > ε or k ≤ maxiter do

4: αk = rT
k · rk/p

T
k · Apk =⇒ Step length

5: xk+1 = xk + αkpk =⇒ Update Solution

6: rk+1 = rk − αkApk =⇒ Update residual

7: βk = rT
k+1rk+1/r

T
k rk =⇒ Improvement step

8: pk+1 = rk+1 + βkpk =⇒ Search direction

9: k = k + 1

10: end while

11: x = xk

The rate of convergence of CG is given by

||ek||A
||e0||A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k

(2.4)

where ek is the error at the kth iteration and κ(A) is the condition number of A [9].
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The condition number of an SPD matrix is defined as

κ(A) =
λmax(A)

λmin(A)
. (2.5)

To reduce the relative A-norm of the error below the tolerance ε the method requires

the following number of iterations

i ≤
⌈

1

2

√
κ(A) ln

(
2

ε

)⌉
. (2.6)

From the above equation, one can see that number of iterations required by CG is

O(
√

κ(A)).

One can improve the convergence of CG by reducing the condition number κ(A)

through the use of preconditioning. With M as the preconditioner, the preconditioned

system becomes

M−1Ax = M−1b. (2.7)

Thus, the convergence rate of the preconditioned conjugate gradients method (PCG)

is

||ek||M−1A

||e0||M−1A

≤ 2

(√
κ(A,M)− 1√
κ(A,M) + 1

)k

where κ(A,M) is called the generalized condition number of the ordered pair of

matrices (A,M) and is defined as

κ(M−1A) =
λmax(M

−1A)

λmin(M−1A)

= λmax(M
−1A) λmax((M

−1A)−1)

= λmax(M
−1A) λmax(A

−1M) (2.8)

From the above equation, one can see that the upper bound on λmax(A
−1M) will give

a lower bound on λmin(M−1A). Thus, if one can develop techniques to compute the

upper bound on the largest eigenvalue of M−1A, then by exchanging the roles of A
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and M the lower bound can be obtained as well.

B. Support Graph Theory

The main idea behind support graph theory is to use a subgraph of the graph of

A as a preconditioner. These graphs are connected graphs, with the preconditioner

being a subset of the actual graph edges. It is interpreted as if the preconditioner

graph edges support the edges in the actual graph.

Let us denote G(A) as the graph of the coefficient matrix A and G(M) as the

graph of the preconditioner matrix M . One such example is shown in Fig. 1. G(A)

is represented by union of dotted and solid edges. G(M) is represented by the solid

edges only. The two edges e and f are such that e ∈ G(M) and f ∈ G(A\M).

G(A\M) is a shorthand for G(A)\G(M). For an edge f ∈ G(A\M) between nodes i

and j, one can specify a support path in G(M) from i to j.

e f

i

 j

Fig. 1. Simple support graph.

Basic definitions and concepts used in support graph theory are defined in dif-

ferent forms by several authors in [2, 3, 10, 12]. Given below is a collection of some

common definitions with consistent notation.

• Dilation: The dilation of an edge f ∈ G(A\M), denoted by d(f) is the number

of edges in its support path. In our example of Fig. 1, dilation for f is 5 for
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the path shown by the dotted line with arrows. Dilation of the entire graph,

d(G(A\M)) is the largest dilation over all the edges in G(A\M).

• Congestion: The congestion of an edge e ∈ G(M), denoted by c(e) is the number

of support paths that include e, i.e., the number of edges of G(A\M) supported

by e. In the above example, congestion for e is 3. The congestion for the entire

graph c(G(M)) is defined as the maximum edge congestion taken over all the

edges in G(M). In a weighted graph, congestion is defined as the ratio of sum

of the weights of the support paths that include e to the weight of e.

• Condition number: The condition number of the preconditioned matrix is

bounded by the product of congestion and dilation of the graph i.e.

κ(M−1A) ≤ c(G(M)) d(G(A\M)) (2.9)

This is also known as the congestion-dilation lemma [3, 10, 12]. A detailed proof

is included in Chapter III.

• Generalized eigenvalue: λ is said to be a finite generalized eigenvalue of the

ordered pair of matrices (A, M) if there exists a vector x such that M−1Ax = λx,

and Mx 6= 0 [10]. The set of generalized eigenvalues is denoted by λ(A,M).

• Support lemma [10]: Suppose A and M are SPD matrices, and τ is a real

number. If τM − A is positive semidefinite matrix, then λmax(M
−1A) ≤ τ .

• Support: The support σ(A,M), of matrix M for A is the largest lower bound

over all the τ , satisfying the support lemma [11, 4], i.e,

σ = min{τ : τM − A is positive semidefinite}.

If there is no τ , then σ(A,M) =∞.
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• Splitting lemma [2]: If Q = Q1 + Q2 + · · · + Qm, where Q1, Q2, . . . , Qm are

all positive semidefinite, then Q is positive semidefinite. Further it can proved

that,

σ(A, M) ≤ max{σ(Ai,Mi)}

where A =
m∑

i=1

Ai and M =
m∑

i=1

Mi, satisfy the splitting lemma.

1. Related Work

Support theory began with the work of Vaidya [17] in early nineties. He proposed

several families of preconditioners. The first one was based on maximum spanning tree

(MST) of the underlying graph of the matrix. The second one augmented the MST

with extra edges. The third one was based on a maximum weight basis (MWB) of the

matriod associated with the graph of the matrix. The first two families were applica-

ble only to M-matrices1, and the third one was applicable to diagonally-dominant1

symmetric matrices. Chen et al [2, 5, 6] provided an extensive implementation and

evaluation of Vaidya’s preconditioners. Although Vaidya did not formally published

any of his work, it has led to research in several directions.

Gremban et al [10, 11] extended Vaidya’s techniques for generalized Laplacian

matrices and devised parallel support tree preconditioners. These Laplacian matrices

are SPD, diagonally dominant and have non-positive off-diagonal elements. The

preconditioner is constructed as a tree in a space of higher dimension than the original

matrix. If one tries to visualize a planar mesh, then the preconditioner will be sticking

out in the third dimension. It was named support tree because the mesh appears to

be supported by this tree. In general these preconditioners have more nodes than the

original mesh but fewer edges. The support tree is constructed by recursive graph

1Defined in Appendix A.
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partitioning of the actual graph until only singleton sets of nodes are left, which form

leaves of the support tree. A graph partitioning approach deletes a subset of edges

of the graph such that the resulting subgraphs contain roughly the same number of

nodes. For a one dimensional problem with a mesh with n nodes, the tree will have

a depth of log n with n− 1 internal nodes and n leaves. The leaf nodes are numbered

upto n, coinciding with the n mesh nodes, and the internal nodes are numbered

from n + 1 to 2n − 1. The graph partitioning scheme results in a preconditioner

of larger size, (2n − 1)2 as compared to n2. Thus the original system is augmented

with zeros to solve the problem and then the extra variables are thrown away. The

tree structure allows all the nodes at a given level to be evaluated in parallel. A

two dimensional mesh of size n × n requires 2dlog ne parallel steps with an average

of n2/log n nodes evaluated at each step. When support tree preconditioners were

compared with preconditioners arising from diagonal scaling and incomplete Cholesky

(IC) decomposition, it was found that support tree preconditioners were faster and

more parallelizable than diagonal scaling and IC preconditioners. Gremban, et al [11]

also introduced linear algebra tools for bounding eigenvalues and finding theoretical

bounds on the convergence rate of PCG. They defined the concept of support as

defined earlier in this section and showed that

κ(M−1A) ≤ σ(A,M) σ(M,A).

They further proved that support tree preconditioners have a generalized condition

number bound of O((dim)2n log n) for a dim dimensional regular mesh of ndim nodes.

Later Bern et al [2] extended the basic linear algebra tools for analyzing support

graph preconditioners and used them to analyze modified incomplete Cholesky and

multilevel diagonal scaling preconditioners. They also provided theoretical bounds on

Vaidya’s preconditioners. As already stated, Vaidya’s first family of preconditioners
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was based on MST of the associated graph. Suppose the number of nonzeros in

a n × n matrix is denoted by nnz. The cost of constructing the preconditioner is

O(nnz + nlog n), if implemented by an efficient maximum spanning tree algorithm.

Its factorization has O(nnz) cost and produces no fill. The condition number is

bounded by κ = O(nnz · n) ≈ O(n2). The second family of the augmented spanning

tree achieves a better condition number, but it is more expensive to compute and

factor. The preconditioner can be constructed by first forming the MST and then

splitting it into t connected components of roughly the same size, where t is an

integer parameter. The heaviest edge between every pair of subtrees is added to the

preconditioner. Nothing is added if there are no edges present or if the heaviest edge

is already in the tree. This gives the condition number bound of O(n2/t2). The

factorization cost of the preconditioner is O(n + t6) with O(n + t4) non zeros. These

preconditioners are not parallelizable because the long diameter of the tree creates

long chains of dependencies in the triangular factors. It was shown in [5, 6] that,

within the class of symmetric diagonally dominant matrices, Vaidya’s preconditioners

are sensitive only to the nonzero structure of the coefficient matrix A and not to the

values of its entries. Unlike IC, they converge at a constant rate on a variety of

two dimensional problems and are almost unaffected by boundary conditions and the

direction of anisotropy in anisotropic problems. For some three dimensional problems,

they deliver poor performance compared to IC [6].

Boman and Hendrickson [4] provided a detailed set of linear algebra tools and

techniques for bounding the extreme eigenvalues and the condition number for or-

dered pairs of matrices (A,M). They considered SPSD matrices instead of just SPD

matrices. From the prior definitions, we can see that σ(A, M) is an upper bound on

the largest finite generalized eigenvalue of (A,M) i.e. λ ≤ σ(A,M). They called σ as

the support number and used it instead of finite generalized eigenvalues. They proved
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that support numbers are well defined under rank deficiency and are more robust than

generalized eigenvalues in that sense. These techniques were further used by Boman

et al [4] to analyze Vaidya’s third family of preconditioners called maximum weight

basis (MWB) preconditioners. In MWB preconditioners, A =
∑

uiu
T
i is represented

as a sum of rank-1 matrices, where each small matrix corresponds to one edge of the

underlying graph G(A). The columns of u can be used to define a structure called

matroid. The preconditioner M = V V T is constructed by considering a matrix V

as a basis of ui’s that maximizes the trace of V T V . This corresponds to finding a

maximal independent set in a matriod. Vaidya suggested choosing a set of vectors

that are linearly independent and have the largest possible norm. This corresponds to

a maximum weight basis, which is a maximal independent set in a weighted matroid.

If A is an M-matrix, the maximum weight basis is simply a maximum spanning tree.

The condition number of MWB preconditioners is bounded by O(4 nnz n). The nnz

corresponds to the number of non zero entries of the strictly upper triangular part of

the matrix A.

To the best of our knowledge, the technique of support graph preconditioning is

limited to the class of M-matrices and diagonally dominant matrices. These ideas are

not applicable to SPD matrices arising from finite element discretization of elliptic

partial differential equations. This thesis develops support graph preconditioning

techniques for finite element matrices.

C. Finite Element Method

Numerical solutions are obtained by discrete approximations to continuous prob-

lems. Differences in the choice of discretization lead to different solution schemes.

We use finite element method to discretize Eq. (2.1) to obtain the linear system in
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Eq. (2.2). In this method, the region of interest is divided into a finite number of

subregions called elements. We choose an unstructured mesh formed of triangular

elements on a unit square (Ω ∈ (0, 1) × (0, 1)) to define our model problem. An

example is shown in Fig. 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. An unstructured mesh with 185 nodes and 328 triangles is used to discretize a

unit square domain.

The discrete system of equations is derived by multiplying the original PDE

over each element by a test function v, and integrating over the physical domain.
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The resulting equation is known as the variational formulation. It is also known as

the weak form because performing integration on the diffusive term (∆) reduces the

continuity requirements of the system. For Eq. (2.1) the weak form is given by

∫∫

Ω

p(x, y) ∇u · ∇v dx dy =

∫∫

Ω

f(x, y) v dx dy +

∫

∂Ω

p(x, y) v
∂u

∂n
ds, (2.10)

where ∂u
∂n

= ∇u ·n, n is the unit normal direction pointing outward of the boundary,

and ds is an arc length of an infinitesimal element along the boundary. For isotropic

problems p(x, y) is the identity matrix.

The next step is to define the basis functions over the triangulation and approx-

imate u by

u =
n∑

j=1

ujφj

where uj = u(xj, yj) and n is the number of nodes in the mesh. The basis function φ

is defined as

φi(xj, yj) = δij =





1 if i = j

0 if i 6= j.

By substituting v = φi in Eq. (2.10), the weak form can be written as a set of n

algebraic equations

n∑
j=1

∫∫

Ω

p(x, y) ∇φj · ∇φi uj dx dy =

∫∫

Ω

f(x, y) φi dx dy +

∫

∂Ω

p(x, y) φi
∂u

∂n
ds,

i = 1, 2, . . . , n (2.11)

For a triangular element e, these equation are given by

3∑
j=1

Ke
ij ue

j = F e
i , (2.12)
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where Ke
ij is an entry of stiffness matrix over an element e, and is defined by

Ke
ij =

∫∫

e

p(x, y)∇φi∇φj dx dy, 1 ≤ i, j ≤ 3. (2.13)

The forcing function F e
i is defined by

F e
i =

∫∫

e

f(x, y) φi dx dy +

∫
∂u

∂n
φi ds. (2.14)

A straight forward choice of φ are the piecewise linear basis functions. The

resultant element stiffness matrix Ke will be of size 3×3. As seen from Eq. (2.13) the

entries of the stiffness matrix require calculation of derivatives of the basis functions.

It is easier to find these derivatives in a local coordinate system (ξ, η) on a fixed

master element [13] as shown by Fig. 3. The geometry is well behaved and one can

write expressions for linear functions such that they are unity at one node and vanish

at others,

L1 = 1− ξ − η

L2 = ξ

L3 = η (2.15)

After transforming an element e to a master element, we need to integrate the

equation in local coordinates. Change of integration variables can be done by

∫∫

e

z(x, y) dx dy =

∫∫

master

z(x(ξ, η), y(ξ, η))|J |dξdη

where z(x, y) is an arbitrary function. J is the Jacobian matrix given by

|J | =

∣∣∣∣∣∣∣

∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

∣∣∣∣∣∣∣
=

Area of actual element

Area of master element
=
|Area|
1/2

= 2|Area| (2.16)
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y

x (0, 0)

(0, 1)

(1, 0) ξ

η

1

e

3

2

1 2

master

Fig. 3. A piecewise linear finite element transformation from global (x, y) to local (ξ, η)

coordinates.

where |Area| is the area of the actual element.

The derivatives of basis functions in global coordinates and local coordinates are

related by 


∂φi

∂x
∂φi

∂y


 =




∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y







∂Li
∂ξ
∂Li
∂η


 . (2.17)

The vector of derivatives of basis functions on the right hand side, can be calculated

using Eqs. (2.15). To calculate the vector of derivatives of basis functions on the left

hand side, one needs to calculate the transformation matrix. This transformation

matrix is the inverse of the Jacobian matrix, J , that is used for the global to local

coordinate transformation.

After calculation of the local basis functions, the global basis function φi is

constructed by piecing together local basis functions on each element sharing the

node i. Fig. 4 shows one such combination for node i. The global function at i is

formed by the union of the triangles surrounding the node. The shape looks like a

closed tent. For simple linear basis functions one could calculate the solution in global

space itself, but as we move to higher order elements, e.g., piecewise quadratic basis
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Fig. 4. Combining local basis functions to obtain a global basis function at ith node.

The shaded area represents the basis function φi on each element.

functions, it becomes necessary to use the master element approach.

Finally the global stiffness matrix A is obtained by

A =
∑
e∈T

Ke, b =
∑
e∈T

F e (2.18)

where T is the set of all triangular elements.
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CHAPTER III

THE PROPOSED SCHEME

In this chapter, the construction and analysis of the proposed support graph

preconditioners are presented. The global stiffness matrix in Eq. (2.18) may not be

an M-matrix. To transform A into an M-matrix, we propose a pre-processing step.

We can express the system in Eq. (2.18) as follows



−I B

BT 0







y

x


 =




0

b


 , (3.1)

such that A = BT B. The matrix B is called the gradient matrix.

A. Pre-processing of the Stiffness Matrix

If one chooses piecewise linear basis functions, then one would get individual

element stiffness matrices Ke of size 3 × 3. These matrices can also be written in

terms of the element gradient matrix Be:

Ke = BeT Be, (3.2)

where

Be =




∂φ1

∂x
∂φ2

∂x
∂φ3

∂x
∂φ1

∂y
∂φ2

∂y
∂φ3

∂y


 . (3.3)
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The global gradient matrix B is obtained by stacking up Be for all the elements of

the mesh. The combined expression is given by,

B =




Be1

Be2

...

Bet




. (3.4)

Each element of the mesh contributes to two rows of B, with no particular ordering

of the elements. This results in a B of size 2 t×n, where t is the number of elements

and n is the number of nodes in the mesh. The resulting global stiffness matrix K is

of size n× n.

For each element, a coordinate axis transformation is done from (x, y) to (τ1, τ2),

where τ1 and τ2 are unit vectors parallel to the two edges of the triangle (see, e.g.,

Fig. 5).

1

e

3

2

τ1

τ2

y

x

θ

Fig. 5. A piecewise linear finite element transformation from (x, y) to (τ1, τ2) coordi-

nate system.
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Gradients of φi along τ1 and τ2 are obtained by the transformation




∂φi

∂τ1

∂φi

∂τ2


 =




∂x
∂τ1

∂y
∂τ1

∂x
∂τ2

∂y
∂τ2







∂φi

∂x
∂φi

∂y


 . (3.5)

The matrix transformation is of the form,

B′ = G B (3.6)

where G is a block diagonal matrix, with 2 × 2 sized blocks corresponding to the

transformation for each element.

The two edges for the transformation are chosen such that the condition number

of the entire system is minimized. Taking into account anisotropy as well, we chose the

set of edges such that the condition number of matrix GeP e−1GeT is minimized. Here,

P e is the element’s anisotropy matrix derived from p(x, y). After this transformation,

our linear system of Eq. (3.1) is represented as,



−GP−1GT B′

B′T 0







G−T y

x


 =




0

b


 , (3.7)

where P is a block diagonal matrix with blocks P e. For isotropic problems, GP−1GT

reduces to GGT , and it is beneficial to choose two edges of a triangle such that the

angle between them is closest to 90◦, i.e., the edges are nearly perpendicular to each

other. Diagonal scaling can be used to improve the effectiveness of the resulting

preconditioner. The matrix in Eq. (3.7) is scaled as follows:



−DGP−1GT D B′

B′T 0







D−1G−T y

x


 =




0

b


 , (3.8)

where D is a block diagonal matrix of scaling matrices for each element. The ma-

trix DGP−1GT D is a block diagonal matrix with blocks of size 2 × 2 that corre-
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spond to individual elements. The element scaling matrices De are chosen such that

they minimize the condition number of the diagonal blocks of DGP−1GT D, i.e.,

DeGeP e−1GeT De.

As an illustration, the resulting transformation of an element gradient matrix Be

is given below

DeGeBe =

De ×




1

l12

0

0
1

l13







x2 − x1 y2 − y1

x3 − x1 y3 − y1




︸ ︷︷ ︸
Ge

×

1

2|Area|




y2 − y3 y3 − y1 y1 − y2

x3 − x2 x1 − x3 x2 − x1




︸ ︷︷ ︸
Be

, (3.9)

where l12 and l13 are the lengths of edges (1, 2) and (1, 3) in Fig. 5, respectively, and

De is a diagonal matrix. The transformed element gradient matrix Be is

Be′ =




w1 −w1 0

w2 0 −w2


 , (3.10)

w1 = const (x1(y3 − y2) + x2(y1 − y3) + x3(y2 − y1))

w2 = const (x1(y3 − y2) + x2(y1 − y3) + x3(y2 − y1))

where w1 and w2 can be viewed as the modified weights of the edges along τ1 and τ2.

Note that

Be′T Be′ =




w2
1 + w2

2 −w2
1 −w2

2

−w2
1 w2

1 0

−w2
2 0 w2

2




(3.11)

is an M-matrix.



23

Consider the system



−I B′

B′T 0







y
′

x


 =




0

b


 . (3.12)

The stiffness matrix for this system is given as

A
′
=

t∑
e=1

Be′T Be′ (3.13)

Note that

|a′ii| ≥
∑

j 6=i

|a′ij|, a
′
ij ≤ 0, for i 6= j, and a

′
ii > 0, for i = 1, . . . , n (3.14)

Thus, A becomes a diagonally dominant matrix.

B. Overview of the Scheme

The procedure for construction and implementation of support graph precondi-

tioners (SGP) is outlined in Algorithm 2. Over the domain Ω, an unstructured

triangulated mesh is generated with d subdomains. Fig. 6 shows an example of a unit

square domain partitioned into four subdomains. The advantage of choosing an un-

structured triangular mesh for discretization is the flexibility in representing complex

or uneven geometry. Once the mesh is ready, we can compute the element gradient

matrix B and pre-process it to produce B′. In the graph corresponding to B, all the

nodes and edges of the original mesh are present, whereas the graph corresponding

to B′ contains all the nodes but only two edges per element of the original mesh.

1. Preconditioner: MST Inside Each Subdomain

To improve the convergence of iterative method, preconditioners are used. A good

preconditioner, should be inexpensive to compute, should approximate the coefficient
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Algorithm 2 Construction and implementation of SGP, and solution of the system.

1: Generate the mesh by partitioning the entire domain into few subdomains d.

2: Compute B using FEM.

3: Apply matrix transformation to compute B′.

4: Use Prim’s algorithm to get MST in each subdomain d, add edges on the interface

between two subdomains, and assemble the preconditioner M .

5: Apply boundary conditions.

6: Perform minimum degree ordering of M to minimize fill.

7: Factorize M using Cholesky factorization.

8: Solve the system using preconditioned conjugate gradients.

matrix closely and should be easy to factorize. Maximum spanning tree (MST) edges

are used to support the modified graph and act as the support graph preconditioner.

An efficient spanning tree algorithm can be used to find MST. We use Prim’s algo-

rithm [7] and modify it to find the maximum weight spanning tree. The modified

algorithm is given by Algorithm 3. For a graph G(A) corresponding to matrix A,

V (G(A)) and E(G(A)) represent the node and edge sets, respectively.

MST is obtained for each subdomain di. Subdomain boundary edges are forced

to be part of the support graph. The advantage of using MST is that it does not

introduce any fill during factorization. In the given case, MSTs are present inside

each subdomain. This will introduce fill only due to the skeletal structure of the

subdomains resulting from the boundary edges of each of the subdomain d. Since the

calculation of MSTs can be done concurrently, one can develop a parallel algorithm

with ease.

For Algorithm 3, the while loop in Step 7 will run |V | times and the for loop

in Step 9 will run O(E) times. Here, V and E are the node and edge sets for each
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Fig. 6. An unstructured mesh with 199 nodes, 356 triangles, divided into 4 subdo-

mains. Each subdomain has nearly 57 nodes and 7 edges on the boundary

with other subdomains.

subdomain, respectively. Thus, the computational complexity of the algorithm is

O(d V log V + d E log V ) ≈ O(d E log V ) ≈ O
(
n log

(n

d

))

where, V and E are approximately O(n/d).

The preconditioner M is available after executing Algorithm 3. The correspond-

ing graph G(M) will have n vertices, with an edge present between vertex i and j if

the corresponding entry Mij 6= 0.
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Algorithm 3 Prim’s algorithm modified for MST.

1: for u ∈ V (G(B′T B′)) of subdomain d do

2: key[u]← −∞
3: π[u]← NIL

4: end for

5: key[root]← 0

6: Q← V (G(B′T B′)) of subdomain d =⇒ Steps 1-6: O(V ) complexity

7: while Q is not empty do

8: u← extract max(Q) =⇒ O(log V ) complexity

9: for v ∈ Adj[u] do

10: if v ∈ Q and weight(u, v) > key[v] then

11: π[v]← u

12: key[v]← weight(u, v) =⇒ O(log V ) complexity

13: end if

14: end for

15: end while

2. Boundary Conditions

The mathematical model is complete once the boundary conditions are defined.

Consider a function u that satisfies Eq. (2.1) in domain Ω with smooth boundary ∂Ω.

The following types of linear boundary conditions are possible.

1. Dirichlet boundary condition: The function u is known on the boundary:

u(x, y) = g(x, y), on ∂Ω

where g is known. For Laplace equation, this boundary condition will always

ensure unique solution.
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2. Neumann boundary condition: The normal derivative of u is known on the

boundary:

∂u

∂n
= h(x, y), on ∂Ω

where h is known. The problem is ill-posed, until the compatibility condition

is satisfied. For Laplace equation we have,

∫

∂Ω

∂u

∂n
ds = 0. (3.15)

The above condition should be satisfied at equilibrium. It does not guarantees

the uniqueness of the solution and the solution can differ by an arbitrary con-

stant. In practice, one usually specifies a simple reference value of u at a point

on Ω so as to ensure a unique solution.

3. Dirichlet and Neumann boundary conditions: One can specify Dirichlet bound-

ary condition on some parts of the boundary and Neumann on the remainder

of the boundary.

In the present scheme, we include the boundary values as unknowns and modify

the assembled system to incorporate the boundary values.

3. Ordering and Factorization

The preconditioning step includes factorization of the sparse matrix M . Since the

support graph preconditioner is SPD, Cholesky factorization can be used:

M = LLT , (3.16)

where L is a lower triangular matrix. At each step of the factorization, a vertex

is eliminated from the graph. Neighbors of the eliminated vertex form a clique,

which can create nonzero entries in M . These new non zeros are called fill of the
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matrix. To minimize fill, the rows and columns of the matrix can be reordered

before factorization. A commonly used technique called minimum degree ordering,

eliminates nodes in order of increasing neighbors. Once the ordering is decided, the

location of all the fill entries in L can be determined prior to numerical factorization.

For SPD matrices, only the location of non zero entries is important. Since pivoting

is not required for numerical stability, one does not need to know the numerical value

at this time. This process of predetermining the non zero structure of the factors is

called symbolic factorization. Symbolic factorization helps in setting up an efficient

static data structure prior to numerical factorization. The process of factorization is

summarized in Algorithm 4.

Algorithm 4 Sparse Cholesky factorization.

1: Ordering: Perform minimum degree ordering.

2: Symbolic factorization: Determine the nonzero structure of Cholesky factor L.

3: Numerical factorization: Compute the actual numerical values in L.

The computational complexity of Cholesky factorization for dense n× n matrix

is O(n3/3) flops. Sparse Cholesky factorization can be done in O([nnz(L)]3/2) flops.

Preconditioners can also be constructed via incomplete Cholesky factorization in

which fill is ignored selectively. Examples include incomplete Cholesky with no fill

(IC(0)) and modified Cholesky factorization (MIC).

4. Preconditioned Conjugate Gradients Method (PCG)

The linear system in Eq. (3.12) is solved using the PCG method that is summa-

rized in Algorithm 5. Each iteration of PCG requires one matrix-vector product, one

preconditioning step, and three vector operations. The two steps that dominate com-

putation are matrix-vector product and the preconditioning step. For dense matrices,
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both matrix-vector product and the preconditioning step would require O(n2) flops,

resulting in overall cost of O(n2) flops per iteration. For sparse matrices, however,

matrix-vector product requires O(nnz(A)) flops and preconditioning step requires

O(n + 2nnz(L)) flops, resulting in overall cost of O(nnz(L)) flops per iteration. From

Eq. (2.6), we can see that the total number of iterations required by PCG to solve

the system is bounded by O(
√

κ(M−1A)). Thus, the total cost of solving the system

via PCG can be approximated as

PCG cost ≈ O(
√

κ(M−1A))︸ ︷︷ ︸
iterations

[O(nnz(L)) + O(nnz(A))]︸ ︷︷ ︸
work/iteration

. (3.17)

Algorithm 5 The PCG method for solving Ax = b using preconditioner M .

Require: x0, ε and maxiter

1: k = 0

2: r0 = b− Ax0, Solve Mz0 = r0, p0 = z0

3: while ||rk||/||r0|| > ε or k ≤ maxiter do

4: αk = rT
k · zk/p

T
k · Apk =⇒ Sparse matrix-vector product (A·pk)

5: xk+1 = xk + αkpk =⇒ Vector operation

6: rk+1 = rk − αkApk =⇒ Vector operation

7: Solve Mzk+1 = rk+1 =⇒ Preconditioning step (M = LLT )

8: βk = rT
k+1zk+1/r

T
k zk

9: pk+1 = zk+1 + βkpk =⇒ Vector operation

10: k = k + 1

11: end while

12: x = xk
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C. Analysis of the Preconditioning Scheme

The effectiveness of a preconditioners may be judged by the following properties:

• The condition number of the preconditioned matrix should be significantly lower

than the original matrix, i.e., O(
√

κ(M−1A))¿ O(
√

κ(A)). A lower condition

number improves the rate of convergence of the PCG method.

• The preconditioner should be easy to construct.

• The preconditioner should be easy to factorize, with minimum fill. This would

keep the computational cost and storage requirement modest.

1. Effect of Preprocessing the Matrix

As described in Section A of this chapter, the stiffness matrix A = BT B, is

preprocessed to obtain a transformed system A′ = B′T B′. The transformation is

obtained by changing the coordinate axes from (x, y) → (τ1, τ2) in each element,

where τ1 and τ2 are parallel to two edges of the triangle. This transformation converts

the coefficient matrix A to a diagonally dominant matrix A′.

The support graph preconditioner is computed for the transformed system. One

has to pay a penalty for using the transformed system to construct the preconditioner.

If A′ is used as a preconditioner, then

κ(A′−1A) ≤ κ(GGT ) = max
e

κ(GeGeT ), (3.18)

where

κ(GeGeT ) =

(
1 + |cosθe|
1− |cosθe|

)
, (3.19)

where θe is the angle between the edges selected in the element e. Fig. 7 plots
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Fig. 7. Variation of κ(GeGeT ) with θe.

κ(GeGeT ) as a function of θe. It is easy to show that for 60◦ ≤ θe ≤ 120◦, κ(GeGeT ) ≤ 3.

We use a software package called Triangle [15] to generate the mesh. Triangle

attempts to construct a good quality mesh with a minimum angle of 33.8◦ [15, 16].

In most cases, the condition number of the transformed matrix A′ is within a factor

of 3 from that of A. For the anisotropic case, this factor may be higher since it will

depend on κ(DGP−1GT D) instead.

2. Condition Number Estimate

The rate of convergence of PCG depends on the condition number of the precon-

ditioned system

κ(M−1A) = κ(M−1A′) κ(A′−1A) (3.20)
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Let us try to estimate the term κ(M−1A′)

κ(M−1A′) =
λmax(M

−1A′)
λmin(M−1A′)

=

max
x

(
xT A′x
xT Mx

)

min
x

(
xT A′x
xT Mx

) (3.21)

If one interprets the Laplacian as a graph G(A′), with wij being the weight of

the edge between nodes (i, j), and ∆xe = xi−xj for edge e between nodes (i, j), then

for all x,

xT A′x =
∑

e∈A′
we∆x2

e. (3.22)

A lower bound on the condition number can be obtained from the above equation,

xT A′x
xT Mx

=

∑
f∈A′

wf∆x2
f

∑
e∈M

we∆x2
e

(3.23)

Therefore,

xT A′x
xT Mx

=

∑
f∈A′\M

wf∆x2
f

∑
e∈M

we∆x2
e

+ 1 (3.24)

≥ 1,

where we and wf are weights of edges e and f respectively. To determine an upper

bound, observe that

xT A′x
xT Mx

=

∑
f∈A′\M

wf∆x2
f

∑
e∈M

we∆x2
e

+ 1

=

∑
f∈A′\M

wf (∆xe1 + ∆xe2 + · · ·+ ∆xep)
2

∑
e∈M

we∆x2
e

+ 1, (3.25)
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where e1, e2, . . . , ep are consecutive edges on the support path of f in M . Now,

(∆xe1 + ∆xe2 + · · ·+ ∆xep)
2 ≤ Lf (∆x2

e1
+ ∆x2

e2
+ · · ·+ ∆x2

ep
), (3.26)

where Lf is the number of edges in f ’s support path. Thus, we can see that

xT A′x
xT Mx

≤

∑
f∈A′\M

wfLf (∆x2
e1

+ ∆x2
e2

+ · · ·+ ∆x2
ep

)

∑
e∈M

we∆x2
e

+ 1

=

∑
e∈M

∆x2
e

(
∑

f supported by e

wfLf

)

∑
e∈M

we∆x2
e

+ 1

≤ max
e∈M




∑
f supported by e

wfLf

we


 + 1. (3.27)

From Eq. (3.24) and Eq. (3.27), we obtain the bound

κ(M−1A′) ≤ 1 + max
e∈M




∑
f supported by e

wfLf

we




= 1 + c(G(M)) d(G(A′\M)) (3.28)

where c(G(M)) and d(G(A′\M)) are the congestion and dilation of G(M) and G(A′\M)

respectively. Further, the condition number of the preconditioned system is given by

κ(M−1A) ≤ [1 + c(G(M)) d(G(A′\M))] κ(GGT ) [Isotropic]

κ(M−1A) ≤ [1 + c(G(M)) d(G(A′\M))] κ(DGP−1GT D) [Anisotropic]

Consider the two dimensional unit square shown in Fig. 6. If d is the number of

subdomains with m×m nodes per subdomain then m ≈
√

(n/d). With MSTs present

inside each subdomain, the maximum dilation for this system is O(m2) and maximum

congestion is O(m2). It was shown earlier that for meshes with θe ∈ [60◦, 120◦],
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κ(GGT ) ≤ 3. Hence, κ(M−1A) will be bounded by O(m4). When d ≈ √n, this

bound is O(n). For anisotropic problems defined on the same mesh, the product of

congestion and dilation will remain nearly the same, however, κ(DGP−1GT D) may

be higher depending upon the anisotropy matrix p(x, y).

Note that, for the isotropic case, the bound on the condition number of the

system depends only on the size of subdomain instead of the size of the entire domain

or the numerical values of the entries of the coefficient matrix. Reducing the size of

each subdomain will reduce the condition number. However, this is accompanied by

an increase in the fill during factorization.

3. Numerical Factorization

The support graph preconditioner consists of maximum spanning trees inside each

subdomain. During Cholesky factorization, the nodes in the MST can be eliminated

without introducing any fill. Fill will occur only during the removal of nodes from

the skeletal mesh that is formed by the subdomain boundary edges. After removal

of MST nodes, the remaining nodes in the graph will have degree two or more. First

the nodes on the subdomain boundary will be removed, introducing a fill of O(d m),

leaving a much smaller skeletal mesh of size (d+1)×(d+1). The skeletal mesh, in the

worst case, would result in a dense matrix with O(d2) nonzeros. Thus, the amount

of fill after factorization is O(n + dm + d2). With fewer, larger subdomains, one can

expect less fill. However, at the same time the condition number of the preconditioned

system will increase due to an increase in the congestion and the dilation.

Thus, the total cost of PCG solver can be approximated as

PCG work = O(
√

κ(M−1A)) [O(nnz(L)) + O(nnz(A))]

= O(m2 (n + dm + d2)).
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It follows that the goal of finding an effective support graph preconditioner with

small κ conflicts with the goal of finding an inexpensive one.
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CHAPTER IV

SOFTWARE DESIGN

The proposed support graph preconditioners have been implemented using an ob-

ject oriented code developed in C++. C++ coupled with modern compilers provides

several mechanisms of high performance.

Since the systems in consideration are large and sparse a separate sparse matrix

class has been written, as described in the following section.

A. Sparsity

Sparsity can be used to reduce both the storage and the computational complexity.

A sparse storage scheme stores only the nonzero entries of the matrix. There are

several storage schemes available in literature [14], viz. coordinate format, compressed

sparse row (CSR) format and compressed sparse column (CSC) format. The software

implementation uses CSC format to represent sparse matrices. This format is also

known as the Harwell-Boeing sparse matrix format [8]. The implementation of CSC

format consists of a sparse matrix class, viz. CompColSparseMatrix, with three

vectors viz. colptr, rowi, and value. For a sparse matrix with m rows and n

columns, colptr represents an integer vector of size n + 1 that contains the index

of the start of each row in rowi and value vectors. Information about the non zero

entries in ith column are stored contiguously in rowi and value from index colptr[i]

to colptr[i + 1]− 1. For programming convenience, the last entry of colptr is set

to the number of nonzeros denoted by nnz. The integer vector rowi is of size nnz

and contains the row indices of the matrix entries. For example, rowi[colptr[i]]

gives the row index of the first nonzero entry in the ith column. The vector value is

a vector of double with size nnz and it contains the numerical values of the matrix
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entries. For example, value[colptr[i]] gives the value of the first nonzero entry in

the ith column. An example of a matrix stored in the CSC format is shown in Fig. 8.

Various functions implemented for the sparse matrix class, CompColSparseMatrix

are shown in Table I.

a b c d e f g h i j k l m n

0 3 2 5 7 0 6 4 1 3 6 7 2 7

0 2 5 7 8 12 14

a 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

b

c

d

e

f

g

h

i

j

k

l

m

n

0

1

2

3

4

5

6

7

0 1 2 3 4 5

nnz

value:

rowi:

colptr:

Fig. 8. Example of a matrix stored in the compressed sparse column (CSC) format.

B. Modules

The code can be broadly divided into three modules. These modules are for mesh

generation, support graph preconditioner construction, and numerical methods, as
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Table I. Sparse matrix class operations.

Class: CompColSparseMatrix (say matrix A)

Function name Operation

n = numcols() n← number of columns of A

nz = nnz() nz ← number of non zeros in A

same lower triangular(L) L← lower triangular entries of A

nnz(L) = nnz(lower triangular matrix of A)

diff lower triangular(L) L← lower triangular entries of A

nnz(L) is decided by symbolic factorization

nnz(L) ≥ nnz(lower triangular matrix of A)

y = A.matvec(x) y ← Ax

y = A.matvec transpose(x) y ← AT x

extract(Anew, v) Anew ← A(v, v)

extract cols(Anew, vin, vout) Anew ← A(:, vin)

reorder(Areorder, v) Areorder ← A(v, v)

reorder cols(Areorder, v) Areorder ← A(:, v)

mat mattrans(Anew) Anew ← AT A

shown in Fig. 9. The following sections describe some important software aspects of

these modules.

1. Mesh Generation Module

Mesh generation was done using Triangle [15]. Triangle uses a Delaunay triangulation

algorithm to generate an unstructured mesh for given boundary data. The mesh

information from Triangle is stored in static files that are later read by the software.
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Fig. 9. Main modules.

The mesh data is stored in three data structures, given by the three classes, viz.

Node, Edge and Triangle. The Node class contains information about mesh nodes.

The Edge class contains information on the boundary edges and the Triangle class

contains information about the triangles in a mesh. The variables of these three

classes are described in Table II.

2. Support Graph Preconditioner Construction Module

The flow of information in this module is described in Fig. 10, and the related classes

are outlined in Table III. The process starts by building a global data structure using

a vector of Domain class. The size of this vector is equal to the number of nodes

in the mesh. Each node stores information about its adjacent nodes in a vector of

Adjacency class. The weights of the edges are obtained by considering elements in

the mesh and the matrix B is implicitly built during this process via finite element
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Table II. Mesh information classes.

Class Variable name Description

Node xcord x coordinate

ycord y coordinate

Edge starten Starting node number

enden Ending node number

rightsub Right subdomain number

leftsub Left subdomain number

Triangle vert Vector of vertices

subnum Subdomain number

method. Pre-processing of B is done simultaneously and the adjacency list of each

node is filled only with the required edges.

Once the global data structure is built, selective information of a node is used

to create a local data structure for each subdomain using a vector of SubDomain

class. The size of this vector is the same as the number of nodes in a subdomain.

A heap is built using a vector of Heap class to execute the maximum spanning tree

algorithm. The output of this is a list of nodes belonging to the maximum spanning

Table III. SGP construction related classes.

Class Description

Adjacency contains a nodes adjacency list

Domain contains node information

SubDomain contains node information that is considered only in a subdomain

Heap contains heap structure for use by MST algorithm
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build local data
structure

build heap

algorithm
maximum spanning tree 

for each subdomain

structure
build global data

Fig. 10. The support graph preconditioner module.

tree. Although the vector of Subdomain class could be used as a heap, it would

drastically increase the number of operations in the MST algorithm. Thus, with a

slight increase in storage and data exchange, a separate heap was used.

3. Numerical Method Functions Module

This section briefly describes the module for implementing various numerical meth-

ods. Some of these methods and their helper functions are described in Table IV.

The methods in this module are written as independent functions, utilizing the sparse

matrix class and vector class. This list contains only the important functions and

classes to reflect the software design and is not a comprehensive list.
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Table IV. Numerical methods.

Main functions

Function name Operation

sparseCompleteCholesky() L← A, complete Cholesky factorization

sparseIncompCholesky() L← A, incomplete Cholesky factorization

with no fill

precg() Preconditioned Conjugate Gradients method

mmd() Minimum degree ordering of a matrix

Helper functions

Function name Operation

symbolic factorization() L← A, symbolic factorization

choleskyFactor() L← A, numeric factorization

s = dot product(x, y) s← x · y
daxpy(x, y, a) y = ax + y

dxpay(x, y, a) y = x + ay
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CHAPTER V

NUMERICAL RESULTS

This chapter presents the results of numerical experiments to study the effective-

ness of the proposed support graph preconditioners. As shown earlier in Chapter III,

the condition number of the preconditioned system is bounded by the size of sub-

domain rather then the size of entire domain. These experiments were designed to

illustrate the behavior of the approach for fixed subdomain size and varying number

of subdomains in both x and y directions. In the first set of experiments, we consider

the isotropic case where p is identity in Eq. (2.1). The second set of experiments

considers anisotropic case. We compare the performance of our preconditioner with

incomplete Cholesky factorization with no fill.

The experiments were conducted on Intel workstation with a processor speed

of 2.4 GHz and 512 MB of RAM using Red Hat Linux 9. We report the number

of iterations required by each solver as well as the time, in seconds, spent in the

preconditioner construction phase, the Cholesky factorization step, and the iterative

solver. Preconditioned conjugate gradients is used as the iterative solver for both

support graph preconditioner (SGP) and incomplete Cholesky factorization with no

fill, i.e., (IC(0)). All the experiments are run with a tolerance of 10−6 on the relative

residual norm.

A. Isotropic Domain

The first set of experiments is for the Laplace equation. It can be obtained by

substituting p(x, y) with an identity matrix and taking f(x, y) = 0 in Eq. (2.1).

Within this set of experiments, we have two types of support graph preconditioners.

The first type of preconditioner denoted by SGP-I, uses the maximum spanning trees
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(MST) inside each subdomain. The second type of preconditioner denoted by SGP-II,

augments the MST with the heaviest k edges that were not part of SGP-I.

The pre-processing of stiffness matrix described in Chapter III increases the

condition number of the preconditioner by a factor of κ(GGT ). Fig. 11 shows the

trend of κ(GeGeT ) for element e in the mesh shown in Fig. 6. This condition number

is plotted with respect to the angle θe between the two chosen edges during the pre-

processing step. This trend is representative of the meshes under consideration. It

can be seen that the value of κ(GeGeT ) is below 3 for a majority of elements and is

always below 6 for the entire mesh.
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κ(
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eT

)

Fig. 11. The values of κ(GeGeT ) for elements in the mesh shown in Fig. 6, with d = 4.

Fig. 12 shows the support graph preconditioner for the mesh shown in Fig. 6.

Solid lines represent the edges of the MST within each subdomain. An union of solid
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Fig. 12. The edges of the support graph preconditioner for a mesh with d = 4.

and dotted lines represent all the edges remaining after the pre-processing step. An

edge was removed from the triangulation during the pre-processing step if the elements

on both side did not include the edge during coordinate axis transformation. It can

be seen how spanning trees are formed inside each subdomain. The preconditioner

construction time is shown in Table V. This time includes the formation of the

matrix B, the preprocessing of B and the construction of M . The cost of forming

the preconditioner is amortized over the number of iterations required to solve the

system.
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Table V. Time for construction of the support graph preconditioner.

Mesh SGP, M

d Nodes Triangles Time(s)

2× 2 177 304 0.01

4× 4 688 1274 0.03

8× 8 2638 5085 0.15

16× 16 10382 20383 0.88

32× 32 41117 81481 7.61

In the following experiments the number of subdomains are increased in each di-

rection by a factor of two, while keeping the size of the subdomain fixed. This results

in quadrupling the number of nodes at each step. We conducted experiments with all

the three boundary conditions described earlier in Subsection III.B.2 viz. Dirichlet,

Neumann and Mixed boundary condition. For Mixed boundary condition, Dirichlet

boundary condition is specified on the top boundary. Tables VI, VII, and VIII show

the results obtained. Fig. 13 shows the iterations with respect to increasing domain

sizes corresponding to Tables VI VII, and VIII. It can be seen that the number of

iterations for SGP-I saturates after a while, whereas for incomplete Cholesky they

are monotonically increasing. This can be attributed to the fact that the condition

number of SGP-I is bounded by the size of subdomains, which is kept fixed. Satura-

tion of SGP-I iterations is observed independent of the type of boundary conditions.

Moreover, the number of nonzeros for the factors of the SGP-I preconditioner is less

as compared to the number of nonzeros in incomplete Cholesky factors, resulting in

lesser time for factorization.
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Table VI. Laplace problem on a unit square with Dirichlet boundary conditions. Time

given in seconds.

SGP IC(0)

Mesh Factorization Solver Factorization Solver

d Nodes nnz(L) Time Iter Time nnz(L) Time Iter Time

4 177 238 0.0 39 0.0 475 0.0 13 0.0

16 688 1231 0.01 67 0.01 2259 0.03 22 0.01

64 2638 5508 0.09 91 0.14 9610 0.46 42 0.04

256 10382 23851 2.22 102 0.62 39627 6.70 78 0.53

1024 41117 102115 39.19 110 3.98 160690 99.07 141 6.74

Table VII. Laplace problem on a unit square with Dirichlet boundary conditions only

on the top boundary. Time given in seconds.

SGP IC(0)

Mesh Factorization Solver Factorization Solver

d Nodes nnz(L) Time Iter Time nnz(L) Time Iter Time

4 177 367 0.01 46 0.00 611 0.00 19 0.00

16 688 1539 0.02 71 0.02 2548 0.04 39 0.01

64 2638 6214 0.16 93 0.09 10181 0.49 73 0.09

256 10382 25513 2.44 108 0.65 40750 6.96 132 1.00

1024 41117 106347 43.44 108 4.09 162948 106.06 251 12.5
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Table VIII. Laplace problem on a unit square with Neumann boundary conditions.

Time given in seconds.

SGP IC(0)

Mesh Factorization Solver Factorization Solver

d Nodes nnz(L) Time Iter Time nnz(L) Time Iter Time

4 177 412 0.0 51 0.0 653 0.01 23 0.0

16 688 1653 0.01 77 0.02 2645 0.05 47 0.01

64 2638 6443 0.16 97 0.10 10356 0.56 91 0.12

256 10382 26138 2.66 98 0.62 41142 7.39 184 1.46

1024 41117 106948 43.33 112 4.26 163710 105.55 353 17.37
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Fig. 13. The growth in the number of iterations with mesh size for SGP-I and IC(0)

preconditioners.
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To show the effect of subdomain size on convergence, we conducted set of exper-

iments in which the subdomain size was decreased by a factor of four at each step

while keeping the number of nodes in the mesh nearly fixed. It can be seen from Ta-

ble IX that the number of iterations decreased by factor of 1.6 approximately. This is

attributed to the fact that the condition number decreases by a factor of four. Since

the total iterations in PCG are bounded by the square root of condition number, they

reduce by a factor of two. At the same time, there is increase in fill due to the increase

in the number of interface boundary nodes in the mesh. Overall, the algorithm takes

less time for larger number of subdomains.

Table IX. Laplace problem on a unit square with Dirichlet boundary conditions (r:

order of mesh refinement).

SGP

Mesh Factorization Solver Total

d Nodes r nnz(L) Time(s) Iter Time(s) Time(s)

4 39901 4 76932 25.9 917 32.2 58.1

16 41049 3 80874 28.5 782 28.0 56.5

64 41453 2 83672 30.0 450 16.7 46.7

256 41660 1 88678 32.6 250 9.53 42.1

1024 41117 0 102115 39.2 110 3.98 43.2

Another set of experiments was conducted in which the maximum spanning trees

were augmented with a few of the maximum weight edges inside each subdomain

that were not part of SGP-I. To provide a fair comparison with IC(0) preconditioner,

edges were added so as to restrict the fill in SGP-II to the number of nonzeros in

IC(0) factors. Fig. 14 shows the change in iterations and time taken to solve a
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problem with 1024 subdomains. The arrow indicates the point at which SGP-II and

IC(0) preconditioners have the same amount of fill. Table X shows the iterations and

time required by SGP-II to solve the problem when the number of subdomains is

increased. Even though the time of Cholesky factorization increases, the total time

spent in factoring SGP-II and solving the problem still stays less than IC(0).
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Fig. 14. The effect of augmenting SGP-I with additional edges on iterations and time,

d = 1024.

B. Anisotropic Domain

The second set of experiments involved the anisotropic Laplace equation on anisotropic

domains. The matrix p(x, y) was chosen to be

p =




1 0

0 σ2


 ,
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Table X. Laplace problem on a unit square with Dirichlet boundary condition using

SGP-II.

Mesh SGP IC(0)

d Nodes nnz(L) Iter Time(s) nnz(L) Iter Time(s)

4 177 432 19 0.01 475 13 0.0

16 688 2204 27 0.02 2259 22 0.04

64 2638 9613 40 0.30 9610 42 0.48

256 10382 38277 58 4.4 39627 78 6.94

1024 41117 166021 69 77.5 160690 141 104.77

in Eq. (2.1) with σ as 10 and 0.1.

Figs. 15 and 16 show the support graph preconditioner for the mesh shown in

Fig. 6 with σ = 10 and σ = 0.1, respectively. Solid lines represent the edges of the

MST within each subdomain. The union of solid and dotted lines represent all the

edges remaining after the pre-processing step. It can be seen from these figures that

the maximum spanning tree edges are changed in presence of anisotropy.

Tables XI and XII show the performance of SGP-I for anisotropic problem with

Dirichlet boundary conditions. The number of subdomains are increased whereas

the domain size stays fixed. The results are almost the same for these two instances

of σ. However, the number of iterations required to converge to the solution are

higher than the isotropic case (Table VI). This is due to the increase in the factor

κ(DGP−1GT D), associated with pre-processing.

The pre-processing of stiffness matrix described in Chapter III increases the

condition number of the preconditioner by a factor of κ(GGT ). Fig. 11 shows the

trend of κ(GeGeT ) for element e in the mesh shown in Fig. 6. This condition number
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Fig. 15. SGP preconditioner edges for an anisotropic problem (σ = 10).

Table XI. Anisotropic Laplace problem on a unit square with Dirichlet boundary con-

dition using SGP-I (σ = 10). Time given in seconds.

SGP IC(0)

Mesh Factorization Solver Factorization Solver

d Nodes nnz(L) Time Iter Time nnz(L) Time Iter Time

4 177 249 0.0 81 0.0 475 0.0 18 0.0

16 688 1241 0.01 166 0.03 2259 0.03 33 0.01

64 2638 5583 0.14 256 0.23 9610 0.43 63 0.07

256 10382 23933 2.18 308 1.83 39627 6.34 116 0.79

1024 41117 102029 37.8 323 11.58 160690 96.4 222 10.42
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Fig. 16. SGP preconditioner edges for an anisotropic problem (σ = 0.1).

Table XII. Anisotropic Laplace problem on a unit square with Dirichlet boundary

condition using SGP-I (σ = 0.1). Time given in seconds.

SGP IC(0)

Mesh Factorization Solver Factorization Solver

d Nodes nnz(L) Time Iter Time nnz(L) Time Iter Time

4 177 243 0.0 92 0.01 475 0.0 21 0.01

16 688 1233 0.0 193 0.04 2259 0.03 42 0.01

64 2638 5530 0.14 306 0.27 9610 0.46 80 0.08

256 10382 23966 2.18 359 2.1 39627 6.35 147 1.03

1024 41117 102633 38.05 384 13.8 160690 96.65 285 13.34



54

is plotted with respect to the angle θe between the two chosen edges during the pre-

processing step. This trend is representative of the meshes under consideration. It

can be seen that the value of κ(GeGeT ) is below 3 for a majority of elements and is

always below 6 for the entire mesh.

Figs. 17 and 18 show the trend in κ(DeGeP e−1GeT De) for element e in the mesh

shown in Fig. 6. This condition number is plotted with respect to the angle θe between

the two chosen edges during the pre-processing step. It can be seen that most of the

values of κ(DeGeP e−1GeT De) are below 100, for a majority of elements and is always

below 400 for the entire mesh. This factor stays constant with increasing number of

subdomains though it is much higher than the isotropic case.
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Fig. 17. The values of κ(DGP−1GT D) for elements in the mesh shown in Fig. 6, with

d = 4 and σ = 10.



55

30 35 45 60 75 90 100 110
0

50

100

150

200

250

300

350

400

450

θe

κ(
D

e G
e P

e−
1 G

eT
D

e ) 
, σ

 =
 0

.1

Fig. 18. The values of κ(DGP−1GT D) for elements in the mesh shown in Fig. 6, with

d = 4 and σ = 0.1.

The performance of the SGP-I preconditioner can be improved for anisotropic

case by augmenting the spanning tree with maximum weight edges. Figs. 19 and

20 show the the change in iterations and time taken to solve a problem with 1024

subdomains using SGP-II. The rate of convergence of PCG improves as we add more

edges inside each subdomain, though with a slight increase in time in Cholesky fac-

torization. The arrow indicates the point at which SGP-II and IC(0) preconditioners

have the same amount of fill.

Tables XIII and XIV show the iterations and time required by SGP-II to solve

the problem when the number of subdomains is increased. Even though the time of

Cholesky factorization increases, the total time spent in factoring SGP-II and solving

the problem still stays less than IC(0).
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Fig. 19. The effect of augmenting SGP-I with additional edges on iterations and time,

σ = 10, and d = 1024.

Table XIII. Anisotropic problem on a unit square with Dirichlet boundary condition

using SGP-II (σ = 10).

Mesh SGP IC(0)

d Nodes nnz(L) Iter Time(s) nnz(L) Iter Time(s)

4 177 410 36 0.0 475 18 0.01

16 688 2058 53 0.02 2259 33 0.04

64 2638 9278 87 0.33 9610 63 0.49

256 10382 39209 125 4.98 39627 116 7.08

1024 41117 161809 159 78.57 160690 222 106.64
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Fig. 20. The effect of augmenting SGP-I with additional edges on iterations and time,

σ = 0.1, and d = 1024.

Table XIV. Anisotropic problem on a unit square with Dirichlet boundary condition

using SGP-II (σ = 0.1).

Mesh SGP IC(0)

d Nodes nnz(L) Iter Time(s) nnz(L) Iter Time(s)

4 177 383 42 0.0 475 21 0.01

16 688 2086 68 0.02 2259 42 0.04

64 2638 9199 109 0.36 9610 80 0.51

256 10382 38887 152 5.14 39627 147 7.29

1024 41117 162059 185 79.52 160690 285 109.6
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CHAPTER VI

CONCLUSIONS

In this thesis we developed an extension of the support graph preconditioning tech-

nique for symmetric positive definite matrices arising from the finite element dis-

cretization of partial differential equations. To illustrate the effectiveness of the ap-

proach, the Laplace equation was solved on a unit square unstructured mesh with

different type of boundary conditions. This thesis investigates the effectiveness of a

support graph preconditioner consisting of edges on the interface boundary between

d subdomains along with edges on maximum spanning tree inside each subdomain.

It was shown that

• The rate of convergence of the support graph preconditioners is independent of

the size of the entire domain, but depends on the size of the subdomains. This

is observed for different boundary conditions.

• The change in the rate of convergence of SGP for different mesh sizes is un-

affected by anisotropy. The preconditioner can be improved by adding heavy

weight edges to the support graph.

• Support graph preconditioners outperform incomplete Cholesky factorization

preconditioner with zero fill in terms of execution time.

Prior to this work, support graph preconditioners had been developed for diago-

nally dominant M-matrices only. The extension proposed in the thesis allows support

graph preconditioning to be used for a larger class of matrices such as SPD matrices

arising from finite element discretizations.
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APPENDIX A

MATRIX DEFINITIONS

• M-matrix: Consider an n× n real matrix A.

– A is an M-matrix if A−1 ≥ 0 and ai,j ≤ 0, i 6= j.

– A is an M-mtrix if A is strictly or irreducibly diagonally dominant. Here,

assume that aij ≤ 0, i 6= j, and aii > 0, i = 1, . . . , n.

• Irreducible matrix: A matrix is irreducible if and only if it’s associated directed

graph is strongly connected, i.e, there is a path from node i to node j, for all

pairs (i, j).

• Diagonally dominant matrix: A real n× n matrix A is diagonally dominant if

|aii| ≥
∑

j 6=i

|aij|, i = 1, . . . , n

– The matrix is Strictly diagonally dominant if strict inequality holds for all

i.

– The matrix is Irreducibly diagonally dominant if it is irreducible, diago-

nally dominant, and strict inequality hold for atleast one i.
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