
A DISTRIBUTED HARD REAL-TIME JAVA SYSTEM

FOR HIGH MOBILITY COMPONENTS

A Dissertation

by

SANGIG RHO

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2004

Major Subject: Computer Engineering

A DISTRIBUTED HARD REAL-TIME JAVA SYSTEM

FOR HIGH MOBILITY COMPONENTS

A Dissertation

by

SANGIG RHO

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

Riccardo Bettati
(Chair of Committee)

Wei Zhao
(Member)

A. L. Narasimha Reddy
(Member)

Rabi N. Mahapatra
(Member)

Valerie E. Taylor
(Head of Department)

December 2004

Major Subject: Computer Engineering

iii

ABSTRACT

A Distributed Hard Real-Time Java System

for High Mobility Components. (December 2004)

Sangig Rho, B.S., Yonsei University;

M.S., Yonsei University

Chair of Advisory Committee: Dr. Riccardo Bettati

In this work we propose a methodology for providing real-time capabilities to

component-based, on-the-fly reconfigurable, distributed systems. In such systems,

software components migrate across computational resources at run-time to allow

applications to adapt to changes in user requirements or to external events. We

describe how we achieve run-time reconfiguration in distributed Java applications

by appropriately migrating servers. Guaranteed-rate schedulers at the servers pro-

vide the necessary temporal protection and so simplify remote method invocation

management. We describe how we manage overhead and resource utilization by con-

trolling the parameters of the server schedulers. According to our measurements,

this methodology provides real-time capability to component-based reconfigurable

distributed systems in an efficient and effective way.

In addition, we propose a new resource discovery protocol, REALTOR, which is

based on a combination of pull-based and push-based resource information dissem-

ination. REALTOR has been designed for real-time component-based distributed

applications in very dynamic or adverse environments. REALTOR supports surviv-

ability and information assurance by allowing the migration of components to safe

locations under emergencies such as external attack, malfunction, or lack of resources.

Simulation studies show that under normal and heavy load conditions REALTOR re-

iv

mains very effective in finding available resources, and does so with a reasonably low

communication overhead. REALTOR 1) effectively locates resources under highly dy-

namic conditions, 2) has an overhead that is system-size independent, and 3) works

well in highly adverse environments. We evaluate the effectiveness of a REALTOR im-

plementation as part of Agile Objects, an infrastructure for real-time capable, highly

mobile Java components.

v

To My Wife Seongeun and Parents

vi

ACKNOWLEDGMENTS

This dissertation could not have been completed without Dr. Riccardo Bettati

who encouraged and challenged me throughout my academic program.

I also thank my wife, Seongeun, and my parents for their endless love.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II ARCHITECTURE . 6

A. A Model for Distributed Component-Based Applications . 8

B. Task Model . 8

C. The Workload Models . 10

1. Invocations of Local Methods 13

2. Invocations of Local and Single-Chained Remote

Methods . 13

3. Invocations of Local and Multi-Chained Remote Methods 15

D. Admission Control Policy 16

III REAL-TIME AGILE OBJECTS SYSTEM 18

A. A Model for Agile Objects 20

B. A Server-Centric Environment for Real-Time Java RMI . . 20

IV REAL-TIME INFRASTRUCTURE 23

A. Introduction . 23

B. Related Work . 24

C. Standard Java RMI Problems for Providing Real-Time

Capability . 26

1. Sun’s Java RMI Implementation 26

2. Design Issues for Providing Real-Time Capable Java

RMI . 29

D. Real-Time Java Threads 30

1. The Creation of Real-Time Threads for Java RMI . . 31

2. The Adjustment of Priorities of Real-Time Worker

Threads Based on Admitted Utilization 33

E. A Server-Centric Approach for Preserving Real-Time

Timing Constraints . 33

F. Guaranteed-Rate Scheduling for Sporadic Real-Time

Tasks . 35

1. The Total Bandwidth Server 35

viii

CHAPTER Page

2. The EDF Scheduler for Total Bandwidth Servers . . . 37

3. A Probabilistic Approach for Characterizing Total

Bandwidth Servers . 39

G. Experimental Evaluation 43

1. Local Method Execution Time 44

2. Latency of Remote Method Invocation 46

a. Java VM Running One RMI Server and High

Background Load 47

b. Java VM Running One RMI Server and Vary-

ing Amount of Background Load 49

V MOBILITY . 53

A. Introduction . 53

B. Related Work . 55

C. Our Methodology for Migration 56

1. Java Object Serialization Protocol 58

2. The Deserialization of Java RMI Server Objects 61

3. Java Classes for Agile Objects Migration Mechanism . 62

a. Interface ao.migration.Migratable 62

b. Class ao.migration.DataSender 64

c. Class ao.migration.MigWrapper 64

d. Class ao.migration.RTJVM 64

D. Methodology . 64

E. Experimental Evaluation 67

F. Experimental Results . 69

G. Discussion of Experimental Results 73

VI RESOURCE MANAGEMENT 75

A. Introduction . 75

B. Related Work . 77

C. REALTOR: REsource ALlocaTOR 79

1. REALTOR Scheme 80

a. Community Protocol 80

b. Algorithm H . 81

c. Algorithm P . 82

2. Other Resource Discovery Schemes 83

a. Pure PUSH Scheme 83

b. Pure PULL Scheme 84

ix

CHAPTER Page

c. Adaptive PUSH Scheme 84

d. Adaptive PULL Scheme 84

D. Analysis of Resource Discovery Message Overhead 84

E. Experimental Performance Evaluation 90

F. Implementation Experience 96

VII CONCLUSIONS AND FUTURE WORK 101

REFERENCES . 103

VITA . 111

x

LIST OF TABLES

TABLE Page

I Notations for Workload Models . 12

II Message Overhead (W = n∆t, (n = 1, 2, 3, . . .)) 88

xi

LIST OF FIGURES

FIGURE Page

1 Middleware for Survivable Systems 2

2 The Task Model . 9

3 Invocations of Only Local Methods 14

4 Local Methods and a Single-Chained Remote Method 15

5 Local Methods and a Multi-Chained Remote Method 17

6 Software Components of Agile Objects System 19

7 Agile Objects System Architecture . 21

8 The UML Diagram of RMI Client Classes 27

9 The UML Diagram of RMI Server Classes 28

10 The Scheduling of Real-Time Worker Threads for Exported Re-

mote Objects . 32

11 The Procedure for Adjusting the Priority of an RMI Real-Time

Worker Thread . 34

12 The Illustration of Total Bandwidth Server Operations 36

13 The State Diagram of the EDF Scheduler for Agile Objects System . 38

14 Execution Time of Local Method on TimeSys 3.1-RT 44

15 Average and Standard Deviation of Local Method Execution Time

on TimeSys 3.1-RT . 45

16 The Experiment Environment . 46

17 RMI Latency with High Background Load 47

xii

FIGURE Page

18 Decomposition of RMI Latency . 49

19 Standard Deviation of RMI Latency 50

20 RMI Latency with Varying Amount of Background Load 51

21 Decomposition of RMI Latency with Varying Amount of Back-

ground Load . 52

22 Java Object Serialization Protocol 59

23 UML Diagram of Java Classes for Package ao 63

24 Experiment Environment for the Worst-Case Latency of Lookup

with a Migration . 65

25 The Worst-Case Latency of Lookup with a Migration 66

26 Latency for a Lookup with a Migration 69

27 Decomposition of Latency for a Lookup with a Migration 70

28 Decomposition of Latency for a Lookup with a Migration in Terms

of Serialized Object Size . 71

29 Latency for a Lookup with a Migration with Varying Amount of

Background Load . 72

30 Decomposition of Latency for a Lookup with a Migration with

Varying Amount of Background Load 74

31 Algorithm H in REALTOR . 82

32 Algorithm P in REALTOR . 83

33 The Network Topology for the Simulation 91

34 Admission Probability . 93

35 Number of Messages Exchanged . 94

36 Communication Cost per Admitted Task 96

xiii

FIGURE Page

37 Admission Success Rate . 98

38 Migration Time in Milliseconds . 99

1

CHAPTER I

INTRODUCTION

It is to be expected that many large-scale real-time systems will be increasingly re-

quired to be adaptive to changes in operational requirements and load, environmental

influences, and changes in the underlying resources. Moreover, the complexity of this

type of applications will demand exceptionally high levels of self-manageability. Sys-

tem adaptation and reconfiguration must happen with no – or very minimal – operator

input. This ability to self-reconfigure is needed, for example, whenever survivability

of the application is critical; that is, when the application must keep running and

guarantee the QoS (Quality of Service) despite resource failures and continuous ex-

ternal attacks. Similarly, applications deployed in utility-type data centers [1] may

have varying numbers and types of resources at their disposal during their life-time,

as the data center operators re-allocate the computing infrastructure across their

clients. Applications in such environments must seamlessly adapt to the changing

computational resources as well.

Increasingly, applications are designed and deployed using component-based ap-

proaches, where applications are modeled and realized as assemblies of software enti-

ties (components) that provide well-defined services either to a client program (which

can in turn be a component) or to other components. Besides their well-defined ser-

vice interface, components are opaque: They do not make internal implementation

details available to their environment. Component systems typically also provide

component isolation: Where not required by the component interface, the behavior

of a component does not depend on the state, or even presence of another compo-

This dissertation follows the style of IEEE Transactions on Automatic Control.

2

nent. This isolation requirement allows for a de-facto de-coupling of the component

implementation from the communication infrastructure among components. (This is

illustrated by a number of component systems allowing for interception in their calling

mechanisms.) Similarly, given a sufficiently effective communication infrastructure,

the components can be decoupled from their execution platform: Components can

migrate and execute in a location-independent fashion. In this work we study means

to support application adaptability and survivability through on-the-fly reconfigura-

tion at component level (Figure 1). We support on-the-fly application reconfiguration

by migrating software components.

 Pro-Active Real-Time
 Resource Discovery Migration

 & Allocation

Infrastructure for
Distributed Component-Based Real-Time Systems

Application
Reconfiguration

Survivable
Systems

Fig. 1. Middleware for Survivable Systems

The ultimate purpose of migrating active software components is to increase the

adaptability and – ultimately – the self-manageability of the application. The ability

to perform software component migration increases application-survivability not only

in case of external attacks, but also in case of unexpected run-time events that affect

3

running applications. For example, a change in the local resource allocation policy or

in the security policy may require a relocation of some software components running

on the local host over to neighboring hosts that have resources to spare or operate

at the required security levels, respectively. At that time, on-the-fly application

reconfiguration improves application-survivability.

If reconfiguration is performed pro-actively, this can benefit security as well,

following from the observation that it is generally harder to attack a moving target

rather than an immovable one. Therefore we can increase application-survivability

further by migrating software components in a way that cyber attackers cannot easily

locate and track.

While the key in supporting these capabilities is efficient migration of compo-

nents, resource management is critical for providing effective survivability of the dis-

tributed applications. To make matters worse, in the type of applications described

above, both resource availability and resource requirements can fluctuate widely: As

nodes in the system come under attack, resources on these systems become unavail-

able. At the same time, components on these nodes migrate, and so further change

the resource availability across the system. Since resource availability in the system

varies so quickly, resource tracking schemes get easily overwhelmed. We therefore

resort to resource discovery as a resource availability estimation scheme. In other

words, we resort to resource discovery whenever the effective resource availability is

not known with sufficient accuracy at the time of the resource request.

In real-time applications, the overhead of component migration must be carefully

taken into consideration in three ways: First, sufficient resources must be allocated

to the component before migration in order to have enough slack available for ap-

plications when a migration becomes necessary. Next, the migration decision and

the migration execution must be low-overhead and have a low latency in order to

4

not unduly affect other real-time applications. Finally, sufficient resources must be

available at the new host to meet the timing requirements of the migrated component

as well as those of other components. The local host needs to be aware of candidate

hosts at any time.

In this work we use a server-centric approach for scheduling, admission control,

and migration management. That enables the isolation of the components from clients

in terms of guaranteeing real-time properties of the exported services of the compo-

nents. The server-centric approach adopts component declared real-time property

model instead of client propagated real-time property model for the exported services:

The components keep the information of real-time properties for the exported ser-

vices rather than inheriting those from clients in the component declared real-time

property model. As a result, clients cannot affect how the workload is executed on

the component, and so temporal component isolation is provided.

In this thesis we propose a methodology for providing real-time capabilities to

component-based, on-the-fly reconfigurable, distributed system. We describe how

we achieve run-time reconfiguration in distributed real-time Java applications by ap-

propriately migrating components. We also describe how we manage overhead and

resource utilization by controlling the parameters of the schedulers at component

level. Moreover, we propose a new discovery based resource management protocol,

REALTOR, which is based on a combination of pull-based and push-based resource

information dissemination. REALTOR supports survivability by allowing the migra-

tion of components to safe locations under emergencies.

This thesis is organized as follows. In Chapter II, we describe the architecture

of a reconfigurable component-based system. We describe the component model,

the task model, and the workload model. We also describe our admission control

policy. In a number of following chapters, we elaborate on the realization of such

5

a real-time reconfigurable component-based systems in form of the Real-Time Agile

Objects system. More specifically, Chapter III describes the Agile Objects system.

We also describe our server-centric approach to component management. Chapter IV

describes the design, implementation, and experimental evaluation of the necessary

infrastructure needed to make a component-based system (Java RMI in our case)

real-time capable. Support for component mobility is described and experimentally

evaluated in Chapter V. In Chapter VI, we describe our resource discovery and al-

location protocol, REALTOR. We also analyze the message overhead of REALTOR

and provide a performance study of REALTOR in Chapter VI. Finally, conclusions

and future work are given in Chapter VII.

6

CHAPTER II

ARCHITECTURE

Component-based systems design supports the development of software systems lar-

gely by assembling components that have previously been developed for integration.

Reusability, one of the benefits obtained with component-based systems design, has

contributed to the great success of this methodology in software systems development.

The use of reusable and Commercial-Off-The-Shelf (COTS) components allows for

application developers to deliver new systems to customers at less cost and more speed

in comparison with more traditional approaches for developing systems, typically from

scratch.

In order for components to be reusable, they must satisfy at least three character-

istics, which are isolation, opaqueness, and composability: By isolation we mean that

a component can be well separated from the execution environment and from other

components. The behavior of a component therefore is independent of the underlying

frame-work, from the state of other components, or, even from the presence of other

components. By opaqueness we mean that a component conceals its implementation

details from other components. The opaqueness leads clients of the component not to

depend on the implementation details that are likely to change. By composability we

mean that a component has a self-contained function unit with well-defined interfaces

in order to be composable with other components.

A number of well known standards exist for component-based systems, such as

the Object Management Group (OMG)’s Common Object Request Broker Archi-

tecture (CORBA) [2], Microsoft’s Component Services (COM+) [3], and Sun Mi-

crosystems’ Enterprise JavaBeans (EJB) [4]. These standards provide interfaces to

plug together independent components from different suppliers to suit the integra-

7

tion requirements of customers and even to interoperate across different execution

environments.

A number of efforts have extended component-based systems to support real-

time applications, for example with means to specify any real-time properties such

as worst-case execution times and deadlines of services. The TAO project [5] has

implemented a CORBA that preserves the priority levels of calls across component

boundaries. Stankovic et al. [6] have proposed an approach for building embedded

systems software through component-based techniques. Their VEST toolkit provides

a rich set of dependency checks to support distributed embedded system development

via components. The specification for real-time CORBA has also been proposed by

an OMG working group [7, 8]. The real-time CORBA specification extends standard

CORBA with features for management of CPU, network, and memory resources.

It allows to use either server declared or client propagated model for fixed priority

scheduling between client and server. All these real-time extensions provide very lim-

ited isolation across components in the temporal domain: TAO, for example, relies on

static priority scheduling with priority inheritance across components. The temporal

behavior of individual components therefore depends on the behavior of components,

specifically on that of higher-priority ones. Due to the priority inheritance, it de-

pends on the execution of remote components as well, for example when a remote

high-priority component triggers the execution of methods provided by another local

component. Insufficient temporal isolation renders admission control cumbersome

and significantly complicates component migration.

In the following, we describe how we provide predictable end-to-end latencies

for component services and isolation across components by adopting guaranteed-rate

scheduling and on-the-fly reconfiguration.

8

A. A Model for Distributed Component-Based Applications

We model a distributed component-based application as a collection of n clients, C1,

C2, · · ·, Cn and m components, A1, A2, · · ·, Am. Each component Ai exports a number

ki of remote methods, RMi1, RMi2, · · ·, RMiki
.

We assume that clients execute outside of the reach of the resource control of

the component-based system. We therefore partition the execution environment into

a client execution environment and a component execution environment. We do not

further consider the client execution environment.

The component execution environment consists of h hosts, H1, H2, · · ·, Hh on

which components can be located. We assume a uniform processing environment,

where each host H` has a relative speed ∆`. A method that takes ε time units to

execute on a reference host, takes ε
∆`

on a host with relative speed ∆`.

B. Task Model

We assume that remote methods are invoked synchronously: The execution on the

caller is temporarily suspended while the thread of control transfers to the component

with the remote method. Upon completion of the remote invocation, the thread of

control migrates back to the caller, which in turn resumes execution.

We model the workload in our system as a set of tasks. Each task consists of a

sequence of invocations to a remote method by one or more clients. We model each

task Ti a sequence of jobs, J
(1)
i , J

(2)
i , · · ·, J

(k)
i , where the execution of each job is

triggered by an invocation of a remote method by a client. Each job Ji of a task

Ti consists of the same (possibly nested) sequence of invocations of remote method

invocations on one or more components. Therefore, the workload of each job Ji is

described by sum of the workload of the invoked remote method invocations on one

9

or more components.

Task Ti

Job Ji
(1)Ji

(4) Ji
(3) Ji

(2)

Clients

Component A1

Ji1 Ji2 Jim

Component A2 Component Am

Fig. 2. The Task Model

Figure 2 illustrates this relation between tasks, jobs, and components: In this

case J
(1)
i is the first in a sequence of jobs of Task Ti. The execution of the job

is triggered by the invocation of a remote method of Component A1 by some client.

The execution of this remote method in turn invokes a remote method on Component

A2, and so on.

We provide real-time guarantees in form of deadline guarantees to remote method

invocations. We say that we guarantee a deadline Di to a task Ti if we guarantee

that every job is completed by at most Di time units after it has been invoked. In

other words, the maximum response time of the remote method is bounded by Di.

The real-time literature distinguishes between hard real-time guarantees, where the

designer must prove that the deadline requirements are met for all jobs in the system,

and soft guarantees, where this proof is not required. Hard real-time guarantees are

10

contingent upon the real-time capabilities of the underlying Operating System (OS)

and runtime environment, well-known number of clients, well-behaved clients and

well-known worst-case execution time of each method in every component. If one of

the above conditions is not satisfied, our systems provides soft real-time guarantees

at best.

When individual clients put undue load on the system, that is, when they invoke

the remote method too frequently or when the method execution times exceed the

worst case, the execution of the task can adversely affect the real-time guarantees

for other tasks. This can be prevented by appropriate timing isolation. By timi-

ng isolation we mean that the worst-case response time of jobs in a task does not

depend on the processor-time demands of other tasks. To provide timing isolation at

scheduling level, one can use guaranteed-rate schedulers. Examples of such algorithms

are the Constant Utilization Server, the Total Bandwidth Server, and the Preemptive

Weighted Fair-queueing Server [9]. We have chosen the Total Bandwidth Server for

our guaranteed-rate scheduling over the other two for two reasons: (1) The Total

Bandwidth Server outperforms the Constant Utilization Server in terms of utilizing

background time not used by periodic tasks. (2) The proportional share scheduling

algorithms, such as the Preemptive Weighted Fair-queueing Server, make no QoS

guarantees if the sum of total weights grows very large [10].

C. The Workload Models

A very common task model in real-time systems is the periodic model, where task

invocations are assumed to arrive with a given inter-arrival time, i.e., the period. For

strictly periodic tasks, the inter-arrival times are always equal to the task period.

For non-strictly-periodic tasks, the period is equal to the minimum inter-arrival time

11

of two invocations. Most scheduling and admission control schemes are robust to

variations in the inter-arrival time: If the scheme works for a periodic task, if does so

for any non-periodic task with minimum inter-arrival time that are at least as long as

the period as well. Whenever the task invocations are bursty, that is, the minimum

inter-arrival time is significantly shorter than the average, treating tasks as periodic

is very inefficient, as the admission control reserves resources for workload that does

not materialize at run-time. We expect task invocations to be very bursty in the

system we envision, for three reasons: First, any task may consist of invocations from

more than one client, thus resulting naturally in a bursty invocation pattern. Second,

no explicit policing mechanism exists to shield the system from bursty invocations.

Third, even if invocations from clients were periodic, cascaded invocations to subse-

quent components would still be jittered by execution and scheduling, and so would

be bursty. As a result, we model task arrival as sporadic: The detailed arrival time of

the nest invocation is unknown a priori, but worst-case execution time and deadline

become known upon arrival. The invoked jobs of the sporadic task are scheduled by

using a Total Bandwidth Server. Specifically, a Total Bandwidth Server is configured

for each remote method of every component. Every Total Bandwidth Server then

allocates and controls the amount of CPU time that is consumed for execution of the

assigned remote method on the component. As a side effect, it shapes the service

interval between successive jobs that invoke the same remote method of the same

component.

In summary, the use of guaranteed-rate schedulers - in our case the Total Band-

width Server - allows us to uniformly schedule periodic and sporadic tasks. Similarly,

this allows for a simple, utilization-based, admission control for both types of tasks.

The response time of each job Ji of Task Ti is what the client experiences as

latency. If we do not take into account communication delays, the relative deadline

12

Table I. Notations for Workload Models

Notation Description

RMmx remote method RMx on Component Am

rmmx worst-case execution time of RMmx

LMmy local method LMy on Component Am

lmmy worst-case execution time of LMmy

Uij utilization allocated by Total Bandwidth Server to RMij

LMmy ∈ RMmx LMmy is invoked during the invocation of RMmx

RMny ∈ RMmx RMny is invoked during the invocation of RMmx

of Job Ji on the component must bound the maximum latency, or maximum response

time, of Job Ji. If a guaranteed-rate scheduler (in the following we limit the presen-

tation to the Total Bandwidth Server) handles the jobs for a given component, and

if appropriate admission control ensures that the server is not overloaded, then the

relative deadline of Job Ji can be calculated by the following:

Relative Deadline of Job Ji

=
Workload of Job Ji

Utilization of Total Bandwidth Server for Job Ji

.

Therefore, if we have a correct workload model for each job Ji on a component,

Job Ji can be guaranteed to meet its deadline through appropriate admission con-

trol. The following shows how our workload models look like. Table I describes the

notations used for our workload models.

13

1. Invocations of Local Methods

We can model the job Ji of Task Ti as an invocation of a remote method RMmx on a

component Am, where the execution of the remote method RMmx invokes only local

methods on Component Am.

In this case, the workload of Job Ji is the sum of the worst-case execution time

of each local method on Component Am. Therefore, the workload of this kind of Job

Ji is calculated by the following:

Workload of Job Ji = rmmx

=
∑

LMmk ∈ RMmx

lmmk.

Figure 3 shows an example of Job Ji of Task Ti. Job Ji invokes the remote

method RMmx on Component Am. The execution of the remote method RMmx

invokes three local methods on Component Am. In this example, Component Am is

the only component in the execution of Job Ji.

2. Invocations of Local and Single-Chained Remote Methods

We can model the job Ji of Task Ti as an invocation of a remote method RMny

on a component An, where the execution of the remote method RMny invokes local

methods on Component An, and it also invokes one or more other single-chained

remote methods on one or more other components. By single-chained remote method

we mean that the execution of the remote method invokes only local methods.

In this case, the workload of Job Ji is the sum of the worst-case execution time

of each local method on Component An and the maximum response time for getting

the result from each single-chained remote method. Therefore, the workload of this

14

Component Am on HOST 1

Local Method
LMf2

Local Method
LMm3

Local Method
LMm2

Local Method
LMm1

Remote Method RMmx Job Ji

Local Method
LMm4

Local Method
LMm5

Fig. 3. Invocations of Only Local Methods

kind of Job Ji is calculated by the following:

Workload of Job Ji = rmny

=
∑

LMnk ∈ RMny

lmnk +
∑

RMij ∈ RMny

rmij

Uij

=
∑

LMnk ∈ RMny

lmnk +
∑

RMij ∈ RMny

(
1

Uij

×
∑

LMit ∈ RMij

lmit).

Figure 4 shows an example of Job Ji of Task Ti. Job Ji invokes the remote

method RMny on Component An. The execution of the remote method RMny invokes

three local methods on Component An and the single-chained remote method RMmx

15

on Component Am. Subjob Jim denotes the execution of the single-chained remote

method RMmx on Component Am.

 RMny

Local Method
LMn1

Local Method
LMn2

Local Method
LMn3

Remote Method
RMmx of Am

Component An on HOST 2

LMm2

LMm1

RMmx

Am on HOST 1

LMm3

Job Ji

Subjob Jim

Local Method
LMn4

LMm4

LMm5

Fig. 4. Local Methods and a Single-Chained Remote Method

3. Invocations of Local and Multi-Chained Remote Methods

We can model the job Ji of Task Ti as an invocation of a remote method RMpz

on a component Ap, where the execution of the remote method RMpz invokes local

methods on Component Ap, and it also invokes one or more other multi-chained

remote methods on one or more other components. By multi-chained remote method

we mean that the execution of the remote method in turn invokes one or more other

16

remote methods on one or more other components.

In this case, the workload of Job Ji is the sum of the worst-case execution time

of each local method on Component Ap and the maximum response time for getting

the result from each multi-chained remote method. Therefore, the workload of this

kind of Job Ji is calculated by the following:

Workload of Job Ji

= rmpz

=
∑

LMpk ∈ RMpz

lmpk +
∑

RMij ∈ RMpz

rmij

Uij

=
∑

LMpk ∈ RMpz

lmpk +
∑

RMij ∈ RMpz

[
1

Uij

× (
∑

LMit ∈ RMij

lmit +
∑

RMvw ∈ RMij

rmvw

Uvw

)].

Figure 5 shows an example of Job Ji of Task Ti. Job Ji invokes the remote

method RMpz on Component Ap. The execution of the remote method RMpz invokes

three local methods on Component Ap and multi-chained remote method RMny on

Component An. Subjob Jin denotes the execution of the multi-chained remote method

RMny on Component An. The execution of the remote method RMny also invokes

single-chained remote method RMmx on Component Am, Subjob Jim.

D. Admission Control Policy

Before new components are created and installed, an admission control step has to

make sure that sufficient computing resources on the host can be allocated to the

remote methods of the new component without affecting other components on the

host. The same holds for components that are migrating to a host from elsewhere

in the system. In the following discussion, we focus on CPU resources only. Other

resource requirements, such as opened files, memory and network bandwidth are not

17

RMpz

RMny of An

Ap on HOST 3

LMp1

LMp2

LMp3

LMm2

LMm1

RMmx

Am on HOST 1

LMm3

LMn2

LMn1

RMny

RMmx of Am

LMn3

An on HOST 2

S
u

b
jo

b
 J

im

S
u

b
jo

b
 J

in

Job Ji

LMp4

LMp5

LMn4 LMm4

LMm5

Fig. 5. Local Methods and a Multi-Chained Remote Method

considered for admission feasibility tests.

The admission control mechanism must rely on an accurate description of the

workload parameters. For this, worst-case execution times of remote methods are

determined either during system design or system configuration. Similarly, the uti-

lizations allocated to components and their remote methods are defined during system

configuration.

18

CHAPTER III

REAL-TIME AGILE OBJECTS SYSTEM

In the following, we will use the Agile Objects System [11] as platform for developing

the mechanisms and resource allocation schemes to support real-time guarantees in

dynamically reconfigurable distributed component-based applications. Components

in the Agile Objects System are capable of migrating frequently, which provides them

with location elusiveness [12]. The latter is greatly beneficial for both survivability,

as the application is able to quickly reconfigure during attacks, and for information

assurance, as the location and tracking of critical components become significantly

more difficult for an attacker. In addition, component migration allows for more

flexible response to resource overload for QoS sensitive applications: if a newly arriving

task is expected to miss its deadline because of overload at a host, we can simply

migrate the component that is supposed to serve the task to another host, where

enough resources are available.

Figure 6 shows a high-level diagram of the Agile Objects System, with low-level

mechanisms for migration and scheduling at the bottom, and higher-level ones, such

as resource allocation, at the top:

• High-level resource management is performed by REALTOR (REsource AL-

locaTOR). The main objective of REALTOR is to provide proactive resource

discovery for fast migration [13].

• Admission Control is in charge of admission decisions during component in-

stantiation and migration. As REALTOR monitors the resource status across

hosts, the admission control during migration can be very light-weight and can

be performed concurrently to the migration properly.

• The management of CPU resource is greatly simplified by the use of guaranteed-

19

REALTOR

Admission
Control

Migration Mechanism

Job
Scheduler

Admission
Control

Host A Host B

REALTOR

Job
Scheduler

Migration Mechanism

Networks

Applications Applications

Fig. 6. Software Components of Agile Objects System

rate scheduling in the nodes. Guaranteed-rate schedulers ensure a minimum

amount of CPU bandwidth to each QoS sensitive workload. This greatly re-

duces the admission control overhead, which becomes a simple utilization test,

and available CPU resource can be directly measured in terms of unallocated

utilization. The current implementation uses a Total Bandwidth Server.

• The mechanics of component migration is handled by the migration subsys-

tem. During migration, the component state is moved, the necessary code and

libraries at the destination are updated, and service-access points are trans-

ferred. In addition, the naming service is updated to reflect the new location of

the component.

The realization of Agile Objects System is based on an extension of the Real-Time

Specification for Java (RTSJ) [14], with an Earliest Deadline First (EDF) sched-

uler [9], Total Bandwidth Servers [9] and real-time Remote Method Invocation (RM-

I) [15]. The guaranteed-rate scheduling at the nodes allows for an accurate definition

20

of resource requirements during design and deployment time, and thus eliminates

the need for cumbersome resource reallocation mechanisms during run-time and for

priority inheritance extensions to RMI, such as, for example, in [16].

A. A Model for Agile Objects

The agile objects model naturally maps to the workload model described in Section

C of Chapter II: Each Agile Object Ai exports a number ki of remote methods, RMi1,

RMi2, · · ·, RMiki
. Each Agile Object Ai also has a so-called Listening Thread LTi that

listens for incoming requests from clients on behalf of the agile object. Each Listening

Thread LTi spawns a so-called Worker Thread WTijq whenever the Listening Thread

LTi accepts an incoming request for remote method RMij. As a result, each Listening

Thread LTi creates a number of Worker Threads WTi11, WTi12, · · ·, WTi1v, WTi21,

WTi22, · · ·, WTi2w, · · ·, WTik1, WTik2, · · ·, WTiky, for remote methods RMi1, RMi2,

· · ·, RMik. Each remote method RMij of an Agile Object Ai has its own Total

Bandwidth Server TBij.

B. A Server-Centric Environment for Real-Time Java RMI

Java RMI system is a well-known middleware for distributed systems, so that Java

RMI system has been used for making distributed real-time systems. As shown in

Figure 7, our Agile Objects System is built on top of Java.

As Java was not originally designed with embedded and real-time applications

in mind [17], it comes to no surprise that a number of limitations have been identified

with Java’s applicability in the real-time domain. Primarily, the non-deterministic

behavior of the garbage collection mechanism could interrupt the execution of appli-

cations for unpredictable intervals of time [18]. Moreover, the Java Virtual Machine’s

21

Machines and Networks

Java Runtime Environment

Naming Migration Real-Time Capability

Agile Objects Middleware

 Distributed Component-Based Applications

Fig. 7. Agile Objects System Architecture

thread scheduling relies on the scheduler of the host operating systems and the de-

tails of the scheduling requirements (such as priorization, resource access, etc.) are

only very sketchily defined. To overcome these and other limitations, the Real-Time

for Java Expert Group has proposed RTSJ, an extension to the Java specification

and Java Application Programming Interfaces (APIs) in order to improve the time

predictability of Java programs. The RSTJ focuses on seven functional areas: thread

scheduling and dispatching, memory management, synchronization and resource shar-

ing, asynchronous event handling, asynchronous transfer of control, asynchronous

thread termination, and physical memory access. An area that was (intentionally)

ignored in the RTSJ is that of distributed execution of real-time programs. In par-

ticular, any limitations within the Java RMI (for example lack of priority inheritance

across threads that handle remote invocations) are not addressed in the RTSJ. The

Distributed Real-Time Specification for Java (DRTSJ) [19] will introduce the Dis-

tributed Real-Time Java RMI. But the DRTSJ and its reference implementation

have not yet been released as of summer 2004.

We propose a server-centric environment for real-time Java RMI system in or-

der to support component isolation of the Agile Objects System. In our proposed

22

environment, we use what we call a server-declared model for real-time properties of

components: The server components keep information for meeting real-time guaran-

tees, instead of inheriting the real-time properties from clients. The server-declared

model ensures that the resource management of real-time RMI servers can be de-

coupled from the client execution environment. As a result, we then can simplify

admission control because we can make all admission test mostly locally.

23

CHAPTER IV

REAL-TIME INFRASTRUCTURE

A. Introduction

We adapt Java as the underlying platform for our reconfigurable distributed compone-

nt-based systems. Java [20] has been used for developing distributed systems because

of its simplicity, security and portability; object oriented methodologies from Java

increase productivity; Java’s safe run-time environment enables controlled access to

system’s critical resources; Java’s byte-code allows Java to be platform independent

and enables portability. In fact, Java has intrinsic features that support distributed

systems, such as threads, concurrency-control mechanism and a serialization proto-

col [21], which eases component migration. The Java Object Serialization protocol for

Java RMI supports point-to-point flows of data. Furthermore, the Java Object Seri-

alization protocol implements a message passing mechanism by delivering messages

as object instances. Java Remote Method Invocation (RMI) [15] provides distributed

object systems with the control flow mechanisms required for method invocations on

remote hosts. Both Java and Java RMI were not designed with support for real-time

systems in mind. The recently released Real-Time Specification for Java (RTSJ) [14]

provides standard real-time Java APIs for developing systems that have timing re-

quirements. Therefore, there is a possibility of integrating Java RMI with the RTSJ.

For this, the Distributed Real-Time Specification for Java (DRTSJ) [19] will propose

for Java RMI to make it be a distributed real-time system model in a near future.

We propose a server-centric environment that allows for the isolation of real-time

server components. In our proposed environment, the real-time server components

keep information for meeting real-time guarantees using server-declared model instead

24

of inheriting real-time properties from clients. This component isolation allows server

execution environment to be decoupled from client execution environment. Therefore,

our server-centric real-time Java RMI system can simplify admission control and help

our resource discovery mechanism to find a host with required resources in order to

support component migration for achieving high application-survivability.

B. Related Work

Originally, Java was designed for Internet Web applications. Therefore, high-per-

formance was not considered as one of Java’s features. However, recent research

projects have proven that Java applications’ performance can be close to that of

applications written in C language [22, 23]. While “fast” need not necessarily be

equaled to “real-time,” the increased performance of Java platforms has made them

attractive for embedded and real-time applications. The Real-Time Specification

for Java (RTSJ) [14] extends The Java Language Specification [20] and The Java

Virtual Machine Specification [24] and provides application programming interfaces

for real-time capabilities. Since the RTSJ has been developed in collaboration between

academic and industry experts, we expect a long lifespan. In taking advantage of

Java’s ability to reduce efforts for development and porting across platforms, the RTSJ

can be used by many industries for developing real-time and embedded systems. The

RTSJ, coupled with a real-time operating system, leverages the capability of Java

for developing real-time systems in the sense that it separates hard real-time, soft

real-time and non-real-time threads. The RTSJ Reference Implementation (RI) from

TimeSys [25] and jRate [26] have implemented the RTSJ.

However, both the RTSJ and its implementations do not support real-time ca-

pabilities for Java Remote Method Invocation (RMI) [15]. There have been several

25

efforts for integrating the RTSJ with the Java RMI mechanism, for example Jensen

et al. [19], Clark et al. [27], and Wellings et al. [28]. Jensen et al. [19] propose

the Distributed Real-Time Specification for Java (DRTSJ). The DRTSJ addresses

predictability of end-to-end timeliness in dynamic distributed real-time systems. In

distributed real-time computing systems, end-to-end timing constraints can be main-

tained over multi-node applications under each node’s current environment. The

DRTSJ has been designed for general cases of dynamic distributed real-time com-

puting systems. Therefore, it is not easy to know each node’s current environment a

priori, such as latency properties of OS and network infrastructure, and system re-

source utilization. To achieve end-to-end multi-node timeliness, the properties of each

multi-node application behavior’s timeliness need to be propagated to the resource

managers of the OS and the Java Virtual Machine (VM) [24] on each node.

The DRTSJ suggests three ways to integrate Java RMI with the RTSJ: The first

approach does not expect timely delivery of messages and inheritance of scheduling

parameters between real-time Java threads and remote objects. It therefore suggests

no changes to the RTSJ and Java RMI. The second approach expects timely delivery

of messages and inheritance of scheduling parameters between real-time Java threads

and real-time remote objects. It therefore suggests extensions required to Java RMI

but no extensions required to the RTSJ or the real-time Java VM. Borg et al. [29]

followed this approach in developing a frame-work for real-time RMI for the RTSJ.

They extended the RMI to support timely invocation of remote objects. The third

approach suggests extensions required to Java RMI, the RTSJ and the real-time

Java VM to support distributed thread functionality. In distributed thread models, a

distributed thread has a system-wide ID and the feature of transparent propagation

of its properties along its execution environments.

26

C. Standard Java RMI Problems for Providing Real-Time Capability

1. Sun’s Java RMI Implementation

J2SE (Java 2 Platform, Standard Edition) RMI implementation provides three layers

to implement transparent method invocations for remote objects:

First, the Stub Layer works as a proxy for the client side. The signatures of

methods that client stubs provide are identical to the signatures of methods defined in

the remote interfaces of remote objects. The stub classes are automatically generated

by an RMI stub compiler. The classes are downloaded from a naming server of RMI

system when client applications locate the remote objects. The stub layer marshals

and unmarshals both arguments and returned values between client and server hosts.

Figure 8 shows the Unified Modeling Language (UML) diagram of Sun J2SE RMI

related classes at the client [30]. The ClassImpl Stub classes are produced by the stub

compiler, which takes the actual remote object implementation classes, ClassImpl,

as input. All the ClassImpl Stub classes should extend class RemoteStub since class

RemoteStub provides the frame-work for supporting remote reference semantics.

Second, the Remote Reference Layer supports semantics of reference and invo-

cation (for instance, unicast and multicast) and translates between local and remote

object references using remote-object tables. Interface RemoteRef defines the meth-

ods for invoking methods to remote objects, and class RemoteStub uses interface

RemoteRef to invoke methods to remote objects. Class UnicastRef implements inter-

face RemoteRef and supports the semantics of unicast method invocation to remote

objects. Class LiveRef constructs a live reference to an instance of class RemoteObject

in another Java virtual machine if the object is not in client’s Java virtual machine.

Otherwise, class LiveRef instantiates a live reference for an instance of class Remo-

teObject in the client’s Java virtual machine.

27

�� � � � � � � �
� 	
 � � 	 � 	
� 	
 � � 	 � � � 	 � � � �� 	 � 	

� � � �� � � � � � � � �
� � ! " # �$ % & � ' � � �

() � � * + � � 	

� ,� - " . � � �
� � � / � � � � � �
� 0 " � � � �

� 	
 � � 	 1 � 2 �

3 4* + + 5
 6 47 1 � 2 �

1 � 8 	 *
 � 	
 � � 	 3 * 4 4

�� � � � � � � �
9) : 6 � �) �

; 3 < 9) : 6 � �) �

1 � � = 	 � ; 3 < ; 8 *) + 6 � 8 �

; 3 < 3 > *)) 	 4

� � � / � " � � � ' � ," � � �
� ? # � � � �

�� � � � � � � �
3 > *)) 	 4

; 3 < 3 �)) 	 � � ��)�� � � � � � � �
3 �)) 	 � � ��)

@ @ A B C D E B D AE D F G G
@ @ A B C D E B D AE D F G G

@ @ A B C D E B D AE D F G G

Fig. 8. The UML Diagram of RMI Client Classes

Finally, the Transport Layer sets up connections to remote address spaces by

using classes TCPEndpoint, TCPChannel and TCPConnection. For TCP, classes

TCPEndpoint, TCPChannel and TCPConnection implement methods defined in the

transport layer interfaces Endpoint, Channel and Connection, respectively. Inter-

face Connection defines methods for transferring data, and interface Channel defines

methods for managing connections.

Figure 9 shows the Unified Modeling Language (UML) diagram of Sun J2SE’s

server-side RMI related classes [30]. In the server-side remote reference layer, class

RemoteServer is used instead of class RemoteStub. As a superclass of RMI server

28

� � � � � � � � � � � � � � 	 	

 � � � � � � �
 � �� �

� � � � � � � � � �� � � � �

� � � � � � � � � �� � � � �

�� � � � � � � �
� � � � � � � � �

� � � � � � ! " �
 �

�$ � � � �

% & ' () * + , , ' - . /
% ' 0 1 2 3 (4 5 6 ' 7 (. /

8 � �
 � 9 � � � �� � � � � � � � � $ � �

�� � � � � � � �
: � ; < � � � �

8 � �
 � 9 � � � � $ � � � � �

% = >? 1 + (7 * . /
% ' 0 1 2 3 (4 5 6 ' 7 (. /

8 � �
 � 9 � � � � � � � ! " �
 �

% ' 0 1 2 3 (4 5 6 ' 7 (. /

� @ !
 	� 9 9 A� < 	� � � � � � � �� �

 � � : � ; < � � � �

% ' 0 1 2 3 (4 5 6 ' 7 (. /

 � �
 � � � 9 < � � �

% ' 0 1 2 3 (4 5 6 ' 7 (. /
% 3 B , . /

 � � � C � � � � 	

� � � � � � � � � �� � � � �

� � � � �
 � �� � D � � ; 	� �

% 3 B , . /

� � � � � � � � � �� � � � �

� � � � � � � � � �� � � � �

�� � � � � � � �
� � � $ � � � � �

Fig. 9. The UML Diagram of RMI Server Classes

implementations, class RemoteServer provides the frame-work for supporting the se-

mantics of remote reference. Class UnicastRemoteObject extends class RemoteServer

and provides method exportObject(). The exportObject() method makes remote ob-

jects available to receive incoming calls from clients by calling method exportObject()

of class UnicastServerRef. Class UnicastServerRef also supports server side behavior

for remote reference layer. Ultimately, the exportObject() method of the instance of

29

class TCPTransport is invoked to export a remote object by referencing the instance

of class LiveRef mapped onto the remote object. The export of a remote object

from an instance of class TCPTransport includes creating a listening system thread

to handle incoming method requests. The listening system thread executes the run()

method of class TCPTransport for accepting connections to server and launches a

non-system thread for each accepted connection. When the system thread spawns

a new non-system thread for handling each connection, the run() method of class

ConnectionHandler is executed by the non-system thread. While executing the run()

method of class ConnectionHandler, the serviceCall() method of class TCPTransport

is invoked to service an incoming remote call. The serviceCall() method locates and

calls the dispatcher object of the required remote object for the incoming remote

call. Class UnicastServerRef plays the role for the dispatcher object. The dispatch()

method of the instance of class UnicastServerRef for the remote object makes an

up-call to the server, class SubclassImplementation of RMI server application, and

marshals the return result from the up-call method.

2. Design Issues for Providing Real-Time Capable Java RMI

We identified three issues that must be addressed when realizing a real-time capable

Java RMI System:

First, as we mentioned above, the export of a remote object involves creating

a number of Java threads. One of those threads listens for incoming calls to the

exported remote object. The others are worker threads for handling each accepted

incoming request separately. To guarantee real-time properties, the Java VM must

support real-time capable threads.

Second, clients must be able to propagate real-time timing constraints to the

remote object. This object may in turn invoke remote methods on other remote

30

objects in different Java VMs, thus act as client to other remote objects.

Finally, we consider open systems, where we have no control over number and

behavior of clients. As a result, invocations can arbitrarily be bursty, due either to

relative phasing of client requests, or to the invocation pattern of single clients. One

of the features of client arrivals should be aperiodic. There may be bursty arrivals of

clients as well. Therefore, how do we provide sporadic real-time tasks of the remote

object with real-time guarantees?

In the following sections, we propose our solutions to the three issues listed above.

D. Real-Time Java Threads

Handling of incoming requests in Java RMI is thread-based. As a result, we render

RMI processing real-time capable with the use of real-time threads: Whenever an

incoming call arrives, the listening thread creates a real-time worker thread for han-

dling the request from the incoming call. The real-time worker thread executes the

run() method of class ConnectionHandler from Figure 9. In order to maintain a high

responsiveness to incoming requests, we have three types of real-time threads, which

differ by their priorities: (1) Worker threads execute the remote method invocations

at their assigned priorities. (2) The EDF scheduling thread handles worker threads,

and runs at a priority higher than all of them. (3) The listening thread runs at pri-

ority higher than both worker threads and EDF scheduler. In this way, the listening

thread executes like an interrupt service routine, which is very short and provides

system responsiveness by executing at highest priority.

31

1. The Creation of Real-Time Threads for Java RMI

Class sun.rmi.transport.RMIThreadAction is used to create Java threads in Sun’s

Java RMI implementation. As we mentioned before, we create real-time worker

threads for handling incoming calls to exported remote objects. We have modified

the run() method of class sun.rmi.transport.RMIThreadAction to create real-time

threads as worker threads for handling client requests. In the run() method, we clas-

sify a requested thread into either a listening thread or a worker thread: If it is a

listening thread, we create an instance of class java.lang.Thread. In addition, we as-

sign a higher priority to the listening thread than the priorities of worker threads and

the EDF scheduler. The reason is not to drop bursty client arrivals due to the delay

caused by processing other higher priority tasks first. If it is a worker thread, we cre-

ate an instance of class javax.realtime.RealtimeThread. The creation of the instances

of class javax.realtime.RealtimeThread requires parameters, such as, an instance of

class javax.realtime.SchedulingParameters and an instance of class javax.realtime.R-

eleaseParameters.

At the time of launching a newly created real-time worker thread, the identity

of the invoked method is as yet unknown. The timing parameters for the invocations

are therefore not known yet as well, and the timing parameters of the worker thread

cannot be correctly instantiated. The EDF scheduler, however, considers the newly

created real-time worker thread as the highest priority task regardless of its default

deadline. Once demarshalling is performed, and the identity of the invoked method is

obtained, the default timing parameters of the newly created real-time worker thread

are properly reset according to the requested remote method. The details will be

further discussed in the following section.

Figure 10 shows how the RTSJ real-time thread can be associated with Java RMI

32

system. Initially, the real-time worker threads generated from the listening threads

are put into the EDF scheduler’s Ready queue. The EDF scheduler assigns priorities

to real-time threads based on their deadlines.

EDF Scheduler for RTSJ Real-Time Threads

RTSJ Real-Time Worker Thread

Start

Ready

Run

Blocked RTSJ Real-Time Threads

Terminated

Listening Thread

RTSJ Reference Implementation

Listening Thread

Fig. 10. The Scheduling of Real-Time Worker Threads for Exported Remote Objects

33

2. The Adjustment of Priorities of Real-Time Worker Threads Based on Admitted

Utilization

During the invocation of an exported remote method on the server side, a real-time

worker thread dispatches an up-call to the remote object. At this time, we get the

object reference of the remote object and the name of the target method. To adjust

the attributes of the instance of class ao.realtor.scheduler.TotalBandwidthParameters

for the real-time worker thread, the workload and utilization of the target method are

obtained. Therefore our local admission control component provides the information

about the workload and utilization of the target method.

As shown in Figure 11, we set the deadline of the current running real-time

worker thread accordingly after getting the workload and utilization of the target

remote method from the local admission control component. Once we set the timing

parameters of the real-time thread, we wake up the EDF scheduler to reflect the

changed deadline of the real-time thread and to reschedule the threads accordingly.

E. A Server-Centric Approach for Preserving Real-Time Timing Constraints

We take a server-centric approach to preserve real-time timing constraints instead of

propagating the real-time timing constraints between clients and server components.

By server-centric we mean that the real-time server components keep information

for meeting real-time guarantees instead of delivering and inheriting the scheduling

and release parameters of the server components between clients and themselves. Ac-

cording to our task model, those timing constraints are defined as workload, deadline

and utilization of each remote method of an exported remote object. The main rea-

son why we choose the server-centric approach is to provide component isolation,

which in turn greatly simplifies the admission control needed for component creation

34

public class AOUnicastServerRef extends UnicastRef {
…
 public void dispatch(Remote obj, StreamRemoteCall call, ObjID id)
 throws IOException

{
…
 if (obj instanceof Migratable) {

 isAO = true;
 bandwidthMonitor = ((Migratable) obj).getBandwidthMonitor();

 defaultAdmissionControl = AdmissionControl.getDefaultAdmissionControl();
 MethodWorkloadInfo methodWorkloadInfo = \
 defaultAdmissionControl.findMethodWorkloadInfo(aoID, methodName);

…
 /*
 * For BandwidthMonitor
 */
 long relativeDeadlineNanos = bandwidthMonitor.getServerPeriodNanos();
 /*
 * We will wakeup EDFScheduler.
 * cost and deadline should be adjusted for SchedulableData.
 */
 RealtimeThread.setTotalBandwidthParameters(costNanos, \
 relativeDeadlineNanos);
…
 /*
 * For BandwidthMonitor
 */
 bandwidthMonitor.acquire();
 }
…
}

…
}

Executing at The
Adjusted Priority

Based on The
Requested

Remote Method

Executing at The
Maximum

Priority
Regardless of

The Requested
Remote Method

Fig. 11. The Procedure for Adjusting the Priority of an RMI Real-Time Worker

Thread

and migration. We use an utilization-based admission control to guarantee real-time

properties of migratable agile objects. By utilization-based admission control we mean

that total utilization reserved for each migratable agile object should be available at

the candidate host for migration before actual migration occurs. The server-centric

approach also reduces the overhead of remote invocations, as there is no need to

exchange timing information as part of the remote invocation at run-time.

35

F. Guaranteed-Rate Scheduling for Sporadic Real-Time Tasks

The real-time worker threads for handling real-time Java RMI are sporadic in nature:

Their arrival is not known a priori, but their timing requirements are known upon

arrival. There have been studies for scheduling aperiodic and sporadic real-time tasks

in deadline-driven real-time systems [9]. There are two popular Bandwidth Preserving

algorithms in deadline-driven real-time systems. One is the Constant Utilization

Server [9] algorithm and the other is the Total Bandwidth Server [9] algorithm. Total

Bandwidth Server, however, shows generally better responsiveness.

1. The Total Bandwidth Server

The Total Bandwidth Server is a periodic server and is defined by two rules, con-

sumption and replenishment rules. In this section we follow J. Liu [9] to describe the

operation of the Total Bandwidth Server.

Initially, our Total Bandwidth Server sets the server’s execution budget Bud-

getServer and deadline of the server DeadlineServer to zero. When a sporadic job

with execution time ExecutionT imeClient arrives at a time t to a job queue with

no backlogged jobs, our Total Bandwidth Server sets DeadlineServer to (max(De-

adlineServer, t) + ExecutionT imeClient / UtilizationServer) and BudgetServer equal

to ExecutionT imeClient. When the current sporadic job of the server finishes, and

if the server is backlogged, our Total Bandwidth Server sets DeadlineServer to (D-

eadlineServer + ExecutionT imeClient / UtilizationServer) and BudgetServer equal to

ExecutionT imeClient. When the current sporadic job of the server finishes and if the

server is not backlogged, our Total Bandwidth Server does nothing. Our scheduler

should take care of the following:

• The scheduler keeps track of the Total Bandwidth Server’s budget BudgetServer.

36

• When the budget BudgetServer reaches to zero, the scheduler suspends the

thread of the sever.

• When the server becomes idle, the scheduler suspends the thread of the sever.

• When the budget BudgetServer is again ready by the replenishment rules of

the Total Bandwidth Server and the server becomes backlogged by arrival of a

sporadic job, the scheduler changes the status of the server thread as ready.

1
2
3

0 1 3 4 8 12 20 Time

Budget of Total Bandwidth Server

0 1 5 4 13 12 25
Total Bandwidth Server of Size 0.25

1.0 2.0 3.0

0 3 6 9 12 15 18 21 24 27
A real-time task requiring 33% of CPU utilization

0 4 8 16 12 20 24 28
A real-time task requiring 25% of CPU utilization

Fig. 12. The Illustration of Total Bandwidth Server Operations

Figure 12 shows how a Total Bandwidth Server works on an EDF-based schedul-

37

ing:

• The sum of the total utilization of periodic tasks and the utilization of the Total

Bandwidth Server is less than 1.

• At time 1, a sporadic job with an execution time of 1 time unit arrives.

• The deadline of the Total Bandwidth Server is set to time 5 (= 1 + 1.0/0.25).

• The budget of the Total Bandwidth Server is set to 1 at time 1, but the job of

the periodic task of period of 4 time units has the earliest deadline, therefore

the periodic job has the priority over the Total Bandwidth Server.

• The first sporadic job completes at time 3 before its deadline.

• The second sporadic job arrives at time 4 with execution time of 2 time units.

• The budget of the Total Bandwidth Server is set to 2, and the Total Bandwidth

Server’s deadline is set to time 13.

• The second sporadic job obtains CPU control at time 5, but the control is

preempted at time 6 by the EDF scheduler for the job of the second periodic

task.

• At time 7, the second sporadic job again obtains CPU control.

• The second sporadic job finishes without a missed deadline.

2. The EDF Scheduler for Total Bandwidth Servers

Bandwidth-preserving schedulers (such as the Total Bandwidth Server) are typically

implemented on top of an EDF scheduling mechanism. Therefore, we designed and

implemented an EDF scheduler class that is compliant with the RTSJ RI.

Figure 13 shows the state diagram of our EDF scheduler. When the EDF sched-

uler has the control of a CPU, the EDF scheduler first checks whether there is any

newly admitted instance of javax.realtime.RealtimeThread class or not. If it is, the

38

Updating The Status of
Real-Time Threads

Processing
Newly Admitted

Real-Time Threads

Processing Inactive
Real-Time Threads

Sorting Real-Time
Threads by Deadline

Assigning Priorities to
Real-Time Threads

Waking

Processing Released
Real-Time Threads

Calculating Next
Wake-Up Time

Waiting

Expiration
of The Timer

for Next
Wake-Up

Or

Notification

from
a Real-Time

Thread

Fig. 13. The State Diagram of the EDF Scheduler for Agile Objects System

EDF scheduler creates an instance of class ao.realtor.scheduler.EDFScheduler$Sch-

edulableData apiece for managing instances of class javax.realtime.RealtimeThread.

After that, the EDF scheduler evaluates the status of all instances of class javax.real-

time.RealtimeThread. There are several requests from instances of class javax.realti-

me.RealtimeThread for putting their operating system threads into desired operating

systems’ states, such as start, stop, resume, sleep and suspend. The EDF scheduler

39

also examines whether or not any instance of class javax.realtime.RealtimeThread

missed its deadline and whether or not the operating system thread of an ongoing

instance of class javax.realtime.RealtimeThread is alive. As mentioned before, the

EDF scheduler has the highest priority over instances of class javax.realtime.Realti-

meThread and instances of class java.lang.Thread.

3. A Probabilistic Approach for Characterizing Total Bandwidth Servers

Each Total Bandwidth Server is characterized two parameters: the maximum budget

and the replenishment period. While the maximum budget can be established by an

execution-time analysis of the remote methods in the agile objects, it is difficult to

choose an optimal replenishment period of the Total Bandwidth Server.

If we assume that inter-arrival times of client requests for each remote method are

distributed based on a given distribution function, we have two options for deciding

the replenishment period: One option is to use the minimum inter-arrival time of

invocations as the replenishment period. This approach is not applicable to open

systems, where little is known about the client population. Setting the invocation

period short enough to handle the bursty arrivals caused by bursty client invocations

and by phasing of invocations from multiple clients would lead to unacceptably low

utilization of host resources. Alternatively, one can take probabilistic approach. In

this approach, each Total Bandwidth Server is modeled as a G/D/1 queue [31, 32].

Client requests arrive in the queue with a randomly distributed arrival time, and the

Total Bandwidth Server allows for execution of the requested remote method for the

given maximum budget time units in each period of the Total Bandwidth Server.

Following Abeni et al. [31, 32] describe the sequence of invocations as a random

process vi = βi − αi − Φ, where βi and αi denote the absolute deadline and

the arrival time of the ith request, respectively, and Φ denotes the period of a Total

40

Bandwidth Server. By the replenishment rules of the Total Bandwidth Server, the

absolute deadline is βi = max{αi, βi−1} + Φ. If we define θi = βi − αi as the relative

deadline of the ith request, we have the distribution of θi through the distribution of

the random process vi by the definition, βi − αi = vi + Φ = θi.

Based on βi+1 = max{αi+1, βi} + Φ, we can have

vi+1 = βi+1 − αi+1 − Φ

= max{αi+1, βi} + Φ − αi+1 − Φ

= max{αi+1, βi} − αi+1

= max{0, βi − αi+1}

= max{0, αi + vi + Φ − αi+1}

= max{0, vi − (αi+1 − αi) + Φ}.

As we define δi+1 = αi+1 − αi, we have vi+1 = max{0, vi − δi+1 + Φ}.

We can consider the random process vi as a Markov process so that we could find the

stationary transition probability matrix T, where Π is the state probability matrix

of the random process vi and Π(i) = T × Π(i−1). If we define Rj = P [δi = j] and

πm
(i) = P [vi = m], we get

πm
(i) = P [vi = m]

= P [max{0, vi−1 − δi + Φ} = m]

=
∞

∑

k=−∞

P [〈max{0, vi−1 − δi + Φ} = m〉 ∧ 〈vi−1 = k〉]

=
∞

∑

k=−∞

P [max{0, k − δi + Φ} = m]P [vi−1 = k].

41

For the case of m = 0:

π0
(i) =

∞
∑

k=−∞

P [k − δi + Φ ≤ 0]P [vi−1 = k]

=
∞

∑

k=−∞

P [δi ≥ k + Φ]P [vi−1 = k]

=
∞

∑

k=0

∞
∑

j=k+Φ

P [δi = j]πk
(i−1)

=
∞

∑

k=0

∞
∑

j=k+Φ

Rjπk
(i−1).

For the case of ∀m > 0:

πm
(i) =

∞
∑

k=−∞

P [k − δi + Φ = m]P [vi−1 = k]

=
∞

∑

k=−∞

P [δi = k − m + Φ]πk
(i−1)

=
∞

∑

k=0

Rk−m+Φπk
(i−1).

The transition probability matrix T looks like the following:

T =





















































∑

∞

`=Φ R`

∑

∞

`=Φ+1 R`

∑

∞

`=Φ+2 R`

∑

∞

`=Φ+3 R`

∑

∞

`=Φ+4 R` ·

RΦ−1 RΦ RΦ+1 RΦ+2 RΦ+3 ·

RΦ−2 RΦ−1 RΦ RΦ+1 RΦ+2 ·

RΦ−3 RΦ−2 RΦ−1 RΦ RΦ+1 ·

RΦ−4 RΦ−3 RΦ−2 RΦ−1 RΦ ·

· · · · · ·

R0 · · · · ·

0 R0 · · · ·

· · · · · ·





















































.

42

Again, we can get the state probability matrix Π, where



















π0
(i)

π1
(i)

π2
(i)

·



















=



















∑

∞

`=Φ R` · · ·

RΦ−1 · · ·

· · · ·

· · · ·



















×



















π0
(i−1)

π1
(i−1)

π2
(i−1)

·



















.

If we assume that inter-arrival times of client requests are exponentially dis-

tributed, each Total Bandwidth Server can be modeled as a M/D/1 queue. The

probability density function for inter-arrival time, δ, is given by

fpdf (δ) =











λe−λδ if δ ≥ 0 ;

0 if δ < 0 ,

where λ denotes an inter-arrival rate of client requests. We have the following tran-

sition probability matrix T:

T =





















































(1 + λ)e−λΦ (1 + λ)e−λ(Φ+1) (1 + λ)e−λ(Φ+2) (1 + λ)e−λ(Φ+3) ·

λe−λ(Φ−1) λe−λΦ λe−λ(Φ+1) λe−λ(Φ+2) ·

λe−λ(Φ−2) λe−λ(Φ−1) λe−λΦ λe−λ(Φ+1) ·

λe−λ(Φ−3) λe−λ(Φ−2) λe−λ(Φ−1) λe−λΦ ·

λe−λ(Φ−4) λe−λ(Φ−3) λe−λ(Φ−2) λe−λ(Φ−1) ·

· · · · ·

λ · · · ·

0 λ · · ·

· · · · ·





















































.

In this probabilistic approach, we can get an optimal period of a Total Bandwidth

Server, Φ, which maximizes the value of π0
(i) with a given distribution function of

inter-arrival times of client requests and the worst-case execution time of each remote

43

method of agile objects.

Finally, the utilization of each remote method can be defined by dividing the

maximum budget by the replenishment period Φ of the Total Bandwidth Server for

each remote method. Given these parameters, the Total Bandwidth Server is fully

defined.

G. Experimental Evaluation

In this section, we evaluate the real-time capabilities of the extensions to Java RMI

described in the previous sections.

First, the average and standard deviation of execution times of a local method are

measured on five different Java Virtual Machines (VMs). This experiment illustrates

the level at which each Java VM guarantees predictable execution times for local

methods. We also use the same local method as a target method for upcalls requested

by RMI clients throughout the experiments of this section. In this way, we can later

determine the net average overhead of remote method invocations in addition to the

execution time of the local method.

In a second step, we measure latency of the remote method invocations. This

experiment evaluates whether or not our methodology provides predictable latency

for a real-time RMI server in the presence of heavily CPU-bound tasks.

Finally, we evaluate the performance of the EDF job scheduler and the Total

Bandwidth Server that ensure predictable execution times for both periodic and spo-

radic real-time tasks.

44

1. Local Method Execution Time

For comparison of local execution time, we have used TimeSys 3.1 Real-Time ver-

sion for OS and five Java VMs: JDK1 1.3.0-classic VM [33], JDK 1.3.0-interpreted

mode [33], JDK 1.3.0-mixed mode [33], TimeSys Real-Time Specification for Java

Reference Implementation (RTSJ RI) [25], and TAMU RTSJ RI with Real-Time Re-

mote Method Invocation (RT-RMI), that is, our implementation.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 2000 4000 6000 8000 10000

E
xe

cu
tio

n
T

im
e

(s
ec

)

Iteration

TAMU RTSJ RI with RT-RMI
TimeSys RTSJ RI

JDK 1.3.0-classic VM
JDK 1.3.0-interpreted mode

JDK 1.3.0-mixed mode

Fig. 14. Execution Time of Local Method on TimeSys 3.1-RT

Figure 14 shows the execution time distribution of a local method for each Java

VM. This was measured on the server (Dell Dimension 4100 Pentium III 933 MHz

with memory of 256 Megabytes). As can be seen on Figure 15, all JDK versions take

1Java Development Kit; the standard Java development tools provided by Sun
Microsystems.

45

less time to execute the local method than the TimeSys RTSJ RI.

 0

 5

 10

 15

 20

JDK 1.3.0-
mixed mode

JDK 1.3.0-
interpreted mode

JDK 1.3.0-
classic VM

TimeSys RTSJ RITAMU RTSJ RI
 with RT-RMI

E
xe

cu
tio

n
T

im
e

(m
ill

is
ec

)

20.529

0.21

20.5

0.201

14.538

0.163

10.314

0.141

3.425

0.108

average
standard deviation

Fig. 15. Average and Standard Deviation of Local Method Execution Time on

TimeSys 3.1-RT

TimeSys RTSJ RI takes approximately six times longer than JDK 1.3.0-mixed

mode. This is because the TimeSys version is (a) targeted towards real-time execu-

tion, thus does not contain many optimizations that optimize performance, and (b)

is a very preliminary implementation at that. Since we use the TimeSys RTSJ RI

as base to implement TAMU RTSJ RI with RT-RMI, so our implementation inherits

the overhead of the TimeSys version. However, as shown in Figure 15, the overhead

of adding RT-RMI to our implementation is negligible.

46

2. Latency of Remote Method Invocation

In this experiment, the real-time Java RMI performance is measured in terms of

averages of the latencies of periodic remote method invocations. In order to focus on

real-time performance we use the simple configuration depicted in Figure 16, where

a network analyzer is directly connected between two hosts (Dell Dimension 4100

Pentium III 933 MHz with memory of 256 Megabytes). We use a Fast Ethernet that

supports 100 Mbps. We also use an Agilent Technologies Network Analyzer that has

nanosecond timer resolution and Windows 2000 Pro Embedded with two CPUs.

 Client
(Dell Dimension 4100 Pentium III)

Server
(Dell Dimension 4100 Pentium III)

 Agilent Technologies
Network Analyzer

 Fast Ethernet Link
(100 Mbps)

Fast Ethernet Link
(100 Mbps)

Application

Network Stack

RMI Stub (V1.2)

Network Stack

RMI Stub (V1.2)

Client invokes a
method.

Worker thread
invokes the target

method.

Target Object

Packet Capture
(Measurement Point)

Fig. 16. The Experiment Environment

We show the latency of remote method invocation by measuring the time differ-

ence between the moment of client’s sending of the first packet of the RMI request

47

and the moment of server’s sending of the last packet of the result. The Agilent Tech-

nologies network analyzer captures all packets on the link between the server and the

client. We use Ethereal [34] in order to extract timing information from the captured

packets by using a refined data display for the RMI protocol. The use of the network

analyzer allows our measurements not to perturb the execution of the RMI server.

For periodic job arrivals multi-threaded client application generates remote method

invocations to the server.

a. Java VM Running One RMI Server and High Background Load

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 200 400 600 800 1000

La
te

nc
y

(s
ec

)

Iteration

TAMU RTSJ RI with RT-RMI
JDK 1.3.0-interpreted mode

JDK 1.3.0-mixed mode

Fig. 17. RMI Latency with High Background Load

We run two non-real-time Java applications that compress big size of files on

the RMI server’s Java VM to generate a high background load. Figure 17 shows

48

the latency of remote method invocations on three Java VMs: JDK 1.3.0-interpreted

mode, JDK 1.3.0-mixed mode, and TAMU RTSJ RI with Real-Time Remote Method

Invocation (RT-RMI). As can be seen, lower two lines corresponding JDK 1.3.0-

interpreted and mixed modes respectively, show unusual high latencies. It apparently

shows sporadic long latencies of lower two lines corresponding JDK 1.3.0-interpreted

and mixed modes respectively while upper one line corresponding TAMU RTSJ RI

with RT-RMI shows very predictable latency.

Figure 18 shows the average latency of the same experiment with Figure 17.

TAMU RTSJ RI with RT-RMI has larger average latency than those of two JDK 1.3.0

modes. However, as can be recalled from Figure 15, the average latency of TAMU

RTSJ RI with RT-RMI for executing remote methods is inherited from TimeSys

RTSJ RI. In addition, the overhead of the RMI protocol handling that includes the

particular overhead for agile objects is 9% of the average latency of TAMU RTSJ

RI with RT-RMI for executing remote methods while the overhead of RMI protocol

handling in JDK 1.3.0-interpreted mode is 8% of the average latency of remote method

invocations.

Figure 19 clearly shows how most of the latency variation is due to RMI protocol

handling. This data also clearly demonstrates how our RT-RMI implementation (i.e.,

addition of real-time worker thread management and Total Bandwidth Server) greatly

increases RMI predictability.

This result demonstrates that TAMU version clearly supports real-time capa-

bility while the other two versions do not. In other words, the latencies of remote

method invocations are predictable in TAMU version due to the EDF job scheduler

and the Total Bandwidth Server.

49

 0

 0.005

 0.01

 0.015

 0.02

 0.025

JDK 1.3.0-mixed modeJDK 1.3.0-interpreted modeTAMU RTSJ RI
 with RT-RMI

A
ve

ra
ge

 L
at

en
cy

 (
se

c)

RMI protocol handling
invoked method

Fig. 18. Decomposition of RMI Latency

b. Java VM Running One RMI Server and Varying Amount of Background Load

Figure 20 shows the comparison of average and standard deviation of the RMI server’s

latencies in server execution environments where other workloads run together. The

RMI server consumes 22% of CPU utilization. In Figure 20 each label in horizontal

axis stands for the following.

• “None”: there is no other workload in the server VM except the RMI server.

• “BG-25”: one background Java thread is running in the RMI server’s VM. It

consumes 25% of CPU utilization. It has a Java priority of 5 and is not under

control of our EDF scheduler.

• “Two RT-10s”: two real-time Java threads are running in the RMI server’s VM.

Each real-time Java thread performs CPU-bound computations periodically and

consumes 10% of CPU utilization.

50

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

JDK 1.3.0-mixed modeJDK 1.3.0-interpreted modeTAMU RTSJ RI
 with RT-RMI

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 L

at
en

ci
es

 (
se

c)

RMI protocol handling
invoked method

Fig. 19. Standard Deviation of RMI Latency

• “RT-10”: one real-time Java thread is running in the RMI server’s VM. It

consumes 10% of CPU utilization.

• “RT-20”: one real-time Java thread is running in the RMI server’s VM. It

consumes 20% of CPU utilization.

• “RT-30”: one real-time Java thread is running in the RMI server’s VM. It

consumes 30% of CPU utilization.

• “RT-40”: one real-time Java thread is running in the RMI server’s VM. It

consumes 40% of CPU utilization.

• “RT-50”: one real-time Java thread is running in the RMI server’s VM. It

consumes 50% of CPU utilization.

• “RT-60”: one real-time Java thread is running in the RMI server’s VM. It

consumes 60% of CPU utilization.

51

 0

 5

 10

 15

 20

 25

RT-60RT-50RT-40RT-30RT-20RT-10Two RT-10sBG-25None

La
te

nc
y

(m
ill

is
ec

s)

Workloads in Server Execution Environment

21.738

0.171

21.901

0.223

22.067

2.409

21.847

1.272

21.935

1.607

22.016

1.877

22.060

2.011

22.139

2.233

22.538

3.380

average
standard deviation

Fig. 20. RMI Latency with Varying Amount of Background Load

As can be seen, the average of the RMI server’s latencies very slightly increases

as the workload of a real-time Java thread increases. There is an increase of 3.68%

in average latency of the RMI server when a real-time Java thread consumes 60%

of CPU utilization in the RMI server’s VM. However, the standard deviation of the

RMI server’s latencies increases up to 3.380 milliseconds.

In addition, Figure 21 shows the decomposition of the RMI server’s latencies of

the same experiment with Figure 20. As can be seen on Figure 21, the averages of

the RMI latencies both for invoked method and RMI protocol handling vary little

when the workloads of other tasks that run on the RMI server’s VM change.

This result demonstrates how well TAMU RTSJ RI with RT-RMI provides pre-

dictable latency of remote method invocations even in conditions with varying amount

of background load.

52

 0

 5

 10

 15

 20

 25

RMI protocol handlinginvoked method

La
te

nc
y

(m
ill

is
ec

s)

no workload
25% of CPU utilization for a background process

20% of CPU utilization for two real-time Java threads
10% of CPU utilization for a real-time Java thread
20% of CPU utilization for a real-time Java thread
30% of CPU utilization for a real-time Java thread
40% of CPU utilization for a real-time Java thread
50% of CPU utilization for a real-time Java thread
60% of CPU utilization for a real-time Java thread

Fig. 21. Decomposition of RMI Latency with Varying Amount of Background Load

53

CHAPTER V

MOBILITY

A. Introduction

Dynamic process migration has been attractive for dynamic load balancing [35], fault

tolerance [36], and high-throughput computing [37] in distributed systems.

By migrating processes from highly loaded nodes to lightly loaded nodes at run-

time, dynamic load balancing can be achieved; in this way on-the-fly workload bal-

ancing mechanisms maximize system utilization.

When resources are geographically localized, for example in grid computing en-

vironments, process migration also leverages efficient utilization of the resources, in-

cluding network bandwidth, by migrating processes closer to the nodes where the

resources are located.

The Condor r© Project [37] has developed software middleware for high-throug-

hput computing environments. This middleware is based to a large extent on process

migration and checkpointing mechanisms. The checkpointing mechanism captures

the complete set of information for a migrating process. The given set of information

allows the migrating process to continue its execution on the new location.

Process migration mechanisms transfer the memory image of running processes

to the destination’s execution environment. The memory image includes information

of the states of both the running process and opened files. The states consist of virtual

memory state, execution state, kernel state, and message channel state. As a result,

the cost for process migration is proportional to the size of the process’ memory image

and the number of accessed files. As operating systems evolve, more complexity is

involved in process migration. Typically, OS supported process migration allows a

54

process to migrate from one node to another homogeneous node. This means thus

such schemes work only on homogeneous computing environments.

Alternatively, one can take advantage of language-level mechanisms, such as the

Java Object Serialization protocol [21] to migrate language-level entities, such as Java

objects. The sender of a Java object encapsulates the object’s dynamic information

in a byte stream through the Java Object Serialization protocol. On the receiver

side, a copy of the original object is created, although static or transient fields are

not transmitted. We distinguish passive from active objects, depending on whether

they contain threads while a passive object has no thread active over any significant

amount of time, active objects have such threads. For example, objects that contain

listening threads are active. Examples of active objects are objects of class java.rmi.s-

erver.UnicastRemoteObject and its derivative classes. Since remote invocation relies

on the presence of listening threads, passive objects are naturally referenced only by

other objects in the same Java Virtual Machine.

In the Agile Objects System, mobility for agile objects is provided by the Java

Object Serialization protocol. Agile objects are active objects due to their inheri-

tances from class java.rmi.server.UnicastRemoteObject. In order to keep the migra-

tion mechanism simple, objects with executing threads cannot be migrated. Agile

objects cannot be migrated in the middle of executing requested methods for clients.

When all requested methods have been completed, the agile object can be migrated

onto another node. The listening thread is terminated before migration and restarted

after successful migration. This is possible because this thread has no state.

Our methodology satisfies the following objectives: application transparency by

providing Java package ao.migration and package ao.nameserver, independence from

heterogeneous execution environments by utilizing Java virtual machine, fast migra-

tion by applying both Java Object Serialization protocol and a proactive resource

55

discovery.

B. Related Work

We classify the migration of software component into three categories based on gran-

ularity: process, thread, and active object.

Condor [37, 38] implements UNIX process migration by using checkpointing and

restart of the process. When an original process is created, Condor code linked with

the original process installs a signal handler for the checkpoint signal. This signal

handler allows for saving the state of a process’ CPU into a checkpoint file. Because

the primary concern in Condor is to make sure that the owner of a workstation does

not have degraded performance after adding his or her workstation into the Condor

pool of workstations, the process of the job must vacate the workstation when the

owner begins to use it. The checkpoint handler causes a core dump of the process

to produce a checkpoint file by combining the core file and executable modules when

the running process receives a checkpoint signal. At restart time Condor restores

text, data and stack segments from the checkpoint file. The high cost of Condor’s

process migration, however, limits the usefulness of Condor for small jobs as well as

for real-time applications [39].

Ma [40] recently proposed Java Message Passing Interface (MPI) that supports

transparent Java process migration for load balancing. This technique utilizes the

Java Virtual Machine Debugger Interface (JVMDI) to capture the execution context

and restore it at the Java bytecode level after migration. It is natural that Ma’s

approach improves throughput because workload allocation for conventional MPI is

static whereas the Java MPI moves workload to lightly-loaded hosts transparently.

However, having JVMDI on top of the Java VM causes new overhead because all

56

method invocations are executed under control of the JVMDI.

Zhu [41] has proposed a Distributed Java Virtual Machine (DJVM) that supports

transparent Java thread migration by implementing an embedded global object space

layer in the Java VM. This architecture requires global load monitor software that

monitors workload on each machine and triggers migration for load balancing.

Troger [42] uses Aspect-Oriented Programming (AOP) to achieve transparent

object migration in the Microsoft .NET environment. Although Troger supports a

run-time entity migration, the work does not address real-time capability, our major

concern.

Significant research has been performed to make run-time migration of software

component as practical as possible. Although our survey is not exhaustive, we have

not found one that has specifically addressed real-time capability for run-time migra-

tion of software component.

C. Our Methodology for Migration

Generally speaking, a software component is a self-contained package that holds its

code and state. In our methodology, the software component is an active object of

the Java RMI server that extends class java.rmi.server.UnicastRemoteObject. The

migration of software component, therefore, means that Java RMI server, active ob-

ject, continues to run in another host after migration because Java RMI mechanism

associated with Java Object Serialization protocol automatically re-builds the Java

RMI server’s run-time environment in the host where the active object moved in.

In this way, the migration is performed in a shortest time by utilizing Java built-in

functions; dynamic class loading, the RMI mechanism, and the object serialization

protocol. The migration is typically performed as follows:

57

1. Class Migratable declaration: For components that need to be migrated at run-

time, we define their classes by extending a Java built-in class java.rmi.serve-

r.UnicastRemoteObject. By invoking the exportObject() method of class java.r-

mi.server.UnicastRemoteObject in the initialization, we make the instances of

the new class available outside. These classes are also declared as interface

java.io.Serializable.

2. Migration decision: Migration is triggered by the invocation of the method mi-

grate() of the migratable RMI server. This method in turn is called by the local

load balancer or by some policy module that react to an adverse event such as

system malfunctions, local system policy changes, and cyber attacks.

3. State saving: We use the Java Object Serialization protocol to save the run-

time state of the RMI server. Serialization is the process of saving an object’s

dynamic state into a byte stream.

4. Locating a destination host: In order to support low-latency migration, the des-

tination host information needs to be readily available at the time of migration

decision.

5. Transfer of Code and State Information: We use the Java’s dynamic class load-

ing and the Java Object Serialization protocol to send the code and the state

of the RMI server to the destination, respectively.

6. Continuation of Execution: Upon receiving the object, the Java virtual machine

in the destination host creates a listening thread for the newly migrated object.

By definition, such an object needs a listening thread to receive requests from

clients. If the destination host does not have the corresponding class, it first

downloads the class from outside and makes the object actively run with a

newly created listening thread.

58

Once an active object is declared by extending class java.rmi.server.UnicastRe-

moteObject, migration is performed through the RMI server mechanism, the object

serialization protocol, and the Java’s dynamic class loading.

1. Java Object Serialization Protocol

The Java Object Serialization protocol provides the ability to store and retrieve Java

objects. The serialized byte streams represent the state of one or more Java objects,

that is, sufficient data to reconstruct the Java objects.

As seen in Figure 22, Java serialization converts the memory representation of the

target object in the heap into a stream of bytes. This process includes the serialization

of all reachable objects from the target object. Usually the serialized stream of bytes

is stored in persistent storage or transmitted to another Java virtual machine over

network. On the receiver’s Java virtual machine, the transmitted stream of bytes can

be used to reconstruct all objects and store them into heap memory. Java objects to

be stored in the byte streams should implement either interface java.io.Serializable

or interface java.io.Externalizable.

Interface java.io.Serializable defines no methods. It serves only to identify classes

whose objects may be saved into byte streams. Interface java.io.Externalizable defines

methods writeExternal() and readExternal(). For the Externalizable classes, which

implement interface java.io.Externalizable, the classes are responsible for saving and

restoring the contents of their instances. Interface java.io.Externalizable also extends

interface java.io.Serializable.

The Externalizable classes implement method writeExternal() to save its con-

tents by calling the writeObject() method of interface java.io.ObjectOutput for fields

of Java object or by calling the methods of interface java.io.DataOutput, such as meth-

ods writeBoolean(), writeChar(), writeDouble(), writeFloat(), writeInt(), writeLong(),

59

Field_1

Field_2

Field_3

HEAP

SERIALIZATION

Serialized Byte Stream

Field_1

Field_2

Field_3

HEAP

DESERIALIZATION

Serialized Byte Stream

Transmission Through Network

Fig. 22. Java Object Serialization Protocol

writeShort(), or writeUTF(), according to their fields of primitive types.

In addition, the Externalizable classes implement method readExternal() to re-

store their contents by calling the readObject() method of interface java.io.ObjectI-

nput for fields of Java object or by calling the methods of interface java.io.DataInp-

ut, such as methods readBoolean(), readChar(), readDouble(), readFloat(), readInt(),

readLong(), readShort(), or readUTF(), according to their fields of primitive types.

Method readExternal() should read the values in the same order and with the same

60

types as were written by method writeExternal().

For the Serializable classes, which implement interface java.io.Serializable, the

byte stream includes enough information to restore the fields in the byte stream to a

compatible version of the class. The name and signature of the class are included in

the serialized byte stream so that the serialized byte stream must be able to identity

and verify the Java class of the Java object.

Java class information is required to create a new instance from the serialized

byte stream because the contents of the Java object are saved based on the Java

class information. Method writeObject() is used to write the states of an object for

its particular class so that the corresponding method readObject() can reconstruct it.

The default method for storing instances of class java.lang.Object is the defaultWri-

teObject() method of class java.io.ObjectOutputStream. Class java.io.ObjectOutput-

Stream stores graphs of class java.lang.Object and values of primitive data types. It

also inherits from abstract class java.io.OutputStream.

The Java Object Serialization protocol tests each object that is to be stored to

check whether or not the object implements interface java.io.Externalizable. If the

object supports interface java.io.Externalizable, method writeExternal() is invoked to

save the object. If the object does not implement interface java.io.Externalizable and

does support interface java.io.Serializable, class java.io.ObjectOutputStream is used

to store the object. Class java.io.ObjectOutputStream implements both interfaces

java.io.DataOutput and java.io.ObjectOutput.

During deserialization, a new instance of the class of the serialized object is

created, and the readObject() method of class java.io.ObjectInputStream is invoked.

Method readObject() reads the object information from the byte stream and restores

the fields of the object. Java’s safe casting is used to get the desired type. The default

readObject() method for class java.lang.Object is the defaultReadObject() method of

61

class java.io.ObjectInputStream. Class java.io.ObjectInputStream implements both

interfaces java.io.DataInput and java.io.ObjectInput so that it can deserialize fields

of both primitive data types and class java.lang.Object. When deserialization of an

Externalizable object occurs, a new instance is created by using public no-argument

constructor, then method readExternal() is invoked.

2. The Deserialization of Java RMI Server Objects

Usually, Java RMI server classes extend class java.rmi.server.UnicastRemoteObjec-

t because the latter provides its subclasses with built-in support for remote access

and invocation. One of those behaviors is to create a listening thread when deseri-

alization occurs. For this, class java.rmi.server.UnicastRemoteObject defines its own

method readObject() for deserialization. As we mentioned before, the subclasses of

class java.rmi.server.UnicastRemoteObject export themselves to outside clients by

providing listening service and by supporting point-to-point active object references

using TCP streams. The exportObject() method of class java.rmi.server.UnicastRe-

moteObject is responsible for exporting the objects of class java.rmi.server.Unicast-

RemoteObject. When any object of class java.rmi.server.UnicastRemoteObject is in-

stantiated, the 〈init〉() method of class java.rmi.server.UnicastRemoteObject invokes

method exportObject().

Generic or default Java deserialization and clone mechanisms bypass the execu-

tion of 〈init〉() method of each class, instance variable initializer, for deserialized or

cloned objects. The reason for this is that initialized instance values that have been

resulted from the execution of each 〈init〉() method are soon to be replaced with the

values from serialized byte streams. Therefore, the customized readObject() method

of class java.rmi.server.UnicastRemoteObject invokes method reexport() to export

deserialized object of class java.rmi.server.UnicastRemoteObject. Method reexport()

62

simply calls method exportObject() after execution of the defaultReadObject() method

of class java.io.ObjectInputStream.

3. Java Classes for Agile Objects Migration Mechanism

Figure 23 shows the UML diagram of Java classes for the Agile Objects package ao.

As seen in Figure 23, interface ao.migration.Migratable inherits from interface ao.na-

meserver.AORemote. Interface ao.nameserver.AORemote defines a method for iden-

tifying unique Agile Object IDentifiers (AOIDs). The AOID should be unique over

distributed execution environments of agile objects System. Clients use this AOID

to locate a migratable agile object by lookup from the Agile Object Naming server.

To be a kind of the RMI server, interface ao.nameserver.AORemote extends interface

java.rmi.Remote. Class ao.nameserver.AOUnicastRemoteObject implements inter-

face ao.nameserver.AORemote and inherits from class java.rmi.server.UnicastRem-

oteObject.

a. Interface ao.migration.Migratable

Interface ao.migration.Migratable defines methods migrate(), startMigrationTo(), and

completeMigration(). Agile objects should implement this interface in order to be

migratable.

Method migrate() takes a destination as a parameter. Method migrate() acquires

a lock from the Agile Objects Naming Server before starting the serialization of a

migrating agile object. Once it has acquired the lock, it calls method startMigration-

To(). The reason for acquiring the lock is to make sure that the Naming Server does

not give out obsolete references to migrating agile objects. The lock is released after

successful migration (see below).

Method startMigrationTo() takes two parameters, such as destination and TCP

63

+ getAOID()
+ getServiceName()

� � � � � � � � �

ao.migration.Migratable

+ migrate()
+ startMigrationTo()
+ completeMigration()

ao.migration.MigWrapper

+ migrate()
+ startMigrationTo()
+ completeMigration()

� � � � � � � � �

ao.nameserver.AORemote

+ getAOID()
+ getServiceName()

� � � � � � � � �

java.rmi.Remote

implements

implements

+ exportObject()

java.rmi.server.UnicastRemoteObject

ao.nameserver.AOUnicastRemoteObject

Fig. 23. UML Diagram of Java Classes for Package ao

port. The method makes the lookup of the Agile Objects Naming Server and requests

the Agile Objects Naming Server to unbind the migrating agile object. Method start-

MigrationTo() also starts transmission of the states of the agile object to destination

through Java Object Serialization protocol and class ao.migration.DataSender.

Method completeMigration() rebinds the migrating agile object associated with

new location to the Agile Objects Naming Server after finishing deserialization and the

execution of method reexport(). When the rebinding to the Agile Objects Naming

Server completes, method completeMigration() releases the lock acquired from the

execution of method migrate().

64

b. Class ao.migration.DataSender

Migration mechanism uses this class both to serialize an agile object and to ship it

to a selected destination.

c. Class ao.migration.MigWrapper

Class ao.migration.MigWrapper extends class ao.nameserver.AOUnicastRemoteOb-

ject and implements interface ao.migration.Migratable. Every agile object should

extend this class to support migration.

Class ao.nameserver.AOUnicastRemoteObject extends class java.rmi.server.U-

nicastRemoteObject and implements interface ao.nameserver.AORemote. Interface

ao.nameserver.AORemote extends interface java.rmi.Remote.

d. Class ao.migration.RTJVM

The intension of this class is to reuse the Java virtual machines hosting agile objects

after they migrate. Class ao.migration.RTJVM is responsible for deserializing migrat-

ing agile objects on current node. After deserialization, class ao.migration.RTJVM

rebinds the agile objects to the Agile Objects Naming Server and releases the lock

acquired from the Agile Objects Naming Server by calling the agile objects’ method

completeMigration().

D. Methodology

In order to create a worst-case scenario (i.e., generating maximum latency for lookup),

a strict synchronization is used for acquiring a lock from the Agile Objects Naming

server. Whenever an agile object migrates, it should acquire the lock from the Agile

Objects Naming server before starting its migration. Until the agile object migrates

65

Agile Objects System

Source

HOST B

Agile Objects System

Destination

HOST C

Agile
Objects
Naming
Server

Migration
&

Lookup
Client

HOST A

(1)

(2)

(3)

(4)
(5)

(6)

(7)

(1): Trigger an external migration
(2): Negotiate migration
(3): Acquire a lock and unbind the migrating Agile Object
(4): Transmit the Agile Object
(5): Request the acquisition of the lock
(6): Rebind the Agile Object and release the lock
(7): Acquire the released lock

Fig. 24. Experiment Environment for the Worst-Case Latency of Lookup with a Mi-

gration

to a new location and releases the lock, no client can acquire the lock from the Agile

Objects Naming server to look up the agile object. Figure 24 illustrates this worst-case

lookup scenario: an external migration is triggered (1); the agile object’s source host

negotiates the migration with the destination host (2); before starting the migration,

the agile object acquires a lock from the Agile Objects Naming server (3); Once the

negotiation succeeds, Java Object Serialization mechanism is used to transmit the

agile object to the destination (4); a client tries to acquire the lock from the Agile

Objects Naming server, but the client should wait for acquiring the lock until the

66

AC

AC

AC

MM

MM

MM

MM

AC AC

NS

NS

NS

Migration
Client

Agile Objects
Naming Server

Source
Host

Destination
Host

AC

MMNS Naming
Server

Admission
Control

Migration
Mechanism

Request

ACK

� � � � � � � � � 	
 � � � 	 � � � � 	

 � �
 � � � � � � � �� � � � � � � � � � �

� � � � � � �� � � !

" # $ � # %
& ' () * + , -- . / 0 / ' 1 / '

2 3 4 5 3 6 77 8 3 9 : ; < = > ? @ A B C D > E > F G > F H
= > I > J K > C D > L M N O

t1

t2

P

t
:

W
o
r
s
t
-
C
a
s
e

L
a
t
e
n
c
y

o
f

L
o
o
k
u
p

w
i
t
h

a

M
i
g
r
a
t
i
o
n

MM

Fig. 25. The Worst-Case Latency of Lookup with a Migration

migration mechanism releases the lock (5); after finishing the deserialization of the

migrating agile object, the agile object rebinds itself with the Agile Objects Naming

server and releases the lock (6); the synchronization mechanism unblocks the client

so that the client acquires the released lock (7).

Figure 25 illustrates the interactions between the components of Agile Objects

system for the worst-case lookup scenario of Figure 24 in more detail: When the

local Admission Control of the source host receives an external migration request,

67

the Admission Control negotiates the migration with the remote Admission Control

of the destination host. The remote Admission Control checks its affordable utiliza-

tion to decide whether or not to accept the migrating agile object. If the remote

Admission Control decides to do so, it sends an acknowledgement message to the

local Admission Control. Then the local Admission Control asks the local Migration

Mechanism to acquire a lock from the Agile Objects Naming server. Once the lo-

cal Migration Mechanism acquires the lock from the Agile Objects Naming server,

it unbinds the migrating agile object from the Agile Objects Naming server. After

successful unbinding, the local Migration Mechanism transmits the agile object to

the remote Migration Mechanism of the destination host. If the remote Migration

Mechanism deserializes the agile object, the remote Migration Mechanism sends an

acknowledgement message to the local Admission Control for notifying successful mi-

gration. When the local Admission Control receives the acknowledgement message

from the destination host, it sends an acknowledgement message to the migration

client for responding to the external migration request. The client tries to acquire

the lock from the Agile Objects Naming server, but it should be blocked until the lock

is released by the remote Migration Mechanism. Meanwhile the remote Admission

Control rebinds the newly accepted agile object to the Agile Objects Naming server,

then the remote Admission Control releases the lock. After the lock is released by

the remote Admission Control, the client can be unblocked and acquire the lock.

E. Experimental Evaluation

The latencies of lookups for migrating real-time RMI servers (agile objects) should be

predictable in order to guarantee the worst-case end-to-end delays for real-time appli-

cations. Whenever migratable RMI servers move onto different hosts, clients should

68

get new remote object references from the Agile Objects Naming server (lookup). The

latency of lookup includes the migration delay of the migratable RMI server in the

worst case because clients should be blocked until the migratable RMI server rebinds

itself to the Agile Objects Naming server. Therefore, we should take the worst-case

latency of lookup into account for calculating the worst-case latency of a real-time

remote method invocation for migratable real-time RMI server.

To evaluate the performance of the real-time migration mechanism, three hosts

(Dell Dimension 4100 Pentium III 933 MHz with 256 Megabytes of memory) are used

as depicted in Figure 24. All three hosts are interconnected by a router for 10/100

Mbps transmission rate. One host (Host A) is used for running both the Agile Objects

Naming server and the client application, and the other hosts (Host B and Host C)

are used as source and destination hosts for migration. Initially, an agile object is

running on Host B. If migration is triggered by an external request, the agile object

migrates to another Host C. Meanwhile, the client on Host A requests the lookup of

the migrating agile object to the Agile Objects Naming server. However, the client

should wait for getting the new remote object reference of the migrating agile object

until the migration from Host B to Host C completes. After getting the new remote

object reference of the agile object, the client invokes a remote method of the agile

object. Once the remote method invocation is finished, another external migration is

triggered by Host A. The second migration follows the same procedure with the first

migration except that the migrating agile object migrates from Host C to Host B.

We have performed this experiment 600 times with migrations between Host B and

Host C.

We have measured the time difference between t1 (issue of migration trigger) to

t2 (release of lock at Naming Server) from Figure 25 for the worst-case latency for

the lookup of an object that is migrating. Our purpose is to make sure that the client

69

requests the lock to the Agile Objects Naming server immediately after the Migration

Mechanism acquires the lock. This ensures that the client waits until the migration

completes. In this case we have the worst-case latency for getting the new remote

object reference of the migrating agile object from the Agile Objects Naming server.

F. Experimental Results

 0

 20000

 40000

 60000

 80000

 100000

 120000

4095 Bytes2039 Bytes799 Bytes

La
te

nc
y

(µ
se

cs
)

Size of Serialized Object

76995

1299

92897

1311

113951

1375

average
standard deviation

Fig. 26. Latency for a Lookup with a Migration

Figure 26 shows the average and standard deviation of the latencies of the worst-

case lookup for the migrating agile object. It shows very predictable latency for the

lookup, very small standard deviation of the latencies. The value of the standard

deviation for the serialized object size of 799 bytes is 1.7% of the value of the average

latency. The percentage of standard deviation to average latency shows that it is in

70

 0

 20000

 40000

 60000

 80000

 100000

 120000

4095 Bytes2039 Bytes799 Bytes

La
te

nc
y

(µ
se

cs
)

Size of Serialized Object

rebinding and lock release from receiver
serialization on sender
unbinding from sender

lock acquisition from sender
deserialization and etc.

Fig. 27. Decomposition of Latency for a Lookup with a Migration

inverse proportional to the size of serialized agile object since the value of standard

deviation does not change as the size of serialized agile object increases. As a result,

the value of the standard deviation for the serialized object size of 4095 bytes is

only 1.2% of the value of the average latency. Only one migration is allowed during

the period of the Total Bandwidth Server. As can be seen from Figure 26, we have

predictable latencies for the worst-case lookup with a migration for different sizes

of agile objects. As the size of serialized agile object increases, the average of the

latencies for the lookup increases. Each standard deviation of the latencies, however,

does not increase. The latency for handling the Java Object Serialization protocol

depends on the size of serialized Object. As can be seen in Figure 27 and Figure 28,

only the latencies for serialization and deserialization increase as the size of serialized

agile object increases. The other latencies, such as lock acquisition latency, unbinding

71

 0

 10000

 20000

 30000

 40000

 50000

rebinding & lock
 release from receiver

serialization
 on sender

unbinding
 from sender

lock acquisition
 from sender

deserialization
 and etc.

La
te

nc
y

(µ
se

cs
)

799 Bytes
2039 Bytes
4095 Bytes

Fig. 28. Decomposition of Latency for a Lookup with a Migration in Terms of Serial-

ized Object Size

latency, and rebinding latency, do not change as the size of serialized agile object

increases. Therefore, a predictable latency for remote method invocation is achieved

even with agile object’s migration.

Figure 29 shows the comparison of average and standard deviation of latencies

for a lookup with a migration in various execution environments. In this experiment

the size of serialized agile object is 4095 bytes, and the agile object consumes 22% of

CPU utilization. In Figure 29 each label in horizontal axis stands for the following.

• “None”: there is no other workload both in the source and destination’s VMs

for migration except the agile object.

• “BG-25”: one background Java thread is running in the source’s VM while an-

other background Java thread is running in the destination’s VM. Each back-

ground Java thread consumes 25% of CPU utilization. They are not under

72

 0

 50

 100

 150

 200

 250

 300

RT-50RT-40RT-30RT-20RT-10Two RT-10sBG-25None

La
te

nc
y

(m
ill

is
ec

s)

Workloads in Both Source and Destination Execution Environments

113

1.375

114

2.143

115

6.407

113

1.468

114

2.111

116

8.371

147

9.971

265

52.589

average
standard deviation

Fig. 29. Latency for a Lookup with a Migration with Varying Amount of Background

Load

control of the EDF scheduler.

• “Two RT-10s”: two real-time Java threads are running in the source’s VM

while two other real-time Java threads are running in the destination’s VM.

Each real-time Java thread consumes 10% of CPU utilization.

• “RT-10”: one real-time Java thread is running in the source’s VM while another

real-time Java thread is running in the destination’s VM. Each real-time Java

thread consumes 10% of CPU utilization.

• “RT-20”: one real-time Java thread is running in the source’s VM while another

real-time Java thread is running in the destination’s VM. Each real-time Java

thread consumes 20% of CPU utilization.

• “RT-30”: one real-time Java thread is running in the source’s VM while another

real-time Java thread is running in the destination’s VM. Each real-time Java

73

thread consumes 30% of CPU utilization.

• “RT-40”: one real-time Java thread is running in the source’s VM while another

real-time Java thread is running in the destination’s VM. Each real-time Java

thread consumes 40% of CPU utilization.

• “RT-50”: one real-time Java thread is running in the source’s VM while another

real-time Java thread is running in the destination’s VM. Each real-time Java

thread consumes 50% of CPU utilization.

As can be seen on Figure 29, the average of the latencies very slightly increases

as the CPU utilization of the real-time Java thread increases up to 30%. However,

there are increases of 30% and 135% in average latency for a lookup with a migra-

tion when each real-time Java thread consumes 40% and 50% of CPU utilization in

both source and destination execution environments, respectively. In addition, the

standard deviation of the latencies increases up to 52.589 milliseconds.

Furthermore, Figure 30 shows the decomposition of the latencies of the same

experiment as Figure 29. As can be seen in Figure 30, the averages of the latencies

for “lock acquisition from sender”, “unbinding from sender”, “serialization on sender”,

and “rebinding & lock release from receiver” vary little as the CPU utilization of the

real-time Java thread increases up to 40%. However, the average of the latencies for

“deserialization and etc.” contributes to the large increase of the lookup latencies

when the real-time Java thread consumes 40% and 50% of CPU utilization.

G. Discussion of Experimental Results

Our experimental results show how well the Agile Objects System guarantees the

predictable lookup latency for a migrating RMI server in the worst-case scenario.

We also demonstrate that the lookup latency for the migrating RMI server is pre-

74

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

rebinding & lock
 release from receiver

serialization
 on sender

unbinding
 from sender

lock acquisition
 from sender

deserialization
 and etc.

La
te

nc
y

(µ
se

cs
)

no workload
25% of CPU utilization for a background Java thread
20% of CPU utilization for two real-time Java threads

10% of CPU utilization for a real-time Java thread
20% of CPU utilization for a real-time Java thread
30% of CPU utilization for a real-time Java thread
40% of CPU utilization for a real-time Java thread
50% of CPU utilization for a real-time Java thread

Fig. 30. Decomposition of Latency for a Lookup with a Migration with Varying

Amount of Background Load

dictable even in conditions with varying amount of background load. In the support

of predictable worst-case lookup latency for a migrating RMI server, we guarantee

predictable worst-case execution times of the remote method invocations to the mi-

grating RMI server.

75

CHAPTER VI

RESOURCE MANAGEMENT

A. Introduction

In our view, the methodology for application-survivability based on run-time software

component migration should satisfy four requirements: transparency, independence

from the heterogeneity of underlying systems, post migration communication capabil-

ity, and fast migration. By transparency we mean that the application programs are

not aware of migration. In other words, application programs are developed on a sin-

gle processor environment and the supporting tools take care of remote invocation and

run-time migration. Independence of the heterogeneity of underlying systems means

that the migration should be able to be performed among heterogeneous machines.

Heterogeneity includes not only the hardware platform but also the operating system.

Post migration communication capability means that the migrated component, once

in a new destination, should be able to communicate with other components just the

same as before the migration. Otherwise, the migration will be limited to stand-alone

software only. Lastly, in order to support low-latency migration, we focus on the two

dominant factors: lightweight migration and proactive resource discovery. The former

is to minimize the absolute amount of time required for migration and the latter is to

provide a destination host information at the time of migration decision that is able

to accommodate migrating components. The proactive resource discovery therefore

requires a minimum amount of time in finding available host when a migration deci-

sion is made.

Many methodologies satisfy parts of these requirements; however, in our survey,

we have not found a run-time software migration methodology that satisfies all four

76

requirements above. In our methodology, the proactive resource discovery consists

of a protocol for the dissemination of demand and availability of resources (we call

this the Community protocol) and associated algorithms. Based on a combination of

pull-based and push-based approaches, this methodology limits resource discovery ac-

tivities whenever the system is overloaded so that it can avoid dumping overwhelming

resource discovery messages. It encourages such activities when hosts are available.

Fast migration in this context imposes two unique challenges on resource discovery:

First, the objective of resource discovery in our system is to locate dynamic resources

like CPU bandwidth and memory space. This as opposed to discovery of static re-

sources (servers, etc.), which is in principle a naming issue and can be addressed with

traditional naming mechanism. Second, resource availability information needs to be

collected in a proactive fashion. This requires in practice that a host needs to have an

accurate picture of the resource availability for at least some number of hosts. This

chapter of the thesis investigates the relationship between resource discovery and suc-

cessful migration in distributed real-time systems. We propose REALTOR (REsource

ALlocaTOR) as part of our methodology and also as a solution of proactive resource

discovery in distributed real-time systems. The two ideas above, lightweight migra-

tion and proactive resource discovery, have been implemented as a middleware that

also provides real-time job scheduler in Java Virtual Machine (VM), and a naming

server.

Our analysis and simulation in a cluster computing environment show that the

proactive resource discovery requires very low communication overhead while main-

taining high effectiveness in finding available CPU resources. Our implementation

and experimental measurements show that run-time component migration based on

our approach takes much less time compared to similar approaches based on reactive

resource discovery.

77

B. Related Work

We observe that resource discovery in distributed systems has evolved in three broad

directions: Peer-to-peer, Grid systems, and distributed real-time systems. In peer-

to-peer systems resource sharing has been rather focused on static resources, such

as [43, 44]. There have been many proposals for algorithms and protocols for static

resource discovery. Representative examples of peer-to-peer file sharing systems in-

cluding Gnutella, Chord, CAN, PAST, Tapestry, and Freenet are compared in [45].

However, they are not directly applicable to our requirements imposed by fast migra-

tion, as static location information is not sufficient to locate the (dynamic) availability

of CPU bandwidth, for example. Resource discovery in Grid systems, on the other

hand, has addressed dynamic resources [46] since computation oriented scientific col-

laborations have been one of the major applications of such systems. We survey

representative research concerning resource management for distributed computing

systems.

Globus encompasses many research issues under the name of “virtual organi-

zation”, which is primarily a coordinated large-scale dynamic resource sharing and

problem solving system over multi-institutions. As resource discovery has clearly been

identified a challenging problem, Globus has developed its own resource management

architecture, Globus Architecture for Reservation and Allocation (GARA) [47]. Un-

like per-session on-demand resource reservation (RSVP [48], for example) GARA

focuses on advance reservations and co-allocation with which it can easily enhance

end-to-end Quality of Service (QoS) [49]. In this project, a resource discovery based

on the peer-to-peer model has been proposed [50], that consists of a few request-

forwarding algorithms in a fully decentralized architecture accommodating hetero-

geneity and dynamism in resource. Legion provides another distributed computing

78

infrastructure in very large-scale systems. In its resource management [51], however,

the prime interest was in supporting and matching user task requirements. Interfaces

based on object-based design are well defined accordingly for heterogeneous resource

types as well as the resource allocating procedure. Condor [52] provides resource

management services that harness the capacity of very large collections of distribu-

tively owned UNIX workstations. The need for maximum computation throughput

has been the driving force for the efficient utilization of distributed computational re-

sources [53], and a metric, “Goodput” has been proposed for co-scheduling CPU and

network capacity [54]. For resource discovery, a frame-work “Matchmaking” has been

proposed [55], that separates matching and claiming phases of resource allocation.

None of this work has addressed the effectiveness of resource discovery and al-

location, a measure that is of particular importance in distributed real-time sys-

tems. By effectiveness we mean the ability of the resource discovery system to find

and allocate available resources in overload situations, and so avoid situations where

re-configuration fails due to lack of resources. Interestingly however, many papers

addressing resource discovery do not consider effectiveness when evaluating their pro-

posals. Our methodology proposes an effective dynamic resource discovery.

In the distributed real-time systems area, distributed scheduling using bidding

and focused addressing [56, 57, 58] takes real-time tasks’ timing and resource require-

ments into account for scheduling decisions. If a task on a node cannot be locally

guaranteed by its deadline, a bidding mechanism kicks in: a bidder on the node deter-

mines where the task should be sent. Determining such a node is a two-step process:

focussed addressing followed by bidding so that it can be completed in time. In fo-

cused addressing the task is sent to another node based on periodically disseminated

availability information from other nodes in the system. If there is no such focused

node, or if the focused node may fail to guarantee the task, bidding can be executed

79

to guarantee the real-time properties of the task. In bidding the node sends out a

request-for-bid message to other nodes. Nodes with enough resources for meeting the

task’s requirements respond with a bid reflecting their surplus. The task is sent to

the node that offers the best bid. We will see that this bidding mechanism is similar

to our methodology except that it is reactive.

C. REALTOR: REsource ALlocaTOR

The resource discovery and allocation system must satisfy a number of requirements:

First, the resource availability information must be readily available at any time

so that any host under attack or malfunction is able to locate a host and move the

software components immediately. Any resource allocation scheme must be proactive,

as nodes are in need for migration because of attacks, for example. Second, any

resource discovery scheme for this type of systems considered here must be largely

state-less. Nodes leave and join the system at any time, due to attacks and failures,

or after recovery. Similarly, the overhead of nodes (re-)joining the system must be

low. In REALTOR we rely heavily on soft state, which is re-freshed at low cost

in order to retain an accurate view of resource availability in the system. Third,

the protocols must be largely idempotent, so that node failures do not give rise to

errors. All messages in REALTOR are refresh messages, which are idempotent in

nature. Finally, given the large amount of dynamics in the system and the need

to support scalability without loss of information accuracy, the resource discovery

mechanisms at any node should interact only with a small subset of other nodes. We

use the concept of community in REALTOR, which links a potential resource user

with a community of potential resource providers. Communities are ephemeral in

nature: they spontaneously appear, change over time, based on resource requirements,

80

resource availability at the nodes in the community, and the status of nodes in the

community. We describe REALTOR along with four other resource discovery schemes

for performance comparison purposes.

1. REALTOR Scheme

Each host establishes its own community for future software component migration,

which is a set of nodes able to receive a migrating component. Each host is free to

join as many communities as it is able to without over-allocating its spare resources.

Therefore, each host usually owns one community and is a member of several other

communities. The membership in a community is not static, and must be refreshed.

The membership of a node in a community is valid only for the interval between

two consecutive refresh messages. So, in order to maintain the membership to a

community, a host needs to keep responding to all refresh messages from the organizer.

When a member stops responding to refresh messages from the organizer, it de facto

leaves the community. Similarly, when a community organizer stops sending refresh

messages, the community will naturally disband.

a. Community Protocol

The community protocol was designed with three goals, 1) the protocol should be

effective in finding available resources within its own community, 2) the protocol over-

head should be independent of network size, and 3) the protocol should be stateless.

Therefore, Community protocol has only two types of messages.

• HELP:

– Message Format: HostID (community organizer identifier), Type (help),

and Seq No (sequence number of help).

81

– When a host joins the system, it begins to build its own community. A

community is typically a subset of the whole system. The invitation to the

new community is done by broadcasting a HELP message to the network.

The interval between two consecutive HELP messages is defined by Al-

gorithm H below. Networks in this context are typically application-level

overlay networks. We assume that there is an authorization and join pro-

tocols for a host to join the system so that the host can be reached by

HELP messages by existing hosts.

• PLEDGE:

– Message Format: HostID (identifier of the pledger), Type (pledge), Seq No

(sequence number of help), and Resource availability (degree).

– When a host receives a HELP message, it determines whether to join or not

the community. Once it determined to do so, it sends a PLEDGE message

to the community organizer (i.e., the originator of the HELP message)

whenever its resource usage status changes across a threshold level. The

threshold level is determined by Algorithm P below at each local host.

b. Algorithm H

As can be seen in Figure 31, a host keeps sending a HELP message at every HELP in-

terval as long as a task arrives and its resource usage is above a threshold. The length

of HELP interval changes over time depending on the success rate in finding available

resources. If it succeeds, HELP interval is decreased by the proportional amount of

beta as a reward, while it increases the interval by the proportional amount of alpha

as a penalty. The idea is to avoid unnecessary resource discovery activities when

the whole system is heavily loaded. Upper limit prevents an unbounded increase of

82

Algorithm H

Input: Time_current, Time_sent

Output: HELP message

}

}

 HELP_interval −= HELP_interval * beta;

 If ((HELP_interval − HELP_interval * beta) > 0)

If a node is found for migration and HELP_interval has not been updated for the HELP {

Update corresponding PLEDGE list;

cancel_timer;

 If the corresponding timer is not expired

Whenever a PLEDGE message arrives do {

}

 HELP_interval += HELP_interval * alpha;
If ((HELP_interval + HELP_interval * alpha) < Upper_limit)

Timeout do {

}
}
 }

 set_timer;

 send HELP ;
 If ((T_current − T_sent) > HELP_interval) {
If resource usage would exceed a threshold level {

Whenever a task arrives do {
Task A:

Task B:

Task C:

Fig. 31. Algorithm H in REALTOR

HELP interval after a series of failure in finding available resources. The speed of

expansion or shrinkage is controlled by appropriately setting alpha and beta values.

c. Algorithm P

As can be seen in Figure 32, the host replies with a PLEDGE as long as a HELP

message arrives and its resource usage is below the threshold level. Also, once a

host determines to be a member of a community, it replies with PLEDGE mes-

sages whenever its resource usage status changes across the threshold level. This

83

Algorithm P
Input: HELP message
Output: PLEDGE message

}

Whenever the resource availability changes across the threshold level do {

 send PLEDGE to the community organizers;

}
 Reply PLEDGE;

 If the host has used its resource less than a threshold level
Whenever a HELP message arrives do {
Task A

Task B

Fig. 32. Algorithm P in REALTOR

helps the organizer keep the most current information. Task B in Figure 32 sends

a PLEDGE to a set of community organizers from which the host has received a

HELP. When a community organizer leaves the system, a host which has kept send-

ing a PLEDGE to the organizer will learn the leave by calculating the time lapse

from the last HELP message from the organizer to the current time. If the difference

is larger than Upper limit (Figure 31), the host removes the organizer from the list.

The calculation is performed whenever Task B is invoked. The host, therefore, is able

to maintain a list of community organizers in need.

2. Other Resource Discovery Schemes

a. Pure PUSH Scheme

In this scheme, each host disseminates its own resource availability information to

its neighbors unconditionally at every preset interval. In comparison to REALTOR,

there is only periodic PLEDGE message without HELP.

84

b. Pure PULL Scheme

In this scheme, each host solicits PLEDGE from its community members whenever

1) a task arrives and 2) the resource usage level is beyond a threshold level. In

comparison to REALTOR, this scheme generates HELP messages unlimitedly.

c. Adaptive PUSH Scheme

In this scheme, each host disseminates its own resource availability information to its

neighbors whenever the resource usage changes across a threshold level. In comparison

to REALTOR, PLEDGE is automatically generated at each major status change

without solicitation (HELP).

d. Adaptive PULL Scheme

In this scheme, each host solicits PLEDGE from its community members whenever

1) a task arrives, 2) the resource usage level is beyond a threshold level, and 3) a time

window has passed since the previous HELP. In comparison to REALTOR, it invokes

PLEDGE exactly once for each HELP.

D. Analysis of Resource Discovery Message Overhead

In this section, we compare the message overhead of each resource discovery scheme

introduced in the previous section by an analysis based on modeling of the task queue

at each host because the number of message exchanges directly depends on the task

queue status at each node.

For simplicity, without losing generality, we assume that: 1) with a given commu-

nity of N homogeneous nodes, the task arrival at each node forms a Poisson process

independently of each other, so the inter-arrival time is exponentially distributed,

85

2) the task execution time at node is another exponential distribution, 3) the max-

imum number of tasks waiting at the queue at a node to be executed is limited to

K, so the tasks arriving at a node whose queue is already full will be either dis-

carded or migrated to another node. Then we can model the queue at each node as

M/M/1/K [59]. Under the condition that the average task size is much smaller than

the size of the task queue, the K-storage model well reflects the queuing behavior at

each node.

Then the time-independent probability that k tasks are waiting in the queue to

be executed is given by:

Pk =











1−λ
µ

1−(λ
µ)

K+1

(

λ
µ

)k

if 0 ≤ k ≤ K

0 otherwise

(6.1)

Where λ represents the task arrival rate and µ represents the task departure (service)

rate. We are interested in the probability that there are more than t tasks in the

queue waiting to be executed, which is given by:

Ph =
K

∑

k=t+1

Pk =
K

∑

k=t+1

1 − λ
µ

1 −
(

λ
µ

)K+1

(

λ

µ

)k

(6.2)

Likewise, the probability that there are less than or equal to t tasks in the queue

waiting to be executed is given by:

Pl =
t

∑

k=0

Pk =
t

∑

k=0

1 − λ
µ

1 −
(

λ
µ

)K+1

(

λ

µ

)k

(6.3)

Now we analyze the message overhead in terms of number of message exchanges.

First, we suppose that ∆t is the minimum time interval to observe a state transition

of the queue, for example, from k to k+1 or vice versa. This means that ∆t is

small enough, therefore, in this time interval, there can be only one state transition

86

at most. Second, we analyze the message overhead at a single node because the

total overhead in a given community is the total sum of message overhead at each

node. Lastly, we consider Pure PUSH as the benchmark because it monitors dynamic

resource availability at every possible moment, which is ∆t in our analysis model. We,

therefore, compare the message overhead of each scheme to that of the pure PUSH.

In the following B and U represent the number of broadcast and unicast messages

respectively.

Pure PUSH: In a pure-PUSH approach, a node broadcasts a resource availability

information message at every ∆t. A node in a pure-PUSH approach therefore sends

1 broadcast message and receives (N − 1) unicast messages at every ∆t.

Pure PULL: In this approach, HELP message is broadcast by a node when the

queue is occupied by more than a threshold, for example, k tasks. The probability

that there are more than k tasks at the queue for ∆t is the same as Equation (6.2)

since it is time independent. So, the number of HELP messages generated by a node

within ∆t is Ph. On the other hand, since each other node replies with PLEDGE

when there are less then t tasks in the queue, the number of PLEDGE messages by

the rest of nodes in the community is given by (N − 1)PhPl. So, the total number of

message exchanges at a node is PhB + PhPl(N − 1)U .

Adaptive PUSH: Because this approach broadcasts a resource availability message

when the queue status change across a threshold in ∆t, we look at the probability of

the change first. Obviously, there are only two cases for the status change across the

threshold: from a higher state than the threshold to a lower state or vice versa. The

probability Pc of status transitions across the threshold in ∆t, therefore, is the sum

of the two transition cases: from k + 1 to k or vice versa. Therefore, we have:

Pc = Pt+1Pt + PtPt+1 = 2PtPt+1 (6.4)

87

Because the rest of the nodes in the community do the same job in the same way, the

total number of message exchanges at a node is given by PcB + Pc(N − 1)U .

Adaptive PULL: In order to generate a HELP message for a node in this approach,

there should be more than t tasks in the queue at t0 and t0 +W . W is a time window

preset for an adaptive PULL. The number of HELP messages generated by a node

in W is, therefore, PhPh for W = ∆t, otherwise 0 for W > ∆t. PLEDGE messages

from the rest of the community nodes are then given by Pl(N −1) or 0 (no PLEDGEs

for no HELP). The total number of message exchanges at a node for ∆t, therefore,

is given by PhPhB + PhPl(N − 1)U for W = ∆t or 0 for W > ∆t.

REALTOR: REALTOR is a combination of an adaptive PULL and adaptive

PUSH. The number of HELP messages generated by a node is the same as that

of the adaptive PULL: PhPh, for W = ∆t, otherwise 0 for W > ∆t. The number of

PLEDGE messages from the other nodes is the same as that of the adaptive PUSH:

2(N − 1)PtPt+1. The total number of message exchanges at a node for ∆t, therefore,

is (Ph)
2B + 2PtPt+1(N − 1)U for W = ∆t or 0 for W > ∆t.

Table II shows the number of message exchanges at a node in W , where W =

n∆t.

Theorem 1 The order of message overhead of the five approaches is given by:

purePUSH ≥ purePULL ≥ REALTOR & adaptivePUSH ≥ adaptivePULL

Proof

Case 1: where W = ∆t.

First, we consider the number of HELP messages. As can be seen in the second

row of Table II, pure-PUSH is obviously larger than pure PULL, adaptive PULL,

and REALTOR because both Ph and Pl are smaller than 1. So, we compare adaptive

88

Table II. Message Overhead (W = n∆t, (n = 1, 2, 3, . . .))

item HELPs (n=1) PLEDGEs (n=1) HELPs (n > 1) PLEDGEs (n > 1)

pure
PUSH 1 N -1 n n(N − 1)

pure
PULL Ph (N − 1)PhPl nPh n(N − 1)PhPl

adaptive
PUSH 2PtPt+1 2(N − 1)PtPt+1 2nPtPt+1 2n(N − 1)PtPt+1

adaptive
PULL PhPh Pl(N − 1) PhPh Pl(N − 1)

REALTOR PhPh 2(N − 1)PtPt+1 PhPh 2n(N − 1)PtPt+1

PUSH and pure PUSH because the second row does not show clearly which one is

bigger (2PtPt+1 and 1). In order for adaptive PUSH to be bigger than 1, PtPt+1

should be larger than 1
2
. In order for PtPt+1 to be larger than 1

2
, in turn, the following

condition should be met:

Pt > 0.5 and Pt+1 > 0.5 (6.5)

However, another condition should be met because K > 2 in our assumptions:

Pt + Pt+1 < 1 (6.6)

These two conditions are, obviously, contradictory, cannot be met at the same time.

Therefore, adaptive PUSH cannot be larger than 1. So pure PULL has the largest

number of HELP messages for W = ∆t.

89

Second, we compare the number of PLEDGE messages. As seen in the table,

it is obvious again that pure PULL, adaptive PULL, and REALTOR are all smaller

than pure PUSH because neither Ph nor Pl is larger than 1. By the same argument

as in HELP message comparison, adaptive PUSH cannot be larger than pure PUSH.

Therefore, as long as the message overhead is concerned, pure PUSH requires the

highest cost.

Case 2: where W = n∆t (n = 2, 3, 4, . . .).

As can be seen in the 4th and 5th rows of Table II, it is obvious again that pure

PUSH has the biggest message overhead. Assuming that the number of PLEDGE

messages is the dominant factor of the message overhead as n gets larger, adaptive

PULL becomes the lowest because it does not scale with n unlike others. Since

adaptive PUSH and REALTOR have the same amount of PLEDGE messages, the

ordering problem is reduced to that between

PhPl (6.7)

for pure PULL and

2PtPt+1 (6.8)

for adaptive PUSH and REALTOR. In order to compare the two probabilities (6.7)

and (6.8) we change the form of the first one like below.

PlPh = (P0 + . . . + Pt)(Pt+1 + . . . + PK) (6.9)

= P0Pt+1 + P0Pt+2 + . . . + PtPt+1 + . . . + PtPK−1 + PtPK (6.10)

So the comparison is changed to that of Equation (6.10) and (6.8). Further, since

Equation (6.10) has the term of PtPt+1 in it, the comparison is reduced to that of

90

Equation (6.11) below (Equation (6.10) - PtPt+1) and PtPt+1.

PhPl − PtPt+1

= P0Pt+1 + P0Pt+2 + . . . + Pt−1PK + PtPt+2 + . . . + PtPK−1 + PtPK (6.11)

Considering that the term PtPt+1 is only a part of Equation (6.10), it is unlikely

that PtPt+1 alone is comparable to the rest of Equation (6.10). However, in order for

PtPt+1 to be larger than Equation (6.11), the term should be very larger compared to

the other terms in Equation (6.10). This could happen only when the average number

of tasks waiting at the queue is t or t+1 so that the other terms in Equation (6.10) is

negligible. These are the only special cases where PtPt+1 could be larger than or equal

to Equation (6.11). Otherwise, in general, Equation (6.11) is larger than PtPt+1. So,

pure PULL has larger overhead than both adaptive-PUSH and REALTOR. Therefore,

the order of message overhead given by Theorem 1 is correct. ¤

E. Experimental Performance Evaluation

In this section, we evaluate the performance of REALTOR with a comparison to those

of the alternative resource discovery protocols introduced previously, under increasing

load, using a set of simulation experiments. We measure the performance in terms of

message overhead and effectiveness in finding available resources.

For the experiments, we simulate the mesh topology displayed in Figure 33, with

25 nodes and 40 links. Each intersection represents a node. For fair comparison

purposes, in this section we assume that the topology represents the limited scope of

neighbors for REALTOR and all other four resource discovery schemes. In reality,

there should be a mechanism in place limiting the scope of neighbors for REALTOR.

we randomly generate tasks at increasing rates, and assign them randomly to a node.

91

The resource discovery and allocation algorithms then must migrate the tasks, when

needed, to nodes with available CPU capacity. 1

We generate tasks with exponentially distributed lengths of a mean value µ,

an execution time. The generated task is given to a node randomly selected from

Node 0 through Node 24. The task arrival forms a Poisson process with a rate of λ.

Each node is assumed to have a single queue to process tasks. The single queue has

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Fig. 33. The Network Topology for the Simulation

length of 100 seconds and the mean job size is 5 seconds. Tasks arriving at a node

whose queue is already full are supposed to migrate to another node whose queue can

still accommodate the task. The new destination the migrating task is supposed to

move to, is assumed to be readily provided by the resource discovery approaches. In

1In this simulation, we assume a single resource - CPU. More general resource
scenarios such as network bandwidth, current security level, etc., would give similar
results.

92

these experiments, in order to satisfy the requirement of proactiveness for immediate

migration, we measure the performances of the five approaches with only a one-time

migration try to the best candidate destination node provided by each approach. So,

if the candidate destination node cannot accommodate the migrating task, then the

task is rejected.

For this simulation, we use a simple threshold strategy for both Algorithm H

and P. Algorithm H sends out a HELP message when the queue length exceeds a

certain level. The queue level is checked whenever a new task arrives. So, the HELP

messages are sent out whenever the three conditions are met: 1) a new task arrives,

2) the queue including the new task exceeds a certain level, and 3) the time window

has passed. Likewise, Algorithm P replies HELP with PLEDGE whenever the two

conditions are met: 1) the time interval between the last HELP from a node and

current time is less than Upper limit (Figure 31), and 2) the queue is occupied below

a certain preset level. The total number of messages is counted as the sum of HELPs

+ PLEDGEs and communication for migration between admission controls. In the

following figures in this section, the curve names stand for the following.

• “Pull-.9”: a pure PULL approach which uses 0.9 for both Algorithm H and P.

• “Push-1”: a pure PUSH which uses 1 second periodic interval for information

dissemination.

• “Push-.9”: an adaptive PUSH which disseminates information only when the

resource usage changes across the threshold level of 90%.

• “Pull-100”: an adaptive PULL which limits HELP interval from increasing in-

finitely, in this case the limiting value is 100 time units (Upper limit in Fig-

ure 31).

• REALTOR: combination of “Push-.9” and “Pull-100”.

93

• Algorithm H 0.9: every new task arriving a queue whose length reaches more

than 90% including the new task triggers broadcasting of a HELP message.

• Algorithm P 0.9: means that every HELP message arriving a node whose queue

is occupied less than 90% triggers a PLEDGE message.

0.7

0.75

0.8

0.85

0.9

0.95

1

4 5 6 7 8 9 10 11

ad
m

is
si

on
-p

ro
ba

bi
lit

y

task-arrival-rate

task-size = 5, q-size = 100

pledge threshold = 0.9

push interval = 1

adaptive-pull time window = 100

Pull-.9
Push-1
Push-.9
Pull-100

REALTOR

Fig. 34. Admission Probability

Figure 34 compares the task admission probability of the five approaches. The

x-axis represents the task arrival rate, and y-axis shows the admission probability

during the experiments. At the task arrival rate of 7, for example, more or less 90%

of the tasks are admitted, so roughly 10% tasks are rejected. We limit the task arrival

rate to 11 because after that a significant portion of input tasks, more than 30%, are

rejected, which, we believe, not a normal situation in practice. This set of curves is

obtained this way. First, we run this simulation for Push-1. After obtaining the curve

94

“Push-1”, we repeatedly run the simulation for other approaches with different set of

simulation parameters until finally we have a set of curves close enough to “Push-1”.

So, as seen in Figure 34, “Push-1” lies in the middle of the curves for a large portion

of the rates. “REALTOR” and “Push-.9” shows the best performance for most of the

range. “Pull-100” and “Pull-.9” show the worst performances. We consider that these

curves are close enough to assume that they show more or less the same performance

that provides the ground on that we can compare the communication overhead for

the same performance.

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1e+07

4 5 6 7 8 9 10 11

nu
m

be
r-

of
-m

es
sa

ge
s

task-arrival-rate

task-size = 5, q-size = 100

pledge threshold = 0.9

push interval = 1

adaptive-pull time window = 100

Pull-.9
Push-1

Pull-100
Push-.9

REALTOR-100

Fig. 35. Number of Messages Exchanged

Figure 35 shows the communication overhead of the five approaches. Y-axis

shows the total number of message exchanges during the experiments. As we ex-

95

pected, “Push-1” shows the highest overhead, especially under lightly loaded condi-

tions where it wastes too much communication bandwidth unnecessarily. “Pull-.9”

(pure PULL) keeps increasing its overhead as the system gets overloaded. As it

increases almost linearly, it will eventually cross “Push-1” for high rates of λ. How-

ever, “Pull-.9” is still below “Push-1” until the admission probability drops to below

0.75, after which the system will be completely overloaded. It is apparent that the

pure PULL approach also wastes much communication bandwidth as the system gets

overloaded. On the other hand, “Pull-100” shows the least amount of communica-

tion overhead independently from the load. However, this, in return, has a relatively

lower performance curve in admission probability in Figure 34. “Push-.9” (adaptive

PUSH) shows a moderate overhead and a very close performance to “Push-1” (pure

PUSH). Finally REALTOR shows the best performance in admission probability with

still a moderate overhead slightly higher than “Push-.9”. This result is expectable

because REALTOR combines the two approaches: an adaptive PUSH and an adap-

tive PULL, so it naturally takes advantages of both while adding a slight amount of

communication overhead.

Figure 36 compares the resource discovery protocol overhead per admitted task.

For example, “Push-1” costs 200 message exchanges for a single admitted task at λ

= 5, while all other approaches take about less than 50. The amount of overhead

in REALTOR and “Push-.9” decreases as the system becomes overloaded. This is

because 1) HELP interval is kept at the maximum (Upper limit in Figure 31) due

to the repeated failure of finding available resources, and 2) since the resource usage

level at each host is kept above the threshold level. The reason for the peak around

λ = 6 in REALTOR is that the resource usage level changes across the threshold

most frequently around that point. Adding a hysteresis around the threshold would

greatly diminish this effect. The admission probability at that point is about 0.95,

96

0

50

100

150

200

250

4 5 6 7 8 9 10 11

m
es

sa
ge

-c
os

t-
pe

r-
ta

sk

task-arrival-rate

task-size = 5, q-size = 100

pledge threshold = 0.9

push interval = 1

adaptive-pull time window = 100

Pull-.9
Push-1

Pull-100
Push-.9

REALTOR-100

Fig. 36. Communication Cost per Admitted Task

which means there are a lot of fluctuations in usage levels, causing PLEDGE messages

to be generated. This figure clearly illustrates the cost of disseminating resource

information periodically regardless of load conditions.

Through the set of experimentations we confirm that: 1) pure push-based ap-

proaches waist communication resources too much during light-load conditions, 2)

pure pull-based approaches also waist communication resources much in overload

conditions, 3) REALTOR performs best in terms of overhead and effectiveness for

any load conditions.

F. Implementation Experience

In this section, we evaluate the effectiveness of our methodology for fast migration

within the Agile Objects System described in Chapter II. Here, the performance is

97

measured in terms of migration time.

In this experiment, we compare two systems: REALTOR-based and REACTIVE-

based. In the REALTOR-based system, resources are discovered by REALTOR, and

in the REACTIVE-based system, resources are discovered on-demand, i.e., whenever

a task needs to migrate. In the latter, the resource availability information is solicited

in a general form of request-and-reply protocol by the host that tries to migrate a task.

Both systems, however, choose a host, which replies the highest resource availability.

This selection strategy is to maximize the resource utilization. Therefore, the only

difference in the two systems is in the resource discovery schemes.

We used a workstation cluster of Linux machines at the Concurrent Systems

Architecture Group Laboratory in the University of California San Diego, where Agile

Objects System has been integrated. The cluster for this measurement consists of 25

homogeneous hosts running Redhat Linux Version 7.2 Operating System on Pentium

II at 450 MHz. Each host is a single server that processes arriving tasks sequentially.

Both REALTOR-based and REACTIVE-based systems use IP multicasting for HELP

messages and User Datagram Protocol (UDP) for PLEDGE messages.

For the experiment, a stream of tasks is generated and distributed to hosts

randomly. The arrival of the tasks forms a Poisson function with mean value λ.

Each task, like in the simulation study, executes for a fixed amount of time on the

server. Once a host is overloaded, it begins migrating the newly arriving tasks as

long as it remains overloaded. Once the migration begins, the other hosts in the

cluster accommodate the migrating tasks for a while until they are overloaded too.

We implement each task as a timer waiting to expire. We have generated 4,000 tasks

for each task arrival rate and measured admission probability and migration time.

Like in the simulation study, the task queue size is fixed to 100 seconds at each node,

and the mean job size is 5 seconds.

98

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

6 7 8 9 10 11

ad
m

is
si

on
-s

uc
ce

ss
-r

at
e

task-arrival-rate

hosts = 25, task-size = 5, q-size = 100

REALTOR
RE-ACTIVE

Fig. 37. Admission Success Rate

As shown in Figure 37, like in the simulation study, we first set up the experiment

environment so that the admission probabilities in both systems are only slightly

different.

Figure 38 shows the average migration time between two systems in this situa-

tion. The migration time of both systems is defined the time between when a host

decides to migrate a task to when a best destination candidate node receives the

task. As seen in Figure 38, REACTIVE takes about 12 to 13 milliseconds for a task

migration while REALTOR takes about 6 to 7 milliseconds. So, the migration time is

different by 5 to 6 milliseconds. In terms of percentage, however, REACTIVE is 200%

larger. The migration time does not change much with different input task arrival

rates since the migration time is measured only when the migration attempt is suc-

ceeded. We interpret the difference in the migration time as follows. In emergencies,

99

5

6

7

8

9

10

11

12

13

14

15

6 7 8 9 10 11

m
ig

ra
tio

n-
tim

e
(m

ill
is

ec
on

ds
)

task-arrival-rate

hosts = 25, task-size = 5, q-size = 100

REALTOR
RE-ACTIVE

Fig. 38. Migration Time in Milliseconds

REALTOR-based systems will provide higher chances of application-survivability by

migrating tasks in a minimized time. In case of system failure or external cyber

attack, we conjecture that there will be very little amount of time for applications

to flee. Our methodology, lightweight migration and a proactive resource discovery,

requires a minimum time for migration. In this experiment, since we have used a

cluster of workstations and our applications are the only tasks generating network

traffic, that is a very small portion of the network bandwidth, the migration time of

REACTIVE-based is believed as minimized. So, it is very likely that the migration

time of REACTIVE-based system will be significantly longer in an environment where

hosts are geographically widely dispersed and networks are shared by a large number

of nodes. In that case, the absolute value of the difference in migration time will

significantly be larger. Therefore it is highly likely that REACTIVE-based systems

100

will not effectively support application-survivability in real situations.

101

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

In this thesis we proposed and evaluated our unique methodology for providing real-

time capabilities to component-based reconfigurable distributed systems.

By using Java we not only largely eliminated the problem of platform hetero-

geneity but also simplified the migration procedure for application developers. Our

methodology for providing real-time infrastructure consists of solutions to three de-

sign issues: the creation of real-time Java threads with appropriate assignment of

scheduling parameters, the propagation of real-time properties between clients and

servers, and modeling the patterns of client arrivals for an exported Java RMI server.

As a proof of concept, the experiment results are very encouraging in that our method-

ology guarantees predictable latencies of remote method invocations, even in associ-

ation with Java RMI server’s migration. Also, using a dynamic scheduling based on

exponentially distributed arrival model allows for getting optimal periods of Total

Bandwidth Servers to minimize scheduling overhead and maximize utilization. As a

middleware, our methodology provides a new and practical way of providing real-time

capabilities. We believe that together with the DRTSJ, our methodology will play a

role in supporting real-time capability for reconfigurable distributed systems. In the

future, we plan to try to combine our work with the DRTSJ.

At the same time, lightweight migration and proactive resource discovery are key

component in supporting application-survivability in distributed real-time systems as

component migration needs to be done within a least amount of time for emergency

cases. We have used Java Object Serialization protocol for lightweight migration.

According to our analytical study, the communication overhead of our resource dis-

covery protocol, REALTOR, is much less than those of pure PULL-based and pure

102

PUSH-based resource discovery approaches. Simulation studies show that under nor-

mal and heavy load conditions REALTOR remains very effective in finding available

resources with a reasonably low communication overhead compared to a pure PUSH-

based or pure PULL-based approach. Also, our implementation and measurements

in a workstation cluster show that the methodology has much shorter migration time

compared to a general request-and-reply reactive resource discovery protocol. We are

planning to further investigate the effectiveness and limitations of this methodology

in application-survivability.

103

REFERENCES

[1] A. Sahai, S. Singhal, R. Joshi, and V. Machiraju, “Automated policy-based re-

source construction in utility computing environments,” Technical Report HPL-

2003-176, Hewlett-Packard Laboratories, Palo Alto, CA, Aug. 2003.

[2] Object Management Group, “CORBA specifications,” Available from http://-

www.omg.org, Aug. 2004.

[3] Microsoft, “COM: Delivering on the promise of component technology,” Avail-

able from http://www.microsoft.com/com, Aug. 2004.

[4] Sun Microsystems, “Enterprise JavaBeans technology,” Available from http://-

java.sun.com/products/ejb, Aug. 2004.

[5] ACE and TAO Development Team, “Real-time CORBA with TAO,” Available

from http://www.cs.wustl.edu/∼schmidt/TAO.html, Aug. 2004.

[6] J. A. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu, M. Humphrey, and B.

Ellis, “VEST: An aspect-based composition tool for real-time systems,” in Pro-

ceedings of the 9th IEEE Real-Time and Embedded Technology and Applications

Symposium, Toronto, Canada, May 2003, pp. 58–69.

[7] Object Management Group, “Realtime CORBA joint revised submission,”

Available from http://www.echelon4.com/content%20files/1, Oct. 1998.

[8] D. C. Schmidt and F. Kuhns, “An overview of the real-time CORBA specifica-

tion,” IEEE Computer Magazine, vol. 33, no. 6, pp. 56–63, June 2000.

[9] J. W. S. Liu, Real-Time Systems, 1st ed. Upper Saddle River, NJ: Prentice-Hall,

2000.

104

[10] X. Liu and S. Goddard, “Supporting dynamics QoS in Linux,” in Proceed-

ings of the 10th IEEE Real-Time and Embedded Technology and Applications

Symposium, Toronto, Canada, May 2004, pp. 246–254.

[11] Concurrent Systems Architecture Group, “Agile Objects Project,” Available

from http://www-csag.ucsd.edu/projects/agileO.html, Aug. 2004.

[12] K. Connelly and A. Chien, “Breaking the barriers: High performance security

for high performance computing,” in Proceedings of the 2002 Workshop on New

Security Paradigms, Virginia Beach, VA, Sept. 2002, pp. 36–42.

[13] B. Choi, S. Rho, and R. Bettati, “Dynamic resource discovery for application

survivability in distributed real-time systems,” in Workshop on Parallel and

Distributed Real-Time Systems, Nice, France, Apr. 2003, pp. 122–129.

[14] G. Bollella, J. Gosling, B. Brosgol, J. Gosling, P. Dibble, S. Furr, and M. Turn-

bull, The Real-Time Specification for JavaTM , 1st ed. Boston, MA: Addison-

Wesley Publishing Company, 2000.

[15] Sun Microsystems, “JavaTM Remote Method Invocation Specification (RMI),”

Available from http://java.sun.com/products/jdk/rmi/, Aug. 2004.

[16] P. Goyal and H. M. Vin, “Generalized guaranteed rate scheduling algorithms: A

framework,” IEEE/ACM Transactions on Networking, vol. 5, no. 4, pp. 561–571,

Aug. 1997.

[17] R. DiGiorgio, “Java in embedded systems,” Available from http://www.javaw-

orld.com/javaworld/jw-09-1996/jw-09-javadev.html, Sept. 1996.

[18] S. Palu, “Real-time specification for Java (RTSJ),” Available from http://ww-

w.developer.com/java/article.php/10922 1367671 1, Aug. 2004.

105

[19] E. Jensen, “The distributed real-time specification for Java - an initial proposal,”

Journal of Computer Systems Science and Engineering, vol. 16, no. 2, pp. 65–70,

Mar. 2001.

[20] J. Gosling, B. Joy, G. Steele, and G. Bracha, The JavaTM Language Specifica-

tion, 2nd ed. Boston, MA: Addison-Wesley Publishing Company, 2000.

[21] Sun Microsystems, “Java Object Serialization Protocol,” Available from http:/-

/java.sun.com/j2se/1.3/docs/guide/serialization/, Aug. 2004.

[22] C. Mangione, “Performance tests show Java as fast as C++,” Available from h-

ttp://www.javaworld.com/javaworld/jw-02-1998/jw-02-jperf p.html, Feb. 1998.

[23] J. E. Moreira, S. P. Midkiff, and M. Gupta, “A comparison of Java, C/C++,

and FORTRAN for numerical computing,” IEEE Antennas and Propagation

Magazine, vol. 40, no. 5, pp. 102–105, Oct. 1998.

[24] T. Lindholm and F. Yellin, The JavaTM Virtual Machine Specification, 2nd ed.

Boston, MA: Addison-Wesley Publishing Company, 1999.

[25] TimeSys, “The RTSJ Reference Implementation (RI),” Available from http://-

www.timesys.com, Aug. 2004.

[26] A. Corsaro and D. Schmidt, “The design and performance of the jRate real-time

java implementation,” in International Symposium on Distributed Objects and

Applications, Irvine, CA, Oct. 2002, pp. 900–921.

[27] R. Clark, E. Jensen, A. Wellings, and D. Wells, “The distributed real-

time specification for Java: A status report,” Available from http://www.real-

time.org/docs/esc02paper.pdf, Mar. 2002.

106

[28] A. Wellings, R. Clark, D. Jensen, and D. Wells, “A framework for integrating

the real-time specification for Java and Java’s remote method invocation,” in

Proceedings of the 5th IEEE International Symposium on Object-Oriented Real-

Time Distributed Computing, Crystal City, VA, Apr. 2002, pp. 13–22.

[29] A. Borg and A. Wellings, “A real-time RMI framework for the RTSJ,” in

Proceedings of the 15th Euromicro Conference on Real-Time Systems, Porto,

Portugal, July 2003, pp. 238–246.

[30] M. de Miguel, “Solutions to make Java-RMI time predictable,” in Proceed-

ings of the 4th IEEE International Symposium on Object-Oriented Real-Time

Distributed Computing, Magdeburg, Germany, May 2001, pp. 379–386.

[31] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard real-

time systems,” in Proceedings of the 19th IEEE Real-Time Systems Symposium,

Madrid, Spain, Dec. 1998, pp. 4–13.

[32] L. Abeni and G. Buttazzo, “QoS guarantee using probabilistic deadlines,” in

Proceedings of the IEEE Euromicro Conference on Real-Time Systems, York,

UK, June 1999, pp. 242–249.

[33] Sun Microsystems, “java - the Java application launcher,” Available from http-

://java.sun.com/j2se/1.3/docs/tooldocs/linux/java.html, Aug. 2004.

[34] Ethereal Working Group, “Ethereal,” Available from http://www.ethereal.co-

m/, Aug. 2004.

[35] L. F. Wilson and W. Shen, “Experiments in load migration and dynamic load

balancing in SPEEDES,” in Simulation Conference Proceedings, Washington,

DC, Dec. 1998, pp. 483–490.

107

[36] G. Lanfermann, G. Allen, T. Radke, and E. Seidel, “Nomadic migration:

Fault tolerance in a disruptive grid environment,” in Proceedings of the 2nd

IEEE/ACM International Symposium on Cluster Computing and the Grid,

Berlin, Germany, May 2002, pp. 280–281.

[37] Condor Team, University of Wisconsin at Madison, “Condor high throughput

computing,” Available from http://www.cs.wisc.edu/condor/, Aug. 2004.

[38] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny, “Checkpointing and mi-

gration of UNIX processes in the Condor distributed processing system,” Tech-

nical Report 1346, Department of Computer Sciences, University of Wisconsin

at Madison, Madison, WI, Apr. 1997.

[39] M. Litzkow and M. Solomon, “Supporting checkpointing and process migration

outside the UNIX kernel,” in Proceedings of the USENIX Winter Conference,

San Francisco, CA, Jan. 1992, pp. 283–290.

[40] R. Ma, C. Wang, and F. Lau, “M-JavaMPI: A Java-MPI binding with process

migration support,” in Proceedings of the 2nd IEEE/ACM International Sym-

posium on Cluster Computing and the Grid, Berlin, Germany, May 2002, pp.

240–247.

[41] W. Zhu, C. Wang, and F. C. M. Lau, “JESSICA2: A distributed Java Virtual

Machine with transparent thread migration support,” in Proceedings of the 2nd

IEEE International Conference on Cluster Computing, Chicago, IL, Sept. 2002,

pp. 381–388.

[42] P. Troger and A. Polze, “Object and process migration in .NET,” in Proceedings

of the 8th International Workshop on Object-Oriented Real-Time Dependable

Systems, Guadalajara, Mexico, Jan. 2003, pp. 139–146.

108

[43] Q. Lv, P. Cao, E. Cohen, and K. Li, “Search and replication in unstructured peer-

to-peer networks,” in Proceedings of the 16th ACM International Conference on

Supercomputing, New York, NY, June 2002, pp. 84–95.

[44] Lime Wire LLC, “LimeWire,” Available from http://www.limewire.com, Aug.

2004.

[45] S. Androutsellis-Theotokis, “A survey of peer-to-peer file sharing technolo-

gies,” Available from http://www.eltrun.aueb.gr/whitepapers/p2p 2002.pdf,

Aug. 2002.

[46] A. Iamnitchi, I. Foster, and D. C. Nurmi, “A peer-to-peer approach to resource

discovery in grid environments,” Technical Report TR-2002-06, University of

Chicago, Chicago, IL, June 2002.

[47] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy, “A

distributed resource management architecture that supports advance reservations

and co-allocation,” in International Workshop on Quality of Service, London,

UK, June 1999, pp. 27–36.

[48] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP: A new

resource reservation protocol,” IEEE Networks Magazine, vol. 31, no. 9, pp.

8–18, Sept. 1993.

[49] I. Foster, A. Roy, and V. Sander, “A quality of service architecture that combines

resource reservation and application adaptation,” in Proceedings of the 8th

International Workshop on Quality of Service, Pittsburgh, PA, June 2000, pp.

181–188.

[50] A. Iamnitchi and I. Foster, “On fully decentralized resource discovery in grid

109

environments,” in 2nd International Workshop on Grid Computing, Denver, CO,

Nov. 2001, pp. 51–62.

[51] S. Chapin, D. Katramatos, J. Karpovich, and A. Grimshaw, “Resource manage-

ment in Legion,” Journal of Future Generation Computer Systems, vol. 15, pp.

583–594, Oct. 1999.

[52] M. Livny, J. Basney, Raman, and T. Tannenbaum, “Mechanisms for high

throughput computing,” SPEEDUP Journal, vol. 11, no. 1, pp. 36–40, June

1997.

[53] J. Basney, M. Livny, and P. Mazzanti, “Utilizing widely distributed compu-

tational resources efficiently with execution domains,” Journal of Computer

Physics Communications, vol. 140, pp. 246–252, Oct. 2001.

[54] J. Basney and M. Livny, “Improving goodput by co-scheduling CPU and network

capacity,” International Journal of High Performance Computing Applications,

vol. 13, no. 3, pp. 220–230, Fall 1999.

[55] R. Raman, M. Livny, and M. Solomon, “Matchmaking: Distributed resource

management for high throughput computing,” in Proceedings of the 7th IEEE

International Symposium on High Performance Distributed Computing, Chicago,

IL, July 1998, pp. 140–146.

[56] W. Zhao and K. Ramamritham, “Distributed scheduling using bidding and fo-

cused addressing,” in Proceedings of the IEEE Real-Time Systems Symposium,

San Diego, CA, Dec. 1985, pp. 103–111.

[57] K. Ramamritham, J. Stankovic, and W. Zhao, “Distributed scheduling of tasks

with deadlines and resource requirements,” IEEE Transactions on Computers,

110

vol. 38, no. 8, pp. 1110–1123, Aug. 1989.

[58] T. Cheng, J. Chung, and K. Lin, “Dynamic load balancing algorithms in loosely-

coupled real-time systems,” in Proceedings of the 16th International Computer

Software and Application Conference, Chicago, IL, Sept. 1992, pp. 143–148.

[59] L. Kleinrock, Queueing Systems, Volume I: Theory, 1st ed. New York, NY:

John Wiley & Sons, 1975.

111

VITA

Name: Sangig Rho

Permanent Address: 565 Shindaebang Woosung APT 16-805

Seoul, 156-011, Republic of Korea

Educational Background: Bachelor of Science, Electronic Engineering

Yonsei University, 1989

Master of Science, Electronic Engineering

Yonsei University, 1991

Doctor of Philosophy, Computer Engineering

Texas A&M University, 2004

