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ABSTRACT 
 

Sugarcane Juice Extraction and Preservation, and Long-term Lime Pretreatment of 

Bagasse. (December 2004) 

Cesar Benigno Granda Cotlear, B.S., Texas A&M University 

Co-Chairs of Advisory Committee:  Dr. Mark T. Holtzapple 
 Dr. Richard R. Davison 

 

New technologies, such as an efficient vapor-compression evaporator, a 

stationary lime kiln (SLK), and the MixAlco process, compelled us to re-evaluate 

methods for producing sugar from cane.  These technologies allow more water and lime 

to be used, and they add more value to bagasse. 

Extracting and preserving the sugars, and lime pretreating the bagasse to enhance 

biodigestibility, all at the same time in a pile, was demonstrated to be unfeasible; 

therefore, sugar extraction must occur before lime treating the bagasse. 

Sugar extraction should occur countercurrently by lixiviation, where liquid 

moves in stages opposite to the soaked bagasse (megasse), which is conveyed by screw-

press conveyors that gently squeeze the fiber in each stage, improving extraction.  The 

performance of a pilot-scale screw-press conveyor was tested for dewatering capabilities 

and power consumption.  The unoptimized equipment decreased megasse moisture from 

96 to 89%.  Simulation of the process suggested that eight stages are necessary to 

achieve 98% recovery from typical sugarcane.  The cumulative power for the screw-

press conveyor system was 17.0±2.1 hp·h/ton dry fiber. 

Thin raw juice preserved with lime for several months showed no sucrose 

degradation and no quality deterioration, except for reducing sugar destruction.  The 

lime loading needed for 1-year preservation is 0.20 g Ca(OH)2/g sucrose.  Shorter times 

require less lime.   

After preservation, the juice was carbonated and filtered, and the resulting sludge 

pelletized.  Due to their high organic content, the pellets were too weak for calcination 
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temperatures used in the SLK.  The organics must be decreased prior to pelletization and 

sodium must be supplemented as a binding agent. 

Long-term lime pretreatment of bagasse showed two delignification phases: bulk 

(rapid) and residual (slow).  These were modeled by two simultaneous first-order 

reactions.  Treatments with air purging and higher temperatures (50 – 57oC) delignified 

more effectively, especially during the residual phase, thus yielding higher cellulase-

enzyme digestibilities after 2 – 8 weeks of treatment.  At temperatures > 60oC, pure 

oxygen purging is preferred. 

Fresh bagasse was of better quality than old bagasse.  Treatment with NaOH 

yielded a larger bulk delignification phase than Ca(OH)2. 

Long-term lime pulping of bagasse was unsuitable for copy-quality paper, but it 

was appropriate for strawboard and other filler applications. 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

I.1 Rationale 

 

In any industry, new technologies can improve processes; therefore, it may be necessary 

to re-design conventional practices to benefit from the innovations.  Sugarcane 

processing for the production of table sugar (sucrose) is no exception.  

We have been compelled to revise some process units employed in the sugarcane 

industry because of following three new technologies: 

1) A very efficient vapor-compression evaporator.  

2) An efficient stationary lime kiln.  

3) The MixAlco Process.  

 

I.1.1 Vapor Compression Evaporator 

 

A vapor-compression evaporator (Figure 1.1) is being developed at Texas A&M 

University (Dr. Mark Holtzapple, Chemical Engineering Dept., College Station TX 

77843-3122, 979-845-9708).  The vapor compressor can be a jet ejector, a mechanical 

compressor, or both.  Studies are being conducted to improve the efficiency of the 

evaporator and compressor.  Preliminary calculations suggest that efficiencies should be 

between 10 and 30 effects (ratio of latent heat of vaporization to the fuel energy input).  

The energy-efficiency advantages are obvious; conventional evaporators employ four or 

five (at most) effects. 

____________ 

This dissertation follows the style of Bioresource Technology. 
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Figure 1.1  Vapor-compression evaporator showing both jet ejector 
and mechanical compressor.  Each may be employed individually 

or they may be employed in a tandem, as shown. 

 
I.1.2 Stationary Lime Kiln 

 

Processes that employ lime often have calcium carbonate as a by-product.  Using 

a lime kiln, the recovered calcium carbonate can be transformed back into calcium oxide 

to be used in the process.  Unfortunately, conventional lime kilns are very energy 

inefficient.  Altex Technologies Corporation (Dr. John T. Kelly, 244 Sobrante Way, 

Sunnyvale CA 94086, 408-328-8302, www.altextech.com) has developed an efficient 

lime kiln process, which consists of pelletizing finely divided calcium carbonate and 

loading the pellets into a well-insulated stationary reactor.  Hot gas at calcination 

temperatures is then blown through the reactor, transforming the calcium carbonate 

pellets into calcium oxide.  Altex Technologies indicates that this process can decrease 
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the cost of lime by about 56% compared to conventionally obtained calcium oxide 

(Namazian, 2004). 

 

I.1.3 The MixAlco Process 

 

The MixAlco process converts biomass into a mixture of alcohols.  The biomass 

is pretreated with lime to increase digestibility.  The lime-treated biomass is then 

fermented by a mixed culture of carboxylic-acid-producing microorganisms.  The pH is 

controlled by adding calcium carbonate.  The product from this fermentation is a mixture 

of carboxylate salts, which are thermally converted to ketones and hydrogenated to a 

mixture of alcohols (Figure 1.2).  This process produces both fuels and chemicals 

(Holtzapple et al., 1999).  
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Figure 1.2  Overview of MixAlco process (adapted from Holtzapple et al., 1999). 

 

 

I.2 Description of Conventional Sugarcane Processing 

 

The processing of sugarcane to produce crystallized sugar occurs by different 

methods; however, the basic process remains unchanged (Chen and Chou, 1993; Hugot, 

1986; Valdes Delgado and de Armas Casanova, 2001).  The following is the general 

procedure:  

1) Cane harvesting. 

2) Cane shredding and preparation.  
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3) Extraction of juice either by squeezing with roller mills or by diffusion, which 

leaves the sugarcane pulp by-product, known as bagasse. 

4) Clarification of the juice, which may occur by two common methods:  

a) By defecation, which consists of liming to a neutral pH, adding a flocculant, 

and heating to about 100oC to cause a precipitate that is then filtered out. 

b) By carbonatation, which is done by liming to a high pH (~11) then heating to 

about 55oC, followed by two or more carbonations and filtrations until the pH 

is brought to neutral either by adding more carbon dioxide or with sulfur 

dioxide, which is a process known as sulphitation.   

5) Concentration of the juice by evaporation. 

6) Crystallization of raw or white sugars. 

Figures 1.3 and 1.4 show the two different methods of sugar production from 

cane.  White sugars can be obtained directly from cane in the same sugar house, a 

process known as plantation white sugar or direct white sugar, especially when 

carbonatation is employed as the clarification method.  Nonetheless, in most countries, 

raw sugars are first produced which are then sold to sugar refineries (Valdes Delgado 

and de Armas Casanova, 2001).  In the refinery (Figure 1.5), raw sugar crystals are 

affinated (washed), re-dissolved, purified, clarified, and decolorized.  Lime is also an 

additive in this process.  The refined syrup is then heated, concentrated by evaporation 

and crystallized to obtain refined white sugars (Chen and Chou, 1993; Valdes Delgado 

and de Armas Casanova, 2001).   

 

I.2.1 Sugarcane Juice Extraction 

 

Conventional sugar extraction from sugarcane is performed using roller mills or 

diffusion.  In milling, shredded cane passes between hydraulically loaded, grooved, 

cylindrical rolls arranged in series.  As the crushing/squeezing occurs, juice is expelled.  

An individual roller mill has three, four, or five rolls in a housing.  A tandem of four, 

five or six roller mills constitute a train, as shown in Figure 1.6 (Payne, 1991). 
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Figure 1.3  Flowchart for the production of raw sugar (adapted from Valdes Delgado and 
de Armas Casanova, 2001). 
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Figure 1.4  Flowchart for the production of plantation white sugar (adapted from Valdes 
Delgado and de Armas Casanova, 2001). 
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Figure 1.5  Flowchart for the production of white refined sugar (adapted from Valdes 
Delgado and de Armas Casanova, 2001). 
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Figure 1.6  Sugarcane milling tandem. 

 

Sugar extraction by diffusion, as it is wrongly termed, is actually a lixiviation 

process.  The shredded and pre-crushed cane (high percentage of cell rupture) is placed 

on a horizontal conveyor forming a uniform bed 1 to 1.5 m in thickness.  As the cane 

bed advances to the discharge end, liquid is repeatedly pumped on top, which flows 
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through the bed by gravity to extract the sugars.  The liquid flows along the diffuser in 

stages countercurrent to the cane bed (Figure 1.7).  In practice, up to 18 stages are 

required to perform the extraction (Walsh, 2001).  This process is performed at higher 

temperatures than milling (~70oC) to facilitate extraction and to control microbial 

activity; thus, the extra investment of juice heaters is required. (Hugot, 1986; Payne, 

1991).   
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        water 

Steam heating 

Scalding 
   juice 

Circulation 
      juice 

Washing 
   Water 

  1    2    3     4    5    6    7    8     9    10    11  12   13 
 Diffuser 

   juice 
Press 
water 

Raw 
juice 

Figure 1.7  Diagram of a B.M.A. cane diffuser (Hugot, 1986). 

 

Although sugar recovery is higher in diffusers (~98%) than in roller mills (92 –

96%), roller mills are more popular because they are easier to operate and the cane 

retention time is a lot shorter (i.e., 3 – 6 minutes, compared to 50 – 60 minutes in 

diffusers (Hugot, 1986)).  This is very important to avoid losses during unexpected shut 

downs for maintenance and repairs.  

The highest energy demand in sugarcane processing is in the evaporators.  To 

meet such energy requirements, sugarcane-processing plants burn the bagasse produced 

from the sugar extraction operation.  Some large processing plants also use cogeneration 

to produce power for other power-requiring applications, and sometimes to provide 
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electric energy to the regional electrical grid.  The bagasse is generally sufficient to 

supply all the steam necessary to meet all the energy demands (Hugot, 1986). 

 

 

I.3 Impact of the Three New Technologies on the Sugarcane Industry 

 

The three technologies can improve the efficiency of the sugarcane industry as 

follows: 

1) Vapor-compression evaporation – In conventional sugar mills, the amount of 

water used in sugar extraction is limited.  Although more imbibing water would 

allow a more extensive extraction, excessive amounts dilute the product and 

increase the duty and size of the evaporators.  Low amounts of imbibing water 

requires the use of massive roller mills that savagely crush the cane to squeeze 

the juice or the use of a very high number of stages in a diffusion system (Hugot, 

1986; Payne, 1991).  The high efficiency of the vapor-compression system 

should allow the use of more imbibing water, thus allowing a better and faster 

sugar extraction. 

2) Efficient lime regeneration – Because conventional lime is expensive, the amount 

employed must be limited.  However, the efficient stationary lime kiln from 

Altex Technologies Corp. should allow more lime use. 

3) MixAlco process – Combustion of bagasse to obtain energy does not add as 

much value as the production of chemicals and fuels via the MixAlco process 

(Holtzapple et al., 1999). 

To take advantage of these opportunities we proceeded to revise and improve the 

conventional sugarcane process in three different ways: sugarcane juice extraction, 

sugarcane juice preservation, and long-term lime pretreatment of bagasse to increase 

biological digestibility. 
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I.4 First Approach 

 

The first approach to harnessing the impacts from these new technologies would 

be to perform the sugarcane juice extraction, sugarcane juice preservation, and lime 

pretreatment of bagasse all at the same time (Figure 1.8).  Shredded fresh sugarcane and 

the appropriate amount of lime would be mixed and formed into a pile.  The pile would 

be equipped with piping on the top.  Using this pipe, the pile would be flooded 

intermittently in stages.  Because of the high pH, the sugars should be preserved.  At the 

same time, because of the periodic flooding, the sugars could be extracted and processed 

during the year for crystallized sugar production.  The fiber (bagasse) would also be 

pretreated and rendered more digestible for biological digestion to the produce fuels and 

chemicals. 

 
Fresh water
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Extracted 
sugar 
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e 1.8  First approach. 
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conditions.  Various lime loadings were implemented (i.e., 0.15, 0.2, 0.25, 0.3, 0.4 and 

0.50 g Ca(OH)2/g dry cane).  At the beginning of the experiment, the columns were 

flooded with water and it was allowed to percolate.  The liquid was collected in 

appropriate containers and this same liquid was poured on top to re-flood the column.  

This flooding and percolation procedure was done at different frequencies among the 

columns (i.e., once a day, once every other day, every four days, and every seven days).  

The preservation was intended to take place for a year.  As time passed, and the flooding 

procedure continued, microbial activity took over certain columns, at which point the pH 

decreased drastically.  Figure 1.9 illustrates the time at which the specified columns 

turned and microbial activity took over.  The only column that survived one year was the 

column with the lime loading of 0.5 g Ca(OH)2/g dry cane with flooding performed 

everyday.  Such high flooding frequency and high lime loading makes the process 

unsuitable and economically prohibitive. 

Preservation/pretreatment/extraction testing at pilot scale was done using piles of 

sweet sorghum and then of sugarcane.  In both cases, unsuccessful results were obtained.  

The studies showed the system was very unstable.  Even with high lime loadings, the 

sugar could not be preserved for long and microbial activity took over within days. 

The literature also warns of the difficulties of sugar extraction in alkaline 

conditions, especially for such a long time, because it increases the amount of juice 

impurities such as gums and pectin, which under normal conditions would stay with the 

fiber (Brüniche-Olsen, 1966). 

At this point, we made the decision to split the process and do the juice 

extraction, preservation, and pretreatment of bagasse separately. 
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Figure 1.9  Approximate time at which microbial activity took over 
for the specified columns. 
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CHAPTER II 

 

 

SUGARCANE JUICE EXTRACTION 

 

 

II.1 Introduction 

 

The high-efficiency evaporation system allows more imbibing water to be employed, 

making extraction easier in the following respects: 

1) The extraction driving force is increased.  Sugarcane extraction is a mass transfer 

process; therefore, a higher concentration difference between the cell interior and 

the extracting solvent increases speed. 

2) The presence of more water facilitates homogeneous mixing, which allows 

equilibrium between the cell interior and the extractive phase to be achieved 

more easily and faster, as illustrated in Ponchon-Savarit diagrams (Figures 2.1 

and 2.2). 
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Figure 2.1  Ponchon-Savarit diagram for a tandem of five roller mills 
(adapted from Walsh, 2001). 
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Figure 2.1 shows the Ponchon-Savarit diagram for sugar extraction in a five-

roller-mill tandem, as it occurs in an actual process.  Within a stage, mixing 

inefficiencies cause the brix (soluble solid concentration in % w/w) of the juice within 

the exiting bagasse to be much higher than the exiting extractant.  Figure 2.2 shows the 

Ponchon-Savarit diagram of the ideal case for sugar extraction with perfect mixing.  If 

100% mixing efficiency could be attained, the liquid in the bagasse from roller mill #2 

(B’2) would have the same brix composition as the juice leaving the same roller mill 

(J2).  It can be seen that the desired bagasse final brix composition is overshot with only 

three roller mills (two stages). 
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Figure 2.2  Ponchon-Savarit diagram for 100% mixing efficiency 
(adapted from Walsh, 2001). 

 

Roller mill trains use a lot of energy to crush, shear, and squeeze juice from 

cane; therefore, the power consumption of these massive units is considerable and their 

maintenance costs are also high (Hugot, 1986; Chen and Chou, 1993).  Also, they are 

inefficient because, although the bagasse is deprived of its juice when the pressure is 

first applied, the juice re-absorbs the moment the bagasse is released (Smart, 1969; 

Hugot, 1986).  Diffusion systems, although cheaper than milling, tend to be very long 
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due to the high number of stages required for extraction (up to 18 stages) and they 

require energy for pumping, conveying, and juice heating. 

What has been proposed to improve the extraction process is a “happy medium” 

between milling and diffusion (lixiviation), so that the energy consumption is less than 

in milling and the stages are fewer than in diffusion.  Figure 2.3 shows a diagram of the 

proposed process.  A series of tanks or vats are arranged in a cascade.  Each tank has a 

screw-press conveyor, which moves solids opposite to the liquid flow.  Cane, finely 

shredded and probably pre-crushed to rupture cells (high preparation index), is delivered 

to the system.  In each stage, extractive solvent and liquid-saturated bagasse, known as 

megasse, are thoroughly mixed to attain brix composition equilibrium.  The solids are 

moved by the screw-press conveyor to the next stage.  As the solids are conveyed to the 

next stage, the screw-press conveyor also applies a light pressure to express some of the 

liquid embedded in the fiber into the present stage.  This system is more energy efficient 

than a roller mill tandem because it only applies a light squeeze to the material and the 

maintenance costs are reduced because the excessive pressure and shear forces of the 

roller mills are avoided.  In comparison with the diffusion system, it does not use as 

many stages, which decreases its length and the residence time of the materials in the 

process, which may avoid the need for juice heating used to control microbes.  Based on 

these considerations, Figure 2.4 shows a sketch of the expected cost/response curve.  At 

a constant extraction performance and capacity, there exists a minimum cost, caused by 

the decreasing expenses due to the decreasing number of stages (towards the left) and 

the decreasing applied pressure (towards the right). 

Final dewatering of the megasse (to a moisture content of ~50%) will be 

necessary if the material is to be used directly as fuel; however, if the material is to be 

used in the MixAlco process (Chapter I), final dewatering may not be required.  

Nonetheless, it is important to consider that bagasse with a high moisture content is 

difficult to handle.  
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Figure 2.3  Countercurrent diffusion system with light squeeze of solids. 

 

Milling

Diffusion

C
O

ST

Optimum

# of stages increasing

Applied pressureincreasing
 

Figure 2.4  Sketch of the expected cost at constant sugar recovery and capacity. 

 

The addition of lime to the extraction process might be advantageous because it 

controls both microbial activity and the inversion of sucrose to fructose and glucose, 

which occurs at pH lower than 6.0 (Chen and Chou, 1993).  Also, it precipitates 

impurities from the juice, which remain in the fibers (Ponant et al., 1988).  In 



 17

conventional diffusion systems, liming is only done to avoid inversion, and the pH is 

never allowed to go above 7.0 (Hugot, 1986).  Sugar extraction in alkaline medium (pH 

higher than 7.0) attained by adding lime, has been reported in the literature, particularly 

for extracting sugar from sugarbeets, but the results are contradictive (Accorsi and 

Zama, 1993; Broughton et al., 1992; Brüniche-Olsen, 1962; Ponant et al., 1988; Stanek 

and Pavlas, 1938).  Heat is necessary in the diffusion process to control microbial 

activity (Walsh, 2001; Brüniche-Olsen, 1966) and to make unbroken cells permeable to 

sucrose molecules by denaturing their protoplasm lining, action known as “killing the 

cells.”  A temperature of at least 70oC is necessary to make unbroken cells permeable 

(Brüniche-Olsen, 1962).  However, Walsh (2001) suggests that sugar extraction from 

well-prepared sugarcane (finely shredded and perhaps pre-crushed to achieve a high 

degree of cell rupture) is almost negligibly enhanced by temperature and that it could be 

performed at ambient temperature if the residence time of the material in the diffuser 

could be reduced to avoid microbial growth.  More studies on alkaline extraction and the 

necessity to heat should be performed in the future when a fully operational process is 

implemented. 

 

 

II.2 Literature Review 

 

The characteristics of the proposed sugar extraction system lie between milling 

and diffusion, but they are closer to milling because the extraction is attained by 

mixing/separation, whereas diffusion should ideally occur by the mass transfer 

phenomenon known as displacement (Walsh, 2001).  Vázquez (1928) patented a sugar 

extraction system, which employs mixing/separation with better mixing efficiency than 

roller mills by using an agitator.  It is also a countercurrent extraction; however, a simple 

screen is used to separate the solids without any dewatering aid. 

Screw presses have been used for almost a century (Egenes and Helle, 1995) and 

are standard dewatering equipment for many applications such as paper pulp (Egenes et 
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al., 1995), polymers (Kougiya, 1999), rubbers (Kougiya et al., 1996) and vegetable oil 

extraction (Starrett, 1967).  In the sugarcane industry, screw presses have been used as 

dewatering aids since the beginning of the 1960’s (Starrett, 1967) and became popular 

by the early 1970’s (Cordovez, 1970).  From the start, their advantages over traditional 

roller mills were obvious.  They steadily dewatered bagasse to a fixed moisture content 

regardless of the bagasse moisture content at the inlet.  Unlike roller mills, the extracted 

juice did not re-absorbed, maintenance costs were a lot lower, and the capital investment 

of a press was 2/3 that of a roller mill of similar capacity (Smart, 1969; Hugot, 1986). 

Because they were used to replace roller mills to obtain maximum dewatering capacity, 

the screw presses saw high abrasive stresses.  They required frequent maintenance, 

which increased plant down-time; thus, their use was discontinued.  The applied pressure 

should be kept below 15 kgf/cm2 (213 psi or 1470 kPa); above this, the resistance of the 

megasse increases rapidly (Leibig, 1995), increasing the power requirement 

exponentially and the wear and tear of the equipment.  For comparison, a conventional 

roller mill operates in the 70 – 300 kgf/cm2 (995 – 4270 psi or 6865 – 29420 kPa) range 

(Hugot, 1986).  This exposes an inefficiency of roller mills because they must spend a 

lot of their energy “fighting” bagasse resistance rather than dewatering it.  Starrett 

(1967) performed power consumption studies of the dewatering of sugarcane bagasse 

with screw presses, but, as mentioned, his conditions were different than ours because he 

was trying to attain maximum dewatering capacity.  In contrast, in our proposed process, 

only light pressure is applied.   

To extract sugar from sugarcane, the De danske Sukkerfabrikker (D.d.S.) slope 

diffuser (Figure 2.5) (Brüniche-Olsen, 1962) has been designed to aid the usual surface 

extraction by “frequent, repeated light compressions of the cane, which permits re-

absorption of juice somewhat less concentrated than that squeezed out.”  This is 

accomplished by using a long twin-screw conveyor (S.C.).  The S.C. carries the cane 

upwards through the diffuser, which is designed as a sloping vessel and fits around the 

two screws, while the juice flows downwards by gravity.  The screws rotate in opposite 

directions and the cane gently slides around the screw shafts as it is conveyed.  Each 
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time the cane rotates, it is squeezed in the narrow space between the shafts of the 

intermeshing screws.  The advantage of this system is that it does not depend on cane 

preparation; shredded/crushed and shredded-only cane yield approximately the same 

extraction (Brüniche-Olsen, 1966).  These studies confirm the effectiveness of the 

applied gentle squeeze in sugar extraction.  A disadvantage of this diffuser is the long 

residence time of the material in the system (Schiweck and Clarke, 1994), which makes 

heating imperative to avoid microbial activity.   
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Figure 2.5  Schematic of the D.d.S. slope diffuser 
(adapted from Brüniche-Olsen, 1962). 

 

Leibig (1995; 2001) invented the Low Pressure Extraction System (LPE-

System), which operates on the same principles as our proposed process by finding a 

“happy medium” between milling and diffusion to minimize cost.  The dewatering units 

in the LPE-system consist of roller pairs lying one on top of the other, which interact in a 

manner similar to conventional mills to apply light pressure to the megasse as it passes 

between them.  To overcome the limitation of juice re-absorption in conventional roller 

mills, the lower roll in the extraction units of the LPE-System is perforated with drainage 

canals.  The system uses four or five of these units in series to allow conventional 

countercurrent operation of the cane and imbibing fluid.  Figure 2.6 shows the details of 

one of the units in one of the stages of the system.  One of the observations they make 
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about this system is the necessity for attaining a high preparation index for the cane 

before it enters the process, which is required to expose the cell contents to the imbibing 

fluid.  Plants in Brazil, Mexico, and India employ this system and have yielded 

promising results.  However, some limitations of this system are the fact that mixing 

inefficiencies cannot be overcome.  They must supplement maceration with lixiviation, 

as in a conventional diffuser, at the front of the process to improve extraction or they 

have to increase the number of stages.  Also the roller pairs cannot handle throughputs as 

large as those handled by screw presses of similar size; thus, their initial investment will 

be higher. 
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II.3 Experimental Methods 

 

II.3.1 Objective 

 

The goal of the present study was to test the performance of a pilot-scale screw-

press conveyor on bagasse dewatering and to develop a relationship between dewatering 

capability (% moisture of megasse), dry fiber (lb/h of fiber processed), and power 

consumption (hp).  These parameters should allow a preliminary evaluation of the 

process. 

 
II.3.2 Equipment Description 

 

A 6-ft-long carbon-steel screw-press conveyor (Screw conveyor Corporation, 

Winona MS) was covered with a high-resistance epoxy paint to decrease friction and 

corrosion.  It was equipped with a perforated outer casing.  The screw-press conveyor, as 

do many conventional screw presses, accomplished the squeezing of the material by the 

action of its increasing shaft diameter along its length from the inlet to the outlet side, 

against the perforated outer casing.  As the squeezing occurs, the liquid is allowed to 

escape through the perforations of the outer casing.  The flight diameter, on the other 

hand, remained constant and it was only slightly smaller than the inner diameter of the 

perforated outer casing so that the screw-press conveyor fits snugly inside of it all along 

its length.  This feature is important to efficiently convey the material through the 

channels of the screw towards the outlet.  The pitch length was also constant.   

Because the screw-press conveyor was set up vertically, the inlet (i.e., the part 

with the smallest diameter) was at the bottom.  Figure 2.7 shows the details and 

dimensions of the screw-press conveyor and the perforated outer casing. 
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Figure 2.7  Details and dimensions (in inches) of the screw-press conveyor and 
the perforated outer casing. 
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the other rod was attached to the metal pedestal.  The rods yielded a 38.0-in-long lever 

arm ( ).  The load-cell was connected to a strain meter (DP25B-S, Omega Eng., 

Stamford CT) from which the resulting force (lb

l

f) could be read.  A magnetic sensor sent 

signals to a tachometer (AP1000, Electro-sensors Inc, Minnetonka MN) to measure 

rotational speed (rpm).  The power was calculated using the following equation: 

 

πτϖ2=P  ϖπ lF2=  (SI units) 

ϖππτϖ lF44 103.3
2

103.3
2

×
=

×
=   (English units) (2.1) 

 

where the English units follow: 

 P = Power, hp 

 τ = Torque, lbf ·ft 

 ϖ  = Rotational speed, rpm 

 F = Force recorded from strain meter, lbf

  = Length of the arm that anchors the motor, ft l

 

To prevent misalignments, a support was implemented for the shaft that 

connected the motor to the screw-press conveyor.  This support consisted of two blocks 

that embraced the shaft, and were held in the proper place by threaded rods, which could 

be adjusted accordingly.  The shaft support was equipped with a grease fitting to provide 

lubrication. 

To ensure alignment with the screw-press conveyor, the perforated outer casing 

was supported vertically by four threaded rods, which also allowed for vertical 

adjustment (VATR) and horizontally by six threaded rods (HATR) (Figure 2.8), which 

permitted horizontal adjustment as well.  

Two collecting trays that fitted around the perforated casing were used to capture 

samples of the processed material.  These trays were equipped with wheels so that they 
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could be easily and quickly pushed in to start collecting the sample and pulled out to 

stop.  The collecting trays rested on the tray holders/rails (Figure 2.8) and could be 

removed to obtain the weight of its contents on an appropriate weighing scale. 

To keep perfectly mixed conditions in the tank at all times, a 1/3-hp portable 

mixer (PG-13, Chemineer Inc, Dayton, OH) was used, which was mounted on one side 

of the tank where an extension had been rigged.  The mixer came equipped with a 

gearbox, which allowed it to operate at a constant speed of 430 rpm.  Figures 2.9 to 2.14 

show various photographs of the equipment.  

 

II.3.3 Methodology 

 

For these preliminary studies, only water and exhausted bagasse (no sugars) were 

used.  The throughput was controlled by increasing or decreasing the screw-press 

conveyor rotational speed.  The steady-state throughput of the screw-press conveyor was 

measured by timing the amount of megasse that was collected in the trays.  The 

collecting trays could be positioned at different heights according to the tray holder/rails 

used to support them.  The moisture content depends on the position of the perforated 

outer casing, which could be moved upwards to restrict the flow or downwards to loosen 

it.  The megasse (wet bagasse) collected in the trays was squeezed to remove loosely 

held water, and the resulting bagasse was collected in a 28 × 30 in well-sealed Ziplock 

bag (14545T23, McMaster-Carr, Atlanta GA).  The samples were kept in a walk-in 

cooler at 4oC until analyzed for moisture.  The moisture content was determined in the 

laboratory by drying in a 105oC oven until constant mass was achieved (2 to 3 days).  

The moisture content of the megasse is the difference between weight of the megasse 

collected in the trays and the weight of the dry bagasse obtained after drying in the oven 

at 105oC divided by the weight of the megasse collected in the trays.  Each data set 

relates moisture content and throughput (amount of cane processed) to power 

consumption. 
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Figure 2.9  Photograph of screw-press conveyor system. 
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Figure 2.10  Photograph of the motor and torque-measuring system. 
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Figure 2.11  Photograph showing details of the screw-press conveyor flight, the tray 
holder/rails for the collecting trays, and the shaft support. 
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Figure 2.12  Photograph of inside the tank while being filled with water. 
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Figure 2.13  Photograph of the screw-press conveyor during operation. 
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Figure 2.14  Photograph of inside the tank during operation. 

 

 

Because of the high degree of fluctuation in the system, a steady torque reading 

could not be attained.  A digital camera was used to film the reading of the strain meter 

during the time the megasse was collected.  These filmed values were later averaged to 

obtain the torque parameter for each data point. 
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II.3.4 Computational Approach 

 

Figure 2.15 shows a diagram of one stage of the extraction process.  Assuming 

100% mixing efficiency and knowing the relationship between liquid fraction in the 

megasse and power consumption (operating cost), the following equations may be 

developed to simulate the system and optimize parameters (derivation in Appendix A): 
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where 

 LN = Liquid mass fraction in megasse attained in the Nth stage,  

lb H2O + soluble solids/lb total megasse  

 LN-1 = Liquid mass fraction in megasse attained in the N-1th stage,  

lb H2O + soluble solids/lb total megasse  

 CN = Soluble solids mass fraction in the Nth stage, 

lb soluble solids/lb total liquid  

 CN-1 = Soluble solids mass fraction in the N-1th stage, 

   lb soluble solids/lb total liquid  

 FN = Mass flow rate of juice coming out of the Nth stage, lb/h 

 S0 = Dry fiber mass flow rate as fed to the system, lb/h 

CN+1 = Soluble solids mass fraction in the N+1th stage, 

  lb soluble solids/lb total liquid 

FN+1 = Mass flow rate of juice coming out of the N+1th stage, lb/h 
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used instead of exhausted bagasse, the material would have been extensively washed to 

rid it of the soluble solids prior to drying. 

 

 

II.4 Results and Discussion 

 

Attempts to operate the screw-press conveyor with high flow restriction settings 

failed.  The material accumulated inside the screw-press conveyor without ever getting 

to steady state.  This is a common phenomenon in screw presses that is normally fixed 

by implementing flight interrupters (Figure 2.16).  Flight interrupters are pins mounted 

to the housing (i.e., the perforated outer casing) that keep the material from simply 

rotating inside the screw-press due to slippage.  The screw-press conveyor must be 

modified in this manner before more data can be obtained.  

The perforated outer casing was lowered as much as possible to have the lowest 

possible flow restriction and a total of 29 data sets were taken at only this setting at three 

different rotational speeds (i.e., 40, 60 and 80 rpm). 

Various amounts of bagasse and water were added into the tank to vary the 

loading to the screw-press conveyor.  As the bagasse concentration in the tank increased, 

the load increased and the screw-press conveyor processed more material. 

Three different bagasse concentrations in the tank were studied:  ~ 4% (96% 

moisture), ~ 6% (94% moisture) and ~ 8% (92% moisture). 

 

II.4.1 Parameter Correlations 

 

The correlation between dry fiber throughput (lb dry/h) and power is shown in 

Figure 2.17. 

The relationship was found to have an exponential response with the following 

equation derived from the regression: 

 



 35

PekS ⋅±⋅= 48.020.9     (2.4) 

 

where 

 S = Dry fiber throughput, dry lb/h 

 P = Power, hp 

 k = Exponential term intercept, e3.54±0.11 = 34.6 

 

Flight
Interrupters

 

Figure 2.16  Screw-press conveyor equipped with flight interrupters. 
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Figure 2.17  Dry fiber throughput as a function of power 
(Error bars = ± 1 standard deviation). 

 

The statistical analysis for the significance of this fit and the estimation of the 

standard error for the regression parameters can be found in Appendix B. 

Because it was only possible to operate the screw-press conveyor at one flow-

restriction setting, the moisture content attained in the system only varied slightly from 

88.7% to 92.2%.  This observation agrees with the literature, which suggests that screw 

presses steadily dewater bagasse to a fixed moisture content regardless of the moisture 

content at the inlet (Smart, 1969). 

In spite of the small variation in moisture content, the ANOVAS of the resulting 

relationships between moisture content and power and between moisture content and dry 

throughput showed the regressions to be significant (see statistical analysis in Appendix 

B). 

Figure 2.18 shows the relationship between moisture content and power.  It is 

interesting to note that when flow restriction is fixed, as the final moisture content 

decreases, so does the required power, which might seem counterintuitive.  This can be 
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explained by the fact that throughput is expressed on a dry basis, but the screw-press 

conveyor is required to convey water also; thus, less wet material means less water 

moved and less power consumed (direct relation).  If the moisture content was reduced 

by increasing flow restriction, then a power increase is expected (inverse relation). 
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Figure 2.18  Megasse moisture content as function of power 

(Error bars = ± 1 standard deviation). 

 

The regression for the relationship between moisture content and power yields 

the following linear equation: 

 

6.03.8845.273.8 ±+⋅±= PL     (2.5) 

 

where 

L = Attained liquid or moisture content of the megasse, lb H2O/100 lb  

total megasse 

 P = Power, hp 
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Figure 2.19 shows the relationship between dry fiber throughput and moisture 

content.  The observed trend at a fixed flow-restriction setting shows there is a direct 

relation between throughput and moisture content.  Although not considerable, as 

mentioned above, it results because as bagasse concentration in the tank becomes larger 

(more throughput) the screw-press conveyor dewatering capability decreases slightly 

(higher attained moisture content). 
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Figure 2.19  Dry fiber throughput as a function of megasse moisture content. 

 

The resulting linear equation for the regression is as follows: 

 

30001290033146 ±−⋅±= LS    (2.6) 

 

where 

 S = Dry fiber throughput, dry lb/h 

L = Attained liquid or moisture content of the megasse, lb H2O/100 lb  

total megasse 
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II.4.2 Simulation of process conditions 

 

Optimization of a process involves minimizing the initial investment and 

operating costs.  The attained megasse liquid fraction or moisture content affect the 

initial investment because as the dewatering capability increases (lower liquid or 

moisture content), the number of required stages needed to achieve the desired extraction 

will decrease.  However, as the liquid fraction in the megasse decreases due to flow 

restriction, the operating costs increase because the power will be higher.  Therefore, to 

optimize the process, it is necessary to find an optimum number of stages and an 

optimum liquid fraction attained in the screw-press conveyors that will yield the 

minimum total cost. 

Optimization of the process in these studies was not possible because the screw-

press conveyor could not be operated at higher flow-restriction settings; thus, it was not 

possible to obtain the necessary power and throughput profiles at lower moisture 

contents.  The screw-press conveyor must be modified to handle higher flow restrictions 

before an optimization can be attempted. 

Nonetheless, it was possible to obtain realistic numbers for the parameters, which 

although not optimized, produce conservatively realistic results of the performance of 

the process. 

Equations 2.2 and 2.3 were implemented in an iterative procedure using a 

MatLab™ program (Appendix C) to simulate an extractor that would utilize our existing 

non-optimized pilot-scale screw-press conveyor as dewatering units in several stages as 

shown in Figure 2.3.  As mentioned, these equations assume that equilibrium is achieved 

in each stage. 

 

II.4.2.1 Process Specifications 

 

For the simulation we assumed the screw-conveyor would process 150 dry fiber 

lb/h of fresh, well-prepared cane, which is homogeneously 15 lb dry fiber/100 lb cane, 
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17 lb soluble solids/100 lb cane and 68 lb water/100 lb cane (85 lb liquid/100 lb cane), 

which are typical values for these parameters. 

A summary of specified parameters is shown in Table 2.1.  As mentioned before, 

there are two target parameters in these computations: 1) the brix of the juice exiting the 

system, which is also the soluble solids mass fraction in Stage 1 (C1), and 2) the soluble 

solids mass fraction of the liquid remaining in the bagasse, which is equal to the soluble 

solids mass fraction in the last stage (Clast stage).  The former is important because it is 

inversely related to the duty and size of the boilers and evaporators, whereas the latter 

determines how effective the extraction is. 

The soluble solids mass fraction in the last stage is related to the overall 

extraction or recovery and other parameters in Table 2.1 by the following equation:  
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Given the specified dry fiber mass flow rate (S0), Equation 2.6 was rearranged to 

find the moisture content or liquid mass fraction that can be attained under the 

conditions of the screw-press conveyor studied.  For the simulation, this represents the 

liquid mass fraction attained in the screw-press conveyors in each stage (LN), which is 

one of the parameters that should be optimized but we are unable to do so due to the 

limited data.  Equation 2.6 yielded a value for LN = 88.9 lb liquid/100 lb total megasse. 
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Table 2.1  Specified parameters and their respective values used in the simulation. 

 Parameters  Nomenclature  Specified Value 

      
Soluble solids mass fraction in fresh cane liquid 
fraction 

C0
 

0.2 lb sol. solids/lb 
liquid 

      
Soluble solids mass fraction in liquid in Stage 1.  This 
is also the brix of the mixed juice leaving the system 

C1
 

0.15 lb sol. solids/lb 
liquid 

      
Mass flow rate of juice pre-extracted from  
fresh cane prior to entering the system 

F0
 

0.0 lb/h 

      
Dry fiber mass flow rate as fed to the system S0  150 lb/h 

      
Liquid mass fraction in fresh cane prior to  
entering the system 

L0
 

0.85 lb liquid/lb cane

      
Soluble solids mass fraction in the imbibing 
liquid entering the system at the last stage 

Cimbibition =Clast stage+1
 

0 lb sol. solids/lb 
liquid 

      
Liquid mass fraction in the bagasse or megasse 
leaving the system  

Llast stage
 

0.45 lb liquid/lb total 
bagasse 

      
Liquid mass fraction in the megasse attained in 
Stage N, where N = 1 through last stage-1 

LN
 

88.9 lb liquid/100 lb 
total megasse* 

      
Overall extraction or recovery 

 

Eoverall

 

98 lb sol. solids 
recovered/100 lb sol. 

solid in cane  
            

* megasse ≡ soaked bagasse 

 

The specifications call for bagasse to be burned as fuel; therefore, a high-pressure 

dewatering device must be included to decrease the moisture content of the megasse 

exiting the last screw-press conveyor to below 50% (50 lb liquid/100 lb total bagasse).  

One conventional roller mill alone cannot handle such high moisture levels at its inlet to 

achieve a final moisture content of less than 50%.  The alternatives in this case would be 

to either 1) use two roller mills in series, 2) set the last screw-press conveyor to dewater 

to a moisture content of about 70% before discharging to the roller mill, 3) employ one 
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high-pressure screw press, or 4) a cone press (Hugot, 1986).  The last two devices can 

dewater bagasse to moisture contents below 50% even with high-moisture-content feed.  

Results demonstrate that for bagasse coming out of a diffuser, one mill is not enough, 

but two mills is excessive; therefore, the first option is not recommended (Chen and 

Chou, 1993).  Regardless of the alternative chosen, the simulation assumes that the last 

unit (i.e., last vat, mixer and screw-press conveyor in the series) and the high-pressure 

dewatering device(s) are one single stage as illustrated in Figure 2.20.  Thus, the 

moisture content achieved in the high-pressure device is taken as the moisture content 

achieved in the last stage (Llast stage).  

 
Imbibition 
water inlet 

Partially squeezed 
megasse Low moisture 

bagasse 
) 

23 1Prepared 
cane 

Tab

integer valu

give an ext
1

R

Fig

le 2.2 sho

e, the sim

raction eq
2

aw juice 

ure 2.20

ws the si

ulation w

ual to or
Juice 

  Illustratio

II.4.2.2 S

mulations 

as set to f

 higher than
L.S. -
n of the 

 

imulatio

 

results.  B

ind the m

 the spec
L.S. -
simulation c

n Results 

ecause the

inimum nu

ified overa
Last Stage (L.S.
 

Final 
Dewatering? 

onditions. 

 number or stages is an 

mber of stages that would 

ll recovery (Eoverall).  This 



 43

number of stages yields an actual overall extraction (Eactual), which is slightly higher than 

Eoverall. 

 

Table 2.2  Summary of simulation results. 

 Parameters  Nomenclature  Simulation Result

      
Number of stages required    9 
      
Actual overall recovery, % (lb of soluble solids 
recovered/100 lb of soluble solids in the cane)  

Eactual
 

98.4 

      
Soluble solids mass fraction in specified stage 
(lb soluble solids/lb liquid) C0  0.20* 
 C1  0.15* 
   C2  0.12 
   C3  0.10 
   C4  0.08 
   C5  0.06 
   C6  0.05 
   C7  0.04 
   C8  0.03 
   C9,last stage  0.02 
      
Mass flow rate of juice pre-extracted from fresh cane, 
lb/h 

F0
 

0.0* 

    
Mass flow rate of juice exiting Stage 1, lb/h F1  1110 
      
Mass flow rate of juice coming out of Stage N, 
where N = 2 through 9, lb/h  

FN
 

1470 

      
Mass flow rate of imbibing liquid, lb/h Fimbibition=Flast stage+1  388 
    
    
Imbibition level, % on fiber (lb imbibing liquid/100 lb 
dry fiber processed)   

259 

    
* These values are specifications of the process. 

 

Table 2.3 shows the recovery attained after each stage.  The highest recovery 

occurs in the first stage, and subsequent stages improve recovery only slightly.  This 
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profile is important because it appeals to engineering common sense about the actual 

number of stages necessary.  Thus, the target recovery (Eoverall) in the process 

specifications was 98% (98 lb soluble solids recovered/100 lb soluble solids fed to the 

system in fresh cane) but this profile shows that after Stage 8 the extraction attained is 

already 97.8%, which is very close to our target Eoverall.  When 97.7% is specified for 

Eoverall, the simulation returns an Eactual = 98.0% after eight stages, thus meeting our 

original Eoverall, and confirming that only eight stages are necessary. 

 

Table 2.3  Soluble solids overall recovery after each stage. 

 Actual overall recovery  Nomenclature  Simulation Result 

       
 Stage 1   Eactual,1  89.2%* 
      
 Stage 2  Eactual,2  91.3% 
      
 Stage 3  Eactual,3  93.0% 
      
 Stage 4  Eactual,4  94.4% 
      
 Stage 5  Eactual,5  95.5% 
      
 Stage 6  Eactual,6  96.5% 
      
 Stage 7  Eactual,7  97.3% 
      
 Stage 8  Eactual,8  97.8% 
      
 Stage 9  Eactual,9  98.4% 
            

* % ≡ lb soluble solids recovered/100 lb soluble solids in cane fed to system 

 

Another important observation is that the typical overall recovery in conventional 

roller mills is about 94 – 96%.  The results in Table 2.3 show that we are already in that 

range after the 4th stage. 

The level of imbibition (260 lb imbibing water/l00 lb dry fiber or 260% on fiber) 

is in the range used for diffusion (Chen and Chou, 1993), although, in places like South 
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Africa, the imbibition levels for their diffusers is in the order of 320 – 400% on fiber.  

The imbibition levels in milling are in the order of 160% on fiber (Chen and Chou, 

1993). 

The power consumption (P) was calculated by rearranging Equation 2.4.  At the 

specified dry fiber mass flow rate (150 lb dry/h), P = 0.160±0.02 hp or 2.13±0.27 

hp·h/dry ton of fiber processed (hp/tfh) in each screw-press conveyor. 

The accumulative total amount of power required by all eight screw-presses is 

1.28±0.16 hp (0.955±0.12 kW) or 17.0±2.1 hp/tfh (14.0 ± 1.7 kW·h/dry metric tonne of 

fiber). 

Starrett (1967), who studied the implementation of screw presses for aggressive 

dewatering of sugarcane bagasse, suggests that screw presses, as many other types of 

equipment, require less power per unit of material processed as their capacity increases.  

He reports that a screw press with a capacity of 20 wet tons of cane/h (tch) uses about 8 

hp/tch (53 hp/tfh) to dewater bagasse to a moisture of about 45%.  On the other hand, a 

screw press with a capacity of 125 wet tch could dewater bagasse to the same moisture 

content using only 5 hp/tch (34 hp/tfh).  This value is fairly comparable to the power 

consumption of a conventional mill, which ranges between about 30 hp/tfh in the first 

roller mill of the tandem to about 20 hp/tfh in the last one (Hugot, 1986) 

The effect of capacity is important because the power consumed by a screw-press 

conveyor (P=2.13±0.27 hp/tfh) is a conservative number for scale up; as we increase the 

capacity of the screw-press conveyor, the power consumption per ton of fiber processed 

will actually decrease to our advantage. 

It is encouraging to notice that the cumulative power consumption for all eight 

screw-press conveyors in our system is less than the power consumed by only one 

conventional roller mill of a tandem of four or five mills.  We achieved this, in spite of 

reporting numbers from an unoptimized pilot-scale (i.e., low-capacity) screw-press 

conveyor.  Also, the power consumed by the material-conveying equipment in the 

milling process is not included, an action that is also performed by the screw-press 

conveyors as they dewater the megasse. 
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When compared to our unoptimized low-capacity screw-press conveyor, power 

consumption per extraction unit in the Low Pressure Extraction system (LPE-System) 

(Leibig, 1987; 1995; 2001) is lower (~ 1.3 hp/tfh or 1.1 kW·h/dry metric tonne of fiber, 

effective power demand for a tandem of eight units) (Leibig, 1995).  Nonetheless, their 

capacity was almost 50 times larger than ours.  In addition, the conveying equipment 

must be added to these values because the screw-press conveyors also perform this task. 

The LPE-system works on the same principles as our process (i.e., lixiviation 

aided by gentle squeeze) and attains in each of their low-pressure dewatering units, a 

moisture content (LN) of about 70% (Leibig, 1995).  If this value for LN is used in the 

simulation, the number of required stages decreases to four stages with an overall 

extraction (Eactual) of 98.6% (98.6 lb of soluble solids recovered/100 lb of soluble solids 

in cane fed).  The LPE-system yields no more than 97% extraction with five stages and a 

lixiviator/macerator in the front end or with eight extraction units.  Table 2.4 shows the 

simulation results for the number of required stages and Eactual at different values of LN. 

 

Table 2.4  Simulation results as LN is varied. 

LN Number of Required Stages Eactual Eactual before last stage 

    
70.0% 4 98.6% 97.0% 

    
75.0% 5 98.8% 97.8% 

    
80.0% 5 98.1% 96.9% 

    
82.0% 6 98.5% 97.6% 

    
85.0% 7 98.5% 97.8% 

    
87.0% 8 98.5% 97.9% 

    
88.9% 9 98.4% 97.8% 

    
Units: LN  ≡ lb liquid/100 lb total megasse 
 Eactual  ≡ lb soluble solids recovered/100 lb soluble solids in cane fed 
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II.5  Conclusions 

 

The most important outcome from this study is that even though the results were 

very conservative, they showed that the power consumption in this system is much lower 

than in conventional roller mills.  Further, the number of stages, and thus the residence 

time of the cane, will also be considerably lower than in diffusion.   

The light pressure applied is more energy efficient than an aggressive squeeze as 

it occurs in roller mills.  As mentioned previously, after a certain applied pressure, 

bagasse resistance increases drastically; thus, in milling a considerable amount of energy 

is wasted in friction caused by the bagasse.  On the other hand, the light squeeze makes 

countercurrent extraction more efficient because it ensures that the liquid is going in the 

right direction (i.e., opposite to the solids, as opposed to with the solids). 

The intimate contact between the liquid and the cane allows equilibrium to be 

achieved rapidly, which gives an advantage over roller milling where the mixing 

efficiency is very low.  Also, it is better than diffusion because in these systems, 

although high mixing efficiencies are attained, stagnant pockets of liquid exist even at 

high flow rates (Rein, 1971), which is one of the main reasons for requiring long cane 

residence times in diffusers. 

Besides the expected savings in power in comparison to milling, there is also the 

savings, both in capital and operating costs, in conveying equipment necessary to move 

the cane, megasse or bagasse, which the screw-press conveyor performs as it dewaters 

the material. 

 

 

II.6  Future Work 

 

There is still much to be done to improve this system.  Improvements must start 

with modifying the screw-press conveyor to increase its efficiency.   
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Firstly, interrupters (Figure 2.16) must be installed so that it can operate at higher 

restriction settings and develop a power and throughput correlation at lower moisture 

contents that will allow optimization of the system.  Without the interrupters, the 

material accumulates inside the screw-press conveyor, unable to achieve steady state, 

until eventually it overloads and shuts itself down. 

Another necessary modification is to reduce the pitch length of the screw-press 

conveyor.  Figure 2.21 shows the screw-press conveyor right after operation, being 

pulled out from the perforated casing for clean-up.  Although there is bagasse 

compaction, only the lower part of the pitch is used.  Commonly, efficient screw presses 

not only have an increasing shaft diameter from inlet to outlet, but also, have a 

decreasing pitch length.  In this way, if cylindrical coordinates are considered, the 

squeezing not only occurs in the r direction, as in these studies, but also in the z 

direction. 

The clearance between the outer perforated casing and the flight must be 

decreased.  This change will decrease the power consumption as a function of 

throughput, because the bagasse will not slip though this crevice as it is being conveyed 

upwards.  It should be noted that this modification will require a more strict alignment of 

the apparatus. 

The way the screw-press conveyor is fed is different from conventional screw 

presses.  The screw-press conveyor works as an auger picking up the bagasse as it 

randomly finds it in the constantly stirred tank.  This causes some irregularities that 

represent an inefficiency; thus, it was not possible to have a steady torque reading.  In 

the conventional way, on the other hand, material is directly conveyed to the inlet of the 

press, having a constant feed rate.  Studies should be performed to ascertain if these 

irregularities may be corrected or at least minimized.  Parameters to check could be 

solids loading in the tank, modification of the lower part of the flight so that it may 

“catch” the shredded cane more efficiently, depth of the tank, placement depth of the 

screw-press conveyor, mixing profiles, which depend on mixer impeller size, shape, 

baffles presence and placement, positioning of the mixer, and among others. 
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Figure 2.21  Photograph of the screw-press after operation being pulled 
out of the perforated outer casing. 

 

Another necessary parameter is retention time both of the liquid and of the fiber.  

This parameter allows the sizing of the vats and mixer or agitators to be used.  Studies 

with screw-press conveyors on mixing and equilibrium of sugar extraction with fresh 

cane must be performed for its determination. 

Other factors that must be studied are extraction temperature, the use of lime 

during extraction, and power consumption and performance of the agitator. 
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CHAPTER III 

 

 

SUGARCANE JUICE PRESERVATION 

 

 

III.1 Introduction 

 

After extracting sugar from cane, sugar crystals (either raw or white) must be produced 

immediately to avoid juice spoilage.  The sugarcane season in the United States lasts 3 to 

7 months.  The rest of the year, sugarcane-processing plants do not operate except to sell 

the raw sugar produced during the season.  The equipment must be oversized to handle 

all the juice produced during the harvest season. 

To reduce the size of downstream processing equipment, preserving the extracted 

juice with lime might allow it to be processed during the whole year instead of the few 

harvest months.  The high pH (> 11.0) keeps sucrose from inverting to fructose and 

glucose, which occurs at low pH, and also inhibits microbial growth, thus preserving the 

juice.  Then, the juice undergoes carbonatation (as it is known in the sugar industry 

jargon), which consists of carbonating the juice by bubbling carbon dioxide to decrease 

pH, followed by filtration.  This process clarifies the juice and recovers calcium 

carbonate.  A stationary lime kiln developed by Altex Technologies Corp. (Sunnyvale 

CA), as described in Chapter I, economically produces lime from calcium carbonate.  To 

more efficiently dissolve carbon dioxide in the liquid, a device, such as the modified 

Isbell agitator (Aldrett Lee, 1999), may be used, especially near neutral pH, where the 

reaction is mass transfer limited. 

Sucrose is a non-reducing sugar; thus, it is very stable in alkaline medium.  In 

contrast, reducing sugars – such as glucose, fructose, or xylose – readily degrade in 

alkali (Yang and Montgomery, 1996).  Sucrose degrades rapidly under alkaline 

conditions at temperatures higher than 100oC (Goodacre et al., 1978; Montgomery and 
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Ronca, 1953; Kopriva, 1973; Montgomery, 1953; O’Donnell and Richards, 1973; 

Manley-Harris and Richards, 1981; Manley-Harris et al., 1980; Yang and Montgomery, 

1996), but studies have demonstrated that at ambient or lower temperatures, no 

degradation is detected (Lloyd et al., 1995) even after a long time (Williams and 

Morrison, 1982).  Goodacre et al. (1978) used 14C-U-sucrose to detect small amounts of 

sucrose degradation at conditions close to those in a sugar refinery.  He showed that as 

temperature increased, the rate of sucrose degradation also increased.  In the case of pH, 

the degradation curve presented a minimum around 10.2.  Extrapolating from his data at 

pH 11.1, suggests that at 45oC (113oF), sucrose degradation is about 3%/month (g 

degraded/100 g initial sucrose per month).  However at 40oC (104oF), which is 

approximately the record high temperature for a Texan summer, the degradation rate is 

nil.  

Calcium carbonate solubility varies with pH and sucrose concentration (Dartois, 

1941), reaching a peak at about 10o Brix (Chen and Chou, 1993).  These parameters are 

important because they limit the amount of lime that can be recovered.  At the sucrose 

concentration of raw juice obtained from mills, calcium carbonate solubility is close to 

that in water.  Carbonatation (i.e., reaction with CO2 followed by filtration) should be 

performed between 55oC and 45oC.  Higher temperatures cause sugar losses, and below 

45oC the reaction is slow (Hugot, 1986).   

To use the stationary lime kiln system, the organic content of the carbonatation 

sludge must be below 10% (w/w) to yield robust pellets, otherwise, they disintegrate as 

the organics are burned, clogging the reactor.  In the actual process, the carbonatation 

sludge would be thoroughly rinsed during filtration to avoid sugar losses.  However, 

sugarcane contains waxes, gums, and among other compounds (Chen and Chou, 1993) 

that precipitate with the carbonatation sludge (Azzam, 1984) and cannot be extracted by 

water; thus, the sludge will have a high organic content.  It is suggested then, that the 

sludge be pre-burned to lower its organic content to the appropriate level and then be re-

pelletized for calcination or, if integrated with the MixAlco process, the raw sludge can 

be used to control the pH in the fermentation. 
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III.2 Literature Review 

 

Storage of clarified concentrated syrups is a common practice in the sugarbeet 

industry, which allows their preservation for up to 2 years (Sargent et al., 1997; Cosmeur 

and Mathlouthi, 1999).  However, their conditions are different; they store concentrated 

syrups (~67% dry substance), whereas our juice concentrations are much lower (~15%).  

Nonetheless, they have recognized that low temperatures (< 30oC) and high pH (9.0 ± 

0.2) must be maintained.  Preserving concentrated syrups has limitations because the 

sugars are crystallized directly after storage, so any complexes or impurities formed 

cannot be eliminated and end up in the crystals (Cosmeur and Mathlouthi, 1999).  

Further, the juice extraction, clarification and evaporation equipment must be oversized.  

In our case, we store the raw juice under more alkaline conditions.  Finally, we 

carbonate it and filter it, which is a common practice for juice purification or 

clarification.  For our process, only the extraction equipment needs to be oversized. 

Thin (i.e., low-concentration) sugarcane juice storage with ammonia has been 

performed (Bobadilla and Preston, 1981; Duarte et al., 1981) and they concluded that 

high pH (> 9.5) is necessary to preserve the juice.  Sodium benzoate (Bobadilla and 

Preston, 1981) and formalin (Bobadilla and Gill, 1981) have also been used to preserve 

thin sugarcane juice, but the preservation cannot be maintained for a long time because 

of the prohibitive costs of the preservatives and because high concentration of these 

substances are noxious and unsafe for human consumption.  Lime is much cheaper and 

safer. 

To the knowledge of the author, no one has used lime as a preservative for thin 

sugarcane juice. 

Recovery and conversion of carbonatation sludge to lime is also a common 

practice (Bento et al., 1999). 

 

 

 

 



 53

III.3 Experimental Methods 

 

III.3.1 Preliminary Studies 

 

To determine the amount of lime needed to maintain adequate pH to preserve 

sucrose, a preliminary study was performed.  It was assumed that lime addition should 

be proportional to the sucrose concentration or to the soluble solids concentration (brix) 

in the juice.  During sucrose extraction from cane, other substances are co-extracted that 

may react with the lime.  Because their concentrations are co-dependant and because the 

nature and exact concentration of the other substances are generally unknown, sucrose 

concentration is a reasonable parameter for determining lime addition. 

 

III.3.1.1 Experimental Approach 

 

III.3.1.1.1 Experiment and Equipment Description 

 

Shredded Louisiana sugarcane was extracted with distilled water to yield a 

solution with a sucrose concentration of about 40 g/L.  Half of this juice was diluted 2 

fold to produce a juice with a sucrose concentration of about 20 g/L. 

Each batch of juice was then distributed among 10 polyethylene 200-mL bottles 

equipped with a sealing lid.  The volume in each bottle was 150 mL. 

Hydrated lime (certified 99.3% calcium hydroxide, Fisher Scientific Co., 

Pittsburgh PA) was added to each of the 10 bottles in each batch in the following 

percentages:  0.5, 1.5, 3, 4, 5, 7, 10, 15, 20 and 30% (g lime/100 g of sucrose in 

solution). 

These 20 bottles (10 for each of the two batches) were kept in a shaker at 

ambient temperature (~23oC).  To monitor both the lime consumption and sucrose 

degradation, pH and samples for sucrose analysis were taken periodically.  pH was 

measured with an electrical-potential-difference pH meter (ORION™, Orion, Inc., 
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Boston MA) and sucrose concentration was measured using High Pressure Liquid 

Chromatography system (HPLC) equipped with a Bio-Rad HPX-87C ion exchange 

column (Bio-Rad Laboratories, Hercules CA) and a refractive index detector (Perkin 

Elmer Series 200, Perkin Elmer Life and Analytical Sciencies, Boston MA). 

Bottles were taken off line when the pH became acidic and showed considerable 

microbial activity (which was easily detected due to gases that inflated the polyethylene 

bottles) and the sucrose concentration became nil. 

The experiment was designed to find the minimum amount of lime addition 

required that preserves sugarcane juice for 1 year. 

 

III.3.1.1.2 Observations, Results and Discussion 

 

Table 3.1 shows the pH attained at Day 0 for all the bottles after adding lime.  It 

is obvious that 0.5% lime was not enough because the pH is only slightly alkaline.  

Interestingly, for every percentage of lime added, the pH of every 40-g/L bottle was very 

close to the pH of its corresponding 20-g/L bottle, even though only half the amount of 

lime was added.  Electrical-potential-difference pH meters are known to be affected by 

differing sugar concentrations; however, the solutions are too dilute for this effect to be 

significant.  The response described above is rather explained as follows: 1) In the 40-

g/L batch, there was about twice as much substances that consume lime compared to the 

20-g/L batch, and 2) lime solubility increases in the presence of sucrose because it forms 

calcium saccharate (Chen and Chou, 1993).  Thus, as the sucrose concentration 

increases, lime solubility increases as well as acidic substances that neutralize lime.  

Therefore, adding lime in proportion to sucrose maintains a constant equilibrium 

concentration of hydroxide ions, and thus pH.  The consumption of hydroxide ions due 

to higher concentration of acidic substances is cancelled out by the increase in hydroxide 

ions due to the higher amount of lime that solubilizes.  This observation gives us another 

indication that adding lime based on sucrose concentration is appropriate. 

 

 



 55

Table 3.1  Initial pH of sugarcane juice at different lime loadings. 

40-g/L Sucrose Batch          

0.5% 1.5% 3% 4% 5% 7% 10% 15% 20% 30% 

8.46 10.48 11.23 11.56 11.75 11.97 12.17 12.37 12.43 12.49 

           
20-g/L Sucrose Batch          

0.5% 1.5% 3% 4% 5% 7% 10% 15% 20% 30% 

8.31 10.14 11.22 11.50 11.68 11.91 12.13 12.31 12.41 12.46 

 

 

After 1 year of treatment, only the 20% and 30% lime loadings for both batches 

showed no sign of microbial activity or sucrose degradation (Figures 3.1 through 3.4).  

In Louisiana and other places, sugarcane season lasts about 3 months per year.  Because 

we want to preserve the juice during the off-season when there is no fresh juice to 

process, 9 months is the maximum time that should be required. 

Figures 3.5 and 3.6 show the pH and sucrose concentration for 15% lime loading 

for both batches.  The observed response and similar ones from lower lime loadings 

(Figures 3.7 through 3.20) suggest that a pH above 10 must always be maintained to 

avoid microbial activity.  If pH control is implemented, the set point should be kept at 

pH 11 because pH 10 is the threshold; operation on or about this value could be risky. 

To reduce lime consumption, lime may be added as it becomes necessary to 

maintain pH above 11 or the juice could be segmented into batches that have different 

lime loadings depending on the desired preservation time.  Figure 3.21 illustrates this 

response.  It can be observed that there is a sharp lime consumption in the first two 

weeks which requires about 7 g Ca(OH)2/100 g initial sucrose to maintain preservation.  

A significant decrease in the lime consumption rate follows, requiring for preservation a 

daily amount of lime (not the same as the lime consumed) of about 0.0301 g 

Ca(OH)2/(100 g initial sucrose · day).   
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Figure 3.1  pH/sucrose concentration against time for the 40-g/L 

batch at 23oC (30% lime). 
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Figure 3.2  pH/sucrose concentration against time for the 20-g/L 

batch at 23oC (30% lime). 
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Figure 3.3  pH/sucrose concentration against time for the 40-g/L 
batch at 23oC (20% lime). 
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Figure 3.4  pH/sucrose concentration against time for the 20-g/L 

batch at 23oC (20% lime). 

 



 58

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300 350 400
Time (days)

pH
 o

r S
uc

ro
se

 C
on

ce
nt

ra
tio

n 
(g

/L
)

Sucrose
Concentration

pH

 
Figure 3.5  pH/sucrose concentration against time for the 40-g/L 

batch at 23oC (15% lime). 
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Figure 3.6  pH/sucrose concentration against time for the 20-g/L 
batch at 23oC (15% lime). 

 



 59

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120 140 160 180
Time (days)

pH
 o

r S
uc

ro
se

 C
on

ce
nt

ra
tio

n 
(g

/L
)

Sucrose
Concentration

pH

 
Figure 3.7  pH/sucrose concentration against time for the 40-g/L 

batch at 23oC (10% lime). 
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Figure 3.8  pH/sucrose concentration against time for the 20-g/L 

batch at 23oC (10% lime). 
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Figure 3.9  pH/sucrose concentration against time for the 40-g/L 

batch at 23oC (7% lime). 
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Figure 3.10  pH/sucrose concentration against time for the 20-g/L 

batch at 23oC (7% lime). 
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Figure 3.11  pH/sucrose concentration against time for the 40-g/L 

batch at 23oC (5% lime). 
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Figure 3.12  pH/sucrose concentration against time for the 20-g/L 

batch at 23oC (5% lime). 
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Figure 3.13  pH/sucrose concentration against time for the 40-g/L 

batch at 23oC (4% lime). 
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Figure 3.14  pH/sucrose concentration against time for the 20-g/L 

batch at 23oC (4% lime). 
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Figure 3.15  pH/sucrose concentration against time for the 40-g/L 

batch at 23oC (3% lime). 
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Figure 3.16  pH/sucrose concentration against time for the 20-g/L 

batch at 23oC (3% lime). 
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Figure 3.17  pH/sucrose concentration against time for the 40-g/L 

batch at 23oC (1.5% lime). 
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Figure 3.18  pH/sucrose concentration against time for the 20-g/L 

batch at 23oC (1.5% lime). 
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Figure 3.19  pH/sucrose concentration against time for the 40-g/L 

batch at 23oC (0.5% lime). 
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Figure 3.20  pH/sucrose concentration against time for the 20-g/L 

batch at 23oC (0.5% lime). 
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Figure 3.21  Recommended lime loading as a function of preservation time at 23oC. 

 

The dotted lines in Figures 3.5 through 3.20 reflect not an actual response, but 

rather they simply connect consecutive measurements after the pH had decreased below 

10 and microbial activity had been detected.  The dotted line in Figure 3.21 between the 

15 and 30% lime loadings means that there are no actual data there to correlate for the 

required lime rate because the experiment was stopped at Day 368.  At this time, no 

microbial activity, pronounced pH decrease below 10 and/or sucrose degradation had yet 

been detected for the 20 and 30% lime loadings. 

One important conclusion from these studies is that the required lime addition 

should be based on the sucrose or soluble solids concentration (i.e., brix).  This 

observation has been confirmed by Duarte et al. (1981), who used ammonia to preserve 

thin sugarcane juice.  They also observed a relation between the amount of sugar present 

and the amount of ammonia necessary for preservation. 
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III.3.2 Objectives 

 

To assess the degradation of sucrose and juice quality, studies on sugarcane juice 

preservation with lime were performed both at bench scale and at pilot scale at ambient 

temperature for several months.  At the end of the study, the juice was carbonatated (i.e., 

carbonated and filtered) to recover calcium carbonate as carbonatation sludge.  The 

recovered sludge was then sent to Altex Technologies Corp. (Sunnyvale CA) to be tested 

for suitability for regeneration in their stationary lime kiln system described in Chapter I. 

 

III.3.3 Experiment and Equipment Description 

 

The bench- and pilot-scale equipment were similar, except for their size and the 

fact that the recovery of carbonatation sludge was done by vacuum filtration at the bench 

scale and by pressure filtration at the pilot scale.  Hydrated or slacked lime (92% 

Ca(OH)2, 8% inerts, industrial lime, Chemical Lime Co., New Braunfels TX) was used 

in all experiments. 

 

III.3.3.1 Preservation Set-up 

 

For the pilot-scale experiments (Figure 3.22), the solutions were kept outdoors in 

two conical 2500-gallon tanks each with a 1½-hp open-impeller pump (A-72030-40, 

Cole-Parmer Instrument Co., Vernon Hills IL) for constant recirculation to keep solids in 

suspension.  For the bench-scale experiments, a 4-gallon container and a 1/40-hp open-

impeller pump (AC-2CP-MD, March Mfg., Inc., Glenview IL) were used indoors.  One 

of the bench-scale batches, which was used to assess if intermittent mixing, as opposed 

to constant recirculation, was adequate for preservation, was kept in a 5-gal polyethylene 

sealed bucket, and mixing occurred once a day by vigorously shaking for 10 – 30 

seconds. 
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Figure 3.22  Pilot scale sugarcane juice preservation experiment setup. 

 

The juice was obtained from the W. R. Cowley Sugar House, a sugar mill in 

Santa Rosa TX.  The preliminary laboratory experiments (Section III.3.1) tested 

different lime amounts added to different concentrations of cane juice.  The data showed 

that the slacked or hydrated lime addition should be proportional to the sugar 

concentration in the juice.  The experiments determined that to preserve sugarcane juice 

for 1 year, the lime concentration should be slightly less than 20% on sucrose (20 lb of 

slacked lime/100 lb of sucrose present), or 16% on brix (16 lb of slacked lime/100 lb of 

soluble solids) assuming 80% purity (80 lb sucrose/100 lb of soluble solids).  Based on 

these findings, typical raw sugarcane juice from a mill requires slacked lime 

concentrations of 2.2 to 2.4% on juice (2.2 to 2.4 lb/100 lb of total juice) because it has a 

soluble-solids concentration of approximately 14 to 15% (14 to 15o Brix).  This is about 

the same amount of lime used in the single carbonatation and the continuous double 

carbonatation processes (40 lb or 18 kg quicklime/ton of cane) (Hugot, 1986).  However, 

the stationary lime kiln produces lime that is 56% cheaper than conventional lime kilns 
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(Namazian, 2004); thus, the lime expense for these conventional carbonatation processes 

is actually higher. 

Although an industrial process might add lime based upon pH control (pH > 11), 

bench- and pilot-scale experiments were performed at a fixed Ca(OH)2 loading of about 

2.8 to 2.9% (lb/100 lb of juice), which corresponds to about 0.29 lb of industrial lime 

(92% Ca(OH)2) added/gal of juice or 35 kg of industrial lime/m3 of juice.  This value is 

slightly higher than the amount required to preserve the juice 1 year (i.e., 2.4% w/w). 

A small amount of lime was added to the juice at the mill to preserve it during 

transportation.  Table 3.2 shows the description of the different batches that were 

preserved and shows how they were prepared prior to preservation.  After the juice had 

been prepared accordingly as described in Table 3.2, the remaining lime needed for 

preservation, as described above, was then added. 

 

III.3.3.2 Carbonatation Procedure 

 

After the set time for preservation ended, the juice underwent carbonatation (i.e., 

carbonation by bubbling carbon dioxide followed by filtration) to decrease its pH and to 

clarify it, which also occurred at both pilot and bench scale.  Carbon dioxide (Praxair 

Inc., College Station TX) was bubbled through a diffuser stone of appropriate size (1.5-

ft-long diffuser stone, A-70025-28, Cole Parmer Instrument Co, Vernon Hills IL for 

pilot scale; a 1.5-in-diameter diffuser stone, 11-139A, Fisher Scientific Co., Pittsburgh 

PA for bench scale), at ambient temperature until a pH of 9.0 ± 0.2 was attained.  This is 

the pH recorded when pure calcium carbonate is added to a sucrose solution of about 14 

to 15o Brix at 20-25oC.  Ideally, at this pH, calcium carbonate recovery is maximized. 

 



 

Table 3.2  Description of the different batches of preserved juice. 

Batch I.D. Dates Scale Preparation Prior to Preservation Mixing Frequency 

     
Bfiltered 12/5/2001-11/9/2002 

 
Bench Vacuum filtration using trigger-type cloth, 65% cotton - Constant recirculation 

  35% polyester, pore size 250 × 125 µm.  Filterable solids  
  

  

  

 
  

  

   

    

  

  

  
  

 left after filtration: 2.6 g/L (from 0.45-µm membrane) 
  

 
 
Bclarified 12/9/2002- 2/10/2003 Bench Clarification by carbonatation, where the limed juice Constant recirculation 
   was carbonated and then vacuum filtered, using   
   Whatman filter paper No.1  

  
 

 
Bscreened 3/7/2003-8/9/2003 Bench Screening, where the juice was passed through a Constant recirculation 
   ~ 20-mesh strainer; thus, removing most of the bagacillo  
  or cush cush (i.e., fine bagasse particles) 

  
 

 
Bperiodic 5/11/2003-8/9/2003 Bench Screening, same preparation as Bscreened Periodic mixing once a day 
    by vigorous shaking.  Juice 
    was kept in a sealed bucket 

  
Pno-prep #1 12/8/2000-4/25/2001 Pilot None, preserved as obtained from mill (i.e., no filtration, Constant recirculation
   screening or carbonatation) 

  
 

 
Pno-prep #2 5/11/2001-3/22/2002 Pilot None, preserved as obtained from mill (i.e., no filtration, Constant recirculation 
   screening or carbonatation) 

  
 

 
Pclarified 3/8/2003-9/14/2003 Pilot Clarification by conventional defecation (Chapter I) as 

obtained from the process at the mill 
Constant recirculation 

 
        70
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The carbonatation sludge was collected to assess recovery and to test its 

suitability for the stationary lime kiln.  Carbonatation sludge from conventional raw 

juice had a high organic content which is excessive for the stationary lime kiln; thus, the 

juice was prepared as shown in Table 3.2 to determine if the modifications would 

decrease the organic content of the resulting sludge. 
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flexible PVC hoses.  The slurry (i.e., carbonatation sludge + pH-9 clarified juice) was 

then pumped through a resistant cloth (trigger type, 35% polyester/65% cotton, Hancock 

Fabrics, College Station, TX).  This was the same type of cloth used to prepare batch 

Bfiltered (Table 3.2), which had been sown into two 9×2½ -ft, pillowcase-like bags, and 

were supported inside two 6-ft-long cylindrical metal cages to resist the pressure.  The 

cages had a lid at one end, held in place by nuts that could be removed to install the cloth 

inside and, after filtration, to pull out the sludge-filled cloth.  Each lid had a 2.5-in-

diameter orifice through which the mouth of the cloth bag protruded out of the cage.  

The cages and the cloth were hung from a supporting metal frame by eight (i.e., four 

each) adjustable nylon straps.  To connect the pump to this filtration equipment, 2-in 

PVC hoses were used, which were held in place by securing them to the mouth of the 

bag with hose clamps.  The system was also equipped with a 3-in recirculation line, 

which was purposely larger to reduce flow resistance and be able to adequately control 

flow and pressure; thus, the flow and pressure in the filtration equipment (i.e., cloth and 

cages) were controlled by regulating the valve in the 3-in. recirculation line.  To avoid 

foaming, it was important to keep the recirculation line inside the liquid in the tank.  The 

filtrate, which was a yellow clear juice, poured down abundantly from the filters and was 

collected in a 700-gal galvanized trough to be disposed of after sampling.   

At the beginning of the project, only one filter (i.e., one cloth and one cage) was 

used, and to drive the filtration, the centrifugal pumps used for juice recirculation were 

employed.  However, the filtration took too long, and the seals on the centrifugal pumps 

tended to fail.  It was decided to increase the surface area, by adding an extra filter and 

use a gear pump.  This system was sufficiently efficient, completing the filtration of 

about 200 gallons of slurry in about 10 minutes. 

To rinse sugar off the carbonatation sludge cake, the cake was then washed with 

about 100 gallons of water, which were added to the tank and pumped through the 

system while the sludge was still in the filters. 

Although it is known that carbonatation occurs faster, is more efficient, and saves 

carbon dioxide at higher temperatures (45oC to 55oC) (Hugot, 1986), our concern was 
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only to recover the sludge; thus heating equipment was not implemented.  This cold 

juice carbonatation is the original single carbonatation process (Honig, 1953).  Also, a 

mass balance of lime recovery could only be done at the bench scale.  The recovery at 

the pilot scale was not quantitative because of losses in handling 

After the carbonatation sludge was recovered, it needed to be dried before it 

could be sent to Altex Technologies Corp. for testing in their stationary lime kiln system.  

At the bench scale, the drying was done in a 105oC oven for 24 hours.  At the pilot scale, 

the mud was spread on tarps and sun-dried or, if the weather did not permit it, a dryer 

equipped with a natural gas heater (Figure 3.24) was used. 

The carbonatation and drying took several days to complete (10 to 30 days) due 

to the large amount of juice to be processed; hence, it was important to do the 

carbonatation in 300-gal batches to keep the remaining juice at high pH and avoid 

spoilage.  Figures 3.25 and 3.26 show photographs of one of the filters (i.e., cage and 

filtering cloth) after assembly and during filtration.  As mentioned, the surface area of a 

single filter, as in the figures, was not enough; thus, an extra filter had to be added. 
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Figure 3.25  Photograph of one of the filters (i.e., cloth and cage) after assembly. 
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Figure 3.26  Photograph of the pilot scale filtration taking place 
(only one filter being used). 

 

III.3.3.3 Bench-scale Crystallization 

 

The ultimate objective in the sugar industry is to produce sugar crystals, which 

are the product of both sugar mills and sugar refineries.  The former produces raw sugar 

crystals, whereas the latter produces white refined sugar crystals. 

Our process can be used to produce white sugar directly if carbonatation 

conditions are improved and adjusted for a direct white process (Valdes Delgado and de 

Armas Casanova, 2001; Chen and Chou, 1993); however, the expected product in these 

studies was raw sugar. 

The production of sugar crystals allowed assessment of the effect of juice 

preservation methods on their quality (i.e., color, shape and purity) and the assessment of 

 



 76

the quality of the intermediate products, such as the syrup, and the massecuite (i.e., 

mixture of crystals and molasses), and the final by-product (i.e., molasses). 

After the juice was preserved, it was carbonated to a pH of 9, allowing the 

carbonatation sludge to be recovered.  In this way, the juice was clarified.  However, 

because the pH was still 9, carbonation of the clear juice was continued to a pH of 6.5 to 

7.0.  This is important because crystallization requires that the juice be boiled to remove 

water, and, as previously mentioned, at high temperatures, pH > 7.0 causes sucrose 

losses. 

The bench-scale crystallization was done at the Audubon Sugar Institute (Baton 

Rouge, LA).  After preservation and carbonatation, the clarified and neutralized juices 

from batches Bscreened and Bperiodic were poured into eight separate 1-gal jugs (four jugs 

for each batch), placed in Styrofoam coolers, and covered completely with dry ice for 

transportation from Texas to Louisiana. 

Once in Louisiana, at the Audubon Sugar Institute, the juices were thawed and 

separately concentrated in a bench-scale forced-recirculation evaporator (Figure 3.27), 

which used a motor to drive an impeller, which provided the recirculation necessary for 

good heat transfer.  The heat was provided to the system by steam.  The evaporation 

temperature was 55oC at a constant applied vacuum of 28 in Hg. 

During the evaporation, foaming seemed to be higher than normal (Figure 3.27), 

but it was attributed to entrapped air from freezing, which was now being released.  As 

evaporation continued, the foaming stopped. 

Batches Bscreened and Bperiodic were concentrated from 13.3 and 16.1o Brix to 60.5 

and 67.8o Brix, respectively. 

At this point, the concentrated syrup from Bperiodic and a small sample of the 

syrup from Bscreened were stored in the refrigerator at 4oC for further analysis of purity 

and cations.  The crystallization process continued only with Bscreened. 

The amount of syrup was only about 1 gal, and it was further concentrated to 

supersaturation conditions in a small Rotavapor® at 70oC. 
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Figure 3.27  Bench-scale forced-recirculation evaporator (Audubon Sugar Institute). 

 

At the point of supersaturation, seed crystals, which had been soaked in alcohol 

were supposed to be added.  However, because of the little control that could be 

implemented at bench scale, spontaneous crystallization occurred; thus, seed crystals 

were not added. 

The already-crystallizing massecuite (cooked mass) was transferred to a bench-

scale crystallizer (Figure 3.28), equipped with an electric motor for driving the internal 

mixing mechanism (Figure 3.29), which ensured good mass transfer during 

crystallization.  This mixer was set at a speed of about 10 to 15 rpm.  The massecuite 

was placed in a jacketed vessel, which was mounted to the rest of the equipment using a 

cam-lock type fitting.  To control temperature, water from a water bath, whose 

temperature was gradually decreased from 70oC to 40oC during the crystallization, was 

circulated through the jacket of the vessel.  The crystallization was allowed to occur 

overnight. 
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Figure 3.28  Photograph of the bench-scale crystallizer (Audubon Sugar Institute). 
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Figure 3.29  Internal details of the bench-scale crystallizer (Audubon Sugar Institute). 
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The next day, the massecuite in the jacketed vessel was transferred to a 

centrifuge basket, which had been equipped with a typical separation screen used in the 

sugar industry.  The crystals and molasses in the massecuite were thus separated by 

centrifugation (Figure 3.30). 

 

 

Figure 3.30  Photograph of the separation by centrifugation of sugar crystals from 
molasses in massecuite from preserved juice (Audubon Sugar Institute). 

 

The resulting crystals left in the basket (Figure 3.31) were then transferred to a 

container and vacuum dried and then further analyzed for purity.  The resulting molasses 

was also analyzed for purity. 

In an industrial setting, the resulting molasses from the first crystallization or 

strike, known as A-molasses, still contains a high proportion of sugars that can be 

crystallized; therefore, it is used to build up other massecuites and repeat the 

crystallization procedure.  This process is repeated once or twice more to exhaust the 

 



 81

molasses and recover as much sugar as possible.  The crystallization was done only once 

in this bench-scale experiment; thus, the massecuite and molasses are of the A type only. 

 

 

Figure 3.31  Photograph of centrifuge basket showing the crystals from preserved juice 
crystallization attached to its interior (Audubon Sugar Institute). 

 

Samples of both syrups (i.e., from batch Bscreened and Bperiodic) and molasses were 

stored in a refrigerator at 4oC until color measurements (ICUMSA, 1994) were 

performed.  Sugar crystals were stored at ambient conditions and color measurements 

were performed on them as well.  To assess any abnormality in their shape that might 

indicate the presence of substances interfering or affecting crystallization, the sugar 

crystals were observed under a microscope (Reichert 310, Reichert Scientific 

Instruments, Buffalo NY).  
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III.3.3.4 Quantitative Analysis 

 

The sucrose and reducing sugars concentrations in thin juice was measured in 

duplicate by HPLC, using an ion-exchange calcium-based resin column (Bio-Rad HPX-

87C, Bio-Rad Laboratories, Hercules CA), and a refractive index detector (Perkin Elmer 

Series 200, Perkin Elmer Life and Analytical Sciencies, Boston MA).  To quickly assess 

juice concentration, a hand-held refractometer (0-32o Brix, ASANUMA, Tokyo Japan) 

was used.  However, it gave correct results only for low-pH (< 9.0) clarified juice.  In 

juice at higher pH, dissolved lime contributed to the refractive index and the value was 

overestimated by about 3o Brix.  When the method required it, an Abbé refractometer 

(MARK II, Reichert Scientific Instruments, Buffalo NY), temperature-controlled at 

20oC, was used. 

Quality assessment of some of the preserved juice was done by technicians at the 

mill in Santa Rosa TX.  The parameters measured at the mill were, reducing sugars 

concentration (Lane and Eynon method), pol (polarimeter) and brix (Abbé 

refractometer). 

The Audubon Sugar Institute (Baton Rouge LA) analyzed Bscreened and Bperiodic, 

after being concentrated into a syrup, for brix (automatic digital refractrometer), and 

HPLC sucrose and reducing sugars concentrations (Bio-Rad HPX-87K column and a 

refractive index detector).  In addition, the Audubon Sugar Institute measured the 

dextran concentrations in the thin juices of these two batches (monoclonal antibodies 

immunoassay). 

The Audubon Sugar Institute also analyzed the resulting massecuite, molasses, 

and sugar crystals from the crystallization of Bscreened for brix, and HPLC sucrose and 

reducing sugars concentrations.  

From these values, the purity of the juice, syrup, massecuite, and molasses can be 

found as follows: 

 

brix
polpurity Pol =      (3.1) 
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brix
 sucrose HPLCpurity HPLC =     (3.2) 

 

Pol purity (or refractometer purity) and HPLC purity are both a measure of the 

sucrose present in percentage of soluble solids (g sucrose/100 g soluble solids).  Pol is a 

value close to the percentage of sucrose present (g sucrose/100 g total weight).  HPLC 

sucrose is the true sucrose concentration (g sucrose/100 g of total weight).  The brix is 

given in g optically active soluble solids/100 g total weight, which is very close to the 

true percentage of soluble solids present (as determined by drying) (Chen and Chou, 

1993). 

Reducing sugars degradation forms colorants known as HADP (hexoses alkaline 

degradation products) (Bento et al., 1999) and other melanoidin-type pigments, which 

are formed by reactions with amino acids present (Goodacre et al., 1978).  These 

compounds have medium to high molecular weights and are moderately pH sensitive.  

Unfortunately, they are not easily removed by clarification methods, such as 

carbonatation or phosphatation, and decolorization techniques, such as bone char or ion 

exchange (Yu, 1998).  However, both the degradation of reducing sugars and the 

formation of the colorants decreases with temperature, and colorant formation is very 

low at pH > 11.0 (Yu, 1998), which are the conditions of our preservation method.  To 

further test the quality of the preserved juice for unusual substances that might interfere 

with crystallization and might cause colorant formation, the bench-scale crystallization 

described above was performed.  Spectrophotometric measurements at 420 nm using a 

Spectronic 1001 spectrophotometer (Milton Roy Co., Riviera Beach FL) ascertained the 

colorant levels (ICUMSA, 1994) in the thin juice, syrup, molasses, and sugar crystals. 

The presence of minerals is also an important parameter because high 

concentrations of some elements might interfere with crystallization.  For instance, 

potassium chloride changes the morphology of sucrose crystals (Mathlouthi and Reiser, 

1995).  The analysis of minerals in preserved/clarified juice was done using an 

inductively coupled plasma emission spectrophotometer (ICP) at the Soil Testing 

Laboratory (Texas A&M University, College Station TX).  HPLC cation concentrations 
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were measured on the syrups of Bscreened and Bperiodic at the Audubon Sugar Institute, 

using a Dionex IonPac CS12 (Sunnyvale CA) and a pulse electrochemical detector 

(PED). 

To assess lime recovery from the bench-scale batches, it was necessary to find 

dry weight, organic contents, and calcination solids of the carbonatation sludge.  An 

oven at 105oC and a muffle furnace at 575oC and at 915oC were employed in these tasks.  

A sample of sludge was analyzed for mineral constituency using ICP at the Texas A&M 

Soil Testing Laboratory (College Station TX).  The sludge was also sent to Altex 

Technologies Corp., where they tested its suitability for the stationary lime kiln, 

 

III.3.4 Results and Discussion 

 

III.3.4.1 Sucrose Preservation in Thin Juice Batches 

 

The main objective is to preserve sucrose in thin (i.e., low-concentration) juices; 

thus, the most important goal is to demonstrate that sucrose concentrations are 

maintained in the juice in the alkaline medium under normal ambient conditions.  This 

objective has been demonstrated both in the preliminary studies (Section III.3.1) and in 

the literature (Lloyd et al., 1995; Williams and Morrison, 1982; Goodacre et al., 1978). 

Seven batches were tested, four at the bench scale and three at the pilot scale, as 

described in Table 3.2.  Figures 3.32 and 3.33 show the sucrose concentrations for the 

batches at bench scale and pilot scale, respectively as measured in duplicate by HPLC.  

The figures show that the preservation was successful, even for periods of almost a year, 

as was the case with Bfiltered and with Pno-prep #2. 
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Figure 3.32  Sucrose concentrations in batches of juice preserved at bench scale 

(error bars = ± 1 standard deviation). 
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Figure 3.33  Sucrose concentrations in batches of juice preserved at pilot scale 

(error bars = ±1 standard deviation). 
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Experience has shown that for the preservation to be successful, mixing or 

recirculation must be implemented.  Several small batches of juice were lost due poor 

mixing.  This probably resulted from substances in the juice (e.g., minute bagasse 

particles) that degraded and produced acids, especially at the beginning of the 

preservation.  When these acids were produced, they created microhabitats where the pH 

was low enough for bacteria to subsist.  These bacteria produced acid, which further 

decreased the pH in their surroundings, which gave better conditions for more bacterial 

growth.  This resulted in more acid production and thus more bacterial growth, causing 

an exacerbating effect that grew exponentially until they consumed the whole batch of 

sugar.  When mixing or recirculation was implemented, acids produced from the 

degradation of these substances were immediately neutralized and the pH was kept high, 

giving no chance for bacterial growth. 

Although keeping mixing or recirculation was imperative, it was hypothesized 

that intermittent mixing, as opposed to constant mixing, was enough to keep the pH high 

enough to avoid bacterial growth.  To our good fortune, it was found that the sucrose 

concentration was also maintained for Bperiodic, which was intermittently mixed.  This is 

good news because it means that constant recirculation, which costs money because of 

energy consumption, is not necessary. 

Pclarified had a low sugar concentration because the day the juice was obtained 

from the mill they had to shut down for repairs and the juice in the settling tank was 

diluted. 

 

III.3.4.1.1 Temperature effect on the preservation 

 

The high pH at which the juice is preserved inhibits microbial growth.  Although 

alkalophilic bacteria exist, which can live at pH as high as 13, these microorganisms are 

rare and are unlikely to proliferate in our process.  The remaining concern is chemical 

degradation. 
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As mentioned previously, at high pH, high temperatures might chemically 

degrade sucrose. 

In the case of Pno-prep #2 and Pclarified, their preservation occurred during the 

summer.  This is remarkable because it means that preservation was not affected by the 

high ambient temperatures encountered during a summer in Texas, where summer 

temperatures can range between 90oF (32oC) to even as high as 100oF (38oC) 

(www.weather.com). 

The successful preservation of the two batches confirms our postulate formulated 

from the previously described correlation developed by Goodacre et al. (1978) using 
14C-U-sucrose, that suggests that even at pH > 11, at temperatures < 40oC (104oC), the 

chemical degradation of sucrose is nil.  The correlation suggests that even at about 45oC, 

the degradation is slow (~3%/month). 

To further assess the applicability of Goodacre’s correlation to long-term 

exposure of sucrose to high pH and temperature, a simple experiment was devised.  A 

portion of raw juice with the same industrial-lime (92% Ca(OH)2) loading as used in all 

the batches (~0.29 lb/gal or 35 kg/m3) was put in an incubator at 45oC (113oF) for 4 

months.  The juice was constantly mixed, and samples were withdrawn weekly.  As a 

control, some of this same juice, with the same lime loading, was put in an incubator at 

30oC (86oF), and samples were withdrawn monthly. 

Figure 3.34 shows that, as expected, sucrose was preserved at 30oC, and that it 

degraded at 45oC at an average apparent zeroth-order reaction rate of 0.31 g/(L·day) or 

about 8%/month (8 g sucrose degraded/100g initial sucrose per month).  This number is 

similar to the value of 3%/month from Goodacre et al. (1978), bearing in mind that this 

figure was an extrapolation of data collected from short-term experiments (hours), at 

higher temperatures (70 to 80oC), and at lower pH (11.1).  The pH in our studies was ~ 

12. 

Alkaline sucrose degradation is a second-order reaction.  Manley-Harris et al. 

(1980) suggest that when there is a constant concentration of hydroxyl ions or hydroxyl 

ions excess, which is the case for these studies, sucrose degradation presents pseudo-

 

http://www.weather.com/
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first-order conditions; thus, this reaction at 45oC shows a pseudo-first-order rate constant 

of 0.00323±0.00021 days-1 (error = ± 1 standard error). 
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Figure 3.34  Sucrose concentrations as a function of time for sugarcane juice kept with 

lime at 45oC and 30oC. 

 

III.3.4.2 Juice Quality Assessment 

 

The sucrose concentrations were maintained at pH > 11 and temperatures < 

40oC; thus, the preservation was proved successful.  However, this would be useless if 

the quality of the juice deteriorates; therefore, it was imperative to determine other 

quality parameters of the resulting juice. 

 

III.3.4.2.1 Purity and Reducing Sugar Levels in Thin Juices 

 

Table 3.3 shows the purity (i.e., ~ g sucrose/100 g soluble solids) and the 

reducing sugar content (g reducing sugars/100 g total juice) for all the batches of 
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preserved/clarified juice.  The brix (~ g soluble substances/100 g total juice) was 

determined using an Abbé refractometer or a digital refractometer.  The Pol was 

determined by the technicians at the mill in Santa Rosa TX and it is expressed as ~ g 

sucrose/100 g total juice.  HPLC-sucrose is the average of the values for the samples 

taken at different times during the preservation for each batch as reported previously in 

Figures 3.32 and 3.33.  Because these values were reported as g sucrose/L of juice, they 

were converted to g sucrose/g total juice using Table 16 in page 998 of the Cane Sugar 

Handbook (Chen and Chou, 1993). 

 

Table 3.3  Assessment of the purities and reducing sugar (R. S.) 
concentrations for all batches of preserved/clarified juice.* 

      Pol HPLC† HPLC L&E** HPLC 
Batch Brix Pol  Purity Sucrose Purity R. S. R. S. 

        
Bfiltered 14.3 11.86 82.9 11.6 81.1 0.27 N/D††

        
Bscreened 13.3 N/M†† N/M 11.4 85.7 N/M N/D 
        
Bclarified 12.6 N/M N/M 11.3 89.7 N/M N/D 
        
Bperiodic 16.1 N/M N/M 14.9 92.5 N/M N/D 
        
Pno-prep #1 12.8 10.65 83.2 10.6 82.8 N/D N/D 
        
Pno-prep #2 15.0 12.59 83.9 12.8 85.3 N/D N/D 
        
Pclarified 8.5 6.61 77.8 7.2 84.7 N/D N/D 
                

*All values are expressed as % on a weight basis 
** Lane and Eynon detection method for reducing sugars 
† Values in g sucrose/L were converted to % (g sucrose/100 g total juice) using Table 16 in 
  Chen and Chou (1993) 
†† N/M ≡ not measured; N/D ≡ below detection limits 
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The observed purities reported in Table 3.3 are typical of normal conventional 

clarified juice, which ranges between 80 to 90% (Wu, 2002).  However, because of the 

alkaline conditions, there is destruction of reducing sugars. 

In conventional juice, reducing sugars contribute to the refractive index when 

measuring brix by refractometer; therefore, the fact that the purity is normal in spite of 

the absence of reducing sugars, means that there are optically active soluble substances 

in the juice that have replaced the reducing sugars and can be detected by the 

refractometer.  It is interesting to observe that the juice that was intermittently mixed had 

a higher purity than all the other batches. 

 

III.3.4.2.2  Bench-scale Crystallization Products and By-products Analysis 

 

The bench-scale crystallization of Bscreened, described previously, yielded several 

products and by-products.  Because only one crystallization was performed, they are of 

the A type.  Their analysis is important to assess juice quality.  These products follow: 

1) Syrup, obtained from evaporative concentration of the clarified juice.  Also, the 

juice from Bperiodic was concentrated, but no further treatment was done to this 

juice. 

2) A-massecuite (i.e., cooked mass), the mixture of molasses and sugar crystals 

after crystallization. 

3) A-molasses, which was separated from the sugar crystals by centrifugation. 

4) Sugar crystals. 

It is important to mention that the crystallization did not go completely as 

planned due to the little control that could be implemented at bench scale.  As mentioned 

previously, uncontrolled supersaturation unexpectedly caused spontaneous 

crystallization.  To produce good nucleation and avoid spontaneous crystallization, and 

thus obtain better yields and better quality crystals, crystallization must be seeded.  

Spontaneous crystallization forms twin crystals and crystal conglomerates that entrap 

impurities that should be eliminated by the crystallization (Mathlouthi and Reiser, 1995).  

 



 91

Nonetheless, even by visually inspecting the crystals it was obvious that their color was 

lower than conventionally obtained raw sugar from a defecation/clarification process 

(Chapter I). 

 

III.3.4.2.2.1 Purity and Reducing Sugar Concentrations 

 

Table 3.4 shows the HPLC purity and HPLC reducing sugars for the products 

and by-products of the bench-scale crystallization.  The brix values were found using a 

digital refractometer and the HPLC sucrose levels and reducing sugar level were found 

using a HPX-87K Bio-Rad, ion exchange column (Bio-Rad Laboratories, Hercules CA).  

The units for each measurement follow: 

• Brix ≡ g soluble solids/100 g total juice 

• HPLC sucrose ≡ g sucrose/100 g total juice 

• Purity ≡ g sucrose/100 g soluble solids 

• HPLC reducing sugars ≡ g reducing sugars/100 g total juice 

 

Table 3.4  Purity and reducing sugar (R. S.) levels for products and 
by-products of the bench-scale crystallization*. 

    HPLC HPLC HPLC 

Batch Brix Sucrose Purity R.S. 

     

Bscreened-syrup 60.5 50.1 82.9 N/D** 
     

Bperiodic-syrup 67.8 61.4 90.6 N/D 
     

Bscreened-A-massecuite 86.8 74.2 85.4 N/D 
     

Bscreened-A-molasses 76.6 57.4 74.9 N/D 
     

Bscreened-crystals 100.0 99.4 99.4 N/D 
          

* All values are expressed in % on a weight basis 
** N/D ≡ below detection limits 

 



 92

Due to mass conservation, one might be tempted to think that the purity of the 

thin juice, syrup and massecuite should always be the same, but this is not necessarily 

the case (Hugot, 1986).  In fact, sometimes the purity decreases in the evaporator (e.g., if 

there is inversion that increases reducing sugars and decreases sucrose).  Alternatively, 

there might be an increase in purity (e.g., from the elimination of certain gases) or an 

apparent rise in purity (e.g., due to transformation of reducing sugars).  

The purity of the thin juice for Bscreened and Bperiodic (Table 3.3) and the purity of 

their respective syrups (Table 3.4) differ slightly (i.e., ~2% lower in the syrup).  This 

could be due possibly to inversion of sucrose to glucose and fructose, followed by their 

destruction as no glucose or fructose were detected.  Inversion and destruction of 

reducing sugars occurs if pH > 7.5 (Chen and Chou, 1993).  This could have resulted 

from inefficiencies when the clarified juice was carbonated to neutrality.  Mass transfer 

of carbon dioxide to an aqueous solution is very poor near neutrality; therefore, unless 

the carbonation occurs for long enough, at adequate conditions with an effective agitator, 

the juice pH might rise again, especially under boiling conditions where undissolved 

carbon dioxide can be easily released.   

To confirm if pH increased during evaporation, the pH of the syrup and the A-

massecuite from Bscreened were measured and were found to be 8.12 and 7.99, 

respectively, demonstrating that pH in fact did rise.  The conditions in the bench-scale 

evaporator were mild (55oC), but in an industrial setting, where temperatures might be 

higher, the situation might worsen; therefore, improving carbonation efficiency is 

imperative.  Adding sulfur dioxide (SO2) is another common alternative that could be 

used for the last stage of neutralization (Chapter I).  Because of its acidity, SO2 is a 

better neutralizing agent than CO2 near pH 7, and its use improves clarification; 

however, the United States limits the residual SO2 in food products (10 ppm according to 

the USFDA), so its use is rather restricted. 

The purity of the A-massecuite for Bscreened was higher than that of the syrup, and 

compares better with the purity of its correspondent thin juice purity.  This could have 

resulted because the temperature to attain supersaturation in the Rotavapor® was 15oC 
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higher than the temperature in the evaporator; therefore, the different conditions might 

have caused different events, such as destruction of optically active degradation products 

of reducing sugars.  In fact, because the syrup pH was high, the degradation products of 

reducing sugars under these conditions may continue to degrade further either to color or 

to carbon dioxide that leaves the solution (Klinke et al., 2002). 

Nonetheless, the purities of the syrup and A-massecuite are comparable to typical 

values for these parameters (~80 to 85% purity).  In an industrial setting, the A-

massecuite results from footing (combination) of syrup and magma.  The magma is 

formed by mixing sugar crystals from the last crystallization with syrup and it has a 

higher or similar purity to the syrup entering the first crystallizer (Hugot, 1986).  Also, 

the purity of the sugar crystals is slightly higher than typical raw sugar, which is about 

98.5 % for sugars from the first strike (A-massecuite). 

The purity of the obtained A-molasses is high.  Expecting a normal purity drop of 

about 18-20 points for the first crystallization (Hugot, 1986), the typical value for the 

purity of A-molasses should have been about 65%. 

The weight percent of crystals in the massecuite is computed as follows (Chen 

and Chou, 1993; Hugot, 1986): 
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emm
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PPB
Px

−
−

⋅⋅=
100

     (3.3) 

 

where 

 x = % Crystals, g sugar crystals/100 g massecuite, % 

 Ps = Sugar crystals purity, g sucrose/100 g sugar crystals, % 

 Bm = Massecuite brix, g soluble solids/100 g massecuite, % 

 Pm = Massecuite purity, g sucrose/100 g soluble solids in massecuite, % 

 Pe = Molasses purity, g sucrose/100 g soluble solids in molasses, % 
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Thus, the massecuite was formed of 37.0% (w/w) crystals and 63.0% (w/w) 

molasses; or, expressed on a brix of massecuite basis, it becomes 43% crystals on brix of 

massecuite.  This number is low compared with typical values, which are in the order of 

45 to 65% on brix for the A-massecuite (Hugot, 1986). 

The massecuite exhaustion (Hugot, 1986) also measures the crystallization 

efficiency expressed as weight of crystals recovered per amount of sucrose present (i.e., 

yield).  This parameter is calculated as follows: 
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where 

 Em = Massecuite exhaustion, g crystal/100 g sucrose in massecuite, % 

 

The value for Em was 49.9%, which is also low because it should be 60 to 65% 

for the A-massecuite. 

The small purity drop in the molasses and, consequently, the low massecuite 

exhaustion can be attributed to the crystallizer conditions, mainly to the poor control and 

the spontaneous crystallization.  In addition, as it was shown, due to carbonation 

inefficiencies, the pH rose during evaporation, which also makes crystallization more 

difficult and inefficient. 

The destruction of reducing sugars during preservation is a concern.  Reducing 

sugars prevent the loss of a corresponding quantity of sucrose to molasses (i.e., in the 

absence of reducing sugars, sucrose takes their place in the molasses) (Hugot, 1986); 

however, with only one strike, and the poor process conditions in the experiment, it is 

hard to pinpoint the extent of sucrose losses.  The carbonatation must be improved and 

pilot studies of the crystallization process, where two or more crystallization steps are 

performed, must be undertaken to obtain realistic values for molasses exhaustion. 
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It is important to mention that the juice had a high potassium and calcium content 

from cane and from inefficiencies in the carbonatation, respectively, as it will be seen 

later in Section III.3.4.2.5.  High concentration of these elements might also cause 

sucrose losses to molasses (Chen and Chou, 1993).  Nonetheless, purity drops for the A-

massecuite at the W.R. Cowley Sugar House (Santa Rosa TX), from where the juice was 

obtained, are normal (~ 20 points) in spite of their high potassium levels (Wu, 2004). 

 

III.3.4.2.2.2 Sugar Crystals Characteristics 

 

Because spontaneous crystallization occurred, the crystals were smaller than 

those obtained from the conventional process, which uses seeding.  Spontaneous 

crystallization also caused conglomeration (Figure 3.35) and promoted the formation of 

twin crystals (Figure 3.36). 

However, some single crystals did form (Figure 3.37) and allowed assessment of 

abnormalities in shape and surface that might indicate the existence of foreign 

substances that interfere with the crystallization or affect the quality of the crystallized 

sugar. 

The crystals shown in Figure 3.37 presented the typical characteristic D-shape of 

normal sucrose crystals.  They were not elongated (as in the presence of dextrans), or 

tapered (as in the presence of raffinose).  In the presence of certain salts, the surface of 

the crystal is altered (e.g., potassium chloride, which enlarges the d-face of the crystal) 

(Mathlouthi and Reiser, 1995), but the faces of theses crystals appeared to be normal.   

 

III.3.4.2.3 Color Assessment 

 

As mentioned previously, the degradation of reducing sugars and their reaction 

with amino acids present in the juice sometimes develop colorants that are difficult to 

remove by conventional clarification processes.  The objective of this analysis was to 

ascertain if the clarified juices obtained from the different batches of preserved juice, 
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and the products and by-products from the bench-scale crystallization, presented high 

colorant levels that might render the preservation process unfeasible, even when sucrose 

concentrations are maintained. 

Color was measured at 420 nm and at neutral pH using the ICUMSA standard 

method (ICUMSA, 1994), which yields a uniform measure of color regardless of the 

concentration of the original sample. 

 

 

 

 

Figure 3.35  Micro-photograph of conglomerates from preserved juice crystallization.  
Conglomerates are typical of spontaneous crystallization. 
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Figure 3.36  Micro-photograph of a twin crystal from preserved juice crystallization.  As 
with conglomerates, twin crystals are common when spontaneous crystallization occurs. 
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Figure 3.37  Micro-photograph of single crystals from preserved juice crystallization. 

 

Table 3.5 shows the ICUMSA 420 color for all the batches of preserved juice 

after clarification.  For comparison, samples of clarified juice by defecation from the   

W. R. Cowley Sugar House in Santa Rosa TX, the original source of juice used in the 

preservation, were also analyzed for color. 

In general, the objective of these analyses was to show that the juice does not 

develop excessive color as might occur from certain undesirable conditions during sugar 

processing.  In those cases, the juice is rendered useless, and the batch is lost.  From this 

perspective, the color values obtained show that the preserved juice color is comparable 

to, or even lower than conventionally obtained clarified juice, confirming the success of 

the preservation. 
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Table 3.5  ICUMSA 420 color for all the batches of preserved 
juice after clarification and for clarified juice from mill. 

Juice Batch ICUMSA 420 Color* 

  

Bfiltered N/M** 

  

Bscreened 5280 

  

Bclarified 5100 

  

Bperiodic 7120 

  

Pno-prep #1 6700 

  

Pno-prep #2 6660 

  

Pclarified 2570 

  
Clarified juice from mill  

(time 0 for Pclarified) 10120 

  
Clarified juice from mill 9480 
  

* Expressed in ICUMSA units (IU) 
** N/M = not measured 

 

Nonetheless, several other observations can be made as follows: 

1) Bscreened and Bclarified show about the same color.  Bscreened was preserved as raw 

juice and then clarified by carbonatation (i.e., carbonation followed by filtration 

of sludge) at the end of the preservation period, whereas Bclarified was clarified by 

carbonatation before preservation, and then carbonatated again at the end of the 

preservation period.  The results from the color measurements suggest that 

carbonatating twice will not decrease color significantly. 

2) Bperiodic shows a higher color than Bscreened and Bclarified, which might suggest color 

development due to a lack of mixing.  Because the purity of Bperiodic (Table 3.3) is 
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higher, it can be hypothesized that the rise in purity is due to the transformation 

of non-sucrose substances into colorants, that otherwise would contribute to the 

refractive index for brix measurement.  Further tests are necessary to confirm this 

hypothesis. 

3) Pno-prep #1 and Pno-prep #2, which were preserved under exactly the same 

conditions (i.e., outdoors, no preparation before preservation, etc.), have virtually 

the same value for color, which suggests good repeatability. 

4) Pno-prep #1 and Pno-prep #2, which were preserved with the bagacillo or cush cush 

as obtained from the mill and were preserved outdoors, have slightly higher color 

than the bench scale batches.  This suggests that the degradation of bagacillo 

causes a slight increase in color and its removal must be considered.  This is 

standard practice in the sugar industry, where screens separate the bagacillo or 

cush cush.  Based on these results, the difference in color cannot be attributed to 

temperature.  Pno-prep #1 was preserved during the winter.  Its average 

temperatures were lower than the bench-scale batches, which were preserved 

indoors at an average temperature of 23oC, and much lower temperatures than 

Pno-prep #2, which went through a Texas summer. 

5) Pclarified shows the lowest color (2570 IU), with a tremendous decrease from its 

starting juice, which was clarified by defecation at the mill (10120 IU).  This 

suggests that defecation followed by carbonatation is a very efficient way to 

clarify juice. 

6) From the color values, it is obvious, that even though our carbonatation of 

preserved juice was not optimized, it is more efficient than conventional 

defecation.  The difference was in average about 3300 IU. 

Table 3.6 shows the ICUMSA 420 colors for the products and by-products of the 

bench-scale crystallization of Bscreened, for the syrup of Bperiodic, and from a sample of 

typical sugar crystals obtained from defecation-clarified juice at the W.R. Cowley Sugar 

House. 
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Table 3.6  ICUMSA 420 color for the products and by-products of 
the bench-scale crystallization and of conventional raw sugar. 

Crystallization ICUMSA 
Product or By-product 420 Color* 

  

Bscreened-syrup 5900 
  

Bperiodic-syrup 7830 
  

Bscreened- A massecuite N/M** 
  

Bscreened- A molasses 11340 
  

Bscreened-crystals 1820 
  
Mill raw sugar crystals 2770 
    

* Expressed in ICUMSA units (IU) 
** N/M = not measured 

 

The colors of the syrups are normal, although they increased slightly during 

concentration, as it can be seen when comparing the color values for the juices in Table 

3.5, and syrups in Table 3.6 for both Bscreened and Bperiodic. 

The sugar crystals from Bscreened have a lower color than conventionally obtained 

raw sugar from juice clarified by defecation.  This could be attributed mostly to the 

clarification process employed (i.e., carbonatation), which, even when it is inefficient, is 

more effective.  When compared to a conventional efficient carbonatation process, 

which is standard practice for producing white sugars directly from cane (ICUMSA 420 

color of 50 – 150 IU), then, obviously, the sugar color obtained from Bscreened is high. 

There are several reasons why the sugar color from the bench-scale 

crystallization is considerably higher than that obtained in conventional carbonatation.  

1) As mentioned, the carbonatation process is not optimized and it was performed in 

a slightly different way.  The carbonatation for these studies occurred at ambient 

temperature by carbonating to a pH of 9.0±0.2, which is the pH at which calcium 
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carbonate recovery is maximized, then filtering and carbonating to neutrality.  In 

conventional carbonatation, sometimes there are two or more steps in which the 

juice is carbonated, filtered, and then limed again (Chapter I).  The filtration 

sometimes occurs around pH 10, and then again around pH 8.5.  The process is 

highly controlled, and it occurs at higher temperatures to make it more efficient 

(Hugot, 1995; Chen and Chou, 1993; Honig, 1953).  In fact, cold juice 

carbonatation used in these studies was the original single carbonatation, which 

can now be considered ancient, and was discontinued around 1915 due to its 

inefficiencies (Honig, 1953).  Also, sometimes carbonatation is combined with 

sulphitation, which does an excellent job in removing color (Valdes Delgado and 

de Armas Casanova, 2001). 

2) The pH increase during evaporation, due to inefficiencies in the final carbonation 

to neutrality, could have also caused color development.  As shown in Tables 3.5 

and 3.6, the color increased slightly in the syrups, but the temperature during that 

part of the evaporation was only 55oC.  The questionable evaporation occurred in 

the Rotavapor® at 70oC.  To confirm this, the color of the massecuite is required.  

Although this color was not measured, an approximation can come from the 

fraction of crystals and molasses present in the massecuite.  From the purities, the 

massecuite was found to be 0.37 g crystals/g massecuite and 0.63 g molasses/g 

massecuite.  Multiplying each fraction by the color found in the sugar and the 

molasses, respectively, we get a value of 8960 IU, which does in fact represent 

an increase from clarified juice and syrup. 

3) The high pH (~8), which existed during the preserved juice crystallization, makes 

crystallization more difficult and inefficient. 

4) Spontaneous crystallization, which occurred in these studies, promoted the 

excessive formation of conglomerates and twin crystals.  Conglomerates and 

twin crystals entrap impurities where they fuse and do not allow for proper 

purification of sucrose.  In contrast, when good seeding is provided, only single 

crystals form, which do not entrap impurities (Mathlouthi and Reiser, 1995). 
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5) Because the crystals were small, they were not washed after centrifugation; 

therefore, some of the molasses was not removed from the surface, as would 

occur in an industrial setting.  In fact, without washing it is not possible to 

produce commercial sugar of acceptable quality (Hugot, 1995). 

Figure 3.38 shows conventional raw sugar from the W. R. Cowley Sugar House 

(juice clarification by defecation) and the sugar obtained from the bench-scale 

crystallization of Bscreened (juice clarification by carbonatation at ambient temperature).  

Visual inspection clearly shows that the color is lower for the crystals from Bscreened. 

 

 
Figure 3.38  Photograph of conventional mill raw sugar, ICUMSA 2770 (left) and sugar 

from preserved juice, ICUMSA 1820 (right). 
 

Most sugar plants that use conventional carbonatation as their juice clarification 

method produce white sugar directly from cane (skipping raw sugar).  In our case, as 
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mentioned, although the color is lower than raw sugars obtained from clarification by 

conventional defecation, the sugar crystals are not considered white sugar as obtained 

from optimized carbonatation processes.  The higher color in the sugar crystals from 

Bscreened compared to the white sugar obtained from conventional carbonatation processes 

cannot be attributed only to one of the reasons mentioned above, but it is rather a 

combination of all of at least most of them. 

 

III.3.4.2.4 Dextran Levels 

 

Dextran, also known as α-1,6 polyglucose, is a soluble polymer of glucose.  It is 

produced by microorganisms during most stages of sugar production, especially within 

the cane itself and extracted juices.  In juice, it is normally formed from sucrose 

degradation by microorganisms, such as Leuconostoc mesenteroides.  This results in the 

loss of sucrose and an increase in molasses (Chen and Chou, 1993). 

Table 3.7 shows the dextran concentrations in two different bench-scale batches, 

Bscreened and Bperiodic, as determined by monoclonal antibody immunoassay at the 

Audubon Sugar Institute (Baton Rouge LA). 

 

Table 3.7  Dextran concentrations for bench scale batches  
Bscreened and Bperiodic. 

    Dextran Dextran 
Sample Brix (ppm)  (ppm/brix)

    
Bscreened 13.3 53 401 

    
Bperiodic 16.1 5.0 31 

        
 

Dextran levels are normally reported as ppm on brix.  Typical dextran levels in 

sugar mills are 500 to 1000 ppm/brix and they can go as high as 20,000 ppm/brix (Chen 

and Chou, 1993).  The values reported in Table 3.7 show that the dextran concentrations 

in the preserved batches are very low.  This is an expected result for two reasons:  1) The 
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high pH inhibits microorganisms, including those that produce dextran, 2) The high pH 

degrades reducing sugars, including polymers of reducing sugars, such as dextran.  In 

fact, the preservation will actually decrease the amount of dextran that comes from cane 

itself. 

 

III.3.4.2.5 Mineral Profiles 

 

The mineral profile of the juices is important because some elements can 

adversely affect crystallization, recovery, and sugar quality.  In general, high 

concentrations of inorganic non-sugars (particularly potassium) have a melassigenic 

effect, that is, they will take sucrose to molasses causing losses (Chen and Chou, 1995).  

Also, certain minerals (e.g., high concentrations of magnesium) will increase the 

molasses viscosity, which causes mechanical problems in the crystallizer and can also 

lead to losses (Mathlouthi and Reiser, 1995). 

Table 3.8 gives the mineral constituents of the batches of juice preserved at pilot 

scale after clarification by carbonatation as determined by inductively coupled plasma 

emission spectrophotometry (ICP) (Soil Testing Laboratory, College Station TX).  As a 

comparison, Table 3.8 also shows the mineral profiles of juice samples as obtained from 

the mill (W. R. Cowley Sugar House, Santa Rosa TX).  These samples were as follows: 

1) raw juice, 2) juice clarified by conventional defecation by the mill, and 3) the juice 

also clarified by conventional defecation by the mill, which was time 0 for Pclarified.  The 

average typical ranges of certain minerals for juice clarified by defecation, as cited by 

Chen and Chou (1993), are also included in Table 3.8. 

 



 

 

Table 3.8  Mineral constituents of preserved juice pilot batches, raw juice and clarified juice by defecation†. 

10

          Batch Brix Na Mg P S K Ca Mn Fe Cu Zn

            
Pno-prep #1 12.8           

          
           

          
           

          

           
   

            
   

           
           

         

977 445 39.1 4172 15805 12320 0.7 12.3 0.7 2.0
  
Pno-prep #2 15.0 560 793 33.3 3820 15213 9527 0.3 6.7 1.4 1.7
  
Pclarified 8.5 1988 765 23.5 3489 14435 23471 0.4 2.5 4.7 0.4
  
Juice clarified by 
defecation from mill 
(time 0 for Pclarified) 8.5 2471 729

 
235

 
4886

 
12576

 
3938

 
3.1 8.6

 
0.5

 
3.4

  
Juice clarified by 
defecation from mill 14.6 671 507

 
295

 
5055

 
13616

 
1299

 
1.2 2.1

 
0.2

 
1.6

  
Raw juice from mill 16.0 594 475 1350 3925 11506 1275 9.8 17.9 1.8 12.1 
 
Range in clarified juice 
by defecation*  200 –700

 
1200 –2400 100 –400 600 –1800 2500 –8300 1900 –3900 N/R 70 –200

 
N/R†† N/R 

 
† Values reported in ppm/brix, (mg element/1000 g total juice)/(g soluble solids/g total juice) 
†† N/R ≡ Not reported 
* From Chen and Chou (1993) 

 

6



 107

All the soluble minerals are ionic (e.g., Ca++, PO4
3–, SO4

=, Na+, etc.).  However, 

ICP reports the concentration of the elements themselves present in the ions (e.g., Ca, P, 

S, Na, etc.).  The ICP element concentration is the same as the ion concentration for 

metals (i.e., Ca++, Na+ and other cations) and some non-metals such as chlorine and its 

ion, Chloride (Cl–), but for other non-metals (e.g., phosphorus, etc.), stoichiometric 

computations must be done to find the actual ion concentration (i.e., PO4
3–, and other 

anions).  In the case of some anions, such as those sulfur-based (i.e., sulfate (SO4
=) and 

sulfite (SO3
=)), ICP cannot distinguish between them.  In addition, ICP will also account 

for the sulfur present in other compounds, such as the amino acid cysteine. 

It can be observed that the mineral concentrations behave as expected.  

Phosphorus (i.e., phosphate (PO4
3–)), magnesium, manganese, and zinc are partially 

removed by the clarification as reported by Chen and Chou (1993).  The preservation 

and subsequent carbonatation is more effective than the conventional defecation process, 

especially in removing phosphate and manganese. 

The concentrations of potassium and sodium are maintained because these 

compounds are not removed by the clarification process (Chen and Chou, 1993).  The 

concentration of sulfur (i.e., sulfate and/or sulfite and/or cysteine) is high compared to 

the values reported from Chen and Chou (1993) in Table 3.8.  This is expected because 

the values from Chen and Chou (1993) are the stochiometric levels for sulfate alone.  It 

can be observed that the ICP sulfur levels for the preserved juices are similar to the 

levels from the raw and clarified juice obtained from the mill.  The potassium 

concentration is high, but this is due to the nature of the raw juice itself.  The soils in the 

Rio Grande Valley, where the juice was obtained, are alkaline; therefore, they produce 

cane with high potassium content (Chen and Chou, 1993). 

The calcium concentrations, as expected, are higher than those in the raw juice 

and the juice clarified by conventional defecation by the mill.  In addition to the fact that 

the carbonatation was not optimized, some carbonatation and sulphitation processes 

yield higher calcium concentrations.  For instance, Ghosh et al. (2000) report calcium 

concentrations in juice clarified by a sulphitation process of 6000 – 7000 ppm/brix. 
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The calcium concentration for Pclarified is higher than that of Pno-prep #1, and this is 

higher than that of Pno-prep #2.  This disparity can be explained by two reasons: 1) the 

results are reported on a brix basis and their brix concentration (Table 3.8) was different 

(i.e., Pclarified < Pno-prep #1 < Pno-prep #2), but all of them were saturated solutions of 

calcium carbonate, and 2) the solubility of calcium carbonate varies with sugar 

concentration, reaching a peak at about 10% (10 g sucrose/100 g of juice) (Chen and 

Chou, 1993).  Of the three batches, Pclarified is closest to this sucrose concentration, which 

explains why it has the highest calcium concentration.  Pno-prep #1 sucrose concentration 

is closer to 10% than Pno-prep #2, which explains why the former has a higher calcium 

concentration than the latter. 

Except for calcium, the concentrations of all mineral constituents were 

comparable to, or lower than, those found in the juice clarified by conventional 

defecation from the W. R. Cowley Sugar House (Santa Rosa TX). 

Table 3.9 shows several mineral constituents found in the syrups concentrated 

from the bench-scale batches Bscreened and Bperiodic as determined by HPLC using a 

Dionex IonPac CS12 column and a pulse electrochemical detector at the Audubon Sugar 

Institute (Baton Rouge LA).  The observations are essentially the same.  Potassium and 

calcium concentrations are higher than normal due to the nature of the sugarcane from 

which the juice was obtained, and the use of the unoptimized carbonatation as the 

clarification method, respectively. 

The ammonium levels are below detectable limits.  This is not surprising because 

at the alkaline pH the juice was preserved, all the ammonium ions become ammonia, 

which easily evaporates.  Ammonia would also be produced from protein degradation, 

which also occurs at high pH.  This effect was observed in the pilot-scale batches, where 

sometimes ammonia smells were detected. 

It is important to mention that the melassigenic effect due to the high 

concentrations of potassium and calcium (especially potassium, which is considerably 

excessive) could have also contributed to the low purity drop and the low massecuite 

exhaustion of the preserved juice crystallization (Section III.3.4.2.2.1). 
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Table 3.9  Mineral constituents for the syrups from Bscreened and Bperiodic
†. 

Batch Brix Sodium Ammonium Potassium Magnesium Calcium 

       
Bscreened-Syrup 60.5 869 <0.8 19637 501 9289 
       
Bperiodic-Syrup 67.8 583 <0.7 22026 428 6737 
       
Syrup from juice       
clarified by defecation*  150 –300 N/R†† 5810 –8300 180 –1930 2500 –2640

              
† Values reported in ppm/brix, (mg element/1000 g total juice)/(g soluble solids/g total juice) 
†† N/R ≡ Not reported 
* From Chen and Chou (1993) 

 

III.3.4.3 Carbonatation Sludge Recovery and Treatment 

 

III.3.4.3.1 Experiences with sucro-carbonate of lime 

 

When a solution containing sucrose is limed to pH > 11, and then is carbonated 

to decrease its pH to recover the lime as calcium carbonate, there is a pH range that 

forms a complex called the sucro-carbonate of lime.  Its chemical formula follows: 

 

23111212 Ca(OH) 2CaCO 3 OHC ⋅⋅
 

According to Chen and Chou (1993), in a carbonatation process, liming should 

not exceed pH 11 to avoid this insoluble and viscous complex, which can cause sucrose 

losses in the carbonatation sludge filter cake.  However, Hugot (1986) suggests that the 

sucro-carbonate of lime dissolves after a period of time as pH is decreased during 

carbonation; thus avoiding losses. 

Due to this seemingly contradictory information, a simple test was performed to 

simulate the carbonatation conditions employed in these studies to determine if sucrose 

was lost to the carbonatation sludge at the filtration pH. 
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For this study, ACS reagent-grade sucrose (EM Science, Gibbstown NJ) was 

used to prepare a sucrose solution of approximately 15o Brix.  A sample was taken for 

HPLC analysis of the sucrose concentration. 

The solution was transferred to a beaker and placed on a magnetic stirrer for 

constant mixing.  Certified 99.3% calcium hydroxide (Fisher Scientific Co., Pittsburgh 

PA) was added to the solution in about the same proportion as it was added in the 

preservations studies (i.e., ~0.29 lb/gal or 35 kg/m3).  At this point, another sample was 

taken for HPLC analysis.  A pH meter (ORION™, Orion, Inc., Boston MA) was used to 

monitor the pH.  The starting pH of the solution was 12.30.  

A small diffuser stone (Fisher Scientific Co., Pittsburgh PA) was used to bubble 

carbon dioxide into the solution.  At the beginning, the pH decreased slowly.  The 

solution was not viscous, attaining good mixing.  At pH ~ 11.5, a gel-like, viscous 

substance formed.  The viscosity of the solution increased and stirring became difficult.  

This substance is known as sucro-carbonate of lime.  It was also observed in all the 

carbonatations performed in these studies, at both bench and pilot scale.  At pH 11.40, 

while this substance was still present, another sample was withdrawn for HPLC analysis.   

The substance seemed to dissolve around pH 11 and, at that moment, the pH 

decreased rapidly.  The viscosity decreased and good stirring resulted.  For HPLC 

analysis, another sample was taken at pH 10.23 and another at the end of the 

carbonatation at pH 9.01.  

The objective of this study was to assess whether sucrose is lost in the form of 

sucro-carbonate of lime if filtration is performed at pH 9.0.  This would be indicated by 

a decrease in sucrose concentration in the solution. 

Figure 3.39 shows the HPLC sucrose concentrations (run in duplicates) for all the 

samples taken at different pH during the carbonation process.  Only the sample taken at 

11.40 showed a significant decrease in the sucrose concentration, which indicates that 

sucrose had been sequestered by the sucro-carbonate of lime.  This agrees with the 

observation during the carbonation; between pH 11.5 and 11.0, the lime suspension took 

the characteristic viscosity and appearance of the sucro-carbonate complex. 
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Figure 3.39  Sucrose concentrations at different pH during the carbonation process 
(error bars =± 1 standard deviation). 

 

At pH 10.23 and at pH 9.01, which is the pH at which filtration was performed in 

these studies, the sucrose concentration had returned to normal, indicating that the sucro-

carbonate of lime had decomposed. 

 

III.3.4.3.2 Assessment of Lime Recovery from the Carbonatation Sludge 

 

Substances in the bagacillo or cush cush (e.g., proteins, lignin, cellulose, 

reducing sugars, and polymers of reducing sugars such as starch and dextran,) degrade 

during preservation.  They produce acids that decrease pH and form calcium salts, which 

may or may not be soluble.  If the calcium salts are soluble, they end up in the juice.  

This calcium cannot be recovered in the carbonatation process, which increases the 

calcium concentration in the juice and decreases the overall lime recovery after 

calcination in a kiln.  This situation is detrimental both because too high levels of 

inorganic non-sugars in the juice, in this case calcium, decrease sugar recovery from 
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molasses and because lime would be consumed without the possibility of regeneration.  

The calcium concentrations shown in Tables 3.8 and 3.9 indicate how much calcium is 

in the juice and, therefore, how much lime is lost.  However, actual measurements of 

lime recovery yield a more palpable assessment of this parameter because it also 

considers the efficiency of the calcination process; thus, giving results more comparable 

to those obtained in a lime kiln. 

The objective of these studies is to determine the amount of lime that can be 

recovered by a lime kiln from carbonatation sludge collected after preservation.  These 

calculations could only be performed on the bench-scale batches.  In the pilot-scale 

studies, there was a lot of material lost in handling; therefore, a quantitative analysis 

could not be performed. 

The lime recovery after preservation was approximated as follows: 

 

100
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⋅
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where 

 Lrec = Lime recovery, g Ca(OH)2 recovered /100 g Ca(OH)2 added, % 

Scol = Amount of carbonatation sludge collected , g 

Ds = Sludge dry weight fraction, g dry sludge/g sludge 

Cs = Calcination solids fraction (915oC), g calcination solids/g sludge 

MHL = Molecular weight of calcium hydroxide, 74.1 g/mol 

MQL = Molecular weight of calcium oxide, 56.1 g/mol 

Ladded = Lime added for preservation, g 

DL = Lime dry weight fraction, g dry lime/g lime 

 

Equation 3.5 is only an approximation of the lime recovery because it assumes 

that the carbonatation sludge is 100% calcium carbonate and/or calcium bicarbonate 
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and/or calcium hydroxide, which, after calcination, completely become calcium oxide.  

This assumption is reasonable because analysis of carbonatation sludge by inductively 

coupled plasma emission spectrophotometry (ICP) at the Soil Testing Laboratory 

(College Station TX) (Table 3.10) indicated that the calcium content in the sludge was 

25 g/100 g total sludge.  The sludge had an organic content of 32 g/100 g total sludge; 

therefore, the calcium content in the organics-free solids was 37 g/100 g organic-free 

sludge.  This value is very close to 40 g/100 g organic-free solids, the fraction of calcium 

in pure calcium carbonate.  Other components levels are very small (Table 3.10). 

As explained in Table 3.2, Bfiltered was prepared before preservation by vacuum 

filtration through a trigger-type cloth, the same type used in the filtration of 

carbonatation sludge in the pilot-scale experiments.  The concentration of filterable 

solids left in the juice after filtration, as determined by filtration through a 0.45-µm 

membrane, was 2.58 g/L. 

At the mill (W. R. Cowley Sugar House, Santa Rosa TX), 4 gal of juice were 

collected and 0.202 kg lime (92% by weight calcium hydroxide, Chemical Lime Co, 

New Braunfels TX) was added for preservation during transportation.  The juice had a 

sucrose concentration of 11.6% (g sucrose/100 g of juice).  According to Chen and Chou 

(1993), at this concentration, the amount of Ca(OH)2 dissolved is 2.3% (g of 

Ca(OH)2/100 g of solution), which means that 4 gal (~15 L) of juice could contain up to 

0.38 kg in solution; thus, this would indicate that all the lime added at the mill would be 

in solution.  Nonetheless, other substances present also affect lime solubility in juice.  In 

addition, some ions present, such as phosphate (Chen and Chou, 1993), precipitate when 

the lime is added, even at this high pH without carbonating.  It is conclude, therefore, 

that some of the lime was removed by the filtration.  Because of the uncertain amount of 

lime removed by the filtration prior to preservation, the recovery was reported as a range 

including and excluding the lime added at the mill. 

Both Bscreened and Bperiodic were prepared in the same way, where the bagacillo 

was removed at the mill by screening with ~20-mesh strainer before 0.227 kg of lime 

were added for preservation during transportation; thus, the lime added at the mill had to 
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also be considered in the recovery calculations.  Screening the juice to remove the 

bagacillo is a common practice in the sugar industry (Hugot, 1986; Chen and Chou, 

1993). 

 

Table 3.10  Carbonatation sludge composition. 

Component  Content 

    
Nitrogen (% w/w)  0.26 
    
Phosphorus (% w/w)  0.21 
    
Potassium (% w/w)  0.78 
    
Calcium (% w/w)  24.9 
    
Magnesium (% w/w)  0.25 
    
Sodium (ppm)  1845 
    
Zinc (ppm)   26 
    
Iron (ppm)   1463 
    
Copper (ppm)  10 
    
Manganese (ppm)  88 
    
Sulfur (ppm)  3947 
    
Boron (ppm)  16 
    
Organic Contents,   
from ashing at 550oC   
(% w/w)   32 

      
 

 

In the case of Bclarified, 0.113 kg of lime was added at the mill for preservation 

during transportation.  Once in the laboratory, it was carbonated to pH 9.0 and then 
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vacuum filtered; thus, the juice was saturated with calcium carbonate, to which lime was 

added for long-term preservation.  The amount of sucrose in this solution was 11.3 % (g 

sucrose/100 g total juice).  Chen and Chou (1993) report that at this concentration, the 

concentration of calcium carbonate in the solution is about 0.03 g/L.  In 15 L (4 gal) of 

juice, this is equivalent to approximately 0.45 g of calcium carbonate; therefore, it can be 

neglected and only the lime added in the laboratory for preservation, after the 

clarification, was considered for the recovery calculations. 

The organic content of the carbonatation sludge must be low (i.e., < 10%) to be 

compatible with the stationary lime kiln.  Raw juice preservation yielded a sludge too 

high in organic content, so the tests on the stationary lime kiln could not be performed.  

To obtain carbonatation sludge with lower organic contents, pre-clarified juice was 

preserved instead.  In an industrial setting raw juice preservation is preferred because the 

clarifiers would not need to be oversized to handle all the cane during the short season. 

The lime used to preserve Bclarified during transportation and later for clarification 

prior to preservation, was converted mostly to calcium carbonate and then filtered out.  

This amount of lime is neglected because in the actual process, if clarification prior to 

preservation were required to reduce organic levels for the stationary lime kiln, this 

would be a separate unit operation.  Likely, the clarification would occur by defecation 

because this method is cheaper, although less effective, than carbonatation.  Also, as 

shown in Section III.3.4.2.3, after carbonatation, preserved juice pre-clarified by 

defecation has less color than preserved juice pre-clarified by carbonatation.  Thus, 

defecation : preservation : carbonatation results in better clarification than  

carbonatation : preservation : carbonatation. 

For the calculation, it was assumed that the lime added to preserve the juice was 

100% calcium hydroxide, even though the manufacturer reports that the lime is only 92 

g calcium hydroxide/100 g total solids.  This assumption gives a conservative estimate 

of recovery because the recovered sludge was assumed to be 100% calcium 

carbonate/calcium bicarbonate/calcium hydroxide. 
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Table 3.11 shows the lime recoveries for all the batches expressed as g Ca(OH)2 

recovered after calcination/100 g Ca(OH)2 added for preservation.  The recoveries show 

a trend.  With less impurities, the recovery increased.  Bclarified, which removed most 

impurities by clarification prior to preservation, had the highest recovery.  Comparing 

Bscreened to Bperiodic shows that mixing frequency had no effect on the recovery.  Although 

for Bfiltered, only a range is reported, it can be hypothesized that the recovery will be 

higher than Bscreened, but lower than Bclarified.  In general, it can safely be expected to have 

recoveries higher than 65 – 70% (65 – 70 g lime recovered/100 g lime added for 

preservation) 

 

Table 3.11  Lime recoveries after preservation for bench-scale batches. 

Batch Lime Recovery* 
  

Bfiltered 64.8±0.4 – 91.7±0.6†

  

Bscreened 78.5±11.6 
  

Bclarified 89.5±0.5 
  

Bperiodic 77.6±3.5 
    
* Values given in  
  g Ca(OH)2 recovered/100 g Ca(OH)2 added 
†  Error = ± 1 standard deviation 

 

Filtering of the carbonatation sludge for Bscreened and Bperiodic was difficult and 

took a long time; therefore, each batch was divided into three smaller batches, which 

were then separately carbonated and filtered.  The recovery was calculated on a per 

volume basis for each batch.  The value reported is an average recovery for the three 

separate batches, which explains the high standard deviations for Bscreened and Bperiodic.  In 

contrast, filtering of the carbonatation sludge for Bfiltered and Bclarified occurred in one shot, 

processing all the contents of each batch at once, thus obtaining a total amount of sludge 

 



 117

recovered.  The major variation for Bfiltered and Bclarified, from which their standard 

deviations are reported, were the moisture content and calcination solids, which were 

determined in triplicate.   

 

III.3.4.3.3 Compatibility of Carbonatation Sludge with Stationary Lime Kiln 

 

The compatibility of the carbonatation sludge with the stationary lime kiln (SLK) 

was tested by the researchers at Altex Technologies Corp. (Sunnyvale CA). 

After preservation, the juice was clarified by carbonatation and the sludge of 

certain batches was recovered, dried, packaged and shipped to Altex Technologies Corp. 

for testing on the SLK. 

As described in Chapter I, this kiln is more energy efficient than conventional 

lime kilns because it can be insulated more efficiently than a rotating lime kiln and 

because more lime can be loaded into the reactor per unit volume.  The latter is 

accomplished by pelletizing the calcium-carbonate-rich raw material, in this case 

carbonatation sludge, and packing it inside the stationary furnace.  The pellets provide 

interstitial void spaces that allow hot gas to pass through and calcine the material. 

According to tests at Altex Technologies Corp., the SLK requires the organic 

content in the sludge to be less than 10 % (10 g organics/100 g total dry solids).  High 

organic contents weaken the pellets at high temperatures because the organics burn off 

leaving voids that cause the pellets to disintegrate and clog the reactor. 

Preserved sugarcane juice contained waxes, gums, and undegraded fiber (i.e., 

bagacillo), which precipitated in the clarification process (Chen and Chou, 1993); 

therefore, the carbonatation sludge from preserved raw juice (Pno-prep #1, Pno-prep #2, 

Bfiltered, Bscreened and Bperiodic) had a high organic content, which ranged from 26 to 32% 

(26 – 32 g organics/100 g total dry solids).  This was incompatible with the SLK.  

Extensive washing of the material did little to remove the organics from these samples. 

When pre-clarified juice was preserved, the organic levels in the sludge from the 

second post-preservation clarification decreased to 6.9% in Bclarified and 7.3% in Pclarified. 
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The SLK results with sludge from the pre-clarified juice in Bclarified and Pclarified 

were satisfactory; however, as mentioned, preservation of raw juice would be preferred 

because it avoids oversizing the clarification equipment, which is needed to clarify the 

juice prior to preservation. 

We propose a method that removes the first clarification step and allows the 

preservation of raw juice.  Figure 3.40 shows the proposed method, which decreases the 

sludge organic contents prior to loading the stationary lime kiln.   
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Figure 3.40  Approach to enable the use of high organic-content sludge in the 
stationary lime kiln process. 

 

High organic-content sludge is pelletized and loaded in a pre-burner, where hot 

gas (i.e., air) (~ 500oC) contacts the pellets and burns off some organics.  The gas exiting 

the pre-burner is hotter than the inlet gas due to the combustion of the organics.  The 

low-organic-content sludge exiting the pre-burner is then re-pelletized and loaded into 

the stationary lime kiln, where it is contacted by hot gas (~1200oC) for calcination.  The 

product of the process is mostly quicklime (CaO). 

Table 3.12 reports the strength tests of pellets from different sources, 

temperatures, and preparation conditions tested by researchers at Altex Technologies 
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Corp. (Sunnyvale CA).  Samples of the different materials were mixed with water to the 

appropriate moisture content, and then extruded to form pellets about 1 inch in length.  

These pellets were dried and placed in a furnace at the specified target temperatures to 

simulate conditions in the SLK.  The pellets from each target temperature were then 

tested for strength using a press equipped with a dial-compression gauge.  Pressure was 

applied gradually to the pellets until they fractured.  The fracture force is shown in Table 

3.12. 

 

Table 3.12  Strength tests (force required for fracture) of carbonatation sludge pellets at 
different temperatures and preparation conditions. (Data from Altex Tech.Corp.) 

Material Organic Contents Sodium 150oC 590oC 760oC 925oC 
 (g /100 g total solids) (g /100 g total solids) (lbf) (lbf) (lbf) (lbf) 
       

Bfiltered - Sludge > 15 0 48 16 5 0* 

       

Bfiltered - Sludge > 15 1 41 18 66 20 

       
Pre-burned 
Bfiltered - Sludge 4 1 140 76 26 16 

       

Bclarified - Sludge 7 0 73 113 48 0 

       

Bclarified - Sludge 7 1 116 81 236 23 

       
Paper Mud 2 1 50 258 845 35 
       
Paper Mud 2 2 246 345 736 48 
       

* Force values of 0 mean that the pellets fell apart as they were removed from the furnace 

 

Sodium was added to some pellets to a concentration of 1% (1 g/100 g total 

solids).  Researchers at Altex Technologies Corp. report that sodium acts as a high-

temperature binder and improves pellet strength (Kelly and Namazian, 1998).  The 

source of sodium was a 45% solution of Maracell XE (Lignotech USA, Rothschild WI). 
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A sample from the high-organic-content sludge from Bfiltered was formed into 

pellets and placed in a furnace at 260oC for 3 hours, which decreased the organic content 

to 4% (4 g/100 g total solids).  The resulting pellets were crushed, re-pelletized and 

heated to the target temperatures to perform the strength tests.  The objective of the latter 

procedure was to simulate the process depicted in Figure 3.40.   

For comparison, samples of residual paper mud from the Kraft pulping process in 

the paper industry (Weyerhauser plant, Longview WA) were also tested.   

The results showed that the high-organic-content sludge from Bfiltered performed 

poorly, although its strength did increase when sodium was added. 

Bclarified also performed poorly when tested without added sodium, but its 

mechanical strength increased tremendously and had an excellent performance once 

sodium was provided. 

The pre-burned sludge performance was acceptable, although not as good as the 

results obtained from the sludge of Bclarified when sodium was added. 

The pellets of paper mud from the Kraft pulping process already had a high 

sodium level and low organic content; thus, their mechanical strength considerably 

surpassed all the samples of carbonatation sludge. 

The results suggest that sodium is very important, and must be added to 

carbonatation sludge to improve pellet strength.  An increase of sodium content might 

represent a problem because sodium is very soluble and it will remain in the juice.  

Sodium has a high melassigenic effect (i.e., increases the loss of sucrose to molasses).  

Chen and Chou (1993) report that sodium has melassigenic coefficients (i.e., parts of 

sucrose that will be taken to the molasses/parts of sodium present) that range from 0.42 

to 4.61 depending on the anions present in the solution.   

Assume the sodium concentration in the sludge is 1%.  After calcination, gases 

(mainly carbon dioxide) are driven off, which increases sodium concentration in the 

quicklime to ~ 1.8% (1.8 lb of sodium/100 lb of quicklime).  Assume a 14 – 15o Brix 

raw juice.  At the proportion that lime needs to be added for 1-year preservation (i.e., 

16% slacked lime on brix or 12% quicklime on brix), and assuming that the melassigenic 
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effect of sodium in this juice based on the anions present is about 2 – which is the 

middle of the range given by Chen and Chou (1993) – then, this increase in sodium will 

cause a sucrose loss of about 0.07% (0.07 lb of sucrose lost to molasses/100 lb total 

juice).  In a sugar house of the size of W.R. Cowley Sugar House, which processes about 

10,000 ton cane/day and operates 6 months per year, this increase in sodium represents a 

loss of sucrose to molasses of about 8 tons/day.  At ~ 20 cent/lb of raw sugar, this 

amounts to about $570,000/year in losses, which is substantial.  Fortunately, the 

quicklime that exits the SLK, because it comes out in chunks, must be slacked.  The lime 

slacker can be modified to remove sodium from the lime to acceptable levels. 

 

 

III.4 Conclusions 

 

The preservation of sugarcane juice with lime at normal ambient conditions 

successfully maintained sucrose concentrations for periods as long as 1 year.  The 

amount of hydrated lime required to preserve the juice for 1 year is 20% on sucrose (20 

lb/100 lb of sucrose present) or 16% on brix (16 lb/100 lb of soluble solids) assuming 

80% purity.  This is about the same amount of lime needed in the single carbonatation 

and the continuous double carbonatation processes (40 lb or 18 kg of quicklime/tone of 

cane) (Hugot, 1986). 

Although mixing is imperative, constant recirculation is not necessary because 

periodic or intermittent mixing suffices. 

The carbonatation process that clarifies the juice after preservation must be 

optimized and improved.  Nonetheless, the juice obtained from the preservation was 

normal with respect to purity, color, and mineral contents, which were comparable to the 

values from typical clarified juice.  The calcium concentrations were higher than those 

obtained in juices clarified by defecation, but this can be attributed to the use of the 

unoptimized carbonatation as the clarification procedure.  The dextran concentrations 

were very low, which was expected, because the conditions at which the juice is 
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maintained do an excellent job suppressing microorganisms, including those that 

produce dextran.  Further, any dextran present in the raw juice is destroyed by alkaline 

conditions. 

The only potential drawback from the lime preservation procedure seems to be 

the destruction of reducing sugars due to the high alkalinity, but the actual effect on 

crystallized sugar recovery cannot be assessed until the clarification (i.e., carbonatation) 

procedure is improved and pilot-scale crystallization of the process is performed.  The 

reducing sugars degradation products were not transformed into color at the preservation 

conditions as the color measurements suggest, and they were still optically active 

because they were detected by the refractometer.  It is possible that these substances will 

simply take the place of the reducing sugars in the molasses; thus, not affecting sucrose 

recovery. 

A bench-scale crystallization test showed that the sugar crystals produced are 

normal and have less color than sugar crystals obtained from a sugar mill that employs 

defecation as the clarification method.  The exhaustibility measurements from this bench 

crystallization test were low.  Nonetheless, it could not be concluded that this was due to 

the preservation procedure because there were other factors that could have affected the 

crystallization as well, such as inefficiencies in the carbonatation, which yielded high 

calcium concentrations, high potassium concentrations from the original raw juice, and 

inefficiencies in the crystallization itself that caused spontaneous crystallization. 

If the carbonatation procedure is improved and optimized, it is believed that it 

would be possible to obtain white sugars directly from this process, which would 

contribute considerably to the economics. 

The approximate lime recovery for preservation of screened (i.e., no bagacillo) 

raw juice was found to be about 80% (80 g of recovered after calcination/100 g of lime 

added before preservation), and it becomes as high as 90% if clarified juice is preserved. 

The carbonatation sludge recovered from the clarification step after preservation 

of raw juice is not compatible with the energy-efficient stationary lime kiln (SLK) due to 

its high organic and low sodium contents.  If the organic contents are decreased, either 
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by burning them off or by preserving clarified juice, and sodium is added, then the 

mechanical strength of the pellets improves, making the sludge adequate for the process.  

If sodium is added to help pellet integrity, it can be removed during the slacking 

procedure. 

It is well known that carbonatation is a more efficient procedure for clarification 

than defecation.  In fact, white sugars can be directly obtained from the carbonatation 

process.  However, the high costs for materials and equipment make it unpopular.  The 

cheaper lime produced by the SLK, and the savings incurred by the preservation of the 

juice, which would avoid oversizing the process equipment, makes this alternative to 

sugar manufacturing very attractive. 

 

 

III.5 Future Work 

 

With respect to the preservation procedure, tests must be made to find the actual 

frequency needed for mixing, bearing in mind that it is preferred to mix as infrequently 

as possible to save power. 

Because adding excess lime to the juice raises the pH above 12, studies should 

also be performed with a pH controller constantly adding lime to maintain the pH at 

adequate levels for preservation (i.e., 11.0 – 11.5), which is the recommended procedure 

for the actual process.  This experiment should determine more accurately the exact 

amount of lime needed for preservation, which was slightly overestimated in these 

studies. 

Studies should be performed to improve the clarification procedure after 

preservation.  The carbonatation process must be optimized to recover the highest 

amount of lime and to remove the highest amount of impurities and color from the juice.  

Parameters to be tested are temperature, number of carbonations and filtrations, pH at 

which the carbonations and filtrations should occur, scale formation on the equipment, 

and sludge filterability.  The starting point should be conventional modern carbonatation 
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methods, which are far superior to the ancient cold-juice single carbonatation that was 

performed in these experiments (Honig, 1953). 

Tests should also be performed to improve the mass transfer of carbon dioxide, 

especially at pH close to neutrality.  As mentioned, agitators with high gas transfer 

efficiency should be tested. 

Pilot-scale crystallization studies of the juice should be performed.  For this 

purpose, the Audubon Sugar Institute (Baton Rouge LA) has adequate facilities.  This 

test will allow a better estimation of the quality of the juice with respect to evaporator 

duties, molasses exhaustibility, and in general to the overall sucrose recovery in crystals 

from the preserved juice. 

Because sodium is a necessary additive for the carbonatation sludge to ensure the 

proper operation of the stationary lime kiln, more studies on the downstream impact of 

this alteration to the mineral composition of the lime must be performed. 

 

 

III.6 Questions and Answers 

 

The following questions were made by two experts in the field, Dr. Michael 

Saska from the Audubon Sugar Institute (Baton Rouge LA) and Mr. Carlos de Armas  

from the Cuban Research Institute of Sugar Cane Derivatives (Havana Cuba). 

The following are Mr. De Armas’ questions: 

Question: 

"You store the juice but what do you think to do with the bagasse?"  

Answer: 

A plant such as this one will definitely have to have co-generation to produce 

energy to deal with the excess bagasse.  The idea is to produce energy (e.g., electricity) 

from the bagasse as soon as it becomes available and sell it, keeping only the bagasse 

that is needed to operate the small boilers. 
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But, on another note, I have to tell you that the real incentive for the proposal of 

this method is the fact that our group does not want to use the bagasse to simply burn it. 

Our research group has been working for the past 15 years or so in the MixAlco 

process, which converts biomass into a mixture of volatile fatty acids (i.e., acetic, 

propionic, butanoic, pentanoic, etc.) and then transforms them into a mixture of alcohols 

to be used as fuel. 

It has been demonstrated that this is a much more efficient way of handling 

excess biomass (i.e., municipal solids waste, corn stover, paper waste, chicken and pig 

manure, etc. and of course sugarcane bagasse) than simply burning it.  

The bagasse produced will be pretreated to increase digestibility and immediately 

fermented countercurrently with a mixture of acid-producing microbes to produce fuel 

by means of the MixAlco process.  

The bagasse will definitely be worth more than it is worth now, and people will 

not want to just burn it, if they can obtain fuels more efficiently.  

On the other hand, in the worst case scenario, if you opt for not implementing 

this process, true that you will have to store some bagasse and that costs money, but at 

least you now have the flexibility to find a happy medium that will minimize your cost 

between not oversizing your mill and not storing too much bagasse.  

Question: 

"As far as the juice storing is concerned, you will have to store about 4000 ton 

per day (100% extraction), approximately 440000 cubic meters in total, which say, at ten 

meters high, means 44000 square meters of tanks surface, or about 60 covered tanks of 

30 meters diameter each one. Have you had thought in the R+D, plus engineering tasks 

and specially the investment involved?" 

Answer: 

People store their raw sugars now in a warehouse of a certain size.  Say you store 

a 15o Brix juice, with 80% purity, for a plant that has 87% boiling house recovery, and 

considering that the warehouses are not completely filled.  You will need several ponds 

(not tanks) lined with a geomembrane whose added volume will be equal to about 7 to 8 
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times the size of the warehouse sugar houses now have for storing their raw sugar.  A 

pond lined with a geomembrane is much cheaper than a warehouse of the same size. 

Also, a mill like this will not need a warehouse, at least not as big as the one 

existing mills have, because it will sell the raw sugar (or maybe even white sugar, 

because of the efficiency of the clarification method) as it is produced. 

Question: 

"Concerning the processing of the after-stored juice, have you had done tests on 

its processing to sugar? What differences have you had found with fresh juice?"  

Answer: 

I have done some pilot and bench tests on processing and clarifying the juice.  

Purities are normal.  The clarified juice obtained has a lower ICUMSA 420 color than 

the juice obtained by conventional defecation. 

I have also done bench scale crystallization, and the crystals are normal, plus the 

ICUMSA 420 color is also lower than conventional raw sugar.  

Question: 

"I mean the whole problems involved, like scaling in heating and evaporation 

surfaces, and eventual changes in the viscosities of massecuites, how it could change the 

mass transfer coefficients, and consequently, boiling processing times."  

Answer: 

Indeed more testing at the pilot and industrial scale is needed.  

Question: 

"Concerning sucrose losses, you speak about reducing sugars losses, what 

explanation you give to the fact of having only these losses, it does not happens that 

when destroyed, the hydrolysis reaction does not move to new formation of more 

reducing sugars, which again will be destroyed, and so on (moving to the right the 

hydrolysis reaction)?"  

Answer: 

The theory is a follows: 
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The reducing sugars, in alkaline conditions, are converted into saccharinic acids, 

which are stable in alkali under normal ambient conditions; thus, also forming an 

equilibrium that avoids the destruction of more reducing sugars.  The equilibrium 

reactions occur in the following way: 

 

Sugars Reducing  Sucrose ↔  

 

Reducing sugar ↔  Saccharinic acids 

 

So the overall reaction, and equilibrium to be concerned with, is actually, 

 

Sucrose ↔  Saccharinic acids 

 

Both sucrose and saccharinic acids under normal conditions of temperature and 

pressure are stable in alkaline conditions.  Thus, equilibrium is maintained which avoids, 

in the overall reaction, further destruction of sucrose towards saccharinic acids. 

 

The following questions were made by Dr. Michael Saska: 

Question: 

"The amount of lime you use is at least 30 times more on juice volume that is 

used presently in the raw sugar process.  Hence, the weight of cake some 45 times more 

than is presently produced, again on the same juice volume basis. With the same 

washing efficiency, the sugar loss in the filter cake you can expect 45 times larger than 

the present loss." 

Answer: 

The experiments show that the amount of cake produced is between about 1.3 for 

the raw juice preservations and about 1.5 times the lime added for the clarified juice 

preservation.  Because the sugar industry that clarifies by defecation limes at a rate of 
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about 1 – 1.5 lb calcium oxide/ton cane and our liming would be about 40 lb CaO/ton 

cane, your estimation is about right. 

But the deficiency you describe will never be worse than in the conventional 

single carbonatation and the continuous double carbonatation processes, because we 

would use the same amount of lime they do, or even less if the preservation is for less 

than a year. 

Now if the losses are of much concern, it is worth to also consider other positive 

aspects such as the fact that carbonatation is a better clarification method than 

defecation, and that direct white sugar may be obtained from this process if the 

carbonatation is optimized, thus helping the economics.  Also, you will have to find a 

happy medium to maximize your earnings.  On the one hand, by being able to preserve 

the juice you save a lot of money in the initial investment by not having to oversize 

anything other than your extraction equipment, and on the other extreme you save 

money by not having too much cake, thus avoiding sugar losses.  You have the 

flexibility to choose for how long you wish to preserve the juice.  The longer you 

preserve, the smaller your equipment but the higher the amount of lime needed (and 

higher cake yield) and vice versa. 

Question: 

"The precipitate from carbonatation will be totally different than from the present 

defecation, much finer, and you will need filterpresses to handle the mud, not the 

vacuum filters existing in the mills." 

Answer: 

Some mills that clarify by carbonatation do use rotary vacuum drum filters.  

They adjust the liming and carbonating conditions to attain a “fluffier” sludge that can 

be picked up by the filters.  Without a doubt, filtration studies need to be done too on 

this regard, because the sludge is different to what you normally get from carbonatation, 

because you have given more time for degradation of impurities which does not occur in 

conventional carbonatation processes. 
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Now, you are talking about existing mills.  Our intended target in this research 

has been from the beginning new mills that would be able to benefit from the size 

reduction in their equipment. 

The case with existing mills is different because they are already oversized; thus, 

they do not need to store a lot of juice.  In their case, I would say, they can use the highly 

limed preserved juice as their lime source for the fresh juice coming in and they may 

continue using their defecation method for clarification.  This is the conventional 

calcium-saccharate liming process (Hugot, 1986; Chen and Chou, 1993). 
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CHAPTER IV 

 

 

LONG-TERM LIME PRETREATMENT OF BAGASSE 

 

 

IV.1 Introduction 

 

In sugar plants that do not produce extra power, bagasse is only used to operate the 

boilers.  By the end of the sugarcane season, these plants must deal with all the excess 

bagasse that was not burned in the boilers and now lies in their backyard, which has the 

potential of catching fire either by accident or by spontaneous combustion.  Companies 

must pay fees to dispose of this bagasse.  By implementing the more efficient 

evaporation system, which decreases energy requirements, and with the preservation of 

thin sugarcane juice to process it along the year, it is possible that the excess bagasse 

will become more of a problem.  However, the MixAlco process (Figure 1.2), which can 

produce fuels and chemicals from bagasse, solves this problem. 

The MixAlco process requires that the biomass be pretreated with alkali (lime) to 

remove lignin, which is a key factor that inhibits microbial or enzymatic digestibility 

(Chang and Holtzapple, 2000).  Lignin is a structural biopolymer that acts as a “glue” 

and binds cellulose to give rigidity to plants.  It encapsulates biomass carbohydrates 

(cellulose and hemicellulose) and shields them from degradative enzymes.  Also, 

alkaline pretreatment reduces the acetyl group content, which is another factor that 

inhibits biological digestibility, although to a lesser extent than lignin (Chang, 1999).  

The conventional method is the addition of 0.1 g Ca(OH)2/g dry biomass, at 100oC for 2 

hours in an appropriate vessel (Holtzapple, 1999).  This procedure, as with sugarcane 

juice processing, requires big vessels for processing large amounts of biomass that 

becomes immediately available for the fermentation. 
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Figure 4.1  Schematic of pretreatment/fermentation pile. 

 

The newer proposed process consists of performing both the pretreatment and 

fermentation in a single pile.  The bagasse undergoes alkaline oxidation to increase 

digestibility and fermentation to produce carboxylate salts (Figure 4.1).  The new 

pretreatment procedure will require longer times (several weeks), but the operating 

temperature will be lower.  The process is as follows: 

1) Biomass, lime, and calcium carbonate are intimately mixed and formed into a 

pile. 

2) The pile is covered.  A blower delivers carbon-dioxide-free air, obtained by pre-

scrubbing with a lime-water slurry, distributing it uniformly in the pile from the 

bottom to induce oxidation.  At the same time, water is circulated by 

intermittently flooding the pile to avoid channeling.  The water temperature is 

regulated by a heat exchanger (Figure 4.1). 

3)  As pretreatment occurs, the pH in the pile decreases.  When the pH is low 

enough for microorganisms to subsist, the pile is inoculated with a mixture of 
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marine microorganisms, which can handle high salt concentrations and thus can 

produce high concentrations of organic acids (Thanakoses, 2002).  Water 

circulation continues in the same way.  At this point fermentation starts. 

4) The blower is now coupled to the exhaust pipes to extract the fermentation gases 

produced in the pile. 

5) The product of this fermentation (carboxylate salts) is further treated in the 

MixAlco process as described by Holtzapple et al. (1999).  

Paper manufacturing is another use for bagasse (Chen and Chou, 1993).  In 

places where this process has been implemented, bagasse, which is produced during the 

few months of the sugarcane season, has to be stored (commonly in piles) so that it may 

be processed during the year (Yang et al., 2000; Ashok et al., 1986).  Storage presents 

difficulties because there might be biochemical deterioration and loss of fiber, as well as 

the danger of catching fire either by accident or by spontaneous combustion (Granick, 

1979).  Using the same pile system, but with possibly a higher lime loading, bagasse 

might also be treated, while being stored, to make pulp for paper or paperboard 

manufacturing.  Further treatment might be necessary (e.g., beating, bleaching, etc.); but 

savings are expected when compared to the conventional methods. 

Treatment of the bagasse for paper or paperboard manufacturing might take 

several months with the proposed method; however, when the bagasse is to be used for 

fermentation, a high degree of delignification is not necessary because digestibility is not 

enhanced significantly below 10 g lignin/100 g total biomass (Shimizu et al., 1984; 

Chang, 1999).  Therefore, for the MixAlco process, the pretreatment might be shorter 

than for pulping. 
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IV.2 Literature Review 

 

IV.2.1 Alkali Pretreatment to Increase Microbial and Enzymatic Digestibility 

 

To increase enzymatic or microbial digestibility, pretreatment of biomass with 

alkali (e.g., sodium hydroxide, ammonia, potassium hydroxide, and lime) has been 

studied extensively.  However, in its majority, the pretreatment time does not exceed 24 

hours at ambient temperature, and the effect of oxidation is not considered (Chang et al., 

1997).  One concern with long-term pretreatment is the possible destruction of 

carbohydrates, particularly hemicelluloses, because cellulose is more stable (Whistler 

and BeMiller, 1958).  Even so, long-term delignification is effective.  For instance, 

Gharib et al. (1975) treated poplar bark with lime at non-oxidative conditions for 150 

days at ambient temperature, which decreased the lignin content by about 24% that of 

the original amount.  After one day of applying the same treatment, only about 7% of 

delignification was achieved with about the same degree of carbohydrate destruction 

(~50% of hemicelluloses). 

The utilization of bagasse as a substrate for biodegradation has been extensively 

studied (Pandey et al., 2000) and it is concluded that pretreatment to increase 

digestibility is imperative.  Long-term lime pretreatment of bagasse has been done by 

Playne (1984).  He obtained the best digestibility when he treated bagasse at ambient 

temperature for 21 days with lime and sodium carbonate under non-oxidative conditions. 

Alkali pretreatment in the presence of oxygen has been shown to be more 

effective for bagasse delignification than alkali alone (Shimizu et al., 1984; Chang, 

1999). 

An important factor to consider is that because sugar plants sometimes collect 

bagasse during the season, it ages, which changes its properties and makes 

delignification more difficult (Ashok et al., 1986).  A comparison of old stored bagasse 

and fresh bagasse must be done to establish differences on how they should be 

approached. 

 



 134

IV.2.2 Bagasse in paper manufacturing 

 

Utilization of bagasse for paper-making is a common practice (Ashok et al., 

1986).  There are 20 leading countries that produce bagasse pulp for use in various 

grades of paper and paperboard, including bag, wrapping, printing, writing, toilet tissue, 

facial tissue, toweling, glassine, corrugating medium, liner board, bleached boards, 

coating base stock, newsprint, and mechanical-containing printing papers (Chen and 

Chou, 1993). 

The common method for pulping bagasse is the soda process (sodium hydroxide 

at 160 to 170oC for 10 to 90 min) (Granick, 1979; Fernández, 1995).  The Kraft process 

(sodium hydroxide + sodium sulfide), which is popular for hardwood pulping, is not as 

popular for bagasse (Valdes Delgado and de Armas Casanova, 2001; Wang and Patt, 

1989).  Incorporating additives to the soda process, such as anthraquinone and oxygen, 

has improved both the properties and yields of bagasse pulps (Valdes Delgado and de 

Armas Casanova, 2001; El-Ashmawy, et al., 1984; Nagieb and El-Sayed, 2000; Wang 

and Patt, 1989).  To produce good quality paper, bagasse should be depithed before 

pulping (Ashok et al., 1986; Granick, 1979).  Bleaching with chlorine or sodium 

hypochlorite follows in the process after pulping  (Valdes Delgado and de Armas 

Casanova, 2001). 

Cooking bagasse with lime for paper manufacturing is not very common, 

although as early as 1912, lime in combination with sodium hydroxide was used in this 

task (Cross, 1912).  On the other hand, for manufacturing strawboard or paperboard, 

pulping is actually very commonly done by cooking the bagasse with lime (Madan, 

1981).  In this case, bagasse is cooked with 5 to 15 g CaO/100 g dry bagasse at 

temperatures between 140 to 160oC for 4 to 6 hours (Singh, 1959; Madan, 1981).  To 

manufacture corrugating medium and cardboard, bagasse can be pulped as a whole 

without the extra depithing step (Ashok et al., 1986, Madan, 1981). 

All the methods mentioned above pulp the bagasse using high temperatures and 

short time.  On the other hand, Vázquez (1947) performed bagasse pulping by placing a 
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mixture of bagasse, lime (~10% dry basis) and water in appropriate containers and 

covering them to exclude air because lime consumption by carbon dioxide was a 

concern.  The bagasse was kept under these conditions for 2 months at ambient 

temperature; then, the contents underwent physical analysis.  The material presented 

excellent conditions to be reduced to paperboard pulp.  Sheets of paper (0.009 inches in 

thickness) were made and corrugated.  It was observed that in regards to the rigidity, 

elasticity, and the ease of binding with sodium silicate, the characteristics were similar to 

that of strawboards obtained by conventional methods. 

Interestingly enough, long-term treatment of plant tissue with lime at ambient 

conditions to obtain paper pulp is said to have been used for the first time in China by 

T’sai Lun in the year 105 A.D.  This was the original recipe for making paper (Vázquez, 

1947). 

 

IV.2.3 Long-Term Lime Treatment of Bagasse under Oxidative Conditions 

 

Oxygen/alkali pulping is known to produce the desired pulp yield and quality for 

paper manufacturing, but also it brings advantages to the process, such as lower 

chemical requirements in the subsequent bleaching process, higher brightness with 

equivalent amount of chemicals, lower amounts of rejects and, less pollution because it 

avoids the use of sulfur chemicals (Nagieb and El-Sayed, 2000; Asgari and 

Argyropoulos, 1997).  However, the drawback of oxygen delignification is its poor 

selectivity and enhanced carbohydrate degradation (Ljunggren and Johansson, 1990), 

which reduces the strength properties of pulps (Trivedi and Murthy, 1982).  At the end 

of the bleaching process, such as in conventional oxygen bleaching, only 40 to 50% 

delignification can be achieved without deteriorating pulp quality (Ljunggren, 1990).  

Nonetheless, in sodium hydroxide/oxygen pulping of bagasse, it has been noticed 

that good pulp quality and yields can be attained by using small amounts of alkali earth 

carbonates, phosphates, silicates and oxides, which protect cellulose thus diminishing its 

degradation during pulping (Trivedi and Murthy, 1982; Nagieb and El-Sayed, 2000).  

 



 136

Magnesium carbonate is preferably used, but good results can also be obtained with 

other inorganic compounds, all having a water solubility of less than 0.1 g/100 g total 

solution at 25oC, such as calcium carbonate (Robert et al., 1968).  Even more convenient 

is the fact that better cellulose protection has been achieved by treating the 

lignocellulosic material with an aqueous solution of soluble salts of alkali earth, 

particularly magnesium chloride, before undergoing sodium hydroxide/oxygen pulping 

(Aung and Boyle, 1973). 

López et al. (2000) evaluated surface alterations of sugarcane bagasse by 

treatments with both calcium hydroxide and sodium hydroxide.  The evaluation was 

done with scanning electron microscopy, X-ray microanalysis, Fourier transform 

infrared spectroscopy, and thermogravimetric analysis.  Their results show that calcium 

hydroxide treatment modifies the surface of bagasse by forming calcium carbonate 

deposits, whereas sodium hydroxide does not form such deposits and therefore does not 

modify the surface (Figure 4.2).  Thermal stability of bagasse is thus increased when 

compared with untreated and sodium-hydroxide-treated bagasse, providing further 

evidence of surface modification.  Lignin and carbohydrate degradation products from 

alkaline treatment tend to degrade all the way to carbon dioxide (Klinke et al., 2002) 

forming carbonates in the alkaline medium.  This reaction is more likely to occur under 

oxidative conditions.  When sodium hydroxide alone is used, no deposits are formed 

because sodium carbonate is soluble, but when calcium or magnesium ions are found in 

the solution, the carbonates of these alkali earths form insoluble deposits on the surface 

of the biomass.  From this observation, it may be hypothesized that magnesium chloride 

used by Aung and Boyle (1973) or carbonate salts (Robert et al., 1968) protect cellulose 

by forming insoluble carbonate deposits in the places where there has already been 

degradation, thus forming a protective layer which prevents further attack of 

carbohydrates.  Although for short treatment times, sodium hydroxide might do a better 

job delignifying biomass, these promising results with the alkali earths salts mentioned 

above are important because they show the advantage of calcium hydroxide over sodium 
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hydroxide for long-term delignification with oxygen.  Further, lime is much cheaper and 

safer, making it the preferred source of alkali for the pretreatment. 

 

Untreated Bagasse Sodium Hydroxide-treated Bagasse 

 
Lime-treated Bagasse

Figure 4.2  Scanning electron microscope images of bagasse (López et al., 2000). 

Printed with permission of VSP International Science Publishers. 

 

Another drawback of the alkali/oxygen treatment is the difficulty of oxygen 

penetrating into wood chips, but in the case of bagasse, its loose and open structure 

makes it more suitable (Nagieb and El-Sayed, 2000; Trivedi and Murthy, 1982).  
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IV.2.4 Delignification Model 

 

Alkaline delignification is known to occur in three separate simultaneous phases: 

initial (rapid) phase, bulk (dominant) phase, and the final residual (slow) phase (Dolk et 

al., 1989; Chiang and Yu, 1990; Lindgren and Lindström, 1996); thus, from the kinetic 

viewpoint, lignin can be classified into these three different classes according to the 

phase where it degrades.  

Gierer (1980) ascribes the breakage of phenolic α and β-aryl ether bonds in 

lignin to the initial phase; non-phenolic β-aryl ether bonds cleavage governs the bulk 

phase, which is the dominant phase; and cleavage of carbon-carbon linkages are thought 

to cause lignin degradation in the residual phase.  Dolk et al. (1989) considered the 

possibility that the initial phase, because of its speed, might sometimes not be controlled 

by chemical reaction, but by diffusion.  Li and Mui (1999) confirmed these findings and 

suggested a decrease in particle size and temperature to measure the chemical kinetics of 

this phase.  In wood, the initial delignification stage involves a considerable amount of 

hemicellulose degradation with little lignin removal, the bulk stage removes most of the 

lignin polymers and remaining hemicelluloses and, finally, in the residual stage, 

cellulose and remaining hemicelluloses are decomposed further while lignin removal 

proceeds very slowly (de Groot et al., 1995). 

In alkaline pulping (soda or Kraft), when the hydroxide and hydrosulfide ion 

concentrations are kept constant, the delignification of each phase is described by first-

order kinetics with respect to the lignin content (Chiang and Yu, 1990).  Thus, the rate 

equations for each phase are as follows: 

 

tk
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where 

 i = Initial phase 

 b = Bulk phase 

 r = Residual phase 

L = Specified phase lignin content at time t,  

g lignin from specified phase at time t/g total dry solids 

 L0 = Specified phase lignin content at time 0,  

g lignin from specified phase at time 0/g total dry solids 

 k = Specified phase rate constant, 1/unit of time 

 

Because these reactions occur simultaneously, the total lignin, as measured by 

analytical methods, is the sum of all three phases; therefore, the entire delignification 

process is expressed as the sum of Equations 4.1, 4.2 and 4.3. 
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where 

 LT = Total lignin content at time t, g lignin at time t/g total dry solids 

 L0T = Total lignin content at time 0, g lignin at time 0/g total dry solids 

 a = The fraction of L0T that can be removed in the specified phase, 

  g lignin from specified phase at time 0/g lignin at time 0 

 

Equation 4.5 correlates data remarkably well, and the Arrhenius equation may be 

used to correlate the rate constants with respect to temperature (Dolk et al., 1989; Chiang 

and Yu, 1990).  However, this model is only empirical because a theoretical approach to 

this mechanism requires that the lignin content be expressed in moles.  As a polymer, 

lignin has a varying molecular weight during delignification (Yan and Johnson, 1981), 
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so it is not possible to express the lignin content on a molar basis; thus, lignin has to be 

fictitiously considered as being “dissolved” in the cell wall matrix (Gierer, 1980). 

Bagasse lignin is more reactive and accessible than wood lignin (Fernández et 

al., 1985).  In the case of soda pulping of bagasse at high temperatures (100 – 165oC), 

Sabatier et al. (1993) found that bagasse lacks an initial delignification phase and 

considers Equation 4.5 as the sum of only the first-order expressions for the bulk and the 

residual phases.  They support their claim by showing that bagasse alkaline 

delignification proceeds, from the very beginning with a high degree of lignin removal 

compared to carbohydrate removal, which in woods is not characteristic of the initial 

phase, but of the bulk phase (de Groot et al., 1995).   

Another method for modeling is to treat delignification as a degelation process, 

also known as reverse-gelation (Yan and Johnson, 1981; Smith et al., 1988).  This is a 

more theoretical approach, however, Lange et al. (1989) and Smith et al. (1988) suggest 

that the structure and behavior of lignin cannot be described by the available gelation 

theories. 

 

 

IV.3 Experimental Methods 

 

IV.3.1 Objectives 

 

The objectives of this study follow:  

• Assess the effect of temperature, time, and oxygen on delignification and 

biological digestibility in long-term lime pretreatment of bagasse, 

• Develop a delignification model, and  

• Evaluate the potential of this process as a pulping technology for paper or 

paperboard manufacturing  

 

 

 



 141

IV.3.2 Bagasse Pretreatment to Increase Enzymatic Digestibility  

 

IV.3.2.1 Equipment Description and Methodology 

 

Old stored Louisiana sugarcane bagasse (Raceland LA) (Table 4.1) was 

hammermilled (Wiley Mill standard model No. 3, Arthur H. Thomas Co., Philadelphia 

PA) and sieved to 40 mesh with the aid of a sieve shaker (Ro-Tap model B, W. S. Tyler, 

Inc./Combustion Engineering, Inc., Mentor OH).  The bagasse was then washed by 

adding distilled water and mixing for 15 min in several 1-L centrifuge bottles, then 

centrifuging at 4000 rpm for 15 min, and finally dumping the water taking care not to 

lose any solids.  This washing procedure was repeated several times to rid the bagasse of 

water-soluble substances so that the true effect of the pretreatment may be observed, 

because water-soluble substances are not truly part of the biomass.  The bagasse was 

then dried for 2 to 3 days in an oven at 45oC, and then allowed to achieve equilibrium 

ambient moisture for 2 to 3 days.  The resulting 40-mesh washed bagasse was treated 

with calcium hydroxide (99.3% certified, Fisher Scientific Co., Pittsburgh PA) in a 

shaking air bath at different temperatures (i.e., 57, 50, 40, 30, and 23oC).  For this 

purpose, several 125-mL Erlenmeyer bottles were filled with 3 g (dry weight basis) of 

bagasse and calcium hydroxide (0.5 g/g of dry of bagasse).  Distilled water was added to 

the bottles in a proportion of 9 mL/g dry bagasse, which is the water loading suggested 

by Chang (1999).  The number of bottles depended on how long the treatment was 

planned to last so that its effect may be monitored as a function of time.  Bottles were 

taken offline once a week during the first month, and then once a month for the rest of 

the treatment.  For the treatment at 57oC, samples were also taken during the first week 

at 1, 2, 3, 5, and 6 days.  Half the bottles were constantly purged with air and the other 

half were simply capped to exclude oxygen as a control.  The air flow rate through the 

air-purged bottles was regulated by submerging the outlet in a small flask with water to a 

depth of about 2.5 cm, and adjusting the outlet flow to obtain about one bubble per 

second.  This was approximately equivalent to an inlet flow rate, at standard temperature 
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and pressure, somewhere between 3.6 cm3/min, the inlet flow rate obtained if no oxygen 

was consumed, and 4.6 cm3/min, the inlet flow rate obtained if all oxygen was 

consumed.  This flow rate was kept for the treatments at all temperatures, except for the 

treatment at ambient temperature (23oC).  At 23oC, the air flow rate started at the same 

rate as the others, but at some point it was increased to flush condensation from the lines.  

Figure 4.3 shows the details on how the air purging was done and Figure 4.4 shows a 

photograph of the system.  The air, before it was distributed to the bottles, was bubbled 

through a column of water at the appropriate temperature to saturate it so that water loss 

in the bottles could be prevented.  Later, it was discovered that the carbon dioxide 

present in the air was consuming the lime, thus yielding higher values for lime 

consumption.  However, for the sake of consistency, no attempt to scrub the carbon 

dioxide from the air was made at this point. 

 

Table 4.1  Composition of the old stored bagasse used in these studies.  

Component % in a dry-weight basis 

  
Lignin (g/100 g dry bagasse) 21.9 – 23.8 
  
Acid-insoluble ash  
(g/100 g dry bagasse) 12.2 – 20.8 
  
Ash (g/100 g dry bagasse) 15.8 – 22.8 
  
Water-soluble solids  
(g/100 g dry bagasse) 2.36±1.81* 
  
Crude protein (g/100 g dry bagasse) 5.0†

    
* Error = ±1 standard deviation 
†  Protein analysis was done by the Soil Testing Laboratory (College  
   Station TX), using a LECO system (Dumas combustion procedure) 
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Figure 4.3  Schematic of the lime/air pretreatment of bagasse experimental setup. 
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Figure 4.4  Photograph of the lime/air pretreatment of bagasse experimental setup. 

 

Two sets of bottles (i.e., A and B) were assigned to each condition of time and air 

or no-air treatment.  Set A was used to perform a mass balance, which was done by 

extensively washing the biomass with water to report how much material the 

pretreatment had solubilized, and Set B was used to perform hydrochloric acid titrations 

to a pH of 7.0±0.2 to assess the amount of lime consumed by the pretreatment.  After 

titration, the bagasse from Set B was also extensively washed and then combined with 

the bagasse left from Set A.  This biomass was then used to determine Klason lignin 

content and 3-day digestibility with cellulase enzyme.  The product from the digestibility 

was analyzed for glucose and xylose yields using an HPLC system equipped with an 

ion-exchange lead-based resin column (HPX-87P, Bio-Rad Laboratories, Hercules CA) 

and a refractive index detector (Series 200, Perkin Elmer, Perkin Elmer Life and 
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Analytical Sciencies, Boston MA).  From the same Klason lignin content analysis, 

determined by the NREL methods No. 003 and 004 (NREL, 1992), the sulfuric-acid 

insoluble ash content (not the same as the true ash content), and an approximation of the 

holocellulose content (cellulose + hemicellulose) in the sample, may be obtained 

(holocellulose = original sample analyzed – Klason lignin – acid-insoluble ash; thus, it 

slightly overestimates the holocellulose content because it assumes that the biomass is 

formed only by holocellulose, lignin, and ash.  Although close, it is not necessarily true).  

A detailed procedure of the methods used can be found in Appendix I. 

From these studies, the yield of the treatment (g treated bagasse/g untreated 

bagasse), the degree of delignification, the approximate degree of carbohydrate loss, the 

amount of lime consumed, and the digestibility of the biomass were reported. 

Because lime dissolves as the reaction occurs and because constant air purging 

was implemented, the hydroxide ion concentration and the oxygen levels were kept 

constant.  This condition allowed the application of the delignification model (Equation 

4.5) to our treatment. 

 

IV.3.2.2 Preliminary Studies 

 

Oxidative pretreatment is more effective at high oxygen pressures (Chang, 1999); 

however, because of the long-term conditions, it was expected that the concentration of 

oxygen required would be less.  For the economics of the process, the use of air would 

be preferred over pure oxygen.  To assess if there is a significant advantage that would 

justify the use of pure oxygen over air, a preliminary study was performed to establish a 

comparison.  

Bottles were set up as described in Section IV.3.2.1 and kept under pure oxygen 

obtained from an oxygen tank (Praxair Inc., Bryan TX) and air from the building 

compressor.  Lime was added as necessary when pH decreased; first 10 g /100 g dry 

untreated bagasse was added at time 0, 15 g/100 g dry untreated bagasse after 33 days, 

and finally 15 g/100 g dry untreated bagasse after 67 days. 
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Figure 4.5  Comparison of the delignification process for air and pure oxygen (57oC). 

 

Figure 4.5 compares the delignification process at 57oC.  At the beginning of the 

process, there is virtually no difference between the use of oxygen and air.  As 

delignification progressed, the process was enhanced by pure oxygen only by an average 

difference of 0.61±0.47% (g lignin/100 g dry bagasse) (± 1 standard deviation).  In 

comparison, lignin content decreased from 23.9 g lignin/100 g dry bagasse to an average 

of 9.6 g lignin/100 dry bagasse, which is equivalent to a total decrease of 14.3 g lignin 

removed/100 g dry bagasse in only about 2 months.  These results indicate that oxygen 

is an average of 4.3% (4.3 g lignin/100 g lignin removed) more effective than oxygen 

after 2 months.  This value decreases as the reaction continues further. 

This result, shows that there is no significant advantage that would justify the use 

of pure oxygen instead of simply using air, at least at temperatures lower than 57oC, 

where the oxygen partial pressure is adequately high due to the low water vapor 

pressure; therefore, the following experiments were performed using air only.  As a 

control, samples were also run excluding air. 
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IV.3.2.3 Results and Discussions 

 

All the procedures for the analysis of the treated bagasse described in Appendix I 

were also performed on untreated bagasse, and this value was then taken as time 0.  All 

the results presented in this report are on a dry weight basis. 

 

IV.3.2.3.1 Loss of Total Mass, Holocellulose, Lignin and Ash in Sample 

 

Figures 4.6 through 4.15 depict holocellulose, lignin, and ash as function of time, and 

total yield (g total treated material/g of untreated material) as the sum of all three 

components.  For all cases, there is a rapid decrease of holocellulose and lignin, and thus 

of total mass in the first 7 days.  After the first 7 days, for the material treated without air 

at all temperatures (Figures 4.6 through 4.10), holocellulose removal levels off, and 

lignin elimination is very minor. 
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Figure 4.6  Total mass, holocellulose, lignin and ash for treatment 
without air purging at 23oC. 
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Figure 4.7  Total mass, holocellulose, lignin and ash for treatment  

without air purging at 30oC. 
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Figure 4.8  Total mass, holocellulose, lignin and ash for treatment 

without air purging at 40oC. 
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Figure 4.9  Total mass, holocellulose, lignin and ash for treatment 

without air purging at 50oC. 
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Figure 4.10  Total mass, holocellulose, lignin and ash for treatment 

without air purging at 57oC. 
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Figure 4.11  Total mass, holocellulose, lignin and ash for treatment 

with air purging at 23oC. 
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Figure 4.12  Total mass, holocellulose, lignin and ash for treatment 

with air purging at 30oC. 
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Figure 4.13  Total mass, holocellulose, lignin and ash for treatment 

with air purging at 40oC. 
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Figure 4.14  Total mass, holocellulose, lignin and ash for treatment 
with air purging at 50oC. 
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Figure 4.15  Total mass, holocellulose, lignin and ash for treatment 

with air purging at 57oC. 

 

In the case of the treatment with air purging (Figures 4.11 through 4.15), 

holocellulose loss and lignin removal, and thus total mass loss, continues faster than in 

the treatments without air, although the rate of degradation is lower than during the first 

week.  Also, a more rapid removal of lignin is observed at higher temperatures. 

 

IV.3.2.3.2 Treatment Selectivity towards Holocellulose and Lignin 

 

The holocellulose-to-lignin selectivity (g of holocellulose lost/g lignin removed) 

is a parameter of vital importance because it describes the effectiveness of our process.  

Ideally, a good delignification process should remove lignin without a significant loss of 

holocellulose; therefore, small values are desired for this parameter. 
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Figures 4.16 through 4.25 show the holocellulose loss as a function of lignin 

removed in terms of the original untreated bagasse for the final delignification stage of 

the treatments in the presence and absence of oxygen (i.e., air) at the different 

temperatures.  

Linear regression was employed to obtain the slope of the curve, which is the 

selectivity.  The statistical analysis applied to the correlations for both treatments at all 

the temperatures, including the criteria used to detect outliers, is discussed in Appendix 

J. 

The values for lignin removed and holocellulose loss – in terms of the original 

untreated bagasse – were calculated from the lignin and holocellulose contents as 

ascertained by Klason lignin determination (procedures No. 003 and 004, NREL, 1992) 

and the total yield as found from the mass balance studies described in Appendix I.  The 

calculation is as follows: 

 

t
Klason
t

Klason YxYxX −= 00     (4.6) 

 

where 

 X = Holocellulose loss or lignin removal in terms of the original  

untreated bagasse, g /g untreated bagasse 
Klasonx0  = Holocellulose or lignin content in sample at time 0, g/g 

untreated bagasse 
Klason
tx  = Holocellulose or lignin content in sample at any given time t,  

  g/g untreated bagasse 

Y0 = Yield at time 0, g untreated bagasse/g original untreated bagasse. 

Yt = Yield at time t, g treated bagasse/g original untreated bagasse. 
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Figure 4.16  Holocellulose loss as a function of lignin removal for the final stage of lime 
pretreatment of bagasse without air purging at 23oC. 
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Figure 4.17  Holocellulose loss as a function of lignin removal for the final stage of lime 
pretreatment of bagasse without air purging at 30oC (error bars = ± 1 standard deviation). 
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Figure 4.18  Holocellulose loss as a function of lignin removal for the final stage of lime 

pretreatment of bagasse without air purging at 40oC. 
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Figure 4.19  Holocellulose loss as a function of lignin removal for the final stage of lime 

pretreatment of bagasse without air purging at 50oC. 
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Figure 4.20  Holocellulose loss as a function of lignin removal for the final stage of lime 
pretreatment of bagasse without air purging at 57oC. 
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Figure 4.21  Holocellulose loss as a function of lignin removal for the final stage of lime 
pretreatment of bagasse with air purging at 23oC. 
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Figure 4.22  Holocellulose loss as a function of lignin removal for the final stage of lime 
pretreatment of bagasse with air purging at 30oC (error bars = ± 1 standard deviation). 
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Figure 4.23  Holocellulose loss as a function of lignin removal for the final stage of lime 

pretreatment of bagasse with air purging at 40oC. 
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Figure 4.24  Holocellulose loss as a function of lignin removal for the final stage of lime 

pretreatment of bagasse with air purging at 50oC. 
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Figure 4.25  Holocellulose loss as a function of lignin removal for the final stage of lime 
pretreatment of bagasse with air purging at 57oC. 
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The overall yield at time 0 should ideally be equal to 1 g untreated bagasse/g 

original untreated bagasse; however, when the material balance procedure (Appendix I) 

was performed on the original untreated bagasse, this value was actually on the order of 

0.94–0.98. 

The correlations in Figures 4.16 through 4.25 do not include the initial point for 

the holocellulose loss and lignin removal at time 0 (i.e., 0 g of holocellulose lost or 

lignin removed/g of original untreated bagasse).  This point, which belongs to the first 

delignification stage, shows a different response.  Such condition was realized because, 

when the observation at time 0 is included in the regressions, this point is detected as an 

extreme outlier by the statistical influence diagnostics described in Appendix J, which 

was performed with SAS®.   

Although more data are necessary near the beginning to obtain the selectivity for 

the first delignification stage, the treatment seems more selective towards lignin in the 

first hours or days of the pretreatment yielding a lower holocellulose-to-lignin 

selectivity.  This would agree with the literature, which suggests that bagasse 

delignification occurs at the beginning with a high lignin removal rate compared to 

holocellulose or carbohydrate loss, and this rate changes as the treatment continues 

(Sabatier et al., 1993). 

Figure 4.26 shows the selectivity parameters (i.e., slopes of the correlations in 

Figures 4.16 through 4.25) as a function of temperature.  It is observed that the 

selectivies for the final delignification stage are virtually the same for all the 

temperatures for the treatment without air (i.e., non-oxidative conditions).  On the other 

hand, there is some variability for the treatment in the presence of air.  Comparing the 

two treatments, it is seen that the treatment with air is consistently more selective 

towards lignin than the treatment without air. 
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Figure 4.26  Holocellulose-to-lignin selectivities as a function of temperature for the 

treatments with and without air purging (error bars = ±1 standard error). 

 

IV.3.2.3.3 Effect of Temperature and Oxygen Presence on Delignification  

 

Figures 4.27 through 4.33 present lignin content (expressed in g remaining 

lignin/100 g treated bagasse on a dry weight basis) as a function of time for all the 

treatments at the different temperatures tested and in the presence and absence of air 

(i.e., oxygen). 

The last observation and the original untreated bagasse for the 30oC treatment 

were run in triplicate; therefore standard deviations for these points could be reported.  

Figures 4.27 through 4.33 suggest that delignification is directly related to temperature.  

The delignification was more pronounced when oxygen was present.  Figure 4.32 shows 

that when oxygen is not present, temperature does not have a significant effect on 

delignification.  On the other hand, Figure 4.33 shows that when oxygen was present, 

delignification increased with temperature. 
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Figure 4.27  Lignin content as a function of time in lime-treated bagasse (23oC). 
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Figure 4.28  Lignin content as a function of time in lime-treated bagasse (30oC) 

(error bars = ±1 standard deviation). 
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Figure 4.29  Lignin content as a function of time in lime-treated bagasse (40oC). 
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Figure 4.30  Lignin content as a function of time in lime-treated bagasse (50oC). 
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Figure 4.31  Lignin content as a function of time in lime-treated bagasse (57oC). 
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Figure 4.32  Lignin content as a function of time in bagasse lime-treated 

without air purging. 
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Figure 4.33  Lignin content as a function of time in bagasse lime-treated 

with air purging. 

 

Even when there is no oxygen present (Figures 4.27 through 4.32), 

delignification occurs very rapidly during the first week and continues to level off after 

about a month.  Because the samples that were run without air were in capped bottles, 

these bottles contained a head of air, which could provide some oxygen and give a high 

delignification rate during the first week.  To test this hypothesis, a sample was first 

purged with nitrogen for 10 minutes and then capped.  The result, shown in Figure 4.31, 

indicated the delignification rate was similar to the capped bottles, so the small amount 

of oxygen in the head space was insignificant; this first delignification stage is, indeed, 

independent from oxygen presence. 

Controls were established to determine the following: 1) Is the first 

delignification stage, which is independent from oxygen presence, due to alkaline 

conditions? 2) Is air alone, under neutral-pH conditions, able to delignify bagasse?  In 

the controls, no lime was added to two bottles.  One bottle was capped to exclude 

oxygen and the other was kept under air purge.  To inhibit microbial growth in these 
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neutral-pH bottles, 0.01-g/mL sodium azide solution was added.  The results are shown 

in Figure 4.29.  After 3 months of treatment, there was no evident lignin-content 

decrease in either control.  It was concluded that, under these conditions, some of the 

lignin in the bagasse is labile to lime alone and does not require oxygen, and that in 

either the presence or absence of oxygen, delignification does not significantly occur 

unless lime (or some other alkali) is also present. 

Another way of expressing delignification data is the fraction of lignin removed 

or lignin conversion as a function of time, which is calculated as follows: 

 

T

TT
C L

LL
L

0

0 −
=     (4.7) 

 

where 

 LC = Lignin conversion, g lignin removed/g lignin in untreated bagasse 

LT = Total lignin content at time t, g lignin at time t/g treated bagasse 

 L0T = Total lignin content at time 0, g lignin/g untreated bagasse 

 

Figure 4.34 through Figure 4.38 show that without air, lignin conversion is only 

20 to 30% (i.e., g lignin removed/100 g lignin in untreated bagasse), whereas with air 

purging, lignin conversion increases significantly at higher temperatures to over 70% at 

57oC after 150 days. 

 

IV.3.2.3.4  Lime Consumption in the Delignification process. 

 

Figures 4.39 through 4.43 show the estimated lime consumption as a function of 

time.  Because carbon dioxide was not scrubbed from the air, the lime consumption was 

overestimated.  The flow of air was kept constant for all experiments; therefore, the 

consumption due to carbon dioxide can be considered to be constant.  This fact allows 

comparison of lime consumption among the different treatments.   
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Figure 4.34  Lignin conversion of lime-treated bagasse as a function of time at 23oC. 
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Figure 4.35  Lignin conversion of lime-treated bagasse as a function of time at 30oC 

(error bars = ±1 standard deviation). 

 

 



 167

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250
Time (days)

Li
gn

in
 C

on
ve

rs
io

n
(g

 li
gn

in
 re

m
ov

ed
/g

 li
gn

in
 in

 
un

tr
ea

te
d 

ba
ga

ss
e)

Air

No Air
(Capped)

 
Figure 4.36  Lignin conversion of lime-treated bagasse as a function of time at 40oC. 
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Figure 4.37  Lignin conversion of lime-treated bagasse as a function of time at 50oC. 
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Figure 4.38  Lignin conversion of lime-treated bagasse as a function of time at 57oC. 
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Figure 4.39  Lime consumed  as a function of time in bagasse treatment at 30oC. 

 

 



 169

y = 1.093E-03x + 2.581E-02
R2 = 0.953

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250
Time (days)

Li
m

e 
C

on
su

m
pt

io
n

(g
 C

a(
O

H
) 2 

co
ns

um
ed

/g
 u

nt
re

at
ed

 
ba

ga
ss

e)
Air

No Air
(Capped)

 

Figure 4.40  Lime consumed as a function of time in bagasse treatment at 40oC. 
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Figure 4.41  Lime consumed as a function of time in bagasse treatment at 50oC. 

 



 170

y = 1.839E-03x + 6.550E-02
R2 = 0.995

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20 40 60 80 100 120 140 160 180
Time (days)

Li
m

e 
C

on
su

m
pt

io
n 

(g
 C

a(
O

H
) 2 

co
ns

um
ed

/g
 u

nt
re

at
ed

 
ba

ga
ss

e)
Air

No Air
(Capped)

 

Figure 4.42  Lime consumed as a function of time in bagasse treatment at 57oC. 
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Figure 4.43  Lime consumed as a function of time in bagasse treatment at 23oC. 
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Lime consumption was determined by titration as described in Appendix I.  The 

last observation and the original untreated bagasse for the treatment at 30oC were run in 

triplicate; thus, standard deviations could be reported for these points. 

Figures 4.39 through 4.42 show that the estimated lime consumption with air is 

linear with respect to time after an initial 1-week phase where the lime consumption is 

faster.  The slopes of the regressions for lime consumption as a function of time for the 

second phase are the lime consumption rates.  Figure 4.44 shows that the relation 

between lime consumption rate and temperature for this second phase is not linear, but 

rather seems to approach an asymptote as temperature increases.  This is confirmed by 

the fact that the data show that if lime consumption is held constant, lignin conversion is 

higher as temperature increases. 
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Figure 4.44  Second-phase lime consumption rate as a function of temperature 

for the treatment with air (error bars = ±1 standard error). 

 

In Figure 4.43, it can be observed that the lime consumption climbed 

significantly after the air flow was increased for air treatment at 23oC.  This situation 
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was attributed to carbon dioxide in the air, which consumed the lime.  Those samples 

that were run with air purging were exposed to carbon dioxide in the air.  Because the 

pretreatment takes several months to complete, the amount of carbon dioxide that reacts 

with the lime was significant; thus, the lime consumption obtained in this experiment is 

an overestimate. To obtain the lime consumption in the pretreatment itself, the air must 

be pre-scrubbed to remove carbon dioxide.  

Although the values for lime consumption for the treatment with air might be 

overestimated, the other measurements (i.e., mass balance, lignin content and 3-day 

digestibility) were not affected because lime was present in excess. 

Figures 4.39 through 4.43 show that the experiments without air did not display 

any significant lime consumption after about the first week, where it virtually settled at a 

lime loading of about 0.05 g Ca(OH)2/g untreated bagasse.  It is interesting that during 

the first week, the lime consumptions for both the treatment with and without air were 

similar.  Compared to the rest of the profile for the subsequent weeks, during the first 

week there was a sharper lime consumption even, as mentioned, for the samples with air, 

which show a linear increase after the first week.  Thus, it can be concluded that in lime 

consumption, the two-phase postulate by Sabatier et al. (1993) can also be observed.  

 

IV.3.2.3.5 Delignification model 

 

The delignification data were fitted to Equation 4.5 with the aid of SAS® 

statistical software.  First, it was necessary to confirm the postulate set forth by Sabatier 

et al. (1993) that suggests that bagasse displays only two delignification phases instead 

of the common three phases observed in woody biomass to which the complete form of 

Equation 4.5 applies.  In the selectivity studies (Section IV.3.2.3.2) it was suspected, and 

in the lime consumption studies (Section IV.3.2.3.4) it was clearly observed that bagasse 

delignification only presented two phases.  Nonetheless, because the postulate says that 

bagasse lacks the initial phase, it was possible that this phase was so small that it would 

not be detected by simple visual inspection.   
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Although the model is semi-empirical, one of its important characteristics is that 

the resulting rate constants for each phase can be fitted to the well-known Arrhenius 

equation (Dolk et al., 1989; Chiang and Yu, 1990): 

 

RT
Ea

Aek
−

=      (4.8) 

 

where 

 k = The rate constant, 1/day 

 A = The Arrhenius constant or frequency factor, 1/day 

 Ea = Activation energy, joules/mole 

 R = Universal gas constant, 8.314 joules/(mole · K)  

 T = Temperature, K 

  

Using the three-phase model (i.e., ki, kb and kr), when the rate constants obtained 

from the data regression were fitted to the Arrhenius equation (Equation 4.8), the fit was 

poor.  Also, negative values for the activation energy were obtained, which is not 

physically possible.  Therefore, it was concluded, that indeed delignification of bagasse 

only shows two phases, as asserted by Sabatier et al. (1993). 

As suggested by Sabatier et al. (1993), the two phases in bagasse are the bulk and 

the residual, because the initial phase does not occur.  The bulk phase is short and it 

controls the delignification mainly during the first week, after which the residual phase 

takes over.  Equation 4.5 is, therefore, modified by eliminating the exponential term that 

belongs to the initial phase as follows: 
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b

T
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L
L ⋅−⋅− ⋅+⋅=
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    (4.9) 
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Figures 4.45 through 4.49 show the regressions of the data to the two-phase 

delignification model (Equation 4.9).  The data fits the model remarkably well with R2 

values > 0.87.  Statistical analysis for the regressions can be found in Appendix L. 

The parameters ab and ar, as mentioned, are the fractions of lignin that are 

degraded in the bulk phase and the residual phase, respectively; thus, because those are 

the only two phases observed in bagasse, ideally, ab + ar = 1.  The model regression 

shows, as expected, that the fraction of lignin that degrades in the residual phase is larger 

than the fraction that degrades in the bulk phase.  Nonetheless, Figures 4.50 and 4.51 

show that, as temperature increases, ab has the tendency to slightly increase, and, 

consequently, ar slightly decreases.  This relation is significant, as the ANOVAS for the 

regressions of the curves in Figures 4.50 and 4.51 demonstrate; the P-values ranged 

between 0.06 and 0.13; therefore, the regressions are significant.  This same response of 

ab and ar to temperature was observed by Sabatier et al. (1993) on the soda pulping of 

bagasse.  Figures 4.50 and 4.51 also suggest that ab is larger for the treatment with air 

than without air, and this difference is more pronounced as temperature increases. 
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Figure 4.45  Delignification model for the treatments at 23oC. 
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Figure 4.46  Delignification model for the treatments at 30oC 

(error bars = ± 1 standard deviation). 
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Figure 4.47  Delignification model for the treatments at 40oC. 
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Figure 4.48  Delignification model for the treatments at 50oC. 
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Figure 4.49  Delignification model for the treatments at 57oC. 
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Figure 4.50  Lignin fraction that degrades in the bulk phase (ab) as 

a function of temperature (error bars = ± 1 standard error). 

 

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 10 20 30 40 50 60
Temperature (oC)

a
r 

(g
 li

gn
in

 d
eg

ra
di

ng
 in

 re
si

du
al

 
ph

as
e/

g 
lig

ni
n 

in
 u

nt
re

at
ed

 b
ag

as
se

)

Air
No Air

No Air
(Capped)

Air

 
Figure 4.51  Lignin fraction that degrades in the residual phase (ar) as 

function of temperature (error bars = ± 1 standard error). 

 



 178

This information with respect to ab is important because, as mentioned, in the 

bulk phase there is high lignin removal compared to carbohydrate loss; thus, a decrease 

in the value of ab also means that, overall, the process will be less selective toward lignin 

and therefore less efficient and vice versa.  This situation suggests that, in this sense, it is 

advantageous to operate at higher temperatures with air.  In general, any attempt to 

improve the delignification process should aim to increase the value of ab. 

Figures 4.52 and 4.53 show the Arrhenius plots for both phases in the presence 

and absence of oxygen (i.e., air).  As expected, in general the values for the bulk phase 

rate constants (kb) are considerably higher than for the residual phase rate constants (kr) 

(by a factor of about 50 in the case of treatment with air and by a factor of about 400 in 

the case of treatment without air).  The values for kb for the treatments with and without 

air are not considerably different, but the kr values for treatment with air are significantly 

higher than the kr values for the treatment without air (by an average factor of about 6). 
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Figure 4.52  Arrhenius plot of the rate constants for the bulk (kb) and residual (kr) phases 

of the delignification for the treatment without air. 
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Figure 4.53  Arrhenius plot of the rate constants for the bulk (kb) and residual (kr) phases 

of the delignification for the treatment with air. 
 

Table 4.2 shows the activation energies (Ea) and the natural log of the Arrhenius 

constants (ln (A)) obtained from the regressions of the Arrhenius plots.  Two of the plots 

yielded a non-significant regression (i.e., P values > 0.1), namely the bulk phase rate 

constants (kb) for the treatment with air and the residual phase rate constants (kr) without 

air; thus, no conclusive values were obtained from those treatments.  In the case of the 

activation energy for kb, it is suggested that more data points must be taken at the 

beginning of the delignification process to obtain better results in the regression of the 

bulk phase values.  In the case of the activation energy for kr for the treatment with no 

air, its determination is hard under these conditions, because the values of kr are 

extremely small (in the order of 0.0006 day-1); thus, their measurement is overwhelmed 

by experimental error.  The determination of the activation energy for kr under non-

oxidative conditions must be done at higher temperatures where larger values for kr can 

be obtained. 
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Table 4.2  Activation energy (Ea) and Arrhenius constant (A) values for the 
specified delignification model rate constants.* 

 Air  No Air (Capped) 

    

Ea for kb (kJ/mole) 14.0±12.1†  33.0±10.4 

ln(A) for kb (ln (1/day)) 3.48±4.64†  11.0±4.02 

    

Ea for kr (kJ/mole) 28.5±6.9  4.27±14.10†

ln (A) for kr (ln(1/day)) 5.09±2.67  -5.86±5.43†

    

* Error = ± 1 standard error 
† For these values the regression was not significant (see Appendix L) 

 

Compared to the delignification of woody biomass, such as western hemlock 

wood with sodium hydroxide under non-oxidative conditions (Dolk et al., 1989), the 

activation energies and the natural logs of the Arrhenius constants were lower by a factor 

of about 4 and 3, respectively. 

 

IV.3.2.3.6 Enzyme Digestibility 

 

Iogen cellulase enzyme (Iogen Corp., Ottawa ON Canada), with an average 

activity of 67.9 FPU/mL, was used to run 3-day enzyme digestibility at a loading of 5 

FPU/g treated bagasse as described in Appendix I.  The results are shown in Figures 4.54 

through 4.60. 
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Figure 4.54  3-day enzyme digestibility of bagasse lime-treated at 23oC. 
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Figure 4.55  3-day enzyme digestibility of bagasse lime-treated at 30oC. 
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Figure 4.56  3-day enzyme digestibility of bagasse lime-treated at 40oC. 
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Figure 4.57  3-day enzyme digestibility of bagasse lime-treated at 50oC. 
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Figure 4.58  3-day enzyme digestibility of bagasse lime-treated at 57oC. 
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Figure 4.59  3-day enzyme digestibility of bagasse lime-treated without air. 
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Figure 4.60  3-day enzyme digestibility of bagasse lime-treated with air. 

 

Figures 4.54 through 4.56 show that to enhance digestibility at the lower 

temperatures (i.e., 23oC, 30oC and 40oC), pretreatment longer than 120 days is 

unnecessary.  In fact, longer pretreatment times are detrimental because of carbohydrate 

loss; thus, a decrease in the sugar yield, based on the original untreated bagasse, is 

observed.  In the case of the higher temperatures (i.e., 57oC and 50oC), Figures 4.57 and 

4.58 show that there is no advantage in pretreatment times longer than 14 to 60 days, but 

rather there is a decrease in digestibility due to carbohydrate loss during pretreatment.   

Figures 4.59 and 4.60 show that higher temperatures achieve higher digestibility 

yields, even for the samples without air (Figure 4.59). 

 

IV.3.2.3.7  Old and Fresh Bagasse Comparison 

 

One of the biggest sources of variation, which introduced error in these studies 

was the raw material (i.e., stored old bagasse).  As a comparison, fresh bagasse from 

W.R. Cowley Sugar House (Santa Rosa TX) was used to assess the pretreatment process 
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at 50oC under oxidative and non-oxidative conditions for 3 months.  The treatment was 

also done in 125-mL Erlenmeyer bottles with 3 g of fresh bagasse (dry weight basis) for 

each bottle.  The same lime loading was used (0.5 g Ca(OH)2/g dry of bagasse), but the 

water loading was a slightly higher (12 mL/g dry bagasse) because the texture of the 

fresh bagasse did not allow uniform wetting at 9 mL/g dry bagasse.  (It has been shown 

that pretreatment, at least in the studied range of 6 – 16 mL/g dry bagasse, is 

independent of water loading (Chang et al., 1998).)  Samples were also removed once a 

week during the first month and then once a month during the remaining pretreatment 

time.  For the air-purged samples, the air was scrubbed with lime prior to delivering it to 

the bottles to remove carbon dioxide.  The parameters measured were also the same as 

those measured for the old bagasse described in Appendix I (i.e., mass balance by 

washing, lime consumption by titration, Klason lignin and 3-day enzyme digestibility 

analysis).  The fresh bagasse was collected within hours of having been produced from 

the mills.  It was formed into a thin mat and dried at 45oC for 2 days.  This procedure 

was followed by grinding in a hammer mill (Wiley Mill standard model No. 3, Arthur H. 

Thomas Co., Philadelphia PA) and sieving to a 40-mesh particle size.  The fine bagasse 

was then thoroughly washed several times, as described in Appendix I, to rid it of 

soluble matter. 

Table 4.3 compares the compositions of the old bagasse and the fresh bagasse 

before the washing procedure was performed.  The composition of the old bagasse was 

not typical because it had a high dirt content (mostly sand); therefore, the values for ash 

are excessively high (i.e., ~15 to 22 g/100 g dry bagasse).  Typical bagasse has only 1.5 

to 2% ash content (1.5 to 2 g of ash/100 g total bagasse) (Chen and Chou, 1993), which 

is the ash content of the fresh bagasse as shown in Table 4.3. 
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Table 4.3  Comparison of the compositions of the old bagasse used in 
these studies and fresh bagasse. 

Component Old Stored Bagasse Fresh Bagasse 

   
Lignin (g/100 g dry bagasse) 21.9 – 3.8 21.5±0.5 

   
Acid-insoluble Ash   
(g/100 g dry bagasse) 12.2 – 20.8 2.00±0.40 

   
Ash (g/100 g dry bagasse) 15.8 – 22.8 2.08±0.02 

   
Water-soluble solids   
(g/100 g dry bagasse) 2.36±1.81* 0.53 

   
Crude Protein (g/100 g dry bagasse) 5.0† 1.8†

      
* Error = ± 1 standard deviation 
† Protein analysis was done by the Soil Testing Laboratory (College Station TX), using a 
   LECO system (Dumas combustion procedure) 

 

The difference between the old bagasse and the fresh bagasse was not limited to 

their composition, but also to their appearance.  Fresh bagasse had a white yellowish 

color, whereas the old stored bagasse had a dark brown color (similar to mulch) as seen 

in Figure 4.61. 

Figures 4.62 and 4.63 show the amount of acid-insoluble ash, lignin, 

holocellulose, and, as the sum of the three, the total yield.  As with the old bagasse 

(Figures 4.6 through 4.15), the two phases can be observed.  First, there is a marked 

decrease of lignin content during the first week for both the treatment with and without 

air.  For the treatment without air, there is almost no delignification after the first week, 

but for the treatment with air, delignification continues but at a slower rate than in the 

first week.  Comparing Figures 4.62 and 4.63 to Figures 4.6 through 4.15, it can be 

observed that the noise level for the data has considerably decreased when using fresh 

bagasse.  This demonstrates that the variability seen with the old bagasse is not due to 

procedures or methods, but rather to the material itself. 
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Figure 4.61  Appearance comparison of untreated ground old stored bagasse (left) and 
untreated ground fresh bagasse (right). 
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Figure 4.62  Total mass, holocellulose, lignin and ash for fresh bagasse 

lime-treated without air purging at 50oC. 
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Figure 4.63  Total mass, holocellulose, lignin and ash for fresh bagasse 

lime-treated with air purging at 50oC. 
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Figures 4.64 and 4.65 show the holocellulose-to-lignin selectivities for the 

treatment with and without air for both the old stored bagasse and fresh bagasse.  The 

values reported for the old stored bagasse are the same as those show in Figures 4.19 and 

4.24.  As mentioned, values for the selectivities are for the residual phase.  For the bulk 

phase, more data near the beginning of the delignification process would need to be 

collected to measure the selectivity.   

The value of the selectivity for fresh bagasse for the treatment without air at 50oC 

was 0.79±0.23 g holocellulose lost/g lignin removed (error = ± 1 standard error), 

whereas for the old bagasse under these same conditions the value was 1.28±0.37 g 

holocellulose lost/g lignin removed.  The errors are too large to conclusively compare 

the results. 
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Figure 4.64  Residual phase holocellulose loss as a function of lignin removal for lime 

pretreatment of fresh and old bagasse without air purging at 50oC. 
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Figure 4.65  Residual phase holocellulose loss as a function of lignin removal for lime 

pretreatment of fresh and old bagasse with air purging at 50oC. 

 

In the case of the treatment with air, the selectivity for the fresh bagasse was 

regressed to be 1.23±0.10 g holocellulose lost/g lignin removed (error = ±1 standard 

error) and that of the old bagasse was 0.71±0.01 g holocellulose lost/g lignin removed.  

The results suggest that the treatment with air was more selective towards lignin for the 

old bagasse than for the fresh bagasse for the residual phase of the delignification.   

Figure 4.66 shows the lignin content (g lignin/100 g treated bagasse) as a 

function of time for both fresh bagasse and for the old stored bagasse.  Because the 

initial lignin contents are different, the two types of bagasse cannot be compared.  

However, if the delignification is expressed as lignin conversion (g lignin removed/g 

lignin in untreated bagasse) as shown in Figure 4.67, it can be observed that 

delignification for the two types of bagasse for the treatment with air is only slightly 

higher for fresh bagasse.  However, for the treatment in the absence of air, the difference 

is considerable.  The old stored bagasse settles after the first week at about 30% 

conversion (0.3 g lignin removed/g lignin in untreated bagasse), whereas fresh bagasse 
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achieves about 40% conversion (0.4 g lignin removed/g lignin in untreated bagasse).   

This result suggests that the portion of lignin that is labile to lime alone, and that is 

removed mostly during the first week, is higher in the fresh bagasse than in the old 

stored bagasse.  This labile lignin corresponds to the lignin that degrades in the bulk 

phase.  The values for the old stored bagasse reported in Figure 4.66 and 4.67 are the 

same as those reported in Figure 4.30 and 4.37, respectively. 
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Figure 4.66  Comparison of lignin content as a function of time in lime-treated 

fresh and old bagasse (50oC). 
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Figure 4.67  Comparison of lignin conversion of lime-treated fresh and old 

bagasse as a function of time at 50oC. 

 

Figure 4.68 shows the fitting of the delignification model to the data for the 

treatment of fresh bagasse at 50oC.  Table 4.4 compares the different model parameters 

between the fresh and old bagasse for the treatments with and without air.  The values 

for ab (fraction of lignin that degrades in the bulk phase) for the treatments with air are 

virtually the same.  On the other hand, as has already been inferred from the lignin 

conversion plot (Figure 4.67), the value for ab for the treatment without air is slightly 

higher for the fresh bagasse. 
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Figure 4.68  Delignification model for fresh bagasse at 50oC. 

 

Table 4.4  Comparison of the delignification model parameters 
for the old and fresh bagasse. 

  Air† No Air (Capped)†

    
 ab 0.329±0.046 0.253±0.029 

Old Bagasse* kb 0.172±0.062 0.290±0.123 

 ar 0.666±0.032 0.748±0.016 

 kr 0.00386±0.00047 0.000367±0.000172 
    
    
    
 ab 0.353+0.028 0.343±0.017 

Fresh Bagasse* kb 0.262+0.066 0.306±0.057 

 ar 0.647+0.022 0.657±0.012 

 kr 0.00513+0.000706 0.00116±0.000346 

    
* Units: a’s (g lignin in specified phase/g lignin in untreated bagasse); k’s (1/day) 
†  Error = ± 1 standard error 
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Figure 4.69 shows that the lime consumptions for the fresh bagasse and old 

bagasse samples treated without air at 50oC are the same.  In the case of the treatment 

with air, the lime consumption rate for the fresh bagasse in the residual phase is 

considerably lower than the lime consumption for the old bagasse (1.00±0.06 mg 

Ca(OH)2/(g untreated bagasse · day) for the fresh bagasse and 1.61± 0.05 mg 

Ca(OH)2/(g untreated bagasse · day) for the old bagasse. Error = ± 1 standard error).  

The reason for this improvement in the lime consumption can be attributed to the fact 

that the carbon dioxide was scrubbed out of the air with lime prior to delivery to the 

system.  It is unlikely that the quality of the bagasse had an effect on the lime 

consumption for the treatment with air.  This can be inferred because the degree of 

delignification was about the same for both types of bagasse in the treatment with air 

(actually slightly higher for the fresh bagasse, Figure 4.67) and the use of the lime 

depends, primarily, upon the degree of delignification achieved when using air (i.e., the 

higher the delignification, the higher the lime consumption). 
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Figure 4.69  Comparison of lime consumption as a function of time in treatment 

of old and fresh bagasse at 50oC. 
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Figure 4.70 shows that the sugar yield for 3-day enzyme digestibility analysis is 

considerably higher for fresh bagasse, to the point that the bagasse treated without air 

attains about the same yield as the old bagasse treated with air during the first 2 to 3 

months.  This correlates well with the delignification data because during this time, fresh 

bagasse treated without air and old bagasse treated with air had about the same lignin 

content (Figure 4.66).  However, it is possible that other factors, such as lower cellulose 

crystallinity, also improved the results for the fresh bagasse. 
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Figure 4.70  Comparison of 3-day enzyme digestibility yield for old and 

 fresh bagasse lime-treated at 50oC (5 FPU/g treated bagasse, Iogen enzyme). 

 

In general, fresh bagasse was different and was of better quality than the old 

stored bagasse because better results – lignin conversion and 3-day enzyme digestibility 

yields – were obtained with the same treatment conditions.  Further, the material itself 

introduced little variability, so its behavior in the process was more predictable.  These 

results agree with the literature (Ashok et al., 1986), which also suggests that old bagasse 

is harder to delignify and is darker in color than fresh bagasse.   
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Figure 4.70 shows that for fresh bagasse, the treatment with air and without air, 

attained the same 3-day digestibility yields after 1 week of treatment.  As the treatment 

continued, there was no digestibility enhancement after 2 months under oxidative 

conditions and after 1 week for non-oxidative conditions. 

 

IV.3.2.3.8  Comparison of Sodium Hydroxide to Lime in Long-Term Pretreatment 

 

Sodium hydroxide (NaOH) is a common chemical used to delignify bagasse, 

especially in paper manufacturing (Granick, 1979; Fernández, 1995), however the 

common conditions are short time (10 to 90 min) and high temperatures (160 to 170oC).  

Ibrahim and Pearce (1983) treated bagasse with NaOH for 24 hours at ambient 

temperature, but periods longer than this have not been reported in the literature up to 

date. 

To compare the effect of NaOH to the effect of lime (Ca(OH)2) on long-term 

delignification of bagasse, a parallel experiment was performed along with the lime 

pretreatment of fresh bagasse (Section IV.3.2.3.8).  Three 250-mL Erlenmeyer bottles 

were loaded with 6 g (dry basis) of fresh bagasse (Table 4.3) and water (12 mL/g dry 

biomass).  Enough NaOH in pellets (Fisher Scientific Co, Pittsburgh PA) was added to 

the bottles slowly and under vigorous mixing to attain a pH of about 11.5, which is the 

pH of a saturated aqueous solution of Ca(OH)2.  This ensured that the same pH could be 

observed both in the bottles with Ca(OH)2 and the bottles with NaOH.  Because NaOH 

is very soluble and it cannot be added in the same way as Ca(OH)2 (i.e., in excess so that 

it dissolves as it is consumed, keeping always a saturated solution with constant pH), the 

pH in the bottles with NaOH had to be checked every one to two days and more sodium 

hydroxide was added, if it had decreased, in an effort to control the pH. 

The pretreatment with NaOH, as with Ca(OH)2 pretreatment of fresh bagasse, 

was performed at 50oC, and only under oxidative conditions because the bottles had to 

be opened on a regular basis for pH control; thus, exclusion of air was not possible. 
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The analyses performed on these samples were the same as those performed on 

the lime-treated samples, except for lime consumption by titration (i.e., mass balance by 

washing, Klason lignin and 3-day enzyme digestibility as described in Appendix I). 

Because only three bottles were tested, they were taken off line after 1 week, 

after 1 month, and after 3 months. 

Figure 4.71 shows the value for holocellulose-to-lignin selectivity for the final 

phase (i.e., residual phase) of the delignification in the Ca(OH)2 treatment and the 

approximate value for the selectivity in the NaOH treatment.  The results suggest that, 

although for this 3-month period the overall holocellulose loss/lignin removed is higher 

for Ca(OH)2, during the residual phase Ca(OH)2 is more selective towards lignin than 

NaOH.  This would confirm the postulate set forth in Section IV.2.3 that for long-term 

(more than 3 months) pretreatment of bagasse, Ca(OH)2 might be preferred because it 

performs better during the residual phase.  It protects the fibers due to the formation of 

calcium carbonate deposits in places where lignin has already degraded.   
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Figure 4.71  Residual phase holocellulose loss as a function of lignin removal for 

Ca(OH)2 and NaOH pretreatment of fresh bagasse with air purging at 50oC. 
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As mentioned, in the residual phase, Ca(OH)2 has advantages over NaOH in the 

delignification of bagasse.  However, in the bulk phase, which occurs during the first 

week of treatment at 50oC, the situation is different as shown in Figure 4.71.  Figure 4.72 

also suggests that with NaOH, bagasse has a larger fraction of lignin that degrades in the 

bulk phase, where degradation of lignin is fast compared to carbohydrate loss; thus, a 

greater degree of delignification is achieved.  In the residual phase, which under these 

conditions occurs after the first week, the rate of delignification is on average the same 

for both treatments (i.e., ~ 0.06 g lignin/(100 g treated bagasse · day)). 
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Figure 4.72  Comparison of lignin content as a function of time for Ca(OH)2 and NaOH 

treatment of fresh bagasse at 50oC. 

 

Figure 4.73 shows that because of the NaOH “headstart” during the first week, 

where the bulk phase dominates, lignin conversion is almost 80% (80 g lignin 

removed/100 g lignin in untreated bagasse) in only 3 months.  This is even higher than 

the conversion attained in old bagasse treated with Ca(OH)2 at 57oC for 5 months (i.e., 

~72 g lignin removed/100 g lignin in untreated bagasse) shown in Figure 4.38. 
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Figure 4.73  Comparison of lignin conversion for Ca(OH)2 and NaOH treatment of fresh 
bagasse at 50oC. 

 

Figure 4.74 shows that the 3-day enzyme digestibility yields are only slightly 

higher for the NaOH treatment in spite of the considerable difference attained in the 

degree of delignification.  This agrees with the literature, which suggests that 

digestibility is not enhanced any further after a certain degree of delignification is 

achieved (Shimizu et al., 1984; Chang, 1999); therefore, because Ca(OH)2 is cheaper, 

safer, and more convenient, it is the preferred source of alkali if the pretreatment is 

performed to enhance enzymatic or microbial digestibility.  However, if high degrees of 

delignification are required (such as in pulping for paper manufacturing), the use of 

NaOH must be considered.  Also, it is important to mention that after 3 months of 

pretreatment the resulting NaOH-treated bagasse looked highly bleached, displaying a 

very bright white color, whereas the Ca(OH)2-treated bagasse had a brownish yellow 

color.  In addition, after drying, the fibers bound together more strongly for the NaOH-

treated than for the Ca(OH)2-treated bagasse.  As with Ca(OH)2, digestibility was not 

enhanced after 2 months of treatment with NaOH under oxidative conditions. 
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Figure 4.74  Comparison of 3-day digestibility for Ca(OH)2 and NaOH pretreatment of 

fresh bagasse with air at 50oC (5 FPU/g treated bagasse, Iogen Enzyme). 

 

 

IV.3.2.3.9 Issues About the Cellulase Enzyme  

 

It was thought that the 3-day digestibility yields from all the treatments in 

previous sections were rather low compared to those obtained by Chang et al. (1998).  

They pretreated sugarcane bagasse with lime for only 24 hours at 50oC and obtained 3-

day digestibility yields at 5 FPU/g dry bagasse on the order of about 0.4 g total sugar/g 

untreated bagasse.  A closer look at their procedures revealed that their enzyme loading 

was based on g of untreated bagasse, adding the enzyme directly after the pretreatment 

without any washing or drying of the biomass.  Consequently, they had to neutralize the 

lime with acetic acid, and enter a correction factor to account for calcium acetate 

inhibition.  For these studies, on the other hand, the enzyme loading was based on g of 

treated bagasse.  Because the biomass was washed and dried before it was analyzed, the 

calcium acetate correction was not necessary.  To express the enzyme loading in these 
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studies on the same basis as it was reported by Chang et al. (1998), it is necessary to 

multiply it by the yield (g treated bagasse/g untreated bagasse).  Because the 

approximate average yield was about 0.75 g treated bagasse/g untreated bagasse, the 

enzyme loading for these experiments, expressed on the same basis as reported by 

Chang et al. (1998), was approximately 3.8 FPU/g untreated bagasse, which would 

explain why the 3-day digestibility yields seemed to be smaller.  It is concluded, 

therefore, that the 3-day enzyme digestibility yields from these studies cannot be 

compared to the values obtained by Chang et al. (1998). 

Commercially available cellulase enzyme is actually a mixture of several 

different enzymes, each of which does a particular job.  For example, endo-glucanase 

cuts the cellulose chain in the middle, exo-glucanase attacks cellulose from the end 

producing cellobiose, and β-glucosidase (also known as cellobiase) splits cellobiose into 

two glucose molecules (Mandels, 1982).  It was also realized, that the conventional 

method for determining cellulase enzyme filter paper activity (i.e., NREL method No. 

006 (NREL, 1992)) – so named because of the filter paper used as substrate – had 

several drawbacks (Coward-Kelly et al., 2003).  Among them was the fact that this assay 

does not allow for comparison of activity in 3-day digestibility studies among enzyme 

batches that have varying amounts of cellobiase as part of its original enzyme mixture.  

This is because the conventional filter paper assay, NREL No. 006 (NREL, 1992), does 

not call for addition of excess cellobiase, as in 3-day enzyme digestibility analysis.  If 

the enzyme mixture has little cellobiase as part of its original composition, its final 

product from the hydrolysis of the filter paper will mostly be cellobiose, but if the levels 

of cellobiase found in the batch are high, the final product will be mostly glucose.  The 

assay uses the DNS spectrophotometric technique to quantify the reducing sugar yield.  

Because DNS gives higher results with glucose than with cellobiose, activity values 

cannot be compared if the enzymes have differing concentrations of cellobiase (Coward-

Kelly et al., 2003).   

The situation mentioned above was encountered with the enzyme from Iogen 

Corp. (Ottawa ON Canada), which had high concentrations of cellobiase in its original 
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mixture.  This yielded a high activity as determined by the conventional filter paper 

assay.  This, in turn, affected the 3-day digestibility study because its high activity meant 

that a smaller volume of enzyme was added given a fixed enzyme loading.  To illustrate 

this, a comparison with another enzyme (Spezyme® CP, Genencor International, Inc., 

Palo Alto CA) was established.  The activities as determined by the conventional filter 

paper assay (NREL method No. 006) were 67.4±1.0 FPU/mL for the enzyme from Iogen 

Corp. (Iogen) and 74.0±1.7 FPU/mL for the enzyme from Genencor International Inc. 

(Genencor) (error = ± 1 standard deviation, run in triplicate).  Old stored bagasse (Table 

4.1) was pretreated with lime at 50oC under non-oxidative conditions for 60 days.  At the 

end of this time period, the material was neutralized with acetic acid and then was 

thoroughly washed and dried in the oven at 45oC for 2 days.  The material was divided 

into six Erlenmeyer bottles (i.e., three bottles for each enzyme) and then 3-day 

digestibility analysis was run in triplicate.  The enzyme loading, based on their activities 

from the conventional filter paper assay, was for both, 5 FPU/g treated bagasse.  Figure 

4.75 shows that the enzyme from Genencor produces a higher yield, even though the 

same nominal enzyme loading was used for both.  The values obtained were 

0.434±0.009 g glucose + xylose/g treated bagasse for the enzyme from Genencor and 

0.375±0.007 g glucose + xylose/g treated bagasse for the enzyme from Iogen (error = ±1 

standard deviation, run in triplicate).  The error ranges do not overlap, even with three 

standard deviations. 

The Spezyme® CP enzyme from Genencor had a very low cellobiase 

concentration in its original enzyme mixture; therefore, its activity was enhanced when 

the excess cellobiase was added in the 3-day enzyme digestibility analysis.  In contrast, 

the enzyme from Iogen already had some cellobiase in its original enzyme mixture, 

which took part in the activity determination by the conventional filter paper assay.  Its 

activity was not enhanced much when excess cellobiase was added in the 3-day 

digestibility analysis.  Thus, this explains the lower yields obtained for the Iogen 

enzyme.  
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Figure 4.75  Comparison of sugar yields for enzymes Genencor and Iogen both at 5 

FPU/g treated bagasse (error bars = ±1 standard deviation). 

 

Such response from the Iogen enzyme was also observed by Almendarez (2000), 

who also used it in her studies.  Coward-Kelly et al. (2003) suggest the addition of 

excess cellobiase to determine filter paper activity.  The addition of excess cellobiase 

increases the measured activity of the enzyme, but it allows comparison between enzyme 

batches with different amounts of cellobiase in their original mixture (Coward-Kelly, 

2004). 

Figure 4.76 compares the two enzymes at a loading of 5 FPU/g treated bagasse 

on fresh and old bagasse lime-treated with air for two weeks at 57oC.  The fresh bagasse 

had 1.5 g acid-insoluble ash/100 g treated bagasse and 11.9 g lignin/100 g treated 

bagasse, whereas the old bagasse had 30.0 g acid-insoluble ash/100 g treated bagasse 

and 12.0 g lignin/100 g treated bagasse.  The fresh bagasse performed better for both 

enzymes, and the Genencor enzyme, gave higher yields for both the old and fresh 

bagasse.  In addition, Figure 4.76 shows a comparison to the 3-day 

digestibility/pretreatment time profile of old bagasse lime-treated at 57oC (Figure 4.58).  
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Although there is variability in the profile shown in Figure 4.58, the 2-week value is 

higher than the value that would represent its repetition (i.e., old bagasse, Iogen, 30% 

acid-insoluble ash) shown in Figure 4.76.  This difference can be attributed to the 

worsening quality of the old bagasse, which had almost twice as much acid-insoluble ash 

(30 g acid-insoluble ash/100 g of treated bagasse) as its corresponding point in the 

profile from Figure 4.58 (17.5 g acid-insoluble ash/100 g treated bagasse).  The standard 

deviations in Figure 4.76 are from triplicate runs. 
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Figure 4.76  3-day digestibility yields from the two types of enzymes for lime treatment 

with air at 57oC (5 FPU/g dry treated bagasse) (error bars = ±1 standard deviation). 
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IV.3.3 Effect of High Water Vapor Pressure 

 

IV.3.3.1 Equipment and Methodology 

 

In previous sections, the temperatures for the experiments were chosen so that 

the water vapor pressure, and thus its partial pressure at normal atmospheric conditions, 

is low enough that it does not significantly displace oxygen.  At lower temperatures, the 

preliminary studies indicated that there is little difference between the delignification 

process under pure oxygen and under air (see Figure 4.5).  However, if higher 

temperatures were used, the water vapor pressure would increase, displacing oxygen.  In 

this case, pure oxygen might perform better than air.  Table 4.5 illustrates this situation.  

To test this hypothesis, an experiment similar to those described in previous 

sections was implemented, except that the working temperature was 75oC. 

 

Table 4.5  Water partial pressure and the corresponding oxygen partial pressure in 
saturated air as a function of temperature at normal atmospheric conditions. 

Temperature 
(oC) 

Water Partial Pressure 
(atm) 

Oxygen Partial 
Pressure (atm) 

 
50 

 
60 

 
70 

 
80 

 
90 

 
95 

 

 
0.122 

 
0.197 

 
0.308 

 
0.468 

 
0.692 

 
0.834 

 
0.184 

 
0.169 

 
0.145 

 
0.112 

 
0.065 

 
0.035 

(Perry and Green, 1984) 

 

Several 150-mL test tubes were loaded with 6 g dry of soluble-substance-free old 

stored bagasse, 3 g of calcium hydroxide (0.5 g/g dry bagasse), and 54 mL of water (9 

mL/g dry bagasse).  The test tubes were kept under three different conditions, namely 
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oxygen purge, air purge, and nitrogen purge.  This time, the conduit that delivers the air, 

oxygen, or nitrogen was introduced in the biomass to provide mixing.  Figure 4.77 

shows a schematic of the purging setup.  

 

inlet outlet
Air, O2, or N2

3.8 x 20 cm
150-mL
test tube

LOADING:
- 6 g dry of bagasse
- 54 mL of distilled
  water
- 3 g of Ca(OH)2

 

Figure 4.77  Schematic of the lime treatment of bagasse at 75oC. 

 

The test tubes were placed in a convection oven at 75oC.  The analyses 

performed were the same as with the pretreatments at lower temperatures described in 

Appendix I (i.e., mass balance by washing, lime consumption by titration, Klason lignin, 

and 3-day enzyme digestibility analysis).  Due to space limitations in the oven, in this 

experiment, all the analyses were done to the sample in the same test tube because there 

were no duplicates of the same condition.   
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IV.3.3.2 Results and Discussion 

 

Figures 4.78 through 4.80 show the amount of holocellulose, lignin and ash, and 

total mass or yield (g treated material/g of untreated material) as the sum of all three 

components, as function of time for the pretreatments at 75oC with nitrogen (N2), air, 

and oxygen (O2) purging.  As with the pretreatment run at lower temperatures (Figures 

4.6 through 4.15), there was a rapid decrease of lignin, and thus of total yield, during the 

first week for all three conditions (i.e., N2, air and O2 purging).  After the first week of 

treatment with N2 purging, there was only a minor decrease of lignin.  However, with air 

and O2, delignification continued after the first week, but it was considerably more 

pronounced for the treatment with O2.   
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Figure 4.78  Total mass, holocellulose, lignin and ash for old bagasse  

lime-treated with nitrogen purging at 75oC. 
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Figure 4.79  Total mass, holocellulose, lignin and ash for old bagasse 

lime-treated with air purging at 75oC. 
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Figure 4.80  Total mass, holocellulose, lignin and ash for old bagasse 

lime-treated with oxygen purging at 75oC. 
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Figures 4.81 and 4.82 show that there was considerable difference in lignin 

content and lignin conversion as a function of time among the three conditions.  The 

treatment with N2 purging provided only minor delignification after the first week.  The 

treatments with air and O2 did not present any difference between them until after the 

first week, at which point O2 considerably surpassed the treatment with air, attaining 

almost 80% conversion (80 g lignin removed/100 g present in untreated biomass) after 3 

months, whereas air only achieved about 55% conversion. 

Figure 4.83 shows that there were also considerable differences among N2, air, 

and O2 purging in lime consumption.  Lime consumption was directly related to lignin 

conversion.  It is important to note that for this test, all three gases were pre-scrubbed 

with a lime slurry; therefore, any CO2 or other acidic gas present was removed from the 

gases prior to delivery to the system; the lime consumption, in this case, is the true lime 

consumption required by the pretreatment process alone. 
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Figure 4.81  Lignin content as a function of time in lime-treated bagasse (75oC). 
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Figure 4.82  Lignin conversion of lime-treated bagasse as a function of time at 75oC. 
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Figure 4.83  Lime consumed as a function of time in treatment of bagasse at 75oC. 
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Figure 4.84 shows that the 3-day digestibility yields did not display any 

significant increase after the first week and they were about the same for all three 

conditions.  After the first week, the sugar yields were slightly lower for the treatment 

with N2 purging, but there was no considerable difference between the treatments with 

air and O2 purging.  Also, it is interesting to notice that the 3-day digestibility yields 

were slightly lower than those obtained for the treatment with air at 50oC and 57oC 

(Figure 4.60), but because of the variability of the raw material, the comparison is 

uncertain. 
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Figure 4.84  3-day enzyme digestibility of bagasse lime-treated at 75oC. 

 

In conclusion, the results show that at high temperatures (such as 75oC) oxidative 

conditions with pure O2 yield higher lignin degradation than with air.  However, to 

enhance digestibility, long-term lime pretreatment with pure O2 does not present any 

significant advantage over air.  Because the temperature is higher, delignification is 

faster but holocellulose degradation is also faster; therefore, further studies should be 
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implemented to complete the profile and obtain more data points within the first week, 

where the 3-day digestibility yields in terms of untreated material might be higher. 

 

IV.3.4 Bagasse Pulping for Paper Manufacturing 

 

IV.3.4.1 Equipment and Methodology 

 

To assess the effectiveness of bagasse pulping for paper manufacturing using 

long-term treatment with lime and air at low temperatures, two batches of fresh bagasse 

were treated under these conditions for several months.  One batch of 0.6 kg wet and 

another of about 1.2 kg wet fresh bagasse, as obtained from W.R. Cowley Sugar House 

in Santa Rosa TX (i.e., no prior depithing or particle-size reduction), were pulped.  

Batch #1 (0.6 kg wet fresh bagasse) was treated in a 6-L Erlenmeyer flask, and it 

was submerged in a water bath at 50oC.  The lime loading for this batch was 0.5 g of 

Ca(OH)2/g dry of bagasse; thus, because the dry weight of the 0.6 kg wet bagasse was 

294 g (~50% moisture), 160 g of industrial lime was added (0.92 g Ca(OH)2/g of lime, 

Chemical Lime Co., New Braunfels TX).  The water loading was 9 mL distilled water/g 

dry bagasse.  Air, which was saturated with water by diffusing it through a water column 

also submerged in the 50oC water bath, was bubbled into the flask to maintain oxidative 

conditions.  There was no mixing implemented, except for the subtle stirring air 

bubbling caused.  During the pretreatment, the Erlenmeyer flask broke and the liquid in 

the bottle was lost along with some of the lime; therefore, the actual lime loading was 

less than 0.5 g Ca(OH)2/g dry bagasse.  In addition, because the bubbling rate was 

considerable and no pre-scrubbing with lime was implemented, carbon dioxide in the air 

consumed some of the lime.  To replenish the lost liquid, more distilled water was added 

at this point.  The treatment lasted a total of 2 months.  By then, the pH had decreased 

below 7; therefore, no acid was added for neutralization.  The material was simply 

washed several times with distilled water in several 1-L centrifuge bottles and 

centrifuged at 4000 rpm to dewater the slurry.  The washed material was dried in the 
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oven at 45oC, then broken apart by rubbing it against a 4-mesh screen, and separated by 

sieving into several fractions of various particle sizes.  The fractions were sent to the 

Institute for Engineering Research, Forest Products Laboratory, University of Costa Rica 

(P.O. Box 36-2060, San José, Costa Rica C. A.) (IERFPL), for quality evaluation (i.e., 

morphometric study of the fibers, refining, handsheets formation and sheet 

characterization based on physical, chemical, mechanical and optical properties of pulp). 

Batch #2 (1.2 wet kg of fresh bagasse, 50% moisture) was divided into six 200-g 

batches and each batch was placed in a 2-L Erlenmeyer flask and kept under constant air 

bubbling in an incubator.  The air was scrubbed to rid it of CO2 and water-saturated in a 

lime/water solution before it was delivered to the flasks.  The treatment was run for 7 

months and the lignin was decreased to about 7 to 8 g lignin/100 g treated bagasse from 

about 22 g lignin/100 g untreated bagasse as determined by the Klason lignin method 

(NREL methods No. 003 and 004 (NREL, 1992)).  The temperature started at 50oC, but 

it was later increased first to 57oC after 100 days and then to 65oC after 155 days.  At the 

beginning of the treatment, a lime loading of 0.3 g Ca(OH)2/g dry bagasse was attained 

by adding 33 g industrial lime (0.92 g Ca(OH)2/g lime, Chemical Lime Co., New 

Braunfels TX) to each Erlenmeyer flask.  After 5 months of treatment, to ensure that the 

lime was in excess, an extra 0.1 g Ca(OH)2/g dry of bagasse (i.e., 11 g industrial 

lime/Erlenmeyer flask) was added to complete a total loading of 0.4 g Ca(OH)2/g dry 

bagasse.  After the treatment was done, the bagasse was neutralized with glacial acetic 

acid and washed several times using a 5-gal bucket as the container and a 1/10-hp 

electric mixer to provide stirring (Arrow 850, Fisher Scientific Co., Pittsburgh PA).  To 

dewater the pulp, a trigger-type polyester/cotton cloth was used to vacuum-filter the 

slurry.  The wet pulp was dried in the oven at 45oC, then broken apart by rubbing it 

against a 10-mesh screen and finally sieved to separate the different particle sizes into 

fractions so that they could be sent to Integrated Paper Services Inc. (IPS) (101 W. 

Edison Ave., Suite 250 (54915), P.O. Box 446, Appleton WI 54912-0446, 

www.integratedpaperservice.com).  IPS performed the analyses on pulp properties and 

characteristics to assess quality (i.e., Valley beater curve – including freeness, 
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handsheets, basis weight, caliper, bulk, density, tear, burst, tensile, and Gurley porosity – 

dirt count, ash at 525oC and 900oC, Klason lignin, brightness, color, opacity, MorFi fiber 

length, and digital microphotographs). 

 

IV.3.4.2 Results and Discussion 

 

After pretreatment, yields for both batches were close to 70% (70 g treated 

bagasse/100 g untreated bagasse).  Tables 4.6 and 4.7 show the particle size distribution 

as obtained by sieving for Batches #1 and #2, respectively.  Batch #1 was coarser. 

The reports for the quality assessment of the pulps from Batches #1 and #2 are 

presented in full in Appendices N and O, respectively.  For the refining process, which 

consists in beating the pulp to improve its properties, some of the fractions shown in 

Tables 4.6 and 4.7 were combined for each batch.  In the case of Batch #1, the “coarse 

fiber”, the “> 4 mesh”, the “4 mesh – 10 mesh”, and the “10 mesh – 16 mesh” fractions 

were blended together.  For Batch #2, all the fractions < 16 mesh were combined. 

 

Table 4.6  Particle size distribution for the pulp from Batch #1. 

Fraction Mass 
(g) 

Handpicking 27.4 

Coarse fiber 21.4 

> 4 mesh 81.0 

4 mesh – 10 mesh 34.1 

10 mesh – 16 mesh 23.9 

16 mesh – 30 mesh 40.1 

30 mesh – 40 mesh 13.0 

40 mesh – 50 mesh 15.4 

< 50 mesh  39.8 

  

 



 215

Table 4.7  Particle size distribution for the pulp from Batch #2. 
Mass Fraction  
(g) 

  
> 10 mesh 1 
  
10 mesh – 16 mesh 6 
  
16 mesh – 20 mesh 95 
  
20 mesh – 30 mesh 114 
  
30 mesh – 40 mesh 49 
  
40 mesh – 50 mesh 37 
  
< 50 mesh 95 

  
 

 

The target quality for the pulping process was a pulp, which, after bleaching, 

would yield a good quality copy paper; therefore, comparisons with this type of paper 

were primarily done. 

The average fiber length for the pulp from Batch #1 was about 1.8 mm (Table 1, 

Appendix N), which is longer than the fiber length for copy paper ( ~ 1 mm). 

For Batch #2, the fiber lengths are, on average, smaller than those found in copy 

paper and the widths are larger (Table 1, Appendix O); therefore, these bagasse pulp 

fractions are not appropriate for manufacturing of copy-quality paper.  Also, Table 1 in 

Appendix O shows that there is no significant difference in fiber length and width 

among the different particle sizes, which justifies the blending of all these fractions. 

The fibers from Batch #1 are considerably longer than those from Batch #2, 

which suggests that long treatment times tend to break down the fiber, which is a 

detrimental effect in the process. 

The Klason lignin for Batch #1 was reported to be 12.1 g lignin/100 g treated 

bagasse after 2 months of treatment and for Batch #2 was 8.8 g lignin/100 g treated 

bagasse after 5 months of treatment.  For copy paper, the Klason lignin is in the order of 
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about 2 g lignin/100 g of treated bagasse.  This result suggests that, given the present 

conditions, long-term lime pretreatment is not efficient in delignifying bagasse, which is 

necessary for good quality paper, because it cannot lower the lignin content to levels 

attainable with conventional pulping processes, which use NaOH, without compromising 

fiber integrity. 

Table 4.8 shows that the strength properties for both Batches #1 and #2 are poor 

when compared with Kraft-type pulps, which are appropriate for copy paper 

manufacturing, thus confirming that the current lime+air pretreatment, is not adequate to 

obtain copy-quality paper.  However, both pulps have strengths properties higher than 

those prescribed in the international standard for strawboards and they compare well 

with the pulps obtained from lime treatment at higher temperature for shorter times 

(Madan, 1981), which demonstrate that these bagasse pulps can be used in board 

applications or as corrugating medium. 

One important operation that produces better yields and strength properties, and 

that is essential for producing copy paper from bagasse, is depithing, which was not 

implemented.  Depithing can be dry, moist, or wet (Ashok et al., 1986).  Dry depithing is 

normally done using a rotary drum screen after either artificially drying the bagasse or 

after long periods of time so that the moisture content may be about 35%.  Moist 

depithing is conducted at the mill or nearby at about 50% moisture, which is the typical 

moisture content at which bagasse is discharged from the last roller mill (Valdes 

Delgado and De Armas Casanova, 2001).  A depither, which breaks open the fiber 

bundles to dislodge the pith by mechanical rubbing and mild disintegrating action, is 

employed (Ashok et al., 1986).  Wet depithing is done by adding water to the bagasse in 

a hydropulper (Valdes Delgado and De Armas Casanova, 2001).  The slurry is then 

pumped through a depither machine to complete the defibrating operation and the pith 

passes through a perforated screen.  For bagasse, moist and wet depithing are the two 

common methods (Ashok et al., 1986).   

 

 



 

Table 4.8  Comparison of several pulp properties of Batch #1 and #2 with those of other types of pulp. 
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    Pulping Raw Material Source Conditions Thickness 
(mm) 

Density  
(kg/m3)

Burst index 
(kPa·m2/g) 

Burst 
Factor 

Tensile 
index 

(N·m/g) 

Tear index 
(mN·m2/g) 

Tear 
Factor

Breaking 
length (km)

            

Kraft-B Eucalyptus IERFPL ~1 h, 
> 100oC ---        

            

        
          

        
            

           
            

619 3.3 34 59 9 92 ---

Kraft-B Hardwood 
mixture IERFPL ~1 h, 

> 100oC --- 618 3.3 34 55 10.3 105 ---
  

Kraft-B Pinus spp IERFPL ~1 h, 
> 100oC 98 641 5.46 56 85 9.38 96 ---

Hydro-
thermic Banana IERFPL 162 381 4.2 43 70 8.9 91 7.68

Lime 
(Batch #1) Bagasse IERFPL 2 months, 

50oC 146 469 1.5 15 34 3.4 35 3.46 
            

Lime 
(Batch #2) Bagasse IPS 5 months, 50, 

57, 65oC --- 585 0.72 7.3 21 1.7 17 2.10 
            

           
         

         
          

        

       

       

Soda Depithed 
Bagasse Hadli (1999) ~ 1 h, 

> 100oC --- --- 3.4 – 3.9 35 – 40 --- 3.9 – 4.4 40 – 45 6.5 – 7.0 
 

Lime Bagasse Singh (1959)
  

4 h, 
 162oC --- --- 3.0 30.9 --- --- --- 4.6

 
Lime Bagasse Madan 

(1981) 
4 h,  

153oC --- --- 1.64 16.7 --- --- --- 2.6
    

International 
Strawboard 

Standard 
 Madan 

(1981)  --- --- 0.49 5.0 --- --- --- M.D. 1.2*   
C.D. 0.75 

     
* M.D. ≡ Machine Direction, C.D. ≡ Cross-machine Direction 
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Pith particles are weak, have a high ash content, are spongy in texture (Figure 

4.85), and they absorb more chemicals than fibers (Valdes Delgado and De Armas 

Casanova, 2001).  Their removal is crucial to obtain good quality pulps.  Nonetheless, 

the results agree well with the literature; for producing strawboards and other low-

quality materials such as corrugating medium, depithing is not necessary (Ashok et al., 

1986; Madan, 1981). 

 

 

Figure 4.85  Digital micro-photograph of the bagasse pulp from Batch #2 
showing some pith particles (circled). 

 

Table 4.8 also shows that the strength properties are higher for the pulp from 

Batch #1 than from Batch #2 even though the Klason lignin content is lower in Batch #2.  
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As with the length and width results, it can be concluded that the harsher conditions used 

in Batch #2 (i.e., higher temperatures and longer time) deteriorated the fiber. 

Also, it must be considered that because Ca(OH)2 completely alters the fiber 

surface (Figure 4.2), it may not be a suitable pulping agent for good quality copy paper.  

NaOH, on the other hand, does not cause such surface alteration (Figure 4.2). 

With the current process, as suggested by IPS, the resulting pulp can be used for 

corrugating medium or inside layers of a liner grade.  The price of such types of 

materials is about 60% to 70% that of a bleached softwood Kraft pulp.  For instance, for 

26-lb/3000 ft2 semi-chemical corrugating medium, the price ranged (January 2000 to 

April 2004) between $290 to $440/short ton.  In the past 20 years, the price averaged 

about $350/short ton.  On the other hand, the price of bleached softwood Kraft pulp 

ranged between $420 and $650/short ton (March 2000 to March 2004).  The 

approximate average for the last 20 years was about $550/short ton 

(www.cpbis.gatech.edu). 

 

 

IV.4 Conclusions 

 

Long-term pretreatment of bagasse at temperatures lower than 60oC presents a 

rapid decrease of the lignin content during the first week.  Such sharp decrease occurs 

even in the absence of air (i.e., non-oxidative conditions).  After the first week, under 

non-oxidative conditions, delignification is almost negligible.  In contrast, under 

oxidative conditions, delignification occurs but at a slower rate.  This behavior suggests 

the presence of two delignification phases known as bulk (rapid) phase, which dominates 

during the first week, and residual (slow) phase, which takes over after the first week.  

The existence of such phases is confirmed also by the lime consumption/pretreatment 

time profile and by the delignification model. 

In general, during the residual phase there is about a 1:1 ratio of holocellulose 

loss to lignin removal, as the selectivities show (Section IV.3.2.3.2). 
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Lime consumption is directly related to lignin conversion; thus, for oxidative 

conditions, lime consumption continued to be significant after the first week, but in the 

case of the non-oxidative conditions, lime consumption practically ended after the first 

week. 

Higher temperatures produce higher lignin conversions because the 

delignification model showed that ab, the fraction of lignin that degrades in the bulk 

phase, increases with temperature.  Also, ab was slightly larger for delignification under 

oxidative conditions.  Nonetheless, delignification occurred to the same extent for the 

treatment with and without air during the first week.  This suggests that for oxidative 

conditions the bulk phase continues for a time slightly longer than 1 week.  In general ab 

was about 1/3, meaning that about 1/3 of the lignin degrades in the bulk phase. 

The delignification model fit the data remarkably well, with all R2 > 0.87.  In 

comparison to the delignification of woody biomass, such as western hemlock wood 

with sodium hydroxide under non-oxidative conditions (Dolk et al., 1989), the activation 

energies and the natural logs of the Arrhenius constant for the delignification model 

were lower by a factor of about 4 and 3, respectively.  This suggests that, as expected, 

bagasse is easier to delignify than hardwoods. 

It is worth mentioning that the bagasse appearance changed significantly when 

treated under oxidative conditions.  For instance, Figure 4.86 shows that after 6 months 

of lime treatment at 50oC, the old bagasse treated without air (left) did not significantly 

changed its appearance compared to untreated bagasse (Figure 4.61).  The fibers are still 

distinguishable and the color is still dark brown.  On the other hand, the old bagasse 

treated with air (right), underwent clear morphological changes; it had a powdery texture 

and its color was light brown. 
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Figure 4.86  Photograph of old bagasse after 6 months of lime treatment at 50oC under 
non-oxidative (left) and oxidative (right) conditions. 

 
The 3-day digestibility yields for an enzyme loading of 5 FPU/g dry treated 

bagasse were shown to be highest for the treatment at 57oC under oxidative conditions 

and after a treatment time of about 2 to 3 weeks (~0.4 g glucose+xylose/g dry untreated 

bagasse).  The treatment time necessary to achieve the highest digestibility under 

oxidative conditions decreases with temperature.  Thus, at 23oC, 120 – 150 days are 

necessary, whereas for 57oC, as mentioned, 2 – 3 weeks suffices. 

Comparison of fresh and old stored bagasse showed that fresh bagasse was of 

better quality than old bagasse; it gave better lignin conversions and higher 3-day 

digestibility yields even when equal pretreatment conditions were used.  Also, fresh 

bagasse was less variable; therefore, its behavior was more predictable.   
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For fresh bagasse lime-treated at 50oC, 3-day digestibility yields were the same 

after 1 week of treatment for oxidative and non-oxidative conditions.  After 1 week, 

there was no digestibility enhancement for the treatment under non-oxidative conditions.  

In contrast, for the treatment under oxidative conditions, digestibility continued to 

improve until the 2nd month of treatment. 

The results showed that NaOH in the presence of air is more effective than 

Ca(OH)2 for short-term pretreatment.  NaOH treatment has a larger bulk phase than 

Ca(OH)2 treatment; however, for the residual phase, Ca(OH)2 was more selective 

towards lignin.  Although the degree of delignification was higher with NaOH treatment, 

attaining almost 80% lignin conversion (80 g lignin removed/100 lignin in untreated 

bagasse) in 3 months, 3-day digestibility yields were only slightly higher for NaOH; 

therefore, to enhance digestibility, Ca(OH)2 is preferred because it is cheaper, safer, and 

more convenient.  For bagasse pulping, however, where high degrees of delignification 

are important, NaOH must be considered.  From these studies with air at 50oC, good 

results were obtained with NaOH, with lignin decreasing from 21 g lignin/100 g 

untreated bagasse to about 4 g lignin/100 g treated bagasse and an overall yield of 64% 

(64 g treated bagasse/100 g untreated bagasse) in 3 months.  Also, the bagasse was 

highly bleached displaying a very bright white color. 

3-day digestibility yields from cellulase enzyme batches with different amounts 

of cellobiase in their original mixture cannot be compared if their activity is determined 

by the conventional filter paper assay (NREL method No. 006, NREL, 1992).  Instead, 

for comparison, the activity must be determined by adding an excess of cellobiase in the 

conventional filter paper assay, as suggested by Coward-Kelly et al. (2003).  The 

cellulase enzyme used throughout these studies (Iogen Laboratories, Ottawa ON 

Canada) had a high cellobiase content.  Based on the conventional filter paper activity, 

considerably higher 3-day digestibility yields were obtained when cellulase enzyme with 

little cellobiase in its original mixture (Spezyme® CP, Genencor International, Inc., Palo 

Alto CA) was used instead. 
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Preliminary studies showed that for temperatures below 60oC the use of pure 

oxygen to maintain oxidative conditions had no advantage over the use of air.  However, 

studies showed that for higher temperatures, such as 75oC, the use of pure oxygen has 

delignification advantages.  The use of air actually yielded lower lignin conversions than 

those obtained at 57oC.  This effect is attributed to the increasing vapor pressure (i.e., 

water partial pressure) as the temperature increases, which displaces oxygen, as 

illustrated in Table 4.5.  Although delignification is considerably enhanced by using pure 

oxygen at 75oC, 3-day enzyme digestibility yields are not significantly different for the 

treatments with pure oxygen and with air. 

Bagasse pulping by long-term lime pretreatment was inadequate for obtaining 

pulps that, after bleaching, would yield good quality copy paper.  The process was 

unable to decrease lignin content without compromising fiber integrity.  Although the 

pulp treated for 5 months had a Klason lignin of about 8 g/100 g treated bagasse, it had 

poorer strength properties than the pulp treated for 2 months, which had about 12 g 

lignin/100 g treated bagasse.  Nonetheless, the pulps were not rendered useless because 

their strength properties significantly surpassed the standard specifications for 

strawboard (Madan, 1981) and their characteristics were also appropriate for filler 

applications, such as corrugating medium or inside layers of a liner grade. 

 

 

IV.5 Future Studies 

 

Because the delignification process is fast in the first hours of the pretreatment, 

to complete the delignification profile, it is important to also obtain data points near the 

beginning of the curve, say at 3, 6, 12, 18 and 24 hours, 2, 3, 5, 6, and 7 days, especially 

for higher temperatures.  These points will allow the assessment of the holocellulose-to-

lignin selectivity for the bulk delignification phase and will yield more accurate values 

for the parameters in the delignification model. 
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Because lime in the scrubber is consumed by CO2 present in the air, it is 

important to regulate the amount of air delivered to the system to save lime; therefore, 

studies to determine the actual amount of oxygen necessary in the pretreatment should 

be performed. 

More studies with fresh bagasse, which is more predictable than old bagasse 

because it displays less variability, should be conducted.  Studies should evaluate long-

term lime pretreatment, short-term lime pretreatment, and methods to reduce cellulose 

crystallinity.  Digestibility measurements should include not only 3-day cellulase-

enzyme digestibility analysis, but also actual carboxylic acids yields from anaerobic 

fermentations, which simulate better the conditions of the MixAlco process. 

The long-term studies done with NaOH showed good results both visually (i.e., a 

highly bleached pulp was obtained) and quantitatively (i.e., a yield of 64 g treated 

bagasse/100 g untreated bagasse and a lignin content of 4 g/100 g treated bagasse were 

attained).  Pulping by long-term pretreatment for paper manufacturing should also be 

studied with NaOH alone and/or with a combination of NaOH and Ca(OH)2 or CaCO3 in 

different proportions, which will protect the fibers because of the calcium ions, as 

suggested in the literature (Trivedi and Murthy, 1982; Nagieb and El-Sayed, 2000; 

Robert et al., 1968; Aung and Boyle, 1973).  The use of NaOH is important especially 

for pulping hardwoods, which are difficult to delignify.  The effect of depithing bagasse 

prior to the pulping process should also be considered. 
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CHAPTER V 

 

 

FINAL CONCLUSIONS – PUTTING IT ALL TOGETHER 

 

 

Figures 5.1 and 5.2 show a potential configuration of the proposed process for 

producing sugar (as food), fuels, and chemicals using the appropriate set of conditions 

described in these studies.  The extraction system is described in Chapter II, the juice 

preservation procedure is described in Chapter III, and the bagasse long-term lime 

pretreatment to enhance biological digestibility is described in Chapter IV. 

 

 

V.1 Operation During Sugarcane Harvest Season 

 

Figure 5.1 shows the process as it would occur during the harvest season.  The 

sugar must be extracted from cane as soon as possible; therefore, the extraction 

equipment must be sized to process all the cane produced during the season.  Fresh cane 

enters the system and is shredded using a conventional knife mill, which yields a high 

preparation index (i.e., high degree of cell rupture).  The shredded cane enters the 

extraction system to separate the sugar from the bagasse in eight stages using an 

imbibition level of 260% on fiber (260 lb imbibing H2O/100 lb dry fiber processed).  

The screw-press conveyors employ a cumulative power of 17 hp·h/ton dry fiber (14 

kW·h/metric tonne dry fiber) for both squeezing and conveying.  In addition, there is a 

final dewatering device, such as a conventional roller mill, which is used to attain a final 

bagasse moisture of about 45%.  The power consumption for this device is about 20 

hp·h/ton dry fiber (Hugot, 1986).  The overall recovery for the extraction process is 98% 

(98 lb soluble solids recovered/100 lb soluble solids in cane fed to the system).   
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Figure 5.1  Layout of sugar/bagasse processing plant during harvest season. 
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Figure 5.2  Layout of sugar/bagasse processing plant after harvest season. 
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Lime addition (higher pH) and/or higher temperatures, which inhibit 

microorganisms, must also be considered in the extraction process.  However, if the cane 

residence time in the extractor is short enough, such conditions will not be necessary. 

For preservation, the juice exiting the extraction system is mixed with Ca(OH)2 

and directed to ponds, which have been lined with a geo-membrane.  Intermittent juice 

recirculation, by pumps or agitators, is implemented.  The juice alkalinity is 

automatically controlled to maintain pH above 11, thus limiting the amount of lime used.  

Another possible option is to segment the juice in batches and add to each batch the 

amount of lime necessary for preservation until it is processed (Figure 3.21).  In this 

way, necessary downstream equipment, such as carbonation and filtration (i.e., 

carbonatation) equipment, evaporators and boilers, crystallizers, etc., do not need to be 

oversized.  The final product is raw or white sugar (sucrose) crystals. 

The recovered carbonatation sludge is processed as shown in Figure 3.40.  The 

sludge is mixed with a sodium-rich material, pelletized, and pre-burned in a reactor to 

decrease its organic contents below 10 lb/100 lb total sludge.  Sodium acts as a high-

temperature binder, giving strength to the pellets so that they do not disintegrate and clog 

the reactor (Kelly and Namazian, 1998).  The low-organic-content sludge is then re-

pelletized and calcined in a stationary kiln.  Some limestone might also be added to 

make up for some of the lime lost in the process.  The resulting CaO might be ground 

and used directly for bagasse pretreatment, or it may be slacked.  During the slacking 

process, Ca(OH)2 is formed, which is then added to the juice for preservation as it exits 

the extraction system.  Most of the sodium must also be removed during the slacking 

process so that it does not end up in the juice causing sucrose losses during 

crystallization (Chen and Chou, 1993). 

To enhance biological digestibility, the fiber (i.e., bagasse) exiting the extraction 

system is mixed with lime (0.08 – 0.09 lb CaO/lb dry bagasse or 0.1 – 0.12 lb 

Ca(OH)2/lb dry bagasse) and calcium carbonate (either limestone or the carbonatation 

sludge itself) and formed into several piles on top of a gravel bed (details shown in 

Figure 4.1).  Although either slacked lime (Ca(OH)2) or quicklime (CaO) can be 
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employed, CaO is preferred to harness its heat of hydration.  Blowers deliver carbon-

dioxide free air to the system to induce oxidation.  Each pile would be treated for about 8 

weeks at 50 – 60oC until its pH is low enough for microorganisms to subsist (~8 – 10).  

At this point the pile is inoculated with marine microorganisms to initiate fermentation.  

The blowers are reversed and coupled to exhaust pipes to extract fermentation gases 

(Figure 5.2). 

 

 

V.2 Operation After Sugarcane Harvest Season Ends 

 

Figure 5.2 shows the process as it would occur after the harvest season ends.  The 

only oversized equipment, the extraction system, does not operate after the season; 

therefore, it is not shown in Figure 5.2. 

The preserved juice continues to be processed along the year; thus, carbonatation, 

evaporation, and crystallization equipment operate all year round to produce sugar 

crystals.  Also, the carbonatation sludge continues to be produced and it is converted to 

lime via the stationary lime kiln as described in Section V.1.  However, except for the 

small amount needed to control juice pH in preservation ponds, the lime produced is not 

used immediately (unless integrated with some other process); therefore, it must be 

stored for next harvest season.   

The bagasse piles formed at the beginning of the harvest season will enter the 

fermentation mode before the season ends.  About 2 months after the harvest season 

ends, all the piles will have been treated for the required time (i.e., 8 weeks); therefore, 

all of them should be in the fermentation phase at this time.  The marine microorganisms 

produce organic acids, which are readily converted to carboxylate salts because of the 

calcium carbonate present (Thanakoses, 2002).  The carboxylate-salt-rich fermentation 

broth is then treated via the MixAlco process to make fuels and chemicals (Holtzapple et 

al., 1999). 
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V.3 The Biorefinery: The Grand Scheme 

 

Figure 5.3 shows the flowchart of a proposed biorefinery, which fully and 

efficiently utilizes all the products and by-products from sugarcane and yields a wide 

variety of useful commodities.  The different paths can be chosen according to the 

market.  The highlighted units have been the subject of study in this work. 

Sugarcane juice and bagasse are separated from cane during the harvest season 

via the extraction system.  The juice is preserved so that it may be processed along the 

year, whereas the bagasse is treated with lime and air to enhance digestibility. 
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Figure 5.3  Flowchart of a biorefinery:  the grand scheme.
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acid, as it is known that sucrose, alkali (especially lime) and high temperatures produce 

high yields of lactic acid (O’Donnell and Richards, 1973; Kopriva, 1973).  Fermentation 

may also be used to obtain chemicals or fuel (e.g., citric acid, ethanol, etc.) from cane 

juice or from molasses. 

The lime-treated bagasse, which is now highly digestible, may be fermented to 

produce carboxylate salts, which may then be converted into fuels and chemicals (i.e., 

alcohols, carboxylic acids, and ketones) via the MixAlco process.  Also, the highly 

digestible material may be used directly as animal feed.  As the studies in Chapter IV 

show, the lime-pretreatment process can also be used as a pulping technology to produce 

paperboard pulp. 
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APPENDIX A 

 

DERIVATION OF EQUATIONS 2.2 AND 2.3 
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Figure A.1  Illustration of mass transfer details in gentle-squeeze 
screw-press conveyor extractor. 

 

Consider Figure A.1, where the sugar extractor has f stages.  The liquid and the 

megasse (i.e., fiber and liquid), which are moving countercurrently to each other, reach 

equilibrium soluble solids composition in each stage.  For each stage, the soluble solids 

composition of the liquid in the exiting megasse is the same as that of the exiting liquid.  

The liquid flow rate for each stage is F1, …, FN, …, and Ff (lb/h) and the soluble solids 

mass fractions for each stage is C1, …,CN, …, and Cf . 

The total wet throughput (lb/h) of the megasse leaving each stage is W1, …, WN, 

…, and Wf.  This megasse has a liquid mass fraction L1, …, LN, …, and Lf , respectively.  

Fresh cane enters the system at a wet throughput of W0, with a liquid mass fraction of L0, 

which has a soluble solids concentration C0.  Imbibing water enters the system at a flow 

rate Ff +1 (lb/h) at a soluble solids concentration Cf +1, which is commonly equal to 0.  

The raw juice obtained from the extraction, which continues downstream for 

clarification, concentration, and crystallization, leaves the system at a flow rate F1 (lb/h) 

and at a specified soluble solid mass fraction C1.  The bagasse exiting the system has a 

liquid mass fraction Lf at a soluble solid mass fraction Cf , which are specified to meet a 

target overall recovery of soluble solids. 
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Given the system as described, for the Nth stage, the material balance for the 

liquid is as follows: 

 

NNNNNN LWFFLW +=+ +−− 111    (A.1) 

 

Because the fiber that enters the system in the cane advances only in one 

direction, mass conservation shows that the material balance for the fiber in the megasse 

in the Nth stage is,  

 

011 )1()1( SLWLW NNNN =−=− −−    (A.2) 

 

where 

 S0 = Dry fiber mass flow rate as fed to the system, lb/h 

 

For the soluble solids, the material balance in the Nth stage follows: 

 

NNNNNNNNNN CLWCFCFCLW +=+ ++−−− 11111   (A.3) 

 

Replacing Equation A.2 into Equation A.1, 
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Replacing Equation A.2 into Equation A.3, 
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Equation 2.3 is obtained by rearranging Equation A.4, 
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Equation 2.2 is obtained by replacing Equation 2.3 into A.5 and rearranging, 
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Given the specifications for the process, we must find Ff +1 and F1 from the 

overall material balance to be able to implement Equations 2.2 and 2.3 in an iterative 

calculation.  Thus, the overall mass balance for the liquid is as follows: 

 

ffF LWFFLW +=+ + 1100     (A.6) 

 

The overall mass balance for the fiber in the megasse follows: 

 

)1()1( 000 ff LWLWS −=−=    (A.7) 

 

Rearranging Equation A.7, the following equation is obtained: 
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The overall mass balance for the soluble solids follows: 

 

fffff CLWCFCFCLW +=+ ++ 1111000    (A.9) 

 

Replacing Equation A.8 in Equations A.6 and A.9,  
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Rearranging Equation A.11, 

 

1
0

1

11

1

000
1 1 C

C
S

L
L

C
CF

C
CLW

F f

f

fff

−
−+= ++    (A.12) 

 

Replacing Equation A.12 into Equation A.10, 
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Equation A.13 is then rearranged, 
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Multiplying through Equation A.14 by C1 and rearranging, 
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APPENDIX B 

 

SCREW-PRESS CONVEYOR DATA STATISTICAL ANALYSIS 

 

SAS® statistical software (SAS Institute Inc., Cary NC) was used to perform the 

statistical analysis of the data.  The methods used in the calculations for the values of the 

ANOVA tables, the regression statistics, the parameters and their standard errors for all 

the correlations are described by Milton and Arnold (1995).  The detection of outliers 

was done using the influence diagnostics described by Belsley et al. (1980). 

The criteria for investigating outliers were set by several parameters, as described 

in Belsley et al. (1980), which yield the influence diagnostics for the data.  These 

parameters were calculated using SAS® for all the observations (i).  The parameters 

were: 1) the diagonal elements of the hat matrix (hi), 2) the studentized deleted residual 

(RSTUDENT), named as such because it is calculated by omitting the point in question 

from the correlation before calculating its studentized residual, 3) the determinantal ratio 

(COVRATIO), 4) the scaled change in fit (DFFITS), 5) the scaled change in the 

estimated regression coefficients that would occur if the ith row were deleted 

(DFBETAS), and 6) the Cook’s D, which is very similar to DFFITS. 

Belsley et al. (1980) recommended that values with hi > 2 p/n, where p is the 

number of parameters and n is the number of observations, are leverage points and are 

worthy of investigation.  For RSTUDENT, values with |RSTUDENT| > 2 would indicate 

a potential outlier.  In the case of COVRATIO, values with |COVRATIO-1| ≥ 3p/n are 

worthy of investigation.  For DFFITS, the general cut off value, suggested by Belsley et 

al. (1980), above which influential observations can be realized is |DFFITS| > 2, and the 

size-adjusted cut off is np /2 .  For DFBETAS, also the general cut off above which the 

observation is considered influential is |DFBETAS| > 2 and the size-adjusted cut off is 

n/2 .  Observations with a value for Cook’s D > 0.2 would indicate that they are 

influential. 
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B.1 Throughput as a Function of Power 

 

Table B.1 shows the ANOVA for the regression with all 29 observations for dry 

fiber throughput as a function of power (Figure 2.15).  The regression is significant with 

P-value < 0.0001.  However, the residuals (Figure B.1), show that the data are not 

scattered randomly but rather has a parabolic shape. 

 

Table B.1  ANOVA of the regression of dry fiber throughput 
as a function of power (n = 29). 

  df SS MS F P-value 
Regression 1 1.51E+06 1.51E+06 2.13E+02 <0.0001 
Residual 27 1.91E+05 7.08E+03   
Total 28 1.70E+06    
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Figure B.1  Residual plot of the correlation of dry fiber throughput 

as a function of power (n = 29). 
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Table B.2 shows the ANOVA for the regression with 29 observations (i.e., 

including outliers) of the natural log of the dry fiber throughput as a function of power.  

The regression is significant, and the residuals scatter randomly (Figure B.2) confirming 

the exponential relation between dry fiber throughput and power. 

 

Table B.2  ANOVA of the regression of the ln of the dry fiber 
throughput as a function of power (n = 29). 

  df SS MS F P-value 
Regression 1 11.1 1.11E+01 233.8 <0.0001 
Residual 27 1.28 4.73E-02   
Total 28 12.3    
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Figure B.2  Residual plot of the correlation of ln of dry fiber throughput 

as a function of power (n = 29). 
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Influence diagnostics detected Point 12 as an outlier, with an |RSTUDENT| value 

of 4.46 (well above its cut-off of 2), hi value 0.30 (cut-off is 0.13), which means that this 

value is a leverage point.  |COVRATIO-1| was 0.51 (cut-off is 0.21), |DFFITS| is 2.93 

(general cut-off is 2) and its Cook’s D is 2.54 (cut-off is 0.2), the DFBETAS are also 

higher than their general cut off of 2.  Investigation of this point showed that there was 

considerable variation and therefore it yielded a considerably large standard deviation.  

This variation was attributed to the fact that a large amount of bagasse had just been 

added to the system; therefore, longer times were necessary to achieve steady state.  

When the measurements were taken, it seems that the system was not yet at steady state.  

In conclusion, the considerably high values for the influence diagnostics parameters, 

which were well above their cut-offs, and the experimental evidence found, justified the 

elimination of this data point. 

After Point 12 was eliminated, the influence diagnostics was once again run on 

the data, and this time it found three potential outliers, namely Point 2, 18, and 23.  

These values slightly exceeded the cut-off for |RSTUDENT| (i.e., 2).  Only the hi value 

for Point 23 exceeded its cut-off of 0.14, which means that this point was a leverage 

point.  Investigation of these points found no evidence that would justify their 

elimination. 

Table B.3 shows the ANOVA for the regression with 28 observations (i.e., 

excluding the outlier) of the natural log of dry throughput as a function of power.  As 

expected, the regression is significant, and the residuals scatter randomly (Figure B.3). 

 

Table B.3  ANOVA of the regression of the ln of dry fiber throughput 
as function of power (n = 28) 

  df SS MS F P-value 
Regression 1 10.36 10.36 372.27 <0.0001 
Residual 26 0.72 0.0278   
Total 27 11.09    
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Figure B.3  Residual plot of the correlation of ln of dry fiber throughput 
as a function of power (n = 28). 

 

The regression statistics and the standard errors for the regression parameters 

(slope and intercept) were found using SAS®.  The results follow: 

 

Table B.4  Regression statistics, parameters and standard errors for the regression of dry 
fiber throughput as a function of power (n = 28). 

Regression Statistics Parameter Coefficients Standard Error t-Stat P-value 
Multiple R 0.9668 Intercept 3.54 0.11 31.38 <0.0001 
R2 0.9347 Slope 9.20 0.48 19.29 <0.0001 
Adjusted R2 0.9322      
Standard Error 0.167           
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B.2 Moisture Content as a Function of Power 

 

Table B.5 shows the ANOVA for the regression of moisture content as a function 

of power (n = 29 observations) (Figure 2.16).  Although the variation of the moisture 

content is not considerable, the ANOVA shows that the regression is significant (99.2% 

probability).  Figure B.4 shows that the correlation residuals scatter randomly, however, 

to ensure that this, the regression significance of the residuals should also be tested.  

Table B.6 shows the ANOVA of the regression of the residuals.  The P-value is 1; 

therefore, this suggests that the regression is not significant and that the residuals do 

scatter randomly. 

 

Table B.5  ANOVA of the regression of moisture content 
as a function of power (n = 29). 

 df SS MS F P-value 
Regression 1 6.68 6.67 8.31 0.0076 
Residual 27 21.7 8.03E-2   
Total 28 28.4    

 

 

Table B.6  ANOVA of the regression of the residuals of moisture content 
as a function of power (n = 29). 

  df SS MS F P-value 
Regression 1 3.55E-15 3.55E-15 4.42E-15 1 
Residual 27 2.17E+01 8.03E-01   
Total 28 2.17E+01    
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Figure B.4  Residual plot of the correlation of moisture content 

as a function of power (n = 29). 

 

Although the data seems to scatter significantly (Figure 2.16), the influence 

diagnostics suggested that the highest |RSTUDENT| was 1.9, for Point 12.  This is lower 

than cut-off of 2; however, the calculated Cook’s D for this value was 0.7 (cut-off is 

0.2), and the value for |DFITTS| and hi also exceeded their cut-offs of 0.53 and 0.14, 

respectively, which meant that this data point had a lot of leverage and it was an 

influential point.  Based on the experimental evidence about this point mentioned in 

Section B.2, its elimination was justified. 

After excluding Point 12, no more outliers were detected by the influence 

diagnostics.  Table B.7 shows the ANOVA for the regression with 28 observations (i.e., 

excluding the outlier). 

 

 

 



 256

Table B.7  ANOVA of the regression of moisture content 
as a function of power (n = 28). 

  df SS MS F P-value 
Regression 1 9.333 9.333 12.75 0.0014 
Residual 26 19.037 0.732   
Total 27 28.370    

 

 

Table B.8 shows the regression statistics, the parameters and their respective 

standard errors for the regression of moisture content as a function of power (n = 28 

observations) as calculated by SAS®.  Although the fit is poor (i.e., R2 is low), the 

parameters are significant (i.e., P-values are small).  As expected, the regression is 

significant, and the residuals scatter randomly (Figure B.5). 

 

Table B.8  Regression statistics, parameters and standard errors for the regression of 
moisture content as a function of power (n = 28). 

Regression Statistics Parameter Coefficients Standard Error t-Stat P-value 
Multiple R 0.5736 Intercept 88.3 0.58 152.51 <0.0001 
R2 0.3290 Slope 8.73 2.45 3.57 0.0014 
Adjusted R2 0.3032      
Standard Error 0.8557      

 

 

B.3 Throughput as a Function of Moisture Content. 

 

Table B.9 shows the ANOVA for the regression of dry fiber throughput as a 

function of moisture content (n = 29 observations).  In spite of the considerable 

scattering of the data (Figure 2.17) and the small variation of the moisture content, the 

regression is statistically significant (99.9% probability). 

Figure B.6 depicts the residual plot for the regression.  To ensure that the 

residuals have a normal distribution around 0, Table B.10 shows the significance of the 

regression of the residuals.  The P-value is equal to 1, which means that the regression of 

the residuals is not significant, suggesting random scattering. 
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Figure B.5  Residual plot of the correlation of moisture content 
as a function of power (n = 28). 

 

Table B.9  ANOVA of the regression of dry fiber throughput 
as a function of moisture content (n = 29). 

  df SS MS F P-value 
Regression 1 6.05E+05 6.05E+05 14.9 0.0006 
Residual 27 1.10E+06 4.06E+04   
Total 28 1.70E+06    

 

 

 

 



 258

-1600

-1200

-800

-400

0

400

800

1200

1600

88.5 89 89.5 90 90.5 91 91.5 92 92.5

Moisture Content (lb H2O/100 lb total megasse)

R
es

id
ua

ls

 
Figure B.6  Residual plot of  the correlation of dry fiber throughput 

as a function of moisture content (n = 29). 

 

Table B.10  ANOVA of the regression of the residuals for dry fiber throughput 
as a function of moisture content (n = 29). 

  df SS MS F P-value 
Regression 1 -2.33E-10 -2.33E-10 -5.73E-15 1 
Residual 27 1.10E+06 4.06E+04   
Total 28 1.10E+06    

 

 

Influence diagnostics suggested the presence of two potential outlier, which 

display |RSTUDENT| values > 2; Point 12 and 23 have |RSTUDENT| values of 2.97 and 

2.15, respectively.  The value for |DFFITS| and |COVRATIO-1| for Point 12 also 

exceeds the cut-offs suggesting that it is an influential point.  Based on the experimental 

evidence already mentioned, there is evidence that justifies the exclusion of Point 12. 
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Table B.11 shows the ANOVA for the regression of dry fiber throughput as a 

function of moisture content for 28 observations (i.e., excluding the outlier). 

 

Table B.11  ANOVA of the regression of dry fiber throughput 
as a function of moisture content (n = 28). 

  df SS MS F P-value 
Regression 1 6.084E+05 6.084E+05 19.3 0.0002 
Residual 26 8.182E+05 3.147E+04   
Total 27 1.427E+06    

 

 

Table B.12 shows the regression statistics, parameters and standard errors as 

calculated by SAS®.  Although the fit is poor (R2 is small), the parameters are significant 

(i.e., P-values are small).  Figure B.7 shows the residual plot for the regression with 28 

observations. 

 

Table B.12  Regression statistics, parameters and standard errors for the regression of 
dry fiber throughput as a function of moisture content (n = 28). 

Regression Statistics Parameter Coefficients Standard Error t-Stat P-value 
Multiple R 0.6530 Intercept -12880 3008 -4.28 0.0002 
R2 0.4264 Slope 146 33 4.40 0.0002 
Adjusted R2 0.4044      
Standard Error 177.4      
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Figure B.7  Residual plot of  the correlation of dry fiber throughput 
as a function of moisture content (n = 28). 
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APPENDIX C 

 

SCREW-PRESS CONVEYOR EXTRACTION SIMULATION 

MatLab™ PROGRAM 

 
%This program simulates the sugar extractor. 
 
clear all 
% The following parameters must be specified. MatLab does not take 0 as index; therefore, 
% the indexes will be offset by 1, so for example C{1} will actually be C{0}. 
 
C{1}=.20; 
C{2}=.15; 
F{1}=0.0; 
S=150; 
L{1}=0.85; 
Cfin = 0 
Lf = 0.45; 
percentextraction=98; 
 
% End of specified parameters 
 
Fintemp=-500; 
 
amountsugin=S/(1-L{1})*L{1}*C{1}; 
 
leftbagasse=(1-(percentextraction/100))*amountsugin; 
 
Cf=leftbagasse/S*(1-Lf)/Lf 
 
ctest=Cf; 
 
for j=2:90 
      clear C; 
    C{1}=.20; 
    C{2}=.15; 
    Fin=S/(1-L{1})*L{1}*C{1}/(C{2}-Cfin)-Lf/(1-Lf)*S*Cf/(C{2}-Cfin)+S*Lf/(1-Lf)/(1-Cfin/C{2})-
S/(1-L{1})*L{1}/(1-Cfin/C{2}); 
     
    F{2}=S*L{1}/(1-L{1})*C{1}/C{2}+Fin*Cfin/C{2}-Lf/(1-Lf)*S*Cf/C{2}; 
     
     
    amountsugin=S/(1-L{1})*L{1}*C{1} 
    leftbag=S/(1-Lf)*Lf*C{2} 
 
extractionpercent=(1-leftbag/amountsugin)*100 
 
for i=2:90 
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    x=i+1; 
    y=i-1; 
     
   %Specify attained liquid fraction in each stage, that is, in each screw-press conveyor unit. 
    L{i}=0.889; 
   %End 
    
    C{x}=(L{i}/(1-L{i})*S*C{i}+F{i}*C{i}-L{y}/(1-L{y})*S*C{y})/(L{i}/(1-L{i})*S-L{y}/(1-
L{y})*S+F{i}); 
     
    F{x}=F{i}+L{i}/(1-L{i})*S-L{y}/(1-L{y})*S; 
     
    amountsugin=S/(1-L{1})*L{1}*C{1}; 
    leftbag=S/(1-Lf)*Lf*C{x}; 
     
    extractionpercent=(1-leftbag/amountsugin)*100 
     
     
    if C{x}<= ctest 
        Cf=C{x}; 
        break 
    end     
     
   
     
end 
val=abs(Fintemp-Fin) 
Fintemp=Fin 
if val <=5.0 
    break 
end 
end 
 
C 
F 
Fin 
Cf 
amountsugin=S/(1-L{1})*L{1}*C{1} 
leftbag=S/(1-Lf)*Lf*Cf 
 
extractionpercent=(1-leftbag/amountsugin)*100 
 
Numberofstages=x-1 
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APPENDIX D 

 

CALIBRATION PROCEDURE FOR THE LOAD CELL 

 

The calibration or scaling of the load cell transducer with the strain meter used 

for torque measurement was done using a known load.  The procedure is as follows: 

1) If not already displayed, press “MENU” until the unit shows:  “Rd.S.O” 

2) Apply the minimum known load (0%). 

3) Press the key labeled as “ /TARE”.  The unit displays: “IN 1”  

4) Press the “ /TARE” button once again.  The unit shows the last value stored for 

“IN 1”. 

5) Press “ /TARE” again.  The meter shows the actual reading of the signal being 

received from the load cell. 

6) Press the “MENU” button.  The meter stores the value for “IN 1” and displays 

“Rd 1”. 

7) Press “ /TARE” again”.  The meter shows the last entered value for “Rd 1”. 

8) The reading in the meter starts flashing.  Pressing “ /NT/GRS” to move to the 

desired digit (it flashes), and “ /TARE” to scroll to the desired value of the 

digit, change “Rd 1” as necessary to display the value of the minimum load 

applied. 

9) Press the “MENU” button to store the value entered for “Rd 1”.  The unit 

automatically displays “IN 2” 

10) Apply the maximum known load (100%) 

11) Press “ /TARE”.  The meter displays the last valued stored for “IN 2” 

12) Press “ /TARE” again to show the actual signal received from the load cell. 

13) Press the “MENU” button to store this value for “IN 2”.  The unit displays “Rd 

2” 

14) Press “ /TARE” once again.  The units displays the last entered value for “Rd 

2”. 

 



 264

15) Press “ /NT/GRS” to move to the desired digit (it flashes), and “ /TARE” to 

scroll to the desired value of the digit to change the value of “Rd 2” to match the 

actual weight of the known load. 

16) Press “MENU” to store this value.  The meter displays “StRd” and then 

“Rd.CF”. 

17) To start measurements, press the “RESET” button twice or press “MENU” until 

the unit displays “RSt” (reset) flashing on the LCD.  Once the meter displays a 

numeric reading, the unit is ready to use. 
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APPENDIX E 

 

PROCEDURE FOR DATA COLLECTION IN THE SCREW-PRESS 

CONVEYOR STUDY  

 

The 29 observations collected for this study, as discussed in Chapter II, were 

done using the following procedure: 

1) Set the height of the outer perforated casing to set the desired level of flow 

restriction.  This is done by adjusting the nuts of the threaded rods, which hold 

the outer casing in place. 

2) Fill the tank with water (~100 gal). 

3) Start the mixer by connecting it to the AC outlet. 

4) Turn on strain meter to measure torque and tachometer to measure the rotational 

speed. 

5) Start the motor using the speed controller, and set to the desired angular speed for 

the measurement as displayed in the tachometer.  Because of the speed 

controller, the reading for the angular speed is sufficiently steady. 

6) While the screw-press conveyor is turning, add bagasse to the tank.  Previously, 

the bagasse should have been weighed and a sample should have been taken to 

determine its moisture content.  This is important to estimate the initial moisture 

content of the megasse in the tank. 

7) Because the added bagasse is considerably dried (~40% moisture), it tends to 

float.  A shovel may be used to make it sink until it is completely soaked and 

thus attain homogeneous mixing faster.  

8) Continue adding bagasse, keeping track of how much is being added, until the a 

considerable amount can be seen being processed by the screw-press conveyor.  

9) Wait for 20 or more minutes so that the process achieves steady state. 
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10) In the mean time, weigh, using an appropriate scale, the empty sliding trays (two 

of them), which fit around the outer casing of the screw-press conveyor for 

material collection, and record these values. 

11) Position the trays on their holder/rails to get them ready for the run. 

12) When the reading on the strain meter is considerably stable (after about 15 to 30 

min), it is a good indication that the system is at steady state.  At this point, seek 

the help of other two persons and get them ready to collect the data.  One person 

should hold a filming device to record the reading in the strain meter, the other 

should be ready to push in one of the trays to start collecting the material, and the 

third person should be in charge of the other tray and in charge of timing the run. 

13) When ready, all three persons should be alert to start the data collection at the 

same time.  The person holding the timer gives the signal.  At time 0, the filming 

starts, both trays are pushed in and sample collection begins. 

14) Collect enough material to fill the trays about half way.  When this approximate 

target is reached, the timer is stopped and at the same time, the filming stops and 

the trays are pulled out. 

15) Record the time (t). 

16) Remove the trays + sample from the holders/rails, and weigh them in an 

appropriate scale.  Record this value.  The weight of the sample (Wwet) is then the 

difference between the tray + sample weight and the weight of the trays 

measured previously. 

17) Wring as much liquid as possible from the soaked bagasse (megasse) collected 

and put the bagasse in a big Ziploc bag.  Make sure that no material is lost during 

the transfer.   

18) Take the collected bagasse to the laboratory for dry weight determination in the 

oven at 105oC.  Keep the samples in cooler until they are analyzed. 

19) For dry weight determination, place the contents of the Ziploc bag, being careful 

not to lose any material in the transfer, into a large pre-weighed tray. 
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20) Place the tray and its contents in the oven at 105oC until constant weight is 

achieved.  Record this value.  The dry weight (Wdry) of the sample is the 

difference between the tray-and-contents weight and the weight of the empty 

tray. 

21) Calculate parameters as follows: 

 

3600⋅=
t

W
T wet     (E.1) 

 

where 

 T = Megasse (fiber + liquid) throughput, lb/h 

 Wwet = Sample weight collected in trays, lb 

 t = Time during which the sample was collected, s 

 

 

3600⋅=
t

W
S dry     (E.2) 

 

where 

 S = Dry fiber throughput, lb/h 

 Wdry = Sample dry weight, lb 

 

 

1001 ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

wet

dry

W
W

L     (E.3) 

 

where 

 L = Liquid fraction or moisture content, lb H2O/100 lb total solids 
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Calculate the power (P) as shown in Equation 2.1.  The torque is the average of 

the numbers for the force displayed in the strain meter, which were filmed during sample 

collection, multiplied by the lever arm. 

To estimate the moisture content of the megasse in the tank or initial moisture 

content, it was necessary to determine the apparent density (ρapp) of the bagasse in the 

conditions of this process.  This procedure is as follows: 

1) Dry about 100 g of bagasse (as obtain from mill) in the oven at 105oC for 24 

hours.  

2) At the end of this period, weight the sample and record this value (Bdry) 

3) Transfer this material to a large 2-L graduated cylinder or to a conventional 

pycnometer (density bottle) of appropriate sized and add 1500.0 mL of water.  

Add a small (i.e., negligible volume in comparison to the total volume) stirring 

bar and stir for several hours until all the bagasse is completely soaked and that 

the liquid level stops decreasing.  Record this volume (V). 

4) Calculate the apparent density of bagasse as follows: 

 

V
Bdry

app −
=

1500
ρ      (E.4) 

 

The experimental value found for ρapp was 6.93 lb/gal.  The moisture content of 

the megasse in the tank is then estimated as follows: 

 

100

100

100
⋅

+⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

=

water
added

added

added
added

Tank

W
M

W

M
W

M    (E.5) 

 

where 

 MTank = Moisture content of megasse in tank, lb H2O/100 lb total solids 

 Wadded = Weight of bagasse added, lb 
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 Madded = Moisture content of the added bagasse, lb H2O/100 lb total solid 

 Wwater = Weight of water in the tank, lb 

 

The weight of the water in the tank (Wwater) is estimated as follows: 

 

water
app

added
added

readwater

M
W

VW ρ
ρ

⎥
⎥
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⎦

⎤

⎢
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⎢
⎢

⎣

⎡

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧
⎟
⎠
⎞

⎜
⎝
⎛

−=
100    (E.6) 

 

where 

 Vread = Volume of the material as read from the graduation in tank, gal 

 ρapp = Apparent density of the bagasse in the tank, lb/gal 

 ρwater = Density of water, lb/gal 
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APPENDIX F 

 

DATA FOR SCREW-PRESS CONVEYOR STUDIES  

 

Table F.1  Parameters pertaining to mass balance of the material collected  
in the 29 runs of the screw-press conveyor studies. 

 
n 

T#1+ 
solids 

T#2+ 
solids Tray#1 Tray#2 Wwet* time T* Cont. 

Cont+ 
Wdry* L* S* 

 (lb) (lb) (lb) (lb) (lb) (s) (lb/h) (lb) (lb) (% w/w) (dry lb/h)
1 41.0 44.4 31.4 31.2 22.8 40.45 2029.2 5.3 7.8 89.0 222.5 
2 39.8 42.8 31.4 31.2 20.0 43.41 1658.6 2.7 4.9 89.0 182.4 
3 39.0 46.6 31.4 31.2 23.0 59.56 1390.2 2.6 5.1 89.1 151.1 
4 38.2 43.0 31.4 31.2 18.6 44.70 1498.0 2.6 4.6 89.2 161.1 
5 38.2 40.2 31.2 31.2 16.0 45.66 1261.5 2.6 4.4 88.8 141.9 
6 37.2 39.6 31.4 31.2 14.2 49.85 1025.5 2.6 4.2 88.7 115.5 
7 38.6 38.8 31.4 31.4 14.6 48.10 1092.7 4.0 5.4 90.4 104.8 
8 40.2 40.5 31.4 31.2 18.1 46.69 1395.6 4.0 5.6 91.2 123.4 
9 42.4 43.6 31.2 31.2 23.6 44.93 1890.9 4.0 6.2 90.7 176.3 

10 36.9 40.9 31.2 31.2 15.4 47.10 1177.1 4.0 5.7 89.0 129.9 
11 43.8 44.4 31.2 31.2 25.8 48.99 1895.9 4.0 6.4 90.7 176.4 
12 59.6 59.4 31.2 31.2 56.6 22.59 9019.9 4.0 9.5 90.3 876.5 
13 49.0 51.8 31.2 31.2 38.4 44.73 3090.5 4.0 7.9 89.8 313.9 
14 47.4 53.8 31.2 31.2 38.8 44.86 3113.7 4.0 8.1 89.4 329.0 
15 48.3 50.4 31.4 31.2 36.1 46.69 2783.5 4.0 7.8 89.5 293.0 
16 42.4 60.7 31.4 31.2 40.5 52.23 2791.5 4.0 8.0 90.1 275.7 
17 48.5 51.4 31.4 31.2 37.3 45.82 2930.6 4.0 7.8 89.8 298.6 
18 48.2 50.7 31.2 31.0 36.7 52.20 2531.0 4.0 7.6 90.2 248.3 
19 46.0 52.1 31.2 31.2 35.7 43.87 2929.6 4.0 7.2 91.0 262.6 
20 44.4 52.0 31.2 31.2 34.0 41.59 2943.0 4.0 7.0 91.2 259.7 
21 48.8 50.2 31.2 31.2 36.6 46.11 2857.5 4.0 7.3 91.0 257.6 
22 58.3 54.2 31.2 31.2 50.1 22.59 7984.1 4.0 8.6 90.8 733.1 
23 51.0 50.7 31.2 31.2 39.3 17.87 7917.2 4.0 7.8 90.3 765.5 
24 42.8 46.1 31.2 31.1 26.6 16.29 5878.5 3.9 6.2 91.4 508.3 
25 48.3 46.4 31.2 31.1 32.4 18.18 6415.8 4.0 6.8 91.4 554.5 
26 45.0 45.3 31.3 31.2 27.8 17.46 5732.0 4.0 6.5 91.0 515.5 
27 49.7 51.2 31.3 31.1 38.5 15.76 8794.4 4.0 7.2 91.7 731.0 
28 48.0 59.0 31.2 31.2 44.6 17.07 9406.0 4.0 7.6 91.9 759.2 
29 56.6 57.1 31.2 31.2 51.3 17.68 10445.7 4.0 8.0 92.2 814.5 

* For calculation procedure and nomenclature refer to Appendix E 
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Table F.2  Data for the force (lbf) applied on lever arm from the videos  
for all 29 observations (n = 29). 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 8.0 8.8 8.7 8.1 8.6 8.7 9.6 9.0 9.4 10.1 11.2 11.3 11.5 13.3 15.1
2 10.0 9.8 9.3 9.2 8.5 9.8 9.2 8.6 8.0 7.8 9.0 10.4 10.3 10.7 10.3
3 4.7 4.5 4.7 5.0 5.1 5.8 7.0 7.9 7.4 7.2 7.0 6.8 6.5 6.6 7.1 
4 4.1 3.9 4.0 3.6 3.5 3.4 3.5 3.6 3.9 4.1 4.2 4.8 4.9 4.7 4.5 
5 4.4 4.8 5.3 5.5 5.2 5.4 7.0 6.5 5.9 6.7 6.4 6.5 6.1 6.2 7.0 
6 3.1 2.9 3.0 2.9 2.5 2.4 2.6 2.5 2.4 2.3 2.1 2.2 2.4 2.3 2.6 
7 2.4 2.6 2.5 2.4 2.5 2.4 2.3 2.7 2.6 2.9 3.1 3.0 3.3 3.4 3.1 
8 2.8 2.6 2.5 2.4 2.2 2.4 2.3 2.5 2.4 2.6 2.7 2.9 3.1 2.9 3.1 
9 3.3 3.4 3.9 3.7 3.5 3.6 3.9 4.0 3.9 3.6 3.3 3.4 3.5 4.0 4.7 

10 3.8 3.7 4.0 4.3 4.9 4.8 4.6 4.4 4.6 4.5 4.3 3.9 3.7 3.9 3.8 
11 3.3 3.2 3.1 3.2 3.0 2.9 2.8 2.9 2.8 2.7 2.8 3.0 2.8 2.9 2.7 
12 14.8 14.9 14.5 14.6 15.1 15.2 14.8 15.4 16.1 16.7 17.1 17.2 19.1 22.2 21.5
13 12.6 13.0 12.2 11.3 10.4 10.3 10.0 8.9 9.4 10.2 10.5 10.9 11.5 12.6 13.0
14 8.0 8.4 8.7 8.3 8.1 8.2 7.9 8.0 8.3 8.7 8.5 8.7 8.9 8.7 9.2 
15 9.5 9.7 9.6 9.5 10.2 10.0 9.9 10.1 10.4 10.1 9.6 9.9 10.1 9.6 9.3 
16 5.6 5.9 6.2 6.3 7.3 7.7 8.1 7.9 8.0 7.8 8.2 8.0 7.9 7.7 8.3 
17 6.3 6.2 6.3 6.4 6.6 6.9 7.1 7.9 6.3 5.8 6.2 5.6 5.3 5.9 5.7 
18 7.9 8.1 8.5 8.4 8.7 9.1 9.3 8.5 8.7 8.3 8.8 8.0 8.1 8.3 7.8 
19 3.4 3.3 3.7 3.5 3.6 3.9 4.2 4.6 4.3 4.2 4.1 4.0 4.1 4.0 3.9 
20 3.8 4.1 4.0 4.4 4.5 4.3 4.9 5.6 5.5 5.9 6.5 5.9 5.6 5.5 5.6 
21 6.1 5.4 4.8 4.5 4.7 4.5 4.3 4.0 4.1 3.9 4.3 4.1 4.2 4.0 4.8 
22 13.4 14.2 14.1 13.9 13.7 14.0 13.8 15.3 15.6 14.9 13.7 12.7 12.1 12.4 13.3
23 24.6 24.2 23.6 23.1 20.4 19.1 19.9 22.0 21.1 20.9 20.5 20.0 18.1 16.1 15.2
24 7.9 7.6 7.7 7.6 7.5 7.6 7.4 7.5 7.3 7.6 7.3 6.8 6.7 6.5 6.4 
25 10.9 10.0 9.4 9.5 7.8 8.2 7.9 8.0 8.3 8.0 8.1 8.5 8.8 9.0 9.1 
26 6.9 7.4 7.3 8.0 8.2 8.3 8.5 8.9 8.7 8.8 9.2 8.9 8.7 8.5 8.3 
27 7.9 7.5 7.8 8.2 8.7 8.2 7.8 7.7 7.5 7.2 6.4 6.7 6.4 6.5 6.2 
28 7.0 6.7 6.9 6.6 6.9 6.6 6.8 6.5 6.6 6.4 6.8 6.7 6.8 7.2 7.1 
29 7.4 7.3 8.0 7.8 8.2 7.9 8.1 8.0 7.7 7.5 7.4 7.3 6.7 6.0 6.7 
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Table F.2  Continued. 

n 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

1 12.7 12.0 12.4 14.6 15 13.7 12.9 13.5 13.6 12.3 11.2 10.5 9.5 8.6 7.4 
2 10.6 9.9 10.4 9.6 9.3 9.9 9.0 9.5 9.4 11.3 10.8 12.4 11.6 10.3 9.9 
3 6.6 6.2 6.1 6.5 6.0 5.8 5.5 5.8 5.2 4.8 4.4 4.2 3.9 4.2 4.1 
4 4.4 4.2 4.1 4.4 4.7 3.9 5.3 5.0 5.5 5.7 5.3 5.4 5.8 5.5 4.9 
5 6.4 5.6 5.1 4.9 3.8 4.2 4.8 4.7 4.5 5.4 5.5 5.3 5.8 5.7 5.6 
6 2.9 3.1 3.5 4.3 4.2 3.8 4.0 3.6 3.4 3.6 3.5 3.3 3.5 4.2 4.6 
7 3.0 2.8 2.9 2.7 2.8 2.6 2.9 3.0 3.1 2.8 3.0 2.8 3.2 3.0 3.1 
8 3.0 2.9 2.8 2.9 3.0 3.3 3.5 3.6 4.2 4.0 3.9 4.1 3.9 3.8 4.1 
9 4.6 5.2 4.8 4.9 4.8 4.5 4.0 3.7 3.2 3.7 3.3 3.5 3.3 3.1 3.2 

10 3.6 3.7 4.4 4.7 4.9 5.2 5.0 4.8 4.7 4.5 4.8 4.9 5.6 6.6 7.2 
11 2.6 2.5 2.6 2.4 2.6 2.7 2.8 2.9 2.8 2.7 2.8 2.7 3.0 2.9 3.0 
12 20.3 19.8 19.4 20.1 20.3 20.2 20.5 19.6 19.1 18.6 18.4 17.7 16.0 16.5 16.1
13 12.4 12.2 12.7 11.9 11.1 10.4 10.2 10.6 10.7 10.3 10.9 11.3 11.2 10.4 10.9
14 9.3 8.9 8.8 9.0 8.8 8.9 9.2 9.3 9.6 10.1 10.0 10.2 9.7 9.9 9.5 
15 9.6 9.8 9.7 10.0 11.3 11.7 12.0 13.0 12.5 12.3 12.8 14.6 14.4 15.0 14.8
16 8.1 7.9 8.0 7.8 8.4 8.2 7.9 7.7 7.5 5.9 6.1 6.2 6.3 5.9 6.0 
17 5.8 6.6 7.4 7.8 11.2 10.9 10.2 11.3 10.8 10.4 9.6 10.3 9.1 8.5 8.2 
18 8.9 8.5 8.4 8.1 8.0 8.6 8.2 9.1 8.6 9.0 8.9 8.7 8.3 8.2 8.0 
19 4.2 4.1 4.2 4.1 4.3 4.2 4.6 4.3 4.9 4.8 4.7 4.5 4.6 4.8 4.5 
20 5.7 5.8 5.4 5.3 5.1 5.2 5.7 5.5 5.6 5.2 4.9 4.7 4.5 4.6 4.5 
21 4.6 4.7 5.5 5.6 6.7 6.6 6.3 6.6 7.1 7.7 7.3 7.0 6.3 6.5 6.8 
22 13.0 12.3 12.8 12.9 13.0 12.6 13.1 13 12.6 12.3 12.5 12.3 12.0 12.8 12.9
23 12.7 13.0 14.7 13.9 13.3 13.1 12.7 12.6 13.2 13 12.8 12.4 11.9 11.6 11.9
24 6.1 5.5 6.2 6.3 6.6 6.9 7.0 7.5 7.3 7.7 7.5 7.7 7.8 8.0 7.8 
25 10.0 9.7 9.3 9.2 9.4 8.8 8.3 8.1 7.6 7.2 6.7 6.6 6.4 6.7 7.3 
26 7.9 7.1 7.5 7.1 7.0 7.4 7.3 6.9 7.1 7.6 8.2 8.0 8.3 8.2 7.9 
27 6.1 5.8 5.5 5.6 5.3 5.4 5.3 5.5 5.3 5.6 6 5.9 6.1 6.4 6.5 
28 7.2 7.5 7.3 7.5 7.6 7.4 7.1 6.8 6.5 6.4 6.2 5.6 5.7 5.8 5.9 
29 6.6 6.7 6.8 7.0 6.9 6.8 7.2 7.1 7.4 7.5 7.0 6.9 6.5 6.6 6.4 
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Table F.2  Continued. 

n 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 

1 8.4 8.3 8.1 7.8 6.9 6.1 6.4 6.7 6.8 6.7 6.5 6.8 6.7 6.6 6.3 
2 9.0 9.3 8.7 8.3 8.1 7.9 7.5 7.8 9.1 9.4 9.2 11.4 14.6 13.8 14.7
3 4.3 4.1 4.6 4.4 5.0 5.2 6.1 6.0 6.2 7.2 7.7 8.3 8.5 8.0 7.2 
4 4.3 4.1 4.0 3.3 3.4 3.3 3.5 3.6 3.9 3.8 3.6 3.7 3.8 3.7 3.5 
5 5.0 5.1 4.7 4.5 4.6 4.9 5.6 7.0 6.9 6.7 8.5 8.0 7.6 6.9 7.0 
6 5.6 5.1 4.7 4.4 5.8 5.9 5.7 6.2 5.3 4.8 4.9 4.5 4.3 4.9 4.6 
7 3.0 2.8 2.9 2.8 2.7 2.8 2.6 2.8 2.9 2.7 2.6 2.7 2.6 2.5 2.6 
8 4.2 3.9 3.6 3.3 3.2 3.0 2.8 2.7 2.8 3.0 2.8 2.7 2.6 2.7 2.8 
9 3.5 3.6 3.9 3.7 3.6 4.0 4.1 4.4 4.7 4.6 4.4 4.0 3.8 3.3 3.0 

10 7.6 6.8 6.6 6.3 6.6 7.2 7.6 7.8 8.2 7.8 8.5 8.8 8.3 7.6 7.0 
11 3.3 3.7 3.3 2.9 2.8 2.7 2.8 3.2 3.0 2.9 3.1 3.0 2.9 3.1 3.2 
12 15.6 14.9 15.4 14.4 14.8 15.2 14.7 14.6 14.7 16.2 16.0 15.3 15.8 17.0 17.7
13 10.7 11.1 10.9 11.1 10.2 10.5 10.6 11.4 11.5 11.8 11.3 10.9 11.3 10.9 11.3
14 9.7 10.2 9.8 9.4 8.9 9.4 9.1 8.2 8.4 8.2 9.0 9.1 9.4 9.5 10.0
15 15.6 17.3 19.0 18.1 17.2 15.7 15.4 15.1 14.0 5.1 5.9 6.0 7.4 7.1 7.4 
16 6.4 6.5 6.6 6.4 6.5 6.1 7.0 7.1 6.6 6.7 7.0 6.9 7.2 7.5 7.8 
17 8.1 7.7 6.6 6.2 7.0 6.6 6.3 6.5 6.4 6.6 6.3 6.5 5.9 6.0 5.3 
18 7.6 5.3 6.0 7.7 8.4 8.1 8.0 8.1 7.9 7.5 7.6 7.4 7.1 7.2 6.8 
19 4.3 4.2 4.5 4.7 4.8 4.3 4.7 4.6 4.5 4.0 4.3 4.4 4.2 4.0 3.8 
20 4.4 4.5 4.4 4.3 4.2 4.1 4.4 4.1 3.8 3.7 3.3 3.4 3.7 4.0 4.2 
21 7.0 7.6 8.3 7.9 7.2 6.8 7.1 6.7 7.0 7.1 6.9 6.6 6.1 5.5 4.9 
22 12.5 12.1 12.3 12.7 12.6 12.3 12.5 12.8 13.1 13.2 14.6 14.7 13.0 12.5 13.2
23 11.7 11.4 11.6 11.0 10.8 10.9 11.3 11.4 10.9 11.0 11.6 11.3 10.7   
24 8.0 7.6 8.0 7.9 7.6 7.5          
25 7.2 7.3 7.7 7.6 7.2 7.0 7.9 8.2 8.0       
26 8.5 8.8 9.1 9.3 8.8 8.4 7.8 7.2 7.3 7.0      
27 6.2 6.3 6.2             
28 5.8 5.7 5.6 5.7 6.1 6.4 6.3 6.2 6.5       
29 6.6 6.4 6.6 6.2 6.5 6.4          
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Table F.2  Continued. 

n 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

1 6.2 6.6 6.8 7.2 7.3 7.5 7.4 7.8 8.4 7.9 8.3 8.2 8.5 9.2 8.5 
2 15.8 16.3 16.2 17.5 17.8 18.4 18.9 16.8 14.6 14.5 12.6 11.6 11.4 10.6 7.5 
3 6.8 7.4 9.0 8.6 9.3 8.3 8.4 7.6 7.5 7.6 7.5 7.3 6.9 7.0 6.6 
4 3.3 3.7 3.5 3.6 3.9 4.0 4.2 4.3 4.1 4.3 4.1 4.2 4.7 5.3 5.4 
5 6.7 6.2 5.5 4.5 4.2 3.1 3.0 2.5 3.2 3.3 3.6 3.3 3.9 4.3 4.2 
6 4.7 4.5 4.7 4.6 4.9 4.7 4.2 3.7 3.5 3.0 2.8 2.3 2.5 2.3 2.4 
7 2.7 2.5 2.8 2.7 2.9 3.2 3.1 3.0 3.4 4.1 3.7 3.5 3.1 2.8 2.5 
8 2.9 3.0 3.3 4.5 3.7 4.0 3.5 3.2 3.0 2.9 2.7 2.6 2.7 2.6 3.0 
9 3.2 4.0 3.6 3.8 3.7 3.6 4.1 3.8 3.6 3.5 3.3 3.0 2.8 2.9 2.8 

10 6.4 6.8 7.5 8.3 8.4 8.8 9.2 8.6 8.7 8.6 9.0 8.1 8.0 7.5 7.6 
11 3.4 3.7 3.6 3.3 3.4 3.5 3.7 3.6 3.5 3.2 3.5 3.3 3.1 2.9 3.2 
12 17.9 18.3 20.9 30.9 26.8 24.5 24.4 25.5 24.4 25.2 24.7 25.9 24.6   
13 10.4 9.8 10.0 10.1 10.8 11.1 11.2 10.2 9.7 10.0 9.7 9.4 9.6 9.9 9.5 
14 9.7 9.8 8.7 8.4 8.6 8.3 8.2 8.3 8.6 9.0 8.7 8.9 9.1 9.7 9.5 
15 8.1 8.0 8.3 9.0 8.9 8.6 9.0 8.3 8.2 7.7 7.2 7.5 7.9 7.5 7.3 
16 8.8 8.6 8.1 7.6 7.2 6.9 6.5 5.7 5.9 6.7 7.3 7.8 7.6 6.9 6.2 
17 5.2 5.3 6.0 5.9 5.6 6.0 5.6 5.3 6.6 6.2 6.6 6.1 6.0 5.7 5.1 
18 6.3 6.5 6.9 6.8 7.3 7.2 7.8 7.6 8.2 8.3 8.0 9.0 9.3 9.5 10.1
19 4.1 4.2 4.3 4.7 4.4 4.8 4.7 4.6 5.1 4.8 4.6 4.5 4.6 4.5 4.3 
20 4.7 3.8 4.1 3.9 4.0 3.9 4.1 4.3 4.2 4.3 4.0 3.9 4.0 3.8 3.7 
21 4.3 3.9 3.6 3.8 3.7 3.6 3.5 3.4 3.5 3.4 3.8 3.7 3.9 4.3 4.4 
22 12.3 11.7 11.6 11.9 11.5 10.8          
23                
24                
25                
26                
27                
28                
29                
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Table F.2  Continued. 

n 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 

1 8.4 8.2 8.5 8.0 8.1 8.0 8.5 7.9 7.5 7.3 7.9 8.6 8.9 9.5 9.8 
2 9.2 11.1 9.9 10.1 8.8 8.3 7.8 7.7 7.0 6.3 6.6 7.2 7.1 6.4 7.0 
3 6.7 6.5 6.8 6.6 7.4 7.3 8.2 7.7 7.4 7.0 6.9 6.7 6.3 6.4 6.5 
4 5.1 5.4 5.2 5.0 4.9 5.0 5.7 5.3 5.1 5.4 4.9 4.8 4.7 4.4 4.3 
5 4.6 4.8 4.4 3.9 3.8 3.5 3.3 3.5 3.3 3.1 2.7 2.6 2.7 2.4 2.8 
6 2.5 2.6 2.8 2.7 2.9 3.0 3.2 3.0 3.1 3.3 3.1 3.0 3.7 3.8 3.6 
7 2.7 2.6 2.5 2.3 2.7 2.8 2.9 3.0 2.8 2.7 2.4 2.2 2.3 2.4 2.5 
8 2.8 2.9 2.6 2.4 2.3 2.4 2.5 2.6 2.9 2.7 2.9 3.2 3.3 3.2 3.1 
9 2.5 2.4 2.6 2.7 2.6 2.5 2.6 2.5 2.6 2.7 2.9 2.8 3.0 3.2 3.5 

10 6.8 6.9 6.7 6.5 5.5 5.2 5.0 4.5 3.2 4.7 4.2 4.8 4.5 4.9 4.7 
11 3.3 3.4 3.3 3.6 4.6 4.9 4.8 4.9 5.1 4.5 4.2 3.8 4.6 4.3 4.5 
12                
13 9.7 9.1 8.6 8.9 9.2 9.3 8.9 9.7 9.6 9.2 9.5 9.0 8.2 7.5 7.2 
14 9.8 10.0 10.5 9.8 9.9 10.8 10.7 10.9 10.4 10.3 9.9 9.5 10.2 9.6 9.3 
15 7.6 8.0 8.4 8.5 8.6 8.4 8.0 7.9 8.1 8.0 8.7 9.4 9.3 8.8 8.1 
16 5.7 3.1 4.3 4.7 5.2 5.3 5.7 6.6 6.3 5.9 6.0 5.9 6.4 6.5 6.3 
17 5.0 4.7 3.8 4.1 4.6 4.8 5.2 5.3 5.1 5.4 5.1 5.2 5.4 5.8 5.6 
18 9.2 8.2 7.8 7.0 6.9 6.6 4.1 5.1 6.0 5.9 5.8 5.5 6.0 6.3 5.9 
19 4.2 4.1 4.0 3.8 3.9 3.8 3.9 4.0 3.9 3.6 3.4 3.2 3.1 3.3 3.2 
20 3.8 4.0 3.9 3.8 3.7 4.0 3.9 3.7 3.9 4.0 3.9 4.0 3.8 4.2 4.0 
21 4.7 4.2 3.9 3.8 3.6 3.5 3.3 3.4 3.6 3.7 3.6 3.5 3.8 3.6 3.2 
22                
23                
24                
25                
26                
27                
28                
29                
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Table F.2  Continued. 

n 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 

1 10.6 10.0 9.3 9.1 8.4 7.2 5.3 6.0 9.4 9.2 8.7 8.6 8.0 7.1 6.3 
2 9.0 7.5 6.6 6.0 5.3 5.2 5.0 5.4 4.9 5.0 5.2 6.3 5.6 5.2 5.1 
3 6.7 6.6 6.4 6.8 6.9 7.5 8.7 9.4 9.8 10.6 10.0 9.8 7.8 7.4 8.1 
4 3.9 3.6 3.7 3.5 3.7 3.5 3.7 3.9 4.1 4.4 4.5 4.9 6.0 4.3 3.8 
5 2.9 2.7 2.9 3.1 3.2 3.5 3.4 3.2 3.1 3.0 2.9 2.7 2.6 2.7 3.0 
6 3.8 4.0 3.9 3.6 3.5 4.1 3.7 3.5 3.7 3.8 3.6 4.0 4.1 4.2 4.7 
7 2.6 3.2 2.9 3.1 2.8 2.7 2.5 2.4 2.3 2.2 2.3 2.2 2.4   
8 3.2 3.1 2.8 2.9 2.8 2.9 2.8 2.9 2.8 2.9 3.2 3.0 3.1 2.9 3.1 
9 3.4 3.6 4.1 3.9 3.7 3.8 3.5 3.7 3.6 3.7 3.6 3.9 3.8 4.0 4.1 

10 4.6 4.3 4.7 5.7 6.8 6.7 6.1 6.3 7.2 6.5 6.1 6.8 6.4 6.1 5.4 
11 5.5 5.3 5.0 4.6 4.2 3.9 3.5 3.8 3.4 3.6 3.3 3.4 3.6 3.3 3.2 
12                
13 7.0 4.6 5.8 5.6 5.9 6.8 6.7 7.0 8.1 7.8 7.6 7.1 7.2 7.4 7.3 
14 9.1 8.9 8.3 9.0 10.1 10.5 11.1 11.3 12.1 12.0 11.1 10.8 11.4 11.3 11.5
15 8.2 7.8 7.9 8.1 8.4 8.6 9.0 9.3 9.0 9.6 10.3 10.6 10.2 9.9 9.6 
16 6.2 6.9 6.7 6.4 6.9 7.1 6.6 6.5 6.8 6.6 6.2 6.5 6.7 6.3 6.0 
17 5.3 5.1 5.0 4.6 5.0 5.1 4.9 4.8 4.5 4.8 4.9 5.3 5.8 5.5 5.8 
18 6.0 6.5 6.4 6.5 6.8 6.6 6.7 6.8 7.0 7.2 7.5 7.4 7.2 6.9 6.6 
19 3.4 3.3 3.4 3.2 3.4 3.7 3.6 3.7 3.8 4.0 4.1 4.2 3.9 3.8 3.9 
20 4.1 4.0 4.2 4.6 4.3 3.8 3.7 3.4 3.7 3.6 3.4 3.7    
21 3.1 3.0 3.1 3.0 3.2 3.1 3.3 3.2 3.3 3.2 3.5 3.4 3.7 3.6 3.7 
22                
23                
24                
25                
26                
27                
28                
29                
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Table F.2  Continued. 

n 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 

1 7.3 6.9 7.0 6.7 7.4           
2 4.9 5.2 5.8 5.2 5.9 5.3 5.1 5.0        
3 7.6 6.9 6.3 6.1 5.5 5.4 4.1 4.2 4.5 5.4 5.6 6.7 6.9 9.8 8.7 
4 3.5 3.6 3.4 3.8 4.3 5.0 5.4 5.1 4.6       
5 2.9 3.4 3.0 3.5 3.2 2.9 3.0 3.1 2.9 3.1 3.0 2.7 2.5 2.6 2.5 
6 5.0 5.1 4.4 4.1 4.0 3.5 3.2 3.1 3.7 3.4 4.1 4.4 4.2 4.0 4.6 
7                
8 2.9 3.1 3.0 3.3 3.4 3.2 3.7 3.4 3.5 3.4 3.0 2.8    
9 4.2 4.1 4.2 4.1 3.9 3.8 4.0 4.1        

10 5.3 5.1 5.2 5.8 5.7 5.3 4.9 5.0 4.8 4.3 3.9 4.0 3.9 4.1 4.8 
11 3.1 3.2 3.3 3.5 3.6 3.8 3.9 4.1 3.4 3.7 3.6 3.2 3.1 3.3  
12                
13 8.0 7.9 7.6 7.8 7.3 7.0 6.5 6.6 6.4 6.5 6.3 6.7 6.5   
14 11.4 11.0 10.8 10.7 10.0 9.3 10.0 9.9 10.2 10.6 10.3 10.4 10.8 11.2 12.1
15 9.9 9.0 8.9 8.3 8.4 7.8 7.6 7.3 7.7 7.5 7.4 7.3 7.7 8.6 9.6 
16 5.8 5.7 5.6 5.8 5.9 6.0 6.1 6.2 6.3 7.5 7.1 6.9 7.3 6.9 6.5 
17 5.6 5.7 5.6 5.2 5.3 5.1 5.4 5.7 5.5 5.6 5.7 5.4 5.3 5.4 5.3 
18 6.5 5.4 5.6 5.3 5.4 5.2 5.8 5.7 5.2 5.5 5.4 5.8 5.9 6.0 5.6 
19 4.1 3.8              
20                
21 3.6 3.9 3.8 3.9 4.3 4.1 4.0 4.2 4.0 3.9 3.8 3.7 3.6 3.5 3.6 
22                
23                
24                
25                
26                
27                
28                
29                

 

 



 278

 

 

 

Table F.2  Continued. 

n 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 

1                
2                
3 8.1 6.3 5.6 5.4 6 5.1 4.5 3.9 3.8 4.1 4.7 4.8 4.7 5.4 6.4 
4                
5 2.4 2.6 3.0             
6 4.1 3.6 3.7 3.5 3.2 3.0 2.9 2.8 2.6 3.1      
7                
8                
9                

10 4.4 4.3 4.2 5.3 4.8 5.0          
11                
12                
13                
14                
15 9.1 8.6 7.9 8.1 7.8           
16 6.4 6.0 5.8 5.6 6.6 6.3 6.4 6.2 6.3 6.4 6.3 6.9 7.3 6.7  
17 5.4 5.3 5.2             
18 5.7 5.9 5.6 5.7 6.5 6.6 6.5 6.6 6.5 5.9 5.8 5.7 5.3 5.5 5.6 
19                
20                
21                
22                
23                
24                
25                
26                
27                
28                
29                
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Table F.2  Continued. 

n 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 

1                
2                
3 6.7 6.8 7.4 7.6 8.0 7.8 8.0 7.4 6.5 6.6 6.4 6.8 7.6 7.5 7.3 
4                
5                
6                
7                
8                
9                

10                
11                
12                
13                
14                
15                
16                
17                
18 6.0 6.1 7.2 7.6            
19                
20                
21                
22                
23                
24                
25                
26                
27                
28                
29                
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Table F.2  Continued. 

n 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

1                  
2                  
3 7.0 6.7 6.6 6.9 6.2 6.0 5.9 6.5 5.5 5.2 4.8 5.1 4.7 4.9 4.5 4.9 4.6 
4                  
5                  
6                  
7                  
8                  
9                  

10                  
11                  
12                  
13                  
14                  
15                  
16                  
17                  
18                  
19                  
20                  
21                  
22                  
23                  
24                  
25                  
26                  
27                  
28                  
29                  
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Table F.3  Parameters measured and calculated for  
power consumption determination. 

n F  τ σforce* στ* ω P σP* 

  (lbf) (lbf·ft) (lbf) (lbf·ft) (rpm) (hp) (hp) 
1 8.8 27.9 2.2 6.9 40.1 0.213 0.053 
2 9.3 29.5 3.4 10.7 40.2 0.226 0.082 
3 6.5 20.5 1.4 4.6 39.7 0.155 0.034 
4 4.3 13.7 0.7 2.2 60.1 0.157 0.026 
5 4.3 13.8 1.5 4.8 60.3 0.158 0.055 
6 3.7 11.6 0.9 2.9 60.2 0.134 0.033 
7 2.8 8.8 0.3 1.1 80.2 0.134 0.016 
8 3.0 9.7 0.5 1.5 80.2 0.147 0.023 
9 3.6 11.5 0.6 1.9 80.2 0.176 0.029 

10 5.8 18.3 1.6 4.9 40.3 0.140 0.038 
11 3.4 10.8 0.7 2.1 80.2 0.165 0.032 
12 18.6 58.9 3.9 12.5 40.0 0.448 0.095 
13 9.5 30.1 1.9 6.1 40.2 0.230 0.047 
14 9.6 30.4 1.0 3.2 40.1 0.232 0.025 
15 9.7 30.7 2.7 8.5 40.1 0.234 0.065 
16 6.7 21.2 0.9 2.9 60.1 0.242 0.033 
17 6.2 19.6 1.5 4.9 60.1 0.224 0.056 
18 7.1 22.5 1.3 4.0 60.1 0.258 0.045 
19 4.1 13.0 0.5 1.5 80.1 0.198 0.022 
20 4.4 13.8 0.7 2.3 80.1 0.211 0.034 
21 4.6 14.6 1.4 4.5 80.1 0.223 0.069 
22 13.0 41.0 1.0 3.1 40.1 0.314 0.023 
23 15.1 47.7 4.5 14.2 40.5 0.368 0.109 
24 7.3 23.0 0.6 2.0 60.2 0.264 0.023 
25 8.2 26.1 1.1 3.4 60.2 0.299 0.039 
26 8.0 25.4 0.7 2.3 60.2 0.291 0.026 
27 6.5 20.7 1.0 3.1 80.3 0.316 0.047 
28 6.6 20.8 0.6 1.8 80.3 0.318 0.028 
29 7.1 22.4 0.6 1.8 80.2 0.341 0.028 

* σ ≡ Standard deviation 
For calculation procedure and nomenclature refer to Chapter II 
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APPENDIX G 

 

DATA FOR SUGARCANE JUICE PRESERVATION STUDIES 

 

Most data for these studies have already been shown in Chapter III.  The data 

that follow (Tables G.1 through G.4) are the numerical values for Figures 3.1 through 

3.21 and Figures 3.32 through 3.34. 

 

Table G.1  Sucrose concentrations and pH for preservation of 40 and 
20-g-sucrose/L juice at the specified lime loading. (Figures 3.1 – 3.20) 

0.5 g Ca(OH)2/100 g sucrose 
 40 g/L   20 g/L  

Time pH Conc. Time pH Conc. 
(days)   (g/L) (days)   (g/L) 

0 8.46 41.5 0 8.31 19.5 
7 3 0 7 3 0 

15 3.4 0 15 3.3 0 
      
      

1.5 g Ca(OH)2/100 g sucrose 
 40 g/L   20 g/L  

Time pH Conc. Time pH Conc. 
(days)   (g/L) (days)   (g/L) 

0 10.48 38.9 0 10.14 22.7 
7 3.5 0.5 7 3.5 0 

15 3.6 0 15 4.24 0 
      
      

3 g Ca(OH)2/100 g sucrose 
 40 g/L   20 g/L  

Time pH Conc. Time pH Conc. 
(days)   (g/L) (days)   (g/L) 

0 11.23 40.5 0 11.22 22.0 
7 4 0 7 4 18.3 

15 3.9 0 15 3.63 0 
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Table G.1  Continued. 
4 g Ca(OH)2/100 g sucrose 

 40 g/L   20 g/L  
Time pH Conc. Time pH Conc. 
(days)   (g/L) (days)   (g/L) 

0 11.56 40.5 0 11.5 24.8 
7 10.30 39.2 7 10.08 18.2 

15 4.52 0 15 3.82 0.2 
  average 39.9   average 21.5 
      
      

5 g Ca(OH)2/100 g sucrose 
 40 g/L   20 g/L  

Time pH Conc. Time pH Conc. 
(days)   (g/L) (days)   (g/L) 

0 11.75 40.6 0 11.7 18.8 
7 10.72 38.6 7 10.3 18.9 

15 5.28 39.2 15 4.4 0 
  average 39.6   average 18.9 
      
      

7 g Ca(OH)2/100 g sucrose 
 40 g/L   20 g/L  

Time pH Conc. Time pH Conc. 
(days)   (g/L) (days)   (g/L) 

0 11.97 39.7 0 11.91 21.1 
7 11.48 38.3 7 10.84 22.1 

15 10.15 42.1 15 10.16 19.7 
37 4.78 0 37 4.79 0 
88 5.2 0 88 5.2 0 
  average 40.0   average 21.0 
      
      

10 g Ca(OH)2/100 g sucrose 
 40 g/L   20 g/L  

Time pH Conc. Time pH Conc. 
(days)   (g/L) (days)   (g/L) 

0 12.17 36.8 0 12.13 18.6 
7 11.93 36.6 7 11.62 19.5 

15 11.55 42.6 15 11.08 18.9 
37 11.01 43.8 37 10.54 20.2 
88 10.59 44.8 88 3.5 0 

169 3.5 0 169 3.5 0 
  average 40.9   average 19.3 
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Table G.1  Continued. 
15 g Ca(OH)2/100 g sucrose 

 40 g/L   20 g/L  
Time pH Conc. Time pH Conc. 
(days)   (g/L) (days)   (g/L) 

0 12.37 37.5 0 12.31 18.3 
7 12.18 36.2 7 12.02 18.5 

15 12.06 42.7 15 11.79 19.3 
37 11.82 42.2 37 11.48 19.1 
88 11.46 42.4 88 10.86 19.1 

169 10.86 37.8 169 11.00 19.3 
248 10.43 43.4 248 10.58 19.6 
368 3.5 0 368 3.5 0 

  average 40.3   average 19.0 
      
      

20 g Ca(OH)2/100 g sucrose 
 40 g/L   20 g/L  

Time pH Conc. Time pH Conc. 
(days)   (g/L) (days)   (g/L) 

0 12.43 38.6 0 12.41 18.8 
7 12.31 39.9 7 12.22 18.5 

15 12.22 42.1 15 12 19.0 
37 12.07 41.5 37 11.77 17.4 
88 11.88 41.9 88 11.26 18.7 

169 11.26 40.9 169 11.32 19.9 
248 10.88 40.4 248 11.07 19.5 
368 10.56 40.2 368 10.7 19.0 

  average 40.7   average 18.8 
      
      

30 g Ca(OH)2/100 g sucrose 
 40 g/L   20 g/L  

Time pH Conc. Time pH Conc. 
(days)   (g/L) (days)   (g/L) 

0 12.49 37.2 0 12.46 19.3 
7 12.44 36.8 7 12.31 18.1 

15 12.38 42.5 15 12.22 16.9 
37 12.28 42.5 37 12.02 18.1 
88 12.32 38.1 88 12.07 18.9 

169 12.07 39.5 169 11.59 19.2 
248 11.87 39.5 248 11.31 15.5 
368 11.25 40.8 368 10.98 18.8 

  average 39.6   average 18.1 
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Table G.2  Necessary lime loading as a function 
of preservation time (Figure 3.21) 

Time  Lime Loading 
(days)  (g Ca(OH)2/100 g sucrose)

0  0.5 
2  1.5 
6  3 

11  4 
14  5 
16  7 
112  10 
281  15 
368  20 
368   30 

 

 

Table G.3  Sucrose concentrations at several dates for the preservation of the 
different batches of juice (Figures 3.32 and 3.33). 

Bfiltered    Bscreened   
Time Date Conc.  Time Date Conc. 
(days)  (g/L)  (days)  (g/L) 

0 12/5/2001 122.1±0.1  0 3/7/2003 117.4±1.8 
339 11/9/2002 120.7±0.9  155 8/9/2003 120.2±0.4 

 average 121.4   average 118.8 
       

Bclarified    Bperiodic   
Time Date Conc.  Time Date Conc. 
(days)  (g/L)  (days)  (g/L) 

0 12/9/2002 118.9±0.3  0 5/11/2003 155.3±4.2 
63 2/10/2003 117.8±4.6  90 8/9/2003 159.3±0.1 

 average 118.3   average 157.3 
       

Pno-prep #1    Pno-prep #2   
Time Date Conc.  Time Date Conc. 
(days)  (g/L)  (days)  (g/L) 

0 12/8/2000 108.7±0.3  0 5/11/2001 131.1±0.0 
37 1/14/2001 107.3±8.1  117 9/5/2001 134.7±6.0 
54 1/31/2001 109.7±0.8  166 10/24/2001 134.0±1.0 
138 4/25/2001 115.9±2.9  315 3/22/2002 138.1±2.9 

 average 110.4   average 134.5 
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Table G.3  Continued. 
  Pclarified     
  Time Date Conc.   
  (days)  (g/L)   
  0 3/8/2003 73.4±0.2   
  190 9/14/2003 73.6±3.2   
   average 73.5   

 

 

Table G.4  Sucrose concentrations as a function of time at 45oC and 30oC (Figure 3.34). 
45oC    30oC   
Date Time Conc  Date Time Conc 

 (day) (g/L)   (day) (g/L) 
7/25/2003 0 116.1  7/25/2003 0 114.1 
7/31/2003 6 114.8  8/23/2003 29 117.6 
8/8/2003 14 113.9  9/23/2003 60 118.2 
8/17/2003 23 105.8  10/24/2003 91 117.2 
8/23/2003 29 109.8  12/1/2003 129 114.0 
8/30/2003 36 108.3     
9/7/2003 44 108.1     
9/14/2003 51 94.6     
9/20/2003 57 94.1     
9/30/2003 67 92.1     
10/5/2003 72 89.9     

10/12/2003 79 89.9     
10/18/2003 85 86.1     
10/26/2003 93 82.5     
11/2/2003 100 84.9     

11/10/2003 108 83.2     
11/15/2003 113 83.0     
12/1/2003 129 80.8     
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APPENDIX H 

 

HPLC SUGAR ANALYSIS 

 

This procedure is similar to the method described by Chang (1999).  High 

Pressure (or Performance) Liquid Chromatography (HPLC) was used to measure 

concentrations of all sugars in these studies (i.e., glucose, xylose, and sucrose).  For 

glucose and xylose a resin/lead-based ion exchange column (Aminex® HPX-87P, Bio-

Rad Laboratories, Hercules CA) equipped with deashing guards (1 cation H+ and 1 

Anion CO3
-, 125-0118, Bio-Rad Laboratories) was used.  The deashing guards are 

necessary to remove citrate from the samples, which tends to degrade the column.  For 

sucrose measurements, a resin/calcium-based ion exchange column (Aminex® HPX-

87C, Bio-Rad Laboratories), equipped with a guard column (Carbo-C, Bio-Rad 

Laboratories), was used because of the high calcium concentrations sometimes found in 

these samples.   

Both columns were operated at the same conditions as follows: 

Samples injection volume: 20 µL 

Loop size: 20 µL  

Autosampler tray temperature: 5oC 

Mobile phase: 18.3-mΩ-cm reverse osmosis deionized (RODI) water, degassed  

by vaccum filtration through a 0.45-µm nylon membrane 

Flow rate: 0.6 mL/min 

Column temperature: 85oC 

Detector: refractive index (RI) 

The HPLC system used the following equipment: 

Pump: ConstaMetric 3200 (LDC Analytical, Riviera Beach FL) 

Autosampler: AS100 (Spectra-Physics Analytical, Freemont CA) 

Column Heater: Jones Chromatography (Hengoed, Wales UK) 

Pulse dampener:  LP-21 (Scientific Systems/Laballiance, Inc., State College PA)  
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Detector: Perkin Elmer RI detector, Series 200 (Perkin Elmer Life and Analytical  

 Sciencies, Boston MA) 

Integrator: SP4270 (Spectra-Physics Analytical, Freemont CA) 

RODI water system: NANOpure Ultrapure Water System  

 (Barnstead/Thermolyne, Dubuque IO) 

 

H.1 Sample preparation 

 

1) Centrifuge samples at 4000 rpm for 5 min to separate liquid from coarse solids 

(i.e., bagasse or lime). 

2) Dilute samples accordingly to obtain 3 – 6 mL of diluted sample with a sugar 

concentration of 1 – 5 g/L in 12-mL polypropylene copolymer (PPCO) centrifuge 

tubes equipped with appropriate caps (Nalgene® 3110-0120, Fisher Scientific 

Co., Pittsburgh PA). 

3) Centrifuge diluted samples at 15,000 rpm for ~30 seconds. 

4) Using a syringe, pressure-filter the centrifuged diluted samples through a 0.45-

µm nylon membrane (Fisher Scientific Co.) into autosampler vials equipped with 

a sealing lid.  The volume in the vial should be ~ 1 mL. 

5) Make sure that all tubes and vials are properly labeled. 

 

H.2 Sugar Standards preparation 

 

1) Prepare 5.00-g/L sucrose stock solution by dissolving 0.500 g of 45oC-dried 

sucrose in a 100-mL volumetric flask with RODI water or 5.00-g/L 

glucose+xylose stock solution by dissolving 0.500 g 45oC-dry glucose plus 0.500 

g 45oC-dried xylose in a 100-mL volumetric flask with RODI water.  

2) Prepare four or five standards with concentrations between 0.00 g/L and 5.00 g/L 

(e.g., 0.500, 1.00, 2.00, 3.00 and 4.00 g/L) by diluting the sucrose or 

glucose+xylose stock solution accordingly with RODI water.   
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3) Place ~ 1 mL of each of these standards in autosampler vials and cap them with 

sealing lids.  The 5.00-g/L stock solution is also considered one of the standards. 

4) Freeze the stock solutions and/or the standards if the analysis will be done later.  

Be sure to mix the solutions thoroughly after thawing because freezing separates 

the sugars from the water. 

 

H.3 Equipment Setup 

 

1) Degas ~ 4 L of 18.3-mΩ-cm RODI water by vacuum filtering through a 0.45-µm 

nylon membrane into a glass jug.  The column requires the water to be degassed 

to avoid bubble formation and to keep the baseline from drifting; therefore, it is 

recommended not to run HPLC for longer than 2 – 3 days, because the water 

loses its degassed condition after a period of time. 

2) While the water is being degassed turn on the pump, the autosampler, the RI 

detector and the integrator for warm-up. 

3) Load the autosampler user file as follows: 

a) Press the MENU key to display the main menu.  Select FILES, followed by 

EDIT and then INJECTION to display the edit menu, using the arrow keys to 

move the cursor and the ENTER key to select the desired option. 

b) Adjust loop size to 20 µL and the number of injections per sample to the 

desired number using the “+” key to increase or “–” key to decrease the 

values.  

c) Adjust the cycle time to 20 min. 

d) Turn on the built-in tray cooler by pressing the “+” key to select the option 

ON.  Adjust the refrigerator temperature to 20oC using the “+” or “–” keys. 

e) Press the ENTER key several times to use the default values for other 

parameters. 

f) Load the file by selecting FILES then LOAD from the main menu and then 

pressing the ENTER key. 
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4) Check the tray temperature by pressing STATUS and then with the cursor down-

arrow key (“▼”) scroll down until the temperature is displayed. 

5) Wait for several minutes and when the temperature reaches the set point (i.e., 

20oC) repeat Step 3a then pressing ENTER several times to scroll down, select 

tray temperature once again, and adjust it to 15oC as described in Step 3d.  Then 

repeat Steps 3e and 3f to load the file. 

6) Repeat Step 5 to decrease the tray temperature to 10oC, then to 8oC and finally to 

5oC.  This sequential decrease of tray temperature is important, because the 

cooler overloads if the temperature is decreased directly to 5oC. 

7) Once the water has been degassed, place the glass jug on the stirring plate, and 

start stirring as slowly as possible.  Place the pump inlets, equipped with filtering 

fittings, inside the glass jug, and prime the pump with a syringe by sucking about 

40 mL of water from the priming port. 

8) Start the pump to flush air bubbles from the system, and increase the flow rate to 

about 2 mL/min.  The liquid goes from the pump, through the pulse dampener, 

through the autosampler, through a long piece of tubing, which for now takes the 

place of the column, through the RI detector and out to the waste container. 

9) Turn on the purge in the RI detector.  This allows both the reference and sample 

cells to be purged with water. 

10) After about 30 – 40 minutes of purging, decrease the flow rate to 0.2 mL/min and 

be prepare to connect the column. 

11) Take out the column from the refrigerator (4 – 10oC), where it is normally stored, 

and remove its end screw-plugs, which are used to keep it from drying during 

storage. 

12)   Connect the column as described in the Bio-Rad manual, Guidelines for Use 

and Care of Aminex® Resin Based Columns.   

13) After the column has been connected and fitted into the column heater, turn on 

the heater and adjust the temperature to 85oC.  Allow the column to reach this 

temperature.  It usually takes about 1 h. 
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14) After the column heater reaches 85oC as indicated by a mercury thermometer 

inside the heater, gradually increase the flow rate (i.e., 0.01 mL/min every 30 – 

40 sec) from 0.2 to 0.6 mL/min.  Do not operate the column at flow rates higher 

than 0.2 mL/min at ambient temperature because this causes the column to 

collapse. 

15) Adjust the integrator to start marking peaks (PM), to start or inactivate 

integration (II) depending on the residence times of the desired peaks and to end 

the recording (ER) after 20 min.  This is done as follows: 

a) Press the integrator DIALOG key and press ENTER until the 

TIME/FUNCTION/VALUE option is displayed. 

b) Enter the following information pressing the ENTER key after each value has 

been keyed in: 

   TIME   FUNCTION  VALUE 

   TT = 0.0  TF = PM  TV = 1 

   TT = 0.01  TF = II   TV = 1 

   TT = 4.0  TF = II   TV = 0 

   TT = 17.0  TF = II   TV = 1 

   TT = 20.0  TF = ER  TV = 1 

The integrator has thus been set to do the following: 1) at time 0 min, it will start 

marking the peaks (PM), 2) at time 0.01 min it will turn on the inactivate-

integration (II) option, 3) at time 4.0 min it will turn off the II option, so any 

peaks that show up between time 0.01 and 4.0 min will not be integrated, 4) at 

time 17.0 min it will turn on the II option again, so the peaks with residence 

times between 4.0 and 17.0 min will be integrated, and those that show up after 

17.0 min will not, 5) at 20 min it will end the recording and report the integration 

results.  This setting is appropriate for both sucrose and glucose+xylose samples 

because the sucrose peak appears at about 8 min, but to check for reducing 

sugars, it is important to also observe the times of 12 and 13 min, which are 

about the residence times for glucose and fructose, respectively in the HPX-87C 
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column.  On the other hand, for glucose and xylose their residence times are 

about 11 and 12 min, respectively, but it is also important to check for cellobiose 

at a residence time of about 9 min. 

16) Turn off the purge in the RI detector to stop circulating liquid through the 

reference cell and run a baseline by pressing INJ A in the integrator.  Check the 

baseline for noise or drift.  If the baseline does not display noise and it is straight, 

then it is possible to start running samples, otherwise, check the integrity of the 

equipment, especially the RI detector, by referring to the appropriate manual.  

The baseline recording can be stopped by pressing ABORT A in the integrator. 

 

H.4 Sugar Concentration Measurements in Samples 

 

1) Place the sample and standard vials in 1, 2 or 3 bins depending on the number of 

vials and place them in the autosampler tray. 

2) Edit and load a sample file in the autosampler as follows: 

a) Press the SAMPLE key to display the sample menu. 

b) Specify the sample set number. 

c) Select the number of injections per vial. 

d) Specify the first vial to run according to its position in the tray.  There are 3 

bins (i.e., A, B and C) with 35 sample spaces each; therefore, say the first 

sample is in Space 23 in Bin B, you enter B23 using the “+” and “–” keys. 

e) Specify the number of samples that will be run.   

f) Add the sample set to the queue by pressing the ENTER key.  The 

autosampler runs the first sample from the position specified in Step 2d and 

then it will continue in ascending order from that position until it completes 

the specified number of samples (Step 2e). 

3) Press the RUN button to start measurements. 

4) Collect the chromatograms after all samples have been run.  Using the standards, 

prepare a calibration curve, which relates area to sugar concentration.  Observe 
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the retention times to recognize the peaks, and calculate the sample sugar 

concentration from the area given in the chromatograms and the calibration 

curve. 

 

H.5 Equipment shut-down 

 

1) After running the samples, decrease flow rate gradually to 0.2 mL/min. 

2) Turn off the heater, and, without disconnecting, expose the column, which is 

encased in the heater, to ambient temperature so that it cools faster. 

3) Once the column has cooled to ambient temperature (usually takes about 30 

min), disconnect it from its inlet and outlet tubing. 

4) Replace the column end screw-plugs and return the column to the refrigerator for 

storage. 

5) Replace the piece of tubing, which takes the place of the column, and increase 

the flow rate to about 2 mL/min to flush the system for about 15 min. 

6) Decrease the flow rate to 0.1 mL/min and press the STAND BY button on the 

pump. 

7) Turn off the pump, RI detector, the autosampler and the integrator. 

 

For required maintenance of the column, autosampler and RI detector, refer to the 

appropriate manual. 
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APPENDIX I 

 

PROCEDURES FOR ANALYSIS OF SAMPLES FROM LONG-TERM LIME 

PRETREATMENT 

 

I.1 Preparation of Sample Flasks for the Pretreatment Process 

 

1) Place 400 g of 40-mesh untreated bagasse into several 1-L centrifuge bottles to 

start the washing process.  (This amount should be enough to monitor the 

pretreatment process as a function of time for as long as necessary.). 

2) Add about 800 mL of water to each centrifuge bottle and stir for 15 min. 

3) Centrifuge at 3500 rpm or more for 15 min. 

4) Decant as much water as possible into the sink.  

5) Repeat Steps 2 through 4 until the water does not get any clearer. 

6) Transfer the contents of the centrifuge bottles as much as possible to other 

containers. 

7) Dry the washed biomass at 45oC for 24 hours or longer if necessary. 

8) Let the biomass regain equilibrium moisture content with the environment.  This 

procedure might take several days. 

9) Determine the moisture content of a sample biomass as described in NREL 

Standard Procedure No. 001 (X1). 

10) Load each flask with 3 g dry weight of bagasse, add 1.5 g of Ca(OH)2, and 27 

mL (9 mL/g dry bagasse) or 36 mL (12 mL/g dry bagasse) of distilled water.  

Record the exact amount of biomass (W1) and lime (WCa(OH)2) added to each flask 

to the nearest 0.1 mg. 

11) Place in shaking incubator at the appropriate temperature and start pretreatment 

procedure.  The flasks are set up in duplicates, which will yield two subsets of 

samples (A and B) at the same conditions of time and oxygen presence.  
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Oxidative conditions are implemented by air purging, and oxygen is excluding 

by capping the bottles. 

12) Take flasks off line as frequently and for as long as necessary to monitor the 

process. 

 

I.2 Lime Consumption as a Function of Time 

 

For this analysis, Subset A is used.  The procedure follows: 

1) After the flasks with the bagasse are taken out of the shaking air bath, transfer all 

the contents of Subset A to a beaker.  Use as much water as necessary to aid in 

this procedure.  

2) Set up a titration apparatus.  Place the beaker with the sample on a magnetic 

stirrer and drop a magnetic bar into the beaker.  Use a buret clamp to place a 

buret over the beaker.  Fill the buret with a certified standard solution of 

hydrochloric acid (nominal concentration 1 N, Fisher Scientific Co., Pittsburgh 

PA) and record the starting volume (V1). 

3) Using a well-calibrated pH meter, titrate the solution in the beaker under constant 

stirring until the pH reaches 6.80 to 7.00.  This procedure may take several hours 

because calcium carbonate formed in the fibers takes a long time to be released. 

4) Record the final volume of HCl (V2).  Calculate the amount of Ca(OH)2 left after 

pretreatment as follows: 

 

2
21HCl2 Ca(OH)MW 

1000
)(

HClmol  2
Ca(OH) mol  1

×
−

×=
VVN

Wleft   (I.1) 

 

where 

Wleft  = Total amount of Ca(OH)2 left after pretreatment, g 

 NHCl = Normality of the certified standard HCl solution, mol/L 

V1 = Starting volume of HCl in titration, mL 

V2 = Final volume of HCl in titration, mL 
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MW = Molecular weight of Ca(OH)2 (74.092 g/mol) 

 

5) During the titration there might be some variations introduced (e.g., the Ca(OH)2 

is not 100% pure, there might be some Ca(OH)2 consumed during the titration 

due to exposure to carbon dioxide in the air, or from the distilled water used, 

etc.).  To account for this, the value for Ca(OH)2 left (Wleft) must be multiplied by 

a correction factor (Cf) to obtain the corrected amount of Ca(OH)2 left (Wcorr).  

This values correlates better to the amount of Ca(OH)2 added before pretreatment 

(WCa(OH)2).  For this purpose, the titration procedures are performed on untreated 

bagasse by preparing a flask as described in Step 10 of Section I.1, and 

immediately proceeding to Steps 1 through 4 of this section.  This sample serves 

as blank for the titration procedure.  The corrected amount of Ca(OH)2 left is 

calculated as follows: 

 

0

0
Ca(OH)2

left
f W

W
C =       

fleftcorr CWW ⋅=     (I.2) 

 

where 

  Cf  = Correction factor, g Ca(OH)2 before titration/g  

Ca(OH)2 after titration 

   = Ca(OH)0
Ca(OH)2W 2 added to untreated bagasse before  

titration, g 

    = Ca(OH)0
leftW 2 left after titration of untreated bagasse  

(Steps 1 through 4), g 

  Wcorr  = Corrected amount of Ca(OH)2 left, g 

 

 

 



 297

6) The exact amount of Ca(OH)2 added before pretreatment was recorded when the 

bottles were prepared for the experiment (WCa(OH)2 from Step 10 in Section I.1).  

From Step 5, the corrected amount of Ca(OH)2 left was calculated (Wcorr).  The 

consumption of Ca(OH)2 is calculated as follows: 

 

Ca(OH)2 consumed (g/g untreated bagasse) = 
)1( 11

Ca(OH)2

XW
WW corr

−×

−
  (I.3) 

 

7) Transfer the titrated slurry to a 1-L centrifuge bottle, and wash and dry the 

bagasse as described in Steps 2 through 8 in Section I.1. 

 

I.3 Determination of Weight Loss Due to Pretreatment 

 

Subset B (Step 11 in Section I.1) is used for this analysis. 

1) Take an empty container and four or five 11-cm Whatman 934/AH glass fiber 

filter paper (particle retention = 1.5 µm) (Fisher Scientific Co., Pittsburgh PA), 

which have been placed in a container. Dry both the empty container and the 

filter papers in 45oC oven for 24 h or longer.  Place the 45oC-dried container and 

filter papers in a desiccator and let them cool.  Accurately record their weights to 

the nearest 0.1 mg. 

2) When the flasks are taken out from the air bath, transfer all the contents to a 1-L 

centrifuge bottle.  Be careful not to lose any material in the process.  Use as 

much water as necessary to aid in this procedure. 

3) Add enough water to fill up the centrifuge bottle.  Start mixing with a magnetic 

stirrer using a magnetic bar of appropriate size.  

4) While mixing, add glacial acetic acid to bring the pH down to about 5 to 6 to 

solubilize any unreacted lime. 

5) Continue stirring for 15 min. 

6) Centrifuge the water/bagasse mixture at 3500 rpm or more for 15 min.  
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7) During the centrifuge period, set up a vacuum filtration apparatus using a 

Buchner funnel and one of the pre-dried/pre-weighed filter papers.  

8) After centrifuging, carefully decant the water into the Buchner funnel with 

vacuum filtration.  Decant as much water as possible being careful not to lose 

much solids.  Observe the filtrate color. 

9) Repeat Steps 3, 5, 6, and 8 until the filtrate becomes clear.  If it takes too long to 

filter, replace the old filter with one of the other previously dried and weighed 

filter papers. 

10) After completing the washing, transfer all the bagasse to the weighed empty 

container from Step 1.  Be careful to transfer all the solids to the container.  Use 

as much water as needed to aid in this task.  

11) Dry the biomass and the filter papers at 45oC for 24 h or longer. 

12) Cool the biomass and filters in a desiccator until they reach room temperature. 

Weigh them and accurately record the values.  After subtracting the weight of 

the containers and filter paper, the net weight of the bagasse is obtained (W2). 

13) Immediately after, using about 0.3 – 0.5 g of this 45oC-dried washed biomass, 

determine the moisture content as described in the NREL Standard Procedure 

No. 001 (NREL, 1992) (X2).  Store the rest of the biomass for 3-day enzyme 

digestibility and lignin analysis. 

14) The total yield is calculated using the following formula: 
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where 

Y = Total yield, g treated bagasse/g untreated bagasse 

W1 = Weight of the washed raw biomass before pretreatment in 

each flask, g 

X1  =  Moisture content of the washed raw biomass at room 
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conditions (W1), g H2O/g total weight 

W2 = Weight of the 45oC-dried bagasse in container and filter 

papers, g 

X2 = Moisture content of the 45oC-dried biomass (W2), g H2O/g  

total 45oC-dried weight. 

 

At this point, the remaining materials from lime consumption determination and 

mass balance are mixed together to be analyzed for lignin content and 3-day cellulase-

enzyme digestibility. 

 

I.4 Lignin Analysis of the Treated Biomass 

 

The total Klason lignin content (g lignin/100 g dry bagasse) is determined using 

NREL Standard Procedures No. 003 and 004 (NREL, 1992). 

From this same procedure, the acid-insoluble ash content (g acid-insoluble 

ash/100 g dry bagasse) in the bagasse can also be determined by weighing beforehand 

the filtering crucible used, which is taken as the tare for the “acid-insoluble ash + 

crucible” value.  If we assume that bagasse is composed only of lignin, ash, and 

holocellulose, the holocellulose fraction (g holocellulose/100 g dry bagasse) can be 

obtained by subtracting acid-insoluble ash and lignin fractions from 100. 

 

I.5 Determination of 3-day Enzyme Digestibility Yields 

 

The method for these digestibility studies is similar to the analysis developed by 

Chang (1999).  For this procedure, the enzyme activity as determined by the NREL 

method No. 006 (NREL, 1992) is needed. 

1) Determine the moisture content of the sample to be analyzed as described in 

NREL Standard Procedure No. 001 (NREL, 1992) (Xi, g H2O/g ambient 
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bagasse).  This sample is from the remaining material from lime consumption 

determination and the mass balance procedure, which was also employed for 

Klason lignin determination. 

2) 500 mL of a 1-M citric acid (citrate buffer) solution (pH 4.3), should have been 

prepared beforehand by dissolving 105 g of citric acid monohydrate in 500 mL of 

distilled water and then adjusting the pH with sodium hydroxide to 4.3.  This 

solution when diluted to 0.05 M, should have a pH of 4.8.  Also a 0.01-g/mL 

sodium azide solution should be prepared. 

3) Based on the moisture content from Step 1, weigh approximately 2.5 g dry 

bagasse or less, and record the ambient weight (not the dry weight) to the nearest 

0.1 mg (Wi).   

4) Carefully place this weighed material into a 125-mL Erlenmeyer bottle equipped 

with a sealing cap.  Be careful not to lose any of the sample during transfer. 

5) The distilled-water loading is 16.8 mL/g dry bagasse.  Compute the actual 

amount needed according to the dry weight of the bagasse present in the bottle 

(Step 3) and subtract 12 mL, which will be used later to clean the pH probe.  Add 

the computed amount of water (minus the 12 mL) to the bottle. 

6) Add 1 mL of citrate buffer/g dry bagasse and 0.6 mL of sodium azide/g dry 

bagasse, which will keep the pH constant and inhibit microbial growth, 

respectively. 

7) Add glacial acetic acid or sodium hydroxide to each flask to adjust the pH to 4.8.  

While adjusting adding the acid or the base, continuously monitor the pH while 

shaking the bottle gently for mixing. 

8) Use the 12 mL of distilled water from Step 5 to clean the probe. 

9) Place the Erlenmeyer bottle in a 100 – 150 rpm shaking air bath at 50oC. 

10) While the temperature reaches 50oC, set up boiling water, which will be used to 

denature the enzyme and quench the reaction. 

11) When the temperature reaches 50oC, add the appropriate amount of cellulase 

enzyme needed to have 5 FPU/g dry bagasse (based on Wi recorded in Step 3), 
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and add an excess of cellobiase enzyme (for an activity of 250 CBU/g enzyme, 

0.114 mL/g dry bagasse should be sufficient).  Proceed to next step immediately. 

12) While shaking gently to ensure homogeneity, withdraw 4.0 mL of sample using a 

5-mL pipette with a cut-off tip.  Deposit this sample (liquid + solids) in a small 

screw-capped test tube and place it in the boiling bath. This is taken as time 0 h 

for the enzyme hydrolysis reaction. 

13) Swiftly after Step 12, while the 4-mL sample is in the boiling water, return the 

capped Erlenmeyer bottle to the 50oC-shaking air bath to continue the enzyme 

hydrolysis.   

14) Boil the 4-mL sample for 15 min to denature the enzyme, and then immediately 

cool the sample in ice water. 

15) Transfer the contents of the screw-capped test tube to a centrifuge tube, and 

centrifuge the sample for 5 min at 4000 rpm. 

16) After centrifuging, transfer the liquid from the centrifuge tube into another 

appropriate sampling tube being careful not to transfer any solids.  Keep this 

liquid sample in the freezer until HPLC analysis for xylose and glucose 

concentrations can be done.  Ensure that the tubes are clearly labeled as 0 h 

samples. 

17) Repeat Steps 12, and 14 through 16 again at 72 h, except that now Step 12 is 

taken as time 72 h for the hydrolysis reaction, and the labeling is now 72 h 

instead.  

18) After withdrawing the 72-h 4-mL sample, before you dispose of the material in 

the Erlenmeyer bottle, measure its volume.  The original volume (V) of the 

starting material is then calculated as follows: 

 

Initial volume = final volume + sample volume (i.e., 4 mL)×2 (I.5) 
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19) Use HPLC equipped with an refractive index detector and a Bio-Rad HPX-87P 

(Bio-Rad Laboratories, Hercules CA) column to perform analysis on the 

concentrations of glucose and xylose for each sample. 

20) The sugar yield in terms of the original untreated material, is computed as 

follows: 

 

Y
XW

VCVC
S

ii

⋅
−
−

=
)1(

072     (I.6) 

where 

 S = Glucose or xylose yield, g/g untreated bagasse 

 C72 = Concentration of glucose or xylose from HPLC at 72 h, g/L 

 C0 = Concentration of glucose or xylose from HPLC at 0 h, g/L 

 V = Volume recorded in Step 18, L 

 Wi = Initial bagasse weight from Step 3, g 

 Xi = Moisture content from Step 1, g H2O/g ambient bagasse 

 Y = Total yield, g treated bagasse/g untreated bagasse 

 

The total sugar yield is the sum of the glucose and xylose yields.  This procedure 

certainly assumes that the water-soluble substances from the pretreatment, which are 

removed in the washing procedure, are not digestible by cellulase enzyme. 
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APPENDIX J 

 
PRETREATMENT SELECTIVITY STATISTICAL ANALYSIS 

 

The statistical regression and analysis for the pretreatment selectivity data was 

done using SAS® statistical software (SAS Institute Inc., Cary NC).  Because the data 

were highly scattered, influence diagnostics, as described in Appendix B, was employed 

to detect potential outliers and leverage points worthy of investigation.  These points, if 

enough evidence of their invalidity was found, were excluded. 

In the pretreatment studies, the main source of error was the variability of the raw 

material.  As it can be realized from the high ash content in Table 4.1, the bagasse used 

in these studies had a lot of sand and dirt in it, which tended to settle; thus, even though 

effort was made to keep the sampling uniform, such heterogeneities could not be 

avoided. 

The variability of the material itself was exacerbated by the material balance 

(Appendix I), which had several drawbacks such as the fact that the liquid never got 

completely clear, thus not providing a clear indication that the washing was done.  If 

biomass washing continued for too long, the solid particles became increasingly smaller, 

to the point that there might have been some material loss during filtration.  Nonetheless, 

as it was later realized, the mass balance procedure worked remarkably well when fresh 

bagasse, rather than old stored bagasse, was used. 

For the selectivity of the samples without air at 23oC (Figure 4.16), the 

studentized deleted residuals (RSTUDENT) identified three potential outliers, namely 

the values for Weeks 1, 2 and 4.  They showed |RSTUDENT| values of 2.10, 1.70 and -

2.31, respectively, which would not necessarily indicate they were extreme outliers.  

Their Cook’s D was greater than 0.4, indicating that they were influential values.  

Although their values of hi and |COVRATIO| were below the cut off, their values for 

their |DFFITS|, |DFBETAS| were not.  Figure 4.16 shows that the observations for 

Weeks 1 and 2 together influence the data tremendously, as it is realized also by their 

high values of their Cook’s D.  This influence affects the diagnostics, causing it to 
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consider observation for Week 4 as an outlier.  Investigation of the observation for Week 

1 showed that there was a mistake made during the mass balance.  The percent dry 

weight for the sample is shown as 75.6% (75.6 g dry solids/100 g solids at ambient 

conditions), but this value should be in order of 96 – 98%.  A dry-weight value as low as 

this one is impossible for a material that has been in a convection oven at 45oC for two 

days; therefore, there is enough evidence to exclude it. 

After excluding the value for Week 1, the observation for Week 2 becomes an 

extreme outlier, with a |RSTUDENT| value of 6.05, whereas the observation for Week 4, 

has a lower |RSTUDENT| of 2.05 and is not considered an extreme outlier.  The error for 

the observation for Week 2, can be attributed to the lignin determination, where the acid-

insoluble ash content was higher than expected (i.e., 18.8 g/100 g dry bagasse, but it 

should be in the order of 13–15 g/100 g dry bagasse).  After excluding this extreme 

outlier, no more outliers were detected by the influence diagnostics.  Table J.1 shows the 

ANOVA for the regression and Table J.2 shows the summary of the regression statistics 

as well as the value for the selectivity (slope) and its standard error.  The small P-value 

suggests that the regression is significant. 

 

Table J.1  ANOVA of the regression of the holocellulose-to-lignin selectivity 
for treatment without air, 23oC. 

  df SS MS F P-value 
Regression 1 0.0030 0.0030 99.04 <0.0001 
Residual 7 0.0002 2.997E-05   
Total 8 0.0032    

 

 

Table J.2  Regression statistics, parameters and standard errors for the regression of 
holocellulose-to-lignin selectivity for treatment without air, 23oC. 

Regression Statistics Parameter Coefficients Standard Error t-Stat P-value 
Multiple R 0.9664 Intercept -0.035 0.013 -2.6594 0.0325 
R2 0.9340 Slope 1.405 0.141 9.9516 <0.0001 
Adjusted R2 0.9246      
Standard Error 0.0055      
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For the treatment at 30oC without air (Figure 4.17), one potential outlier is 

detected.  The observation for Week 1, presents a |RSTUDENT| > 2, and its values for 

|DFFITS| and |DFBETAS| also greater than 2.  Investigation of this point, however, 

yields no evidence that would indicate that this value should be excluded.  This response 

on the influence from the observation at Week 1 may be because at the end of the first 

week, the phase of fast lignin removal is not completely over.  Table J.3 is the ANOVA 

for the regression, which has a very small P-value indicating that the regression is 

significant.  Table J.4 shows the regression statistics and the selectivity parameter with 

its standard error. 

 

Table J.3  ANOVA of the regression of the holocellulose-to-lignin selectivity 
for treatment without air, 30oC. 

  Df SS MS F P-value 
Regression 1 0.0085 0.0085 87.67 <0.0001 
Residual 8 0.0008 9.66E-05   
Total 9 0.0092    

 

 

Table J.4  Regression statistics, parameters and standard errors for the regression of 
holocellulose-to-lignin selectivity for treatment without air, 30oC. 

Regression Statistics Parameter Coefficients Standard Error t-Stat P-value 
Multiple R 0.9573 Intercept -0.066 0.012 -5.572 0.0005 
R2 0.9164 Slope 1.413 0.151 9.363 <0.0001 
Adjusted R2 0.9059      
Standard Error 0.0098      

 

 

For the treatment at 40oC without air (Figure 4.18), a slight potential outlier is 

detected for the observation at Week 1, with hi > 0.4, which is the size-adjusted cut off 

for this value.  The |RSTUDENT| for all the observations is < 2.  Investigation of the 

values for the observation at Week 1 showed no evidence that would justify its 

exclusion; however, this value is not influential because its Cook’s D and |DFFITS| do 

not exceed the cut-offs of 0.2 and 0.9, respectively.  As with the treatment at 30oC, this 
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observation response to the influence diagnostics may be attributed to the fact that at the 

end of Week 1, the fast-lignin-removal phase (known as bulk phase) might not have yet 

ended. 

 

Table J.5  ANOVA of the regression of the holocellulose-to-lignin selectivity for 
treatment without air, 40oC. 

  Df SS MS F P-value 
Regression 1 0.0034 0.0034 17.41 0.0031 
Residual 8 0.0016 0.0002   
Total 9 0.0049    

 

 

Table J.6  Regression statistics, parameters and standard errors for the regression of 
holocellulose-to-lignin selectivity for treatment without air, 40oC. 

Regression Statistics Parameter Coefficients Standard Error t-Stat P-value 
Multiple R 0.8278 Intercept -0.056 0.023 -2.466 0.039 
R2 0.6852 Slope 1.236 0.296 4.173 0.003 
Adjusted R2 0.6458      
Standard Error 0.0139      

 

 

For the selectivity of the treatment without air at 50oC (Figure 4.19), the 

influence diagnostics detected three potential outliers, namely, the observation for Week 

1 with a hi slightly exceeding the cut-off of 0.4 and the observations for Week 4 and 8, 

which had a |RSTUDENT| of 2.20 and 2.36, respectively.  Investigation of these values 

shows no evidence of invalidity; therefore, there is not enough evidence to exclude them.  

Table J.7 shows ANOVA for the holocellulose-to-lignin selectivity and Table J.8 shows 

the regression statistics, the selectivity and its standard error.  The P-value for the 

regression is small enough to show that the regression is significant. 
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Table J.7  ANOVA of the regression of the holocellulose-to-lignin selectivity 
for treatment without air, 50oC. 

  df SS MS F P-value 
Regression 1 0.0014 0.0014 12.05 0.0084 
Residual 8 0.0009 0.0001   
Total 9 0.0023    

 

 

Table J.8  Regression statistics, parameters and standard errors for the regression of 
holocellulose-to-lignin selectivity for treatment without air, 50oC. 

Regression Statistics Parameter Coefficients Standard Error t-Stat P-value 
Multiple R 0.7753 Intercept -0.035 0.037 -0.932 0.378 
R2 0.6011 Slope 1.280 0.369 3.472 0.008 
Adjusted R2 0.5512      
Standard Error 0.0107      

 

 

In the case of the treatment at 57oC without air (Figure 4.20), all the 

|RSTUDENT| values were below the cut-off of 2, however, the observations for Day 1 

was considered a leverage point because it displayed an hi value of 0.37, which exceeded 

the cut-off of 0.33.  This value and the observation for Day 2 were considered influential 

points, because their values for Cook’s D, |DFFITS| and |DFBETAS| exceeded the cut-

off values, especially the observation for Day 1.  Inspection of these points showed that 

the variability comes from the lignin determination, particularly due to material 

heterogeneity, where the ideally-constant acid-insoluble ash content parameter expressed 

in terms of the original untreated material, shows significant fluctuations.  For instance, 

for Day 1 this parameter was 0.13 g acid-insoluble ash/g untreated bagasse, whereas for 

Day 3 was 0.09 g acid insoluble ash/g untreated bagasse.  The fact that the |RSTUDENT| 

values were below their cut-off, and that the inspection did not yield any conclusive 

evidence, especially because observations for Day 1 and Day 3 were opposite influential 

points (i.e., they pull the data towards themselves but opposite to each other), suggests 

that these values cannot be excluded.  Table J.9 shows the ANOVA for the regression, 

which suggests that the regression is significant as it resulted in a P-value < 0.0001.  
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Table J.10 shows the regression statistics and the selectivity (slope) with its standard 

error. 

 

Table J.9  ANOVA of the regression of the holocellulose-to-lignin selectivity 
for treatment without air, 57oC 

  Df SS MS F P-value 
Regression 1 0.0095 0.0095 43.88 <0.0001 
Residual 11 0.0024 0.0002   
Total 12 0.0119    

 

 

Table J.10  Regression statistics, parameters and standard errors for the regression of 
holocellulose-to-lignin selectivity for treatment without air, 57oC. 

Regression Statistics Parameter Coefficients Standard Error t-Stat P-value 
Multiple R 0.8942 Intercept -0.060 0.020 -2.97 0.0128 
R2 0.7996 Slope 1.333 0.201 6.62 <0.0001 
Adjusted R2 0.7814      
Standard Error 0.0147      

 

 

No outliers or leverage points were detected by the influence diagnostics for the 

treatment at 23oC with air (Figure 4.21).  The |RSTUDENT| and hi values are all below 

their cut-offs.  The observation for Week 1 and Month 7 had a |COVRATIO-1| value 

higher than the cut-off of 0.55, and the observation for Month 8 showed a value for the 

|DFBETAS| of the slope slightly higher than the cut-off of 0.60.  This result suggested 

that they were influential points, but further investigation showed no evidence of 

abnormality.  Table J.11 shows the ANOVA for the regression.  Although no outliers 

were detected, comparatively, the regression is not as good as with the other treatments, 

with only 95% confidence of its significance.  This is also observed in the low value for 

R2 shown in Table J.12, which shows the regression statistics and the parameters with 

their standard errors.  In addition, from Figure 4.21, it can be observed that the resulting 

regression parameters would yield a holocellulose-to-lignin selectivity for the fast-

lignin-removal phase (i.e., bulk phase), which is higher than the holocellulose-to-lignin 
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selectivity for the final (i.e., residual phase).  This is not physically possible because the 

bulk phase is more selective towards lignin than the residual phase; therefore, these 

results are doubtful. 

 

Table J.11  ANOVA of the regression of the holocellulose-to-lignin selectivity 
for treatment with air, 23oC. 

  df SS MS F P-value 
Regression 1 0.0015 0.0015 5.54 0.0431 
Residual 9 0.0025 0.0003   
Total 10 0.0040    

 

 

Table J.12  Regression statistics, parameters and standard errors for the regression of 
holocellulose-to-lignin selectivity for treatment with air, 23oC. 

Regression Statistics Parameter Coefficients Standard Error t-Stat P-value 
Multiple R 0.6172 Intercept 0.041 0.019 2.16 0.059 
R2 0.3809 Slope 0.415 0.176 2.35 0.043 
Adjusted R2 0.3121      
Standard Error 0.0166      

 

 

For the treatment at 30oC with air (Figure 4.22), the regression diagnostics 

showed that the |RSTUDENT| values for all the data are below their cut-off of 2.  Only 

the value for the observation at Week 1 was detected as an influential and leverage point 

with its values for hi, Cook’s D, |DFFITS| and |DFBETAS| for both the intercept and the 

slope all exceeding their cut-off values.  Investigation of this point shows no evidence of 

invalidity; thus, their exclusion cannot be justified.  A negative value is observed (Figure 

4.22), which is physically impossible.  However, this point cannot be excluded because 

the error in this case could have been introduced by raw material variability, namely, the 

values for the parameters of the bagasse at time 0.  Because the values for the bagasse at 

time 0 are subtracted from all points, this variability is introduced equally to all the data.  

This causes a shift in the curve but does not affect the slope, which is the parameter of 

importance.  This negative value, although not physically viable, is a valid point to find 
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the selectivity parameter (slope).  The variability of the raw material can be realized 

from the acid-insoluble ash content expressed in terms of untreated material (i.e., g acid-

insoluble ash present/g original untreated material).  This value should remain fairly 

constant along the pretreatment; however, in this case the value for the raw material is 

about 0.16 g insoluble-ash/g original untreated material, when it should be about 0.11 as 

it is observed for the rest of the data.  Table J 13 shows the ANOVA for the regression 

which suggests that, because of the small P-value, the regression is significant.  Table 

J.14 shows the regression statistics, the selectivity and its standard error. 

 

Table J 13  ANOVA of the regression of the holocellulose-to-lignin selectivity 
for treatment with air, 30oC. 

  df SS MS F P-value 
Regression 1 0.0107 0.0107 47.29 0.0001 
Residual 8 0.0018 0.0002   
Total 9 0.0126    

 

 

Table J.14  Regression statistics, parameters and standard errors for the regression of 
holocellulose-to-lignin selectivity for treatment with air, 30oC. 

Regression Statistics Parameter Coefficients Standard Error t-Stat P-value 
Multiple R 0.9248 Intercept -0.062 0.017 -3.70 0.0060 
R2 0.8553 Slope 1.129 0.164 6.88 0.0001 
Adjusted R2 0.8372      
Standard Error 0.0151      

 

 

For the treatment at 40oC with air (Figure 4.23), the observation for Month 7 was 

detected as an extreme outlier with a |RSTUDENT| value of 6.9 (cut-off is 2).  This 

value is also very influential with a Cook’s D of 1.0 (cut-off is 0.2) and |DFFITS| of 3.7 

(size-adjusted cut-off is 0.9).  Also, this value considerably exceeds the cut-offs for 

|COVRATIO| and |DFBETAS|.  Investigation of this point reveals that the source of 

error may have resulted from using the same sample to do lime-consumption 

determination and the mass balance because the sample for Set B was lost.  This caused 
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variability during the mass balance determination.  The yield then seems to increase 

from 0.61 g treated bagasse/g untreated bagasse at Month 6 to 0.76 g treated bagasse/g 

untreated bagasse in Month 7.  This is physically impossible as it is demonstrated by the 

negative value that results as holocellulose loss.  The exceedingly high values for the 

parameters of the influence diagnostics, and the fact that the extreme outlying 

characteristics of this point can be realized by simple inspection of the data (Figure 

4.23), justifies its exclusion from the correlation. 

Without the influence of Month 7 in the data, the influence diagnostics detected 

the observation for Week 1 as a slight potential outlier, with its values for |RSTUDENT|, 

Cook’s D, |DFFITS| and |DFBETAS| exceeding their cut-offs.  It is interesting to notice 

that this response towards the observation for Week 1 has been observed in most 

selectivity analyses for the treatments at other temperatures.  The reason for this 

response can be attributed, as mentioned, to the fact that at the beginning of the 

pretreatment for bagasse, delignification occurs fast without significant loss of 

holocellulose, and at Week 1, this phase might not have yet completely ended.  There is 

not enough evidence, however, to exclude the observation for Week 1 from the 

correlation.  Table J.15 shows the ANOVA for the regression, which suggests that the 

regression is significant.  Table J.16 shows the regression statistics and the selectivity 

with its standard error. 

 

Table J.15  ANOVA of the regression of the holocellulose-to-lignin selectivity 
for treatment with air, 40oC. 

  df SS MS F P-value 
Regression 1 0.0083 0.0083 42.72 0.0003 
Residual 7 0.0014 0.0002   
Total 8 0.0097    
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Table J.16  Regression statistics, parameters and standard errors for the regression of 
holocellulose-to-lignin selectivity for treatment with air, 40oC. 

Regression Statistics Parameter Coefficients Standard Error t-Stat P-value 
Multiple R 0.9269 Intercept -0.043 0.017 -2.53 0.0393 
R2 0.8592 Slope 0.955 0.146 6.54 0.0003 
Adjusted R2 0.8391      
Standard Error 0.0140      

 

 

For the treatment at 50oC with air (Figure 4.24), the influence diagnostics suggest 

the presence of an outlier.  The observation for Month 3 has a |RSTUDENT| value of 

3.40, and it is an influential point because its value for |DFFITS| exceeds the cut-off of 

0.9.  The variability seems to have been introduced in the mass balance calculation.  The 

yield seems to increase from 0.72 g treated bagasse/g untreated bagasse at Month 2, to 

0.87 g treated bagasse/g untreated bagasse at Month 3.  This response is physically 

impossible as it is demonstrated by the resulting negative value for the holocellulose 

loss.  Also, with this outlier, the regression was shown not to be significant, with a P-

value of 0.68, which would mean that the slope could be 0 and that there is no loss of 

holocellulose as lignin is removed.  As attractive as it might seem, this result is 

impossible; therefore, there is sufficient evidence to exclude this point from the 

correlation. 

After excluding the observation for Month 3, the observation for Month 7 

became an extreme outlier and a very influential point with all the parameters of the 

influence diagnostics considerably exceeding their cut-off values and the regression was 

still not significant, with a P-value of 0.53.  Inspection of this point shows that the error 

lies in the mass balance, presenting a considerably higher yield than what was expected 

(i.e., 0.76 g treated bagasse/g untreated bagasse, in comparison to 0.67 g of treated 

bagasse/g of untreated bagasse for the previous month).  The influence diagnostics and 

the inspection of the data suggest that this point is an outlier; thus, it was also excluded 

from the correlation. 

Without the influence on the data of the outliers in Month 7 and Month 3, the 

influence diagnostics detects the observation for Week 2 as an extreme outlier and a very 
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influential point, with all the parameters considerably exceeding their cut-off values.  

Inspection of the data, reveals that the yield was considerably lower than expected; 

therefore, there is enough evidence to exclude this point. 

After excluding the observation for Week 2, no more outliers were detected by 

the influence diagnostics.  All the values for |RSTUDENT| were below its cut-off (i.e., 

2), and, with the exception of the observation for Week 1, the other parameters were also 

below their cut-off.  The observation for Week 1 was an influential point, with its values 

for Cook’s D, |DFFITS| and |DFBETAS| exceeding their cut-off values.  Nonetheless, no 

evidence was found that would justify its exclusion.  Table J.17 shows the ANOVA for 

the regression, which suggests that it is significant because of the small P-value.  Table 

J.18 shows the regression statistics and the parameter for the selectivity with their 

standard error.  The P-value for the intercept is large, suggesting that its regression is not 

significant; however, the intercept is not of concern, but only the selectivity (i.e., the 

slope).  The reason why the intercept is not significant could be due to the variability 

from the point at time 0, which shifts the curve but does not affect the slope.   

 

Table J.17  ANOVA of the regression of the holocellulose-to-lignin selectivity 
for treatment with air, 50oC. 

  df SS MS F P-value 
Regression 1 0.0031 0.0031 54.33 0.0007 
Residual 5 0.0003 5.765E-05   
Total 6 0.0034    

 

 

Table J.18  Regression statistics, parameters and standard errors for the regression of 
holocellulose-to-lignin selectivity for treatment with air, 50oC. 

Regression Statistics Parameter Coefficients Standard Error t-Stat P-value 
Multiple R 0.9569 Intercept -0.002 0.015 -0.13 0.9006 
R2 0.9157 Slope 0.711 0.096 7.37 0.0007 
Adjusted R2 0.8989      
Standard Error 0.0076      
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For the treatment at 57oC with air (Figure 4.25), the influence diagnostics 

detected one extreme outlier, namely the observation at Month 5.  This value displayed a 

|RSTUDENT| of 6.27, it is a leverage point because its value for hi exceeded 

considerable the cut-off of 0.31, and it is also very influential because its value for 

|DFFITS| and |DFBETAS| exceeded the general cut-off of 2 and its Cook’s D value is 

1.14, which is well above the cut-off of 0.2.  Inspection of this point, showed that the 

source of error was the material balance, which suggested that the yield increased from 

0.66 g treated bagasse/g untreated bagasse in Month 4 to 0.78 g treated bagasse/g 

untreated bagasse.  This condition is not physically possible; thus, it results in a negative 

value for the holocellulose loss.  There is, then, strong evidence to exclude this 

observation from the correlation. 

After excluding the observation for Month 5, the influence diagnostics detects 

the observation for Week 3 and Month 3 as potential outliers, with |RSTUDENT| values 

of 4.04 and 2.16, respectively.  They both are influential points because their values for 

Cook’s D and |DFFITS| exceeded their cut-offs of 0.2 and 0.82, respectively.  Inspection 

of these points suggests that the source of error is the mass balance.  Yields that are 

lower than expected were produced for Week 3 (i.e., the yield for Week 4 is 0.72 g 

treated bagasse/g untreated bagasse, whereas the yield for Week 3 is 0.62, thus 

indicating that the yield increased, which is physically impossible).  In addition, yields 

higher than expected were obtained for Month 3 (i.e., the yield for Month 3 is 0.69 g 

treated bagasse/g untreated bagasse, while that of Month 2 is 0.67).  When the influence 

diagnostics was run excluding one point, and then run again after returning it and 

excluding the other, the |RSTUDENT| for these two values became larger, and they 

became more influential as their values for |DFFITS|, |DFBETAS| and Cook’s D also 

became larger.  This condition suggests that they must be excluded together. 

After excluding the observations for Week 3 and Month 3, the |RSTUDENT| for 

the observation for Day 3 was slightly larger than the cut-off of 2, but inspection of the 

data showed no evidence that would support its elimination.  Table J.19 is the ANOVA 
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for the regression, which is shown to be significant.  Table J.20 shows the regression 

statistics and the selectivity (slope) with its standard error. 

 

Table J.19  ANOVA of the regression of the holocellulose-to-lignin selectivity 
for treatment with air, 57oC. 

  df SS MS F P-value 
Regression 1 0.0146 0.0146 138.76 <0.0001 
Residual 8 0.0008 0.0001   
Total 9 0.0154    

 

 

Table J.20  Regression statistics, parameters and standard errors for the regression of 
holocellulose-to-lignin selectivity for treatment with air, 57oC. 

Regression Statistics Parameter Coefficients Standard Error t-Stat P-value 
Multiple R 0.9724 Intercept -0.027 0.010 -2.83 0.0222 
R2 0.9455 Slope 0.920 0.078 11.78 <0.0001 
Adjusted R2 0.9387      
Standard Error 0.0102      

 

 

Figure J.1 shows the residual plot for the selectivity correlations for all the 

treatments at all the different temperatures.  Visual inspection of the graph suggests that 

there is, in fact, random scattering of the residuals. 
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Figure J.1  Residual plot for the data of the selectivity correlations 

for all the treatments at all the different temperatures. 

 

In the case of the treatment without air at 50oC for fresh bagasse (Figure 4.64), 

the value for Week 4 was detected as a potential outlier.  It had a |RSTUDENT| value of 

2.74 (cut-off is 2), a Cook’s D value of 0.34 (cut-off is 2) and its values for |DFFITS| and 

|DFBETAS| also exceeded their cut offs, which means it is an influential point.  Also, as 

in the other cases, the observation for Week 1 was also an influential point with Cook’s 

D, |DFFITS| and |DFBETAS| exceeding their cut-offs.  Further investigation of these 

points shows that there is no evidence that would support their exclusion.  The 

regression is significant (Table J.21).  Table J.22 shows the regression statistics and the 

selectivity (slope) with its standard error.  The intercept was found not to be significant 

(probably due to the potential outlier), however this is not important because we are only 

interested in the slope.  
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Table J.21  ANOVA of the regression of the holocellulose-to-lignin selectivity 
for treatment without air for fresh bagasse, 50oC. 

  df SS MS F P-value 
Regression 1 0.0002 0.0002 12.48 0.0242 
Residual 4 5.871E-05 1.468E-05   
Total 5 0.0002    

 

 

Table J.22  Regression statistics, parameters and standard errors for the regression of 
holocellulose-to-lignin selectivity for treatment without air for fresh bagasse, 50oC. 

Regression Statistics Parameter Coefficients Standard Error t-Stat P-value 
Multiple R 0.8702 Intercept 0.0007 0.0220 0.03 0.9757 
R2 0.7573 Slope 0.794 0.225 3.53 0.0242 
Adjusted R2 0.6966      
Standard Error 0.0038      

 

 

For the treatment with air at 50oC for fresh bagasse (Figure 4.65), the observation 

for Week 2 was detected as a potential slight outlier, with a |RSTUDENT| value of 2.51.  

It was also considered an influential point because its Cook’s D, and |DFFITS| exceeded 

their cut-offs of 0.2 and 1.15, respectively.  Also, once again, the value for Week 1 was 

also deemed as an influential point because its values for Cook’s D, |DFFITS| and 

|DFBETAS| were above the cut-offs.  Investigation of these points, however, found no 

evidence that would justify their exclusion.  The ANOVA for the regression is shown in 

Table J.23.  The regression statistics, and the selectivity and its standard error are shown 

in Table J.24. 

 

Table J.23  ANOVA of the regression of the holocellulose-to-lignin selectivity 
for treatment with air for fresh bagasse, 50oC. 

  df SS MS F P-value 
Regression 1 0.0030 0.0030 149.09 0.0003 
Residual 4 7.919E-05 1.98E-05   
Total 5 0.0030    
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Table J.24  Regression statistics, parameters and standard errors for the regression of 
holocellulose-to-lignin selectivity for treatment with air for fresh bagasse, 50oC. 

Regression Statistics Parameter Coefficients Standard Error t-Stat P-value 
Multiple R 0.9868 Intercept -0.030 0.012 -2.56 0.0627 
R2 0.9739 Slope 1.226 0.100 12.21 0.0003 
Adjusted R2 0.9673      
Standard Error 0.0044      
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APPENDIX K 

 

PRETREATMENT LIME CONSUMPTION STATISTICAL ANALYSIS 

 

For the lime consumption studies, (Figures 4.39 through 4.42 for old bagasse and 

Figure 4.69 for fresh bagasse) the data behaved better than for the holocellulose-to-lignin 

selectivity; therefore, no outliers, whose exclusion might be justified, were found.  The 

following statistical information was found using SAS® statistical software (SAS 

Institute Inc., Cary NC).  Tables K.1 through K.8 show the ANOVA and the regression 

statistics and parameters with their standard errors for the correlations of lime 

consumption as a function of time for the treatments with air at the different 

temperatures for old stored bagasse (Figures 4.39 through 4.43).  Figure K.1 shows the 

residual plot for all regressions at the different temperatures for old stored bagasse.  

Table K.9 and Table K.10 show the ANOVA and the regression statistics and parameters 

with their standard errors for the correlation of lime consumption as a function of time 

for the treatment with air at 50oC for fresh bagasse (Figure 4.69). 

 

Table K.1  ANOVA of the regression of the lime consumption as function of time for 
treatment with air, 30oC. 

  df SS MS F P-value 
Regression 1 0.0095 0.0095 234.68 <0.0001 
Residual 7 0.0003 4.059E-05   
Total 8 0.0098    

 

 

Table K.2  Regression statistics, parameters and standard errors for the regression of 
lime consumption as function of time for treatment with air, 30oC. 

Regression Statistics Parameter Coefficients Standard Error t-Stat P-value 
Multiple R 0.9854 Intercept 4.022E-02 3.68E-03 10.94 <0.0001 
R2 0.9710 Slope 4.726E-04 3.09E-05 15.32 <0.0001 
Adjusted R2 0.9669      
Standard Error 0.0064      
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Table K.3  ANOVA of the regression of the lime consumption as function of time for 
treatment with air, 40oC. 

  df SS MS F P-value 
Regression 1 0.0540 0.0540 140.47 <0.0001 
Residual 7 0.0027 0.0004   
Total 8 0.0567    

 

 

Table K.4  Regression statistics, parameters and standard errors for the regression of 
lime consumption as function of time for treatment with air, 40oC. 

Regression Statistics Parameter Coefficients Standard Error t-Stat P-value 
Multiple R 0.9760 Intercept 0.0258 0.0114 2.27 0.0575 
R2 0.9525 Slope 1.093E-03 9.22E-05 11.85 <0.0001 
Adjusted R2 0.9458      
Standard Error 0.0196      

 

 

Table K.5  ANOVA of the regression of the lime consumption as function of time for 
treatment with air, 50oC. 

  df SS MS F P-value 
Regression 1 0.1314 0.1314 876.77 <0.0001 
Residual 8 0.0012 0.0001   
Total 9 0.1326    

 

 

Table K.6  Regression statistics, parameters and standard errors for the regression of 
lime consumption as function of time for treatment with air, 50oC. 

Regression Statistics Parameter Coefficients Standard Error t-Stat P-value 
Multiple R 0.9955 Intercept 0.0584 0.0062 9.44 <0.0001 
R2 0.9910 Slope 1.606E-03 5.42E-05 29.61 <0.0001 
Adjusted R2 0.9898      
Standard Error 0.0122      
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Table K.7  ANOVA of the regression of the lime consumption as function of time for 
treatment with air, 57oC. 

  df SS MS F P-value 
Regression 1 0.0721 0.0721 1165.37 <0.0001 
Residual 6 0.0004 6.187E-05   
Total 7 0.0725    

 

 

Table K.8  Regression statistics, parameters and standard errors for the regression of 
lime consumption as function of time for treatment with air, 57oC. 

Regression Statistics Parameter Coefficients Standard Error t-Stat P-value 
Multiple R 0.9974 Intercept 0.0655 0.0043 15.14 <0.0001 
R2 0.9949 Slope 1.839E-03 5.39E-05 34.14 <0.0001 
Adjusted R2 0.9940      
Standard Error 0.0079      

 

 

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 50 100 150 200

Time (days)

R
es

id
ua

ls

30C
40C
50C
57C

30oC
40oC
50oC
57oC

 
 

Figure K.1  Residual plot for the regressions of the lime consumption data for the 
treatments with air at the different temperatures. 
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Table K.9  ANOVA of the regression of the lime consumption for fresh bagasse for the 
treatment with air, 50oC. 

  df SS MS F P-value 
Regression 1 0.0049 0.0049 257.29 <0.0001 
Residual 4 7.652E-05 1.913E-05   
Total 5 0.0050    

 

 

Table K.10  Regression statistics, parameters and standard errors for the regression of 
lime consumption for fresh bagasse for treatment with air, 50oC. 

Regression Statistics Parameter Coefficients Standard Error t-Stat P-value 
Multiple R 0.9923 Intercept 0.041 0.003 14.24 0.0001 
R2 0.9847 Slope 9.970E-04 6.22E-05 16.04 <0.0001 
Adjusted R2 0.9809      
Standard Error 0.0044      
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APPENDIX L 

 

DELIGNIFICATION MODEL STATISTICAL ANALYSIS 

 

The parameters of the non-linear regression with their standard errors and the 

regression statistics were computed using SAS® statistical software.  Table L.1 through 

L.20 show the ANOVA tables and the regression statistics and parameters with their 

standard errors for the delignification model for the treatments with and without air for 

all the different temperatures for old stored bagasse (Figures 4.45 through 4.49).  The 

data fits the model remarkably well, with R2 values > 0.87 and all the regressions are 

significant with a P-value of <0.0001.  Except for the kr for the treatment at 23oC 

without air (Figure 4.45) and kb for the treatment at 30oC without air (Figure 4.46), all 

parameters are significant with P-values < 0.1. 

 

Table L.1  ANOVA of the delignification model for lime treatment without air at 23oC. 

 df SS MS F Approx. P-value 
Model 4 7.6622 1.9156 1628.74 <0.0001 
Error 8 0.00941 0.00118   
Uncorrected Total 12 7.6717    

 

 

Table L.2  Regression statistics, parameters and standard errors for the delignification 
model for lime treatment without air at 23oC. 

Regression Statistics Parameter Coefficients Approx. Standard Error t-Stat Approx. P-value
R2 0.8783 ab 0.202 0.043 4.66 0.0016 
Adjusted R2 0.8327 kb 0.115 0.057 2.01 0.0797 

  ar 0.795 0.030 26.16 <0.0001 
  kr 0.000410 0.000251 1.63 0.1409 
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Table L.3  ANOVA of the delignification model for lime treatment without air at 30oC. 
 df SS MS F Approx. P-value 

Model 4 7.3546 1.8386 2271.47 <0.0001 
Error 7 0.00567 0.000809   
Uncorrected Total 11 7.3602    

 

 

Table L.4  Regression statistics, parameters and standard errors for the delignification 
model for lime treatment without air at 30oC. 

Regression Statistics Parameter Coefficients Approx. Standard Error t-Stat Approx. P-value
R2 0.9302 ab 0.151 0.038 4.01 0.0051 
Adjusted R2 0.9003 kb 0.120 0.070 1.71 0.1309 

  ar 0.846 0.028 30.49 <0.0001 
  kr 0.000876 0.000248 3.54 0.0095 
 

 

Table L.5  ANOVA of the delignification model for lime treatment without air at 40oC. 

 df SS MS F Approx. P-value 
Model 4 7.4257 1.8564 14417.8 <0.0001 
Error 7 0.000901 0.000129   
Uncorrected Total 11 7.4266    

 

 

Table L.6  Regression statistics, parameters and standard errors for the delignification 
model for lime treatment without air at 40oC. 

Regression Statistics Parameter Coefficients Approx. Standard Error t-Stat Approx. P-value
R2 0.9846 ab 0.181 0.015 12.01 <0.0001 
Adjusted R2 0.9779 kb 0.111 0.021 5.21 0.0012 

  ar 0.818 0.011 72.14 <0.0001 
  kr 0.000450 0.000098 4.58 0.0025 
 

 

Table L.7  ANOVA of the delignification model for lime treatment without air at 50oC. 
 df SS MS F Approx. P-value 

Model 4 6.3033 1.5758 2689.53 <0.0001 
Error 7 0.00410 0.000586   
Uncorrected Total 11 6.3074    
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Table L.8  Regression statistics, parameters and standard errors for the delignification 
model for lime treatment without air at 50oC. 

Regression Statistics Parameter Coefficients Approx. Standard Error t-Stat Approx. P-value
R2 0.9473 ab 0.253 0.029 8.82 <0.0001 
Adjusted R2 0.9247 kb 0.290 0.123 2.36 0.0502 

  ar 0.748 0.016 48.07 <0.0001 
  kr 0.000367 0.000172 2.14 0.0695 
 

 

Table L.9  ANOVA of the delignification model for lime treatment without air at 57oC. 

 df SS MS F Approx. P-value 
Model 4 7.8666 1.9666 1309.05 <0.0001 
Error 10 0.0150 0.00150   
Uncorrected Total 14 7.8816    

 

 

Table L.10  Regression statistics, parameters and standard errors for the delignification 
model for lime treatment without air at 57oC. 

Regression Statistics Parameter Coefficients Approx. Standard Error t-Stat Approx. P-value
R2 0.8881 ab 0.258 0.040 6.48 <0.0001 
Adjusted R2 0.8545 kb 0.451 0.158 2.85 0.0172 

  ar 0.719 0.023 31.81 <0.0001 
  kr 8.76E-4 4.08E-4 2.15 0.0573 

 

 

Table L.11  ANOVA of the delignification model for lime treatment with air at 23oC. 
 df SS MS F Approx. P-value 

Model 4 6.5405 1.6351 6063.01 <0.0001 
Error 8 0.00216 0.000270   
Uncorrected Total 12 6.5427    
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Table L.12  Regression statistics, parameters and standard errors for the delignification 
model for lime treatment with air at 23oC. 

Regression Statistics Parameter Coefficients Approx. Standard Error t-Stat Approx. P-value
R2 0.9898 ab 0.172 0.021 8.26 <0.0001 
Adjusted R2 0.9860 kb 0.152 0.046 3.30 0.0109 

  ar 0.826 0.014 58.69 <0.0001 
  kr 0.00181 0.00013 14.27 <0.0001 

 

 

Table L.13  ANOVA of the delignification model for lime treatment with air at 30oC. 
 df SS MS F Approx. P-value 

Model 4 5.9233 1.4808 4637.25 <0.0001 
Error 7 0.00224 0.000319   
Uncorrected Total 11 5.9255    

 

 

Table L.14  Regression statistics, parameters and standard errors for the delignification 
model for lime treatment with air at 30oC. 

Regression Statistics Parameter Coefficients Approx. Standard Error t-Stat Approx. P-value
R2 0.9891 ab 0.256 0.028 9.05 <0.0001 
Adjusted R2 0.9844 kb 0.0699 0.015 4.59 0.0025 

  ar 0.742 0.025 29.47 <0.0001 
  kr 0.00142 0.00024 5.90 0.0006 

 

 

Table L.15  ANOVA of the delignification model for lime treatment with air at 40oC. 
 df SS MS F Approx. P-value 

Model 4 5.0555 1.2639 6510.92 <0.0001 
Error 7 0.00136 0.000194   
Uncorrected Total 11 5.0568    
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Table L.16  Regression statistics, parameters and standard errors for the delignification 
model for lime treatment with air at 40oC. 

Regression Statistics Parameter Coefficients Approx. Standard Error t-Stat Approx. P-value
R2 0.9962 ab 0.189 0.018 10.43 <0.0001 
Adjusted R2 0.9946 kb 0.194 0.051 3.79 0.0068 

  ar 0.809 0.012 66.04 <0.0001 
  kr 0.00336 0.00014 23.73 <0.0001 

 

 

Table L.17  ANOVA of the delignification model for lime treatment with air at 50oC. 
 df SS MS F Approx. P-value 

Model 4 3.7397 0.9349 813.58 <0.0001 
Error 7 0.00804 0.00115   
Uncorrected Total 11 3.7477    

 

 

Table L.18  Regression statistics, parameters and standard errors for the delignification 
model for lime treatment with air at 50oC. 

Regression Statistics Parameter Coefficients Approx. Standard Error t-Stat Approx. P-value
R2 0.9814 ab 0.329 0.046 7.23 0.0002 
Adjusted R2 0.9734 kb 0.172 0.062 2.79 0.0269 

  ar 0.666 0.032 20.55 <0.0001 
  kr 0.00386 0.00047 8.22 <0.0001 

 

 

Table L.19  ANOVA of the delignification model for lime treatment with air at 57oC. 
 df SS MS F Approx. P-value 

Model 4 5.8926 1.4732 885.05 <0.0001 
Error 10 0.0166 0.00166   
Uncorrected Total 14 5.9092    
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Table L.20  Regression statistics, parameters and standard errors for the delignification 
model for lime treatment with air at 57oC. 

Regression Statistics Parameter Coefficients Approx. Standard Error t-Stat Approx. P-value
R2 0.9735 ab 0.379 0.047 8.12 <0.0001 
Adjusted R2 0.9656 kb 0.198 0.054 3.66 0.0044 

  ar 0.589 0.041 14.48 <0.0001 
  kr 0.00502 0.00095 5.29 0.0004 
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Figure L.1  Residual plot of the regression of the data to the delignification model for the 

treatments with and without air for all the temperatures (old bagasse). 

 

Tables L.21 through L.24 show the ANOVA and the regression statistics and 

parameters with their standard errors for the regression of the delignification model for 

the treatment of fresh bagasse at 50oC (Figure 4.68).  All the regressions and parameters 

are significant (i.e., P-values are small). 
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Table L.21  ANOVA of the delignification model for lime treatment of 
fresh bagasse without air at 50oC. 

 df SS MS F Approx. P-value 
Model 4 3.4479 0.8620 5662.61 <0.0001 
Error 3 0.000457 0.000152   
Uncorrected Total 7 3.4483    

 

 

Table L.22  Regression statistics, parameters and standard errors for the delignification 
model for lime treatment of fresh bagasse without air at 50oC. 

Regression Statistics Parameter Coefficients Approx. Standard Error t-Stat Approx. P-value
R2 0.9961 ab 0.343 0.017 20.20 0.0003 
Adjusted R2 0.9923 kb 0.3057 0.0574 5.32 0.0130 

  ar 0.657 0.012 55.97 <0.0001 
  kr 0.001163 0.000346 3.36 0.0437 

 

 

Table L.23  ANOVA of the delignification model for lime treatment of 
fresh bagasse with air at 50oC. 

 df SS MS F Approx. P-value 
Model 4 2.8855 0.7214 2067.94 <0.0001 
Error 3 0.00105 0.000349   
Uncorrected Total 7 2.8866    

 

 

Table L.24  Regression statistics, parameters and standard errors for the delignification 
model for lime treatment of fresh bagasse with air at 50oC. 

Regression Statistics Parameter Coefficients Approx. Standard Error t-Stat Approx. P-value
R2 0.9952 ab 0.353 0.028 12.46 0.0011 
Adjusted R2 0.9904 kb 0.2615 0.0656 3.99 0.0282 

  ar 0.647 0.022 29.88 <0.0001 
  kr 0.005130 0.000706 7.27 0.0054 

 

 

For the Arrhenius plots (Figures 4.52 and 4.53), the data were analyzed by taking 

the natural log (ln) of the rate constants and fitting a linear regression to their correlation 
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with the reciprocal of the temperature (i.e., 1/temperature, where the temperature is in 

Kelvin).  Then, in the Arrhenius equation (Equation 4.8), the intercept would be the ln A 

and the slope would be equal to 
R
Ea− .  

Tables L.25 through L.32 show the ANOVA, the regression statistics, parameters 

and standard errors for the Arrhenius plots for the bulk and residual phase rate constants 

(kb and kr) for the treatments with and without air.  The analysis shows that regressions 

for kr for the treatment without air (Figure 4.52) and kb for the treatment with air (Figure 

4.53) are not significant; therefore, their parameters are not conclusive.  For these 

regressions, even though influence diagnostics might suggest the presence of potential 

outliers, because the number of data points in the correlation is small, outlier detection is 

not easy and it might lead to some erroneous conclusions. 

 

Table L.25  ANOVA of the regression of the Arrhenius plot for the bulk phase rate 
constant (kb) for the treatment without air. 

  df SS MS F P-value 
Regression 1 1.285 1.285 10.03 0.0506 
Residual 3 0.384 0.128   
Total 4 1.670    

 

 

Table L.26  Regression statistics, parameters and standard errors of Arrhenius plot for 
the bulk phase rate constant (kb) for the treatment without air. 

Regression Statistics Parameter Coefficients Standard Error t-Stat P-value 
Multiple R 0.8774 Intercept 11.0 4.0166 2.74 0.0713 
R2 0.7698 Slope -3975 1254.8 -3.17 0.0506 
Adjusted R2 0.6931      
Standard Error 0.3579      
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Table L.27  ANOVA of the regression of the Arrhenius plot for the bulk phase rate 
constant (kb) for the treatment with air. 

  df SS MS F P-value 
Regression 1 0.2313 0.2313 1.3507 0.3292 
Residual 3 0.5136 0.1712   
Total 4 0.7449    

 

 

Table L.28  Regression statistics, parameters and standard errors of Arrhenius plot for 
the bulk phase rate constant (kb) for the treatment with air. 

Regression Statistics Parameter Coefficients Standard Error t-Stat P-value 
Multiple R 0.5572 Intercept 3.4795 4.6432 0.749 0.5080 
R2 0.3105 Slope -1685.8 1450.5 -1.16 0.3292 
Adjusted R2 0.0806      
Standard Error 0.4138      

 

 

Table L.29  ANOVA of the regression of the Arrhenius plot for the residual phase rate 
constant (kr) for the treatment without air. 

  df SS MS F P-value 
Regression 1 0.0215 0.0215 0.0917 0.7818 
Residual 3 0.7023 0.2341   
Total 4 0.7238    

 

 

Table L.30  Regression statistics, parameters and standard errors of Arrhenius plot for 
the residual phase rate constant (kr) for the treatment without air. 

Regression Statistics Parameter Coefficients Standard Error t-Stat P-value 
Multiple R 0.1722 Intercept -5.8561 5.4294 -1.08 0.3598 
R2 0.0297 Slope -513.7 1696.2 -0.30 0.7818 
Adjusted R2 -0.2938      
Standard Error 0.4838      

 

 

 

 

 



 332

Table L.31  ANOVA of the regression of the Arrhenius plot for the residual phase rate 
constant (kr) for the treatment with air. 

  df SS MS F P-value 
Regression 1 0.9577 0.9577 16.92 0.0260 
Residual 3 0.1698 0.0566   
Total 4 1.1275    

 

 

Table L.32  Regression statistics, parameters and standard errors of Arrhenius plot for 
the residual phase rate constant (kr) for the treatment with air. 

Regression Statistics Parameter Coefficients Standard Error t-Stat P-value 
Multiple R 0.9216 Intercept 5.0882 2.6697 1.91 0.1527 
R2 0.8494 Slope -3430.6 834.0 -4.11 0.0260 
Adjusted R2 0.7992      
Standard Error 0.2379      
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APPENDIX M 

 

DATA FOR THE BAGASSE LONG-TERM 

LIME PRETREATMENT STUDIES 

 

Tables M.1 through M.14 show the data necessary to generate all the correlations 

shown in the figures in Chapter IV.  Although some of the parameters necessary to 

generate the plots in Chapter IV are not explicitly listed, they can be calculated from the 

given data.  For instance, the holocellulose content can be found by subtracting from 100 

the sum of the lignin (g lignin/100 g treated bagasse) and acid-insoluble ash content (g 

A.I. ash/100 g treated bagasse) given below.  Also, the total 3-day digestibility sugar 

yield is the sum of the glucose and xylose yields given below. 

The experimental procedures, calculations, and nomenclature for the parameters 

shown in Tables M.1 through M.14 and other parameters needed to generate the 

correlations in Chapter IV, are given in Chapter IV and in Appendix I.  The overall yield 

(Y) is given in g treated bagasse/g untreated bagasse (dry weight basis). 
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Table M.1  Lime consumption values for old stored bagasse treatment at 23oC. 
Air         

  Time W1 W1(1-X1) WCa(OH)2 Wleft Wcorr g Ca(OH)2/g 
n Date (days) (g) (g) (g) (g) (g) untreated bagasse
0 7/18/2001 0 3.2109 3.0252 1.5345 1.4493 1.5421 0.0000†

1 7/25/2001 7 3.2131 3.0459 1.5027 1.3334 1.4188 0.0276 
2 8/1/2001 14 3.2113 3.0442 1.5210 1.3204 1.4050 0.0381 
3 8/8/2001 21 3.2131 3.0459 1.5122 1.3056 1.3892 0.0404 
4 8/16/2001 29 3.2065 3.0397 1.5091 1.3064 1.3900 0.0392 
5 9/17/2001 61 3.2094 3.0424 1.5223 1.2778 1.3597 0.0535 
6 10/17/2001 91 3.2018 3.0352 1.5142 1.1871 1.2631 0.0827 
7 11/19/2001 124 3.2076 3.0407 1.5251 1.1993 1.2761 0.0819 
8 12/13/2001 148 3.2080 3.0411 1.5162 1.0389 1.1055 0.1351 
9 1/18/2002 184 3.2008 3.0343 1.5189 1.1804 1.2560 0.0866 

10 2/21/2002 210 3.2137 3.0167 1.5119 0.7712 0.8205 0.2292 
11 3/22/2002 239 3.2085 3.0118 1.5188 0.3426 0.3645 0.3832 

         
No Air (Capped)        

  Time W1 W1(1-X1) WCa(OH)2 Wleft Wcorr g Ca(OH)2/g 
n Date (days) (g) (g) (g) (g) (g) untreated bagasse
0 7/18/2001 0 3.2042 3.0098 1.5173 1.4190 1.5098 0.0000†

1 7/25/2001 7 3.2122 3.0451 1.5197 1.3419 1.4278 0.0302 
2 8/1/2001 14 3.2057 3.0389 1.5203 1.3278 1.4129 0.0354 
3 8/8/2001 21 3.2158 3.0485 1.5233 1.3219 1.4066 0.0383 
4 8/16/2001 29 3.2089 3.0420 1.5219 1.3390 1.4247 0.0320 
5 9/17/2001 61 3.2051 3.0384 1.5149 1.2749 1.3565 0.0521 
6 10/17/2001 91 3.2126 3.0455 1.5296 1.3338 1.4192 0.0363 
7 11/19/2001 124 3.2198 3.0523 1.5194 1.2990 1.3821 0.0450 
8 12/13/2001 148 3.2083 3.0414 1.5188 1.2253 1.3037 0.0707 
9 1/18/2002 184 3.2236 3.0559 1.5187 1.3130 1.3971 0.0398 

10 2/21/2002 210 3.2490 3.0800 1.5129 1.2378 1.3171 0.0636 
11 3/22/2002 239 3.2283 3.0604 1.5126 1.2908 1.3735 0.0455 
Cf  = 1.0640 g Ca(OH)2 before titration/g Ca(OH)2 after titration (see Equation I.2) 
Cf , in this case, is the average from 0 – Air and 0 – No Air, which are duplicates of the same untreated 
material 
† Average from 0 – Air and 0 – No Air 
 
 

 

 



 

Table M.2  Data for lime-treatment of old stored bagasse at 23oC. 
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 Air 3-day Enzyme Digestibility 
n Date Time W1 W1(1-X1) W2 W2(1-X2) Y g lignin/100 g A.I. Ash/ Glucose Yield Xylose Yield 
  (days) 

 
(g) (g) (g) (g)  g treated 100 g treated (g/g unt bagasse) (g/g unt bagasse)

0        7/18/2001 0 3.2081 3.0226 3.0328 2.9865 0.9902† 23.98† 12.84† 0.0647 0.0108
1            

            
            
            
            

           
           
           

            
           
           

       

7/25/2001 7 3.2169 3.0495 2.7349 2.6397 0.866 20.77 15.19 0.1731 0.0557
2 8/1/2001 14 3.2087 3.0418 2.6804 2.6050 0.856 20.14 13.30 0.1889 0.0561
3 8/8/2001 21 3.2035 3.0368 2.5568 2.4889 0.820 19.47 13.94 0.2038 0.0588
4 8/16/2001 29 3.2047 3.0380 2.5611 2.4696 0.813 18.27 11.09 0.2086 0.0571
5 9/17/2001 61 3.2037 3.0370 2.4844 2.3956 0.789 18.23 16.02 0.2188 0.0568
6 10/17/2001 91 3.2234 3.0557 2.4934 2.4244 0.793 16.88 13.85 0.2506 0.0620
7 11/19/2001 124 3.2092 3.0422 2.4059 2.3469 0.771 15.24 17.27 0.2734 0.0642
8 12/13/2001 148 3.2077 3.0408 2.3998 2.3496 0.773 15.12 14.84 0.2470 0.0604
9 1/18/2002 184 3.208 3.0411 2.3095 2.2649 0.745 14.52 15.86 0.2559 0.0587

10 2/21/2002 210 3.2011 3.0048 2.2207 2.1772 0.725 13.56 14.36 0.2631 0.0572
11 3/22/2002 239 3.2086 3.0119 2.2035 2.1452 0.712 12.86 11.11 0.2148 0.0502

 No Air (Capped) 3-day Enzyme Digestibility 
n Date Time W1 W1(1-X1) W2 W2(1-X2) Y g lignin/100 g A.I. Ash/ Glucose Yield Xylose Yield 
  (days) 

 
(g) (g) (g) (g)  g treated 100 g treated (g/g unt bagasse) (g/g unt bagasse)

0        7/18/2001 0 3.2015 3.0073 3.0457 2.9839 0.9902† 23.98† 12.84† 0.0616 0.0104
1            

            
            
            
            

           
           

           
           
           
           

7/25/2001 7 3.2138 3.0466 3.1574 2.3881 0.784 21.04 13.04 0.1786 0.0557
2 8/1/2001 14 3.2106 3.0436 2.6748 2.5901 0.851 19.74 18.83 0.1800 0.0558
3 8/8/2001 21 3.2023 3.0357 2.5904 2.4895 0.820 19.42 14.07 0.1901 0.0559
4 9/10/2002 29 3.2084 3.0060 2.5467 2.4929 0.829 19.83 11.98 0.1805 0.0575
5 9/17/2001 61 3.2086 3.0417 2.5302 2.4253 0.797 18.91 14.16 0.2061 0.0584
6 10/17/2001 91 3.2102 3.0432 2.5331 2.4720 0.812 18.79 14.10 0.1897 0.0564
7 11/19/2001 124 3.2201

 
3.0526 2.3935 2.3255 0.762 17.15 16.66 0.2197 0.0599

8 12/13/2001
 

148 3.209 3.0421 2.3905 2.3384 0.769 16.51 17.26 0.2484 0.0627
9 1/18/2002 184 3.2135 3.0463 2.338 2.2902 0.752 17.57 13.75 0.2114 0.0578

10 2/21/2002 210 3.2346 3.0663 2.3705 2.3268 0.759 17.53 14.24 0.2202 0.0593
11 3/22/2002 239 3.2075 3.0406 2.4545 2.3818 0.783 18.47 14.11 0.1965 0.0600
Abbreviations: A.I. ≡ acid-insoluble, unt ≡ untreated, treated ≡ treated bagasse, for other nomenclature see Appendix I
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Table M.3  Lime consumption values for old stored bagasse treatment at 30oC. 
Air         

  Time W1 W1(1-X1) WCa(OH)2 Wleft Wcorr g Ca(OH)2/g 
n Date (days) (g) (g) (g) (g) (g) untreated bagasse

0(1) 1/23/2003 0 3.2248 3.0489 1.5094 1.438595 1.50831 0.0004 
0(2) 1/23/2003 0 3.2219 3.0462 1.5143 1.440076 1.509863 0.0015 
0(3) 1/23/2003 0 3.2201 3.0445 1.5024 1.438224 1.507921 -0.0018 

1 1/30/2003 7 3.2364 3.0584 1.7677 1.6056 1.6835 0.0275 
2 2/6/2003 14 3.2292 3.0516 1.5042 1.2953 1.3580 0.0479 
3 2/13/2003 21 3.2027 3.0265 1.5060 1.2964 1.3592 0.0485 
4 2/20/2003 28 3.2137 3.0369 1.5143 1.2856 1.3479 0.0548 
5 3/23/2003 59 3.2556 3.0765 1.5019 1.2204 1.2796 0.0723 
6 4/23/2003 90 3.2149 3.0381 1.5051 1.2086 1.2672 0.0783 
7 5/23/2003 120 3.2077 3.0313 1.5225 1.1701 1.2268 0.0976 
8 6/23/2003 151 3.2118 3.0351 1.5078 1.1456 1.2011 0.1010 
9 7/23/2003 181 3.2234 3.0461 1.5024 1.0349 1.0850 0.1370 

10 (1) 8/23/2003 212 3.2156 3.0387 1.5042 1.0345 1.0846 0.1381 
10 (2) 8/23/2003 212 3.2042 3.0280 1.5268 1.0619 1.1134 0.1365 
11 (3) 8/23/2003 212 3.2409 3.0626 1.5028 1.0208 1.0703 0.1412 

         
No Air (Capped)        

  Time W1 W1(1-X1) WCa(OH)2 Wleft Wcorr g Ca(OH)2/g 
n Date (days) (g) (g) (g) (g) (g) untreated bagasse
1 1/30/2003 7 3.2345 3.0566 1.5034 1.3360 1.4007 0.0336 
2 2/6/2003 14 3.2060 3.0297 1.5058 1.3416 1.4066 0.0328 
3 2/13/2003 21 3.2040 3.0278 1.5097 1.3286 1.3930 0.0386 
4 2/20/2003 28 3.2082 3.0317 1.5050 1.3301 1.3945 0.0364 
5 3/23/2003 59 3.2156 3.0387 1.5139 1.3316 1.3961 0.0388 
6 4/23/2003 90 3.2041 3.0279 1.5185 1.3212 1.3852 0.0440 
7 5/23/2003 120 3.2097 3.0332 1.5288 1.3227 1.3868 0.0468 
8 6/23/2003 151 3.2246 3.0472 1.5017 1.3175 1.3813 0.0395 
9 7/23/2003 181 3.2655 3.0859 1.5062 1.2953 1.3580 0.0480 

10(1) 8/23/2003 212 3.2116 3.0349 1.5194 1.3167 1.3805 0.0458 
10(2) 8/23/2003 212 3.2518 3.0729 1.5240 1.3082 1.3716 0.0496 
10(3) 8/23/2003 212 3.2051 3.0288 1.5054 1.3064 1.3697 0.0448 
Cf  = 1.0485 g Ca(OH)2 before titration/g Ca(OH)2 after titration (see Equation I.2) 
Cf , in this case, is the average from 0(1), 0(2), and 0(3), which are triplicates of the same untreated 
material 

 



 

Table M.4  Data for lime-treatment of old stored bagasse at 30oC. 

337

        
  

 Air 3-day Enzyme Digestibility 
n Date Time W1 W1(1-X1) W2 W2(1-X2) Y g lignin/100 g A.I. Ash/ Glucose Yield Xylose Yield 
  (days) 

 
(g) (g) (g) (g)  g treated 

 
100 g treated

 
(g/g unt bagasse) 

 
(g/g unt bagasse)

 0(1) 1/23/2003     0 3.2226 3.0469 2.9280 2.8663 0.9407 23.04 19.66 0.0846 0.0171
0(2) 1/23/2003          

          
          

           
           
           
           
           
           
           
           

          
          
          

          

0 3.2272 3.0512 2.9429 2.8828 0.9448 23.61 16.05 0.0854 0.0171
0(3)

 
 1/23/2003 0 3.2257 3.0498 2.9634 2.9137 0.9554 23.51 16.24 0.0848 0.0174

1 1/30/2003 7 3.2126 3.0359 2.6357 2.5694 0.8463 20.95 12.82 0.1975 0.0598
2 2/6/2003 14 3.2057 3.0294 2.5380 2.5213 0.8323 18.87 13.43 0.2146 0.0615
3 2/13/2003 21 3.2354 3.0574 2.5225 2.4549 0.8029 18.17 12.96 0.2112 0.0564
4 2/20/2003 28 3.2262 3.0487 2.4528 2.4046 0.7887 18.11 14.73 0.2228 0.0597
5 3/23/2003 59 3.2078 3.0314 2.3404 2.2656 0.7474 15.82 16.58 0.2345 0.0598
6 4/23/2003 90 3.205 3.0287 2.2673 2.1904 0.7232 14.98 19.70 0.2488 0.0602
7 5/23/2003 120 3.2348 3.0569 2.2198 2.1520 0.7040 14.70 16.48 0.2614 0.0606
8 6/23/2003 151 3.2274 3.0499 2.2735 2.2006 0.7215 14.66 13.96 0.2651 0.0582
9 7/23/2003 181 3.2317 3.0539 2.1426 2.0949 0.6860 13.07 16.28 0.2628 0.0567

10(1) 8/23/2003 212 3.2152 3.0384 2.1300 2.0684 0.6808 13.01 17.48 0.2821 0.0584
10(2) 8/23/2003 212 3.2321 3.0543 2.1110 2.0595 0.6743 12.70 19.44 0.2663 0.0547
10(3) 8/23/2003

  
212 3.2122 3.0355 2.0721 2.0119 0.6628 12.67 18.43 0.2546 0.0529

 No Air (Capped) 
 

       
 

3-day Enzyme Digestibility 
n Date Time W1 W1(1-X1) W2 W2(1-X2) Y g lignin/100 g A.I. Ash/ Glucose Yield Xylose Yield 
  (days) 

 
(g) (g) (g) (g)  g treated 

 
100 g treated

 
(g/g unt bagasse) 

 
(g/g unt bagasse)

 1      1/30/2003 7 3.2051 3.0288 2.6321 2.5730 0.8495 20.87 15.04 0.1993 0.0601
2           

           
           
           
           
           
           
           

2/6/2003 14 3.2044 3.0281 2.5732 2.5608 0.8457 20.30 13.33 0.1957 0.0585
3 2/13/2003 21 3.2041 3.0279 2.5369 2.4641 0.8138 19.81 13.04 0.2045 0.0598
4 2/20/2003 28 3.2075 3.0311 2.5253 2.4739 0.8162 19.88 11.71 0.2003 0.0608
5 3/23/2003 59 3.2049 3.0286 2.4585 2.3779 0.7851 18.54 15.25 0.2000 0.0592
6 4/23/2003 90 3.2038 3.0276 2.296 2.2268 0.7355 17.04 16.36 0.2163 0.0595
7 5/23/2003 120 3.204 3.0278 2.3965 2.3381 0.7722 18.42 14.99 0.2074 0.0613
8 6/23/2003 151 3.2112 3.0346 2.4476 2.3759 0.7830 18.15 15.41 0.2187 0.0643
9 7/23/2003 181 3.2096 3.0331 2.2126 2.1777 0.7180 16.76 15.57 0.2065 0.0561
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Table M.4  Continued 
 No Air (Capped) 

 
3-day Enzyme Digestibility 

n Date Time W1 W1(1-X1) W2 W2(1-X2) Y g lignin/100 g A.I. Ash/ Glucose Yield Xylose Yield 
  (days) (g) (g) (g) (g)  g treated 

 
100 g treated

 
(g/g unt bagasse) 

 
(g/g unt bagasse)

 10(1) 8/23/2003      212 3.2103 3.0337 2.1403 2.0921 0.6896 15.71 19.90 0.2239 0.0572
10(2) 8/23/2003 212 3.2209 3.0437 2.09 2.0401 0.6702 15.33 15.51 0.2227 0.0570 
10(3) 8/23/2003          212 3.2903 3.1093 2.4548 2.3889 0.7683 17.26 17.96 0.2163 0.0625
Abbreviations: A.I. ≡ acid-insoluble, unt ≡ untreated, treated ≡ treated bagasse, for other nomenclature see Appendix I 

 

 

Table M.5  Lime consumption values for old stored bagasse treatment at 40oC. 
Air         

   Time W1 W1(1-X1) WCa(OH)2 Wleft Wcorr g Ca(OH)2/g 
n Date (days)

 
(g)     

      
(g) (g) (g) (g) untreated bagasse

 0(1) 5/01/2002 0 3.2248 3.0489 1.5094 1.4386 1.5083 0.0004
0(2) 5/01/2002        

        
         
         
         
         
         
         
         
        
        
        

       

0 3.2219 3.0462 1.5143 1.4401 1.5099 0.0015
0(3) 5/01/2002 0 3.2201 3.0445 1.5024 1.4382 1.5079 -0.0018

1 5/8/2002 7 3.2165 3.0316 1.5089 1.3138 1.3774 0.0434
2 5/15/2002 14 3.2113 3.0267 1.5095 1.2853 1.3475 0.0535
3 5/22/2002 21 3.2064 3.0220 1.5062 1.2697 1.3312 0.0579
4 5/29/2002 28 3.2194 3.0343 1.5093 1.2678 1.3293 0.0593
5 7/4/2002 64 3.2232 3.0379 1.5035 1.1864 1.2439 0.0855
6 8/4/2002 95 3.2101 3.0255 1.5028 1.0667 1.1184 0.1270
7 9/4/2002 126 3.2124 3.0277 1.5077 0.9952 1.0435 0.1533
8 10/4/2002 156 3.2098 3.0252 1.5060 0.9775 1.0248 0.1591
9 11/4/2002 187 3.2136 3.0288 1.5086 0.7497 0.7860 0.2386

10 12/4/2002
  

 217 3.2076 3.0232 1.5089 0.6008 0.6299 0.2908
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Table M.5  Continued. 
No Air (Capped)

  Time W1 W1(1-X1) WCa(OH)2 Wleft Wcorr g Ca(OH)2/g 
n Date (days)

  
(g)     

      
(g) (g) (g) (g) untreated bagasse

 1 5/8/2002 7 3.2079 3.0235 1.5015 1.3267 1.3910 0.0365
2         

         
         
         
         
         
        
        
        

5/15/2002 14 3.2067 3.0223 1.5036 1.3308 1.3953 0.0358
3 5/22/2002 21 3.2040 3.0198 1.5047 1.3256 1.3899 0.0380
4 5/29/2002 28 3.2083 3.0238 1.5016 1.3290 1.3934 0.0358
5 7/4/2002 64 3.2109 3.0263 1.5061 1.3208 1.3848 0.0401
6 8/11/2002 95 3.2077 3.0233 1.5013 1.2915 1.3541 0.0487
7 9/4/2002 126 3.2136 3.0288 1.5030 1.2671 1.3285 0.0576
8 10/4/2002 156 3.2272 3.0416 1.5036 1.3241 1.3883 0.0379
9 11/4/2002 187 3.2120 3.0273 1.5014 1.3001 1.3631 0.0457

10 12/4/2002 217 3.2043 3.0201 1.5096 1.3064 1.3697 0.0463
Cf  = 1.0485 g Ca(OH)2 before titration/g Ca(OH)2 after titration (see Equation I.2) 
Cf , in this case, is the average from 0(1), 0(2), and 0(3), which are triplicates of the same untreated material 

 

 

Table M.6  Data for lime-treatment of old stored bagasse at 40oC. 
 Air          

  
3-day Enzyme Digestibility

n Date Time W1 W1(1-X1) W2 W2(1-X2) Y g lignin/100 g A.I. Ash/ Glucose Yield Xylose Yield 
  (days) 

 
(g) (g) (g) (g)  g treated 

 
100 g treated

 
(g/g unt bagasse) 

 
(g/g unt bagasse)

 0(1) 5/1/2002     0 3.2226 3.0469 2.9280 2.8663 0.9407 23.04 19.66 0.0846 0.0171
0(2) 5/1/2002          

          
          

           
           
           

0 3.2272 3.0512 2.9429 2.8828 0.9448 23.61 16.05 0.0854 0.0171
0(3)

 
 5/1/2002 0 3.2257 3.0498 2.9634 2.9137 0.9554 23.51 16.24 0.0848 0.0174

1 5/8/2002 7 3.2114 3.0268 2.5491 2.4831 0.8204 19.35 16.80 0.1969 0.0577
2 5/15/2002 14 3.2167 3.0318 2.4193 2.3540 0.7764 18.82 11.28 0.2087 0.0617
3 5/22/2002 21 3.2052 3.0209 2.408 2.3440 0.7759 17.96 13.01 0.2285 0.0627
4 5/29/2002 28 3.2145 3.0297 2.3195 2.2669 0.7482 16.90 14.18 0.2294 0.0627
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Table M.6  Continued. 
 Air 3-day Enzyme Digestibility

n Date Time W1 W1(1-X1) W2 W2(1-X2) Y g lignin/100 g A.I. Ash/ Glucose Yield Xylose Yield 
  (days) 

 
(g) (g) (g) (g)  g treated 

 
100 g treated

 
(g/g unt bagasse) 

 
(g/g unt bagasse)

 5      7/4/2002 64 3.2133 3.0285 2.1703 2.1159 0.6987 14.84 13.62 0.2543 0.0630
6           

           
           
           

        
          

          

8/4/2002 95 3.2073 3.0229 2.1391 2.0672 0.6838 13.88 17.86 0.2662 0.0622
7 9/4/2002 126 3.2069 3.0225 2.2139 2.1187 0.7010 12.41 17.43 0.2949 0.0649
8 10/4/2002 156 3.215 3.0301 2.063 2.0010 0.6604 11.45 17.80 0.2704 0.0595
9 11/4/2002 187 3.2098 3.0252 1.9117 1.8480 0.6109 10.11 17.83 0.2345

 
0.0481

 10 12/4/2002 217 3.2076 3.0232 2.3803 2.3218 0.7680 9.03 17.03 --- ---
6 NL 8/19/2002

  
94 3.2061 3.0047 2.8045 2.7599 0.9185 25.10 9.93 0.0639 0.008

 No Air (Capped) 
 

        
 

3-day Enzyme Digestibility
n Date Time W1 W1(1-X1) W2 W2(1-X2) Y g lignin/100 g A.I. Ash/ Glucose Yield Xylose Yield 
  (days) 

 
(g) (g) (g) (g)  g treated 

 
100 g treated

 
(g/g unt bagasse) 

 
(g/g unt bagasse)

 1      5/8/2002 7 3.2383 3.0521 2.6343 2.5519 0.8361 21.02 12.28 0.1782 0.0565
2           

           
           
           
           
           
           
           

          
          

5/15/2002 14 3.2368 3.0507 2.5528 2.4885 0.8157 19.69 13.55 0.1711 0.0545
3 5/22/2002 21 3.2264 3.0409 2.5254 2.4475 0.8049 19.72 11.96 0.1968 0.0606
4 5/29/2002 28 3.2249 3.0395 2.4787 2.4246 0.7977 19.02 14.12 0.2022 0.0632
5 7/4/2002 64 3.2301 3.0444 2.3564 2.3104 0.7589 18.44 12.94 0.1947 0.0613
6 8/4/2002 95 3.2283 3.0427 2.4394 2.3644 0.7771 18.60 16.70 0.2077 0.0650
7 9/4/2002 126 3.2037 3.0195 2.3664 2.2985 0.7612 17.83 16.90 0.2116 0.0660
8 10/4/2002 156 3.2167 3.0318 2.3512 2.2819 0.7527 17.92 12.21 0.2101 0.0655
9 11/4/2002 187 3.226 3.0405 2.298 2.2075 0.7260 17.30 15.72 0.2072 0.0661

10 12/4/2002 217 3.2223 3.0370 2.3023 2.2524 0.7416 17.61 11.48 0.2102 0.0671
6 NL 8/19/2002 94 3.2094 3.0078 2.9371 2.8921 0.9615 26.12 9.66 0.0575 0.007
Abbreviations: A.I. ≡ acid-insoluble, unt ≡ untreated, treated ≡ treated bagasse, NL ≡ no lime, for other nomenclature see Appendix I 
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Table M.7  Lime consumption values for old stored bagasse treatment at 50oC. 
Air         

  Time W1 W1(1-X1) WCa(OH)2 Wleft Wcorr g Ca(OH)2/g 
n Date (days) (g) (g) (g) (g) (g) untreated bagasse
0 6/12/2001 0 3.2109 3.0252 1.5345 1.4493 1.5421 0.0000†

1 6/19/2001 7 3.2148 3.0496 1.5107 1.2519 1.3321 0.0586 
2 6/26/2001 14 3.2330 3.0668 1.5552 1.2230 1.3013 0.0828 
3 7/3/2001 21 3.2169 3.0516 1.5682 1.2001 1.2769 0.0955 
4 7/10/2001 28 3.2081 3.0432 1.5265 1.1834 1.2592 0.0878 
5 8/10/2001 59 3.2356 3.0693 1.5297 0.9797 1.0424 0.1588 
6 9/10/2001 90 3.2641 3.0963 1.5321 0.7967 0.8477 0.2210 
7 10/10/2001 120 3.2274 3.0170 1.5548 0.7278 0.7744 0.2587 
8 11/13/2001 154 3.2467 3.0351 1.5578 0.5923 0.6302 0.3056 
9 12/9/2001 180 3.2386 3.0275 1.5252 0.4211 0.4481 0.3558 

10 1/13/2001 215 3.2295 3.0190 1.5346 0.3489 0.3712 0.3853 
         

No Air (Capped)        
  Time W1 W1(1-X1) WCa(OH)2 Wleft Wcorr g Ca(OH)2/g 

n Date (days) (g) (g) (g) (g) (g) untreated bagasse
0 6/12/2001 0 3.2042 3.0098 1.5173 1.4190 1.5098 0.0000†

1 6/19/2001 7 3.2024 3.0378 1.5033 1.3186 1.4030 0.0330 
2 6/26/2001 14 3.2026 3.0380 1.5388 1.3408 1.4267 0.0369 
3 7/3/2001 21 3.2440 3.0773 1.5605 1.3519 1.4385 0.0396 
4 9/9/2002 29 3.2061 3.0038 1.5691 1.3041 1.3876 0.0604 
5 8/10/2001 59 3.2299 3.0639 1.5144 1.3186 1.4030 0.0364 
6 9/10/2001 90 3.2256 3.0153 1.5261 1.3216 1.4062 0.0398 
7 10/10/2001 120 3.2131 3.0037 1.5243 1.3112 1.3951 0.0430 
8 11/13/2001 154 3.2377 3.0266 1.5383 1.3145 1.3987 0.0461 
9 12/9/2001 180 3.2039 2.9951 1.5587 1.3375 1.4231 0.0453 

10 1/13/2001 215 3.2266 3.0163 1.5602 1.3241 1.4089 0.0502 
Cf  = 1.0640 g Ca(OH)2 before titration/g Ca(OH)2 after titration (see Equation I.2) 
Cf , in this case, is the average from 0 – Air and 0 – No Air, which are duplicates of the same untreated 
material 
† Average from 0 – Air and 0 – No Air 
 

 

 



 

Table M.8  Data for lime-treatment of old stored bagasse at 50oC. 
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 Air 3-day Enzyme Digestibility
n Date Time W1 W1(1-X1) W2 W2(1-X2) Y g lignin/100 g A.I. Ash/ Glucose Yield Xylose Yield 
  (days) 

 
(g) (g) (g) (g)  g treated 100 g treated (g/g unt bagasse) 

 
(g/g unt bagasse)

 0        6/12/2001 0 3.2081 3.0226 3.0328 2.9865 0.9902† 23.98 12.84 0.0647 0.0108
1           

           
           
           
           
           

          
          

           
          

          

6/19/2001 7 3.2060 3.0412 2.4713 2.4033 0.7902 17.08 13.67 0.1809 0.0523
2 6/26/2001 14 3.1999 3.0354 2.2872 2.2413 0.7384 17.27 13.67 0.2341 0.0678
3 7/3/2001 21 3.2008 3.0363 2.4194 2.3747 0.7821 14.71 16.26 0.2965 0.0753
4 7/10/2001 28 3.2031 3.0385 2.4373 2.3837 0.7845 14.66 15.41 0.2776 0.0730
5 8/10/2001 59 3.2084 3.0435 2.2490 2.1795 0.7161 12.37 14.16 0.2735 0.0622
6 9/10/2001 90 3.2231 3.0130 2.7192 2.6324 0.8737 10.56 14.12 0.3140 0.0707
7 10/10/2001 120 3.2058 2.9968 2.0807 2.0031 0.6684 9.71 14.80 0.2785 0.0584
8 11/13/2001 154 3.2020 2.9933 2.0719 2.0133 0.6726 8.41 18.98 0.2475 0.0506
9 12/9/2001 180 3.2359 3.0250 2.0995 2.0471 0.6768 8.23 17.25 0.2313 0.0486

10 1/13/2002
  

215 3.2028 2.9940 2.3172 2.2872 0.7639 7.84 15.31 0.2403 0.0517

 No Air (Capped) 
 

        
 

3-day Enzyme Digestibility
n Date Time W1 W1(1-X1) W2 W2(1-X2) Y g lignin/100 g A.I. Ash/ Glucose Yield Xylose Yield 
  (days) 

 
(g) (g) (g) (g)  g treated 100 g treated (g/g unt bagasse) 

 
(g/g unt bagasse)

 0        6/12/2001 0 3.2015 3.0073 3.0457 2.9839 0.9902† 23.98 12.84 0.0616 0.0104
1           

           
           
           
           
           

          
          

           
          

6/19/2001 7 3.2239 3.0582 2.5619 2.4900 0.8142 18.81 13.89 0.3053 0.0923
2 6/26/2001 14 3.2236 3.0579 2.5745 2.4978 0.8168 17.33 15.92 0.2372 0.0712
3 7/3/2001 21 3.2338 3.0676 2.5187 2.4656 0.8037 18.29 12.73 0.2108 0.0654
4 7/10/2001 28 3.2366 3.0702 2.5237 2.4573 0.8004 18.24 15.97 0.2119 0.0666
5 8/10/2001 59 3.2561 3.0887 2.4824 2.4026 0.7779 17.78 13.25 0.2112 0.0663
6 9/10/2001 90 3.2351 3.0242 2.4814 2.4069 0.7959 16.73 17.11 0.2367 0.0756
7 10/10/2001 120 3.2151 3.0055 2.3823 2.3064 0.7674 17.09 14.88 0.2342 0.0757
8 11/13/2001 154 3.2268 3.0165 2.3660 2.3093 0.7656 16.13 18.86 0.2261 0.0742
9 12/9/2001 180 3.2118 3.0024 2.3585 2.2975 0.7652 16.96 13.58 0.2287 0.0757

10 1/13/2001 215 3.2263 3.0160 2.2813 2.2340 0.7407 17.18 11.47 0.2343 0.0772
Abbreviations: A.I. ≡ acid-insoluble, unt ≡ untreated, treated ≡ treated bagasse, for other nomenclature see Appendix I 
† Average yield from 0 – air and 0 – No Air, which are simply the same untreated sample run in duplicate
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Table M.9  Lime consumption values for old stored bagasse treatment at 57oC. 
Air         

  Time W1 W1(1-X1) WCa(OH)2 Wleft Wcorr g Ca(OH)2/g 
n Date (days) (g) (g) (g) (g) (g) untreated bagasse
0 7/11/2000 0 3.2149 3.0489 1.5077 1.4167 1.5077 0 
1 7/17/2000 6 3.2184 3.0662 1.5213 1.1982 1.2751 0.0803 
2 7/24/2000 13 3.2253 3.0728 1.5202 1.1630 1.2377 0.0919 
3 7/31/2000 20 3.2198 3.0675 1.5158 1.1323 1.2050 0.1013 
4 8/6/2000 26 3.2088 3.0570 1.5132 1.0978 1.1683 0.1128 
5 9/11/2000 62 3.2023 3.0508 1.5211 0.9289 0.9886 0.1745 
6 10/9/2000 90 3.2186 3.0664 1.5123 0.7467 0.7946 0.2340 
7 11/9/2000 121 3.2210 3.0687 1.5111 0.6297 0.6701 0.2741 
8 12/12/2000 154 3.2073 3.0556 1.5268 0.4019 0.4277 0.3597 
         

No Air (Capped)        
  Time W1 W1(1-X1) WCa(OH)2 Wleft Wcorr g Ca(OH)2/g 

n Date (days) (g) (g) (g) (g) (g) untreated bagasse
1 7/17/2000 6 3.2201 3.0678 1.5049 1.3334 1.4190 0.0280 
2 7/24/2000 13 3.2195 3.0672 1.5279 1.3075 1.3914 0.0445 
3 7/31/2000 20 3.2140 3.0620 1.5078 1.3186 1.4032 0.0341 
4 8/6/2000 26 3.2150 3.0629 1.5199 1.3264 1.4115 0.0354 
5 2/12/2001 59 3.2029 2.9806 1.5040 1.2478 1.3280 0.0591 
6 10/9/2000 90 3.2172 3.0650 1.5210 1.3175 1.4021 0.0388 
7 11/9/2000 121 3.2127 3.0608 1.5282 1.3212 1.4060 0.0399 
8 12/12/2000 154 3.2095 3.0577 1.5018 1.2908 1.3737 0.0419 

Cf  = 1.0642 g Ca(OH)2 before titration/g Ca(OH)2 after titration (see Equation I.2) 
 

 

 



 

Table M.10  Data for lime-treatment of old stored bagasse at 57oC. 
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 Air 3-day Enzyme Digestibility
n Date Time W1 W1(1-X1) W2 W2(1-X2) Y g lignin/100 g A.I. Ash/ Glucose Yield Xylose Yield 
  (days) 

 
(g) (g) (g) (g)  g treated 

 
100 g treated

 
(g/g unt bagasse) 

 
(g/g unt bagasse)

 0      7/11/2000 0 3.2112 3.0701 3.0872 3.0264 0.9858 24.14 15.26 0.0777 0.0036
1-d 11/24/2000          

          
          
          

          
           
           
           
           
           
           
           

          
          

1 3.2508 3.0516 2.7115 2.6859 0.8802 20.89 14.04 0.1967 0.0670
2-d 11/25/2000 2 3.2615 3.0616 2.6683 2.5898 0.8459 19.35 14.57 0.2010 0.0693
3-d 11/26/2000 3 3.2471 3.0481 2.6229 2.5723 0.8439 19.18 12.66 0.2196 0.0738
5-d 11/28/2000

 
5 3.2397 3.0411 2.5663 2.3686 0.7789 19.25 10.23 0.1986 0.0642

6-d 7/17/2000 6 3.2145 3.0625 2.4385 2.3686 0.7734 15.16 18.22 0.3234 0.0712
1 2/28/2001 7 3.2090 3.0650 2.3803 2.3028 0.7513 16.36 16.34 0.2465 0.0710
2 7/24/2000 13 3.2050 3.0534 2.2695 2.2121 0.7245 13.66 17.46 0.3474 0.0748
3 7/31/2000 20 3.2176 3.0654 1.9751 1.9176 0.6256 13.92 17.07 0.3000 0.0632
4 8/6/2000 26 3.2219 3.0695 2.2708 2.2109 0.7203 12.13 20.87 0.3275 0.0735
5 9/11/2000 62 3.2066 3.0549 2.1339 2.0706 0.6778 9.94 21.23 0.3095 0.0610
6 10/9/2000 90 3.2218 3.0694 2.1728 2.1210 0.6910 8.76 18.50 0.3033 0.0656
7 11/9/2000 121 3.2212 3.0689 2.0457 2.0309 0.6618 8.26 20.37 0.2528 0.0521
8 12/12/2000
  

154 3.2173 3.0651 2.4826 2.4085 0.7858 6.58 14.36 0.2447 0.0511

 No Air (Capped) 
 

        
 

3-day Enzyme Digestibility
n Date Time W1 W1(1-X1) W2 W2(1-X2) Y g lignin/100 g A.I. Ash/ Glucose Yield Xylose Yield 
  (days) 

  
(g) (g) (g) (g)  g treated 

 
100 g treated

 
(g/g unt bagasse) 

 
(g/g unt bagasse)

 1-d 11/24/2000 1 3.2239    3.0263 2.6644 2.6294 0.8689 20.55 14.90 0.1876 0.0660
2-d 11/25/2000          

          
          

          
           
           
           
           
           

2 3.2172 3.0200 2.6458 2.5777 0.8535 19.15 16.57 0.1884 0.0665
3-d 11/26/2000 3 3.2216 3.0242 2.6220 2.5159 0.8319 19.39 10.83 0.1943 0.0670
5-d 11/28/2000

 
5 3.2388 3.0403 2.5553 2.5074 0.8247 18.82 12.72 0.2131 0.0717

6-d 7/17/2000 6 3.2192 3.0669 2.5187 2.4377 0.7948 18.12 11.87 0.2249 0.0432
1 2/28/2001 7 3.2075 3.0635 2.5068 2.4392 0.7962 17.90 14.31 0.2296 0.0730
2 7/24/2000 13 3.2078 3.0561 2.4369 2.3747 0.7771 16.87 16.86 0.3160 0.0670
3 7/31/2000 20 3.2199 3.0676 2.4616 2.3721 0.7733 18.11 15.87 0.2850 0.0663
4 8/6/2000 26 3.2223 3.0699 2.3850 2.3177 0.7550 16.14 17.56 0.2779 0.0681
5 9/11/2000 62 3.2191 3.0669 2.4051 2.3417 0.7636 14.63 21.04 0.2513 0.0823
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Table M.10  Continued. 
 Air 3-day Enzyme Digestibility

n Date Time W1 W1(1-X1) W2 W2(1-X2) Y g lignin/100 g A.I. Ash/ Glucose Yield Xylose Yield 
  (days) 

 
(g) (g) (g) (g)  g treated 

 
100 g treated

 
(g/g unt bagasse) 

 
(g/g unt bagasse)

 6      10/9/2000 90 3.2116 3.0597 2.3597 2.3048 0.7533 15.69 19.20 0.2552 0.0845
7         

          
11/9/2000 121 3.2100 3.0582 2.3293 2.3083 0.7548 16.40 15.03 --- --- 

8 12/12/2000 154 3.2093 3.0575 2.3230 2.2493 0.7357 15.54 17.40 0.2422 0.0785
Abbreviations: A.I. ≡ acid-insoluble, unt ≡ untreated, treated ≡ treated bagasse, d ≡ days, for other nomenclature see Appendix I 

 

Table M.11  Lime consumption values for fresh bagasse treatment at 50oC. 
Air         

   Time W1 W1(1-X1) WCa(OH)2 Wleft Wcorr g Ca(OH)2/g 
n Date (days)

 
(g)     

       
(g) (g) (g) (g) untreated bagasse

 0 7/11/2003 0 3.2257 3.0264 1.6447 1.5164 1.6447 0
1         

         
         
         
         
         

      

7/18/2003 7 3.2025 3.0112 1.5169 1.2753 1.3832 0.0444
2 7/25/2003 14 3.1866 2.9962 1.5163 1.2560 1.3623 0.0514
3 8/1/2003 21 3.1868 2.9964 1.5102 1.2023 1.3040 0.0688
4 8/8/2003 28 3.1920 3.0013 1.5194 1.2056 1.3076 0.0706
5 9/8/2003 59 3.1823 2.9922 1.5245 1.1312 1.2269 0.0995
6 10/8/2003 89 3.1896

 
2.9991 1.5111 1.0375 1.1253 0.1287

No Air (Capped)
  Time W1 W1(1-X1) WCa(OH)2 Wleft Wcorr g Ca(OH)2/g 

n Date (days)
 

(g)     
       

(g) (g) (g) (g) untreated bagasse
 1 7/18/2003 7 3.1858 2.9955 1.5198 1.3108 1.4217 0.0327

2         
         
         
         
         

7/25/2003 14 3.1920 3.0013 1.5146 1.3016 1.4117 0.0343
3 8/1/2003 21 3.1965 3.0055 1.5268 1.3045 1.4149 0.0372
4 8/8/2003 28 3.1887 2.9982 1.5237 1.3056 1.4161 0.0359
5 9/8/2003 59 3.1833 2.9931 1.5231 1.3064 1.4169 0.0355
6 10/8/2003 89 3.1835 2.9933 1.5121 1.2960 1.4057 0.0356

Cf  = 1.0846 g Ca(OH)2 before titration/g Ca(OH)2 after titration (see Equation I.2) 

 



 

 

 

Table M.12  Data for lime-treatment of fresh bagasse at 50oC. 
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 Air 3-day Enzyme Digestibility
n Date Time W1 W1(1-X1) W2 W2(1-X2) Y g lignin/100 g A.I. Ash/ Glucose Yield Xylose Yield 
  (days) 

 
(g) (g) (g) (g)  g treated 

 
100 g treated

 
(g/g unt bagasse) 

 
(g/g unt bagasse)

 0      7/11/2003 0 3.2205 3.0215 2.9589 2.9079 0.9624 21.03 1.59 0.0721 0.0227
1           

           
           
           
           
           

          
          
          

          

7/18/2003 7 3.1797 2.9897 2.4289 2.3613 0.7898 14.25 1.15 0.2474 0.1139
2 7/25/2003 14 3.1811 2.9911 2.3167 2.2341 0.7469 13.08 1.17 0.2777 0.1179
3 8/1/2003 21 3.2014 3.0102 2.2706 2.2042 0.7322 12.15 1.20 0.2807 0.1163
4 8/8/2003 28 3.1814 2.9913 2.2104 2.1755 0.7272 11.47 1.29 0.2975 0.1195
5 9/8/2003 59 3.1894 2.9989 2.1726 2.1002 0.7003 10.53 1.30 0.3327 0.1199
6 10/8/2003 89 3.1810 2.9910 2.0140 1.9679 0.6580 8.36 1.33 0.3343 0.1105

1-sh 7/18/2003 7 6.3652 5.9849 4.5647 4.4498 0.7435 9.56 0.45 0.2595 0.1367
4-sh 8/8/2003 28 6.3690 5.9885 4.2905 4.2251 0.7055 7.08 0.26 0.2931 0.1393
6-sh 10/8/2003

  
89 6.3645 5.9843 3.8936 3.8051 0.6358 4.32 0.27 0.3350 0.1344

 No Air (Capped) 
 

        
 

3-day Enzyme Digestibility
n Date Time W1 W1(1-X1) W2 W2(1-X2) Y g lignin/100 g A.I. Ash/ Glucose Yield Xylose Yield 
  (days) 

 
(g) (g) (g) (g)  g treated 

 
100 g treated

 
(g/g unt bagasse) 

 
(g/g unt bagasse)

 1      7/18/2003 7 3.2171 3.0249 2.5054 2.4268 0.8023 14.49 1.11 0.2389 0.1133
2           

           
           
           
           

7/25/2003 14 3.1942 3.0034 2.4402 2.3591 0.7855 13.99 1.11 0.2579 0.1190
3 8/1/2003 21 3.1810 2.9910 2.4062 2.3305 0.7792 13.51 0.96 0.2481 0.1170
4 8/8/2003 28 3.1838 2.9936 2.3927 2.3391 0.7814 13.05 1.18 0.2423 0.1150
5 9/8/2003 59 3.1824 2.9923 2.3681 2.2937 0.7665 12.95 1.04 0.2594 0.1235
6 10/8/2003 89 3.2002 3.0090 2.3191 2.2899 0.7610 12.49 0.98 0.2539 0.1216
Abbreviations: A.I. ≡ acid-insoluble, unt ≡ untreated, treated ≡ treated bagasse, sh ≡ NaOH-treated bagasse, for other nomenclature see Appendix I 
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Table M.13  Lime consumption values for old stored bagasse treatment at 75oC. 
Air         

  Time W1 W1(1-X1) WCa(OH)2 Wleft Wcorr g Ca(OH)2/g 
n Date (days) (g) (g) (g) (g) (g) untreated bagasse
0 7/9/2003 0 6.4463 6.0530 3.0321 2.8742 3.0321 0 
1 7/16/2003 7 6.3317 5.9931 3.2481 2.6509 2.7965 0.0754 
2 7/23/2003 14 6.3363 5.9975 3.2213 2.5349 2.6742 0.0912 
3 7/30/2003 21 6.3134 5.9758 3.2363 2.5994 2.7422 0.0827 
4 8/6/2003 28 6.3362 5.9974 3.2276 2.5124 2.6504 0.0962 
5 9/5/2003 58 6.3450 6.0057 3.2365 2.2031 2.3241 0.1519 
6 10/7/2003 90 6.3385 5.9996 3.2310 1.8723 1.9752 0.2093 
         

Oxygen        
  Time W1 W1(1-X1) WCa(OH)2 Wleft Wcorr g Ca(OH)2/g 

n Date (days) (g) (g) (g) (g) (g) untreated bagasse
1 7/16/2003 7 6.3575 6.0176 3.2032 2.4709 2.6066 0.0991 
2 8/7/2003 14 6.3567 6.0091 3.2331 2.4931 2.6300 0.1004 
3 8/14/2003 21 6.3257 5.9798 3.2243 2.2557 2.3796 0.1413 
4 8/21/2003 28 6.3294 5.9833 3.2089 2.0379 2.1498 0.1770 
5 9/5/2003 58 6.3497 6.0102 3.4468 1.9705 2.0787 0.2276 
6 10/7/2003 90 6.3033 5.9663 3.3328 0.9556 1.0081 0.3896 
         

Nitrogen        
  Time W1 W1(1-X1) WCa(OH)2 Wleft Wcorr g Ca(OH)2/g 

n Date (days) (g) (g) (g) (g) (g) untreated bagasse
1 7/16/2003 7 6.3428 6.0036 3.2013 2.8024 2.9563 0.0408 
2 7/23/2003 14 6.3143 5.9767 3.2263 2.7927 2.9461 0.0469 
3 7/30/2003 21 6.3240 5.9859 3.2062 2.7694 2.9215 0.0476 
4 8/6/2003 28 6.3315 5.9929 3.2162 2.7794 2.9321 0.0474 
5 9/5/2003 58 6.3127 5.9752 3.3912 2.8813 3.0395 0.0589 
6 10/7/2003 90 6.3465 6.0071 3.2011 2.5650 2.7058 0.0824 

Cf  = 1.0549 g Ca(OH)2 before titration/g Ca(OH)2 after titration (see Equation I.2) 
 
 

 



 

Table M.14  Data for lime-treatment of old stored bagasse at 75oC. 
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 Air 3-day Enzyme Digestibility
n Date Time W1 W1(1-X1) W2 W2(1-X2) Y g lignin/100 g A.I. Ash/ Glucose Yield Xylose Yield 
  (days) 

 
(g) (g) (g) (g)  g treated 

 
100 g treated

 
(g/g unt bagasse) 

 
(g/g unt bagasse)

 0      7/9/2003 0 6.4463 6.0530 6.0467 6.0128 0.9934 22.44 21.32 0.0860 0.0168
1           

           
           
           
           
           

          

7/16/2003 7 6.3317 5.9931 4.6894 4.6107 0.7693 15.17 21.93 0.2136 0.0616
2 7/23/2003 14 6.3363 5.9975 4.7752 4.6504 0.7754 14.61 22.77 0.2308 0.0664
3 7/30/2003 21 6.3134 5.9758 4.7465 4.6131 0.7720 15.53 20.33 0.2144 0.0639
4 8/6/2003 28 6.3362 5.9974 4.7756 4.6763 0.7797 13.10 28.59 0.2510 0.0726
5 9/5/2003 58 6.3450 6.0057 4.8533 4.7327 0.7880 11.36 22.60 0.2478 0.0686
6 10/7/2003
  

90 6.3385 5.9996 4.9926 4.8826 0.8138 9.90 21.02 0.2692 0.0732

 Oxygen 
 

        
 

3-day Enzyme Digestibility
n Date Time W1 W1(1-X1) W2 W2(1-X2) Y g lignin/100 g A.I. Ash/ Glucose Yield Xylose Yield 
  (days) 

 
(g) (g) (g) (g)  g treated 

 
100 g treated

 
(g/g unt bagasse) 

 
(g/g unt bagasse)

 1      7/16/2003 7 6.3575 6.0176 4.8046 4.6928 0.7799 14.09 22.26 0.2293 0.0633
2           

           
           
           
           

          

8/7/2003 14 6.3567 6.0091 4.8573 4.7248 0.7863 15.17 20.86 0.2437 0.0681
3 8/14/2003 21 6.3257 5.9798 4.7761 4.6349 0.7751 11.65 26.31 0.2402 0.0625
4 8/21/2003 28 6.3294 5.9833 4.6863 4.5623 0.7625 9.35 24.11 0.2591 0.0631
5 9/5/2003 58 6.3497 6.0102 4.9264 4.8084 0.8000 7.31 26.15 0.2738 0.0707
6 10/7/2003
  

90 6.3033 5.9663 5.6623 5.5498 0.9302 4.94 17.78 0.2496 0.0569

 Nitrogen 
 

        
 

3-day Enzyme Digestibility
n Date Time W1 W1(1-X1) W2 W2(1-X2) Y g lignin/100 g A.I. Ash/ Glucose Yield Xylose Yield 
  (days) 

 
(g) (g) (g) (g)  g treated 

 
100 g treated

 
(g/g unt bagasse) 

 
(g/g unt bagasse)

 1      7/16/2003 7 6.3428 6.0036 4.7960 4.6887 0.7810 17.92 21.29 0.2185 0.0653
2           

           
           
           
           

7/23/2003 14 6.3143 5.9767 4.7861 4.6411 0.7765 18.54 18.09 0.2000 0.0619
3 7/30/2003 21 6.3240 5.9859 4.7906 4.6699 0.7802 16.85 24.08 0.1949 0.0595
4 8/6/2003 28 6.3315 5.9929 4.6826 4.5924 0.7663 17.96 19.52 0.2261 0.0681
5 9/5/2003 58 6.3127 5.9752 4.7244 4.6351 0.7757 14.65 31.43 0.2102 0.0633
6 10/7/2003 90 6.3465 6.0071 4.6549 4.5219 0.7528 16.96 15.29 0.2253 0.0668
Abbreviations: A.I. ≡ acid-insoluble, unt ≡ untreated, treated ≡ treated bagasse, for other nomenclature see Appendix I 
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APPENDIX N 

 

QUALITY ASSESSMENT REPORT FOR BAGASSE PULP FROM BATCH # 1 

 

 

 

 

 

 

 

UNIVERSIDAD DE COSTA RICA 
INSTITUTO DE INVESTIGACIONES EN INGENIERÍA 

LABORATORIO DE PRODUCTOS FORESTALES 
(Institute for Engineering Research, Forest Products Laboratory) 
Teléfono: 207-5354, Facsímil: 224-2619, Apartado  

postal: 36-2060,  
Correo electrónico: lpf@fing.ucr.ac.cr 

INFORME DE ENSAYO 
Test  Report

 
 

LPF-R-
15 

(cuarta 
versión) 

 

The Forest Products Laboratory accredited the assays :”Thickness 

of paper and cardboard” and “Humidity level of wood”, under 

regulations ISO IEC 25:1990 and NCR EN 45 001 on October 2000.   

 
November 28th, 2002 

REPORT SERIAL  
NUMBER:    LPF-S-INF-046-02 
 
 
TYPE: CP-2-46/AN-1-05 
 
 
 
REPORT: A morphometric study of the fibers, refining, and sugar-

cane pulp handsheets formation.  Sheet characterization 
was based on physical, chemical, mechanical and optical 
properties of pulp from sugar-cane bagasse (Saccharum 
officinarum , taken from a sugar-cane processing plant in 
Southern Texas. 

)

 
 

CUSTORMER:  TEXAS A&M UNIVERSITY 
Ph. D. Mark Holtzapple 
College Station, Texas 
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Telephone: (979) 845-9708 
 Fax:  (979) 845-6446 
 E-mail: mth4500@chemail.tamu.edu 
  
  
SAMPLE DATE OF ARRIVAL:  August, 2002 

 
 
DELIVERY OF SAMPLES:  Via airmail 
 
 
NUMBER OF PAGES: 11 
 
DESCRIPTION: 
 
The customer requested, via airmail, that the Forest Products Laboratory carry out 1) 

the morphometric study of the fibers, 2) refining, and laboratory sheet formation, and 

3) the characterization of these sheets based upon physical, chemical, mechanical, and 

optical properties of the pulp from sugar-cane bagasse (Saccharum o ficinarum), which 

was taken from a sugar-cane processing plant located in Southern Texas. 

f

 

The customer sent the pulp samples with the following procedural detail: fresh bagasse 

was collected from a sugar mill in South Texas.  No size reduction was performed on 

the collected bagasse.  The bagasse was treated with lime and then extensively washed 

to remove any residual calcium carbonate that might be present.   The washed, lime-

treated bagasse was dried in an oven and formed hard 2-cm-thick mats.  The mats 

were broken apart by hand, and by rubbing mats against a 4-mesh screen allowing the 

finer material to fall through.  After the clumps were broken apart, all the materials was 

sieved to separate it into various particle sizes.  The sieves were stacked on top of each 

other, coarse on top, fine on bottom.  A small amount of material was placed on the 

top sieve, enough to fill about 25% of the sieve volume.  To separate the particles, the 

sieve stack was tapped with a rubber mallet for about 5 minutes. The following size 

classifications were obtained:  
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Number Fraction Description Mass (g) 

1 Handpicking Chunks that were removed by visual inspection 27,4 

2 Coarse fiber Portions that would not go through the 4-mesh 
screen during rubbing. 

21,4 

3 +4 Retained on 4-mesh screen during sieving 81,0 

4 -4 +10 Pass 4-mesh, retained on 10-mesh 34,1 

5 -10 +16 Pass 10-mesh, retained on 16-mesh 23,9 

6 -16 +30 Pass 16-mesh, retained on 30-mesh 40,1 

7 -30 +40 Pass 30-mesh, retained on 40-mesh 13,0 

8 -40 +50 Pass 40-mesh, retained on 50-mesh 15,4 

9 -50 Pass 50 mesh 39,8 

 

 

After considering the amounts collected, a set of fractions were selected and mixed.  

These were identified as: #2 coarse fibre; #3 +4 hand picked; #4 –4/+10; y #5 -

10/+16.  Humidity of the mixed material was determined at 105 °C. 

 

Morphological measurements were made on the sugar-cane bagasse fibers: length, 

tangential diameter, lumen thickness, wall thickness.  They were classified based upon 

their length. 

 

The Runkel Factor, the Flexibility Coefficient and the length-diameter ratio were 

parameters determined for the classification of the fibers.  The experimental procedures 

are described by Carpio (1996).  The results are in Tables 1 and 2.  Figure 1 shows the 

fiber-sample percent distribution in the sugar-cane bagasse sample that was analyzed.  

Figure 2 is a micrograph of the bagasse fibers taken with a 10x zoom lens. 
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A sample of 121,9 g of the original material was used for pulping.  This sample was 

hydrated for 24 hours in water and passed through a laboratory beater (holander 

beater) where water was added to a consistency of 1,2%. 

 

Refining began within 10 minutes without weights for mixture homogenization.  11,9 kg 

of weights were installed to start the curve of refining.  It took 21 minutes to reach the 

desired beating degree.  See Figure 3. 

 

Pulp handsheets (approximate grammage 60 g/m2) were made from the pulp using the 

procedure T-200 described by TAPPI (1996).  Other properties were measured 

following the procedures described by Blanco (1998, 2002) and TAPPI (1996): 

grammage, thickness, apparent density, paper air resistance (Gurley Method), pH hot 

extraction method, lignin Klason content, ash content at 525 °C and 900 °C, burst 

index, tensile index and tear index, opacity white backing, opacity paper backing, 

brightness, and the color (L, a, b) and (x, y, z).  The conditions were of 50% ±  2% 

relative humidity and 23 ± 2 °C. Average results of the tests and their standard deviations 

are included in Table 3.  

 

TEST DATES:  12-25 November, 2002 
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ANATOMY RESULTS 

LABORATORIO DE PRODUCTOS FORESTALES 
SECCION DE ANATOMÍA Y MORFOLOGÍA DE LA MADERA 

 
Forest Products Laboratory 

Wood Anatomy and Morphology Section 
Table 1 

 
Characteristics of Sugar-Cane Bagasse Fibers 

LPF-S-INF-046-02 
 
 

SUGAR-CANE BAGASSE 

FIBER CHARACTERISTICS 
Mean Minimum Maximum Standard 

Deviation 

Variation 
Coefficient 

(%) 

FIBER DIMENSIONS 

Average length (µm) 1 820 737 3 775 643 35 

Average tangential diameter (µm) 23 12 39 6 26 

Diámetro promedio del lumen (µm) 11 2 29 5 49 

Average wall thickness (µm) 6 2 11 1 28 

IMPORTANT RATIOS 

Runkel Factor 1 

Flexibility coefficient (%) 49 

Ratio L/D 81 

FIBER CLASSIFICATION 

based on  length long fiber 

based on tangential diameter fine fiber 

based on wall thickness thick fiber 

Test date:  November 26, 2002 
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LABORATORIO DE PRODUCTOS FORESTALES 
SECCION DE ANATOMÍA Y MORFOLOGÍA DE LA MADERA 

 
 

Forest Products Laboratory 
Wood Anatomy and Morphology Section 

Table 2 
 
 

Fiber Percent Distribution 
LPF-S-INF-046-02 

 

SUGAR CANE BAGASSE 

CLASSIFICATION RANGE MEDIA Standard 
Deviation 

Variation 
Coefficient Frequency

 (µm) (µm) (µm) (%) (%) 

Short fibers 0 a 900 801 64 8 2 

Medium fibers 901 a 1 600 1 274 182 14 40 

Long fibers 1 601 a 2 000 1 780 1 5 23 

Very long fibers 2 001 a 3 000 2 338,61 263 11 30 

Extra-long fibers >3 000 3 386 513 15 5 

     100 

Test date:   November 26, 2002 
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Figure 1. Percent distribution of sugar-cane bagasse fibers (Saccharum officinarum) 
 
 
 
 

 

 
 

Figure 2.   Microphotograph of sugar-cane bagasse fibers (Saccharum officinarum) 
(Zoom lens 10X) 
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PULPING RESULTS 
 
 
 
1. The sugar-cane sample had a humidity content of 5,62% with a standard deviation 

of 0,06%.   
 
2. The curve of refining was obtained using a laboratory beater type hollander beater. 
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Figure 3.  Beating degre

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

e profile for sugar-cane bagasse pulp (Saccharum officinarum) 
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LABORATORIO DE PRODUCTOS _mall_ALES 
SECCION DE CELULOSA Y PAPEL 

CUADRO N. 3 
SUGAR-CANE BAGASSE PULP HANDSHEET 

 PROPERTIES (Saccharum officinarum) REFINED AT 47,3 °SRC 

LPF-S-INF-046-02 

 
Results 

BAGASSE PULP HANDSHEET 

(Saccharum officinarum) REFINED AT 47,3 °SRC Mean (x) Standard 
Deviation (s) 

PHYSICAL PROPERTIES 

Grammage on a conditioned weight basis (g/m2) 68,5 0,2 

Percent moisture content on a conditioned weight basis (%) 5,79 0,10 

Thickness average (mm) 0,146 0,003 

Thickness _mall (mm) 0,133 --- 

Thickness large (mm) 0,164 --- 

Apparent density on a conditioned weight basis (kg/m3) 469 23 

SURFACE PROPERTIES 

Air resistance of paper (Gurley Method) (s/100ml) 61,6 3,4 

Air resistance of paper (Gurley Method)  (µm/Pa•s) 2,14 0,13 

CHEMICAL PROPERTIES 

pH in hot (dimensionless) 9,40 0,02 

Ash at 525 ºC (% dry basis)  11,02 0,11 

Ash at 900 ºC (% dry basis) 7,57 0,03 

Lignin Klason (% dry basis) 12,16 0,14 

MECHANICAL PROPERTIES 

Bursting strength  (kPa) 105,8 3,7 

Burst index (kPa•m2/g) 1,5 0,1 

Tensile strength (kN/m) 2,33 0,05 

Breaking length (km) 3,46 0,09 

Tensile index (N•m/g) 33,92 0,87 

Tearing resistance (mN) 235,4 5,1 

Tear index (mN•m2/g) 3,4 0,1 
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OPTICAL PROPERTIES 

Opacity (white backing) (%) 98,9 0,8 

Opacity (paper backing) (%) 102,0 0,5 

Brightness (%) 28,5 0,3 

Color (%) 

• L 

• a 

• b 

 

71,18 

10,56 

18,56 

 

0,13 

0,08 

0,13 

Color (%) 

• X 

• Y 

• z 

 

51,19 

42,46 

10,08 

 

0,20 

0,19 

0,08 

MEAN RELATIVE-HUMIDITY:  48,77%  MEAN TEMPERATURE:  23,44 °C 

SRc: Schopper Riegler degree 

TEST DATES:   12-25 November, 2002 
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APPENDIX O 

 

QUALITY ASSESSMENT REPORT FOR BAGASSE PULP FROM BATCH # 2 

 

December 4, 2003 
Page 1 of 5  

IPS PA 1179-03 
 

 
Report to: Mr. Cesar Granda  
 Graduate Research Assistant 
 Chemical Engineering Department 
 Texas A & M University 
 M.S. 3122 Room 337 
 College Station, TX 77843 
 
Sample identification:  One Unbleached Bagasse Pulp Sample 
 
Date received:  September 29, 2003 
 
Tests requested:  Valley Beater Curve (Including Freeness, Handsheets, Basis  
 Weight, Caliper, Bulk, Density, Tear, Burst, Tensile, and  
 Gurley Porosity), Dirt Count, Ash at 525oC and 900oC, Klason  
 Lignin, Brightness, Color, Opacity, MorFi Fiber Length, and  
 Digital Microphotographs 

 
Refining Study 

 
Integrated Paper Services, Inc. received one pulp sample for a Valley beater 
curve.  The pulp was separated into fiber length classes at Texas A&M prior to 
shipment to IPS.  A MorFi fiber length analysis was run on each fiber class for 
comparison to a typical fiber length distribution of copy paper.  The MorFi fiber 
length data is summarized in Table 1 on page 2.  The fiber lengths of the 
bagasse pulp fractions were too low to simulate the fiber found in typical copy 
paper.  The fractions listed in table 1 were blended for refining. 
 
After refining the pulp with the Valley beater, handsheets were prepared and 
tested for basis weight, caliper, bulk, density, tear, burst, tensile, and Gurley 
porosity, dirt count, ash at 525oC and 900oC, Klason lignin, brightness, color, 
and opacity.  Digital microphotographs were also taken of the pulp sample.  
Physical test results are summarized in Table 2 on pages 3-5. 
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Report to Texas A & M University     December 4, 2003 
IPS PA 1179-03       Page 2 of 5 
 

Fiber Length Distributions 
 

Enclosed are the results of the fiber length distribution testing performed on 6 
samples.  The samples were run on the Techpap MorFi LB01 system.  The 
sample labels can be found on the top of each data page.  Please note that the 
coarseness values listed in the results are not correct, as a known weight of the 
sample is needed to obtain accurate coarseness results.  A known weight of 
sample was not run through the MorFi and 0.2 grams was entered as the weight 
for each sample. 
 
Table 1.  Summary of fiber length and width data for the six samples 
   
 
 

Average Length Arithmetical Width

Weighted in Length (mm) Average (mm) (micrometers)

Copy Paper 1.07 0.854 21.2

16 mesh - 20 mesh 0.69 0.507 28.1

20 mesh - 30 mesh 0.691 0.515 27.3

30 mesh - 40 mesh 0.695 0.525 27.4

40 mesh - 50 mesh 0.634 0.493 26.6

Greater than 50 mesh 0.566 0.447 28.5

Sample ID

 
________________________________________________________________ 
 
The physical properties of handsheets of this pulp compared with commercial 
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bagasse (article attached) are low.  This pulp could probably find use in filler 
applications such as corrugating medium or inside layers of a liner grade. 
 
If you have any questions, please do not hesitate to call. 

 
 
Signed______________________________ 

 Sally A. Berben 
 Group Leader, Analytical Services 
 (920) 749-3040, Ext. 114 
 
SAB/pas 
Enclosures 
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Report to Texas A & M University     December 4, 2003 
IPS PA 1179-03        Page 3 of 5 
 
Table 2.  Physical Test Data 
 
Sample ID  0 minutes 5 minutes 7 minutes 9 minutes 11 minutes

       
Freeness (mL)  550 306 263 245 217 

       
Basis Wt (g/m2)  71.1 67.4 68.9 69.1 67.1 
       
Caliper - 5 ply (mm)       

Average  0.703 0.620 0.628 0.600 0.573 
St. Dev.  0.039 0.011 0.012 0.009 0.007 
Max  0.756 0.656 0.659 0.614 0.583 
Min  0.653 0.603 0.615 0.579 0.560 

       
Density (g/cm3)  0.506 0.544 0.548 0.575 0.585 
Bulk (cm3/g)  1.98 1.84 1.82 1.74 1.71 
       
Brightness (%)       

Average  33.70 32.58 32.49 31.68 31.53 
St. Dev.  0.19 0.12 0.25 0.17 0.10 
Max  33.93 32.79 32.96 31.89 31.67 
Min  33.29 32.39 32.26 31.42 31.40 

       
Color       

L  71.00 70.22 70.05 69.06 68.88 
a  1.56 1.59 1.59 1.63 1.64 
b  16.99 17.18 17.07 16.72 16.66 

       
Opacity (%)       

Average  92.6 92.5 93.4 93.5 93.2 
St. Dev.  0.5 0.3 0.5 0.3 0.4 
Max  93.2 93.0 94.3 93.9 93.5 
Min  91.6 92.1 92.9 93.0 92.2 

       
Burst (kPa)       

Average  20.7 38.6 41.4 48.3 48.3 
St. Dev  5.5 3.8 4.2 4.2 4.2 
Max  27.6 41.4 44.8 55.2 51.7 
Min  13.8 34.5 34.5 44.8 41.4 
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Report to Texas A & M University     December 4, 2003 
IPS PA 1179-03        Page 4 of 5 
 
Table 2.  Physical Test Data (continued) 
 
Sample ID  0 minutes 5 minutes 7 minutes 9 minutes 11 minutes 

       
Burst Index (kPa-m2/g) 0.291 0.573 0.601 0.699 0.720 
       
Tear (g)       

Average  9.60 11.52 12.16 12.80 11.52 
St. Dev.  0.00 1.75 1.43 0.00 1.75 
Max  9.60 12.80 12.80 12.80 12.80 
Min  9.60 9.60 9.60 12.80 9.60 
       

Tear Index (mN-m2/g) 1.32 1.68 1.73 1.82 1.68 
       
Gurley Porosity (s/100 mL)      

Average  1.9 10.3 15.5 25.3 48.8 
St. Dev.  0.2 2.3 1.0 4.6 7.5 
Max  2.2 14.2 17.7 30.7 60.9 
Min  1.6 5.8 14.4 15.7 35.2 

       
Tensile Strength (kN/m)      

Average  0.0857 1.134 1.373 1.464 1.379 
St. Dev.  0.0377 0.110 0.034 0.232 0.211 
Max  0.134 1.262 1.416 1.615 1.649 
Min  0.0480 0.964 1.337 1.060 1.080 

       
Stretch (%)       

Average  0.175 0.638 0.746 0.776 0.666 
St. Dev.  0.037 0.070 0.039 0.137 0.114 
Max  0.220 0.720 0.810 0.870 0.850 
Min  0.130 0.530 0.710 0.540 0.550 

       
TEA* (Joule/m2)       

Average  0.07 4.12 6.02 6.89 5.25 
St. Dev.  0.04 0.95 0.52 2.32 1.92 
Max  0.12 5.39 6.81 8.61 8.27 
Min  0.03 2.73 5.53 2.99 3.19 

       
* TEA ≡ Tensile Energy Absorption 
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Report to Texas A & M University     December 4, 2003 
IPS PA 1179-03        Page 5 of 5 
 
Table 2.  Physical Test Data (continued) 
 
Sample ID  0 minutes 5 minutes 7 minutes 9 minutes 11 minutes 

       
Breaking Length (km)      

Average  0.12 1.72 2.03 2.16 2.10 
St. Dev.  0.05 0.17 0.05 0.34 0.32 
Max  0.19 1.91 2.10 2.38 2.51 
Min  0.07 1.46 1.98 1.56 1.64 

       
       
Tensile Index (N-m/g)      

Average  1.2 16.8 19.9 21.2 20.6 
St. Dev.  0.5 1.6 0.5 3.4 3.1 
Max  1.9 18.7 20.6 23.4 24.6 
Min  0.7 14.3 19.4 15.3 16.1 
       

Ash 525oC (%)  7.41     
       

Ash 900oC (%)  5.36     
       

Klason Lignin (%)  8.8     
       

 

Methods: 
 TAPPI T 227 om-99 
  Freeness of pulp (Canadian standard method) 
 TAPPI T 220 sp-01 
  Physical testing of pulp handsheets 
 TAPPI T 525 om-02 
  Diffuse brightness of pulp 
 TAPPI T 527 om-02 
  Color of paper and paperboard (d/0, C/2) 
 TAPPI T 425 om-01 
  Opacity of paper (15/d, illuminant A/2o, 89% reflectance backing and 
  paper backing) 
 TAPPI T 460 om-02 
  Air resistance of paper (Gurley method) 
 TAPPI T 211 om-93 
  Ash in wood, pulp, paper and paperboard: combustion at 525oC 
 TAPPI T 413 om-02 
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  Ash in wood, pulp, paper and paperboard: combustion at 900oC 
 Lignin – Klason (acid insoluble lignin) Tappi 60(10):143-144 (October 1977). 
 
Analysis by LAH and JPA 
Quality review by SAB and JRS 
Date tested:  October 3 through 17, 2003
 
Notes:  These results relate only to the items tested.  This test report shall not be 
reproduced, except in full, without written consent of IPS.  See the TAPPI test 
methods cited above for estimate of measurement uncertainty. 



 367

APPENDIX P 

 

STANDARD ERROR, STANDARD DEVIATION AND PROPAGATION OF 

ERROR 

 

The standard error for all the regressed parameters, as mentioned, were 

calculated using SAS® statistical software.

The standard deviations for the average of several observations were calculated 

using the “stdev” function in EXCELTM, which uses the following formula: 

 

1
)( 2

−

−
= ∑

n
xx

σ     (P.1) 

 

where 

 σ = The estimated standard deviation 

x = The value for the observation 

           x  = The average of all the observations 

 n = The number of observations 

 

Whenever applicable, the propagation of error in the result of two or more values 

being added or subtracted were calculated as follows: 

Let the parameters x1 ± S1 , x2 ± S2, …, xN ± SN, where S is either the standard 

deviation or the standard error, be added or subtracted  to obtain the parameter y ± Sy 

(i.e., yxxx N =−+−+−+ )/)...(/()/( 21 ), then, 
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In the case of multiplication or division, the standard deviation or standard error 

of the result was calculated as follows: 

Let yxxx N =÷×÷×÷× )/)...(/()/( 21 , then, 
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